WO2019169984A1 - 增氧超微气泡水实施方法及其制造装置 - Google Patents
增氧超微气泡水实施方法及其制造装置 Download PDFInfo
- Publication number
- WO2019169984A1 WO2019169984A1 PCT/CN2019/073655 CN2019073655W WO2019169984A1 WO 2019169984 A1 WO2019169984 A1 WO 2019169984A1 CN 2019073655 W CN2019073655 W CN 2019073655W WO 2019169984 A1 WO2019169984 A1 WO 2019169984A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- ultra
- bubble
- oxygen
- oscillating
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/2366—Parts; Accessories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/29—Mixing systems, i.e. flow charts or diagrams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F31/00—Mixers with shaking, oscillating, or vibrating mechanisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/45—Magnetic mixers; Mixers with magnetically driven stirrers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/70—Mixers specially adapted for working at sub- or super-atmospheric pressure, e.g. combined with de-foaming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/70—Mixers specially adapted for working at sub- or super-atmospheric pressure, e.g. combined with de-foaming
- B01F33/71—Mixers specially adapted for working at sub- or super-atmospheric pressure, e.g. combined with de-foaming working at super-atmospheric pressure, e.g. in pressurised vessels
Definitions
- the present application relates to an oxygen-enriched ultra-microbubble water-implementing method and a manufacturing apparatus thereof, which firstly injects oxygen into the water and applies a magnetic wave to oscillate into an aerobic ultra-microbubble water.
- the method for implementing the aerated ultra-microbubble water of the present application is as follows: an oxygen-containing air is used to manufacture the component to increase the oxygen content ratio to 40% to 90%, and an oxygen-containing air is poured into the water, and the water is at a high pressure. Under the environment, the oxygen-containing air is forced into a fine bubble, and then the magnetic wave is oscillated to oscillate the bubble into an ultra-fine bubble having a diameter of less than 1 mm, and the ultra-micro bubble is sufficiently uniformly fused into the water to become an aerobic ultramicro The water is bubbled, and then the aerated ultrafine bubble water is supplied to a pressure vessel, and the aerated ultrafine bubble water is used by the pressure vessel.
- the aerobic ultra-microbubble water producing apparatus of the present application includes a control element setting control: a pumping element, an air inlet element, and a magnetic wave oscillating element.
- the pumping component is connected to an external water source for pumping water, and the pumping component is connected to a first outlet pipe.
- the gas inlet element is provided with an outlet pipe for outputting the oxygen-containing air.
- the latter high-voltage component is provided with a venturi hole, and the upper part of the high-voltage component is provided with an air inlet pipe connecting the gas outlet pipe and the venturi hole, and the right side of the venturi pipe hole is recessed toward the left.
- the first outlet pipe is coupled to the right side of the inlet chamber; and the inlet has a small diameter pressurized narrow hole for pressurizing the water, the pressurized narrow hole
- the left side is provided with a tapered cone-shaped expanded diameter for the water to withstand the instantaneous jet pressure, forcing the oxygen-containing air to generate fine bubbles and the spoiler chamber of the ultra-micro bubble, the spoiler chamber is connected with a second extending to the left.
- An outlet pipe, the second water outlet pipe is connected to the magnetic wave oscillating member that oscillates the bubble in the water into a micro-bubble having a diameter of less than 1 mm, and simultaneously oscillates the bubble in the water through the magnetic wave oscillating member
- the ultra-micro bubble causes the ultra-micro bubble to be uniformly fused into the water to become an aerobic ultra-micro bubble water, and then the magnetic wave oscillating member is coupled with a pressure container for temporarily storing the aerobic ultra-micro bubble water, and the pressure container is coupled with an output of the increase Oxygen ultra-fine gas
- the third outlet water is connected to the magnetic wave oscillating member that oscillates the bubble in the water into a micro-bubble having a diameter of less than 1 mm, and simultaneously oscillates the bubble in the water through the magnetic wave oscillating member
- the ultra-micro bubble causes the ultra-micro bubble to be uniformly fused into the water to become an aerobic ultra-micro bubble water, and then the magnetic wave oscillating member is coupled with a pressure container for temporarily
- the gas inlet element of the present application is further coupled to an oxygen production component that increases the oxygen content of the oxygen-containing air, the oxygen-containing air produced by the oxygen production component is delivered to the high-pressure component through the gas-inducing component, and the oxygen-making component is further The control element is connected.
- the high-voltage component of the present application is provided with an air inlet hole above the pressurized narrow hole, and the first air inlet pipe is connected to the first air inlet pipe, and the first air inlet pipe is connected to the air inlet component;
- the air inlet hole is connected to the first air inlet tube, and the first air inlet tube is connected to the air inlet element.
- the pressure vessel of the present application is distributed with: a third outlet pipe and a fourth outlet pipe; the third outlet pipe is provided with a first push pump connected to the control element, and the first push pump is connected with a connection.
- the first check valve of the control element is coupled to a fifth outlet pipe, and the fifth outlet pipe is connected to at least one container for accommodating the aerated ultra-microbubble water.
- the second outlet pump is further provided with a second push pump, and the second push pump is further connected with a second check valve connected to the control component, and the second check valve is connected with a sixth outlet pipe. At least a spray head for spraying the aerated ultra-microbubble water is added to the sixth outlet pipe.
- the bubble sensor for detecting the ultra-fine bubble contained in the oxygen-enriched ultra-bubble water is added to the container, and the bubble sensor is further connected with the control element.
- the container is connected with a water recovery tank, and a recovery pump connected with the control element is disposed above the water recovery tank, and the recovery pump is provided with: a first recovery pipe extending into the water recovery tank, and a connection a second recovery tube of the pumping element.
- the aerobic ultrafine bubble water producing device of the present application is provided with a chiller connected to the control element, and the chiller is provided with a condensing tube placed in the pressure vessel and the water recovery tank. Furthermore, the pressure vessel is coupled to a second air pump that empties the aerated ultra-microbubble water by input air, and the second air pump is further connected to the control element.
- the oscillating pipe joint traverses a oscillating hole, and the second outlet pipe is connected to the right side of the oscillating hole, and the oscillating body is connected to the left side of the oscillating hole, and at least one of the oscillating bodies is provided with the oscillating hole.
- a oscillating micropore of the pressure vessel and then a magnetic wave oscillating ring surrounding the oscillating pipe joint is additionally disposed outside the magnetic wave oscillating member, and the magnetic wave oscillating ring is further connected with the control component.
- the magnetic wave oscillating element is further connected with an negative ion generator, and the negative ion generator has at least one negative ion needle protruding into the oscillation hole.
- the method for augmenting ultra-microbubble water of the present application and the manufacturing device thereof, the oxygen-enriching ultra-microbubble water can utilize the ultra-micro bubbles to ensure sufficient oxygen supply in the closed planting environment, and then the oxygenation is repeated by recycling
- the microbubble water manufacturing device is also excellent in water saving.
- Fig. 1 is a partially enlarged schematic view showing the apparatus for producing an aerobic ultramicrobubble water of the present application.
- FIG. 2 is a schematic view of a water recovery tank for an aerobic ultrafine bubble water production device of the present application.
- Fig. 3 is a schematic view showing the icing machine of the aerobic ultra-micro bubble water producing device of the present application.
- FIG. 4 is a schematic view of a second air pump of the pressure vessel of the present application.
- FIG. 5 is a schematic diagram of a magnetic wave oscillating element of the present application.
- a oxygenated ultra-micro bubble water A1 water; A2 external water source; B contains oxygen air; B1 bubble; B2 ultra-micro bubble;
- D4 first check valve D5 fifth outlet pipe; D6 second push pump; D7 second check valve; D8 sixth outlet pipe;
- D9 spray head E closed chamber; E1 use container; E2 water recovery tank; E3 recovery pump; E4 first recovery tube;
- E5 second recovery pipe F planting; F1 root; F2 leaf surface; G bubble sensor; 1 aerobic ultra-micro bubble water manufacturing device;
- control elements 3 pump elements; 31 first outlet pipe; 4 gas inlet components; 41 gas outlet pipe; 5 high pressure components;
- the present application mainly provides an oxygenation ultra-fine bubble water A implementation method, which is implemented by: an oxygen-containing air B is first made with an oxygen to produce a component C to increase the oxygen content ratio between 40% and 90%, and then in the water
- the oxygen-containing air B is poured into A1, and the water A1 forces the oxygen-containing air B into a fine bubble B1 in a high-pressure environment.
- the bubble B1 is oscillated by magnetic oscillation into an ultrafine bubble B2 having a diameter of less than 1 mm, and the ultrafine bubble B2 is sufficiently uniformly fused into the water A1 to become an aerobic ultrafine bubble water A, and then the aeration is performed.
- the ultrafine bubble water A is temporarily stored in a pressure vessel D, and the aerated ultrafine bubble water A is used by the pressure vessel D (as shown in Fig. 1).
- the aerated ultra-fine bubble water A can be output from the pressure vessel D and used in the greenhouse environment of hydroponic cultivation and greenhouse cultivation, so that the oxygen-containing air B is supplied by the ultra-fine bubble B2 oscillated by the magnetic wave.
- Plant F absorption so that the planting F does not have anoxic conditions, so that the root F1 of the planting F will not be ulcerated due to lack of oxygen, and the application of the method will make the producers no longer have to consider whether It is necessary to give up the cultivation of the closed room E, and the producers do not need to add air circulation equipment in the hydroponic cultivation and the greenhouse cultivation. Therefore, the application is provided by the aerobic superfine bubble water A, which can just become the producer in the closed room.
- the main guarantee of E planting income (such as: Figure 1).
- the present invention provides an oxygen-enriched ultra-microbubble water manufacturing apparatus 1 comprising at least: a control element 2 for controlling and operating the aerobic ultra-microbubble water device 1; a pumping element 3 for providing water A1
- An air inlet element 4 for providing oxygen-containing air B.
- a high-voltage element 5 for forcing the oxygen-containing air B to become a fine bubble B1 in the water A1
- a magnetic wave oscillating element 6 for oscillating the bubble B1 in the water A1 to be fused to the aerobic superfine water A.
- the control element 2 is at least set to control the pump element 3, the air inlet element 4 and the magnetic wave oscillating element 6.
- the pumping element 3 is connected to an external water source A2.
- the pumping element 3 is extracted from the external water source A2, and the pumping element 3 is connected to a first outlet pipe 31 for outputting the water A1.
- the gas inlet element 4 is provided with an outlet pipe 41 for outputting the oxygen-containing air B.
- the high voltage component 5 is provided with at least one venturi hole 51, and at least one air inlet hole 52 connecting the air outlet pipe 41 and penetrating the venturi hole 51 is disposed above the high voltage component 5, and the venturi hole 51 is The right side of the high-pressure component 5 is recessed toward the left by a tapered tapered tapered inlet chamber 511.
- the first outlet pipe 31 is coupled to the right side of the inlet orifice chamber 511; and the inlet orifice chamber 511 is left.
- a pressurized narrow hole 512 having a small diameter for pressurizing the water A1, and a left side of the pressurized narrow hole 512 is provided with a slanting-diameter-shaped spoiler chamber 513 for allowing the water A1 to withstand
- the instantaneous jet pressure, and the instantaneous jet pressure just forces the oxygen-containing air B to generate a fine bubble B1 and the ultra-fine bubble B2 in the water A1, and then the spoiler chamber 513 is connected to a leftward extension a second water outlet pipe 53 that is connected to the magnetic wave oscillating member 6 that oscillates the air bubble B1 in the water A1 into a micro-bubble B2 having a diameter of less than 1 mm, and simultaneously oscillates through the magnetic wave
- the ultrafine bubble B2 oscillated by the element 6 is just uniformly fused into the water A1 to become an aerobic superfine bubble water.
- the magnetic wave oscillating member 6 is coupled to a pressure vessel D for temporarily storing the aerobic ultrafine bubble water A, and the pressure vessel D is coupled to a third outlet pipe D1 for outputting the aerobic ultrafine bubble water A (eg: Figure 1).
- the gas inlet element 4 is connected to an oxygen production element C which increases the oxygen content of the oxygen-containing air B, which is additionally connected to the control element 2 .
- the high-pressure component 5 is further provided with an air inlet hole 52 above the pressure narrow hole 512.
- the air inlet hole 52 is connected to the first air inlet pipe 31.
- the first air inlet pipe 31 is connected to the air inlet component 4.
- the air inlet hole 52 is further disposed above the air venting hole 513.
- the first air inlet pipe 31 is connected to the first air inlet pipe 31.
- the first air inlet pipe 31 is connected to an additional air inlet component 4 (eg, 1)).
- the aerobic ultra-fine bubble water A can be expanded to use at home, pharmaceutical, industrial, food, and The use of animal husbandry and other areas (such as: Figure 1).
- the pressure vessel D is further distributed with: a third outlet pipe D1, and an additional fourth outlet pipe D2; the third outlet pipe D1 is additionally provided with a first push pump D3 connected to the control element 2, The first push pump D3 is connected to a first check valve D4 connected to the control element 2, and the first check valve D4 is coupled to a fifth water outlet pipe D5, and the fifth water outlet pipe D5 is at least connected to one another.
- the container E1 of the aerated ultrafine bubble water A is planted with the plant F above the container E1, and the aerated ultrafine bubble water A is supplied to the root F1 of the plant F to absorb the oxygen in the ultrafine bubble B2.
- the fourth outlet pipe D2 is further provided with a second push pump D6 connected to the control element 2, and the second push pump D6 is further connected with a second check valve D7 connected to the control element 2, the second The check valve D7 is further connected to at least a sixth outlet pipe D8, and the sixth outlet pipe D8 is provided with at least one spray head D9 for spraying the aerobic ultra-fine bubble water A, and the spray head D9 can just add the oxygenated ultra-fine bubble water.
- A is sprayed on the leaf surface F2 of the planting F, so that the leaf surface F2 can also absorb the oxygen in the ultrafine bubble B2, and the leaf surface F2 absorption is used to promote the rapid growth of the plant F by the root F1 absorption.
- the bubble sensor G for detecting the ultrafine bubble B2 contained in the aerobic ultra-bubble water A is added to the container E1, and the bubble sensor G is further connected to the control element 2 .
- the control element 2 By using the control element 2 to preset the value of the ultra-fine bubble B2 parts per million, the ultra-fine bubble B2 contained in the aerobic ultra-fine bubble water A in the container E1 is lowered to a preset value, and its control is controlled.
- the element 2 drives the pumping element 3, the air inlet element 4, and the magnetic wave oscillating element 6 to perform supply of the aerobic ultrafine bubble water A based on the value detected by the bubble sensor G.
- the aerated ultra-fine bubble water A is reduced to the normal water A1 after use, and then the use container E1 is connected to a water recovery tank E2 for recovering the used reduced water A1, and at least the upper portion of the water recovery tank E2 is added.
- There is a recovery pump E3 connected to the control element 2 the recovery pump E3 is provided with a first recovery pipe E4 extending into the water recovery tank E2, and the recovery pump E3 is further provided with a conduction to the pumping element.
- the second recovery tube E5 of 3 Then, when the pump E3 is recovered, the recovery pump E3 can be pumped back to the pump element 3 by the water recovery tank E2, and then recycled (for example, as shown in Fig. 2).
- the oxy-ice machine 7 is provided with at least one chiller 7 connected to the control element 2, and the chiller 7 is provided with a condensing pipe 71 placed in the pressure vessel D and the water recovery tank E2 to condense.
- the tube 71 is configured to absorb the temperature of the aerated ultrafine bubble water A in the pressure vessel D and the water A1 in the water recovery tank E2, and then the temperature absorbed by the chiller 71 operating the condenser 71 is released into the air.
- the temperature of the water A1 used in the aerobic ultrafine bubble water producing apparatus 1 is maintained at a temperature suitable for forming the ultrafine bubble B2 and for the ultrafine bubble B2 to maintain the morphology (as shown in Fig. 3).
- the pressure vessel D is coupled to a second air pump 8 which empties the empty air and empties the inner aerobic ultra-bubble water A, and the second air pump 8 is further connected to the control element 2.
- the pressure vessel D needs to be emptied frequently before inputting the aerobic ultra-fine bubble water A, and the second air pump 8 can input the air.
- the operation of emptying the pressure vessel D is performed (for example, as shown in Fig. 4; in addition, the control element 2 is referred to as shown in Fig. 1).
- the oscillating tube member 6 is further provided with an oscillating tube member 61.
- the oscillating tube member 61 is further traversed with an oscillating hole 62.
- the oscillating hole 62 is connected to the right side of the oscillating hole 62.
- a oscillating body 63 is connected to the left side of the oscillating body 63.
- the oscillating body 63 is provided with at least one oscillating microhole 631 which communicates with the oscillating hole 62 and the pressure vessel D.
- a magnetic wave oscillating ring 64 surrounding the oscillating pipe joint 61 is externally added to the magnetic wave oscillating member 6, and the magnetic wave oscillating ring 64 is further connected with the control element 2, and the magnetic wave oscillating ring 64 is operated by the control element 2.
- a magnetic wave is generated, and the magnetic wave generates an oscillating wave through the oscillating body 63 made of a titanium alloy, and the oscillating wave is combined with the magnetic wave to oscillate the bubble B1 into the ultrafine bubble B2 having a diameter of less than 1 mm.
- the magnetic wave oscillating element 6 is further connected to an negative ion generator 9 which has at least one negative ion needle 91 protruding into the oscillating hole 62.
- the negative ion needle 91 emits a negatively charged single ion which is negatively decomposed and decomposed into oxygen.
- Oxygen according to the negative ion monooxygen used to neutralize the free radicals of the plant F, to stabilize the plant F growth rate and antibacterial power (such as: Figure 5; free radicals are positive ion monooxygen, in addition Please refer to Figure 1 for the control element 2 and the planting F.
- the aerobic ultrafine bubble water producing apparatus 1 of the present application is controlled by the control element 2 as a whole, and the control element 2 is set to be driven first: the pumping element 3 draws water A1 into the high voltage element. 5, and the gas inlet element 4 supplies oxygen-containing air B into the high-pressure element 5, and the water A1 is pressurized in the high-pressure element 5 through the venturi hole 51 in synchronization with the oxygen-containing air B, and the instantaneous jet is forced to contain oxygen air.
- the microbubble B2 can be evenly integrated into the water A1 to become an aerobic ultrafine bubble water A, and then the aerobic ultrafine bubble water A is just the best supply standard for the oxygen required for the growth of the plant F, and the aerobic ultrafine Bubble water A can use the ultra-fine bubble B2 to ensure that the plant F has excellent oxygen supply in a closed planting environment.
- the aerobic ultrafine bubble water producing device 1 is reduced to a general water A1 after the aerobic ultrafine bubble water A is used, and the water recovery tank E2 is the target for recycling the reduced water A1, and the water collecting tank The E2 is extracted by the recovery pump E3, and the water A1 is sent back to the pumping element 3 for recycling.
- This recycling utilizes the oxygen-enriched ultra-bubble water producing apparatus 1 to have another excellent feature of water-saving A1.
- the method for augmenting ultra-microbubble water of the present application and the manufacturing device thereof the oxygen-enhanced ultra-bubble water can utilize the ultra-micro-bubble to ensure sufficient oxygen supply in the closed planting environment, and the oxygenation is super-reduced by recycling
- the bubble water manufacturing device is also excellent in water saving. Therefore, it has industrial applicability.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
一种超微气泡水的制备方法及其制备装置,方法包括将含有氧空气灌入水中,在高压环境下使得该含氧空气变成微细的气泡,然后,利用磁波震荡将该气泡震荡成直径小于1毫米的超微气泡,该超微气泡充分融入水中成为增氧超微气泡水,然后将该增氧超微气泡水暂存一压力容器(D)中,并由该压力容器(D)输出使用。还公开了该方法的制备装置。
Description
本申请是指一种增氧超微气泡水实施方法及其制造装置,其中,先以含有氧气空气注入水中,并施以磁波震荡成增氧超微气泡水的技术领域。
如今,在水耕及温室栽培的密闭种植环境里,空气循环不如室外流畅,令植栽常有缺氧情事发生,以致植栽根部常因氧气不足而溃烂,迫使众多生产者时常必须选择放弃密闭隔绝,或是增加大量空气循环设备,但是农业种植的收益普遍有限,其空气循环设备成本的增加,势必成为生产者的极重负担,甚至是水耕及温室栽培无法再行维持与经营的主要元凶。
但是目前室外环境普遍已受污染,而可隔绝室外污染的水耕及温室密闭栽培已经是势在必行,因此,为如何减少氧气提供的设备成本,正是目前密闭种植农业有待解决的问题。
申请内容
鉴于以上所述,得知现有密闭栽培常有空气循环及氧气不足的问题,因此,促使本申请人朝向提升空气循环及氧气供应的方向研发,并经由本案申请人多方思考,遂而思及在氧气增量上实施是为最佳。
本申请的增氧超微气泡水实施方法,其实施方法为:一含有氧气空气以氧气制造元件提高氧气含量比例至40%至90%,并将一含有氧气空气灌入水中,该水在高压环境下迫使该含有氧气空气成为微细的气泡,而后,施以磁波震荡将该气泡震荡成直径小于1毫米的超微气泡,并由该超微气泡充分均匀融合入该水中成为一增氧超微气泡水,而后,该增氧超微气泡水输入一压力容器,且该增氧超微气泡水由该压力容器输出使用。
即,本申请的增氧超微气泡水制造装置,包括一控制元件设定控制有:一泵浦元件、一入气元件与一磁波震荡元件。而该泵浦元件连接有一外接水源抽取水,且该泵浦元件连接有一第一出水管。而该入气元件设有一输出该含有氧气空气的出气管。而后一高压元件设有一文氏管孔,且该高压元件上方设有一衔接该出气管及贯穿至该文氏管孔的入气孔,并文氏管孔右侧朝左凹设一斜锥状渐缩直径的入压孔室,该入压孔室右侧衔接有该第一出水管;而该入压孔室左侧具有一小直径增压该水的加压窄孔,该加压窄孔左侧设有一斜锥状扩展直径让该水承受瞬间喷流压力迫使该含有氧气空气产生细微的气泡及该超微气泡的扰流孔室,该扰流孔室衔接有一朝左延伸的第二出水管,该第二出水管衔接有将该水中的该气泡全部以磁波震荡成一直径小于1毫米的该超微气泡的该磁波震荡元件,同时,经过该磁波震荡元件将该水中的气泡震荡成超微气泡,令超微气泡均匀融合于水中成为 一增氧超微气泡水,而后,该磁波震荡元件衔接有一暂存该增氧超微气泡水的压力容器,该压力容器衔接有一输出该增氧超微气泡水的第三出水管。
本申请的该入气元件又衔接有一提高该含有氧气空气的氧气含量的氧气制造元件,该氧气制造元件产生的该含有氧气空气通过该入气元件输送至该高压元件,且该氧气制造元件另连接有该控制元件。
本申请的该高压元件在加压窄孔上方设有一入气孔,该入气孔上方衔接第一入气管,该第一入气管又衔接一该入气元件;而该扰流孔室上方又设有一该入气孔,该入气孔上方衔接该第一入气管,该第一入气管衔接一该入气元件。
本申请的该压力容器分布有:一第三出水管,以及一第四出水管;该第三出水管增设有一连接该控制元件的第一推送泵浦,该第一推送泵浦又衔接有一连接该控制元件的第一止逆阀。而该第一止逆阀又衔接有一第五出水管,该第五出水管至少衔接有一纳置该增氧超微气泡水的使用容器。而该第四出水管增设有一第二推送泵浦,该第二推送泵浦又接设有一连接该控制元件的第二止逆阀,该第二止逆阀又衔接有一第六出水管,该第六出水管至少增设一喷洒该增氧超微气泡水的喷雾头。另于,该使用容器内至少增设有一检测该增氧超微气泡水所含该超微气泡的百万分率的气泡感应器,该气泡感应器另连接有该控制元件。又该使用容器衔接有一水回收槽,该水回收槽上方设有一连接有该控制元件的回收泵浦,该回收泵浦增设有:一伸入该水回收槽的第一回收管,以及一衔接该泵浦元件的第二回收管。
本申请的该增氧超微气泡水制造装置设有一连接该控制元件的冰水机,该冰水机设有一置入该压力容器及该水回收槽的冷凝管。再于,该压力容器又衔接有一输入空气清空该增氧超微气泡水的第二空气泵,该第二空气泵另连接有该控制元件。而该震荡管接件又横穿有一震荡孔,该震荡孔右侧又衔接有该第二出水管,而该震荡孔左侧另衔接有一震荡体,该震荡体至少增设一有互通该震荡孔及该压力容器的震荡微孔;而后,该磁波震荡元件外增设有一环绕该震荡管接件的磁波震荡环圈,该磁波震荡环圈另连接有该控制元件。且磁波震荡元件另连接有一负离子产生器,该负离子产生器又至少具有一突入该震荡孔的负离子针。
本申请的增氧超微气泡水实施方法及其制造装置,其增氧超微气泡水能利用超微气泡保证植栽在密闭种植环境中有充分氧气供应,再通过循环利用让该增氧超微气泡水制造装置兼具有节省用水的优异特点。
图1为本申请的增氧超微气泡水制造装置包含局部放大示意图。
图2为本申请的增氧超微气泡水制造装置具水回收槽示意图。
图3为本申请的增氧超微气泡水制造装置具冰水机示意图。
图4为本申请的压力容器具第二空气泵示意图。
图5为本申请的磁波震荡元件示意图。
符号说明:
A增氧超微气泡水;A1水;A2外接水源;B含有氧气空气;B1气泡;B2超微气泡;
C氧气制造元件;D压力容器;D1第三出水管;D2第四出水管;D3第一推送泵浦;
D4第一止逆阀;D5第五出水管;D6第二推送泵浦;D7第二止逆阀;D8第六出水管;
D9喷雾头;E密闭室;E1使用容器;E2水回收槽;E3回收泵浦;E4第一回收管;
E5第二回收管;F植栽;F1根部;F2叶面;G气泡感应器;1增氧超微气泡水制造装置;
2控制元件;3泵浦元件;31第一出水管;4入气元件;41出气管;5高压元件;
51文氏管孔;511入压孔室;512加压窄孔;513扰流孔室;52入气孔;53第二出水管;
6磁波震荡元件;61震荡管接件;62震荡孔;63震荡体;631震荡微孔;64磁波震荡环圈;
7冰水机;71冷凝管;8第二空气泵;9负离子产生器;91负离子针。
为使对本申请有更进一步的了解,通过以下列实施例说明。
本申请主要提供一种增氧超微气泡水A实施方法,其实施方法为:一含有氧气空气B先以一氧气制造元件C提高氧气含量比例为40%至90%之间,而后,在于水A1中灌入该含有氧气空气B,该水A1在高压环境下迫使该含有氧气空气B成微细的气泡B1。而后,利用磁波震荡将该气泡B1震荡成为直径小于1毫米的超微气泡B2,并该超微气泡B2充分均匀融合入该水A1中成为一增氧超微气泡水A,而后,该增氧超微气泡水A输入、暂存在一压力容器D内,且该增氧超微气泡水A是由该压力容器D输出使用(如:图1所示)。
是之,该增氧超微气泡水A可由该压力容器D后输出使用在水耕及温室栽培的密闭室E种植环境里,令该含有氧气空气B经由磁波震荡成的超微气泡B2供应植栽F吸收,好让植栽F无缺氧情事发生,致植栽F的根部F1也不会因为缺氧而有溃烂的情况发生,且由此实施方法的运用,令生产者不用再考虑是否需要放弃密闭室E种植,更让生产者于水耕及温室栽培里不用再行增添空气循环设备,故此,本申请由该增氧超微气泡水A的提供,恰好可成为生产者于密闭室E种植收益的主要保障(如:图1所示)。
本申请提供的一种增氧超微气泡水制造装置1,至少包括:一控制元件2,用以控制及操作该增氧超微气泡水装置1;一泵浦元件3,用以提供水A1;一入气元件4,用以提供含有氧气空气B。一高压元件5,用以迫使该含有氧气空气B在该水A1中成为细微的气泡B1;一磁波震荡元件6, 用以震荡该水A1中的该气泡B1融合成为该增氧超微泡水A。而后,该控制元件2至少设定控制有:该泵浦元件3、该入气元件4与该磁波震荡元件6。而该泵浦元件3连接有一外接水源A2,该泵浦元件3是由该外接水源A2抽取该水A1,且该泵浦元件3连接有一将水A1输出的第一出水管31。而该入气元件4设有一输出该含有氧气空气B的出气管41。而该高压元件5至少设有一文氏管孔51,且该高压元件5上方至少设有一衔接该出气管41及贯穿至该文氏管孔51的入气孔52,并该文氏管孔51于该高压元件5右侧朝左凹设一斜锥状渐缩直径的入压孔室511,该入压孔室511右侧衔接有该第一出水管31;而该入压孔室511左侧具有一小直径增压该水A1的加压窄孔512,该加压窄孔512左侧设有一斜锥状扩展直径的扰流孔室513,该扰流孔室513可让该水A1承受瞬间喷流压力,而瞬间喷流压力恰可迫使该含有氧气空气B在该水A1中产生细微的气泡B1及该超微气泡B2,而后,该扰流孔室513衔接有一朝左延伸的第二出水管53,该第二出水管53衔接有将该水A1中的该气泡B1全部以磁波震荡成一直径小于1毫米的该超微气泡B2的该磁波震荡元件6,同时,经过该磁波震荡元件6震荡成的该超微气泡B2恰好均匀融合入该水A1中成为一该增氧超微气泡水A,而后,该磁波震荡元件6衔接有一暂存该增氧超微气泡水A的压力容器D,该压力容器D衔接有一输出该增氧超微气泡水A的第三出水管D1(如:图1所示)。
其中,该入气元件4又衔接有一提高该含有氧气空气B的氧气含量的氧气制造元件C,该氧气制造元件C另连接有该控制元件2。另于,该高压元件5在该加压窄孔512上方另设有一该入气孔52,该入气孔52上方衔接该第一入气管31,该第一入气管31又衔接一该入气元件4;而该扰流孔室513上方又设有一该入气孔52,该入气孔52上方另衔接该第一入气管31,该第一入气管31衔接一增设的该入气元件4(如:图1所示)。
另外,该增氧超微气泡水制造装置1的含有氧气空气B与水A1在使用前若先行过滤,该增氧超微气泡水A则可扩大使用至:居家、制药、工业、食品,以及畜牧业等范围的运用(如:图1所示)。
又于,该压力容器D另分布有:一第三出水管D1,以及一增设的第四出水管D2;该第三出水管D1增设有一连接该控制元件2的第一推送泵浦D3,该第一推送泵浦D3又衔接有一连接该控制元件2的第一止逆阀D4,该第一止逆阀D4又衔接有一第五出水管D5,该第五出水管D5至少又衔接有一纳置该增氧超微气泡水A的使用容器E1,使用容器E1上方种植有该植栽F,该增氧超微气泡水A恰好可供应植栽F的根部F1吸收超微气泡B2内的氧气。而后,该第四出水管D2增设有一连接该控制元件2的第二推送泵浦D6,该第二推送泵浦D6又接设有一连接该控制元件2的第二止逆阀D7,该第二止逆阀D7又至少衔接有一第六出水管D8,该第六出水管D8至少增设一喷洒该增氧超微气泡水A的喷雾头D9,喷雾头D9恰好可将该增氧超微气泡水A喷洒于该植栽 F的叶面F2上,让叶面F2也能吸收到超微气泡B2内的氧气,此叶面F2吸收是用以配合根部F1吸收来促进植栽F迅速成长。另于,该使用容器E1内至少增设有一检测该增氧超微气泡水A所含该超微气泡B2的百万分率的气泡感应器G,该气泡感应器G另连接有该控制元件2。通过利用控制元件2先预设超微气泡B2百万分率使用数值,待使用容器E1内的增氧超微气泡水A所含的超微气泡B2降低至低于预设数值时,其控制元件2即根据气泡感应器G所检测的数值驱动泵浦元件3、入气元件4与磁波震荡元件6执行增氧超微气泡水A的供应。又于,该增氧超微气泡水A使用后即还原成一般用水A1,而后,该使用容器E1又衔接有一回收使用后的还原水A1的水回收槽E2,该水回收槽E2上方至少增设有一连接有该控制元件2的回收泵浦E3,该回收泵浦E3增设有一伸入该水回收槽E2的第一回收管E4,且该回收泵浦E3又设有一导通至该泵浦元件3的第二回收管E5。而后,在回收泵浦E3驱动时,回收泵浦E3可由水回收槽E2抽水A1输送回泵浦元件3再行循环利用(如:图2所示)。
而该增氧超微气泡水制造装置1至少增设有一连接有该控制元件2的冰水机7,该冰水机7增设有一置入该压力容器D及水回收槽E2的冷凝管71,冷凝管71系执行吸收压力容器D内的增氧超微气泡水A及水回收槽E2内的水A1的温度,再由冰水机7运作冷凝管71所吸收的温度释出至空气中,借此,令增氧超微气泡水制造装置1中所使用的水A1的温度维持在适合成型超微气泡B2,以及适合超微气泡B2维持形态的适温状态(如:图3所示)。
而后,该压力容器D又衔接有一输入空气清空、清空内部的该增氧超微气泡水A的第二空气泵8,该第二空气泵8另连接有该控制元件2。为稳定控制超微气泡B2在增氧超微气泡水A中的比例维持,致压力容器D才需要经常清空后再行输入增氧超微气泡水A,而第二空气泵8恰可输入空气执行清空压力容器D的作业(如:图4所示;另外,控制元件2请配合参照图1所示)。
而后,该磁波震荡元件6增设有一震荡管接件61,该震荡管接件61又横穿有一震荡孔62,该震荡孔62右侧又衔接有该第二出水管53,而该震荡孔62左侧另衔接有一震荡体63,该震荡体63至少增设一有互通该震荡孔62及该压力容器D的震荡微孔631。而后,该磁波震荡元件6外增设有一环绕该震荡管接件61的磁波震荡环圈64,该磁波震荡环圈64另连接有该控制元件2,由控制元件2设定磁波震荡环圈64操作产生磁波,磁波通过钛合金制作的震荡体63产生震荡波,以震荡波配合磁波将气泡B1全部震荡成直径小于1毫米的该超微气泡B2。且该磁波震荡元件6另连接有一负离子产生器9,该负离子产生器9又至少具有一突入该震荡孔62的负离子针91,借由负离子针91放出负电分解出氧的带单电的负离子单氧,据以负离子单氧用以中和该植栽F的自由基,用以稳定该植栽F生长速率及抗菌力提升(如:图5所示;自由基即为正离子单氧,另外,控制元件2与植栽F请配合参照图1所示)。
经由以上叙述可知:本申请的该增氧超微气泡水制造装置1系以该控制元件2整体设定控制,而控制元件2设定先驱动有:该泵浦元件3抽水A1进入该高压元件5,以及该入气元件4供应含有氧气空气B进入该高压元件5,而水A1与含有氧气空气B同步在该高压元件5中通过文氏管孔51加压、瞬间喷流迫使含有氧气空气B形成细微的气泡B1及超微气泡B2,且细微的气泡B1在经过该磁波震荡元件6时,系利用磁波震荡元件6产生的磁波震荡成一直径小于1毫米的该超微气泡B2,该超微气泡B2恰好可均匀融入该水A1中成为一增氧超微气泡水A,而后,增氧超微气泡水A恰好是植栽F生长所需氧气的最佳供应标的,且增氧超微气泡水A能利用超微气泡B2保证植栽F在密闭种植环境中有充分氧气供应的优异特点。
本申请该增氧超微气泡水制造装置1系于该增氧超微气泡水A使用后即还原成一般用水A1,而该水回收槽E2正是还原水A1回收使用的标的,水回收槽E2系由回收泵浦E3抽取该水A1输送回泵浦元件3再行循环利用,此循环利用让该增氧超微气泡水制造装置1兼具有节省用水A1的另一优异特点。
本申请的技术内容及技术特点已揭示如上,然而熟悉本项技术的人士仍可能基于本申请的揭示而作各种不背离本案申请精神的替换及修饰。因此,本申请的保护范围应不限于实施例所揭示,而应包括各种不背离本申请的替换及修饰,并为本申请申请专利范围所涵盖。
本申请的增氧超微气泡水实施方法及其制造装置,其增氧超微气泡水能利用超微气泡保证植栽在密闭种植环境中有充分氧气供应,通过循环利用让该增氧超微气泡水制造装置兼具有节省用水的优异特点。因此,具有工业实用性。
Claims (10)
- 一种增氧超微气泡水实施方法,其中,实施方法为:将一含有氧气空气灌入水中,该水在高压环境下迫使该含有氧气空气成为微细的气泡,而后,利用磁波震荡将该气泡震荡成为直径小于1毫米的超微气泡,并该超微气泡充分融合入该水中成为一增氧超微气泡水,而后,该增氧超微气泡水输入暂存在一压力容器,且该增氧超微气泡水由该压力容器后输出使用。
- 如权利要求1所述的增氧超微气泡水实施方法,其中,该含有氧气空气另经由一氧气制造元件提高氧气含量比例至40%至90%,而后,该含有氧气空气又施以磁波震荡成该超微气泡,再以该超微气泡均匀混合入该水中成为该增氧超微气泡水。
- 一种增氧超微气泡水制造装置,其中,至少包括:一控制元件,用以控制及操作该增氧超微气泡水装置;一泵浦元件,用以提供水;一入气元件,用以提供含有氧气空气;一高压元件,用以压迫该含有氧气空气在该水中成为细微的气泡;一磁波震荡元件,用以震荡该水中的该气泡融合成为该增氧超微泡水;而后,该控制元件,至少设定控制有:该泵浦元件、该入气元件与该磁波震荡元件;而该泵浦元件连接有一外接水源,该泵浦元件由该外接水源抽取该水,且该泵浦元件连接有一将该水输出的第一出水管;而该入气元件设有一输出该含有氧气空气的出气管;而该高压元件至少设有一文氏管孔,且该高压元件上方至少设有一衔接该出气管及贯穿至该文氏管孔的入气孔,并该文氏管孔于该高压元件右侧朝左凹设一斜锥状渐缩直径的入压孔室,该入压孔室右侧衔接有该第一出水管;而该入压孔室左侧具有一小直径增压该水的加压窄孔,该加压窄孔左侧设有一斜锥状扩展直径及让该水承受瞬间喷流压力迫使该含有氧气空气产生细微的气泡及该超微气泡的扰流孔室,该扰流孔室衔接有一朝左延伸的第二出水管,该第二出水管衔接有将该水中的该气泡全部以磁波震荡成一直径小于1毫米的该超微气泡的该磁波震荡元件,同时,经过该磁波震荡元件震荡而成的该超微气泡恰好与该水均匀融合为一该增氧超微气泡水,而后,该磁波震荡元件衔接有一暂存该增氧超微气泡水的压力容器,该压力容器衔接有一输出该增氧超微气泡水的第三出水管。
- 如权利要求3所述的增氧超微气泡水制造装置,其中,该入气元件又衔接有一提高该含有氧气空气的氧气含量的氧气制造元件,而该氧气制造元件产生的该含有氧气空气通过该入气元件输送至该高压元件,且该氧气制造元件另连接有该控制元件。
- 如权利要求3所述的增氧超微气泡水制造装置,其中,该高压元件在该加压窄孔上方另设有一该入气孔,该入气孔上方衔接该第一入气管,该第一入气管又衔接一该入气元件;而该扰流孔室上方又设有一该入气孔,该入气孔上方另衔接该第一入气管,该第一入气管衔接一增设的该入气元件。
- 如权利要求3所述的增氧超微气泡水制造装置,其中,该压力容器另分布有:一第三出水管, 以及一增设的第四出水管;该第三出水管增设有一连接该控制元件的第一推送泵浦,该第一推送泵浦又衔接有一连接该控制元件的第一止逆阀,该第一止逆阀又衔接有一第五出水管,而后,该第五出水管至少又衔接有一纳置该增氧超微气泡水的使用容器;而后,该第四出水管增设有一第二推送泵浦,该第二推送泵浦又接设有一连接该控制元件的第二止逆阀,该第二止逆阀至少又衔接有一第六出水管,该第六出水管至少增设有一喷洒该增氧超微气泡水的喷雾头;另于,该使用容器内至少增设有一检测该增氧超微气泡水所含该超微气泡的百万分率的气泡感应器,该气泡感应器另连接有该控制元件;又于,该使用容器又衔接有一水回收槽,该水回收槽上方至少增设有一连接有该控制元件的回收泵浦,该回收泵浦增设有一伸入该水回收槽的第一回收管,且该回收泵浦又设有一导通至该泵浦元件的第二回收管。
- 如权利要求6所述的增氧超微气泡水制造装置,其中,该增氧超微气泡水制造装置至少增设有一连接该控制元件的冰水机,该冰水机增设有一置入该压力容器及该水回收槽的冷凝管。
- 如权利要求3所述的增氧超微气泡水制造装置,其中,该压力容器又衔接有一输入空气、清空内部的该增氧超微气泡水的第二空气泵,该第二空气泵另连接有该控制元件。
- 如权利要求3所述的增氧超微气泡水制造装置,其中,该磁波震荡元件增设有一震荡管接件,该震荡管接件又横穿有一震荡孔,该震荡孔右侧又衔接有该第二出水管,而该震荡孔左侧另衔接有一震荡体,该震荡体至少增设一有互通该震荡孔及该压力容器的震荡微孔;而后,该磁波震荡元件外增设有一环绕该震荡管接件的磁波震荡环圈,该磁波震荡环圈另连接有该控制元件。
- 如权利要求9所述的增氧超微气泡水制造装置,其中,该磁波震荡元件另连接有一负离子产生器,该负离子产生器又至少具有一突入该震荡孔的负离子针。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810182356.X | 2018-03-06 | ||
CN201810182356.XA CN110227362A (zh) | 2018-03-06 | 2018-03-06 | 增氧超微气泡水实施方法及其制造装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019169984A1 true WO2019169984A1 (zh) | 2019-09-12 |
Family
ID=67846134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/073655 WO2019169984A1 (zh) | 2018-03-06 | 2019-01-29 | 增氧超微气泡水实施方法及其制造装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110227362A (zh) |
WO (1) | WO2019169984A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115227945A (zh) * | 2022-07-21 | 2022-10-25 | 中国人民解放军总医院第八医学中心 | 一种用于picc导管尖端定位的震荡助推装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201704092U (zh) * | 2010-04-23 | 2011-01-12 | 杨景文 | 超微气泡水产生机 |
CN204710217U (zh) * | 2015-05-29 | 2015-10-21 | 湖南农业大学 | 一种水力组合超声波微泡发生装置与系统 |
CN204973624U (zh) * | 2015-08-13 | 2016-01-20 | 宁波市北仑海伯精密机械制造有限公司 | 微气泡机 |
CN107530651A (zh) * | 2015-01-22 | 2018-01-02 | 泰德微流体有限公司 | 用于受控制造单分散微气泡的系统和方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM325162U (en) * | 2007-07-13 | 2008-01-11 | Chang-Tan Lin | Extra-tiny bubble water supply apparatus |
TWM362716U (en) * | 2009-03-27 | 2009-08-11 | Wen-Ping Chen | Device for generating ultra-fine bubbles |
KR20130101184A (ko) * | 2012-03-05 | 2013-09-13 | 이상광 | 다용도 초미세 기포 발생기 |
CN104163511B (zh) * | 2014-08-28 | 2015-10-28 | 上海佛欣流域环境治理有限公司 | 强磁涡旋式超微细气泡发生腔及其曝气装置 |
TW201622684A (zh) * | 2014-12-25 | 2016-07-01 | Rui Bai Er Technology Co Ltd | 可調節進水壓力之微氣泡產生裝置 |
CN204380612U (zh) * | 2014-12-29 | 2015-06-10 | 南京健友生化制药股份有限公司 | 一种肝素脱粘搅拌罐 |
CN107376452A (zh) * | 2016-05-16 | 2017-11-24 | 魏华山 | 一种智能自清洁陶瓷净水器 |
CN205850620U (zh) * | 2016-08-15 | 2017-01-04 | 中石化炼化工程(集团)股份有限公司 | 微气泡发生器 |
CN208642343U (zh) * | 2018-03-06 | 2019-03-26 | 四季洋圃生物机电股份有限公司 | 增氧超微气泡水制造装置 |
-
2018
- 2018-03-06 CN CN201810182356.XA patent/CN110227362A/zh not_active Withdrawn
-
2019
- 2019-01-29 WO PCT/CN2019/073655 patent/WO2019169984A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201704092U (zh) * | 2010-04-23 | 2011-01-12 | 杨景文 | 超微气泡水产生机 |
CN107530651A (zh) * | 2015-01-22 | 2018-01-02 | 泰德微流体有限公司 | 用于受控制造单分散微气泡的系统和方法 |
CN204710217U (zh) * | 2015-05-29 | 2015-10-21 | 湖南农业大学 | 一种水力组合超声波微泡发生装置与系统 |
CN204973624U (zh) * | 2015-08-13 | 2016-01-20 | 宁波市北仑海伯精密机械制造有限公司 | 微气泡机 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115227945A (zh) * | 2022-07-21 | 2022-10-25 | 中国人民解放军总医院第八医学中心 | 一种用于picc导管尖端定位的震荡助推装置 |
CN115227945B (zh) * | 2022-07-21 | 2024-01-26 | 中国人民解放军总医院第八医学中心 | 一种用于picc导管尖端定位的震荡助推装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110227362A (zh) | 2019-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105228736B (zh) | 微米·纳米气泡发生方法,发生喷嘴,与发生装置 | |
CN104741011B (zh) | 一种增压预粉碎气水微-纳米泡混溶液发生的系统及方法 | |
WO2019169984A1 (zh) | 增氧超微气泡水实施方法及其制造装置 | |
CN203807246U (zh) | 一种复式多级射流曝气装置 | |
WO2004071635A1 (ja) | 気体溶解量調整方法とその装置とそのシステム | |
TWM562710U (zh) | 增氧超微氣泡水製造裝置 | |
CN106964267A (zh) | 微纳米气泡发生器及微纳米气泡制备系统 | |
US20160236160A1 (en) | Microbubble generating device and contaminated water purifying system provided with microbubble generating device | |
CN209178091U (zh) | 一种用于造纸废水预处理的射流曝气器 | |
US6767381B2 (en) | Method of producing compost tea and apparatus therefor | |
CN102531155B (zh) | 高溶氧发生装置及其应用 | |
TW201931994A (zh) | 增氧超微氣泡水製造裝置 | |
CN215260669U (zh) | 一种工业化快速高效制取臭氧冰的设备 | |
CN208113321U (zh) | 有机生物肥料自动控制系统 | |
CN208406663U (zh) | 多功能超微气泡水制造装置 | |
CN108383253A (zh) | 一种管式膜气泡发生装置 | |
CN102388788B (zh) | 地下滴灌系统注气装置 | |
CN209237735U (zh) | 一种二次加压多级破碎的纳米气泡发生装置 | |
JP2751943B2 (ja) | 高濃度オゾン水製造方法及び高濃度オゾン水製造装置 | |
CN206121538U (zh) | 碳酸泉气液混合装置 | |
CN106416572A (zh) | 一种柑橘雾化施肥系统 | |
TWM560342U (zh) | 多功能超微氣泡水製造裝置 | |
CN110235584A (zh) | 有机生物肥料自动控制系统 | |
TWI664899B (zh) | Organic biological fertilizer automatic control system | |
KR20220007819A (ko) | 오존 발생기 및 압축기를 이용한 나노 버블수 생성 시스템 및 이를 이용한 나노 버블수의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19764101 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19764101 Country of ref document: EP Kind code of ref document: A1 |