JP6790841B2 - Pneumatic tires - Google Patents

Pneumatic tires Download PDF

Info

Publication number
JP6790841B2
JP6790841B2 JP2017002032A JP2017002032A JP6790841B2 JP 6790841 B2 JP6790841 B2 JP 6790841B2 JP 2017002032 A JP2017002032 A JP 2017002032A JP 2017002032 A JP2017002032 A JP 2017002032A JP 6790841 B2 JP6790841 B2 JP 6790841B2
Authority
JP
Japan
Prior art keywords
tire
shoulder
tread
ground contact
main groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017002032A
Other languages
Japanese (ja)
Other versions
JP2018111360A (en
Inventor
錬也 大河原
錬也 大河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2017002032A priority Critical patent/JP6790841B2/en
Priority to CN201711163816.6A priority patent/CN108284711B/en
Publication of JP2018111360A publication Critical patent/JP2018111360A/en
Application granted granted Critical
Publication of JP6790841B2 publication Critical patent/JP6790841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1272Width of the sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/01Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Description

本発明は、肩落ち摩耗を抑えながらワンダリング性能を向上させた空気入りタイヤに関する。 The present invention relates to a pneumatic tire having improved wandering performance while suppressing shoulder drop wear.

重荷重用、及び小型トラック用の空気入りタイヤでは、トレッド輪郭形状を、タイヤ赤道面に中心を有する単一円弧で形成した所謂シングルラジアスのものが広く採用されていた。しかし、このようなシングルラジアスのタイヤは、タイヤ赤道面側とトレッド端側とでタイヤ半径差が大きい。そのため、トレッド端側のトレッド面と路面との間に滑りが発生し、所謂肩落ち摩耗が発生するという問題がある。 For pneumatic tires for heavy loads and light trucks, so-called single radius tires in which the tread contour shape is formed by a single arc having a center on the equatorial plane of the tire have been widely adopted. However, in such a single radius tire, the difference in tire radius between the tire equatorial surface side and the tread end side is large. Therefore, there is a problem that slippage occurs between the tread surface on the tread end side and the road surface, and so-called shoulder drop wear occurs.

そのためトレッド輪郭形状を、赤道側の円弧部と、この赤道側の円弧部よりも曲率半径が大きいショルダー側の円弧部とで形成することが提案されている(下記の特許文献1参照)。しかしこの提案のタイヤの場合、轍を有する路面を走行する際、轍内の凹凸にトレッド端が接触すると、大きな反力が作用して車輌がふらつくなど轍直進性が悪い。また轍から抜け出す際、轍の傾斜面を乗り越えるのに必要なキャンバースラストが小さくかつ轍斜面に対する反力が大きいため、轍脱出性能(轍乗り越し性能)も悪いという問題がある。このように、轍直進性及び轍脱出性能であるワンダリング性能と肩落ち摩耗とは、二律背反の関係にある。 Therefore, it has been proposed to form the tread contour shape with an arc portion on the equator side and an arc portion on the shoulder side having a radius of curvature larger than that of the arc portion on the equator side (see Patent Document 1 below). However, in the case of the tire of this proposal, when the tread end comes into contact with the unevenness in the rut when traveling on a road surface having a rut, a large reaction force acts and the vehicle sways, resulting in poor straightness of the rut. Further, when getting out of the rut, the camber thrust required to get over the slope of the rut is small and the reaction force against the slope is large, so that there is a problem that the rut escape performance (rut riding performance) is also poor. As described above, the wandering performance, which is the rut straightness and the rut escape performance, and the shoulder drop wear are in a trade-off relationship.

なお下記の特許文献2には、肩落ち摩耗を抑えながらワンダリング性能を向上させるために、トレッド端を曲率半径が小さい小円弧部(所謂ラウンドショルダ)で形成したり、トレッド端近傍にタイヤ周方向に連続してのびる縦細溝を形成したり、又縦細溝より外側にタイヤ軸方向にのびるサイプを形成することなどが提案されている。 In Patent Document 2 below, in order to improve wandering performance while suppressing shoulder drop wear, the tread end is formed by a small arc portion (so-called round shoulder) having a small radius of curvature, or the tire circumference is near the tread end. It has been proposed to form a vertical tread that extends continuously in the direction, or to form a sipe that extends in the tire axial direction outside the vertical tread.

しかし近年のタイヤの高性能化への要求に鑑み、耐肩落ち摩耗性能とワンダリング性能とのより高レベルでの両立が強く望まれている。 However, in view of the recent demand for higher performance tires, it is strongly desired to achieve both shoulder drop wear resistance and wandering performance at a higher level.

特開2004−203343号公報Japanese Unexamined Patent Publication No. 2004-203343 特開昭S63−258203号公報JP-A-S63-258203

そこで本発明は、耐肩落ち摩耗性能とワンダリング性能とを、より高いレベルで両立させうる空気入りタイヤを提供することを課題としている。 Therefore, an object of the present invention is to provide a pneumatic tire capable of achieving both shoulder drop wear resistance and wandering performance at a higher level.

本発明は、トレッド部に、タイヤ周方向に連続してのびるセンター主溝と、前記センター主溝の両側でタイヤ周方向に連続してのびる一対のショルダー主溝とを設けることにより、トレッド部が、前記ショルダー主溝とセンター主溝との間の一対のセンター陸部と、前記ショルダー主溝とトレッド接地端との間の一対のショルダー陸部とに区分された空気入りタイヤであって、
前記ショルダー陸部は、ショルダー陸部内で途切れる内端部からバットレス部内で途切れる外端部までトレッド接地端を横切ってのびる複数のショルダースロットを具え、
各前記ショルダースロットは、タイヤ周方向の巾Waが、ショルダースロットのタイヤ周方向ピッチPaの18〜28%であり、
正規リムにリム組みしかつ正規内圧の5%の内圧を充填した5%内圧状態におけるタイヤ子午断面において、
トレッド部の表面のトレッド輪郭線は、タイヤ赤道面に円弧中心を有する曲率半径R1の第1円弧部と、この第1円弧部に交点Qで交わり、かつ前記曲率半径R1の5〜15%の曲率半径R2の第2円弧部とからなり、
タイヤ赤道面から前記交点Qまでのタイヤ軸方向距離LQは、前記タイヤ赤道面からトレッド接地端までのタイヤ軸方向距離である接地半幅Twの75〜85%、
トレッド輪郭線とタイヤ赤道面とが交わるタイヤ赤道点から前記交点Qまでのタイヤ半径方向距離L2は、前記接地半幅Twの1〜3%、
かつ前記タイヤ赤道点からトレッド接地端までのタイヤ半径方向距離L1は、前記接地半幅Twの4〜6%であることを特徴としている。
According to the present invention, the tread portion is provided with a center main groove that extends continuously in the tire circumferential direction and a pair of shoulder main grooves that continuously extend in the tire circumferential direction on both sides of the center main groove. A pneumatic tire divided into a pair of center land portions between the shoulder main groove and the center main groove and a pair of shoulder land portions between the shoulder main groove and the tread ground contact end.
The shoulder land portion includes a plurality of shoulder slots extending across the tread ground contact end from the inner end portion that is interrupted in the shoulder land portion to the outer end portion that is interrupted in the buttress portion.
The width Wa in the tire circumferential direction of each shoulder slot is 18 to 28% of the tire circumferential pitch Pa of the shoulder slot.
In the tire meridional cross section in the 5% internal pressure state where the rim is assembled to the regular rim and the internal pressure is 5% of the regular internal pressure
The tread contour line on the surface of the tread portion intersects the first arc portion of the radius of curvature R1 having the center of the arc on the equatorial plane of the tire at the intersection Q with the first arc portion, and is 5 to 15% of the radius of curvature R1. It consists of a second arc with a radius of curvature R2.
The tire axial distance LQ from the tire equatorial plane to the intersection Q is 75 to 85% of the ground contact half width Tw, which is the tire axial distance from the tire equatorial plane to the tread ground contact end.
The tire radial distance L2 from the tire equatorial point where the tread contour line and the tire equatorial plane intersect to the intersection Q is 1 to 3% of the ground contact half width Tw.
Moreover, the tire radial distance L1 from the tire equator point to the tread ground contact end is 4 to 6% of the ground contact half width Tw.

本発明の空気入りタイヤでは、前記ショルダースロットの最大深さは、前記前記ショルダー主溝の溝深さの18〜22%であることが好ましい。 In the pneumatic tire of the present invention, the maximum depth of the shoulder slot is preferably 18 to 22% of the groove depth of the shoulder main groove.

本発明の空気入りタイヤでは、前記ショルダー陸部は、前記ショルダースロット間に、ショルダー陸部内で途切れる内端部からバットレス部内で途切れる外端部までトレッド接地端を横切ってのびる2又は3本のショルダーサイプを具えること好ましい。 In the pneumatic tire of the present invention, the shoulder land portion has two or three shoulders extending across the tread ground contact end between the shoulder slots from the inner end portion interrupted in the shoulder land portion to the outer end portion interrupted in the buttress portion. It is preferable to have a buttress.

前記「5%内圧状態」でのタイヤ形状は、通常、加硫金型内でのタイヤ形状と略一致している。そして加硫金型の金型面の形状を特定することにより、前記5%内圧状態のタイヤ形状をコントロールしうる。本明細書では、特に断りがない限り、タイヤの各部の寸法等は、前記5%内圧状態にて特定される値とする。 The tire shape in the "5% internal pressure state" is usually substantially the same as the tire shape in the vulcanization die. Then, by specifying the shape of the mold surface of the vulcanization mold, the tire shape in the 5% internal pressure state can be controlled. In the present specification, unless otherwise specified, the dimensions and the like of each part of the tire are set to the values specified in the 5% internal pressure state.

又前記「トレッド接地端」は、正規リムにリム組みしかつ正規内圧を充填した状態のタイヤに正規荷重を付加したときに路面に接地するトレッド踏面のうち、タイヤ軸方向最外端の位置として定義される。 Further, the "tread ground contact end" is defined as the position of the outermost end in the tire axial direction of the tread tread that touches the road surface when a regular load is applied to the tire in a state where the rim is assembled to the regular rim and the regular internal pressure is applied. Defined.

前記「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えばJATMAであれば標準リム、TRAであれば "Design Rim" 、或いはETRTOであれば "Measuring Rim"を意味する。前記「正規内圧」とは、前記規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE"を意味するが、乗用車用タイヤの場合には180kPaとする。前記「正規荷重」とは、前記規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "LOAD CAPACITY"である。 The "regular rim" is a rim defined for each tire in the standard system including the standard on which the tire is based. For example, JATTA is a standard rim, TRA is "Design Rim", or ETRTO. If so, it means "Measuring Rim". The "regular internal pressure" is the air pressure defined for each tire by the standard. If it is JATMA, it is the maximum air pressure, if it is TRA, it is the maximum value described in the table "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES", ETRTO. If so, it means "INFLATION PRESSURE", but in the case of passenger car tires, it is 180 kPa. The "regular load" is the load defined by the standard for each tire, and is the maximum load capacity for JATMA and the maximum value listed in the table "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" for TRA. If it is ETRTO, it is "LOAD CAPACITY".

本発明は叙上の如く構成するため、発明を実施するための形態にて記載されるように、耐肩落ち摩耗性能とワンダリング性能とをより高レベルで両立させることが可能になる。 Since the present invention is configured as described above, it is possible to achieve both shoulder drop wear resistance and wandering performance at a higher level, as described in the embodiment for carrying out the invention.

本発明の空気入りタイヤの一実施例を示す断面図である。It is sectional drawing which shows one Example of the pneumatic tire of this invention. そのトレッド部の表面を平面に展開して示す展開図である。It is a developed view which shows the surface of the tread part developed in a plane. トレッド輪郭線を示す線図である。It is a diagram which shows the tread outline.

以下、本発明の実施の形態について、詳細に説明する。
図1に示すように、本実施形態の空気入りタイヤ1は、トレッド部2からサイドウォール部3を経てビード部4のビードコア5に至るカーカス6と、トレッド部2の内部かつカーカス6の半径方向外側に配されるベルト層7とを具える。本例では、前記空気入りタイヤ1が、小型トラック用のタイヤである場合が示される。
Hereinafter, embodiments of the present invention will be described in detail.
As shown in FIG. 1, the pneumatic tire 1 of the present embodiment has a carcass 6 extending from the tread portion 2 through the sidewall portion 3 to the bead core 5 of the bead portion 4, and inside the tread portion 2 and in the radial direction of the carcass 6. It includes a belt layer 7 arranged on the outside. In this example, the case where the pneumatic tire 1 is a tire for a light truck is shown.

前記カーカス6は、カーカスコードがタイヤ赤道Cに対して例えば70〜90゜の角度で配列された少なくとも1枚、本例では半径方向内外に配される合計2枚のカーカスプライ6A、6Bから形成される。内のカーカスプライ6Aは、ビードコア5、5間に跨る本体部6A1の両端に、ビードコア5の廻りで折り返される折返し部6A2を有する。又外のカーカスプライ6Bは、ビードコア5の廻りで折り返されることなく、前記折返し部6A2の外面に重なって終端している。 The carcass 6 is formed of at least one carcass cord arranged at an angle of, for example, 70 to 90 ° with respect to the tire equator C, and in this example, a total of two carcass plies 6A and 6B arranged inside and outside the radial direction. Will be done. The carcass ply 6A inside has folded portions 6A2 folded around the bead core 5 at both ends of the main body portion 6A1 straddling between the bead cores 5 and 5. Further, the outer carcass ply 6B is terminated so as to overlap the outer surface of the folded portion 6A2 without being folded around the bead core 5.

前記ベルト層7は、ベルトコードがタイヤ赤道Cに対して例えば15〜75゜の角度で配列された少なくとも2枚、本例では半径方向内側から順に配される第1〜3のベルトプライ7A〜7Cから形成される。本例では、第1のベルトプライ7Aのベルトコードの角度は例えば45〜75°であり、また第2、3のベルトプライ7B、7Cのベルトコードの角度は例えば10〜35°かつ傾斜の向きが互いに相違している。これによりベルトコードがプライ間で互いに交差し、ベルト剛性が高められる。 The belt layers 7 have at least two belt cords arranged at an angle of, for example, 15 to 75 ° with respect to the tire equator C, and in this example, the first to third belt plies 7A to which are arranged in order from the inside in the radial direction. Formed from 7C. In this example, the angle of the belt cord of the first belt ply 7A is, for example, 45 to 75 °, and the angle of the belt cords of the second and third belt plies 7B and 7C is, for example, 10 to 35 ° and the direction of inclination. Are different from each other. As a result, the belt cords intersect each other between the plies, and the belt rigidity is increased.

なお必要に応じて、ベルト層7は、ベルトプライの枚数が増減されても良いし、またベルト層7の外側に、例えばバンドコードがタイヤ周方向に螺旋状に巻回されたバンドプライを設けることもできる。 If necessary, the number of belt plies may be increased or decreased in the belt layer 7, and a band ply in which, for example, a band cord is spirally wound in the tire circumferential direction is provided on the outside of the belt layer 7. You can also do it.

図1中の符号8は、ビード補強用のビードエーペックスゴムであり、本体部6A1と折返し部6A2との間を通ってビードコア5から半径方向外側にのびる。又符号9は、ビード補強用の補強コード層であって、例えばスチール製の補強コードをタイヤ周方向に対して例えば30〜60°の角度で配列する1枚以上、本例では2枚の補強プライから形成される。 Reference numeral 8 in FIG. 1 is a bead apex rubber for reinforcing the bead, which passes between the main body portion 6A1 and the folded portion 6A2 and extends radially outward from the bead core 5. Reference numeral 9 is a reinforcing cord layer for bead reinforcement, for example, one or more reinforcing cords in which steel reinforcing cords are arranged at an angle of, for example, 30 to 60 ° with respect to the tire circumferential direction, or two reinforcements in this example. Formed from ply.

図2に示すように、トレッド部2は、タイヤ周方向に連続してのびるセンター主溝10と、前記センター主溝10の両側でタイヤ周方向に連続してのびる一対のショルダー主溝11とを具える。これによりトレッド部2は、ショルダー主溝11とセンター主溝10との間の一対のセンター陸部12、及びショルダー主溝11とトレッド接地端TEとの間の一対のショルダー陸部13に区分される。 As shown in FIG. 2, the tread portion 2 includes a center main groove 10 continuously extending in the tire circumferential direction and a pair of shoulder main grooves 11 extending continuously in the tire circumferential direction on both sides of the center main groove 10. To prepare. As a result, the tread portion 2 is divided into a pair of center land portions 12 between the shoulder main groove 11 and the center main groove 10, and a pair of shoulder land portions 13 between the shoulder main groove 11 and the tread ground contact end TE. Tread.

本例では、センター陸部12及びショルダー陸部13が、タイヤ周方向に連続してのびるリブ体とした場合が示される。 In this example, the case where the center land portion 12 and the shoulder land portion 13 are rib bodies that continuously extend in the tire circumferential direction is shown.

センター陸部12の巾W12は、接地半幅Tw(図1に示す)の36〜40%の範囲、ショルダー陸部13の巾W13は、接地半幅Twの45〜50%範囲が好ましい。又前記巾W12と巾W13の和(W12+W13)は、接地半幅Twの80〜85%の範囲が好ましい。これにより、ウエット性能と、ドライ路面での操縦安定性能とのバランスが最適化される。前記和(W12+W13)が接地半幅Twの80%を下回ると、トレッド剛性が減じて操縦安定性能が不足傾向となる。逆に85%を越えると、排水性が減じてウエット性能が不足傾向となる。また前記巾W12が接地半幅Twの36〜40%から外れる場合、及び巾W13が接地半幅Twの45〜50%から外れる場合、センター陸部12とショルダー陸部13との剛性バランスが悪くなり、操縦安定性能の低下、及びセンター摩耗やショルダー摩耗を誘発する傾向となる。 Width W 12 of the center land portion 12, 36 to 40% of the range of the ground half width Tw (shown in FIG. 1), the width W 13 of the shoulder land portion 13 is preferably 45 to 50% range of the ground half width Tw. Further, the sum (W 12 + W 13 ) of the width W 12 and the width W 13 is preferably in the range of 80 to 85% of the ground contact half width Tw. As a result, the balance between wet performance and steering stability performance on a dry road surface is optimized. When the sum (W 12 + W 13 ) is less than 80% of the ground contact half width Tw, the tread rigidity is reduced and the steering stability performance tends to be insufficient. On the contrary, if it exceeds 85%, the drainage property is reduced and the wet performance tends to be insufficient. Further, when the width W 12 deviates from 36 to 40% of the ground contact half width Tw, and when the width W 13 deviates from 45 to 50% of the ground contact half width Tw, the rigidity balance between the center land portion 12 and the shoulder land portion 13 is poor. As a result, the steering stability performance tends to deteriorate, and center wear and shoulder wear tend to be induced.

前記「接地半幅Tw」は、タイヤ赤道面Coからトレッド接地端TEまでのタイヤ軸方向距離で定義される。 The "ground contact half width Tw" is defined by the tire axial distance from the tire equatorial plane Co to the tread ground contact end TE.

センター主溝10及びショルダー主溝11として、両側の溝側縁が直線状にのびるストレート溝、及び少なくとも一方の溝側縁がジグザグ状(波状を含む。)にのびるジグザグ溝が採用しうる。なおジグザグ溝の場合、ジグザグ状の溝側縁における振幅中心を仮想溝側縁として、溝幅及び各陸部の巾を規定する。センター主溝10及びショルダー主溝11の溝巾W10、W11は、前記和(W12+W13)の範囲に基づいて適宜設定される。又溝深さD10、D11(図1に示す)は、慣例に従って種々定めることができる。本例では、溝深さD10と溝深さD11とは同一であり、8〜15mmの範囲(例えば10.5mm)に設定されている。 As the center main groove 10 and the shoulder main groove 11, a straight groove in which the groove side edges on both sides extend linearly and a zigzag groove in which at least one groove side edge extends in a zigzag shape (including a wavy shape) can be adopted. In the case of a zigzag groove, the width of the groove and the width of each land portion are defined with the center of amplitude at the side edge of the zigzag groove as the side edge of the virtual groove. The groove widths W 10 and W 11 of the center main groove 10 and the shoulder main groove 11 are appropriately set based on the range of the sum (W 12 + W 13 ). Further, the groove depths D 10 and D 11 (shown in FIG. 1) can be variously determined according to the custom. In this example, the groove depth D 10 and the groove depth D 11 are the same and are set in the range of 8 to 15 mm (for example, 10.5 mm).

センター陸部12には、センター陸部12を横切る横のサイプ15、及びタイヤ周方向に連続してのびる縦のサイプ16が配される。しかし接地の際、各サイプ15、16がその開口を閉じることにより、センター陸部12は、実質的にリブ体を構成している。なおサイプ15、16の深さは、前記溝深さD10の40〜60%が好ましい。 A horizontal sipe 15 that crosses the center land portion 12 and a vertical sipe 16 that extends continuously in the tire circumferential direction are arranged in the center land portion 12. However, when the sipe 15 and 16 close their openings at the time of touchdown, the center land portion 12 substantially constitutes a rib body. The depth of the sipes 15 and 16 is preferably 40 to 60% of the groove depth D 10 .

又ショルダー陸部13には、トレッド接地端TEを横切ってのびる幅広の複数のショルダースロット20が配される。 Further, the shoulder land portion 13 is provided with a plurality of wide shoulder slots 20 extending across the tread ground contact end TE.

このショルダースロット20の内端部20aは、ショルダー陸部13内で途切れ、かつ外端部20bは、バットレス部21内で途切れている。又ショルダースロット20のタイヤ周方向の巾Waは、ショルダースロット20のタイヤ周方向ピッチPaの18〜28%の範囲である。本例のショルダースロット20は、一定の巾Waでタイヤ軸方向線に沿ってのびる。 The inner end 20a of the shoulder slot 20 is interrupted in the shoulder land portion 13, and the outer end 20b is interrupted in the buttress portion 21. The width Wa of the shoulder slot 20 in the tire circumferential direction is in the range of 18 to 28% of the tire circumferential pitch Pa of the shoulder slot 20. The shoulder slot 20 of this example extends along the tire axial direction line with a constant width Wa.

図1に示すように、ショルダースロット20は、トレッド接地端TE付近で最大深さD20を有し、この最大深さ位置から内端部22a及び外端部22bに向かって深さが漸減する。前記最大深さD20は、ショルダー主溝11の溝深さD11の18〜22%であるのが好ましい。 As shown in FIG. 1, the shoulder slot 20 has a maximum depth D 20 near the tread ground contact end TE, and the depth gradually decreases from this maximum depth position toward the inner end portion 22a and the outer end portion 22b. .. The maximum depth D 20 is preferably 18 to 22% of the groove depth D 11 of the shoulder main groove 11.

図2に示すように、ショルダー陸部13には、ショルダースロット20、20間に、トレッド接地端TEを横切ってショルダースロット20と平行にのびる2又は3本(本例では3本)のショルダーサイプ22が配される。このショルダーサイプ22も、その内端部22aがショルダー陸部13内で途切れ、かつ外端部22bがバットレス部21内で途切れている。又ショルダーサイプ22の深さもショルダースロット20と同様であり、その最大深さD22(図示省略)は、ショルダー主溝11の溝深さD11の18〜22%であるのが好ましい。 As shown in FIG. 2, in the shoulder land portion 13, two or three (three in this example) shoulder sipes extending in parallel with the shoulder slot 20 across the tread grounding end TE between the shoulder slots 20 and 20. 22 is arranged. The inner end 22a of the shoulder sipe 22 is interrupted in the shoulder land portion 13, and the outer end 22b is interrupted in the buttress portion 21. The depth of the shoulder sipe 22 is also the same as that of the shoulder slot 20, and the maximum depth D 22 (not shown) is preferably 18 to 22% of the groove depth D 11 of the shoulder main groove 11.

又図3に示すように、5%内圧状態におけるタイヤ子午断面において、トレッド部2の表面のトレッド輪郭線は、タイヤ赤道面Coに円弧中心を有する曲率半径R1の第1円弧部J1と、この第1円弧部に交点Qで交わり、かつ前記曲率半径R1の5〜15%の曲率半径R2の第2円弧部J2とから構成される。 Further, as shown in FIG. 3, in the tire meridional cross section under the 5% internal pressure state, the tread contour line on the surface of the tread portion 2 is the first arc portion J1 having a radius of curvature R1 having an arc center on the tire equatorial plane Co and the arc portion J1. It intersects the first arc portion at an intersection Q and is composed of a second arc portion J2 having a radius of curvature R2 of 5 to 15% of the radius of curvature R1.

タイヤ赤道面Coから前記交点Qまでのタイヤ軸方向距離LQは、前記接地半幅Twの75〜85%である。又トレッド輪郭線とタイヤ赤道面Coとが交わるタイヤ赤道点Cpから前記交点Qまでのタイヤ半径方向距離L2(「キャンバー量L2」という場合がある。)は、前記接地半幅Twの1〜3%、かつタイヤ赤道点Cpからトレッド接地端TEまでのタイヤ半径方向距離L1(「キャンバー量L1」という場合がある。)は、前記接地半幅Twの4〜6%である。 The tire axial distance LQ from the tire equatorial plane Co to the intersection Q is 75 to 85% of the ground contact half width Tw. Further, the tire radial distance L2 (sometimes referred to as “camber amount L2”) from the tire equatorial point Cp where the tread contour line and the tire equatorial surface Co intersect to the intersection Q is 1 to 3% of the ground contact half width Tw. Moreover, the tire radial distance L1 (sometimes referred to as “camber amount L1”) from the tire equatorial point Cp to the tread ground contact end TE is 4 to 6% of the ground contact half width Tw.

このような空気入りタイヤ1は、
(A)ショルダー陸部13に、周方向ピッチPaの18〜28%の巾Waを有するショルダースロット20を具えること;
(B)トレッド輪郭線が、第1円弧部J1に交点Qで交わる第2円弧部J2を具え、かつ第2円弧部J2が、その曲率半径R2を曲率半径R1の5〜15%とした小円弧で形成されること;
(C)前記交点Qのタイヤ軸方向距離LQが、接地半幅Twの75〜85%であること;
(D)前記交点Qのキャンバー量L2が、接地半幅Twの1〜3%であること;
(E)前記トレッド接地端TEのキャンバー量L1が、接地半幅Twの4〜6%であること:
が互いに協働することで、耐肩落ち摩耗性能とワンダリング性能とを高レベルで両立させることが可能になる。
Such a pneumatic tire 1 is
(A) The shoulder land portion 13 is provided with a shoulder slot 20 having a width Wa of 18 to 28% of the circumferential pitch Pa;
(B) The tread contour line includes a second arc portion J2 at which the first arc portion J1 intersects the first arc portion J1 at the intersection Q, and the second arc portion J2 has a radius of curvature R2 of 5 to 15% of the radius of curvature R1. Formed by an arc;
(C) The tire axial distance LQ of the intersection Q is 75 to 85% of the ground contact half width Tw;
(D) The camber amount L2 at the intersection Q is 1 to 3% of the ground contact half width Tw;
(E) The camber amount L1 of the tread grounding end TE is 4 to 6% of the grounding half width Tw:
By cooperating with each other, it becomes possible to achieve both shoulder drop wear resistance and wandering performance at a high level.

具体的には、第2円弧部J2を小円弧とすることが、大きなキャンバースラストを発生させる前提となる。このとき第2円弧部J2の曲率半径R2が小さ過ぎると、トレッド接地端TEのキャンバー量L1が大となり、肩落ち摩耗の発生傾向を招く。 Specifically, it is a premise that a large camber thrust is generated by making the second arc portion J2 a small arc. At this time, if the radius of curvature R2 of the second arc portion J2 is too small, the camber amount L1 of the tread ground contact end TE becomes large, which causes a tendency for shoulder drop wear to occur.

そこで、曲率半径R2を曲率半径R1の5〜15%の範囲に規制しながら、キャンバー量L1を、接地半幅Twの4〜6%と従来よりも低く設定している。これにより、ショルダ側の接地長を大きくして滑り量を減らし、耐肩落ち摩耗性能を向上させながら、小円弧の第2円弧部J2によって、キャンバースラストを大きくしてワンダリング性能を向上させることが可能になる。なお前記曲率半径R2が曲率半径R1の5〜15%の範囲から外れる場合、キャンバースラストを増大させる効果的が少なく、ワンダリング性能を十分に向上させることが難しくなる。このような観点から、曲率半径R2の下限は、曲率半径R1の7%以上が好ましく、又上限は12%以下が好ましい。又前記キャンバー量L1が接地半幅Twの6%を越えると、耐肩落ち摩耗性能の低下傾向となり、4%を下回ると、ワンダリング性能に悪影響を与える。 Therefore, while restricting the radius of curvature R2 to a range of 5 to 15% of the radius of curvature R1, the camber amount L1 is set to 4 to 6% of the ground contact half width Tw, which is lower than the conventional one. As a result, the ground contact length on the shoulder side is increased to reduce the amount of slippage, and the shoulder drop wear resistance is improved, while the camber thrust is increased by the second arc portion J2 of the small arc to improve the wandering performance. Becomes possible. When the radius of curvature R2 is out of the range of 5 to 15% of the radius of curvature R1, the effect of increasing the camber thrust is small, and it becomes difficult to sufficiently improve the wandering performance. From this point of view, the lower limit of the radius of curvature R2 is preferably 7% or more of the radius of curvature R1, and the upper limit is preferably 12% or less. Further, when the camber amount L1 exceeds 6% of the ground contact half width Tw, the shoulder drop wear resistance tends to decrease, and when it is less than 4%, the wandering performance is adversely affected.

又前記交点Qのタイヤ軸方向距離LQを、接地半幅Twの75〜85%とし、小円弧の第2円弧部J2を接地端近傍に限定的に設けている。これにより第2円弧部J2によるショルダ側の接地長への影響、即ち耐肩落ち摩耗性能への影響を抑えうる。前記タイヤ軸方向距離LQが接地半幅Twの75%を下回ると、第2円弧部J2によって肩落ち摩耗を悪化させる傾向を招く。逆に85%を越えると、第2円弧部J2が局部的となるため、ワンダリング性能の向上効果が低下する。このような観点から、タイヤ軸方向距離LQの下限は、接地半幅Twの78%以上が好ましく、又上限は82%以下が好ましい。 Further, the tire axial distance LQ of the intersection Q is set to 75 to 85% of the ground contact half width Tw, and the second arc portion J2 of the small arc is provided only in the vicinity of the ground contact end. As a result, the influence of the second arc portion J2 on the ground contact length on the shoulder side, that is, the influence on the shoulder drop wear resistance can be suppressed. When the tire axial distance LQ is less than 75% of the contact half width Tw, the second arc portion J2 tends to worsen shoulder drop wear. On the contrary, if it exceeds 85%, the second arc portion J2 becomes local, so that the effect of improving the wandering performance is reduced. From such a viewpoint, the lower limit of the tire axial distance LQ is preferably 78% or more of the ground contact half width Tw, and the upper limit is preferably 82% or less.

又前記交点Qのキャンバー量L2自体が大きいと、ショルダー側の接地長が減じてしまう。そのため、このキャンバー量L2を、接地半幅Twの1〜3%の範囲に規制する必要がある。 Further, if the camber amount L2 itself at the intersection Q is large, the ground contact length on the shoulder side is reduced. Therefore, it is necessary to regulate this camber amount L2 to a range of 1 to 3% of the ground contact half width Tw.

他方、耐肩落ち摩耗性能の制約があるため、第2円弧部J2だけではワンダリング性能の向上には限界がある。そこでショルダー陸部13に、ショルダースロット20を設けるとともに、その巾Waを、周方向ピッチPaの18〜28%と幅広に設定している。 On the other hand, since there are restrictions on shoulder drop wear resistance, there is a limit to improving wandering performance only with the second arc portion J2. Therefore, the shoulder slot 20 is provided in the shoulder land portion 13, and the width Wa thereof is set as wide as 18 to 28% of the circumferential pitch Pa.

これにより、トレッド接地端TEを含む接地端周辺部の剛性を下げることができる。その結果、轍走行時、轍内の斜面や凹凸に当接したときの反力を減じ、轍直進性を向上しうる。又キャンバースラストが高まり、前記反力の減少と相俟って轍脱出性能を向上させうる。なおショルダーサイプ22も、ショルダースロット20と同様に機能し、ワンダリング性能をさらに向上させうる。 As a result, the rigidity of the peripheral portion of the ground contact end including the tread ground contact end TE can be reduced. As a result, the reaction force when the vehicle comes into contact with the slope or unevenness in the rut during rut running can be reduced, and the rut straightness can be improved. In addition, the camber thrust is increased, and the rut escape performance can be improved in combination with the decrease in the reaction force. The shoulder sipe 22 also functions in the same manner as the shoulder slot 20, and can further improve the wandering performance.

ショルダースロット20の巾Waが周方向ピッチPaの18%を下回ると、接地端周辺部の剛性が十分に下がらず、ワンダリング性能の不足傾向を招く。逆に28%を越えると、操縦安定性の低下傾向を招く。同様に、ショルダースロット20の最大深さD20が溝深さD11の18%を下回ると、接地端周辺部の剛性が十分に下がらず、ワンダリング性能の不足傾向を招く。逆に22%を越えると、操縦安定性の低下傾向を招く。 If the width Wa of the shoulder slot 20 is less than 18% of the circumferential pitch Pa, the rigidity of the peripheral portion of the ground contact end is not sufficiently lowered, which causes a tendency of insufficient wandering performance. On the contrary, if it exceeds 28%, the steering stability tends to decrease. Similarly, when the maximum depth D 20 of the shoulder slot 20 is less than 18% of the groove depth D 11 , the rigidity of the peripheral portion of the ground contact end is not sufficiently lowered, which causes a tendency of insufficient wandering performance. On the contrary, if it exceeds 22%, the steering stability tends to decrease.

このように上記(A)〜(E)が互いに協働することで、耐肩落ち摩耗性能とワンダリング性能とを高レベルで両立させることが可能になる。 By cooperating with each other in this way (A) to (E), it becomes possible to achieve both shoulder drop wear resistance and wandering performance at a high level.

なおショルダースロット20の内端部20aのトレッド接地端TEからのタイヤ軸方向距離Lb(図2に示す)は、前記接地半幅Twの4〜7の範囲が好ましい。7%を越えると、操縦安定性の低下傾向を招き、逆に4%を下回ると、ワンダリング性能の不足傾向を招く。 The tire axial distance Lb (shown in FIG. 2) from the tread ground contact end TE of the inner end portion 20a of the shoulder slot 20 is preferably in the range of 4 to 7 of the ground contact half width Tw. If it exceeds 7%, the steering stability tends to decrease, and if it exceeds 4%, the wandering performance tends to be insufficient.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。 Although the particularly preferable embodiments of the present invention have been described in detail above, the present invention is not limited to the illustrated embodiments and can be modified into various embodiments.

図1〜3に示す小型トラック用タイヤ(205/85R16)を、表1〜3の仕様で試作した。そして各試作タイヤのワンダリング性能、操縦安定性、及び耐肩落ち摩耗性能をテストした。表1以外は実質的に同仕様である。 The light truck tires (205 / 85R16) shown in FIGS. 1 to 3 were prototyped with the specifications shown in Tables 1 to 3. Then, the wandering performance, steering stability, and shoulder drop wear resistance of each prototype tire were tested. Except for Table 1, the specifications are substantially the same.

(1)ワンダリング性能:
試作タイヤを、リム(16×5.5J)、内圧(600kPa)にて小型トラック(積載量3トン)の全輪に装着し、轍を有する路面を走行し、轍直進性及び轍脱出性をドライバーの官能評価により10点法で表示した。結果は6点を基準として、数値が大きい程良好である。
(1) Wandering performance:
The prototype tires are mounted on all wheels of a light truck (loading capacity 3 tons) with a rim (16 x 5.5J) and internal pressure (600kPa), and run on a road surface with ruts to improve rut straightness and rut escape. It was displayed by the 10-point method by the sensory evaluation of the driver. The result is better as the numerical value is larger than 6 points.

(2)操縦安定性:
上記車輌を用い、ドライアスファルト路面のテストコースを走行し、操縦安定性をドライバーの官能評価により10点法で表示した。結果は6点を基準として、数値が大きい程良好である。
(2) Steering stability:
Using the above vehicle, the test course on a dry asphalt road surface was run, and the steering stability was displayed by the 10-point method by the sensory evaluation of the driver. The result is better as the numerical value is larger than 6 points.

(3)耐肩落ち摩耗性:
上記車輌を用い、関東以西地区の一般道(一般道100%)を、15000km走行し、フロントに装着させたタイヤにおいて、センター主溝における摩耗量δc、及びショルダー主溝のタイヤ軸方向外側の壁面における摩耗量δsを測定した。そして摩耗量の比δc/δsの値で評価した。結果は、数値が1.0に近いほど摩耗が均一であり好ましく、又数値が低い程、耐肩落ち摩耗性能が悪い。
(3) Shoulder drop wear resistance:
Using the above vehicle, travel 15,000 km on a general road (100% of the general road) in the area west of Kanto, and for the tire mounted on the front, the amount of wear δc in the center main groove and the outer wall surface of the shoulder main groove in the tire axial direction. The amount of wear δs was measured. Then, it was evaluated by the value of the ratio δc / δs of the amount of wear. As a result, the closer the value is to 1.0, the more uniform the wear is, and the lower the value is, the worse the shoulder drop wear resistance is.

Figure 0006790841
Figure 0006790841

Figure 0006790841
Figure 0006790841

Figure 0006790841
Figure 0006790841

表に示すように実施例品は、耐肩落ち摩耗性能とワンダリング性能とを高いレベルで両立させうるのが確認できる。 As shown in the table, it can be confirmed that the example product can achieve both shoulder drop wear resistance and wandering performance at a high level.

1 空気入りタイヤ
2 トレッド部
10 センター主溝
11 ショルダー主溝
12 センター陸部
13 ショルダー陸部
21 バットレス部
20 ショルダースロット
20a 内端部
20b 外端部
22 ショルダーサイプ
22a 内端部
22b 外端部
Co タイヤ赤道面
Cp タイヤ赤道点
J1 第1円弧部
J2 第2円弧部
TE トレッド接地端
1 Pneumatic tire 2 Tread part 10 Center main groove 11 Shoulder main groove 12 Center land part 13 Shoulder land part 21 Buttless part 20 Shoulder slot 20a Inner end 20b Outer end 22 Shoulder sipe 22a Inner end 22b Outer end Co tire Equatorial surface Cp Tire equatorial point J1 1st arc part J2 2nd arc part TE tread ground contact end

Claims (3)

トレッド部に、タイヤ周方向に連続してのびるセンター主溝と、前記センター主溝の両側でタイヤ周方向に連続してのびる一対のショルダー主溝とを設けることにより、トレッド部が、前記ショルダー主溝とセンター主溝との間の一対のセンター陸部と、前記ショルダー主溝とトレッド接地端との間の一対のショルダー陸部とに区分された空気入りタイヤであって、
前記ショルダー陸部は、ショルダー陸部内で途切れる内端部からバットレス部内で途切れる外端部までトレッド接地端を横切ってのびる複数のショルダースロットを具え、
各前記ショルダースロットは、タイヤ周方向の巾Waが、ショルダースロットのタイヤ周方向ピッチPaの18〜28%であり、
正規リムにリム組みしかつ正規内圧の5%の内圧を充填した5%内圧状態におけるタイヤ子午断面において、
トレッド部の表面のトレッド輪郭線は、タイヤ赤道面に円弧中心を有する曲率半径R1の第1円弧部と、この第1円弧部に交点Qで交わり、かつ前記曲率半径R1の5〜15%の曲率半径R2の第2円弧部とからなり、
タイヤ赤道面から前記交点Qまでのタイヤ軸方向距離LQは、前記タイヤ赤道面からトレッド接地端までのタイヤ軸方向距離である接地半幅Twの75〜85%、
トレッド輪郭線とタイヤ赤道面とが交わるタイヤ赤道点から前記交点Qまでのタイヤ半径方向距離L2は、前記接地半幅Twの1〜3%、
かつ前記タイヤ赤道点からトレッド接地端までのタイヤ半径方向距離L1は、前記接地半幅Twの4〜6%であることを特徴とする空気入りタイヤ。
By providing the tread portion with a center main groove that extends continuously in the tire circumferential direction and a pair of shoulder main grooves that extend continuously in the tire circumferential direction on both sides of the center main groove, the tread portion becomes the shoulder main groove. A pneumatic tire divided into a pair of center land portions between the groove and the center main groove and a pair of shoulder land portions between the shoulder main groove and the tread ground contact end.
The shoulder land portion includes a plurality of shoulder slots extending across the tread ground contact end from the inner end portion that is interrupted in the shoulder land portion to the outer end portion that is interrupted in the buttress portion.
The width Wa in the tire circumferential direction of each shoulder slot is 18 to 28% of the tire circumferential pitch Pa of the shoulder slot.
In the tire meridional cross section in the 5% internal pressure state where the rim is assembled to the regular rim and the internal pressure is 5% of the regular internal pressure.
The tread contour line on the surface of the tread portion intersects the first arc portion of the radius of curvature R1 having the center of the arc on the equatorial plane of the tire at the intersection Q with the first arc portion, and is 5 to 15% of the radius of curvature R1. It consists of a second arc with a radius of curvature R2.
The tire axial distance LQ from the tire equatorial plane to the intersection Q is 75 to 85% of the ground contact half width Tw, which is the tire axial distance from the tire equatorial plane to the tread ground contact end.
The tire radial distance L2 from the tire equatorial point where the tread contour line and the tire equatorial plane intersect to the intersection Q is 1 to 3% of the ground contact half width Tw.
A pneumatic tire characterized in that the tire radial distance L1 from the tire equatorial point to the tread ground contact end is 4 to 6% of the ground contact half width Tw.
前記ショルダースロットの最大深さは、前記ショルダー主溝の溝深さの18〜22%であることを特徴とする請求項1記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the maximum depth of the shoulder slot is 18 to 22% of the groove depth of the shoulder main groove. 前記ショルダー陸部は、前記ショルダースロット間に、ショルダー陸部内で途切れる内端部からバットレス部内で途切れる外端部までトレッド接地端を横切ってのびる2又は3本のショルダーサイプを具えることを特徴とする請求項1又は2記載の空気入りタイヤ。 The shoulder land portion is characterized by having two or three shoulder sipes extending across the tread ground contact end between the shoulder slots from the inner end portion that is interrupted in the shoulder land portion to the outer end portion that is interrupted in the buttress portion. The pneumatic tire according to claim 1 or 2.
JP2017002032A 2017-01-10 2017-01-10 Pneumatic tires Active JP6790841B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017002032A JP6790841B2 (en) 2017-01-10 2017-01-10 Pneumatic tires
CN201711163816.6A CN108284711B (en) 2017-01-10 2017-11-21 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017002032A JP6790841B2 (en) 2017-01-10 2017-01-10 Pneumatic tires

Publications (2)

Publication Number Publication Date
JP2018111360A JP2018111360A (en) 2018-07-19
JP6790841B2 true JP6790841B2 (en) 2020-11-25

Family

ID=62831513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017002032A Active JP6790841B2 (en) 2017-01-10 2017-01-10 Pneumatic tires

Country Status (2)

Country Link
JP (1) JP6790841B2 (en)
CN (1) CN108284711B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111361359A (en) * 2020-05-06 2020-07-03 正新橡胶(中国)有限公司 Tire and cover tire thereof
JP2022168416A (en) * 2021-04-26 2022-11-08 Toyo Tire株式会社 pneumatic tire
JP2024129595A (en) * 2023-03-13 2024-09-27 住友ゴム工業株式会社 tire

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286311A (en) * 1992-04-06 1993-11-02 Bridgestone Corp Pneumatic tire
JP3642650B2 (en) * 1997-02-20 2005-04-27 横浜ゴム株式会社 Pneumatic tire
JP4180910B2 (en) * 2002-12-26 2008-11-12 住友ゴム工業株式会社 Heavy duty radial tire
JP5144721B2 (en) * 2010-06-24 2013-02-13 住友ゴム工業株式会社 Heavy duty radial tire
JP5803087B2 (en) * 2010-10-28 2015-11-04 横浜ゴム株式会社 Pneumatic tire
JP5732817B2 (en) * 2010-11-02 2015-06-10 横浜ゴム株式会社 Pneumatic run flat tire
JP5728035B2 (en) * 2013-01-24 2015-06-03 住友ゴム工業株式会社 Pneumatic tire
CN103264619B (en) * 2013-03-15 2015-10-28 江苏大学 A kind of wide base radial tread arc tire
JP6149618B2 (en) * 2013-09-04 2017-06-21 横浜ゴム株式会社 Pneumatic tire
JP6245693B2 (en) * 2013-11-27 2017-12-13 住友ゴム工業株式会社 Pneumatic tire
JP6006772B2 (en) * 2014-10-30 2016-10-12 住友ゴム工業株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP2018111360A (en) 2018-07-19
CN108284711B (en) 2021-07-23
CN108284711A (en) 2018-07-17

Similar Documents

Publication Publication Date Title
JP5790876B2 (en) Pneumatic tire
EP2829421B1 (en) Pneumatic tire
US7918256B2 (en) Heavy duty tire having ground contacting face at 70% and 100% maximum tire load
JP5238050B2 (en) Pneumatic tire
JP7167475B2 (en) tire
JP6729809B2 (en) Pneumatic tire
US11724550B2 (en) Pneumatic tire
JP6729808B2 (en) Pneumatic tire
JP6433760B2 (en) Pneumatic tire
JP6790841B2 (en) Pneumatic tires
JP2016030490A (en) Pneumatic tire
US11872848B2 (en) Pneumatic tire
JP6824832B2 (en) tire
JP5503457B2 (en) Pneumatic tire
JP7287178B2 (en) pneumatic tire
US11173750B2 (en) Pneumatic radial tyre
US20200189322A1 (en) Tire tread
JP6710542B2 (en) Pneumatic tire
JP7234692B2 (en) Heavy duty pneumatic tire
JP7360020B2 (en) pneumatic tires
JP7255327B2 (en) pneumatic tire
JP6825252B2 (en) Pneumatic tires
JP6503257B2 (en) Motorcycle tire
JP2024099174A (en) Pneumatic tire
JP2022089630A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191125

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R150 Certificate of patent or registration of utility model

Ref document number: 6790841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250