WO2019168078A1 - Pressure accumulator and method for manufacturing pressure accumulator - Google Patents

Pressure accumulator and method for manufacturing pressure accumulator Download PDF

Info

Publication number
WO2019168078A1
WO2019168078A1 PCT/JP2019/007716 JP2019007716W WO2019168078A1 WO 2019168078 A1 WO2019168078 A1 WO 2019168078A1 JP 2019007716 W JP2019007716 W JP 2019007716W WO 2019168078 A1 WO2019168078 A1 WO 2019168078A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure accumulator
container body
pressure
container
main body
Prior art date
Application number
PCT/JP2019/007716
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 ▲高▼坂
洋流 和田
隆史 細矢
Original Assignee
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本製鋼所 filed Critical 株式会社日本製鋼所
Publication of WO2019168078A1 publication Critical patent/WO2019168078A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J12/00Pressure vessels in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • F17C1/06Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires

Definitions

  • This invention relates to a pressure accumulator capable of accumulating gas at a high pressure and a method for manufacturing the pressure accumulator.
  • High-pressure hydrogen containers used for hydrogen stations and the like include type 1 (metal container), type 2 (metal liner hoop wrap type composite pressure vessel), type 3 (metal liner full wrap type composite pressure vessel) and type 4 (nonmetal liner). Full-wrap type composite pressure vessels) are known.
  • Type 4 is lighter than Type 3 but difficult to helically wind like Type 3. Moreover, there is a concern about hydrogen leakage between the metal of the boss portion and the resin. Also, be careful of buckling due to high thermal insulation.
  • Type 2 is made of steel and FRP (fiber reinforced plastic), and in addition to being reduced in weight, it is expected to reduce costs because CFRP is constructed by hoop winding.
  • a type 2 pressure accumulator is used as one of the hydrogen pressure accumulators for storing high-pressure hydrogen.
  • Type 2 pressure accumulators consist of a steel liner and hoop-wrapped FRP.
  • the type 2 pressure accumulator is a composite container of hoop wraps.
  • C FRP is generally filament wound on the inner steel.
  • the type 2 container since the fiber is only the circumference (hoop), the liner shares the axial load generated by the internal pressure.
  • ASME CC2579 see Non-Patent Document 1
  • the type 2 pressure accumulator was constructed and coated in the circumferential direction with a carbon fiber reinforced plastic (CFRP) or a glass fiber reinforced plastic (GFRP) on the straight body of a steel liner.
  • CFRP carbon fiber reinforced plastic
  • GFRP glass fiber reinforced plastic
  • a hydrogen pressure accumulator having a liner outer diameter of 1.52 m or less and a CFRP thickness of 6 mm or more.
  • Patent Document 1 discloses an FRP container for high-pressure hydrogen storage in which the outer periphery of a liner made of Cr—Mo steel is reinforced with FRP.
  • Patent Document 2 discloses a full-wrap aluminum liner composite container. The steel liner that shares the load is stronger as a liner than the type 3 container that uses an aluminum liner that does not share the load, and the amount of expensive FRP used can be reduced by that amount, which contributes to reduction of hydrogen station construction costs. It is expected.
  • the high-pressure hydrogen hoop wrap type compound pressure vessel there is only an overseas technical standard as Non-Patent Document 1.
  • filament winding is a method in which fibers are wound around a steel liner in a circumferential direction at regular and constant loads and intervals, and the resin is cured by heating from inside and outside in the furnace. The method by is used.
  • CFRP carbon fiber reinforced plastic
  • CFRP is heated together with the liner in the furnace, and the CFRP is cured in a state where the steel liner is expanded.
  • ASME BPVC.VIII.3-2017 Part KG-511, Two Park Avenue New York, NY 10016 USA, July 1, 2017 Takayoshi Murakami, Professor of Engineering, Kyushu University, Metal Fatigue, Effects of Micro Defects and Inclusions (March 8, 1993, 1st Edition)
  • ASME BPVC.VIII.3-2017 Part KD-1310, Two Park Avenue New York, NY 10016 USA, July 1, 2017 Summary of the 3rd Hydrogen Safety Technology Seminar 2017 p62 Toshihiro Yamada, Tatsumi Takehana, Hiroshi Fukutomi, “Fatigue Properties of Unidirectional Carbon Fiber Reinforced Composite Materials for FRP Composite Containers”, Pressure Technology, Vol. 47, No. 3, (2009), pp.171-177.
  • CFRP CFRP
  • a resin liner is impregnated with a reinforcing fiber such as carbon fiber
  • filament winding is performed on a steel liner, and then heated to cure the resin.
  • the steel liner shrinks when cooled to room temperature, but the layer containing carbon fiber and resin does not substantially shrink because the coefficient of thermal expansion is smaller than that of the liner, and at the time of heat curing. It cools and hardens with the inner diameter of For this reason, as shown in FIG. 8, a gap will be generated between the steel liner and the CFRP.
  • the expected gap can be calculated by ⁇ (liner outer surface maximum temperature ⁇ room temperature) ⁇ liner thermal expansion coefficient ⁇ .
  • Patent Document 3 means for securing the adhesive strength between metal and CFRP is ensured and effective for eliminating the gap, but the target is a prepreg and not a resin impregnation method. Further, the adhesive strength alone cannot withstand high pressure hydrogen of 40 MPa or more, and it cannot be solved unless the gap can be physically reduced.
  • the present invention has been made against the background of the above circumstances, and arranges a cylindrical container body and a reinforcing cylinder disposed on the outer peripheral side of the container body in a state in which the outer surface and the inner surface thereof are in contact with each other.
  • An object of the present invention is to provide a pressure accumulator and a method for manufacturing the pressure accumulator.
  • the first form has a cylindrical container body and a reinforcing cylinder disposed on the outer peripheral side of the container body, and the reinforcing cylinder is made of fiber reinforced plastic.
  • the container body is disposed such that an outer surface thereof is in contact with an inner surface of the reinforcing cylindrical body.
  • the container body exerts a compressive stress that is tightened to the outer peripheral side.
  • the fiber reinforced plastic includes a thermosetting plastic.
  • the container body is disposed such that an outer surface thereof is in close contact with an inner surface of the reinforcing cylinder.
  • the reinforcing cylinder has an average interlayer shear strength of the inner surface larger than an average interlayer shear strength of the outer surface.
  • the container body has a stress intensity that linearly increases as the pressure increases on the inner surface of the container body within a predetermined internal pressure range. Yes.
  • the internal pressure range is 0 to 150 MPa.
  • the pressure is accumulated in the internal pressure range of 100 MPa or less in the invention of the above form.
  • the first aspect is that the cylindrical container body is cooled, the cured reinforcing cylinder is disposed on the outer peripheral side of the container body, and the temperature of the container body is restored.
  • the reinforcing cylinder is fitted to the outer peripheral side of the container body.
  • the container main body is in contact with the inner surface of the reinforcing cylindrical body in a state where the temperature is restored.
  • the interference ratio in the container main body before the cooling is ⁇ 1.07 to 2.67 at 1000 fractions in the form of the invention.
  • the container body in the aspect of the invention, in the cooling, is cooled to a temperature lower than room temperature.
  • the container body is cooled to ⁇ 190 ° C. to ⁇ 160 ° C. in the form of the invention.
  • the cylindrical container main body and the reinforcing cylindrical body disposed on the outer peripheral side of the container main body can be brought into a state where the outer surface of the container main body and the inner surface of the reinforcing cylindrical body are in contact with each other.
  • the effect excellent in the performance as a container is acquired.
  • FIG. 1 is a diagram showing a pressure accumulator manufacturing method and a pressure accumulator according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining a construction example in the fitting of the container body to the reinforcing cylinder.
  • FIG. 3 a is a front cross-sectional view showing a state where the container body is fitted to the reinforcing cylinder.
  • FIG. 3b is a cross-sectional view taken along the line II of the front cross-sectional view showing a state in which the container main body is fitted to the reinforcing cylinder.
  • FIG. 4a is a diagram showing a water pressure test result of the pressure accumulator obtained by filament winding molding.
  • FIG. 4 b is a diagram illustrating a water pressure test result of the pressure accumulator obtained by fitting in the example.
  • FIG. 5a is a graph showing the interlaminar shear strength of CFRP obtained by the filament winding molding method in the examples.
  • FIG. 5b is a graph showing the interlaminar shear strength of fully cured CFRP in the examples.
  • FIG. 6 is a diagram showing the stress intensity of the liner inner surface of the container body when the inner pressure is applied to the pressure accumulator by changing the interference in the embodiment.
  • FIG. 7 is a diagram showing the strain in the fiber direction on the inner surface of the CFRP when the inner pressure is applied to the pressure accumulator by changing the interference in the embodiment.
  • FIG. 8 is a diagram for explaining a filament winding molding method.
  • a reinforcing cylinder is formed from a predetermined fiber reinforced plastic.
  • the fiber reinforced plastic preferably includes a thermosetting plastic.
  • the type of fiber and the type of thermosetting plastic are not particularly limited, and an appropriate material can be selected for the present invention.
  • examples of the fiber include glass fiber and carbon fiber, and carbon fiber is preferably used.
  • a thermosetting plastic an epoxy resin, a phenol resin, a urea resin, a melamine resin, a polyurethane, etc. can be used. Although it is not limited to specific resin as this invention, an epoxy resin or a phenol resin is preferable from a heat resistant viewpoint.
  • the hardening method in the reinforcement cylinder 2 is not specifically limited, It can shape
  • the outer surface of a cylindrical mold (mandrel) is made by attaching a thermosetting plastic powder to a fiber base impregnated with a thermosetting plastic, or winding a thermosetting plastic containing fibers by the FW method. And heating at a predetermined temperature in a heating furnace and pressurizing as necessary to thermoset the thermosetting plastic and mold it. The heating temperature can be determined according to the characteristics of the thermosetting plastic.
  • the reinforcing cylinder 2 is obtained by removing the core from the thermosetting plastic completely cured by this heating (withdrawing the mandrel).
  • a mold or the like may be used for heating and pressurization.
  • a cylindrical container body 1 is fitted on the inner peripheral side of the cured reinforcing cylinder 2.
  • the container main body 1 is cooled, and the container main body 1 ⁇ / b> A having a reduced cylinder diameter is inserted into the reinforcing cylinder 2.
  • the cylinder diameter of the container main body 1 ⁇ / b> A is reduced by cooling, and the cooled container main body 1 ⁇ / b> A can be easily fitted into the cured reinforcing cylinder 2.
  • the container body 1A is expanded in diameter by returning to normal temperature, and the outer surface of the expanded container body 1B is in contact with, preferably in close contact with, and more preferably, the interference by the inner surface of the reinforcing cylinder 2. Press contact with the reinforcing cylinder 2.
  • the pressure contact indicates a state in which a residual stress is further applied in a close contact state. Therefore, in this construction, it is preferable to manufacture the container main body 1 and the reinforcing cylinder 2 separately so that the outer diameter of the container main body 1 is larger than the inner diameter of the reinforcing cylinder 2 at room temperature. That is, it is preferable that the interference (ratio) is positive at room temperature.
  • the relationship between the inner diameter of the cured reinforcing cylinder 2 and the outer diameter of the container body 1 is such that the container body 1 has an interference ratio of ⁇ 1.07 to 2.67 at 1000 fractions. It is preferable to have.
  • the interference is represented by (outer surface diameter of container body ⁇ inner surface diameter of reinforcing cylinder), and the interference ratio is expressed by (interference / outer surface diameter of container ⁇ 1000).
  • the cooling temperature can be determined in consideration of the outer diameter of the container body 1 and the inner diameter of the hardened reinforcing cylinder 2.
  • the container body 1 is cooled to a temperature below room temperature.
  • the cooling temperature is preferably in the range of -190 ° C to -160 ° C.
  • the cooling temperature is not limited to a specific temperature, and an appropriate temperature can be selected as long as the fitting can be easily performed.
  • the method of fitting the completely cured reinforcing cylinder 2 to the container body 1 is not particularly limited, and can be performed by an appropriate method.
  • An example of an insertion process is demonstrated based on FIG.
  • the container main body installation cylinder 10 has an installation base 11 at the inner center lower portion, and is installed in a state where the container main body 1 is built on the installation base 11.
  • a container body fixing tool can be arranged on the upper side of the container body installation cylinder 10, and when the container body 1 is installed, the container body fixing tool holds and fixes the container body 1 at the upper side on the lower side. Can do.
  • a temperature data logger 13 that can automatically measure the temperature at regular intervals is attached to the outer surface of the mirror part of the container body 1, and the temperature change of the container body 1 can be recorded, for example, at an interval of
  • the container main body installation cylinder 10 there is a holding base 20 for standing and holding the completely hardened reinforcing cylinder 2, and a suspension for hanging the reinforcing cylinder 2 installed on the holding base 20.
  • the tool 21 is located above the installation position of the reinforcing cylinder 2, and the hanging tool 21 and the reinforcing cylinder 2 can be connected via the connecting tool 22.
  • the container main body 1 is installed in the container main body installation cylinder 10, the reinforcement cylinder 2 is hold
  • nitrogen gas is irradiated from the gas injection unit 12 toward the container main body 1 to remove the gas on the container main body 1.
  • liquid nitrogen is injected from the gas injection unit 12 to cool the container body 1.
  • the temperature of the container body 1 can be measured with a temperature data logger. After confirming that the container main body 1 has reached, for example, ⁇ 160 ° C.
  • the reinforcing cylinder 2 is fitted to the container main body 1 by lifting it from the side where the temperature data logger 13 is not attached. Then, in the container main body installation cylinder 10, the container main body 1 and the reinforcement cylinder 2 are returned to normal temperature in nitrogen atmosphere. The container main body 1 and the reinforcing cylinder 2 are in a state where the outer surface of the container main body 1 is in contact with the inner surface of the reinforcing cylinder 2. Depending on the value of the interference, the outer surface of the container body 1 and the inner surface of the reinforcing cylinder 2 are brought into close contact with each other, and the container body 1 is pressed against the reinforcing cylinder 2 to be tightened to the outer surface of the container body 1 by the reinforcing cylinder 2. Such compressive stress is generated.
  • 3a and 3b show a state in which the container main body 1B is fitted to the reinforcing cylinder 2.
  • Lids 1C and 1C are attached to both ends of the container main body 1B so that the inside of the container main body 1B can be sealed.
  • the outer surface of the container main body 1 and the inner surface of the reinforcing cylindrical body 2 are fitted together with almost no gap. More preferably, there is no gap at all, and the outer surface of the container body 1 is in close contact with the inner surface of the reinforcing cylinder 2.
  • a strain gauge is attached to both the container body 1B and the reinforcing cylinder 2, and it is examined whether the strain has linearity and reproducibility at low pressure.
  • strain of the CFRP and the container body rises linearly as the water pressure increases from the attached strain gauge, it can be evaluated that the outer surface of the container body 1 is in close contact with the inner surface of the reinforcing cylinder 2.
  • a strain gauge is attached to the outer surface of the specimen obtained by fitting, and water pressure is applied to the inside of the specimen placed in a vertical position. Data from strain gauges can be collected and the presence or absence of linearity and reproducibility can be confirmed for each measurement position.
  • the obtained pressure accumulator is capable of accumulating high-pressure gas.
  • gas such as hydrogen can be favorably accumulated up to 100 MPa.
  • a fiber substrate containing a thermosetting plastic is wrapped around the outer surface of a steel liner, heated in a heating furnace at a temperature of 85 ° C. for 10 hours, cured, FW molded, (a) Filament winding molded (FW A pressure accumulator was obtained.
  • the heating temperature needs to take into account the thermal expansion of the steel liner and cannot be raised to a temperature at which the thermosetting plastic is completely cured.
  • a fiber base material containing a thermosetting plastic was wound around the outer surface of a cylindrical mold (mandrel), and was cured by heating at a temperature of 130 ° C. for 5 hours in a heating furnace.
  • the reinforcing cylinder 2 was FW-molded by removing the core from the thermosetting plastic completely cured by heating (withdrawing the mandrel).
  • FIGS. 4a and 4b show both measured values and analytical values of the strain.
  • the analytical values are the strain values in the axial direction and circumferential direction of the outer surface of the CFRP. FEM analysis was performed in increments of 10 MPa each in the range of 0 to 50 MPa.
  • the measured value of strain was obtained by attaching a biaxial strain gauge to both ends and the center of the CFRP, and collecting and collecting the strain value at the time of pressure increase / decrease.
  • the fully cured CFRP clearly has a larger interlayer shear strength on the inner surface side.
  • fitting is extremely effective as a construction method of a pressure accumulator that can express the characteristics of the composite container and has no gap.
  • the type 2 pressure accumulator subjected to CFRP by fitting has a positive interference ratio (interference) and contributes to an increase in life.
  • FIG. 6 shows an FEM analysis of the stress intensity on the inner surface of the liner when an internal pressure is applied in the range of 0 to 300 MPa to a pressure accumulator having an interference of ⁇ 0.3 to +1.0 mm (analysis software: Ansys). ).
  • the liner has an outer diameter of about 374 mm, a thickness of 29 mm, and an elastic-plastic body (two-line approximation), and the CFRP tube has a thickness of 10 mm and a fiber content of 60%.
  • the stress intensity on the inner surface of the liner decreases as the interference increases. That is, even if the same internal pressure is applied to the liner, the acting stress is reduced and the life is increased.
  • FIG. 7 shows an FEM analysis of the strain in the fiber direction on the inner surface of the CFRP when an internal pressure is applied in the range of 0 to 300 MPa to an accumulator having an interference of ⁇ 0.3 to +1.0 mm (analysis software). : Ansys).
  • the carbon fiber T710SC
  • ASME KD-1310 the upper limit of the strain at which the CFRP does not break is 0.4 when operating with respect to the breaking strain. In the case of a pressure test, it must be considered by multiplying by 0.67 (see Non-Patent Document 3).
  • the upper limits of the strain at which the CFRP does not break during operation and the pressure test are 0.68 and 1.12. If the CFRP does not reach the upper limit of strain during operation, that is, if the interference is 1 mm or less (interference ratio is 2.67 or less), the CFRP will not fatigue. (Refer to FIG. 6 of Non-Patent Document 5 and Non-Patent Document 5) On the other hand, if the interference exceeds 1 mm (interference ratio exceeds 2.67), the CFRP breaks during operation, and the pressure accumulator loses its characteristics as a composite container. From the above, the upper limit value of the interference ratio is 2.67.
  • the lower limit of the interference ratio is qualitatively a value at which the liner does not come into contact with CFRP even when the operating pressure is reached, and the function as a composite container is not exhibited. This is an interference that does not deviate up to 100 MPa from the curve obtained with No CFRP (liner only) in FIG. 7, and the value is ⁇ 0.4 mm, which corresponds to an interference ratio of ⁇ 1.07.
  • the present invention has been described based on the above embodiment, but the present invention is not limited to the content of the above embodiment, and is appropriate for the present embodiment without departing from the scope of the present invention. It can be changed.
  • the cylindrical container body and the reinforcing cylinder disposed on the outer peripheral side of the container body can be brought into a state where the outer surface of the container body and the inner surface of the reinforcing cylinder are in contact with each other.
  • An excellent pressure accumulation container and a method for producing the pressure accumulation container can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

Provided is a pressure accumulator having excellent pressure resistance. The pressure accumulator has a cylindrical container body, and a reinforcing cylinder disposed on the outer circumferential side of the container body, the reinforcing cylinder comprising fiber reinforced plastic. The container body is such that when the cylindrical container body is cooled, the cured reinforcing cylinder can be disposed on the outer circumferential side of the container body, and the reinforcing cylinder can be fitted to the outer circumferential side of the container body by restoring the temperature of the container body.

Description

蓄圧器および蓄圧器の製造方法Accumulator and method of manufacturing accumulator
 この発明は、ガスを高圧で蓄圧することができる蓄圧器および蓄圧器の製造方法に関するものである。 This invention relates to a pressure accumulator capable of accumulating gas at a high pressure and a method for manufacturing the pressure accumulator.
 水素ステーションなどに用いられる高圧水素容器には、タイプ1(金属容器)、タイプ2(金属ライナーフープラップ式複合圧力容器)、タイプ3(金属ライナーフルラップ式複合圧力容器)およびタイプ4(非金属ライナーフルラップ式複合圧力容器)が知られている。 High-pressure hydrogen containers used for hydrogen stations and the like include type 1 (metal container), type 2 (metal liner hoop wrap type composite pressure vessel), type 3 (metal liner full wrap type composite pressure vessel) and type 4 (nonmetal liner). Full-wrap type composite pressure vessels) are known.
 FCV(燃料電池自動車)向け水素ステーションの増加に伴い、100MPa級の高圧水素を貯蔵できる水素蓄圧器が求められている。
 タイプ1では、鋼を肉厚にすることで高い疲労強度を得られるが、重量が過大となる。
 タイプ3では、CFRP(炭素繊維強化プラスチック)をヘリカル巻きで施工するため、コストが増大する。また頭部のヘリカル巻きは容易でなく、ヘリカル巻きの張力を確保できない。またアルミニウム合金とCFRPのすき間を無くすために自緊が行われるが、自緊による残留応力の位置によるばらつきは大きく、疲労試験結果のばらつきに影響をおよぼしている。またネック部の強度が低下する場合もあり、破壊位置を保障できない(胴部なのか頭部なのか分からない)。
 タイプ4は、タイプ3よりもさらに軽量ではあるが、タイプ3と同様ヘリカル巻きが難しい。またボス部の金属と樹脂の間における水素漏れが懸念される所である。また断熱性が高いことによるバックリングも注意しなければならない。
 タイプ2は、鋼とFRP(繊維強化プラスチック)からなり、軽量化がなされることに加え、フープ巻きによりCFRPを施工するためコストの低減が期待されている。高圧の水素を貯蔵する水素蓄圧器の一つとしてタイプ2蓄圧器が用いられている。
With the increase in hydrogen stations for FCVs (fuel cell vehicles), hydrogen accumulators capable of storing 100 MPa class high-pressure hydrogen are required.
In Type 1, high fatigue strength can be obtained by thickening the steel, but the weight is excessive.
In Type 3, since CFRP (carbon fiber reinforced plastic) is constructed by helical winding, the cost increases. Moreover, the helical winding of the head is not easy, and the tension of the helical winding cannot be secured. In addition, self-tightening is performed to eliminate the gap between the aluminum alloy and CFRP, but the variation due to the position of the residual stress due to self-tightening is large, which affects the variation in the fatigue test results. In addition, the strength of the neck may decrease, and the destruction position cannot be guaranteed (it is not known whether it is the trunk or the head).
Type 4 is lighter than Type 3 but difficult to helically wind like Type 3. Moreover, there is a concern about hydrogen leakage between the metal of the boss portion and the resin. Also, be careful of buckling due to high thermal insulation.
Type 2 is made of steel and FRP (fiber reinforced plastic), and in addition to being reduced in weight, it is expected to reduce costs because CFRP is constructed by hoop winding. A type 2 pressure accumulator is used as one of the hydrogen pressure accumulators for storing high-pressure hydrogen.
 タイプ2蓄圧器は鋼製ライナーとフープ巻きのFRPから構成される。
 タイプ2蓄圧器は、フープラップの複合容器であり、容器の施工方法としては内側の鋼に(C)FRPをフィラメントワインディングするのが一般的である。
 タイプ2容器は、繊維が周(フープ)のみのため、内圧により発生する軸方向の荷重をライナーが分担する。
 ASME CC2579(非特許文献1参照)によれば、タイプ2蓄圧器は鋼製ライナーの直胴部を炭素繊維強化プラスチック(CFRP)ないしはガラス繊維強化プラスチック(GFRP)により周方向に施工・被覆した、ライナーの外径1.52m以下、CFRPの厚さ6mm以上の水素蓄圧器である。
Type 2 pressure accumulators consist of a steel liner and hoop-wrapped FRP.
The type 2 pressure accumulator is a composite container of hoop wraps. As a container construction method, (C) FRP is generally filament wound on the inner steel.
In the type 2 container, since the fiber is only the circumference (hoop), the liner shares the axial load generated by the internal pressure.
According to ASME CC2579 (see Non-Patent Document 1), the type 2 pressure accumulator was constructed and coated in the circumferential direction with a carbon fiber reinforced plastic (CFRP) or a glass fiber reinforced plastic (GFRP) on the straight body of a steel liner. A hydrogen pressure accumulator having a liner outer diameter of 1.52 m or less and a CFRP thickness of 6 mm or more.
 鋼製ライナーには、Cr-Mo鋼を用いるのが一般的である。
 特許文献1では、Cr-Mo鋼製のライナーの外周をFRPで補強した高圧水素貯蔵用FRP容器が開示されている。また、特許文献2では、フルラップ式アルミライナー複合容器が開示されている。
 荷重を分担する鋼製ライナーは、荷重を分担しないアルミライナーを用いたタイプ3容器などより、ライナーとしては強度が高く、その分高価なFRP使用量を低減でき、水素ステーション建設コスト削減等に資することが期待される。高圧水素用フープラップ式複合圧力容器に関しては唯一、非特許文献1としての海外の技術基準が存在している。
For the steel liner, Cr—Mo steel is generally used.
Patent Document 1 discloses an FRP container for high-pressure hydrogen storage in which the outer periphery of a liner made of Cr—Mo steel is reinforced with FRP. Patent Document 2 discloses a full-wrap aluminum liner composite container.
The steel liner that shares the load is stronger as a liner than the type 3 container that uses an aluminum liner that does not share the load, and the amount of expensive FRP used can be reduced by that amount, which contributes to reduction of hydrogen station construction costs. It is expected. Regarding the high-pressure hydrogen hoop wrap type compound pressure vessel, there is only an overseas technical standard as Non-Patent Document 1.
 FRPを施工する際は、繊維を鋼製ライナーに、規則的に、かつ一定の荷重、間隔で周方向に巻きつけ、炉内で内外から加熱を行うことにより樹脂を硬化させるフィラメントワインディング(FW)による方法が用いられている。
 上記の方法では、図8に示すように、CFRP(炭素繊維強化プラスチック)は、炉内にてライナーとともに加熱され、鋼製ライナーが膨張した状態でCFRPが硬化することとなる。
When constructing FRP, filament winding (FW) is a method in which fibers are wound around a steel liner in a circumferential direction at regular and constant loads and intervals, and the resin is cured by heating from inside and outside in the furnace. The method by is used.
In the above method, as shown in FIG. 8, CFRP (carbon fiber reinforced plastic) is heated together with the liner in the furnace, and the CFRP is cured in a state where the steel liner is expanded.
日本国特開2009-293799号公報Japanese Unexamined Patent Publication No. 2009-293799 日本国特開2007-154927号公報Japanese Unexamined Patent Publication No. 2007-154927 日本国特開2011-073191号公報Japanese Unexamined Patent Publication No. 2011-073191
 しかし、フィラメントワインディングによりCFRPを鋼製ライナーに巻きつける方法では、十分な強度を有するCFRPを隙間無く硬化させることが困難である。
 すなわち、フィラメントワインディングでは、炭素繊維などの強化繊維を樹脂に含浸させながら、鋼製ライナーにフィラメントワインディングを行い、その後、樹脂を硬化するために加熱している。そして、硬化終了後、室温まで冷却されると、鋼製ライナーは収縮するが、炭素繊維と樹脂とを含む層は、熱膨張係数がライナーに比して小さいためほぼ収縮せず、加熱硬化時の内径のまま冷えて固まる。このため、図8に示すように、鋼製ライナーとCFRPとの間に隙間が生じてしまう。
 さらには、加熱硬化の際、樹脂が発熱するので、ライナーの温度がさらに上昇し、隙間が大きくなることがある。
 上記のように、タイプ2蓄圧器が複合容器として十分な強度を得るには、CFRPをできるだけ隙間なく施工することは必須であるが、フィラメントワインディング成形(FW成形)によるCFRP施工では熱膨張係数差に起因するすき間を抑制できない。
However, with the method of winding CFRP around a steel liner by filament winding, it is difficult to cure CFRP having sufficient strength without gaps.
That is, in filament winding, a resin liner is impregnated with a reinforcing fiber such as carbon fiber, filament winding is performed on a steel liner, and then heated to cure the resin. After the curing is completed, the steel liner shrinks when cooled to room temperature, but the layer containing carbon fiber and resin does not substantially shrink because the coefficient of thermal expansion is smaller than that of the liner, and at the time of heat curing. It cools and hardens with the inner diameter of For this reason, as shown in FIG. 8, a gap will be generated between the steel liner and the CFRP.
Furthermore, since the resin generates heat during the heat curing, the temperature of the liner further increases, and the gap may become large.
As mentioned above, in order to obtain sufficient strength for a type 2 accumulator as a composite container, it is indispensable to construct CFRP with as little gap as possible, but in CFRP construction by filament winding molding (FW molding), there is a difference in thermal expansion coefficient. It is not possible to suppress the gap caused by.
 予想される隙間は、{(ライナー外表面最高温度-室温)×ライナーの熱膨張係数}によって算出することができる。
 なお、特許文献1では、安全性を確保するのに最も重要な、FRPと鋼製ライナーに隙間を発生させない施工方法に触れられていない。また、特許文献3では、金属とCFRPの接着強度を確保しようとする手段が確保されており、隙間をなくすためには有効であるが、対象がプリプレグであり樹脂含浸方式ではない。また、接着強度だけでは40MPa以上の高圧水素には耐えることができず、物理的に隙間を低減できなければ解決には繋がらない。
The expected gap can be calculated by {(liner outer surface maximum temperature−room temperature) × liner thermal expansion coefficient}.
In addition, in patent document 1, it is not touched on the construction method which does not generate | occur | produce a clearance gap between FRP and a steel liner most important for ensuring safety | security. Further, in Patent Document 3, means for securing the adhesive strength between metal and CFRP is ensured and effective for eliminating the gap, but the target is a prepreg and not a resin impregnation method. Further, the adhesive strength alone cannot withstand high pressure hydrogen of 40 MPa or more, and it cannot be solved unless the gap can be physically reduced.
 本発明は、上記事情を背景としてなされたものであり、筒形状の容器本体と、容器本体の外周側に配置された補強筒体とを、それぞれの外面と内面とが互いに接した状態で配置した蓄圧器および蓄圧器の製造方法を提供することを目的とする。 The present invention has been made against the background of the above circumstances, and arranges a cylindrical container body and a reinforcing cylinder disposed on the outer peripheral side of the container body in a state in which the outer surface and the inner surface thereof are in contact with each other. An object of the present invention is to provide a pressure accumulator and a method for manufacturing the pressure accumulator.
 すなわち、本発明の蓄圧器のうち、第1の形態は、筒形状の容器本体と、前記容器本体の外周側に配置された補強筒体とを有し、前記補強筒体が繊維強化プラスチックを含み、前記容器本体は、前記補強筒体の内面に外面が接して配置されている。 That is, among the pressure accumulators of the present invention, the first form has a cylindrical container body and a reinforcing cylinder disposed on the outer peripheral side of the container body, and the reinforcing cylinder is made of fiber reinforced plastic. In addition, the container body is disposed such that an outer surface thereof is in contact with an inner surface of the reinforcing cylindrical body.
 他の形態の蓄圧器の発明は、前記形態の発明において、前記容器本体は、外周側に締め付けるような圧縮応力を及ぼしている。 In another aspect of the invention of the pressure accumulator, in the invention of the above aspect, the container body exerts a compressive stress that is tightened to the outer peripheral side.
 他の形態の蓄圧器の発明は、前記形態の発明において、前記繊維強化プラスチックが熱硬化性プラスチックを含むものである。 In another aspect of the invention of the pressure accumulator, in the invention of the above-mentioned form, the fiber reinforced plastic includes a thermosetting plastic.
 他の形態の蓄圧器の発明は、前記形態の発明において、前記容器本体は、前記補強筒体の内面に外面が密着して配置されている。 According to another aspect of the invention of the pressure accumulator, in the aspect of the invention, the container body is disposed such that an outer surface thereof is in close contact with an inner surface of the reinforcing cylinder.
 他の形態の蓄圧器の発明は、前記形態の発明において、前記補強筒体は、内面の平均層間せん断強さが、外面の平均層間せん断強さよりも大きい。 In another aspect of the invention of the pressure accumulator, in the invention of the above aspect, the reinforcing cylinder has an average interlayer shear strength of the inner surface larger than an average interlayer shear strength of the outer surface.
 他の形態の蓄圧器の発明は、前記形態の発明において、前記容器本体は、所定の内圧の範囲で、前記容器本体内面に、圧力の増加によって直線的に増加する応力強さを有している。 In another form of the pressure accumulator, in the above-mentioned form of the invention, the container body has a stress intensity that linearly increases as the pressure increases on the inner surface of the container body within a predetermined internal pressure range. Yes.
 他の形態の蓄圧器の発明は、前記形態の発明において、前記内圧の範囲が0~150MPaである。 In another aspect of the invention of the pressure accumulator, in the aspect of the invention, the internal pressure range is 0 to 150 MPa.
 他の形態の蓄圧器の発明は、前記形態の発明において、100MPa以下の内圧範囲で蓄圧される。 In the invention of the other form of the pressure accumulator, the pressure is accumulated in the internal pressure range of 100 MPa or less in the invention of the above form.
 本発明の蓄圧器の製造方法の発明のうち第1の形態は、筒形状の容器本体を冷却し、硬化した補強筒体を前記容器本体の外周側に配置し、前記容器本体の温度復帰によって前記補強筒体を前記容器本体の外周側に嵌合する。 Of the invention of the pressure accumulator manufacturing method of the present invention, the first aspect is that the cylindrical container body is cooled, the cured reinforcing cylinder is disposed on the outer peripheral side of the container body, and the temperature of the container body is restored. The reinforcing cylinder is fitted to the outer peripheral side of the container body.
 他の形態の蓄圧器の製造方法の発明は、前記形態の発明において、前記容器本体は、温度復帰した状態で前記補強筒体の内面に接触している。 In another aspect of the invention of the method of manufacturing a pressure accumulator, in the invention of the above aspect, the container main body is in contact with the inner surface of the reinforcing cylindrical body in a state where the temperature is restored.
 他の形態の蓄圧器の発明は、前記形態の発明において、前記冷却前の前記容器本体におけるしめしろ比が、1000分率で、-1.07~2.67である。 In another form of the pressure accumulator, the interference ratio in the container main body before the cooling is −1.07 to 2.67 at 1000 fractions in the form of the invention.
 他の形態の蓄圧器の発明は、前記形態の発明において、前記冷却では、前記容器本体を常温よりも低い温度に冷却する。 In another aspect of the invention of the pressure accumulator, in the aspect of the invention, in the cooling, the container body is cooled to a temperature lower than room temperature.
 他の形態の蓄圧器の発明は、前記形態の発明において、前記容器本体を、-190℃~-160℃に冷却する。 In another form of the invention of the pressure accumulator, the container body is cooled to −190 ° C. to −160 ° C. in the form of the invention.
 本発明によれば、筒形状の容器本体と、容器本体の外周側に配置された補強筒体とを、容器本体の外面と補強筒体の内面とが接した状態とすることができ、蓄圧容器としての性能に優れた効果が得られる。 According to the present invention, the cylindrical container main body and the reinforcing cylindrical body disposed on the outer peripheral side of the container main body can be brought into a state where the outer surface of the container main body and the inner surface of the reinforcing cylindrical body are in contact with each other. The effect excellent in the performance as a container is acquired.
図1は、本発明の一実施形態の蓄圧器の製造方法および蓄圧器を示す図である。FIG. 1 is a diagram showing a pressure accumulator manufacturing method and a pressure accumulator according to an embodiment of the present invention. 図2は、同じく、補強筒体に対する容器本体の嵌合における施工例を説明する図である。FIG. 2 is a view for explaining a construction example in the fitting of the container body to the reinforcing cylinder. 図3aは、同じく、補強筒体に容器本体を嵌合した状態を示す正面断面図である。FIG. 3 a is a front cross-sectional view showing a state where the container body is fitted to the reinforcing cylinder. 図3bは、同じく、補強筒体に容器本体を嵌合した状態を示す正面断面図のI-I線断面図である。FIG. 3b is a cross-sectional view taken along the line II of the front cross-sectional view showing a state in which the container main body is fitted to the reinforcing cylinder. 図4aは、フィラメントワインディング成形により得られた蓄圧器の水圧試験結果を示す図である。FIG. 4a is a diagram showing a water pressure test result of the pressure accumulator obtained by filament winding molding. 図4bは、実施例における嵌合により得られた蓄圧器の水圧試験結果を示す図である。FIG. 4 b is a diagram illustrating a water pressure test result of the pressure accumulator obtained by fitting in the example. 図5aは、実施例におけるフィラメントワインディング成形法により得られたCFRPの層間せん断強さを示すグラフである。FIG. 5a is a graph showing the interlaminar shear strength of CFRP obtained by the filament winding molding method in the examples. 図5bは、実施例における完全硬化させたCFRPの層間せん断強さを示すグラフである。FIG. 5b is a graph showing the interlaminar shear strength of fully cured CFRP in the examples. 図6は、実施例において、しめしろを変化させて蓄圧器に内圧をかけた際の容器本体のライナー内面の応力強さを示す図である。FIG. 6 is a diagram showing the stress intensity of the liner inner surface of the container body when the inner pressure is applied to the pressure accumulator by changing the interference in the embodiment. 図7は、実施例において、しめしろを変化させて蓄圧器に内圧を掛けた際のCFRP内面の繊維方向の歪みを示す図である。FIG. 7 is a diagram showing the strain in the fiber direction on the inner surface of the CFRP when the inner pressure is applied to the pressure accumulator by changing the interference in the embodiment. 図8は、フィラメントワインディング成形法を説明する図である。FIG. 8 is a diagram for explaining a filament winding molding method.
 以下に、本発明の一実施形態について説明する。
 先ず、所定の繊維強化プラスチックにより補強筒体を形成する。繊維強化プラスチックは、熱硬化性プラスチックを含むことが好ましい。
 なお、繊維の種別や熱硬化性プラスチックの種別は特に限定されるものではなく、本発明としては適宜の材料を選択することができる。この実施形態では、繊維としては、例えば、ガラス繊維、炭素繊維等が挙げられ、好適には炭素繊維が用いられる。また、熱硬化性プラスチックとしては、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ポリウレタンなどを用いることができる。本発明としては、特定の樹脂に限定されないが、耐熱性の観点でエポキシ樹脂、又はフェノール樹脂が好ましい。
Hereinafter, an embodiment of the present invention will be described.
First, a reinforcing cylinder is formed from a predetermined fiber reinforced plastic. The fiber reinforced plastic preferably includes a thermosetting plastic.
The type of fiber and the type of thermosetting plastic are not particularly limited, and an appropriate material can be selected for the present invention. In this embodiment, examples of the fiber include glass fiber and carbon fiber, and carbon fiber is preferably used. Moreover, as a thermosetting plastic, an epoxy resin, a phenol resin, a urea resin, a melamine resin, a polyurethane, etc. can be used. Although it is not limited to specific resin as this invention, an epoxy resin or a phenol resin is preferable from a heat resistant viewpoint.
 補強筒体2における硬化方法は特に限定されるものではなく、通常の方法により成形することができる。
 例えば、筒状の型(マンドレル)外表面に、熱硬化性プラスチックが含浸した繊維基材に熱硬化性プラスチックの粉体を付着させたものや、繊維を含む熱硬化性プラスチックをFW法により巻きつけ、加熱炉の中で所定の温度で加熱し、必要に応じ加圧して、熱硬化性プラスチックを熱硬化させ、成形することができる。加熱温度は、熱硬化性プラスチックの特性などに応じて定めることができる。この加熱によって完全に硬化した熱硬化性プラスチックから脱芯する(マンドレルを抜く)ことで補強筒体2が得られる。加熱及び加圧の際には金型等を用いてもよい。
The hardening method in the reinforcement cylinder 2 is not specifically limited, It can shape | mold by a normal method.
For example, the outer surface of a cylindrical mold (mandrel) is made by attaching a thermosetting plastic powder to a fiber base impregnated with a thermosetting plastic, or winding a thermosetting plastic containing fibers by the FW method. And heating at a predetermined temperature in a heating furnace and pressurizing as necessary to thermoset the thermosetting plastic and mold it. The heating temperature can be determined according to the characteristics of the thermosetting plastic. The reinforcing cylinder 2 is obtained by removing the core from the thermosetting plastic completely cured by this heating (withdrawing the mandrel). A mold or the like may be used for heating and pressurization.
 図1に示すように、硬化した補強筒体2の内周側には、筒状の容器本体1が嵌合される。
 前記嵌合においては、容器本体1を冷却し、筒径が縮小した容器本体1Aを補強筒体2に嵌入する。この際に、容器本体1Aは、冷却によって筒径が縮小しており、硬化した補強筒体2内に、冷却された容器本体1Aを容易に嵌入することができる。容器本体1Aは、嵌入後に、常温に温度復帰することで拡径し、拡径した容器本体1Bの外面が、補強筒体2の内面に接し、好ましくは密着し、さらに好ましくは、しめしろによって補強筒体2に圧接する。
 ここで、圧接とは密着した状態において、更に残留応力が付与された状態を示す。
 したがって、本施工では、容器本体1と補強筒体2を別々に、室温で容器本体1の外径が補強筒体2の内径より大きくなるよう製作することが好ましい。すなわち、室温においてしめしろ(比)が正になるように製作することが好ましい。なお、本発明としては、硬化した補強筒体2の内径と、容器本体1の外径との関係では、容器本体1において、1000分率で-1.07~2.67のしめしろ比を有するのが好ましい。なお、しめしろは、(容器本体の外面径-補強筒体の内面径)で表され、しめしろ比は、(しめしろ/容器外面径×1000)で表される。
As shown in FIG. 1, a cylindrical container body 1 is fitted on the inner peripheral side of the cured reinforcing cylinder 2.
In the fitting, the container main body 1 is cooled, and the container main body 1 </ b> A having a reduced cylinder diameter is inserted into the reinforcing cylinder 2. At this time, the cylinder diameter of the container main body 1 </ b> A is reduced by cooling, and the cooled container main body 1 </ b> A can be easily fitted into the cured reinforcing cylinder 2. After the fitting, the container body 1A is expanded in diameter by returning to normal temperature, and the outer surface of the expanded container body 1B is in contact with, preferably in close contact with, and more preferably, the interference by the inner surface of the reinforcing cylinder 2. Press contact with the reinforcing cylinder 2.
Here, the pressure contact indicates a state in which a residual stress is further applied in a close contact state.
Therefore, in this construction, it is preferable to manufacture the container main body 1 and the reinforcing cylinder 2 separately so that the outer diameter of the container main body 1 is larger than the inner diameter of the reinforcing cylinder 2 at room temperature. That is, it is preferable that the interference (ratio) is positive at room temperature. In the present invention, the relationship between the inner diameter of the cured reinforcing cylinder 2 and the outer diameter of the container body 1 is such that the container body 1 has an interference ratio of −1.07 to 2.67 at 1000 fractions. It is preferable to have. The interference is represented by (outer surface diameter of container body−inner surface diameter of reinforcing cylinder), and the interference ratio is expressed by (interference / outer surface diameter of container × 1000).
 容器本体1の冷却では、容器本体1の外径と、硬化した補強筒体2の内径の大きさを考慮して冷却温度を定めることができる。容器本体1の冷却では、常温未満の温度に冷却する。例えば冷却温度としては、-190℃~-160℃の範囲が好ましい。冷却温度を-160℃以下とすることで、容器本体を十分に縮径することができる。一方、-190℃よりも低い温度とすると、冷却に時間を要し、生産性に劣るため、上記温度範囲に冷却するのが好ましい。ただし、本発明としては、冷却温度が特定の温度に限定されるものではなく、嵌合を容易に行える範囲で適宜の温度を選択することができる。 In cooling the container body 1, the cooling temperature can be determined in consideration of the outer diameter of the container body 1 and the inner diameter of the hardened reinforcing cylinder 2. In cooling the container body 1, the container body 1 is cooled to a temperature below room temperature. For example, the cooling temperature is preferably in the range of -190 ° C to -160 ° C. By setting the cooling temperature to −160 ° C. or lower, the container body can be sufficiently reduced in diameter. On the other hand, if the temperature is lower than −190 ° C., it takes time for cooling and the productivity is poor, so it is preferable to cool to the above temperature range. However, in the present invention, the cooling temperature is not limited to a specific temperature, and an appropriate temperature can be selected as long as the fitting can be easily performed.
 完全に硬化した補強筒体2を容器本体1に嵌める方法は、特に限定されるものではなく、適宜の方法で行うことができる。
 嵌入工程の一例を図2に基づいて説明する。
 容器本体設置筒10は、内部中心下部に設置台11を有し、設置台11上に容器本体1が建てられた状態で設置される。容器本体設置筒10の内面には、内周側に向けてガスを噴射する噴射口を有するガス噴射部12の複数が周方向に沿い、かつ複数の高さ位置において設置されている。容器本体設置筒10の上方側には容器本体固定具を配置可能であり、容器本体1を設置した際に、容器本体固定具は、下方側において容器本体1を上部で保持して固定することができる。容器本体1の鏡部外表面に一定間隔で温度を自動計測できる温度データロガー13を取り付け、容器本体1の温度変化を、例えば1分間隔で集録することができる。
The method of fitting the completely cured reinforcing cylinder 2 to the container body 1 is not particularly limited, and can be performed by an appropriate method.
An example of an insertion process is demonstrated based on FIG.
The container main body installation cylinder 10 has an installation base 11 at the inner center lower portion, and is installed in a state where the container main body 1 is built on the installation base 11. On the inner surface of the container main body installation cylinder 10, a plurality of gas injection units 12 having injection ports for injecting gas toward the inner peripheral side are installed along the circumferential direction and at a plurality of height positions. A container body fixing tool can be arranged on the upper side of the container body installation cylinder 10, and when the container body 1 is installed, the container body fixing tool holds and fixes the container body 1 at the upper side on the lower side. Can do. A temperature data logger 13 that can automatically measure the temperature at regular intervals is attached to the outer surface of the mirror part of the container body 1, and the temperature change of the container body 1 can be recorded, for example, at an interval of 1 minute.
 また、容器本体設置筒10の近傍には、完全に硬化した補強筒体2を立てて保持する保持台20を有しており、保持台20上に設置された補強筒体2を吊り下げる吊具21が補強筒体2の設置位置上方に位置しており、連結具22を介して、吊具21と補強筒体2との連結が可能になっている。 Further, in the vicinity of the container main body installation cylinder 10, there is a holding base 20 for standing and holding the completely hardened reinforcing cylinder 2, and a suspension for hanging the reinforcing cylinder 2 installed on the holding base 20. The tool 21 is located above the installation position of the reinforcing cylinder 2, and the hanging tool 21 and the reinforcing cylinder 2 can be connected via the connecting tool 22.
 次に、施工内容について説明する。なお、容器本体設置筒10には、容器本体1が設置され、保持台20には補強筒体2が保持されており、補強筒体2は、吊具21に連結されているものとする。
 容器本体設置筒10では、当初は、ガス噴射部12から窒素ガスを容器本体1に向けて照射し、容器本体1上のガスを除去する。その後、ガス噴射部12から液体窒素を噴射して容器本体1を冷却する。容器本体1の温度は温度データロガーで測定することができる。容器本体1が、例えば-160℃以下に到達したことを確認後、温度データロガー13を取り付けていない側から吊具21でつり上げて補強筒体2を容器本体1に嵌合する。
 その後、容器本体設置筒10内で、容器本体1と補強筒体2とを窒素雰囲気下で常温まで戻す。
 容器本体1と補強筒体2とは、容器本体1の外面が補強筒体2の内面に接した状態になっている。しめしろの値によっては、容器本体1の外面と補強筒体2の内面とが密着し、容器本体1が補強筒体2に圧接することによって、補強筒体2により容器本体1の外面に締め付けるような圧縮応力が発生する。
Next, construction contents will be described. In addition, the container main body 1 is installed in the container main body installation cylinder 10, the reinforcement cylinder 2 is hold | maintained at the holding stand 20, and the reinforcement cylinder 2 shall be connected with the hanger 21. As shown in FIG.
In the container main body installation cylinder 10, initially, nitrogen gas is irradiated from the gas injection unit 12 toward the container main body 1 to remove the gas on the container main body 1. Thereafter, liquid nitrogen is injected from the gas injection unit 12 to cool the container body 1. The temperature of the container body 1 can be measured with a temperature data logger. After confirming that the container main body 1 has reached, for example, −160 ° C. or less, the reinforcing cylinder 2 is fitted to the container main body 1 by lifting it from the side where the temperature data logger 13 is not attached.
Then, in the container main body installation cylinder 10, the container main body 1 and the reinforcement cylinder 2 are returned to normal temperature in nitrogen atmosphere.
The container main body 1 and the reinforcing cylinder 2 are in a state where the outer surface of the container main body 1 is in contact with the inner surface of the reinforcing cylinder 2. Depending on the value of the interference, the outer surface of the container body 1 and the inner surface of the reinforcing cylinder 2 are brought into close contact with each other, and the container body 1 is pressed against the reinforcing cylinder 2 to be tightened to the outer surface of the container body 1 by the reinforcing cylinder 2. Such compressive stress is generated.
 図3a及び図3bは、補強筒体2に容器本体1Bが嵌合された状態を示している。容器本体1Bの両端には、蓋1C、1Cが取り付けられて容器本体1B内の密閉が可能になっている。容器本体1の外面と補強筒体2の内面とは、ほぼ隙間がない状態で嵌合されている。より好ましくは、隙間が全くなく、容器本体1の外面が補強筒体2の内面に密着している状態である。
 すき間が無い(密着している)ことを確認する方法としては、ひずみゲージを容器本体1Bと補強筒体2の両方に取り付け、低圧においてひずみが直線性と再現性を有するか調べる。貼り付けたひずみゲージから、CFRPと容器本体のひずみが、水圧が上がるにつれて直線的に上昇すれば、容器本体1の外面が補強筒体2の内面に密着していると評価できる。
 例えば、はめあわせて得られた試験体の外表面にひずみゲージを貼り付け、縦置きにした試験体の内部に水圧を掛ける。ひずみゲージからのデータを採取し、直線性と再現性の有無を各測定位置につき確認することができる。
3a and 3b show a state in which the container main body 1B is fitted to the reinforcing cylinder 2. Lids 1C and 1C are attached to both ends of the container main body 1B so that the inside of the container main body 1B can be sealed. The outer surface of the container main body 1 and the inner surface of the reinforcing cylindrical body 2 are fitted together with almost no gap. More preferably, there is no gap at all, and the outer surface of the container body 1 is in close contact with the inner surface of the reinforcing cylinder 2.
As a method for confirming that there is no gap (close contact), a strain gauge is attached to both the container body 1B and the reinforcing cylinder 2, and it is examined whether the strain has linearity and reproducibility at low pressure. If the strain of the CFRP and the container body rises linearly as the water pressure increases from the attached strain gauge, it can be evaluated that the outer surface of the container body 1 is in close contact with the inner surface of the reinforcing cylinder 2.
For example, a strain gauge is attached to the outer surface of the specimen obtained by fitting, and water pressure is applied to the inside of the specimen placed in a vertical position. Data from strain gauges can be collected and the presence or absence of linearity and reproducibility can be confirmed for each measurement position.
 得られた蓄圧器は、高い圧力のガスの蓄圧が可能であり、例えば水素などのガスを、100MPaまでは良好に蓄圧することができる。 The obtained pressure accumulator is capable of accumulating high-pressure gas. For example, gas such as hydrogen can be favorably accumulated up to 100 MPa.
 鋼製ライナー外表面に熱硬化性プラスチックが含有した繊維基材を巻きつけ、加熱炉の中で85℃の温度で10時間加熱し、硬化させ、FW成形し、(a)フィラメントワインディング成形(FW成形)による蓄圧器を得た。
 なお、加熱温度は鋼製ライナーの熱膨張を考慮する必要があり、熱硬化性プラスチックが完全硬化する温度まで上げることはできない。
A fiber substrate containing a thermosetting plastic is wrapped around the outer surface of a steel liner, heated in a heating furnace at a temperature of 85 ° C. for 10 hours, cured, FW molded, (a) Filament winding molded (FW A pressure accumulator was obtained.
The heating temperature needs to take into account the thermal expansion of the steel liner and cannot be raised to a temperature at which the thermosetting plastic is completely cured.
 また、筒状の型(マンドレル)外表面に熱硬化性プラスチックが含有した繊維基材を巻きつけ、加熱炉の中で130℃の温度で5時間加熱し、硬化させた。この加熱によって完全に硬化した熱硬化性プラスチックから脱芯する(マンドレルを抜く)ことで補強筒体2をFW成形した。得られた補強筒体2を鋼製ライナーに嵌合することにより、本実施形態の(b)嵌合による蓄圧器を得た。 Further, a fiber base material containing a thermosetting plastic was wound around the outer surface of a cylindrical mold (mandrel), and was cured by heating at a temperature of 130 ° C. for 5 hours in a heating furnace. The reinforcing cylinder 2 was FW-molded by removing the core from the thermosetting plastic completely cured by heating (withdrawing the mandrel). By fitting the obtained reinforcing cylinder 2 to a steel liner, a pressure accumulator by fitting (b) of this embodiment was obtained.
 次に、(a)フィラメントワインディング成形(FW成形)により得られた蓄圧器と、本実施形態の(b)嵌合により得られた蓄圧器について、縦置きの状態で水圧試験を実施し、得られたひずみ応答性を図4a、及び図4bにて比較した。水圧試験の圧力範囲は、FW成形では、0~150MPaの範囲、嵌合によるものは0~60MPaの範囲とし、サイクル数は3とした。なお、FW成形によるCFRPおよび補強筒体であるCFRPの厚さは10mmとした(以下同様である)。
 試験には、外径約374mm、厚さ29mm、長さ約2700mmのタイプ2用鋼製ライナーを使用した。
 図4a、bには、ひずみの実測値と解析値の双方を載せており、解析値は、CFRP外表面の軸方向および周方向のひずみ値を、FW成形では0~150MPaの範囲で、嵌合によるものは0~50MPaまでの範囲で、それぞれ10MPa刻みにてFEM解析した。
 一方、ひずみの実測値は、CFRPの両端および中央部に2軸のひずみゲージを貼り付け、昇圧/降圧時のひずみ値を採取・集録することにより得た。
Next, with respect to (a) the accumulator obtained by filament winding molding (FW molding) and (b) the accumulator obtained by fitting of this embodiment, a water pressure test was carried out in a vertically placed state. The obtained strain responsiveness was compared in FIGS. 4a and 4b. The pressure range of the water pressure test was 0 to 150 MPa for FW molding, 0 to 60 MPa for fitting, and the number of cycles was 3. In addition, the thickness of CFRP by FW molding and CFRP which is a reinforcing cylinder was set to 10 mm (the same applies hereinafter).
In the test, a steel liner for type 2 having an outer diameter of about 374 mm, a thickness of 29 mm, and a length of about 2700 mm was used.
FIGS. 4a and 4b show both measured values and analytical values of the strain. The analytical values are the strain values in the axial direction and circumferential direction of the outer surface of the CFRP. FEM analysis was performed in increments of 10 MPa each in the range of 0 to 50 MPa.
On the other hand, the measured value of strain was obtained by attaching a biaxial strain gauge to both ends and the center of the CFRP, and collecting and collecting the strain value at the time of pressure increase / decrease.
 図4aに示すように、FW成形により得られた蓄圧器では、内圧を掛けた際にひずみの立ち上がりが悪く、ライナーとCFRPの間に0.2mm程度の隙間を生じていることが分かる。
 一方、図4bに示すように、嵌合で得られた蓄圧器では低圧からひずみは直線性を有しており、かつ解析値とも良い一致を示した。したがって容器本体と補強筒体の双方が荷重分担を果たすことが分かる。
As shown in FIG. 4a, in the accumulator obtained by FW molding, it is understood that the rise of strain is poor when the internal pressure is applied, and a gap of about 0.2 mm is generated between the liner and the CFRP.
On the other hand, as shown in FIG. 4b, in the accumulator obtained by fitting, the strain from the low pressure has linearity, and the analysis value shows a good agreement. Therefore, it turns out that both a container main body and a reinforcement cylinder fulfill | perform load sharing.
 また、FW成形にてライナーに巻きつけて得られたCFRPと、嵌合を実施する前提から完全硬化させたCFRPにつき層間せん断強さ試験を実施し、結果を比較した。試験結果は、図5a、及び図5bに示した。
 FW成形にてライナーに巻きつけて得られたCFRPと、嵌合を実施する前提から完全硬化させたCFRPの端部を小割切断し、得られたCFRPの内表面、外表面から4×8×24mmの試験片を採取した。図5a、及び図5bの棒グラフの数は試験片の数を示す。
 試験は、ASTM D 2344に準拠して行うこととし、試験環境は、温度:23±2℃、相対湿度:(50±5)%RHとした。また、試験速度は1mm/minとし、圧子先端はR3、支持台先端はR1.5、支持台スパンは16mmとした。
In addition, an interlaminar shear strength test was performed on CFRP obtained by wrapping around a liner by FW molding and CFRP completely cured from the premise of fitting, and the results were compared. The test results are shown in FIGS. 5a and 5b.
The CFRP obtained by wrapping around the liner by FW molding and the end portion of CFRP completely cured from the premise of fitting are cut into small pieces, and 4 × 8 from the inner surface and outer surface of the obtained CFRP. A test piece of x24 mm was collected. The numbers of the bar graphs in FIGS. 5a and 5b indicate the number of test pieces.
The test was conducted according to ASTM D 2344, and the test environment was temperature: 23 ± 2 ° C. and relative humidity: (50 ± 5)% RH. The test speed was 1 mm / min, the indenter tip was R3, the support tip was R1.5, and the support span was 16 mm.
 試験結果を比較すると、図5a、及び図5bに示すように、完全硬化させたCFRPの方が明らかに内表面側の層間せん断強さが大きい。以上より、複合容器の特性を発現できて、かつ隙間の無い蓄圧器の施工方法として嵌合は極めて有効である。
 また嵌合によってCFRP施工したタイプ2蓄圧器は、しめしろ比(しめしろ)が正であり、寿命増加にも寄与する。
Comparing the test results, as shown in FIGS. 5a and 5b, the fully cured CFRP clearly has a larger interlayer shear strength on the inner surface side. From the above, fitting is extremely effective as a construction method of a pressure accumulator that can express the characteristics of the composite container and has no gap.
In addition, the type 2 pressure accumulator subjected to CFRP by fitting has a positive interference ratio (interference) and contributes to an increase in life.
 図6は、しめしろを-0.3~+1.0mmとした蓄圧器に、0~300MPaまでの範囲で内圧を掛けた際のライナー内面の応力強さにつきFEM解析したもの(解析ソフト:Ansys)である。
 ライナーは、外径約374mm、厚さ29mmで弾塑性体(二直線近似)、CFRP管は厚さ10mmで繊維含有率60%としている。
 ライナー内面の応力強さは、しめしろを増じるほど減少する。
 すなわち、ライナーに同じ内圧を掛けても、作用する応力が小さくなり、寿命が増加する。
 ここで金属材料の疲労限度(σw0)と引張強さ(σB)には相関があることが知られており、σw0=0.5×σBである。(非特許文献2参照)
 ライナー材はSCM435TKB(T.S=σB=770MPa)ゆえ、疲労限度であるσw0は770×0.5=385と400MPa弱である。
 上記の値(400MPa)は、しめしろを1mm(しめしろ比で2.67に相当)とし、内圧100MPaを付与した場合のライナー内面の応力強さとほぼ一致する。
 従い、しめしろ比が2.67を超えると、水素蓄圧器の使用時にライナーが疲労破壊しなくなると考えられる。
FIG. 6 shows an FEM analysis of the stress intensity on the inner surface of the liner when an internal pressure is applied in the range of 0 to 300 MPa to a pressure accumulator having an interference of −0.3 to +1.0 mm (analysis software: Ansys). ).
The liner has an outer diameter of about 374 mm, a thickness of 29 mm, and an elastic-plastic body (two-line approximation), and the CFRP tube has a thickness of 10 mm and a fiber content of 60%.
The stress intensity on the inner surface of the liner decreases as the interference increases.
That is, even if the same internal pressure is applied to the liner, the acting stress is reduced and the life is increased.
Here, it is known that there is a correlation between the fatigue limit (σw0) and the tensile strength (σB) of the metal material, and σw0 = 0.5 × σB. (See Non-Patent Document 2)
Since the liner material is SCM435 TKB (TS = σB = 770 MPa), the fatigue limit σw0 is 770 × 0.5 = 385, which is slightly less than 400 MPa.
The above value (400 MPa) is approximately equal to the stress intensity of the liner inner surface when the interference is 1 mm (corresponding to an interference ratio of 2.67) and an internal pressure of 100 MPa is applied.
Therefore, when the interference ratio exceeds 2.67, it is considered that the liner does not undergo fatigue failure when the hydrogen pressure accumulator is used.
 一方、図7には、しめしろを-0.3~+1.0mmとした蓄圧器に0~300MPaまでの範囲で内圧を掛けた際のCFRP内面の繊維方向ひずみにつきFEM解析したもの(解析ソフト:Ansys)である。
 ここで、炭素繊維(T710SC)は破断ひずみが1.7%であり、ASME KD-1310によれば、CFRPが破断しないひずみの上限は、上記破断ひずみに対して運転時なら0.4を、耐圧試験時なら0.67を掛けて考えなければならない(非特許文献3参照)。
On the other hand, FIG. 7 shows an FEM analysis of the strain in the fiber direction on the inner surface of the CFRP when an internal pressure is applied in the range of 0 to 300 MPa to an accumulator having an interference of −0.3 to +1.0 mm (analysis software). : Ansys).
Here, the carbon fiber (T710SC) has a breaking strain of 1.7%, and according to ASME KD-1310, the upper limit of the strain at which the CFRP does not break is 0.4 when operating with respect to the breaking strain. In the case of a pressure test, it must be considered by multiplying by 0.67 (see Non-Patent Document 3).
 運転時圧力を100MPa、耐圧試験時の圧力を150MPaとすると、運転時および耐圧試験時にCFRPが破断しないひずみの上限は、それぞれ0.68、1.12である。
 運転時にCFRPがひずみの上限に達していなければ、すなわち、しめしろを1mm以下(しめしろ比は2.67以下)とすれば、CFRPは疲労しない。(非特許文献5および非特許文献5の図6参照)
 逆に、しめしろを1mmを超える(しめしろ比は2.67超)ものとすると、CFRPが運転時に破断してしまい、蓄圧器が複合容器としての特性を失う。
 以上より、しめしろ比の上限値は2.67である。
 一方、しめしろ比の下限値は、定性的には運転時圧力に到達してもライナーがCFRPと接触せず、複合容器としての機能を発現しない値である。
 これは図7においてNo CFRP(ライナーのみ)で得られる曲線から100MPaまで逸脱しないしめしろであり、その値は-0.4mmで、しめしろ比で-1.07に相当する。
Assuming that the operating pressure is 100 MPa and the pressure test is 150 MPa, the upper limits of the strain at which the CFRP does not break during operation and the pressure test are 0.68 and 1.12.
If the CFRP does not reach the upper limit of strain during operation, that is, if the interference is 1 mm or less (interference ratio is 2.67 or less), the CFRP will not fatigue. (Refer to FIG. 6 of Non-Patent Document 5 and Non-Patent Document 5)
On the other hand, if the interference exceeds 1 mm (interference ratio exceeds 2.67), the CFRP breaks during operation, and the pressure accumulator loses its characteristics as a composite container.
From the above, the upper limit value of the interference ratio is 2.67.
On the other hand, the lower limit of the interference ratio is qualitatively a value at which the liner does not come into contact with CFRP even when the operating pressure is reached, and the function as a composite container is not exhibited.
This is an interference that does not deviate up to 100 MPa from the curve obtained with No CFRP (liner only) in FIG. 7, and the value is −0.4 mm, which corresponds to an interference ratio of −1.07.
 以上、本発明について、上記実施形態に基づいて説明を行ったが、本発明は上記実施形態の内容に限定されるものではなく、本発明の範囲を逸脱しない限りは、本実施形態に対する適宜の変更が可能である。 As described above, the present invention has been described based on the above embodiment, but the present invention is not limited to the content of the above embodiment, and is appropriate for the present embodiment without departing from the scope of the present invention. It can be changed.
 本発明によれば、筒形状の容器本体と、容器本体の外周側に配置された補強筒体とを、容器本体の外面と補強筒体の内面が接した状態とすることができ、性能に優れた蓄圧容器及び蓄圧容器の製造方法が提供できる。 According to the present invention, the cylindrical container body and the reinforcing cylinder disposed on the outer peripheral side of the container body can be brought into a state where the outer surface of the container body and the inner surface of the reinforcing cylinder are in contact with each other. An excellent pressure accumulation container and a method for producing the pressure accumulation container can be provided.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2018年2月28日出願の日本特許出願(特願2018-35161)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2018-35161) filed on Feb. 28, 2018, the contents of which are incorporated herein by reference.
 1、1A、1B 容器本体
 1C 蓋
 2 補強筒体
1, 1A, 1B Container body 1C Lid 2 Reinforcing cylinder

Claims (13)

  1.  筒形状の容器本体と、前記容器本体の外周側に配置された補強筒体とを有し、
    前記補強筒体が繊維強化プラスチックを含み、
    前記容器本体は、前記補強筒体の内面に外面が接して配置されている
    蓄圧器。
    A cylindrical container body, and a reinforcing cylinder disposed on the outer peripheral side of the container body,
    The reinforcing cylinder includes fiber reinforced plastic;
    The container main body is an accumulator in which an outer surface is disposed in contact with an inner surface of the reinforcing cylindrical body.
  2.  前記補強筒体は、前記容器本体の外周側に締め付けるような圧縮応力を及ぼしている請求項1に記載の蓄圧器。 The pressure accumulator according to claim 1, wherein the reinforcing cylindrical body exerts a compressive stress that is tightened to an outer peripheral side of the container main body.
  3.  前記繊維強化プラスチックが熱硬化性プラスチックを含む請求項1または2に記載の蓄圧器。 The pressure accumulator according to claim 1 or 2, wherein the fiber reinforced plastic includes a thermosetting plastic.
  4.  前記容器本体は、前記補強筒体の内面に外面が密着して配置されている請求項1~3のいずれか1項に記載の蓄圧器。 The pressure accumulator according to any one of claims 1 to 3, wherein the container body is disposed such that an outer surface thereof is in close contact with an inner surface of the reinforcing cylindrical body.
  5.  前記補強筒体は、内面の平均層間せん断強さが、外面の平均層間せん断強さよりも大きい請求項1~4のいずれか1項に記載の蓄圧器。 The pressure accumulator according to any one of claims 1 to 4, wherein the reinforcing cylinder has an average interlayer shear strength on the inner surface larger than an average interlayer shear strength on the outer surface.
  6.  前記容器本体は、所定の内圧の範囲で、前記容器本体内面に、圧力の増加によって直線的に増加する応力強さを有している請求項1~5のいずれか1項に記載の蓄圧器。 The accumulator according to any one of claims 1 to 5, wherein the container body has a stress intensity that linearly increases with an increase in pressure on the inner surface of the container body within a predetermined internal pressure range. .
  7.  前記内圧の範囲が0~150MPaである請求項6に記載の蓄圧器。 The pressure accumulator according to claim 6, wherein the range of the internal pressure is 0 to 150 MPa.
  8.  100MPa以下の内圧範囲で蓄圧される請求項1~7のいずれか1項に記載の蓄圧器。 The pressure accumulator according to any one of claims 1 to 7, wherein pressure is accumulated in an internal pressure range of 100 MPa or less.
  9.  筒形状の容器本体を冷却し、硬化した補強筒体を前記容器本体の外周側に配置し、前記容器本体の温度復帰によって前記補強筒体を前記容器本体の外周側に嵌合する蓄圧器の製造方法。 A pressure accumulator that cools a cylindrical container body, places a cured reinforcing cylinder on the outer peripheral side of the container main body, and fits the reinforcing cylindrical body on the outer peripheral side of the container main body by returning the temperature of the container main body. Production method.
  10.  前記容器本体は、温度復帰した状態で前記補強筒体の内面に接触している請求項9に記載の蓄圧器の製造方法。 The method for manufacturing a pressure accumulator according to claim 9, wherein the container body is in contact with the inner surface of the reinforcing cylindrical body in a state where the temperature is restored.
  11.  前記冷却前の前記容器本体におけるしめしろ比が、1000分率で、-1.07~2.67である請求項9または10に記載の蓄圧器の製造方法。 The method for manufacturing a pressure accumulator according to claim 9 or 10, wherein an interference ratio in the container main body before the cooling is from -1.07 to 2.67 at 1000 minutes.
  12.  前記冷却では、前記容器本体を常温よりも低い温度に冷却する請求項9~11のいずれか1項に記載の蓄圧器の製造方法。 The method for manufacturing a pressure accumulator according to any one of claims 9 to 11, wherein in the cooling, the container body is cooled to a temperature lower than room temperature.
  13.  前記容器本体を、-190℃~-160℃に冷却する請求項9~12のいずれか1項に記載の蓄圧器の製造方法。 The method for manufacturing a pressure accumulator according to any one of claims 9 to 12, wherein the container body is cooled to -190 ° C to -160 ° C.
PCT/JP2019/007716 2018-02-28 2019-02-27 Pressure accumulator and method for manufacturing pressure accumulator WO2019168078A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018035161A JP2019148325A (en) 2018-02-28 2018-02-28 Pressure accumulator and method for manufacturing pressure accumulator
JP2018-035161 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019168078A1 true WO2019168078A1 (en) 2019-09-06

Family

ID=67806236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007716 WO2019168078A1 (en) 2018-02-28 2019-02-27 Pressure accumulator and method for manufacturing pressure accumulator

Country Status (2)

Country Link
JP (1) JP2019148325A (en)
WO (1) WO2019168078A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7251492B2 (en) * 2020-01-31 2023-04-04 トヨタ自動車株式会社 High-pressure tank manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141109U (en) * 1983-03-11 1984-09-20 ヤンマーディーゼル株式会社 Sealing device for water-cooled exhaust valve seat
JPH09203497A (en) * 1996-01-29 1997-08-05 Mitsubishi Heavy Ind Ltd Manufacture of composite high pressure tank
JP2004324781A (en) * 2003-04-25 2004-11-18 Showa Denko Kk Liner for chemical cylinder and method of manufacturing the same
JP2013015175A (en) * 2011-07-01 2013-01-24 Kyb Co Ltd High-pressure gas container and production method for the same
JP2013043201A (en) * 2011-08-24 2013-03-04 Ihi Corp Method of mounting nozzle adapter and nozzle adapter
JP2015158243A (en) * 2014-02-24 2015-09-03 株式会社日本製鋼所 hydrogen gas accumulator
JP2016089891A (en) * 2014-10-31 2016-05-23 Jfeコンテイナー株式会社 Accumulator and manufacturing method of accumulator
JP2017075746A (en) * 2015-10-16 2017-04-20 株式会社神戸製鋼所 Winding type pressure vessel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141109U (en) * 1983-03-11 1984-09-20 ヤンマーディーゼル株式会社 Sealing device for water-cooled exhaust valve seat
JPH09203497A (en) * 1996-01-29 1997-08-05 Mitsubishi Heavy Ind Ltd Manufacture of composite high pressure tank
JP2004324781A (en) * 2003-04-25 2004-11-18 Showa Denko Kk Liner for chemical cylinder and method of manufacturing the same
JP2013015175A (en) * 2011-07-01 2013-01-24 Kyb Co Ltd High-pressure gas container and production method for the same
JP2013043201A (en) * 2011-08-24 2013-03-04 Ihi Corp Method of mounting nozzle adapter and nozzle adapter
JP2015158243A (en) * 2014-02-24 2015-09-03 株式会社日本製鋼所 hydrogen gas accumulator
JP2016089891A (en) * 2014-10-31 2016-05-23 Jfeコンテイナー株式会社 Accumulator and manufacturing method of accumulator
JP2017075746A (en) * 2015-10-16 2017-04-20 株式会社神戸製鋼所 Winding type pressure vessel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"ADDITIONAL DESIGN REQUIREMENTS FOR COMPSITE REINFORCED PRESSURE VESSELS (CRPV", ASME BPVC, vol. VIII, 7 January 2017 (2017-01-07), pages 154 *

Also Published As

Publication number Publication date
JP2019148325A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
US10837602B2 (en) Hydrogen storage tank
JP6096136B2 (en) Hydrogen gas accumulator
JP5426806B2 (en) Fiber reinforced pressure vessel
EP2433045B1 (en) High pressure storage device and method
US6651307B2 (en) Process for manufacturing a pre-stressed fiber-reinforced high pressure vessel
CN106989265B (en) The manufacturing method of pressure pan
JP7138670B2 (en) improved pressure vessel
US20150292677A1 (en) Method of manufacturing a compressed gas cylinder
CN112344199B (en) Composite pressure vessel with internal load support
US6325108B1 (en) Prestressed composite cryogenic piping
WO2019168078A1 (en) Pressure accumulator and method for manufacturing pressure accumulator
CN109681770B (en) Storage and transportation gas cylinder with fiber wound plastic liner and manufacturing method thereof
US9108366B2 (en) Method of manufacturing and structure of prestressed composite reinforcements
JP6958326B2 (en) How to manufacture high pressure tank
JP7313040B2 (en) High-pressure gas container and its manufacturing method
JP2005113971A (en) Liner for pressure resistant container
JP2020139565A (en) High pressure tank
JP6153085B2 (en) Manufacturing method of high-pressure tank
KR101434150B1 (en) Cryogenic liquid storage tank with composite material reinforcement, composite material reinforcement and fabrication method of composite material reinforcement
CN114556009A (en) Method for producing a pressure vessel and pressure vessel
JP2021085484A (en) Method for manufacturing high-pressure tank
KR20230149215A (en) Tank and manufacturing method for tank
Schulz et al. Assessment of state of residual stress of hybrid pressure vessels
JP2023128141A (en) Apparatus for manufacturing high-pressure tank
Tsaplin et al. Mechanical Behavior of A Metal Composite Vessels Under Pressure At Cryogenic Temperatures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761304

Country of ref document: EP

Kind code of ref document: A1