WO2019169672A1 - 一种数字控制驱动方法及驱动显示控制装置 - Google Patents

一种数字控制驱动方法及驱动显示控制装置 Download PDF

Info

Publication number
WO2019169672A1
WO2019169672A1 PCT/CN2018/080028 CN2018080028W WO2019169672A1 WO 2019169672 A1 WO2019169672 A1 WO 2019169672A1 CN 2018080028 W CN2018080028 W CN 2018080028W WO 2019169672 A1 WO2019169672 A1 WO 2019169672A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
subframe
image frame
turned
display panel
Prior art date
Application number
PCT/CN2018/080028
Other languages
English (en)
French (fr)
Inventor
周学兵
温亦谦
周明忠
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/040,626 priority Critical patent/US10607550B2/en
Publication of WO2019169672A1 publication Critical patent/WO2019169672A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames
    • G09G3/2025Display of intermediate tones by time modulation using two or more time intervals using sub-frames the sub-frames having all the same time duration
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames
    • G09G3/2029Display of intermediate tones by time modulation using two or more time intervals using sub-frames the sub-frames having non-binary weights
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen

Definitions

  • the present invention relates to the field of driving display technologies, and in particular, to a digital control driving method and a driving display control device.
  • the active matrix organic light-emitting diode panel AMOLED has more and more applications in the fields of 3D display, virtual reality (VR), etc. due to its fast response, ultra-thin, ultra-light, and brilliant colors, but in the AMOLED pixel circuit.
  • the OLED current Ioled has a nonlinear relationship with the driving TFTs Vgs and Vth, and the driving TFT Vth will drift with time, causing the Ioled size to change, eventually resulting in uneven brightness of the overall brightness of the AMOLED panel.
  • the source driver chip outputs only two gray scale voltages, and can drive the TFT to operate only in the on or off state, effectively avoiding the influence of the driving TFT Vth drift.
  • the present application provides a PWM control driving method, the method comprising: receiving an image frame; dividing the image frame into K subframes, wherein a grayscale value of a pixel point in the image frame corresponds to K bits, i
  • the subframe includes the i-th bit of each pixel, the i is greater than or equal to 1, and is less than or equal to K; according to the bit in the j-th subframe, driving the display panel in the driving duration corresponding to the j-th subframe
  • the TFT is turned on or off; wherein the j is sequentially taken from 1 to the K; wherein the bit of the first value is used to indicate that the driving TFT is turned on, and the bit of the second value is used to indicate that the driving TFT is turned off.
  • the image frame comprises a 3D image frame, wherein the 3D image frame comprises a 3D left eye image frame and a 3D right eye image frame.
  • the dividing the image frame into K sub-frames includes: respectively dividing the 3D left-eye image frame and the 3D right-eye image frame into K subframes; according to the j-th subframe a bit, driving the TFT in the display panel to be turned on or off by using a driving duration corresponding to the jth subframe, including:
  • the TFT in the display panel to be turned on or off according to the driving duration corresponding to the j-th subframe, wherein the j is sequentially from 1 to Said K to take the value;
  • the TFT in the display panel is driven to be turned on according to the driving time corresponding to the j-th subframe according to the bit in the j-th subframe of the 3D right-eye image frame. Or off, wherein the j is taken from 1 to the K in order.
  • the j-th subframe of the 3D left-eye image frame drives the display panel to be turned on or off, according to the bit in the j-th subframe of the 3D right-eye image frame, the j-th subframe
  • the corresponding driving duration drives the TFTs in the display panel to be turned on or off, wherein the j is sequentially taken from 1 to the K.
  • the K subframes occupy the same duration in a frame time of the image frame, where the driving durations of the K subframes are not equal.
  • the grayscale range of the display system is 0-255
  • the subframe value is 8
  • the time corresponding to the image frame is T
  • the driving duration corresponding to the ith subframe is (2 i-1 /2) 7 ) *T/8, wherein the i is greater than or equal to 1, less than or equal to 8.
  • the driving, by the driving time length corresponding to the jth subframe, driving the TFT in the display panel to be turned on or off according to the bit in the jth subframe includes:
  • the bit in the jth subframe is read in a row-by-row manner, and the display panel controls the TFT to be turned on or off line by line during a driving duration corresponding to the jth subframe;
  • Reading the bits in the jth subframe in a row-by-row manner in a case where all the bits in the jth subframe are read, the display panel is in the jth subframe All TFTs of the display panel are controlled to be turned on or off within a corresponding driving duration.
  • the display panel controls the driving panel within a driving duration corresponding to the jth subframe after a preset duration All TFTs are turned on or off to adjust the TFT turn-on or turn-off timing on the display panel.
  • a drive display control device wherein the drive display control device comprises a unit of the method according to any one of claims 1 to 9.
  • the OLED current Ioled in the AMOLED pixel circuit is nonlinearly related to the driving TFTs Vgs and Vth, and the driving TFT Vth drifts with time, the size of the Ioled changes, and finally the overall brightness of the AMOLED panel is uneven, so digital control is used here.
  • the driving of the PWM, the driving TFT only works in the on or off state, so that the source driver IC source driver IC only outputs two gray scale voltage values, and the PWM control driving method can effectively avoid the influence of the driving TFT Vth drift. Improve display quality.
  • FIG. 1 is a schematic flowchart of a digital control driving method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a grayscale digit and a subframe corresponding relationship according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a correspondence between a driving duration and a subframe according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a sub-frame sequential transmission according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of alternate subframe transmission according to an embodiment of the present disclosure.
  • FIG. 5-a is a schematic diagram of a scan driving manner of an image sub-frame according to an embodiment of the present invention.
  • FIG. 5-b is a schematic diagram of another scanning manner of an image sub-frame according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a random scan mode of a subframe according to an embodiment of the present disclosure.
  • 7-a is a schematic diagram of image sub-frame alternating transmission and progressive driving lighting according to an embodiment of the present invention.
  • 7-b is a schematic diagram of alternate transmission of image sub-frames and simultaneous driving illumination according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a driving display control apparatus TCON according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart diagram of a digital control driving method according to an embodiment of the present invention.
  • a digital control driving method provided by an embodiment of the present application may include:
  • the image frame is received by the logic board TCON, mainly receiving image data included in the image frame.
  • the image frame may be a two-dimensional planar image frame, or may be a 3D image frame, where the 3D image frame includes a 3D left-eye image frame and a 3D right-eye image frame.
  • the image frame is equally divided into K subframes, where grayscale values of pixel points correspond to K bits, and the i-th subframe includes an i-th bit of each pixel, where the i Greater than or equal to 1, less than or equal to K.
  • dividing the image frame into K subframes is to divide the 3D left eye image frame and the 3D right eye image frame into K subframes, respectively.
  • the sub-frame value K of the image frame equalization has a corresponding relationship with the gray scale range of the pixel points in the image frame. Specifically, if the grayscale range of the display system is 0-255, the grayscale value of each pixel is between 0-255, and the grayscale value of each pixel is expressed in binary form, then The grayscale value of each pixel can be expressed as 8 binary bits, the first bit of the grayscale value of each pixel corresponds to subframe 1, and the second bit of the grayscale value of each pixel The bit corresponds to the subframe 2, and the division is performed in order, and the image frame is divided into 8 subframes, and the subframe value K is 8.
  • only 0 or 1 values mean that there are only 0 or 1 values in each sub-frame, and the two values correspond to the two states of the pixel, when a certain sub-frame When a certain bit is 0, the pixel corresponding to the bit does not emit light. When a certain bit of a certain subframe is 1, the pixel corresponding to the bit emits light.
  • FIG. 2 is a schematic diagram of the correspondence between gray-scale digits and subframes according to an embodiment of the present invention.
  • the grayscale range of the display system is 0-255
  • the image frame includes 16 pixels, and each pixel has a grayscale value.
  • the grayscale value of the pixel in the upper left corner is 250, in binary.
  • the grayscale value of the pixel in the upper right corner is 40, expressed as 00101000 in binary, and the grayscale value of the remaining pixels is also represented by binary, and the grayscale value of all the pixels (indicated as binary form)
  • the first bit of the picture forms subframe 1, the second bit forms subframe 2, and so on, and the eighth bit forms subframe 8.
  • the value of the pixel in all subframes is only 0 or 1, for example, the value of the pixel in the upper left corner of subframe 1 is 0, and the corresponding bit of the pixel corresponding to the grayscale value is 250, upper right The value of the pixel of the corner is 0, corresponding to the first bit of the pixel whose grayscale value is 40; the value of the pixel of the upper left corner of subframe 8 is 1, corresponding to the pixel of the grayscale value of 250 Eight bits.
  • the value of a certain pixel is 0, it means that the OLED corresponding to the pixel does not emit light. If the value of a certain pixel is 1, it indicates that the OLED corresponding to the pixel emits light.
  • the image frame can be divided into sub-frames according to the bits, and the divided The sub-frames only include 0 or 1 values, 0 means that the OLED corresponding to a certain pixel point does not emit light, and 1 represents the OLED illumination corresponding to a certain pixel point, and details are not described herein again.
  • the average occupation time of the K sub-frames is equal, but the driving durations of the K sub-frames are not equal.
  • the duration of one frame of the image frame is T
  • the occupation time of each subframe is K/T
  • the driving duration of the i-th subframe is corresponding. Is (2 i-1 /2 7 )*T/8, wherein the i is greater than or equal to 1, less than or equal to the K.
  • the K sub-frames are assigned different driving durations in order to simulate the display effect of reaching the grayscale value of the pixel points in the original image frame.
  • the grayscale value of a pixel of the original image frame is 100, but after dividing the subframe, the value of the pixel in each subframe is only 0 or 1, corresponding to the illumination and non-luminescence of the pixel, and the difference is
  • the grayscale value is 100.
  • FIG. 3 is a schematic diagram of a correspondence between a driving duration and a subframe according to an embodiment of the present invention.
  • the time of one frame of the image frame is T
  • the range of the gray scale is 0-255, so it is divided into 8 subframes
  • the occupation time of each subframe is T/8
  • the driving duration of subframe 1 is (2 0 /2 7 ) *T/8
  • the lighting time corresponding to subframe 1 is also (2 0 /2 7 )*T/8
  • the driving duration of subframe 2 is (2 1 /2 7 )*T/8
  • the driving duration of subframe 2 is (2 1 /2 7 )*T/8
  • the lighting time of frame 1 is also (2 1 /2 7 )*T/8, and so on.
  • the driving duration of sub-frame 8 is T/8, which corresponds to the longest lighting time of sub-frame 8, which is also T/8. .
  • the display effect of reaching the grayscale value can also be simulated by other methods or the driving duration allocation method.
  • the above method is only a preferred embodiment, and the grayscale value is simulated by other methods or driving duration allocation methods.
  • the display effect is also within the scope of protection of the present application.
  • the value of the pixel points in each sub-frame may only be 0 or 1.
  • the driving TFTs only work in either on or off.
  • the Source Driver IC only outputs two gray scale voltage values, which can effectively avoid the influence of the driving TFT Vth drift, and make the overall brightness of the AMOLED panel uniform and improve the display quality.
  • the first value represents a value of a pixel in the subframe, indicating that the driving TFT is turned on
  • the second value represents that the value of a pixel in the subframe is 0. Indicates that the drive TFT is turned off.
  • the TFT in the display panel is driven to be turned on according to a bit length in the jth subframe of the 3D left eye image frame, and a driving duration corresponding to the jth subframe Closing, wherein the j is sequentially taken from 1 to the K; after the 3D left-eye image frame completes driving display, according to the bit in the j-th subframe of the 3D right-eye image frame, The driving duration corresponding to the jth subframe drives the TFTs in the display panel to be turned on or off, wherein the j is sequentially taken from 1 to the K.
  • the above-mentioned sub-frame transmission driving method belongs to the sequential transmission driving. It can be understood that the K sub-frames corresponding to the 3D left-eye image frame are transmitted to the display panel first, and the sub-frame transmission order is from the sub-frame 1 to the sub-frame K, and the display panel further corresponds to each sub-frame.
  • the driving duration of the driving TFT is turned on or off. After the 3D left-eye image frame driving display is completed, the 3D right-eye image frame is driven and displayed in the same manner.
  • FIG. 4-a is a schematic diagram of a sub-frame sequential transmission according to an embodiment of the present invention.
  • the 3D left eye image frame and the 3D right eye image frame are respectively divided into 8 subframes, corresponding to L-SF1, L-SF2, ... L-SF8 and R, respectively.
  • L-SF1, L-SF2, ... L-SF8 are sequentially transmitted in the time of one frame of image frame
  • R-SF1, R-SF2 are transmitted in the time of the next frame of image frame. ...R-SF8.
  • the TFT in the display panel is driven to be turned on according to a bit length in the jth subframe of the 3D left eye image frame, and a driving duration corresponding to the jth subframe Turning off, after the TFT in the j-th subframe driving display panel of the 3D left-eye image frame is turned on or off, according to the bit in the j-th subframe of the 3D right-eye image frame, the j-th The driving duration corresponding to the sub-frames drives the TFTs in the display panel to be turned on or off, wherein the j is sequentially taken from 1 to the K.
  • the above-mentioned sub-frame transmission driving method belongs to an alternate transmission driving. It can be understood that the first K/2 sub-frames corresponding to the 3D left-eye image frame and the 3D right-eye image frame are alternately transmitted to the display panel, and the sub-frame transmission order is from subframe 1 to subframe. K/2, alternating left and right transmission, the display panel drives the TFT to be turned on or off according to the driving duration corresponding to each sub-frame, and the front K/2 sub-frames corresponding to the 3D left-eye image frame and the 3D right-eye image frame are displayed and displayed.
  • the 3D left eye image frame and the 3D right eye image frame corresponding to the last K/2 subframes are alternately transmitted to the display panel, and the subframe transmission sequence is alternately transmitted from the subframe K/2 to the subframe K, and the display panel is further
  • the TFT is turned on or off according to the driving duration corresponding to each sub-frame.
  • FIG. 4 is a schematic diagram of alternate subframe transmission according to an embodiment of the present invention.
  • the gray scale range of the display system is 0-255
  • the 3D left eye image frame and the 3D right eye image frame are respectively divided into 8 subframes, corresponding to L-SF1, L-SF2, ... L-SF8 and R, respectively.
  • L-SF1, R-SF1, L-SF2, R-SF2, L-SF3, R-SF3, L-SF4, R-SF4 are alternately transmitted in the time of one frame of the image frame, L-SF5, R-SF5, L-SF6, R-SF6, L-SF7, R-SF7, L-SF8, and R-SF8 are retransmitted during the next frame of the image frame.
  • the left eye image frame and the right eye image frame each occupy 8.3 ms. If it is necessary to switch between the left eye image frame and the right eye image frame, at least 8.3 ms is required.
  • Time but by dividing the left eye image frame and the right eye image frame into sub-frames, for example, in the case where the gray scale range of the display system is 0-255, the left-eye image frame and the right-eye image frame are each divided into 8 sub-frames. Frames, each sub-frame occupies 1ms time, and the left-eye sub-frame and the right-eye sub-frame are switched in only 1ms, which can help the user to effectively reduce the discomfort caused by the display of light/dark intervals.
  • Each subframe includes a fastest charging time T_charge, a fastest discharging time T_discharge, a current subframe lighting time T_display, and a non-lighting time T_blank.
  • the T_display is determined by the subframe number.
  • the T_display corresponding to different subframes is different.
  • T_charge and T_discharge can be specially adjusted according to different subframes.
  • scanning from the first line to the last line is performed by progressive scanning and reading of the sub-frame data.
  • the bit in the jth subframe is read in a row-by-row manner, and the display panel controls the TFT to be turned on or off line by line within a driving duration corresponding to the jth subframe.
  • the logic board TCON reads the sub-frame data after performing the line scan on the sub-frame. Because each sub-frame includes only two values of 0 or 1, the TCON generates two types of transmission voltage values for transmission to the display panel, and displays The panel receives the transmission voltage and converts it into a driving voltage, and drives the TFT to be turned on line by line according to the driving time corresponding to the sub-frame to illuminate the corresponding pixel.
  • FIG. 5-a is a schematic diagram of a scan driving manner of an image sub-frame according to an embodiment of the present invention.
  • the gray scale range of the display system is 0-255, so the left/right eye image frames are divided into 8 sub-frames, and each sub-frame is scanned from the first line by progressive scanning in one-eighth of the 3D image frame time. To the last line, the corresponding driving lights up the pixels of each line, wherein each sub-frame drives the lighting time differently.
  • the bit in the jth subframe is read in a row-by-row manner, and in the case that all the bits in the jth subframe are read, the display panel is in the All TFTs of the display panel are controlled to be turned on or off within a driving duration corresponding to the jth subframe.
  • the logic board TCON reads the sub-frame data, transfers the display data required for each line to the display panel, and latches it to the pixel, after scanning all the lines of the entire sub-frame. Then, according to the driving time corresponding to the sub-frame, all the TFTs on the display panel are simultaneously turned on, and the corresponding pixel points are illuminated.
  • FIG. 5-b is a schematic diagram of another scanning operation mode of an image sub-frame according to an embodiment of the present invention.
  • the gray scale range of the display system is 0-255, so the left/right eye image frames are divided into 8 sub-frames, and each sub-frame is scanned from the first line by progressive scanning in one-eighth of the 3D image frame time. In the last line, the display data required for each line is transferred to the display panel and latched to the pixel. When all the lines are scanned, all the pixels on the entire panel are driven to light at the same time.
  • the sub-frames are different, and after the driving time corresponding to each sub-frame is lit, all the scanning lines are simultaneously discharged.
  • the display panel controls the driving within the driving duration corresponding to the jth subframe. All TFTs of the panel are turned on or off to adjust the opening or closing timing of the TFTs on the display panel, wherein the preset duration can be set as needed.
  • the start driving lighting timing of each sub-frame can be adjusted on the time axis, but the minimum time requirement of T_charge and T_discharge needs to be met, that is, The minimum time required to charge a row of pixels to the corresponding grayscale voltage and the minimum time required to discharge the pixel voltage to a low voltage. It can be understood that, in this manner, a control signal and a pixel circuit structure for supporting simultaneous driving and simultaneous discharge are required. The specific pixel circuit structure is not within the scope of the present application and will not be described in detail herein.
  • scanning can be performed by random scanning. Specifically, the scanning of each sub-frame will be shifted on the time axis according to a specific time period.
  • the sub-frame based shifting may be performed based on a single scanning line or a plurality of scanning line groups.
  • the order of sub-frame transmission is fixed. For example, suppose that all scan lines are divided into groups A, B, C, and D, starting from a certain time t0, and if it is a sequential scan, groups A, B, C, and D are in the order of subframes 1, 2, 3, and 4. Scanning is performed. If random scanning is used, group A scans in subframe order 1, 2, 3, and 4, group B scans in subframe order 4, 1, 2, and 3, and group C in subframe order 3. , 4, 1, 2 scan display, group D scans by subframe 2, 3, 4, 1.
  • FIG. 6 is a schematic diagram of a random scan mode of a subframe according to an embodiment of the present invention.
  • the horizontal direction represents the time axis
  • the vertical direction represents different scanning lines
  • the scanning line may be a single piece or a plurality of groups
  • the sub-frame value is 8. It can be seen from FIG. 6 that the scanning display order of the eight sub-frames is different for different scanning lines. From the horizontal direction, the order of sub-frame transmission is fixed for a certain scanning line or a certain group of scanning lines. However, from the vertical perspective, the scanning of each sub-frame is shifted on the time axis according to a specific time period.
  • the transmission mode of the subframe and the scanning mode of the subframe may be arbitrarily combined to complete the driving display.
  • FIG. 7-a is a schematic diagram of image sub-frame alternating transmission and progressive driving illumination according to an embodiment of the present invention.
  • the first 4 subframes corresponding to the nth frame 3D left eye image frame and the nth frame 3D right eye image frame are alternately transmitted to the display panel, and the subframe transmission order is from subframe 1 to subframe 4 And performing progressive scan on the first 4 subframes corresponding to the left eye image frame and the first 4 subframes corresponding to the right eye image frame, and performing row-by-row driving lighting according to the driving time corresponding to the subframe; in the n+1th frame
  • the nth frame 3D left eye image frame and the nth frame 3D right eye image frame corresponding to the last 4 subframes are alternately transmitted to the display panel, and the subframe transmission order is from subframe 5 to subframe 8, and to the left
  • the last 4 subframes corresponding to the eye image frame and the last 4 subframes corresponding to the right eye image frame are progressively scanned, and are driven line by line according to the driving time corresponding to the subframe.
  • FIG. 7-b is a schematic diagram of alternate transmission of image sub-frames and simultaneous driving illumination according to an embodiment of the present invention.
  • the first 4 subframes corresponding to the nth frame 3D left eye image frame and the nth frame 3D right eye image frame are alternately transmitted to the display panel, and the subframe transmission order is from subframe 1 to subframe 4 And performing progressive scan on the first 4 subframes corresponding to the left eye image frame and the first 4 subframes corresponding to the right eye image frame, and transmitting the display data required for each row to the display panel and latching to the pixel, and then according to the child
  • the driving time corresponding to the frame simultaneously drives all the pixels to be lit; after the nth frame 3D left eye image frame and the nth frame 3D right eye image frame are alternately transmitted to the display panel in the n+1th frame image frame time 4 subframes, the subframe transmission sequence is from subframe 5 to subframe 8, and the last 4 subframes corresponding to the
  • the 3D image frame when switching between the 3D left-eye image frame and the 3D right-eye image frame, a certain non-light-emitting time is required, and the above-mentioned image subframe alternately transmits and simultaneously drives the lighting mode, the left eye.
  • the switching of the image frame sub-frame to the left-eye image frame sub-frame has a non-light-emitting time, so that no additional design is required, and a relatively large illumination duty ratio is provided.
  • the left-eye image frame and the right-eye image frame are divided into sub-frames, when the gray scale range of the display system is 0-255 and the 3D image frame rate is 60 Hz, the average frame display is performed in 1 ms, and It is beneficial for the user to effectively reduce the discomfort caused by the display light/dark interval being too long.
  • the driving TFT only works in the on or off state, so that the source driver IC Source Driver IC only outputs two gray scale voltage values, which can effectively avoid Drive the effects of TFT Vth drift and improve display quality.
  • FIG. 8 is a schematic structural diagram of a driving display control device TCON according to an embodiment of the present invention.
  • the drive display control device 800 includes a writing unit 810, a reading unit 820, a response unit 830, a selecting unit 840, a searching unit 850, a switching cooperation unit 860, and a mating output unit 870.
  • the writing unit 810 is configured to receive the image frame data and perform sub-frame division, and is also responsible for the image frame data to the frame buffer write request and the write data arrangement.
  • the image frame may be a two-dimensional planar image frame, or may be a 3D image frame, where the 3D image frame includes a 3D left-eye image frame and a 3D right-eye image frame.
  • the reading unit 820 is configured to read out the image frame data from the frame buffer and read out the data arrangement.
  • the reading of the image frame data is determined by the transmission mode of the image frame. For example, in the alternate transmission mode, a certain subframe corresponding to the left eye image frame is first read. Then read the corresponding subframe of the right eye image frame. It can be understood that different transmission modes correspond to different image frame data reading methods, and details are not described herein again.
  • the response unit 830 is configured to respond to the write, read request, and store the write data in the frame buffer, read data from the frame buffer, and is responsible for storage area management of the image frame data; the response unit 830 further includes storage
  • the unit 8301 is configured to store the image frame data in a partition based manner.
  • the selecting unit 840 is configured to select a subframe, and select a corresponding digit from the read data according to the current subframe. Specifically, after the image frame is divided into sub-frames, only one digit is represented corresponding to a certain pixel data, but when the sub-frame data is stored in the frame buffer, it is combined into multiple according to the specification of the frame buffer. Digital storage, such as 16bit, 32bit, etc., where digits are selected, when multiple digits have been combined, the corresponding digit is selected according to the position of the current pixel.
  • the searching unit 850 is configured to search for image frame subframe data.
  • the switching cooperation unit 860 is configured to control the generation of the subframe switching signal, and is also responsible for the cooperative operation of other units.
  • the matching output unit 870 is configured to cooperate with the data stream to generate a scan control signal GD for controlling scanning of image frame lines, and a voltage transfer control signal SD for controlling each row in each row.
  • the pixel point gray scale voltage is transmitted.
  • the voltage transmission control signal SD controls the source driving chip to substantially output only two gray scale voltage values, corresponding to the driving TFT being turned on or off.
  • the image frame is driven, the image frame is divided into sub-frames, stored and read, the sub-frame is selected, and the corresponding digits are selected from the read data according to the current sub-frame.
  • the scan control signal GD and the voltage transfer control signal SD are generated together with the image data stream, so that the source drive chip outputs only two gray scale voltages, and there is no multi-gray voltage, so that the pixel circuit driving TFT in the display panel only works. Or two states can effectively avoid the influence of panel brightness inconsistency caused by driving TFT Vth drift, and the entire driving display control device TCON has a simple structure and the driving becomes more efficient and simple.
  • the embodiment of the present invention provides a display device, wherein the display device adopts any of the above-mentioned embodiments as the drive display control device, and the display device can be: Any product or component that has a display function, such as a liquid crystal panel, an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display device adopts any of the above-mentioned embodiments as the drive display control device, and the display device can be: Any product or component that has a display function, such as a liquid crystal panel, an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the display device provided by the embodiment of the present invention has the same technical features as any of the drive display control devices provided by the above embodiments, the same technical problem can be solved, and the same technical effect is produced.
  • FIG. 9 is a schematic diagram of a schematic diagram of a digital control driving method shown in FIG. 1 and a schematic diagram of a driving display control device TCON shown in FIG. 8.
  • FIG. 9 is a schematic diagram of a liquid crystal display device according to an embodiment of the present invention.
  • the liquid crystal display device may include at least one processor 901 (for example, a CPU), a memory 902, at least one communication bus 903, and a pixel matrix 904 and a drive display controller 905.
  • the communication bus 903 is used to implement connection communication between these components.
  • the memory 902 may be a high speed RAM memory or a non-volatile memory such as at least one disk memory.
  • the memory 902 can optionally include at least one storage device located away from the foregoing processor 901.
  • the pixel matrix 904 is configured to display an image
  • the display display controller 905 is configured to receive an image frame and perform sub-frame division to generate a scan control signal GD and Voltage transfer control signal SD.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: Flash disk, Read-Only Memory (ROM), Random Access Memory (RAM), disk or optical disk.

Abstract

本发明实施例公开了一种数字控制驱动方法及驱动显示控制装置,在该方法中,采用数字控制的方式,将图像帧以比特位的方式分别均分 K 个子帧,其中每个子帧的占用时间都相等,但每个子帧的驱动时长均不相等,在图像帧一帧时间内将 K 个子帧按特别的传输方式去驱动显示面板进行显示,传输电压值只有两个值,对应显示面板上的像素点的发光与不发光。因此,本发明实施例通过采用数字控制的驱动,使得源驱动晶片只输出两种灰阶电压值,驱动 TFT 只工作在开或关两字状态,可有效避免驱动 TFT Vth 漂移所带来的影响。

Description

一种数字控制驱动方法及驱动显示控制装置 技术领域
本发明涉及驱动显示技术领域,尤其涉及一种数字控制驱动方法及驱动显示控制装置。
背景技术
有源矩阵有机发光二极体面板AMOLED由于具有响应速度快、超薄、超轻、色彩绚丽等特点,在3D显示领域、虚拟现实(VR)等领域应用越来越多,但AMOLED像素电路中的OLED电流Ioled与驱动TFT Vgs、Vth为非线性关系,并且驱动TFT Vth会随时间产生漂移,导致Ioled大小发生变化,最终导致AMOLED面板整体亮度不均匀。
降低或解决驱动TFT Vth漂移影响的驱动方法有很多种,现有技术中,使用较多的是配合像素内部或外部补偿电路的模拟驱动方式,但是这种方式较为复杂,如何简单高效的解决驱动TFT Vth随时间产生漂移的问题,是本领域技术人员研究的热点问题。
发明内容
基于此,为解决现有技术中驱动TFT Vth会随时间产生漂移,导致Ioled大小发生变化,最终导致AMOLED面板整体亮度不均匀,特提出了一种数字控制PWM驱动方法及驱动显示控制装置,使得源驱动晶片只输出两种灰阶电压,可以驱动TFT只工作在开或关两种状态,有效避免驱动TFT Vth漂移所带来的影响。
本申请提供了一种PWM控制驱动方法,该方法包括:接收图像帧;将所述图像帧均分为K个子帧,所述图像帧中像素点的灰阶值对应K个比特位,第i个子帧包括每个像素点的第i个比特位,所述i大于等于1,小于等于K;根据第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的 TFT进行开启或关闭;其中所述j按顺序从1到所述K进行取值;其中第一数值的比特位用于指示驱动TFT开启,第二数值的比特位用于指示驱动TFT关闭。
可选的,所述图像帧包括3D图像帧,其中,所述3D图像帧包括3D左眼图像帧和3D右眼图像帧。
其中,所述将所述图像帧均分为K个子帧包括:分别将所述3D左眼图像帧和所述3D右眼图像帧均分为K个子帧;所述根据第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭,包括:
根据所述3D左眼图像帧的第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭,其中所述j按顺序从1到所述K进行取值;
在所述3D左眼图像帧完成驱动显示后,根据所述3D右眼图像帧的第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭,其中所述j按顺序从1到所述K进行取值。
或者是:
根据所述3D左眼图像帧的第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭;
在所述3D左眼图像帧的第j个子帧驱动显示面板中的TFT进行开启或关闭后,根据所述3D右眼图像帧的第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭,其中所述j按顺序从1到所述K进行取值。
其中在所述图像帧的一帧时间内,所述K个子帧占用时长相等,其中,所述K个子帧的驱动时长各不相等。
可选的,若显示系统的灰阶范围为0-255,则子帧数值为8,所述图像帧对应的时间为T,则第i个子帧对应的驱动时长是(2 i-1/2 7)*T/8,其中,所述i大于等于1,小于等于8。
其中,根据第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭包括:
以逐行读取的方式读取所述第j个子帧中的比特位,所述显示面板在所述第j个子帧对应的驱动时长内控制所述TFT逐行进行开启或关闭;
或者是:
以逐行读取的方式读取所述第j个子帧中的比特位,在所述第j个子帧中的比特位全部读取完毕的情况下,所述显示面板在所述第j个子帧对应的驱动时长内控制所述显示面板所有的TFT进行开启或关闭。
可选的,在所述第j个子帧中的比特位全部读取完毕的情况下之后,经过预设时长,所述显示面板在所述第j个子帧对应的驱动时长内控制所述驱动面板所有的TFT进行开启或关闭,以调整所述显示面板上的TFT开启或关闭时刻。
一种驱动显示控制装置,其中,所述驱动显示控制装置包含如权利要求1至9任一项所述方法的单元。
实施本发明实施例,将具有如下有益效果:
由于AMOLED像素电路中的OLED电流Ioled与驱动TFT Vgs、Vth为非线性关系,并且驱动TFT Vth会随时间产生漂移,导致Ioled大小发生变化,最终导致AMOLED面板整体亮度不均匀,因此这里采用数字控制PWM的驱动,驱动TFT只工作在开或关两种状态,使得源驱动晶片Source Driver IC只输出两种灰阶电压值,PWM控制的驱动方法可有效避免驱动TFT Vth漂移所带来的影响,提高显示质量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1为本发明实施例提供的一种数字控制驱动方法的流程示意图;
图2为本发明实施例提供的一种灰阶数位与子帧对应关系的示意图;
图3为本发明实施例提供的一种驱动时长与子帧对应关系的示意图;
图4-a为本发明实施例提供的一种子帧顺序传输的示意图;
图4-b为本发明实施例提供的一种子帧交替传输的示意图;
图5-a为本发明实施例提供的一种图像子帧的扫描驱动方式示意图;
图5-b为本发明实施例提供的另一种图像子帧的扫描驱动方式示意图;
图6为本发明实施例提供的一种子帧随机扫描方式的示意图;
图7-a为本发明实施例提供的一种图像子帧交替传输与逐行驱动点亮示意图;
图7-b为本发明实施例提供的一种图像子帧交替传输与同时驱动点亮示意图;
图8为本发明实施例提供的一种驱动显示控制装置TCON结构示意图。
图9为本发明实施例提供的一种液晶显示装置结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和有益效果更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了更好地理解本发明实施例公开的采用PWM控制的驱动方法避免驱动TFT Vth漂移的原理,下面先对本发明实施例提供的一种数字控制驱动方法的流程示意图进行描述。请参阅图1,图1为本发明实施例提供的一种数字控制驱动方法的流程示意图。如图1所示,本申请的一个实施例提供的一种数字控制驱动方法可包括:
S101、接收图像帧。
其中,由逻辑板TCON接收图像帧,主要是接收图像帧包含的图像数据。
可选的,所述图像帧可以是二维平面图像帧,也可以是3D图像帧,其中3D图像帧包括3D左眼图像帧和3D右眼图像帧。
S102、将所述图像帧均分为K个子帧,所述图像帧中像素点的灰阶值对应K个比特位,第i个子帧包括每个像素点的第i个比特位,所述i大于等于1,小于等于K。
其中,若图像帧是3D图像帧,则将图像帧均分为K个子帧是分别将3D左眼图像帧和3D右眼图像帧均分为K个子帧。
可以理解,图像帧均分的子帧数值K与图像帧中像素点的灰阶范围具有对应关系。具体的说,若显示系统的灰阶范围是0-255,每个像素点的灰阶值都在0-255之间,将每个像素点的灰阶值都采用二进制的形式进行表示,则每一个像 素点的灰阶值都可以表示为8个二进制比特位,每一个像素点的灰阶值的第一个比特位对应子帧1,每一个像素点的灰阶值的第二个比特位对应子帧2,依次进行划分,就将图像帧划分为8个子帧,那么子帧数值K就是8。值得说明的是,在二进制表示当中,只有0或1两种数值,意味着每一个子帧中只有0或者1两种数值,两种数值对应着像素点的两种状态,当某个子帧的某个比特位为0时,则该比特位对应的像素点不发光,当某个子帧的某个比特位为1时,则该比特位对应的像素点发光。
为了更好的说明子帧数值K与图像帧的灰阶范围的关系,请参阅图2,图2是本发明实施例提供的灰阶数位与子帧对应关系的示意图。如图2所示,显示系统的灰阶范围是0-255,图像帧包括16个像素点,每个像素点都有一个灰阶值,例如左上角像素点的灰阶值是250,用二进制表示为11111010,右上角像素点的灰阶值是40,用二进制表示为00101000,对剩下的像素点的灰阶值也用二进制进行表示,所有像素点的灰阶值(已表示为二进制形式)的第一个比特位形成子帧1,第二个比特位形成子帧2,以此类推,第八个比特位形成子帧8。可以看出,所有子帧中的像素点的值只有0或1,例如子帧1的左上角的像素点的值是0,对应灰阶值是250的像素点的第一个比特位,右上角的像素点的值是0,对应灰阶值是40的像素点的第一个比特位;子帧8的左上角的像素点的值是1,对应灰阶值是250的像素点的第八个比特位。在所有子帧中,若某个像素点的值是0,则表示该像素点对应的OLED不发光,若某个像素点的值是1,则表示该像素点对应的OLED发光。
可以理解,若显示系统的灰阶范围的灰阶范围不是0-255,而是其他的范围,如0-511,也可以用上述方法,根据比特位将图像帧进行划分子帧,划分后的子帧也只包括0或1两个数值,0代表某个像素点对应的OLED不发光,1代表某个像素点对应的OLED发光,在此不再赘述。
特别的是,将图像帧依照比特位划分为K个子帧后,K个子帧平均占用时长都相等,但K个子帧的各自驱动时长并不相等。具体的说,若图像帧的一帧的时长为T,则每个子帧的占用时长都为K/T,当显示系统的灰阶范围是0-255时,则第i个子帧对应的驱动时长是(2 i-1/2 7)*T/8,其中,所述i大于等于1,小于等于所述K。这里,将K个子帧分配不同的驱动时长,是为了模拟达到原图像帧中像素点的灰阶值的显示效果。例如,原图像帧某个像素点的灰阶值 是100,但是在划分子帧后,每个子帧中的像素点的值只有0或1,对应着像素点的发光与不发光,通过将不同子帧分配不同的驱动时长,控制不同子帧的点亮时间,就可以模拟达到灰阶值是100的显示效果。
参阅图3,是本发明实施例提供的一种驱动时长与子帧对应关系的示意图。这里图像帧一帧的时间是T,灰阶范围是0-255,所以均分为8个子帧,每个子帧的占用时长是T/8,子帧1的驱动时长为(2 0/2 7)*T/8,则对应子帧1的点亮时间也是(2 0/2 7)*T/8,子帧2的驱动时长为(2 1/2 7)*T/8,则对应子帧1的点亮时间也是(2 1/2 7)*T/8,以此类推,子帧8的驱动时长是T/8,其对应子帧8的点亮时间最长,也是T/8。
可以理解,也可以用其他的方式或驱动时长分配方法来模拟达到灰阶值的显示效果,上述方法只是一种比较优选的实施例,用其他的方式或驱动时长分配方法来模拟达到灰阶值的显示效果亦属于本申请的保护范围。
可以看出,将图像帧均分为K个子帧后,每个子帧中像素点的值只可能是0或者1,在驱动AMOLED面板进行显示时,对应着驱动TFT只工作在开或关两种状态,Source Driver IC只输出两种灰阶电压值,可以有效避免驱动TFT Vth漂移带来的影响,使AMOLED面板整体亮度均匀,提高显示质量。
S103、根据第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭,其中所述j按顺序从1到所述K进行取值;其中第一数值的比特位用于指示驱动TFT开启,第二数值的比特位用于指示驱动TFT关闭。
其中,若是用二进制对灰阶值进行表示,则第一数值代表子帧中某个像素点的值为1,指示驱动TFT开启,第二数值代表子帧中某个像素点的值为0,指示驱动TFT关闭。
可选的,若图像帧是3D图像帧,根据所述3D左眼图像帧的第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭,其中所述j按顺序从1到所述K进行取值;在所述3D左眼图像帧完成驱动显示后,根据所述3D右眼图像帧的第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭,其中所述j按顺序从1到所述K进行取值。
上述子帧传输驱动方法属于顺序传输驱动,可以理解,先向显示面板传输 3D左眼图像帧对应的K个子帧,子帧传输顺序由子帧1到子帧K,显示面板再根据各个子帧对应的驱动时长驱动TFT进行开启或关闭,在3D左眼图像帧驱动显示完成后,再按照同样的方法对3D右眼图像帧进行驱动显示。
为了便于理解,参阅图4-a,是本发明实施例提供的一种子帧顺序传输的示意图。在显示系统的灰阶范围是0-255时,将3D左眼图像帧和3D右眼图像帧各自均分为8个子帧,分别对应L-SF1、L-SF2、……L-SF8和R-SF1、R-SF2、……R-SF8。在驱动显示时,在一帧图像帧的时间内,先依次传输L-SF1、L-SF2、……L-SF8,在下一帧图像帧的时间内,再传输R-SF1、R-SF2、……R-SF8。
可选的,若图像帧是3D图像帧,根据所述3D左眼图像帧的第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭,在所述3D左眼图像帧的第j个子帧驱动显示面板中的TFT进行开启或关闭后,根据所述3D右眼图像帧的第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭,其中所述j按顺序从1到所述K进行取值。
上述子帧传输驱动方法属于交替传输驱动,可以理解,先向显示面板交替传输3D左眼图像帧和3D右眼图像帧对应的前K/2个子帧,子帧传输顺序由子帧1到子帧K/2,左右交替进行传输,显示面板再根据各个子帧对应的驱动时长驱动TFT进行开启或关闭,在3D左眼图像帧和3D右眼图像帧对应的前K/2个子帧驱动显示完成后,再向显示面板交替传输3D左眼图像帧和3D右眼图像帧对应的后K/2个子帧,子帧传输顺序由子帧K/2到子帧K,左右交替进行传输,显示面板再根据各个子帧对应的驱动时长驱动TFT进行开启或关闭。
请参阅图4-b,是本发明实施例提供的一种子帧交替传输的示意图。在显示系统的灰阶范围是0-255时,将3D左眼图像帧和3D右眼图像帧各自均分为8个子帧,分别对应L-SF1、L-SF2、……L-SF8和R-SF1、R-SF2、……R-SF8。在驱动显示时,在一帧图像帧的时间内,先交替传输L-SF1、R-SF1、L-SF2、R-SF2、L-SF3、R-SF3、L-SF4、R-SF4,,在下一帧图像帧的时间内,再传输L-SF5、R-SF5、L-SF6、R-SF6、L-SF7、R-SF7、L-SF8、R-SF8。
值得说明的是,假设3D图像帧率为60Hz,则左眼图像帧和右眼图像帧各占8.3ms时间,若需要进行左眼图像帧和右眼图像帧之间的切换,至少需要8.3ms的时间,但是通过对左眼图像帧和右眼图像帧进行划分子帧,比如在显示系统 的灰阶范围是0-255的情况下,将左眼图像帧和右眼图像帧各分成8个子帧,每个子帧占用1ms时间,左眼子帧和右眼子帧进行切换也只需要1ms时间,可以有利于用户有效降低因显示亮/暗间隔过久所造成的不适感。
其中,整个控制驱动过程是以子帧为基本单位进行的。每个子帧包括最快充电时间T_charge,最快放电时间T_discharge,当前子帧点亮时间T_display和非点亮时间T_blank。T_display由子帧序号决定,不同的子帧对应的T_display各不相同,T_charge和T_discharge可以根据不同的子帧做特别的调整。
特别的是,在驱动图像子帧进行显示时,采用逐行扫描并读取子帧数据的方式从第一行扫描到最后一行。
可选的,以逐行读取的方式读取所述第j个子帧中的比特位,所述显示面板在所述第j个子帧对应的驱动时长内控制所述TFT逐行进行开启或关闭。具体的说,逻辑板TCON在对子帧完成行扫描后,读取子帧数据,因为每个子帧中仅包括0或1两种数值,TCON对应生成两种传输电压值传输至显示面板,显示面板接收传输电压并转换为驱动电压,并根据子帧对应的驱动时间逐行驱动TFT开启,点亮相应的像素点。
为了便于理解,请参阅图5-a,是本发明实施例提供的一种图像子帧的扫描驱动方式示意图。显示系统的灰阶范围是0-255,所以左/右眼图像帧均分为8个子帧,每个子帧在八分之一的3D图像帧时间内,采用逐行扫描方式从第一行扫描到最后一行,同时对应驱动点亮每一行的像素点,其中,每个子帧逐行驱动点亮时间均不一样。
可选的,以逐行读取的方式读取所述第j个子帧中的比特位,在所述第j个子帧中的比特位全部读取完毕的情况下,所述显示面板在所述第j个子帧对应的驱动时长内控制所述显示面板所有的TFT进行开启或关闭。具体的说,逻辑板TCON在对子帧完成行扫描后,读取子帧数据,将每一行需要的显示数据传输至显示面板并锁存到像素点,在对整个子帧所有行完成扫描后,再根据子帧对应的驱动时间同时驱动显示面板上所有的TFT开启,点亮相应的像素点。
请参阅图5-b,是本发明实施例提供的另一种图像子帧的扫描驱动方式示意图。显示系统的灰阶范围是0-255,所以左/右眼图像帧均分为8个子帧,每个子帧在八分之一的3D图像帧时间内,采用逐行扫描方式从第一行扫描到最后一行,将每一行需要的显示数据传输至显示面板并锁存到像素点,当所有行完成 扫描后,再同时将整个面板上所有像素点驱动点亮,其中,驱动点亮时间依每个子帧而不一样,经过与每个子帧对应的驱动点亮时间后,再同时对所有扫描行进行放电处理。
值得说明的是,在所述第j个子帧中的比特位全部读取完毕的情况下之后,经过预设时长,所述显示面板在所述第j个子帧对应的驱动时长内控制所述驱动面板所有的TFT进行开启或关闭,以调整所述显示面板上的TFT开启或关闭时刻,其中,预设时长可以根据需要而进行设定。
具体的说,在对子帧进行逐行扫描同时驱动点亮的方式下,每个子帧的开始驱动点亮时刻可以在时间轴上进行调整,但是,需要满足T_charge和T_discharge的最小时间要求,即将一行像素的电压充电到对应灰阶电压所需的最短时间要求和将像素电压放电到低电压的最短时间要求。可以理解,在这种方式下,需要有支持同时驱动点亮、同时放电的控制信号和像素电路结构,具体的像素电路结构不在本申请保护范围内,在此不做详细的叙述。
其中,对于不同的扫描线,可以采用随机扫描的方式进行扫描。具体的说,每个子帧的扫描将按照特定的时间周期在时间轴上做移位处理,特别的是,这种基于子帧的移位,可以是基于单条扫描线或多条扫描线分组进行,对于某条或某组扫描线,其子帧传输的顺序是固定的。举例来说,假设将所有扫描线分成A、B、C、D组,从某时刻t0开始,若是顺序扫描,则A、B、C、D组都按子帧顺序1、2、3、4进行扫描,若是采用随机扫描的方式,则A组按子帧顺序1、2、3、4扫描显示,B组按子帧顺序4、1、2、3扫描显示,C组按子帧顺序3、4、1、2扫描显示,D组按子帧2、3、4、1扫描显示。
为了便于理解,请参阅图6,是本发明实施例提供的一种子帧随机扫描方式的示意图。其中,横向代表时间轴,纵向代表不同的扫描线,扫描线可以是单条也可以是多条分组,子帧数值为8。从图6可以看出,对于不同的扫描线,对这8个子帧的扫描显示顺序各不相同,从横向上来看,对于某条或某组扫描线,其子帧传输的顺序是固定的,但是从纵向上来看,每个子帧的扫描按照特定的时间周期在时间轴上进行了移位处理。
可以看出,当采用随机扫描的方式进行扫描显示时,可以有效避免在驱动显示3D左眼图像帧和3D右眼图像帧时,因为多个子帧的依序显示而引入的伪轮廓或动态伪像问题。
可选的,在本申请可能的实施方式中,子帧的传输方式和子帧的扫描方式可以进行任意组合以完成驱动显示。请参阅图7-a,是本发明实施例提供的一种图像子帧交替传输与逐行驱动点亮示意图。在第n帧图像帧的时间内,向显示面板交替传输第n帧3D左眼图像帧和第n帧3D右眼图像帧对应的前4个子帧,子帧传输顺序由子帧1到子帧4,并对左眼图像帧对应的前4个子帧和右眼图像帧对应的前4个子帧进行逐行扫描,并根据子帧对应的驱动时间进行逐行驱动点亮;在第n+1帧图像帧的时间内,向显示面板交替传输第n帧3D左眼图像帧和第n帧3D右眼图像帧对应的后4个子帧,子帧传输顺序由子帧5到子帧8,并对左眼图像帧对应的后4个子帧和右眼图像帧对应的后4个子帧进行逐行扫描,并根据子帧对应的驱动时间进行逐行驱动点亮。
参阅图7-b,是本发明实施例提供的一种图像子帧交替传输与同时驱动点亮示意图。在第n帧图像帧的时间内,向显示面板交替传输第n帧3D左眼图像帧和第n帧3D右眼图像帧对应的前4个子帧,子帧传输顺序由子帧1到子帧4,并对左眼图像帧对应的前4个子帧和右眼图像帧对应的前4个子帧进行逐行扫描,将每一行需要的显示数据传输至显示面板并锁存到像素点,再根据子帧对应的驱动时间同时驱动点亮所有像素点;在第n+1帧图像帧的时间内,向显示面板交替传输第n帧3D左眼图像帧和第n帧3D右眼图像帧对应的后4个子帧,子帧传输顺序由子帧5到子帧8,并对左眼图像帧对应的后4个子帧和右眼图像帧对应的后4个子帧进行逐行扫描,将每一行需要的显示数据传输至显示面板并锁存到像素点,再根据子帧对应的驱动时间同时驱动点亮所有像素点。
可以理解,对于3D图像帧,在进行3D左眼图像帧和3D右眼图像帧之间的切换时,需要一定的非发光时间,而上述图像子帧交替传输与同时驱动点亮方式,左眼图像帧子帧到左眼图像帧子帧的切换,本身就有非发光时间,因此不需额外设计,有比较大的发光占空比。此外,由于对左眼图像帧和右眼图像帧进行了子帧的划分,在显示系统的灰阶范围是0-255且3D图像帧率为60Hz时,平均1ms就会有子帧显示,可以有利于用户有效降低因显示亮/暗间隔过久所造成的不适感。
当然,除了上述传输方式和扫描方式的组合,也可以是图像子帧顺序传输与同时驱动点亮相组合或图像子帧顺序传输与逐行驱动点亮相组合等其它组合方式,其原理与上述方法类似,在此不再赘述。
可以看出,进行子帧的划分并采用PWM控制驱动3D图像帧显示,驱动TFT只工作在开或关两种状态,使得源驱动晶片Source Driver IC只输出两种灰阶电压值,可以有效避免驱动TFT Vth漂移所带来的影响,提高显示质量。
对应于上述所述的数字控制驱动方法,本申请还提供一种驱动显示控制装置TCON,参见图8,是本发明实施例提供的一种驱动显示控制装置TCON结构示意图。
所述驱动显示控制装置800包括:写入单元810、读出单元820、响应单元830、选取单元840,查找单元850、切换协同单元860和配合输出单元870。
其中,写入单元810,用于接收图像帧数据并进行子帧的划分,还负责图像帧数据到帧缓存器的写入请求以及写入数据排列。
可选的,所述图像帧可以是二维平面图像帧,也可以是3D图像帧,其中3D图像帧包括3D左眼图像帧和3D右眼图像帧。
读出单元820,用于图像帧数据从帧缓存器的读出请求以及读出数据排列。
值得说明的是,若图像帧帧是3D图像帧,图像帧数据的读取,是由图像帧的传输方式决定的,比如在交替传输方式下,先读取左眼图像帧对应的某个子帧,再读取右眼图像帧相对应的子帧。可以理解,不同的传输方式对应不同的图像帧数据的读取方法,在此不再赘述。
响应单元830,用于响应写入、读出请求,并将写入数据存入帧缓存器,从帧缓存器中读出数据,并负责图像帧数据的存储区域管理;响应单元830还包括存储单元8301,用于基于帧的方式,分区存储图像帧数据。
选取单元840,用于子帧的选取,并根据当前子帧,从读出的数据中选取对应的数位。具体的说,在将图像帧进行子帧划分后,对应某个像素数据,只有一个数位表示,但子帧数据在存入帧缓存器中时,会根据帧缓存器的规格,组合成多个数位进行存储,比如16bit、32bit等,这里选取数位是指从已组合的多个数位时,根据当前像素点的位置,选择对应的数位。
查找单元850,用于图像帧子帧数据的查找。
切换协同单元860,用于控制产生子帧切换信号,并同时负责其它单元的协同工作。
配合输出单元870,用于配合数据流,产生扫描控制信号GD和电压传输控制信号SD,其中,扫描控制信号GD用于控制图像帧行的扫描,电压传输控制 信号SD用于控制每一行中各个像素点灰阶电压的传输,在数字控制驱动方式中,电压传输控制信号SD控制源驱动晶片实质只输出两种灰阶电压值,对应着驱动TFT的开启或关闭。
可以看出,在驱动显示图像帧时,通过对图像帧进行划分子帧,并进行存储和读出,通过子帧的选取,并根据当前子帧,从读出的数据中选取对应的数位,再配合图像数据流产生扫描控制信号GD和电压传输控制信号SD,使得源驱动晶片只输出两种灰阶电压,不会存在多灰阶电压,使得显示面板中的像素电路驱动TFT只工作在关或开两种状态,可以有效避免驱动TFT Vth漂移所带来的面板亮度不一致的影响,而且整个驱动显示控制装置TCON结构简单,驱动变得更加高效简捷。
基于相同的发明构思,本发明实施例提出了一种显示装置,其中,该显示装置采用如以上实施例所述的任意一种驱动显示控制装置作为其驱动显示控制装置,该显示装置可以为:液晶面板、电子纸、OLED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
由于本发明实施例提供的显示装置与上述实施例提供的任意一种驱动显示控制装置具有相同的技术特征,所以也能解决同样的技术问题,产生相同的技术效果。
基于图1所示的一种数字控制驱动方法流程示意图和图8所示的一种驱动显示控制装置TCON结构示意图,请参阅图9,图9为本发明实施例提供的一种液晶显示装置结构示意图,如图9所示,该液晶显示装置可以包括:至少一个处理器901(例如CPU)、存储器902、至少一个通信总线903以及像素矩阵904和驱动显示控制器905。其中,通信总线903用于实现这些组件之间的连接通信。存储器902可以是高速RAM存储器,还可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器902可选的可以包含至少一个位于远离前述处理器901的存储装置,像素矩阵904用于显示图像,驱动显示控制器905用于接收图像帧并进行子帧的划分,产生扫描控制信号GD和电压传输控制信号SD。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存 储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上对本发明实施例提供的一种数字控制驱动方法及驱动显示控制装置和显示装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (18)

  1. 一种数字控制驱动方法,其中,所述方法包括:
    接收图像帧;
    将所述图像帧均分为K个子帧,所述图像帧中像素点的灰阶值对应K个比特位,第i个子帧包括每个像素点的第i个比特位,所述i大于等于1,小于等于K;
    根据第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭;
    其中所述j按顺序从1到所述K进行取值;其中第一数值的比特位用于指示驱动TFT开启,第二数值的比特位用于指示驱动TFT关闭。
  2. 根据权利要求1所述的方法,其中,所述图像帧包括3D图像帧,其中,所述3D图像帧包括3D左眼图像帧和3D右眼图像帧。
  3. 根据权利要求2所述的方法,其中,所述将所述图像帧均分为K个子帧包括:分别将所述3D左眼图像帧和所述3D右眼图像帧均分为K个子帧;
    所述根据第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭,包括:
    根据所述3D左眼图像帧的第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭,其中所述j按顺序从1到所述K进行取值;
    在所述3D左眼图像帧完成驱动显示后,根据所述3D右眼图像帧的第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭,其中所述j按顺序从1到所述K进行取值。
  4. 根据权利要求2所述的方法,其中,所述将所述图像帧均分为K个子帧包括:分别将所述3D左眼图像帧和所述3D右眼图像帧均分为K个子帧;
    所述根据第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭,包括:
    根据所述3D左眼图像帧的第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭;
    在所述3D左眼图像帧的第j个子帧驱动显示面板中的TFT进行开启或关闭后,根据所述3D右眼图像帧的第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭,其中所述j按顺序从1到所述K进行取值。
  5. 根据权利要求1所述的方法,其中,所述方法包括:
    在所述图像帧的一帧时间内,所述K个子帧占用时长相等,其中,所述K个子帧的驱动时长各不相等。
  6. 根据权利要求5所述的方法,其中,若显示系统的灰阶范围为0-255,则子帧数值K为8,所述图像帧对应的时间为T,则第i个子帧对应的驱动时长是(2 i-1/2 7)*T/8,其中,所述i大于等于1,小于等于8。
  7. 根据权利要求1所述的方法,其中,所述根据第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭包括:
    以逐行读取的方式读取所述第j个子帧中的比特位,所述显示面板在所述第j个子帧对应的驱动时长内控制所述TFT逐行进行开启或关闭。
  8. 根据权利要求1所述的方法,其中,所述根据第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭包括:
    以逐行读取的方式读取所述第j个子帧中的比特位,在所述第j个子帧中的比特位全部读取完毕的情况下,所述显示面板在所述第j个子帧对应的驱动时长内控制所述显示面板所有的TFT进行开启或关闭。
  9. 根据权利要求8所述的方法,其中,在所述第j个子帧中的比特位全部读取完毕的情况下之后,经过预设时长,所述显示面板在所述第j个子帧对应的驱动时长内控制所述驱动面板所有的TFT进行开启或关闭,以调整所述显示面 板上的TFT开启或关闭时刻。
  10. 一种驱动显示装置,其中,所述驱动显示装置包括:
    接收单元,用于接收图像帧;
    均分单元,用于将所述图像帧均分为K个子帧,所述图像帧中像素点的灰阶值对应K个比特位,第i个子帧包括每个像素点的第i个比特位,所述i大于等于1,小于等于K;
    驱动单元,用于根据第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭;
    其中所述j按顺序从1到所述K进行取值;其中第一数值的比特位用于指示驱动TFT开启,第二数值的比特位用于指示驱动TFT关闭。
  11. 根据权利要求10所述的驱动显示装置,其中,所述图像帧包括3D图像帧,其中,所述3D图像帧包括3D左眼图像帧和3D右眼图像帧。
  12. 根据权利要求11所述的驱动显示装置,其中,所述将所述图像帧均分为K个子帧包括:分别将所述3D左眼图像帧和所述3D右眼图像帧均分为K个子帧;
    所述根据第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭,包括:
    根据所述3D左眼图像帧的第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭,其中所述j按顺序从1到所述K进行取值;
    在所述3D左眼图像帧完成驱动显示后,根据所述3D右眼图像帧的第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭,其中所述j按顺序从1到所述K进行取值。
  13. 根据权利要求11所述的显示装置,其中,所述将所述图像帧均分为K个子帧包括:分别将所述3D左眼图像帧和所述3D右眼图像帧均分为K个子帧;
    所述根据第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭,包括:
    根据所述3D左眼图像帧的第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭;
    在所述3D左眼图像帧的第j个子帧驱动显示面板中的TFT进行开启或关闭后,根据所述3D右眼图像帧的第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭,其中所述j按顺序从1到所述K进行取值。
  14. 根据权利要求10所述的显示装置,其中,在所述图像帧的一帧时间内,所述K个子帧占用时长相等,其中,所述K个子帧的驱动时长各不相等。
  15. 根据权利要求14所述的显示装置,其中,若显示系统的灰阶范围为0-255,则子帧数值K为8,所述图像帧对应的时间为T,则第i个子帧对应的驱动时长是(2 i-1/2 7)*T/8,其中,所述i大于等于1,小于等于8。
  16. 根据权利要求10所述的显示装置,其中,所述根据第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭包括:
    以逐行读取的方式读取所述第j个子帧中的比特位,所述显示面板在所述第j个子帧对应的驱动时长内控制所述TFT逐行进行开启或关闭。
  17. 根据权利要求10所述的显示装置,其中,所述根据第j个子帧中的比特位,以所述第j个子帧对应的驱动时长驱动显示面板中的TFT进行开启或关闭包括:
    以逐行读取的方式读取所述第j个子帧中的比特位,在所述第j个子帧中的比特位全部读取完毕的情况下,所述显示面板在所述第j个子帧对应的驱动时长内控制所述显示面板所有的TFT进行开启或关闭。
  18. 根据权利要求17所述的显示装置,其中,在所述第j个子帧中的比特位全部读取完毕的情况下之后,经过预设时长,所述显示面板在所述第j个子帧对应的驱动时长内控制所述驱动面板所有的TFT进行开启或关闭,以调整所述 显示面板上的TFT开启或关闭时刻。
PCT/CN2018/080028 2018-03-06 2018-03-22 一种数字控制驱动方法及驱动显示控制装置 WO2019169672A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/040,626 US10607550B2 (en) 2018-03-06 2018-07-20 Digital control driving method and driving display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810184875.XA CN108447444B (zh) 2018-03-06 2018-03-06 一种数字控制驱动方法及驱动显示控制装置
CN201810184875.X 2018-03-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/040,626 Continuation US10607550B2 (en) 2018-03-06 2018-07-20 Digital control driving method and driving display device

Publications (1)

Publication Number Publication Date
WO2019169672A1 true WO2019169672A1 (zh) 2019-09-12

Family

ID=63193332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080028 WO2019169672A1 (zh) 2018-03-06 2018-03-22 一种数字控制驱动方法及驱动显示控制装置

Country Status (2)

Country Link
CN (1) CN108447444B (zh)
WO (1) WO2019169672A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110706633B (zh) * 2019-09-30 2020-09-29 哈尔滨新光光电科技股份有限公司 一种dmd高灰度级图像显示方法及装置
CN113936613B (zh) * 2020-06-29 2023-07-07 京东方科技集团股份有限公司 显示面板的驱动方法及驱动装置、显示设备和存储介质
CN113160761B (zh) * 2021-04-20 2023-10-03 惠州市华星光电技术有限公司 驱动方法、驱动电路及显示装置
CN113192455B (zh) * 2021-04-27 2022-10-04 华南理工大学 显示面板的驱动方法、驱动装置和显示面板
CN113986805A (zh) * 2021-10-26 2022-01-28 北京小米移动软件有限公司 计时方法、装置和计算机可读存储介质
CN114079765A (zh) * 2021-11-17 2022-02-22 京东方科技集团股份有限公司 图像显示方法、装置及系统
CN115273734B (zh) * 2022-08-16 2023-05-23 富满微电子集团股份有限公司 一种扫描控制电路及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020135313A1 (en) * 2001-03-22 2002-09-26 Jun Koyama Method of driving a display device
CN101577095A (zh) * 2008-05-07 2009-11-11 群康科技(深圳)有限公司 液晶显示器及其驱动方法
CN104781870A (zh) * 2012-11-01 2015-07-15 Imec非营利协会 有源矩阵显示器的数字驱动

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020135313A1 (en) * 2001-03-22 2002-09-26 Jun Koyama Method of driving a display device
CN101577095A (zh) * 2008-05-07 2009-11-11 群康科技(深圳)有限公司 液晶显示器及其驱动方法
CN104781870A (zh) * 2012-11-01 2015-07-15 Imec非营利协会 有源矩阵显示器的数字驱动

Also Published As

Publication number Publication date
CN108447444A (zh) 2018-08-24
CN108447444B (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
WO2019169672A1 (zh) 一种数字控制驱动方法及驱动显示控制装置
CN109961741B (zh) 有机发光二极管显示设备
CN112992063B (zh) 脉宽和电压混合调制的驱动方法、驱动装置及显示装置
KR101084237B1 (ko) 표시 장치 및 그 구동 방법
US8199095B2 (en) Display device and method for driving the same
JP4937353B2 (ja) アクティブマトリクス型表示装置
JP5125005B2 (ja) 表示装置およびそれを用いた表示システム
TW200307241A (en) Image display
JP2004252104A (ja) 電気光学装置、電気光学装置の駆動方法および電子機器
KR20150068154A (ko) 표시 장치의 화소 회로 및 이를 포함하는 유기 발광 표시 장치 및 그의 구동 방법
JP6102066B2 (ja) 走査線駆動回路,電子光学装置および電子機器
US7864139B2 (en) Organic EL device, driving method thereof, and electronic apparatus
WO2013088483A1 (ja) 表示装置およびその駆動方法
JP2007536594A (ja) カラー表示装置
CN101236724A (zh) 通过数据写入实现负脉冲退火的方法、装置及其驱动电路
US10607550B2 (en) Digital control driving method and driving display device
US8154479B2 (en) Electro-luminescence pixel, panel with the pixel, and device and method for driving the panel
KR102316100B1 (ko) 전계발광표시장치 및 이의 구동방법
US20060202632A1 (en) Organic electroluminescent device, driving method thereof and electronic apparatus
JP2008033107A (ja) 液晶表示装置
KR20160142473A (ko) 표시 패널 구동 장치, 이를 이용한 표시 패널 구동 방법, 및 이를 포함하는 표시 장치
US10540935B2 (en) Display device and method of driving the same
JP2011221327A (ja) 画素回路、電気光学装置およびその駆動方法
KR20150092412A (ko) 입체영상 표시장치와 그 구동방법
JP2005070227A (ja) 電気光学装置、電気光学装置の駆動方法および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909243

Country of ref document: EP

Kind code of ref document: A1