WO2019168356A1 - Motor driving device - Google Patents

Motor driving device Download PDF

Info

Publication number
WO2019168356A1
WO2019168356A1 PCT/KR2019/002396 KR2019002396W WO2019168356A1 WO 2019168356 A1 WO2019168356 A1 WO 2019168356A1 KR 2019002396 W KR2019002396 W KR 2019002396W WO 2019168356 A1 WO2019168356 A1 WO 2019168356A1
Authority
WO
WIPO (PCT)
Prior art keywords
power consumption
current
motor
speed
command
Prior art date
Application number
PCT/KR2019/002396
Other languages
French (fr)
Korean (ko)
Inventor
박준호
조석희
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2019168356A1 publication Critical patent/WO2019168356A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present invention relates to a motor drive device, and more particularly, to a motor drive device that can correct the difference in suction power for each product due to the distribution of component performance.
  • Small precision control motors are largely divided into AC motors, DC motors, Brushless DC motors and Reluctance motors.
  • Such small precision control motors are used in many places, such as for AV equipment, computers, home appliances and home facilities, and industrial use.
  • the home appliance field is forming the largest market for small motors.
  • Home appliances are becoming more and more advanced, and accordingly, miniaturization, low noise, and low power consumption of motors are required.
  • Korean Unexamined Patent Publication Korean Unexamined Patent Publication (KR 10-2016-0098886 A1)
  • a driving device for a conventional motor is illustrated, with reference to this, a conventional motor driving device will be described.
  • 1 is a view showing a conventional motor drive device.
  • a conventional motor driving apparatus 10 may include a motor 11, a inverter 12, and a control unit 13.
  • the motor 11 may include a stator wound around a three-phase coil (not shown) and a rotor disposed in the stator and rotating by a magnetic field generated in the three-phase coil.
  • the motor 11 may include an induction motor, a BLDC motor, a reluctance motor.
  • the BLDC motor is a motor without a brush and a commutator.
  • BLDC motors do not generate mechanical frictional losses, sparks or noise in principle, and have excellent speed and torque control.
  • the BLDC motor has no loss due to speed control and has a high efficiency as a small motor, and is widely used in products in the home appliance field.
  • Inverter 12 includes three phase switch elements (not shown).
  • the three-phase switch elements perform an on-off operation based on an operation control signal received from the control unit 13, that is, a pulse width modulation (PWMS) signal (PWMS).
  • PWMS pulse width modulation
  • the three-phase switch elements can convert the input DC voltage (Vdc) into a three-phase AC voltage (Vua, Vvb, Vwc) to supply to the three-phase coil.
  • the control unit 13 determines the ON time period for the ON operation and the OFF time interval for the OFF operation of each of the three-phase switch elements based on the input target command value and the electric angle position of the rotor (PWMS). You can output At this time, the target command value includes a command for the target power consumption.
  • Such a motor drive device includes a plurality of parts for driving.
  • each part can have a certain spread of performance in the manufacturing process. That is, even in the same kind of parts, the performance may be different from each other. Accordingly, motor drive devices including the same component may have a difference in performance depending on the distribution of parts.
  • the conventional motor driving apparatus has a problem in that the performance of each of the plurality of motor driving apparatuses is different when the same command value is used without considering the distribution of component performance.
  • An object of the present invention is to provide a motor drive device capable of reducing the error range of suction force due to the distribution of component performance in a plurality of motor drive devices.
  • the motor driving apparatus compares the command speed of the motor with respect to the target power consumption and the current speed of the motor, and adjusts the target power consumption upward when the current speed is smaller than the command speed, thereby allowing the motor to operate at a constant suction force. To control.
  • the motor driving device can maintain the suction power of the motor driving device within an error range by compensating for the target power consumption when the suction power is reduced due to the scattering of parts. Through this, the motor drive device of the present invention is less affected by the distribution of component performance, and can improve operation reliability and stability, and can secure a high output required for high speed operation.
  • FIG. 1 is a block diagram showing a conventional motor drive device.
  • FIG. 2 is a block diagram illustrating a motor driving apparatus according to an exemplary embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating components of the control unit of FIG. 2.
  • FIG. 4 is a circuit diagram illustrating the inverter of FIG. 2.
  • FIG. 5 is a flowchart illustrating a method of operating a motor driving apparatus according to an exemplary embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating an example of a method of operating a motor driving apparatus according to an exemplary embodiment of the present invention.
  • FIG. 7 is a graph illustrating an improved operating performance of the motor driving apparatus according to the embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a motor driving apparatus according to an exemplary embodiment of the present invention.
  • the motor driving apparatus may include a motor 110, an inverter 120, and a control unit 130.
  • the motor 110 may include a stator wound with a three-phase coil (not shown) and a rotor disposed in the stator and rotating by a magnetic field generated by the three-phase coil.
  • the motor 110 rotates the permanent magnet included in the rotor according to the magnetic field generated by the three-phase coil.
  • the present invention is not limited to a three-phase motor operated by a three-phase coil, and may further include, for example, a single-phase motor using a single-phase coil.
  • the motor 110 may include an induction motor, a brushless DC motor, a reluctance motor, or the like.
  • the motor 110 may include a Surface-Mounted Permanent-Magnet Synchronous Motor (SMPMSM), an Interior Permanent Magnet Synchronous Motor (IPMSM), and a Synchronous Reluctance Motor. (Synchronous Reluctance Motor; Synrm) and the like.
  • SMPMSM Surface-Mounted Permanent-Magnet Synchronous Motor
  • IPMSM Interior Permanent Magnet Synchronous Motor
  • Synchronous Reluctance Motor Synrm
  • the inverter 120 may include three phase switch elements (not shown).
  • the three-phase switch elements operate by being switched on or switched off when an operation control signal supplied from the control unit 130, that is, a pulse width modulation (PWM) signal is input.
  • PWM pulse width modulation
  • the inverter 120 may convert the input DC voltage Vdc into three-phase AC voltages Vua, Vvb, and Vwc and supply the same to the three-phase coil. Detailed description of the three-phase switch elements will be described later.
  • the control unit 130 when inputting the target command value, PWM for determining the on time interval for the on operation and the off time interval for the off operation of each of the three-phase switch element based on the target command value and the electrical angle position of the rotor
  • the signal PWM can be output. Detailed description of the control unit 130 will be described later with reference to FIG.
  • the motor driving device further includes an input current detector A, a DC stage detector B, a DC stage capacitor C, a motor current detector E, an input voltage detector F, an inductor L1, L2, and the like. can do.
  • an input current detector A a DC stage detector B, a DC stage capacitor C, a motor current detector E, an input voltage detector F, an inductor L1, L2, and the like.
  • the present invention is not limited thereto, and some of the above additional components may be omitted.
  • the input current detector A may detect an input current ig input from the commercial AC power supply 101.
  • a CT current trnasformer
  • a shunt resistor or the like may be used as the input current detector A.
  • the detected input current ig is a discrete signal in the form of a pulse and may be input to the control unit 130 for power control.
  • the input voltage detector F may detect an input voltage vg input from the commercial AC power supply 101. To this end, the input voltage detector F may include a resistor, an amplifier, or the like. The detected input voltage vg is a discrete signal in the form of a pulse and may be input to the control unit 130 for power control.
  • the inductors L1 and L2 may be disposed between the commercial AC power supply 101 and the rectifier 105 to perform an operation such as noise removal.
  • the rectifier 105 rectifies and outputs the commercial AC power supply 101 passing through the inductors L1 and L2.
  • the rectifier 105 may include a full bridge diode connected to four diodes, but the present invention is not limited thereto and may be variously modified and applied.
  • the capacitor C stores the input power.
  • one device is illustrated as a DC-stage capacitor C, but a plurality of devices may be provided to ensure device stability.
  • the DC stage detector B may detect the DC stage voltage Vdc and the DC stage current Idc at both ends of the capacitor C.
  • the DC stage detection unit B may include a resistor, an amplifier, or the like.
  • the detected DC terminal voltage Vdc may be input to the control unit 130 to generate a PWM signal PWMS as a discrete signal in the form of a pulse.
  • the DC terminal voltage Vdc and the DC terminal current IDC provided to the inverter 120 may be used to calculate the current power consumption of the inverter 120.
  • the motor current detector E detects an output current io flowing between the inverter 120 and the three-phase motor 110. That is, the current flowing through the three-phase motor 110 is detected.
  • the motor current detector E may detect the output currents ia, ib, and ic of each phase, or may detect the output currents of the two phases using three-phase equilibrium.
  • the motor current detector E may be located between the inverter 120 and the three-phase motor 110, and a CT (current trnasformer), a shunt resistor, or the like may be used for current detection.
  • CT current trnasformer
  • shunt resistor or the like
  • control unit 130 includes the input current ig detected by the input current detector A, the input voltage vg detected by the input voltage detector F, and the direct current stage detected by the DC terminal detector B. Operation control of the inverter 120 may be performed using the voltage Vdc, the DC terminal current Idc, and the output current io detected by the motor current detector E.
  • FIG. 1 A is a diagrammatic representation of the input current detector A.
  • the detected output current io may be applied to the control unit 130 as a discrete signal in the form of a pulse, and a PWM signal PWM is generated based on the detected output current io.
  • a PWM signal PWM is generated based on the detected output current io.
  • the detected output current io is the three-phase output current ia, ib, ic.
  • FIG. 3 is a block diagram illustrating components of the control unit of FIG. 2.
  • the control unit 130 includes a power consumption measuring unit 210, a power consumption compensating unit 215, a power consumption controlling unit 220, and a three-phase / two-phase axis converting unit ( 232), the position estimator 234, the speed calculator 236, the command value generator 240, the two-phase and three-phase axis converter 250, and the signal generator (hereinafter referred to as 'PWM generator', 260) ) May be included.
  • the power consumption measurement unit 210, power consumption compensation unit 215, and power consumption control unit 220 correspond to the highest level controller in the control unit 130.
  • the power consumption measuring unit 210 receives a DC terminal voltage Vdc and a DC terminal current Idc applied to the inverter 120, and calculates a current power consumption Pr of the inverter 120.
  • the calculated current power consumption Pr is provided to the power consumption controller 220.
  • the power consumption compensator 215 receives the current speed w calculated by the speed calculator 236 and the command speed wr calculated by the power consumption controller 220, and compensates for the power consumption (hereinafter, referred to as compensation consumption). Output power Pc).
  • the power consumption compensator 215 compares the input current speed w with the magnitude of the command speed w. Subsequently, when the current speed w is smaller than the command speed w, the power consumption compensation unit 215 may increase the size of the compensation power consumption Pc. At this time, the initial setting value of the compensation power consumption (Pc) may be '0'. However, the initial setting value of the compensation power consumption Pc may be changed by the user.
  • the power consumption compensator 215 may maintain or reduce the size of the compensation power consumption Pc.
  • the power consumption controller 220 includes a target power consumption Pref input from the user, a current power consumption Pr received from the power consumption measurement unit 210, and a compensation power consumption received from the power consumption compensation unit 215. Pc) is input. Subsequently, the power consumption controller 220 calculates the command speed w based on the target power consumption Pref, the current power consumption Pr, and the compensation power consumption Pc. The command speed w calculated by the power consumption controller 220 is transmitted to the command value generator 240.
  • the power consumption controller 220 includes a comparator 221 and a PID controller 223.
  • the comparator 221 calculates a difference between the target power consumption Pref and the compensation power consumption Pc, and then calculates a value reflecting the compensation power consumption Pc.
  • the value calculated by the comparator 221 is input to the PID controller 223.
  • the comparator 221 may be omitted.
  • the PID controller 223 receives the target power consumption Pref, the current power consumption Pr, and the compensation power consumption Pc to calculate the command speed wr.
  • the PID controller 223 calculates the command speed wr based on the value calculated by the comparator 221.
  • the PID controller 223 basically has the form of a feedback controller and has the form of a proportional-integral-derived controller.
  • the PID controller 223 may be configured in various forms, and the command speed wr may be calculated based on the values of the target power consumption Pref, the current power consumption Pr, and the compensation power consumption Pc.
  • the command speed w output from the power consumption control unit 220 may be increased. This may have an effect of substantially increasing the value of the target power consumption Pref delivered to the power consumption control unit 220. Accordingly, the output of the motor 110 is improved, the suction force of the motor drive device can be increased.
  • the command speed wr output from the power consumption control unit 220 is maintained as it is. Can be reduced. This may have an effect of substantially maintaining or decreasing the value of the target power consumption Pref transmitted to the power consumption control unit 220. Accordingly, the output of the motor 110 can be maintained as it is or somewhat reduced.
  • the control unit 130 of the present invention includes a feedback compensation circuit for compensating the target power consumption (Pref) based on the current speed (w), thereby reducing the suction force due to the dispersion of the performance of the components included in the motor drive device Can be prevented. That is, the control unit 130 may maintain the suction power of the motor drive device within an error range by increasing the target power consumption (Pref) when the suction power is reduced due to the dispersion of the performance of the component.
  • the motor driving apparatus of the present invention can minimize the influence on the distribution of component performance, improve the operation reliability and stability, and can secure a high output required for high speed operation.
  • the three-phase / two-phase axis converter 232 receives the three-phase currents (ia, ib, ic) output from the motor 110, and converts the two-phase currents i ⁇ and i ⁇ of the stationary coordinate system. Subsequently, the three-phase / two-phase axis converter 232 may convert the two-phase currents i ⁇ and i ⁇ of the stationary coordinate system into two-phase currents i d and i q of the rotary coordinate system.
  • the position estimator 234 detects at least one of the three-phase currents ia, ib, and ic and the three-phase voltages Va, Vb, and Vc, and estimates the position H of the rotor included in the motor 110. can do.
  • the speed calculator 236 may be configured based on the position H estimated by the position estimator 234 and at least one of three-phase currents Ia, Ib, and Ic or three-phase voltages Va, Vb, and Vc.
  • the current speed w can be calculated. That is, the speed calculator 236 may calculate the current speed w by dividing the position H by time.
  • the speed calculator 236 may output the electric angle position ⁇ calculated based on the position H and the calculated current speed w.
  • the command value generator 240 may include a current command generator 242 and a voltage command generator 244.
  • the current command generation unit 242 calculates the speed command value w r based on the calculated current speed w and the command speed w provided by the power consumption controller 220.
  • the current command generation unit 242 generates the current command value iq based on the speed command value w r .
  • the current command generation unit 242 performs PI control in the PI controller 243 based on the speed command value wr which is a difference between the current speed w and the command speed w r , and the current command value. (id) can be generated.
  • the current command generator 242 may generate the d-axis current command value id at the time of generating the q-axis current command value i.
  • the value of the d-axis current command value id may be set to zero. .
  • the current command generation unit 242 may further include a limiter (not shown) for limiting the level so that the current command value iq does not exceed the allowable range.
  • the voltage command generation unit 244 is configured based on the d-axis and q-axis currents (id, iq) axially transformed into the rotation coordinate system, and the d-axis, Set the q-axis voltage command value (wd, wq).
  • the voltage command generation unit 244 performs the PI control in the PI controller 245 based on the q-axis current iq and the q-axis current command value Iq, and generates the q-axis voltage command value wq. can do.
  • the voltage command generation unit 244 performs PI control in the PI controller 246 based on the difference between the d-axis current id and the d-axis current command value id, and the d-axis voltage command value wd Can be generated.
  • the value of the d-axis voltage command value wd may be set to 0, corresponding to the case where the value of the d-axis current command value id is set to zero.
  • the voltage command generator 244 may further include a limiter (not shown) for restricting the level so that the d-axis and q-axis voltage command values (vd, vq) do not exceed the allowable range.
  • the d-axis and q-axis voltage command values (vd, vq) generated by the voltage command generation unit 244 are input to the two-phase / three-phase axis conversion unit 250.
  • the two-phase / three-phase axis converting unit 250 receives the position ⁇ calculated by the speed calculating unit 236, the d-axis and q-axis voltage command values (vd, vq), and performs the axis conversion.
  • the two-phase / three-phase axis conversion unit 250 converts from the two-phase rotation coordinate system to a two-phase stop coordinate system.
  • the electric angle position ⁇ calculated by the speed calculator 236 may be used.
  • the two-phase / three-phase axis conversion unit 250 performs a conversion from the two-phase stop coordinate system to a three-phase stop coordinate system. Through this conversion, the two-phase / three-phase axis conversion unit 250 outputs the three-phase output voltage command values (va, vb, vc).
  • the PWM generator 260 generates and outputs an inverter PWM signal PWMS according to the pulse width modulation PWM method based on the three-phase output voltage command values va, vb and vc.
  • the PWM signal PWMS may be converted into a gate driving signal by a gate driver (not shown) and input to the gates of the three-phase switching elements in the inverter 120. Accordingly, the three-phase switching elements in the inverter 120 performs a switching operation.
  • the PWM generator 260 may vary the on time period and the off time period of the PWM signal PWM based on the electric angle position ⁇ and the three phase voltages Va, Vb, and Vc described above.
  • the switch operation of the switch elements can be controlled.
  • FIG. 4 is a circuit diagram illustrating the inverter of FIG. 2.
  • the inverter 120 may include three phase switch elements.
  • the inverter 120 switches on and off by the PWM signal PWMS supplied from the control unit 130, thereby converting the DC voltage Vdc into a three-phase AC voltage Vua, Vvb, having a predetermined frequency or duty. Vwc) and output to the motor 110.
  • the three-phase switch element is a pair of the first to third phase arm switch (Sa, Sb, Sc) and the first to third lower arm switch (S'a, S'b, S'b) connected in series with each other, A total of three pairs of the first to third upper arm switches and the first to third lower arm switches (Sa & S'a, Sb & S'b, Sc & S'c) may be connected in parallel to each other.
  • the first phase and lower arm switches Sa and S'a are three-phase AC voltages Vua, Vvb, and Vwc of the three-phase coils La, Lb, and Lc of the motor 110 as the first phase coil La. ) Supplies a first phase AC voltage Vua.
  • the second phase, the lower arm switch (Sb, S'b) supplies the second phase AC voltage (Vvb) to the second phase coil (Lb), the third phase, lower arm switch (Sc, S'c)
  • the third phase AC voltage Vwc may be supplied to the third phase coil Lc.
  • each of the first to third upper arm switches Sa, Sb, and Sc and the first to third lower arm switches S'a, S'b, and S'b is an input PWM signal per rotation of the rotor. It is possible to control the operation of the motor 110 by supplying the three-phase AC voltages Vua, Vvb, and Vwc to the three-phase coils La, Lb, and Lc by operating on and off once according to the PWMS). .
  • FIG. 5 is a flowchart illustrating a method of operating a motor driving apparatus according to an exemplary embodiment of the present invention.
  • the control unit 130 calculates a current power consumption Pr and a current speed w of the motor 110 (S110). ).
  • the current power consumption may be calculated based on the voltage and current applied to the inverter 120 in the power consumption measurement unit 210.
  • the current speed w is one of the position H of the rotor estimated by the position estimator 234 and the three-phase currents Ia, Ib, and Ic or the three-phase voltages Va, Vb, and Vc of the speed calculator 236. It may be calculated based on at least one. Detailed description thereof has been described above, and thus redundant description will be omitted.
  • the control unit 130 compares the calculated current speed w and the command speed wr (S120).
  • the power consumption compensator 215 receives the current speed w calculated by the speed calculator 236 and the command speed wr calculated by the power consumption controller 220. Output Pc).
  • control unit 130 calculates a compensation value for the target power consumption Pref (S130).
  • the power consumption compensation unit 215 may increase the size of the compensation power consumption Pc.
  • the power consumption compensator 215 may maintain or reduce the size of the compensation power consumption Pc.
  • the initial setting value of the compensation power consumption (Pc) may be '0'. However, the initial setting value of the compensation power consumption Pc may be changed by the user.
  • the control unit 130 reflects the compensation value to the command speed wr based on the compensation power consumption Pc (S140).
  • the compensation power consumption Pc output from the power consumption compensation unit 215 has a positive value
  • the magnitude of the command speed wr output from the power consumption control unit 220 increases.
  • Can be. This may have an effect of substantially increasing the value of the target power consumption Pref delivered to the power consumption control unit 220. Accordingly, the output of the motor 110 is improved, the suction force of the motor drive device can be increased.
  • the compensation power consumption Pc output from the power consumption compensation unit 215 is maintained or has a negative value
  • the command speed wr output from the power consumption control unit 220 is maintained as it is. Can be reduced. Therefore, the output of the motor 110 can also be maintained or reduced.
  • FIG. 6 is a flowchart illustrating an example of a method of operating a motor driving apparatus according to an exemplary embodiment of the present invention.
  • the control unit 130 calculates a current power consumption Pr and a current speed w of the motor 110 (S210).
  • the control unit 130 determines whether the calculated current speed w is smaller than the command speed wr (S220).
  • the power consumption compensator 215 receives the current speed w calculated by the speed calculator 236 and the command speed wr calculated by the power consumption controller 220, and the current speed w and the command.
  • the compensation power consumption Pc is output based on the speed wr.
  • the control unit 130 increases the target power consumption Pref (S230).
  • the power consumption compensator 215 may have an effect of substantially increasing the target power consumption Pref by increasing the size of the compensation power consumption Pc.
  • control unit 130 increases the magnitude of the command speed wr based on the compensation power consumption Pc (S240). As described above, when the compensation power consumption Pc output from the power consumption compensation unit 215 has a positive value, the command speed wr output from the power consumption control unit 220 may be increased. have.
  • control unit 130 controls the motor 110 based on the increased command speed wr (S250). Accordingly, the output of the motor 110 is improved, the suction force of the motor drive device is increased.
  • the method of operating the motor driving apparatus of the present invention includes a feedback compensation circuit that compensates the target power consumption Pref received from the control unit 130 based on the current speed w of the motor 110. It is possible to prevent the suction force from being reduced due to the dispersion in the performance of the parts included in the drive device.
  • FIG. 7 is a graph illustrating an improved operating performance of the motor driving apparatus according to the embodiment of the present invention.
  • ⁇ A> shows the operating performance of the motor driving apparatus according to the embodiment of the present invention
  • ⁇ B> shows the operating performance of the conventional motor driving apparatus.
  • the X axis represents the sample number of the motor drive device
  • the Y axis represents the output (that is, suction force) of the motor drive device.
  • the difference between the maximum value and the minimum value for the suction force of the motor drive device is shown to have an error range of about 10W.
  • the motor driving device of the present invention includes a feedback compensation circuit for compensating the target power consumption (Pref) based on the current speed (w), so that the maximum value and the minimum value of the suction force.
  • the difference of is shown to have an error range of about 2.5W maximum.
  • the motor driving apparatus includes a component (or an operation algorithm) for increasing the target power consumption (Pref) when the suction force is reduced due to the dispersion of the performance of the component, thereby driving the motor. It is possible to reduce the error range of the suction force of the device.
  • the motor driving apparatus can minimize the influence on the distribution of component performance, improve the operation reliability and stability, and can secure a high output required for high speed operation.

Abstract

The present invention relates to a motor driving device. The motor driving device of the present invention compares a motor command speed with a motor current speed with respect to a target power consumption and, if the current speed is less than the command speed, raises the target power consumption so as to perform control such that a motor is operated to have a suction force within an error range, and thus a difference in suction force for each product, caused by a distribution in component performance, can be corrected.

Description

모터 구동 장치Motor drive
본 발명은 모터 구동 장치에 관한 것으로, 보다 상세하게는 부품 성능의 산포에 의한 제품별 흡입력의 차이를 보정할 수 있는 모터 구동 장치에 관한 것이다.The present invention relates to a motor drive device, and more particularly, to a motor drive device that can correct the difference in suction power for each product due to the distribution of component performance.
소형 정밀제어 모터는 크게 AC 모터, DC 모터, 브러시리스(Brushless) DC 모터 및 릴럭턴스(Reluctance) 모터로 구분된다.Small precision control motors are largely divided into AC motors, DC motors, Brushless DC motors and Reluctance motors.
이러한 소형 정밀제어 모터는 AV 기기용, 컴퓨터용, 가전 및 주택설비용, 산업용 등 많은 곳에서 사용되고 있다. 특히 가전 분야는 소형모터의 최대 시장을 형성해 가고 있는 분야이다. 가전제품은 점차 고급화 되어 가고 있으며 그에 따라 구동되는 모터의 소형화, 저소음화, 저소비전력화 등이 요구된다.Such small precision control motors are used in many places, such as for AV equipment, computers, home appliances and home facilities, and industrial use. In particular, the home appliance field is forming the largest market for small motors. Home appliances are becoming more and more advanced, and accordingly, miniaturization, low noise, and low power consumption of motors are required.
여기에서, 국내 공개 특허(KR 10-2016-0098886 A1)를 참조하면, 종래의 모터에 대한 구동 장치가 도시되어 있는바, 이를 참조하여, 종래의 모터 구동 장치를 살펴보도록 한다. Here, referring to the Korean Unexamined Patent Publication (KR 10-2016-0098886 A1), a driving device for a conventional motor is illustrated, with reference to this, a conventional motor driving device will be described.
도 1은 종래의 모터 구동 장치를 나타내는 도면이다.1 is a view showing a conventional motor drive device.
도 1을 참조하면, 종래의 모터 구동 장치(10)는 모터(11), 인버터(12) 및 제어유닛(13)을 포함할 수 있다.Referring to FIG. 1, a conventional motor driving apparatus 10 may include a motor 11, a inverter 12, and a control unit 13.
모터(11)는 3상 코일(미도시)이 권선된 스테이터(stator) 및 스테이터 내에 배치되며 3상 코일에서 발생된 자기장에 의해 회전하는 로터(rotor)를 포함할 수 있다.The motor 11 may include a stator wound around a three-phase coil (not shown) and a rotor disposed in the stator and rotating by a magnetic field generated in the three-phase coil.
모터(11)는 유도 모터(induction motor), BLDC 모터(blushless DC motor), 릴럭턴스 모터(reluctance motor)를 포함할 수 있다. 이 중, BLDC 모터는 브러쉬와 정류자가 없는 모터이다. BLDC 모터는 기계적인 마찰손실이나 불꽃, 노이즈가 원칙적으로는 발생하지 않으며 속도 제어나 토크 제어가 뛰어나다. 또한, BLDC 모터는 속도 제어에 의한 손실이 없고, 소형모터로서는 효율이 높아 가전분야의 제품에 많이 사용되고 있다.The motor 11 may include an induction motor, a BLDC motor, a reluctance motor. Among them, the BLDC motor is a motor without a brush and a commutator. BLDC motors do not generate mechanical frictional losses, sparks or noise in principle, and have excellent speed and torque control. In addition, the BLDC motor has no loss due to speed control and has a high efficiency as a small motor, and is widely used in products in the home appliance field.
인버터(12)는 3상 스위치 소자들(미도시)을 포함한다. 3상 스위치 소자들은 제어유닛(13)으로부터 수신한 동작 제어 신호 즉, PWM(Pulse Width Modulation) 신호(PWMS)를 기초로 온오프 동작을 수행한다. 이를 통해, 3상 스위치 소자들은 입력된 DC 전압(Vdc)을 3상 AC 전압(Vua,Vvb,Vwc)으로 변환하여 3상 코일로 공급할 수 있다. Inverter 12 includes three phase switch elements (not shown). The three-phase switch elements perform an on-off operation based on an operation control signal received from the control unit 13, that is, a pulse width modulation (PWMS) signal (PWMS). Through this, the three-phase switch elements can convert the input DC voltage (Vdc) into a three-phase AC voltage (Vua, Vvb, Vwc) to supply to the three-phase coil.
제어유닛(13)은 입력받은 목표 지령값 및 로터의 전기각 위치를 기반으로 3상 스위치소자들 각각의 온 동작에 대한 온 시간구간 및 오프동작에 대한 오프 시간구간을 결정하는 PWM 신호(PWMS)를 출력할 수 있다. 이때, 목표 지령값은 목표 소비전력에 대한 지령을 포함한다.The control unit 13 determines the ON time period for the ON operation and the OFF time interval for the OFF operation of each of the three-phase switch elements based on the input target command value and the electric angle position of the rotor (PWMS). You can output At this time, the target command value includes a command for the target power consumption.
이러한 모터 구동 장치는 구동을 위한 복수의 부품을 포함한다. 다만, 각각의 부품들은 제조과정에서 성능에 대한 일정한 산포를 가질 수 있다. 즉, 동일한 종류의 부품일지라도 각각의 성능은 서로 상이할 수 있다. 이에 따라, 동일한 구성요소를 포함하는 모터 구동 장치들은 부품의 산포에 따라 성능에 차이가 발생할 수 있다. Such a motor drive device includes a plurality of parts for driving. However, each part can have a certain spread of performance in the manufacturing process. That is, even in the same kind of parts, the performance may be different from each other. Accordingly, motor drive devices including the same component may have a difference in performance depending on the distribution of parts.
다만, 종래의 모터 구동 장치는 동작 시, 이러한 부품 성능의 산포를 고려하지 않고 동일한 지령값을 이용함에 따라, 복수의 모터 구동 장치 각각의 성능에 차이가 발생하는 문제점이 있었다.However, the conventional motor driving apparatus has a problem in that the performance of each of the plurality of motor driving apparatuses is different when the same command value is used without considering the distribution of component performance.
본 발명의 목적은, 복수의 모터 구동 장치에서 부품 성능의 산포에 따른 흡입력의 오차 범위를 감소시킬 수 있는 모터 구동 장치를 제공하는 것이다.An object of the present invention is to provide a motor drive device capable of reducing the error range of suction force due to the distribution of component performance in a plurality of motor drive devices.
본 발명에 따른 모터 구동 장치는, 목표 소비전력에 대한 모터의 지령 속도와 모터의 현재 속도를 비교하고, 현재 속도가 지령 속도보다 작은 경우 목표 소비전력을 상향 조정함으로써, 모터가 일정한 흡입력으로 동작할 수 있도록 제어한다.The motor driving apparatus according to the present invention compares the command speed of the motor with respect to the target power consumption and the current speed of the motor, and adjusts the target power consumption upward when the current speed is smaller than the command speed, thereby allowing the motor to operate at a constant suction force. To control.
본 발명에 따른 모터 구동 장치는, 부품의 산포로 인해 흡입력이 감소되는 경우 목표 소비전력을 보상함으로써, 모터 구동 장치의 흡입력을 오차 범위 내로 유지시킬 수 있다. 이를 통해, 본 발명의 모터 구동 장치는 부품 성능의 산포에 영향을 적게 받게 되어, 동작 신뢰성 및 안정성을 향상시킬 수 있고, 고속 동작에 필요한 높은 출력을 확보할 수 있다.The motor driving device according to the present invention can maintain the suction power of the motor driving device within an error range by compensating for the target power consumption when the suction power is reduced due to the scattering of parts. Through this, the motor drive device of the present invention is less affected by the distribution of component performance, and can improve operation reliability and stability, and can secure a high output required for high speed operation.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다. In addition to the effects described above, the specific effects of the present invention will be described together with the following description of specifics for carrying out the invention.
도 1은 종래의 모터 구동 장치를 나타내는 블록도이다.1 is a block diagram showing a conventional motor drive device.
도 2는 본 발명의 실시예에 따른 모터 구동 장치를 나타내는 블록도이다. 2 is a block diagram illustrating a motor driving apparatus according to an exemplary embodiment of the present invention.
도 3은 도 2의 제어유닛의 구성요소를 나타내는 블록도이다.3 is a block diagram illustrating components of the control unit of FIG. 2.
도 4는 도 2의 인버터를 설명하기 위한 회로도이다.4 is a circuit diagram illustrating the inverter of FIG. 2.
도 5는 본 발명의 실시예에 따른 모터 구동 장치의 동작 방법을 설명하기 위한 순서도이다. 5 is a flowchart illustrating a method of operating a motor driving apparatus according to an exemplary embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 모터 구동 장치의 동작 방법의 일 예를 설명하기 위한 순서도이다. 6 is a flowchart illustrating an example of a method of operating a motor driving apparatus according to an exemplary embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 모터 구동 장치의 개선된 동작 성능을 설명하기 위한 그래프이다.7 is a graph illustrating an improved operating performance of the motor driving apparatus according to the embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, only the embodiments are to make the disclosure of the present invention complete, and common knowledge in the art It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used in a sense that can be commonly understood by those skilled in the art. In addition, terms that are defined in a commonly used dictionary are not ideally or excessively interpreted unless they are clearly specifically defined.
이하에서는, 도 2 내지 도 7을 참조하여, 본 발명의 몇몇 실시예에 따른 모터 구동 장치를 설명하도록 한다.Hereinafter, a motor driving apparatus according to some embodiments of the present invention will be described with reference to FIGS. 2 to 7.
도 2는 본 발명의 실시예에 따른 모터 구동 장치를 나타내는 블록도이다. 2 is a block diagram illustrating a motor driving apparatus according to an exemplary embodiment of the present invention.
도 2를 참조하면, 본 발명의 실시예에 따른 모터 구동 장치는, 모터(110), 인버터(120) 및 제어유닛(130)을 포함할 수 있다.2, the motor driving apparatus according to the embodiment of the present invention may include a motor 110, an inverter 120, and a control unit 130.
모터(110)는 3상 코일(미도시)이 권선된 스테이터(stator) 및 스테이터 내에 배치되며 3상 코일에서 발생된 자기장에 의해 회전하는 로터(rotor)를 포함할 수 있다. 인버터(120)로부터 3상 교류 전압(Vua,Vvb,Vwc)이 3상 코일로 공급되면, 모터(110)에서는 3상 코일에서 발생된 자계에 따라 로터에 포함된 영구자석이 회전한다. 다만, 본 발명이 3상 코일에 의해 동작하는 3상 모터에 한정되는 것은 아니며, 예를 들어, 단상 코일을 이용하는 단상 모터를 더 포함할 수 있다. 이하에서는, 3상 모터를 기준으로 본 발명의 특징을 설명하도록 한다.The motor 110 may include a stator wound with a three-phase coil (not shown) and a rotor disposed in the stator and rotating by a magnetic field generated by the three-phase coil. When the three-phase AC voltages Vua, Vvb, and Vwc are supplied from the inverter 120 to the three-phase coil, the motor 110 rotates the permanent magnet included in the rotor according to the magnetic field generated by the three-phase coil. However, the present invention is not limited to a three-phase motor operated by a three-phase coil, and may further include, for example, a single-phase motor using a single-phase coil. Hereinafter, to describe the features of the present invention based on the three-phase motor.
모터(110)는 유도 모터(induction motor), BLDC 모터(blushless DC motor), 릴럭턴스 모터(reluctance motor) 등을 포함할 수 있다. 예를 들어, 모터(110)는 표면 부착형 영구자석 동기 모터(Surface-Mounted Permanent-Magnet Synchronous Motor; SMPMSM), 매입형 영구자석 동기 모터(Interior Permanent Magnet Synchronous Motor; IPMSM), 및 동기 릴럭턴스 모터(Synchronous Reluctance Motor; Synrm) 등을 포함할 수 있다.The motor 110 may include an induction motor, a brushless DC motor, a reluctance motor, or the like. For example, the motor 110 may include a Surface-Mounted Permanent-Magnet Synchronous Motor (SMPMSM), an Interior Permanent Magnet Synchronous Motor (IPMSM), and a Synchronous Reluctance Motor. (Synchronous Reluctance Motor; Synrm) and the like.
인버터(120)는 3상 스위치 소자들(미도시)를 포함할 수 있다. 3상 스위치 소자들은 제어유닛(130)에서 공급된 동작 제어 신호 즉, PWM(Pulse Width Modulation) 신호가 입력되면, 스위치 온 또는 스위치 오프로 동작한다. 이를 통해, 인버터(120)는 입력된 직류 전압(Vdc)을 3상 교류 전압(Vua,Vvb,Vwc)로 변환하여 3상 코일로 공급할 수 있다. 3상 스위치 소자들에 대한 자세한 설명은 후술하도록 한다.The inverter 120 may include three phase switch elements (not shown). The three-phase switch elements operate by being switched on or switched off when an operation control signal supplied from the control unit 130, that is, a pulse width modulation (PWM) signal is input. Through this, the inverter 120 may convert the input DC voltage Vdc into three-phase AC voltages Vua, Vvb, and Vwc and supply the same to the three-phase coil. Detailed description of the three-phase switch elements will be described later.
제어유닛(130)는 목표 지령값 입력시, 목표 지령값 및 로터의 전기각 위치를 기초로 3상 스위치소자들 각각의 온 동작에 대한 온 시간구간 및 오프동작에 대한 오프 시간구간을 결정하는 PWM 신호(PWMS)를 출력할 수 있다. 제어유닛(130)에 대한 자세한 설명은 도 2를 참조하여 후술하도록 한다.The control unit 130, when inputting the target command value, PWM for determining the on time interval for the on operation and the off time interval for the off operation of each of the three-phase switch element based on the target command value and the electrical angle position of the rotor The signal PWM can be output. Detailed description of the control unit 130 will be described later with reference to FIG.
모터 구동 장치는 입력 전류 검출부(A), 직류단 검출부(B), 직류단 커패시터(C), 전동기 전류 검출부(E), 입력 전압 검출부(F), 및 인덕터(L1, L2) 등을 더 포함할 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며, 앞의 추가적인 구성요소 중 일부는 생략되어 실시될 수 있다.The motor driving device further includes an input current detector A, a DC stage detector B, a DC stage capacitor C, a motor current detector E, an input voltage detector F, an inductor L1, L2, and the like. can do. However, the present invention is not limited thereto, and some of the above additional components may be omitted.
입력 전류 검출부(A)는 상용 교류 전원(101)으로부터 입력되는 입력 전류(ig)를 검출할 수 있다. 이를 위하여, 입력 전류 검출부(A)로 CT(current trnasformer), 션트 저항 등이 사용될 수 있다. 검출되는 입력 전류(ig)는 펄스 형태의 이산 신호(discrete signal)로서, 전력 제어를 위해 제어유닛(130)에 입력될 수 있다.The input current detector A may detect an input current ig input from the commercial AC power supply 101. To this end, a CT (current trnasformer), a shunt resistor, or the like may be used as the input current detector A. The detected input current ig is a discrete signal in the form of a pulse and may be input to the control unit 130 for power control.
입력 전압 검출부(F)는 상용 교류 전원(101)으로부터 입력되는 입력 전압(vg)을 검출할 수 있다. 이를 위하여, 입력 전압 검출부(F)는 저항 소자, 증폭기 등을 포함할 수 있다. 검출되는 입력 전압(vg)은 펄스 형태의 이산 신호(discrete signal)로서, 전력 제어를 위해 제어유닛(130)에 입력될 수 있다.The input voltage detector F may detect an input voltage vg input from the commercial AC power supply 101. To this end, the input voltage detector F may include a resistor, an amplifier, or the like. The detected input voltage vg is a discrete signal in the form of a pulse and may be input to the control unit 130 for power control.
인덕터(L1,L2)는 상용 교류 전원(101)과 정류부(105) 사이에 배치되어, 노이즈 제거 등의 동작을 수행할 수 있다.The inductors L1 and L2 may be disposed between the commercial AC power supply 101 and the rectifier 105 to perform an operation such as noise removal.
정류부(105)는 인덕터(L1,L2)를 거친 상용 교류 전원(101)을 정류하여 출력한다. 예를 들어, 정류부(105)는 4개의 다이오드가 연결된 풀 브릿지 다이오드를 구비할 수 있으나, 본 발명이 이에 한정되는 것은 아니며, 다양하게 변형되어 적용될 수 있다.The rectifier 105 rectifies and outputs the commercial AC power supply 101 passing through the inductors L1 and L2. For example, the rectifier 105 may include a full bridge diode connected to four diodes, but the present invention is not limited thereto and may be variously modified and applied.
커패시터(C)는 입력되는 전원을 저장한다. 도면에서는 직류단 커패시터(C)로 하나의 소자를 예시하나, 복수개가 구비되어 소자 안정성을 확보할 수도 있다.The capacitor C stores the input power. In the drawing, one device is illustrated as a DC-stage capacitor C, but a plurality of devices may be provided to ensure device stability.
직류단 검출부(B)는 커패시터(C)의 양단의 직류단 전압(Vdc) 및 직류단 전류(Idc)를 검출할 수 있다. 이를 위해, 직류단 검출부(B)는 저항 소자, 증폭기 등을 포함할 수 있다. 검출되는 직류단 전압(Vdc)은, 펄스 형태의 이산 신호(discrete signal)로서, PWM 신호(PWMS)의 생성을 위해 제어유닛(130)에 입력될 수 있다. 또한, 인버터(120)에 제공되는 직류단 전압(Vdc) 및 직류단 전류(Idc)는 인버터(120)의 현재 소비전력을 계산하는데 이용될 수 있다.The DC stage detector B may detect the DC stage voltage Vdc and the DC stage current Idc at both ends of the capacitor C. To this end, the DC stage detection unit B may include a resistor, an amplifier, or the like. The detected DC terminal voltage Vdc may be input to the control unit 130 to generate a PWM signal PWMS as a discrete signal in the form of a pulse. In addition, the DC terminal voltage Vdc and the DC terminal current IDC provided to the inverter 120 may be used to calculate the current power consumption of the inverter 120.
전동기 전류 검출부(E)는 인버터(120)와 3상 모터(110) 사이에 흐르는 출력전류(io)를 검출한다. 즉, 3상 모터(110)에 흐르는 전류를 검출한다. 전동기 전류 검출부(E)는 각 상의 출력 전류(ia, ib, ic)를 모두 검출할 수 있으며, 또는 3상 평형을 이용하여 두 상의 출력 전류를 검출할 수도 있다.The motor current detector E detects an output current io flowing between the inverter 120 and the three-phase motor 110. That is, the current flowing through the three-phase motor 110 is detected. The motor current detector E may detect the output currents ia, ib, and ic of each phase, or may detect the output currents of the two phases using three-phase equilibrium.
전동기 전류 검출부(E)는 인버터(120)와 3상 모터(110) 사이에 위치할 수 있으며, 전류 검출을 위해 CT(current trnasformer), 션트 저항 등이 사용될 수 있다.The motor current detector E may be located between the inverter 120 and the three-phase motor 110, and a CT (current trnasformer), a shunt resistor, or the like may be used for current detection.
이에, 제어유닛(130)는, 입력 전류 검출부(A)에서 검출되는 입력 전류(ig)와 입력 전압 검출부(F)에서 검출되는 입력 전압(vg), 직류단 검출부(B)에서 검출되는 직류단 전압(Vdc) 및 직류단 전류(Idc), 전동기 전류 검출부(E)에서 검출되는 출력전류(io)를 이용하여 인버터(120)의 동작 제어를 수행할 수 있다.Accordingly, the control unit 130 includes the input current ig detected by the input current detector A, the input voltage vg detected by the input voltage detector F, and the direct current stage detected by the DC terminal detector B. Operation control of the inverter 120 may be performed using the voltage Vdc, the DC terminal current Idc, and the output current io detected by the motor current detector E. FIG.
검출된 출력전류(io)는, 펄스 형태의 이산 신호(discrete signal)로서, 제어유닛(130)에 인가될 수 있으며, 검출된 출력전류(io)에 기초하여 PWM 신호(PWMS)가 생성된다. 이하에서는 검출된 출력전류(io)가 3상의 출력 전류(ia,ib,ic)인 것으로 하여 기술한다.The detected output current io may be applied to the control unit 130 as a discrete signal in the form of a pulse, and a PWM signal PWM is generated based on the detected output current io. Hereinafter, it is assumed that the detected output current io is the three-phase output current ia, ib, ic.
도 3은 도 2의 제어유닛의 구성요소를 나타내는 블록도이다.3 is a block diagram illustrating components of the control unit of FIG. 2.
도 3을 참조하면, 본 발명의 실시예에 따른 제어유닛(130)은 소비전력 계측부(210), 소비전력 보상부(215), 소비전력 제어부(220), 3상/2상 축변환부(232), 위치 추정부(234), 속도 연산부(236), 지령치 생성부(240), 2상/3상 축변환부(250) 및 신호 생성부(이하, 'PWM 생성부'라 칭함, 260)를 포함할 수 있다.Referring to FIG. 3, the control unit 130 according to the embodiment of the present invention includes a power consumption measuring unit 210, a power consumption compensating unit 215, a power consumption controlling unit 220, and a three-phase / two-phase axis converting unit ( 232), the position estimator 234, the speed calculator 236, the command value generator 240, the two-phase and three-phase axis converter 250, and the signal generator (hereinafter referred to as 'PWM generator', 260) ) May be included.
여기에서, 소비전력 계측부(210), 소비전력 보상부(215) 및 소비전력 제어부(220)는 제어유닛(130) 내에서 최상위 제어기에 해당한다. Here, the power consumption measurement unit 210, power consumption compensation unit 215, and power consumption control unit 220 correspond to the highest level controller in the control unit 130.
소비전력 계측부(210)는 인버터(120)에 인가되는 직류단 전압(Vdc)과 직류단 전류(Idc)를 입력받고, 인버터(120)의 현재 소비전력(Pr)을 계산한다. 계산된 현재 소비전력(Pr)은 소비전력 제어부(220)에 제공된다.The power consumption measuring unit 210 receives a DC terminal voltage Vdc and a DC terminal current Idc applied to the inverter 120, and calculates a current power consumption Pr of the inverter 120. The calculated current power consumption Pr is provided to the power consumption controller 220.
소비전력 보상부(215)는 속도 연산부(236)에서 연산된 현재 속도(w)와 소비전력 제어부(220)에서 연산된 지령 속도(wr)를 입력받고, 소비전력의 보상값(이하, 보상 소비전력(Pc))을 출력한다.The power consumption compensator 215 receives the current speed w calculated by the speed calculator 236 and the command speed wr calculated by the power consumption controller 220, and compensates for the power consumption (hereinafter, referred to as compensation consumption). Output power Pc).
구체적으로, 소비전력 보상부(215)는 입력받은 현재 속도(w)와 지령 속도(w)의 크기를 비교한다. 이어서, 소비전력 보상부(215)는 현재 속도(w)가 지령 속도(w)보다 작은 경우, 보상 소비전력(Pc)의 크기를 증가시킬 수 있다. 이때, 보상 소비전력(Pc)의 초기 설정값은 '0'일 수 있다. 다만, 보상 소비전력(Pc)의 초기 설정값은 사용자에 의해 변경될 수 있다. In detail, the power consumption compensator 215 compares the input current speed w with the magnitude of the command speed w. Subsequently, when the current speed w is smaller than the command speed w, the power consumption compensation unit 215 may increase the size of the compensation power consumption Pc. At this time, the initial setting value of the compensation power consumption (Pc) may be '0'. However, the initial setting value of the compensation power consumption Pc may be changed by the user.
반면, 현재 속도(w)가 지령 속도(w)보다 큰 경우, 소비전력 보상부(215)는 보상 소비전력(Pc)의 크기를 유지시키거나 감소시킬 수 있다.On the other hand, when the current speed w is greater than the command speed w, the power consumption compensator 215 may maintain or reduce the size of the compensation power consumption Pc.
소비전력 제어부(220)는 사용자로부터 입력된 목표 소비전력(Pref)과, 소비전력 계측부(210)로부터 수신한 현재 소비전력(Pr)과, 소비전력 보상부(215)로부터 수신한 보상 소비전력(Pc)를 입력받는다. 이어서, 소비전력 제어부(220)는 목표 소비전력(Pref), 현재 소비전력(Pr) 및 보상 소비전력(Pc)을 기초로 지령 속도(w)를 산출한다. 소비전력 제어부(220)에서 산출된 지령 속도(w)는 지령치생성부(240)로 전달된다. The power consumption controller 220 includes a target power consumption Pref input from the user, a current power consumption Pr received from the power consumption measurement unit 210, and a compensation power consumption received from the power consumption compensation unit 215. Pc) is input. Subsequently, the power consumption controller 220 calculates the command speed w based on the target power consumption Pref, the current power consumption Pr, and the compensation power consumption Pc. The command speed w calculated by the power consumption controller 220 is transmitted to the command value generator 240.
소비전력 제어부(220)는 비교기(221)와 PID 제어기(223)을 포함한다. The power consumption controller 220 includes a comparator 221 and a PID controller 223.
비교기(221)는 목표 소비전력(Pref)과 보상 소비전력(Pc) 사이의 차이를 계산한 뒤, 보상 소비전력(Pc)을 반영한 값을 산출한다. 비교기(221)에서 산출된 값은 PID 제어기(223)에 입력된다. 다만, 본 발명의 다른 실시예에서 비교기(221)는 생략되어 실시될 수 있다. 이 경우 PID 제어기(223)는 목표 소비전력(Pref), 현재 소비전력(Pr) 및 보상 소비전력(Pc)를 입력 받아 지령 속도(wr)를 산출한다.The comparator 221 calculates a difference between the target power consumption Pref and the compensation power consumption Pc, and then calculates a value reflecting the compensation power consumption Pc. The value calculated by the comparator 221 is input to the PID controller 223. However, in another embodiment of the present invention, the comparator 221 may be omitted. In this case, the PID controller 223 receives the target power consumption Pref, the current power consumption Pr, and the compensation power consumption Pc to calculate the command speed wr.
PID 제어기(223)는 비교기(221)에서 산출된 값을 기초로 지령 속도(wr)를 계산한다. PID 제어기(223)는 기본적으로 피드백 제어기의 형태를 가지고 있으며, 비례-적분-미분 제어기의 형태를 가진다. PID 제어기(223)는 다양한 형태로 구성될 수 있으며, 목표 소비전력(Pref), 현재 소비전력(Pr) 및 보상 소비전력(Pc)의 값을 기초로 지령 속도(wr)를 계산할 수 있다.The PID controller 223 calculates the command speed wr based on the value calculated by the comparator 221. The PID controller 223 basically has the form of a feedback controller and has the form of a proportional-integral-derived controller. The PID controller 223 may be configured in various forms, and the command speed wr may be calculated based on the values of the target power consumption Pref, the current power consumption Pr, and the compensation power consumption Pc.
만약, 소비전력 보상부(215)에서 출력된 보상 소비전력(Pc)이 양(+)의 값을 갖는 경우, 소비전력 제어부(220)에서 출력되는 지령 속도(w)는 증가될 수 있다. 이는 실질적으로 소비전력 제어부(220)에 전달되는 목표 소비전력(Pref)의 값을 증가시키는 효과를 가질 수 있다. 이에 따라, 모터(110)의 출력은 향상되며, 모터 구동 장치의 흡입력은 증가될 수 있다. If the compensation power consumption Pc output from the power consumption compensation unit 215 has a positive value, the command speed w output from the power consumption control unit 220 may be increased. This may have an effect of substantially increasing the value of the target power consumption Pref delivered to the power consumption control unit 220. Accordingly, the output of the motor 110 is improved, the suction force of the motor drive device can be increased.
반대로, 소비전력 보상부(215)에서 출력된 보상 소비전력(Pc)이 그대로 유지되거나 음(-)의 값을 갖는 경우, 소비전력 제어부(220)에서 출력되는 지령 속도(wr)는 그대로 유지되거나 감소될 수 있다. 이는 실질적으로 소비전력 제어부(220)에 전달되는 목표 소비전력(Pref)의 값을 그대로 유지하거나 감소시키는 효과를 가질 수 있다. 이에 따라, 모터(110)의 출력은 그대로 유지되거나 다소 감소될 수 있다.On the contrary, when the compensation power consumption Pc output from the power consumption compensation unit 215 is maintained or has a negative value, the command speed wr output from the power consumption control unit 220 is maintained as it is. Can be reduced. This may have an effect of substantially maintaining or decreasing the value of the target power consumption Pref transmitted to the power consumption control unit 220. Accordingly, the output of the motor 110 can be maintained as it is or somewhat reduced.
본 발명의 제어유닛(130)은 현재 속도(w)를 기초로 목표 소비전력(Pref)을 보상하는 피드백 보상 회로를 구비함으로써, 모터 구동 장치에 포함된 부품의 성능에 대한 산포로 인해 흡입력이 감소되는 것을 방지할 수 있다. 즉, 제어유닛(130)은 부품의 성능에 대한 산포로 인해 흡입력이 감소되는 경우 목표 소비전력(Pref)을 증가시킴으로써, 모터 구동 장치의 흡입력을 오차 범위 내로 유지시킬 수 있다. 이를 통해, 본 발명의 모터 구동 장치는 부품 성능의 산포에 대한 영향을 최소화하여, 동작 신뢰성 및 안정성을 향상시킬 수 있고, 고속 동작에 필요한 높은 출력을 확보할 수 있다.The control unit 130 of the present invention includes a feedback compensation circuit for compensating the target power consumption (Pref) based on the current speed (w), thereby reducing the suction force due to the dispersion of the performance of the components included in the motor drive device Can be prevented. That is, the control unit 130 may maintain the suction power of the motor drive device within an error range by increasing the target power consumption (Pref) when the suction power is reduced due to the dispersion of the performance of the component. Through this, the motor driving apparatus of the present invention can minimize the influence on the distribution of component performance, improve the operation reliability and stability, and can secure a high output required for high speed operation.
3상/2상 축변환부(232)는 모터(110)에서 출력된 3상 전류(ia, ib, ic)를 입력받아, 정지좌표계의 2상 전류(iα, iβ)로 변환한다. 이어서, 3상/2상 축변환부(232)는 정지좌표계의 2상 전류(iα, iβ)를 회전좌표계의 2상 전류(id, iq)로 변환할 수 있다. The three-phase / two-phase axis converter 232 receives the three-phase currents (ia, ib, ic) output from the motor 110, and converts the two-phase currents iα and iβ of the stationary coordinate system. Subsequently, the three-phase / two-phase axis converter 232 may convert the two-phase currents i α and i β of the stationary coordinate system into two-phase currents i d and i q of the rotary coordinate system.
위치 추정부(234)는 3상 전류(ia, ib, ic) 및 3상 전압(Va, Vb, Vc) 중 적어도 하나를 검출하여, 모터(110)에 포함된 로터의 위치(H)를 추정할 수 있다.The position estimator 234 detects at least one of the three-phase currents ia, ib, and ic and the three-phase voltages Va, Vb, and Vc, and estimates the position H of the rotor included in the motor 110. can do.
속도 연산부(236)는 위치 추정부(234)에서 추정한 위치(H) 및 3상 전류(Ia, Ib, Ic) 또는 3상 전압(Va, Vb, Vc) 중 적어도 하나에 기초하여, 로터의 현재 속도(w)를 연산할 수 있다. 즉, 속도 연산부(236)는 위치(H)를 시간으로 나누어 현재 속도(w)를 연산할 수 있다.The speed calculator 236 may be configured based on the position H estimated by the position estimator 234 and at least one of three-phase currents Ia, Ib, and Ic or three-phase voltages Va, Vb, and Vc. The current speed w can be calculated. That is, the speed calculator 236 may calculate the current speed w by dividing the position H by time.
또한, 속도 연산부(236)는 위치(H)에 기초하여 연산된 전기각 위치(θ)와 연산된 현재 속도(w)를 출력할 수 있다.In addition, the speed calculator 236 may output the electric angle position θ calculated based on the position H and the calculated current speed w.
지령치 생성부(240)는 전류 지령 생성부(242) 및 전압 지령 생성부(244)를 포함할 수 있다.The command value generator 240 may include a current command generator 242 and a voltage command generator 244.
전류 지령 생성부(242)는 연산된 현재 속도(w)와 소비전력 제어부(220)에서 제공된 지령 속도(w)에 기초하여, 속도 지령치(wr)를 연산한다.The current command generation unit 242 calculates the speed command value w r based on the calculated current speed w and the command speed w provided by the power consumption controller 220.
이후, 전류 지령 생성부(242)는 속도 지령치(wr)에 기초하여, 전류 지령치(iq)를 생성한다. Thereafter, the current command generation unit 242 generates the current command value iq based on the speed command value w r .
예를 들어, 전류 지령 생성부(242)는 현재 속도(w)와 지령 속도(wr)의 차이인 속도 지령치(wr)에 기초하여, PI 제어기(243)에서 PI 제어를 수행하며, 전류 지령치(id)를 생성할 수 있다. 전류 지령 생성부(242)는 q축 전류 지령치(i의 생성시, d축 전류 지령치(id)를 함께 생성할 수 있다. 여기서, d축 전류 지령치(id)의 값은 0으로 설정될 수도 있다. For example, the current command generation unit 242 performs PI control in the PI controller 243 based on the speed command value wr which is a difference between the current speed w and the command speed w r , and the current command value. (id) can be generated. The current command generator 242 may generate the d-axis current command value id at the time of generating the q-axis current command value i. Here, the value of the d-axis current command value id may be set to zero. .
또한, 전류 지령 생성부(242)는 전류 지령치(iq)가 허용 범위를 초과하지 않도록 그 레벨을 제한하는 리미터(미도시)를 더 구비할 수도 있다.In addition, the current command generation unit 242 may further include a limiter (not shown) for limiting the level so that the current command value iq does not exceed the allowable range.
전압 지령 생성부(244)는 회전 좌표계로 축변환된 d축, q축 전류(id,iq)와, 전류 지령 생성부(242) 등에서의 전류 지령치(id,iq)에 기초하여, d축, q축 전압 지령치(wd,wq)한다. The voltage command generation unit 244 is configured based on the d-axis and q-axis currents (id, iq) axially transformed into the rotation coordinate system, and the d-axis, Set the q-axis voltage command value (wd, wq).
예를 들어, 전압 지령 생성부(244)는 q축 전류(iq) q축 전류 지령치(Iq)에 기초하여, PI 제어기(245)에서 PI 제어를 수행하며, q축 전압 지령치(wq)를 생성할 수 있다. For example, the voltage command generation unit 244 performs the PI control in the PI controller 245 based on the q-axis current iq and the q-axis current command value Iq, and generates the q-axis voltage command value wq. can do.
또한, 전압 지령 생성부(244)는 d축 전류(id)와, d축 전류 지령치(id)의 차이에 기초하여, PI 제어기(246)에서 PI 제어를 수행하며, d축 전압 지령치(wd)를 생성할 수 있다. In addition, the voltage command generation unit 244 performs PI control in the PI controller 246 based on the difference between the d-axis current id and the d-axis current command value id, and the d-axis voltage command value wd Can be generated.
한편, d축 전압 지령치(wd)의 값은 d축 전류 지령치(id)의 값은 0으로 설정되는 경우에 대응하여, 0으로 설정될 수도 있다. On the other hand, the value of the d-axis voltage command value wd may be set to 0, corresponding to the case where the value of the d-axis current command value id is set to zero.
전압 지령 생성부(244)는 d 축, q축 전압 지령치(vd,vq)가 허용 범위를 초과하지 않도록 그 레벨을 제한하는 리미터(미도시)를 더 구비할 수도 있다. The voltage command generator 244 may further include a limiter (not shown) for restricting the level so that the d-axis and q-axis voltage command values (vd, vq) do not exceed the allowable range.
전압 지령 생성부(244)에서 생성된 d축, q축 전압 지령치(vd,vq)는, 2상/3상 축변환부(250)에 입력된다.The d-axis and q-axis voltage command values (vd, vq) generated by the voltage command generation unit 244 are input to the two-phase / three-phase axis conversion unit 250.
2상/3상 축변환부(250)는 속도 연산부(236)에서 연산된 위치(θ)와, d축, q축 전압 지령치(vd,vq)를 입력받아, 축변환을 수행한다.The two-phase / three-phase axis converting unit 250 receives the position θ calculated by the speed calculating unit 236, the d-axis and q-axis voltage command values (vd, vq), and performs the axis conversion.
먼저, 2상/3상 축변환부(250)는 2상 회전 좌표계에서 2상 정지 좌표계로 변환을 수행한다. 이때, 속도 연산부(236)에서 연산된 전기각 위치(θ)가 사용될 수 있다.First, the two-phase / three-phase axis conversion unit 250 converts from the two-phase rotation coordinate system to a two-phase stop coordinate system. In this case, the electric angle position θ calculated by the speed calculator 236 may be used.
그리고, 2상/3상 축변환부(250)는 2상 정지 좌표계에서 3상 정지 좌표계로 변환을 수행한다. 이러한 변환을 통해, 2상/3상 축변환부(250)는, 3상 출력 전압 지령치(va,vb,vc)를 출력하게 된다.Then, the two-phase / three-phase axis conversion unit 250 performs a conversion from the two-phase stop coordinate system to a three-phase stop coordinate system. Through this conversion, the two-phase / three-phase axis conversion unit 250 outputs the three-phase output voltage command values (va, vb, vc).
PWM 생성부(260)는 3상 출력 전압 지령치(va,vb,vc)에 기초하여 펄스폭 변조(PWM) 방식에 따른 인버터용 PWM 신호(PWMS)를 생성하여 출력한다. The PWM generator 260 generates and outputs an inverter PWM signal PWMS according to the pulse width modulation PWM method based on the three-phase output voltage command values va, vb and vc.
PWM 신호(PWMS)는 게이트 구동부(미도시)에서 게이트 구동 신호로 변환되어, 인버터(120) 내의 3상 스위칭 소자들의 게이트에 입력될 수 있다. 이에 따라, 인버터(120) 내의 3상 스위칭 소자들은 스위칭 동작을 수행한다.The PWM signal PWMS may be converted into a gate driving signal by a gate driver (not shown) and input to the gates of the three-phase switching elements in the inverter 120. Accordingly, the three-phase switching elements in the inverter 120 performs a switching operation.
여기서, PWM 생성부(260)는 상술한 전기각 위치(θ) 및 3상 전압(Va, Vb, Vc)를 기반으로 PWM 신호(PWMS)의 온 시간구간 및 오프 시간구간을 가변시켜, 3상 스위치소자들의 스위치 동작을 제어할 수 있다.Here, the PWM generator 260 may vary the on time period and the off time period of the PWM signal PWM based on the electric angle position θ and the three phase voltages Va, Vb, and Vc described above. The switch operation of the switch elements can be controlled.
도 4는 도 2의 인버터를 설명하기 위한 회로도이다.4 is a circuit diagram illustrating the inverter of FIG. 2.
도 4를 참조하면, 인버터(120)는 3상 스위치소자들을 포함할 수 있다. 인버터(120)는 제어유닛(130)으로부터 공급된 PWM 신호(PWMS)에 의해 스위치 온 및 오프 동작을 수햄함으로써, 직류 전압(Vdc)을 소정 주파수 또는 듀티를 갖는 3상 교류 전압(Vua, Vvb, Vwc)으로 변환하고, 모터(110)로 출력할 수 있다.Referring to FIG. 4, the inverter 120 may include three phase switch elements. The inverter 120 switches on and off by the PWM signal PWMS supplied from the control unit 130, thereby converting the DC voltage Vdc into a three-phase AC voltage Vua, Vvb, having a predetermined frequency or duty. Vwc) and output to the motor 110.
3상 스위치소자들은 서로 직렬 연결되는 제1 내지 제3 상암 스위치(Sa, Sb, Sc) 및 제1 내지 제3 하암 스위치(S'a, S'b, S'b)가 서로 한 쌍이 되며, 총 세쌍의 제1 내지 제3 상암 스위치 및 제1 내지 제3 하암 스위치((Sa&S'a, Sb&S'b, Sc&S'c)가 서로 병렬 연결될 수 있다.The three-phase switch element is a pair of the first to third phase arm switch (Sa, Sb, Sc) and the first to third lower arm switch (S'a, S'b, S'b) connected in series with each other, A total of three pairs of the first to third upper arm switches and the first to third lower arm switches (Sa & S'a, Sb & S'b, Sc & S'c) may be connected in parallel to each other.
즉, 제1 상, 하암 스위치(Sa, S'a)는 모터(110)의 3상 코일(La, Lb, Lc) 중 제1 상 코일(La)로 3상 교류 전압(Vua, Vvb, Vwc) 중 제1 상 교류 전압(Vua)를 공급한다.That is, the first phase and lower arm switches Sa and S'a are three-phase AC voltages Vua, Vvb, and Vwc of the three-phase coils La, Lb, and Lc of the motor 110 as the first phase coil La. ) Supplies a first phase AC voltage Vua.
또한, 제2 상, 하암 스위치(Sb, S'b)는 제2 상 코일(Lb)로 제2 상 교류 전압(Vvb)을 공급하며, 제3 상, 하암 스위치(Sc, S'c)는 제3 상 코일(Lc)로 제3 상 교류 전압(Vwc)를 공급할 수 있다. In addition, the second phase, the lower arm switch (Sb, S'b) supplies the second phase AC voltage (Vvb) to the second phase coil (Lb), the third phase, lower arm switch (Sc, S'c) The third phase AC voltage Vwc may be supplied to the third phase coil Lc.
여기서, 제1 내지 제3 상암 스위치(Sa, Sb, Sc) 및 제1 내지 제3 하암 스위치(S'a, S'b, S'b) 각각은 로터의 일 회전당, 입력된 PWM 신호(PWMS)에 따라 한번 온 및 오프로 동작하여, 3상 코일(La, Lb, Lc) 각각으로 3상 교류 전압(Vua, Vvb, Vwc)을 공급함으로써, 모터(110)의 동작을 제어할 수 있다.Here, each of the first to third upper arm switches Sa, Sb, and Sc and the first to third lower arm switches S'a, S'b, and S'b is an input PWM signal per rotation of the rotor. It is possible to control the operation of the motor 110 by supplying the three-phase AC voltages Vua, Vvb, and Vwc to the three-phase coils La, Lb, and Lc by operating on and off once according to the PWMS). .
도 5는 본 발명의 실시예에 따른 모터 구동 장치의 동작 방법을 설명하기 위한 순서도이다.  5 is a flowchart illustrating a method of operating a motor driving apparatus according to an exemplary embodiment of the present invention.
도 5를 참조하면, 본 발명의 실시예에 따른 모터 구동 장치의 동작 방법에 있어서, 제어유닛(130)은 모터(110)의 현재 소비전력(Pr)과 현재 속도(w)를 계산한다(S110). 여기서, 현재 소비전력은 소비전력 계측부(210)에서 인버터(120)에 인가되는 전압과 전류를 기초로 연산될 수 있다. Referring to FIG. 5, in a method of operating a motor driving apparatus according to an exemplary embodiment of the present disclosure, the control unit 130 calculates a current power consumption Pr and a current speed w of the motor 110 (S110). ). Here, the current power consumption may be calculated based on the voltage and current applied to the inverter 120 in the power consumption measurement unit 210.
현재 속도(w)는 속도 연산부(236)에서 위치 추정부(234)에서 추정한 로터의 위치(H) 및 3상 전류(Ia, Ib, Ic) 또는 3상 전압(Va, Vb, Vc) 중 적어도 하나에 기초하여 연산될 수 있다. 이에 대한 자세한 설명은 전술하였으므로 중복되는 설명은 생략하도록 한다.The current speed w is one of the position H of the rotor estimated by the position estimator 234 and the three-phase currents Ia, Ib, and Ic or the three-phase voltages Va, Vb, and Vc of the speed calculator 236. It may be calculated based on at least one. Detailed description thereof has been described above, and thus redundant description will be omitted.
제어유닛(130)은 연산된 현재 속도(w)와 지령 속도(wr)을 비교한다(S120). 구체적으로, 소비전력 보상부(215)는 속도 연산부(236)에서 연산된 현재 속도(w)와 소비전력 제어부(220)에서 연산된 지령 속도(wr)을 입력받고, 이를 기초로 보상 소비전력(Pc)을 출력한다.The control unit 130 compares the calculated current speed w and the command speed wr (S120). In detail, the power consumption compensator 215 receives the current speed w calculated by the speed calculator 236 and the command speed wr calculated by the power consumption controller 220. Output Pc).
이어서, 제어유닛(130)은 목표 소비전력(Pref)에 대한 보상값을 산출한다(S130). 구체적으로, 소비전력 보상부(215)는 현재 속도(w)가 지령 속도(wr) 보다 작은 경우, 보상 소비전력(Pc)의 크기를 증가시킬 수 있다. Subsequently, the control unit 130 calculates a compensation value for the target power consumption Pref (S130). In detail, when the current speed w is smaller than the command speed wr, the power consumption compensation unit 215 may increase the size of the compensation power consumption Pc.
반면, 현재 속도(w)가 지령 속도(wr)보다 큰 경우, 소비전력 보상부(215)는 보상 소비전력(Pc)의 크기를 유지시키거나 감소시킬 수 있다.On the other hand, when the current speed w is greater than the command speed wr, the power consumption compensator 215 may maintain or reduce the size of the compensation power consumption Pc.
이때, 보상 소비전력(Pc)의 초기 설정값은 '0'일 수 있다. 다만, 보상 소비전력(Pc)의 초기 설정값은 사용자에 의해 변경될 수 있다.At this time, the initial setting value of the compensation power consumption (Pc) may be '0'. However, the initial setting value of the compensation power consumption Pc may be changed by the user.
이어서, 제어유닛(130)은 보상 소비전력(Pc)를 기초로 지령 속도(wr)에 보상값을 반영한다(S140). 앞에서 설명한 바와 같이, 소비전력 보상부(215)에서 출력된 보상 소비전력(Pc)이 양(+)의 값을 갖는 경우, 소비전력 제어부(220)에서 출력되는 지령 속도(wr)의 크기는 증가될 수 있다. 이는 실질적으로 소비전력 제어부(220)에 전달되는 목표 소비전력(Pref)의 값을 증가시키는 효과를 나타낼 수 있다. 이에 따라, 모터(110)의 출력은 향상되며, 모터 구동 장치의 흡입력은 증가될 수 있다. Subsequently, the control unit 130 reflects the compensation value to the command speed wr based on the compensation power consumption Pc (S140). As described above, when the compensation power consumption Pc output from the power consumption compensation unit 215 has a positive value, the magnitude of the command speed wr output from the power consumption control unit 220 increases. Can be. This may have an effect of substantially increasing the value of the target power consumption Pref delivered to the power consumption control unit 220. Accordingly, the output of the motor 110 is improved, the suction force of the motor drive device can be increased.
반대로, 소비전력 보상부(215)에서 출력된 보상 소비전력(Pc)이 그대로 유지되거나 음(-)의 값을 갖는 경우, 소비전력 제어부(220)에서 출력되는 지령 속도(wr)는 그대로 유지되거나 감소될 수 있다. 따라서, 모터(110)의 출력도 그대로 유지되거나 감소될 수 있다.On the contrary, when the compensation power consumption Pc output from the power consumption compensation unit 215 is maintained or has a negative value, the command speed wr output from the power consumption control unit 220 is maintained as it is. Can be reduced. Therefore, the output of the motor 110 can also be maintained or reduced.
도 6은 본 발명의 실시예에 따른 모터 구동 장치의 동작 방법의 일 예를 설명하기 위한 순서도이다. 6 is a flowchart illustrating an example of a method of operating a motor driving apparatus according to an exemplary embodiment of the present invention.
도 6을 참조하면, 모터 구동 장치의 동작 방법의 일 예에 따르면, 제어유닛(130)은 모터(110)의 현재 소비전력(Pr)과 현재 속도(w)를 계산한다(S210). Referring to FIG. 6, according to an example of a method of operating a motor driving apparatus, the control unit 130 calculates a current power consumption Pr and a current speed w of the motor 110 (S210).
이어서, 제어유닛(130)은 연산된 현재 속도(w)가 지령 속도(wr)보다 작은지 여부를 판단한다(S220). 구체적으로, 소비전력 보상부(215)는 속도 연산부(236)에서 연산된 현재 속도(w)와 소비전력 제어부(220)에서 연산된 지령 속도(wr)을 입력받고, 현재 속도(w)와 지령 속도(wr)를 기초로 보상 소비전력(Pc)을 출력한다.Subsequently, the control unit 130 determines whether the calculated current speed w is smaller than the command speed wr (S220). In detail, the power consumption compensator 215 receives the current speed w calculated by the speed calculator 236 and the command speed wr calculated by the power consumption controller 220, and the current speed w and the command. The compensation power consumption Pc is output based on the speed wr.
이어서, 제어유닛(130)은 현재 속도(w)가 지령 속도(wr) 보다 작은 경우, 목표 소비전력(Pref)을 증가시킨다(S230). 여기에서, 소비전력 보상부(215)는 보상 소비전력(Pc)의 크기를 증가시킴으로써 실질적으로 목표 소비전력(Pref)을 증가시키는 효과를 가질 수 있다.Subsequently, when the current speed w is smaller than the command speed wr, the control unit 130 increases the target power consumption Pref (S230). Here, the power consumption compensator 215 may have an effect of substantially increasing the target power consumption Pref by increasing the size of the compensation power consumption Pc.
이어서, 제어유닛(130)은 보상 소비전력(Pc)를 기초로 지령 속도(wr)의 크기를 증가시킨다(S240). 앞에서 설명한 바와 같이, 소비전력 보상부(215)에서 출력된 보상 소비전력(Pc)이 양(+)의 값을 갖는 경우, 소비전력 제어부(220)에서 출력되는 지령 속도(wr)는 증가될 수 있다. Subsequently, the control unit 130 increases the magnitude of the command speed wr based on the compensation power consumption Pc (S240). As described above, when the compensation power consumption Pc output from the power consumption compensation unit 215 has a positive value, the command speed wr output from the power consumption control unit 220 may be increased. have.
이어서, 제어유닛(130)은 증가된 지령 속도(wr)를 기준으로 모터(110)를 제어한다(S250). 이에 따라, 모터(110)의 출력은 향상되며, 모터 구동 장치의 흡입력은 증가된다. Subsequently, the control unit 130 controls the motor 110 based on the increased command speed wr (S250). Accordingly, the output of the motor 110 is improved, the suction force of the motor drive device is increased.
즉, 본 발명의 모터 구동 장치의 동작 방법은 모터(110)의 현재 속도(w)를 기초로 제어유닛(130)에서 입력 받은 목표 소비전력(Pref)을 보상하는 피드백 보상 회로를 구비함으로써, 모터 구동 장치에 포함된 부품의 성능에 대한 산포로 인해 흡입력이 감소되는 것을 방지할 수 있다. That is, the method of operating the motor driving apparatus of the present invention includes a feedback compensation circuit that compensates the target power consumption Pref received from the control unit 130 based on the current speed w of the motor 110. It is possible to prevent the suction force from being reduced due to the dispersion in the performance of the parts included in the drive device.
도 7은 본 발명의 실시예에 따른 모터 구동 장치의 개선된 동작 성능을 설명하기 위한 그래프이다.7 is a graph illustrating an improved operating performance of the motor driving apparatus according to the embodiment of the present invention.
도 7을 참조하면, <A> 는 본 발명의 실시예에 따른 모터 구동 장치의 동작 성능을 나타내고, <B> 는 종래의 모터 구동 장치의 동작 성능을 나타낸다. 여기에서, X축은 모터 구동 장치의 샘플 번호를 나타내고, Y축은 모터 구동 장치의 출력(즉, 흡입력)을 나타낸다.Referring to FIG. 7, <A> shows the operating performance of the motor driving apparatus according to the embodiment of the present invention, and <B> shows the operating performance of the conventional motor driving apparatus. Here, the X axis represents the sample number of the motor drive device, and the Y axis represents the output (that is, suction force) of the motor drive device.
<B> 범주를 우선 참조하면, 종래의 모터 구동 장치의 경우, 모터 구동 장치의 흡입력에 대한 최대값과 최소값의 차이는 약 10W 의 오차범위를 갖는 것으로 나타난다.Referring first to the < B > category, the difference between the maximum value and the minimum value for the suction force of the motor drive device is shown to have an error range of about 10W.
반면, <A> 범주를 참조하면, 본 발명의 모터 구동 장치의 경우, 현재 속도(w)를 기초로 목표 소비전력(Pref)을 보상하는 피드백 보상 회로를 포함함에 따라, 흡입력의 최대값과 최소값의 차이는 최대 2.5W 정도의 오차범위를 갖는 것으로 나타난다. On the other hand, referring to the <A> category, the motor driving device of the present invention includes a feedback compensation circuit for compensating the target power consumption (Pref) based on the current speed (w), so that the maximum value and the minimum value of the suction force. The difference of is shown to have an error range of about 2.5W maximum.
즉, 본 발명의 실시예에 따른 모터 구동 장치는 부품의 성능에 대한 산포로 인해 흡입력이 감소되는 경우, 목표 소비전력(Pref)을 증가시키는 구성요소(또는, 동작 알고리즘)을 포함함으로써, 모터 구동 장치의 흡입력의 오차 범위를 감소시킬 수 있다.That is, the motor driving apparatus according to the embodiment of the present invention includes a component (or an operation algorithm) for increasing the target power consumption (Pref) when the suction force is reduced due to the dispersion of the performance of the component, thereby driving the motor. It is possible to reduce the error range of the suction force of the device.
이를 통해, 본 발명의 실시예에 따른 모터 구동 장치는 부품 성능의 산포에 대한 영향을 최소화하여, 동작 신뢰성 및 안정성을 향상시킬 수 있고, 고속 동작에 필요한 높은 출력을 확보할 수 있다.Through this, the motor driving apparatus according to the embodiment of the present invention can minimize the influence on the distribution of component performance, improve the operation reliability and stability, and can secure a high output required for high speed operation.
전술한 본 발명은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.The present invention described above is capable of various substitutions, modifications, and changes without departing from the spirit of the present invention for those skilled in the art to which the present invention pertains. It is not limited by.

Claims (10)

  1. 모터를 구동시키는 인버터; 및 An inverter for driving a motor; And
    상기 인버터에 포함된 스위칭 소자의 동작을 제어하는 제어유닛을 포함하고,It includes a control unit for controlling the operation of the switching element included in the inverter,
    상기 제어유닛은, The control unit,
    입력되는 목표 소비전력과 상기 모터의 현재 소비전력을 기초로 상기 인버터의 제어에 이용되는 지령 속도를 계산하고,A command speed used for controlling the inverter is calculated based on the input target power consumption and the current power consumption of the motor.
    상기 지령 속도와 상기 모터의 현재 속도를 비교하여, 비교 결과를 기초로 상기 목표 소비전력의 크기를 보상하는Comparing the command speed and the current speed of the motor to compensate for the target power consumption based on a comparison result.
    모터 구동 장치.Motor-drive unit.
  2. 제1항에 있어서,The method of claim 1,
    상기 제어유닛은,The control unit,
    상기 인버터에 인가되는 전압 및 전류를 입력받아 상기 현재 소비전력을 계산하는 소비전력 계측부와,A power consumption measuring unit configured to receive the voltage and current applied to the inverter and calculate the current power consumption;
    상기 지령 속도와 상기 현재 속도를 비교하여 보상 소비전력을 계산하는 소비전력 보상부와,A power consumption compensator for comparing the command speed with the current speed to calculate compensation power consumption;
    상기 목표 소비전력, 상기 현재 소비전력, 및 상기 보상 소비전력를 기초로 상기 지령 속도를 산출하는 소비전력 제어부를 포함하는And a power consumption controller configured to calculate the command speed based on the target power consumption, the current power consumption, and the compensation power consumption.
    모터 구동 장치.Motor-drive unit.
  3. 제2항에 있어서,The method of claim 2,
    상기 소비전력 보상부는, The power consumption compensation unit,
    상기 현재 속도가 상기 지령 속도보다 작은 경우, 상기 보상 소비전력의 크기를 증가시키는 When the current speed is smaller than the command speed, increasing the magnitude of the compensation power consumption
    모터 구동 장치.Motor-drive unit.
  4. 제2항에 있어서,The method of claim 2,
    상기 소비전력 보상부는,The power consumption compensation unit,
    상기 현재 속도가 상기 지령 속도보다 큰 경우, 상기 보상 소비전력의 크기를 유지 또는 감소시키는 If the current speed is greater than the command speed, maintaining or reducing the magnitude of the compensation power consumption.
    모터 구동 장치.Motor-drive unit.
  5. 제2항에 있어서,The method of claim 2,
    상기 소비전력 제어부는, The power consumption control unit,
    상기 목표 소비전력 및 상기 보상 소비전력의 합과, 상기 현재 소비전력 사이의 차이를 계산하는 비교기와,A comparator for calculating a difference between the sum of the target power consumption and the compensation power consumption, and the current power consumption;
    상기 비교기에서 출력된 값을 기초로 상기 지령 속도를 산출하는 PID 제어기를 포함하는 And a PID controller that calculates the command speed based on a value output from the comparator.
    모터 구동 장치.Motor-drive unit.
  6. 3상 코일이 권선된 스테이터 및 상기 스테이터 내에 배치되며 상기 3상 코일에서 발생된 자기장에 의해 회전하는 로터를 포함하는 모터;A motor comprising a stator wound around a three-phase coil and a rotor disposed in the stator and rotating by a magnetic field generated in the three-phase coil;
    상기 3상 코일로 3상 교류 전압이 공급 또는 차단되도록 온-오프 동작하는 3상 스위치소자들을 포함하는 인버터; 및An inverter including on-off operation of three-phase switch elements to supply or cut off a three-phase AC voltage to the three-phase coil; And
    입력되는 목표 소비전력과 상기 모터의 현재 소비전력을 기초로 상기 인버터의 제어에 이용되는 지령 속도를 계산하고, 상기 지령 속도와 상기 로터의 현재 속도를 비교하여, 비교 결과를 기초로 상기 목표 소비전력의 크기를 보상하는 제어유닛을 포함하는 The command speed used to control the inverter is calculated based on the input target power consumption and the current power consumption of the motor, and the command speed is compared with the current speed of the rotor, and the target power consumption is based on a comparison result. Comprising a control unit to compensate for the size of
    모터 구동 장치.Motor-drive unit.
  7. 제6항에 있어서,The method of claim 6,
    상기 제어유닛은,The control unit,
    상기 인버터에 인가되는 전압 및 전류를 입력받아 상기 현재 소비전력을 계산하는 소비전력 계측부와,A power consumption measuring unit configured to receive the voltage and current applied to the inverter and calculate the current power consumption;
    상기 지령 속도와 상기 현재 속도를 비교하여 보상 소비전력을 계산하는 소비전력 보상부와,A power consumption compensator for comparing the command speed with the current speed to calculate compensation power consumption;
    상기 목표 소비전력, 상기 현재 소비전력, 및 상기 보상 소비전력를 기초로 상기 지령 속도를 계산하는 소비전력 제어부를 포함하는And a power consumption controller configured to calculate the command speed based on the target power consumption, the current power consumption, and the compensation power consumption.
    모터 구동 장치. Motor-drive unit.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 소비전력 보상부는,The power consumption compensation unit,
    상기 현재 속도가 상기 지령 속도보다 작은 경우, 상기 보상 소비전력의 크기를 증가시키는When the current speed is smaller than the command speed, increasing the magnitude of the compensation power consumption
    모터 구동 장치. Motor-drive unit.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 소비전력 제어부는, The power consumption control unit,
    상기 목표 소비전력 및 상기 보상 소비전력의 합과, 상기 현재 소비전력 사이의 차이를 계산하는 비교기와,A comparator for calculating a difference between the sum of the target power consumption and the compensation power consumption, and the current power consumption;
    상기 비교기에서 출력된 값을 기초로 상기 지령 속도를 산출하는 PID 제어기를 포함하는And a PID controller that calculates the command speed based on a value output from the comparator.
    모터 구동 장치.Motor-drive unit.
  10. 제6항에 있어서,The method of claim 6,
    상기 제어유닛은,The control unit,
    상기 3상 코일로부터 전류 또는 전압을 검출하여, 상기 로터의 전기각 위치를 추정하는 위치 추정부와,A position estimating unit for detecting a current or voltage from the three-phase coil and estimating an electric angle position of the rotor;
    상기 로터의 전기각 위치 및 상기 검출된 전류를 기초로, 상기 로터의 상기 현재 속도를 연산하는 속도 연산부와,A speed calculator for calculating the current speed of the rotor based on the electric angle position of the rotor and the detected current;
    상기 현재 속도 및 상기 지령 속도를 기초로 전류 지령치를 생성하고, 상기 전류 지령치 및 상기 검출된 전류를 기초로 전압 지령치를 생성하는 지령치 생성부와,A command value generator for generating a current command value based on the current speed and the command speed, and generating a voltage command value based on the current command value and the detected current;
    상기 전압 지령치 및 상기 전기각 위치를 기초로 상기 인버터의 스위치소자들의 동작을 제어하는 PWM 신호를 출력하는 PWM 생성부를 포함하는And a PWM generator configured to output a PWM signal for controlling the operation of the switch elements of the inverter based on the voltage command value and the electrical angle position.
    모터 구동 장치.Motor-drive unit.
PCT/KR2019/002396 2018-02-28 2019-02-27 Motor driving device WO2019168356A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180024874A KR102509725B1 (en) 2018-02-28 2018-02-28 Motor drive apparatus
KR10-2018-0024874 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019168356A1 true WO2019168356A1 (en) 2019-09-06

Family

ID=67805906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002396 WO2019168356A1 (en) 2018-02-28 2019-02-27 Motor driving device

Country Status (2)

Country Link
KR (1) KR102509725B1 (en)
WO (1) WO2019168356A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282925A (en) * 2003-03-17 2004-10-07 Toshiba Elevator Co Ltd Elevator controller
KR100712544B1 (en) * 2006-01-10 2007-05-02 삼성전자주식회사 Apparatus and method for compensating repeatable pseudo speed error of direct current motor and disk drive using the same
KR20090053503A (en) * 2007-11-23 2009-05-27 삼성전자주식회사 Method for controlling head loading velocity of hard disk drive and disk drive using the same
KR20120076723A (en) * 2010-12-30 2012-07-10 부산대학교 산학협력단 Phase current controller for driving multi-phase bldc motor
KR20140024809A (en) * 2012-08-21 2014-03-03 산요 덴키 가부시키가이샤 Motor control apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5594094B2 (en) * 2010-11-30 2014-09-24 日本精工株式会社 Grinding method and grinding apparatus by power control
JP2013151247A (en) * 2012-01-26 2013-08-08 Nissan Motor Co Ltd Control device of hybrid vehicle
JP6492320B2 (en) * 2015-02-21 2019-04-03 有限会社シー・アンド・エス国際研究所 Digital rotor phase speed estimation device for AC motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282925A (en) * 2003-03-17 2004-10-07 Toshiba Elevator Co Ltd Elevator controller
KR100712544B1 (en) * 2006-01-10 2007-05-02 삼성전자주식회사 Apparatus and method for compensating repeatable pseudo speed error of direct current motor and disk drive using the same
KR20090053503A (en) * 2007-11-23 2009-05-27 삼성전자주식회사 Method for controlling head loading velocity of hard disk drive and disk drive using the same
KR20120076723A (en) * 2010-12-30 2012-07-10 부산대학교 산학협력단 Phase current controller for driving multi-phase bldc motor
KR20140024809A (en) * 2012-08-21 2014-03-03 산요 덴키 가부시키가이샤 Motor control apparatus

Also Published As

Publication number Publication date
KR20190103893A (en) 2019-09-05
KR102509725B1 (en) 2023-03-13

Similar Documents

Publication Publication Date Title
WO2010071361A2 (en) Apparatus and method for start-up of a sensorless bldc motor
US7486037B2 (en) Control method of sensorless brushless direct current motor
US9899951B2 (en) Methods and apparatus for controlling an inverter of a motor driving apparatus
WO2017061817A1 (en) Motor driving apparatus and home appliance comprising same
EP3637613A1 (en) Motor driving apparatus
WO2018117499A1 (en) Method and device for driving brushless dc motor using voltage compensation
WO2016017880A1 (en) Rotor position error compensation method using modeling current of brushless direct current motor without position sensor
US11258393B2 (en) Motor drive apparatus
WO2018048129A1 (en) Motor rotor controlling apparatus and method
WO2019013491A1 (en) Motor driving apparatus
WO2019168356A1 (en) Motor driving device
KR20210111678A (en) Drive apparatus, drive system, and electric motor drive method
US20080166109A1 (en) Device and method of driving BLDC motor and increasing driving speed of BLDC motor
JP4052442B2 (en) MOTOR CONTROL DEVICE, MOTOR, ELECTRIC DEVICE, AND MOTOR CONTROL METHOD
WO2024043399A1 (en) Apparatus and method for controlling inverter-driven sensorless motor
WO2018226025A1 (en) Motor driving apparatus
CN110620459B (en) Driving circuit for operating BLDC motor
WO2020105839A1 (en) Inverter control device
WO2024053779A1 (en) Inverter control device and method
WO2013039337A1 (en) Device and method for driving a motor for a washing machine
Reed et al. A stator current locus approach to induction machine parameter estimation
KR20190125074A (en) Motor drive apparatus performing algorithm for preventing abnormal operation
JP2012019619A (en) Motor controller
JP2006197685A (en) Motor control device
JP2007104860A (en) Motor controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761513

Country of ref document: EP

Kind code of ref document: A1