JP2017075746A - Winding type pressure vessel - Google Patents

Winding type pressure vessel Download PDF

Info

Publication number
JP2017075746A
JP2017075746A JP2015204230A JP2015204230A JP2017075746A JP 2017075746 A JP2017075746 A JP 2017075746A JP 2015204230 A JP2015204230 A JP 2015204230A JP 2015204230 A JP2015204230 A JP 2015204230A JP 2017075746 A JP2017075746 A JP 2017075746A
Authority
JP
Japan
Prior art keywords
pressure vessel
inner cylinder
cylinder
outer cylinder
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015204230A
Other languages
Japanese (ja)
Other versions
JP6395686B2 (en
Inventor
中井 友充
Tomomitsu Nakai
友充 中井
愼 米田
Shin Yoneda
愼 米田
渡邉 克充
Katsumitsu Watanabe
克充 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015204230A priority Critical patent/JP6395686B2/en
Publication of JP2017075746A publication Critical patent/JP2017075746A/en
Application granted granted Critical
Publication of JP6395686B2 publication Critical patent/JP6395686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a winding type pressure vessel capable of easily detecting a defect at an early stage even if the defect such as a crack occurs in a welded joint portion while a reliable complete penetration welding method can be employed for welding connection of tube split pieces.SOLUTION: A pressure vessel body 1 that constituting a winding type pressure vessel 100 according to one embodiment of the invention and that includes: an inner tube 7 formed by weld connection of a plurality of inner tube split pieces 9; and a burner cylinder 8 having a groove 10a on an inner surface externally fitted to the inner tube 7. In a cross section in a circular cylinder axial vertical direction, a welding position 22 of inner tube split pieces 9 and the position of the groove 10a are made to coincide.SELECTED DRAWING: Figure 2

Description

本発明は、ガスまたは液体の圧力媒体で被処理物を加圧処理する等方圧加圧装置などに用いられる大型の圧力容器に関するものである。   The present invention relates to a large pressure vessel used in an isotropic pressure pressurizing apparatus that pressurizes an object to be processed with a gas or liquid pressure medium.

この種の圧力容器には、従来では、例えば下記の特許文献1に記載されたものがある。その従来技術は、次のように構成されている。複数のシリンダーセグメントを溶接接合して円筒形状のシリンダー本体とし、その外周面にスチールバンドを巻回してシリンダー本体に予圧縮力(プレストレス)を付与する。ここで、特許文献1には、複数のシリンダーセグメントを溶接接合した段階で、シリンダーセグメント同士の間にギャップを形成させておき、その後、スチールバンドを巻回して上記ギャップを減少させることが記載されている(最終的にはほとんどまたは完全に消失させる)。これにより、溶接接合部の予圧縮力(プレストレス)を高めている。溶接接合部の予圧縮力(プレストレス)が高まれば、構造的に弱い部分であるセグメント同士の溶接接合部にき裂などの欠陥が発生することを防止できる。   Conventionally, this type of pressure vessel is, for example, described in Patent Document 1 below. The prior art is configured as follows. A plurality of cylinder segments are welded and joined to form a cylindrical cylinder body, and a steel band is wound around the outer peripheral surface to apply a precompression force (prestress) to the cylinder body. Here, Patent Document 1 describes that at the stage where a plurality of cylinder segments are welded together, a gap is formed between the cylinder segments, and then the steel band is wound to reduce the gap. (Eventually disappear almost or completely) Thereby, the precompression force (prestress) of the welded joint is increased. If the precompression force (prestress) of the welded joint is increased, it is possible to prevent the occurrence of defects such as cracks in the welded joint between the segments, which are structurally weak parts.

また、特許文献1には、シリンダーセグメントの継ぎ目に設けた凹部(空洞)からシリンダー本体内の圧力媒体を逃がすことでシリンダー本体内の圧力を減少させて、継ぎ目に発生したき裂の成長を抑えようとする内容が記載されている。   Patent Document 1 discloses that the pressure in the cylinder body is reduced by letting the pressure medium in the cylinder body escape from a recess (cavity) provided at the joint of the cylinder segment, thereby suppressing the growth of cracks generated at the joint. The contents to be described are described.

特許第5694564号公報Japanese Patent No. 5694564

まず、特許文献1に記載のシリンダーセグメント同士の間にギャップを形成させておき、その後、ギャップを減少させることで溶接接合部の予圧縮力(プレストレス)を高めるという方法は、シリンダーセグメント同士の溶接接合面積を小さくせざるを得なくなるという短所を有する。溶接接合面積を小さくすると、溶接の信頼性が損なわれる。なお、最も信頼性の高い溶接は、接続箇所の全領域にわたって隙間なく溶接ビードが入り込む、いわゆる完全溶込溶接(Full penetration weld)である。また、シリンダーセグメント同士の間のギャップ部分では、このギャップがほぼ完全に消失したとしても、圧力媒体の漏れを防ぐことができない。そのため、面積が小さい溶接接合部のみで、圧力媒体の漏れを防ぐことになる。上記した完全溶込溶接(Full penetration weld)を採用した場合には、溶接接合面積が大きくなり、面積が大きい溶接接合部で圧力媒体の漏れを防ぐことができる。   First, a method in which a gap is formed between cylinder segments described in Patent Document 1 and then the pre-compression force (prestress) of the welded joint is increased by reducing the gap is determined between cylinder segments. It has the disadvantage that the welded joint area must be reduced. If the weld joint area is reduced, the reliability of welding is impaired. The most reliable welding is a so-called full penetration weld in which a weld bead enters the entire connection area without any gap. In addition, in the gap portion between the cylinder segments, even if this gap disappears almost completely, the leakage of the pressure medium cannot be prevented. Therefore, leakage of the pressure medium is prevented only with a welded joint having a small area. When the above-described full penetration weld is adopted, the weld joint area becomes large, and leakage of the pressure medium can be prevented at the weld joint having a large area.

また、特許文献1では、シリンダーセグメントの継ぎ目に凹部(空洞)を設けることで、継ぎ目に発生したき裂の成長を抑えようとしているが、継ぎ目における凹部(空洞)の存在は、そもそも構造的に弱い部分であるセグメント同士の継ぎ目(接合部)部分を、構造的により弱くしてしまう。   Further, in Patent Document 1, an attempt is made to suppress the growth of a crack generated at the seam by providing a recess (cavity) at the joint of the cylinder segment. The joint (joint part) between the segments, which are weak parts, is structurally weakened.

なお、圧力容器において溶接接続を用いる場合には、安全性確保のための定期的な検査が必須となる。線巻式圧力容器の場合、圧力容器本体の内側からの溶接接合部の検査は可能であるが、圧力容器本体の外周に巻回された線材の存在により、圧力容器本体の外側からの溶接接合部の検査は難しい。次善の策として、溶接接合部の致命的な破壊の前に、溶接接合部の異常(き裂などの欠陥の発生)をできるだけ早い段階で検知することが望ましい。   In addition, when using a welding connection in a pressure vessel, a periodic inspection for ensuring safety is essential. In the case of wire-wound pressure vessels, it is possible to inspect the welded joint from the inside of the pressure vessel body, but due to the presence of the wire wound around the outer periphery of the pressure vessel body, the welded joint from the outside of the pressure vessel body Inspection of the department is difficult. As a second best measure, it is desirable to detect an abnormality (occurrence of a defect such as a crack) in the welded joint as early as possible before the fatal fracture of the welded joint.

本発明は、上記実情に鑑みてなされたものであり、その目的は、円筒形状の圧力容器本体を、分割された形態の複数の筒分割片が溶接接合されてなるものとした場合に、筒分割片同士の溶接接合に信頼性の高い溶接法である完全溶込溶接を採用することができるとともに、仮にその溶接接合部にき裂などの欠陥が発生したとしても、それを早い段階で容易に検知することができる構造の線巻式圧力容器を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a cylindrical pressure vessel body in which a plurality of divided pieces in a divided form are welded and joined. Full penetration welding, which is a highly reliable welding method, can be used for welded joints between split pieces, and even if a defect such as a crack occurs in the welded joint, it can be easily done at an early stage It is an object of the present invention to provide a wire-wound pressure vessel having a structure that can be detected.

本発明に係る線巻式圧力容器は、円筒形状の圧力容器本体と、前記圧力容器本体の外周に巻回された状態で前記圧力容器本体に予圧縮力を付与する線材とを備える線巻式圧力容器である。前記圧力容器本体は、分割された形態の複数の内筒分割片が溶接接合されてなる内筒と、前記内筒に外挿された内面に溝を有する外筒とを有する。円筒軸垂直方向における断面において、前記内筒分割片同士の溶接位置と前記溝の位置とが一致させられている。   A wire-wound pressure vessel according to the present invention comprises a cylindrical pressure vessel body and a wire-wound type provided with a wire material that applies a precompression force to the pressure vessel body in a state of being wound around the outer periphery of the pressure vessel body. It is a pressure vessel. The pressure vessel main body includes an inner cylinder formed by welding and joining a plurality of divided inner cylinder pieces, and an outer cylinder having a groove on an inner surface that is externally inserted into the inner cylinder. In the cross section in the direction perpendicular to the cylinder axis, the welding position between the inner cylinder divided pieces and the position of the groove are matched.

この構成によると、内筒分割片同士の溶接接合部にき裂などの欠陥が発生し、それが溶接接合部を径方向に少しでも貫通すると、圧力容器本体内から圧力媒体が漏れ、外筒の内面に形成された溝を流れる。この溝を流れる圧力媒体の検知は容易である。そのため、内筒分割片同士の溶接接合部に、き裂などの欠陥が発生したとしても、それを早い段階で容易に検知することができる。また、上記構成によると、内筒分割片同士の溶接接合に信頼性の高い溶接法である完全溶込溶接を採用することができる。   According to this configuration, when a defect such as a crack occurs in the welded joint portion between the inner cylinder divided pieces and penetrates the welded joint in the radial direction even a little, the pressure medium leaks from the inside of the pressure vessel body, and the outer cylinder It flows through a groove formed on the inner surface of. Detection of the pressure medium flowing through this groove is easy. Therefore, even if a defect such as a crack occurs in the welded joint portion between the inner cylinder divided pieces, it can be easily detected at an early stage. Moreover, according to the said structure, complete penetration welding which is a reliable welding method can be employ | adopted for the welding joining of inner cylinder division | segmentation pieces.

また本発明において、前記内筒分割片は、内筒が周方向において分割された形態の断面円弧形状の分割片であり、円筒軸垂直方向における断面において、前記内筒分割片同士の溶接位置と、前記溝の位置と、が周方向において一致していることが好ましい。   Further, in the present invention, the inner cylinder divided piece is an arc-shaped divided piece having a shape in which the inner cylinder is divided in the circumferential direction, and in the cross section in the direction perpendicular to the cylindrical axis, It is preferable that the position of the groove coincides in the circumferential direction.

上記した内筒分割片同士の溶接接合部には、圧力容器本体に導入された圧力媒体により周方向の引張応力が発生する。そのため、この溶接接合部位は、内筒における特に弱い(強度的に弱い)部分、すなわち、き裂などの欠陥が発生し易い部分である。この部位に前記溝の位置を合わせることで圧力媒体の検知を行えるようにしておくことにより、圧力容器の安全性がより高まる。   A tensile stress in the circumferential direction is generated by the pressure medium introduced into the pressure vessel main body at the above-described welded joint portion between the inner cylinder divided pieces. Therefore, this welded part is a particularly weak (strong in strength) part of the inner cylinder, that is, a part where defects such as cracks are likely to occur. By making it possible to detect the pressure medium by aligning the position of the groove with this portion, the safety of the pressure vessel is further increased.

さらに本発明において、前記外筒は、周方向において分割された形態の断面円弧形状の複数の外筒分割片が溶接接合されてなるものであり、円筒軸垂直方向における断面において、前記内筒分割片同士の溶接位置と、前記外筒分割片同士の溶接位置と、が周方向においてずらされていることが好ましい。   Further, in the present invention, the outer cylinder is formed by welding a plurality of outer cylinder division pieces having a circular arc shape in the form of division in the circumferential direction, and the inner cylinder division in the cross section in the direction perpendicular to the cylinder axis. It is preferable that the welding position between the pieces and the welding position between the outer cylinder split pieces are shifted in the circumferential direction.

この構成によると、内筒分割片同士の溶接接合部にき裂などの欠陥が発生して、そこから圧力媒体が漏れた場合に、外筒分割片同士の溶接接合部への圧力媒体の到達を遅くすることができる(外筒の内面に形成された溝を圧力媒体が流れるので、基本的には到達しない)。これは、外筒分割片同士の溶接接合部での欠陥の発生を抑えることに寄与する。   According to this configuration, when a defect such as a crack occurs in the welded joint portion between the inner cylinder divided pieces and the pressure medium leaks therefrom, the pressure medium reaches the welded joint portion between the outer cylinder divided pieces. (The pressure medium flows basically through the groove formed on the inner surface of the outer cylinder, and therefore basically does not reach the groove). This contributes to suppressing the occurrence of defects at the welded joint between the outer cylinder split pieces.

さらに本発明において、圧力媒体検知手段が前記溝に接続されていることが好ましい。この構成によると、外筒の内面に形成された溝を流れる圧力媒体の検知を容易に行うことができる。   Furthermore, in the present invention, it is preferable that the pressure medium detecting means is connected to the groove. According to this configuration, it is possible to easily detect the pressure medium flowing in the groove formed on the inner surface of the outer cylinder.

本発明に係る線巻式圧力容器によれば、筒分割片同士の溶接接合に信頼性の高い溶接法である完全溶込溶接を採用することができるとともに、仮にその溶接接合部にき裂などの欠陥が発生したとしても、それを早い段階で容易に検知することができる。   According to the wire-wound pressure vessel according to the present invention, it is possible to employ complete penetration welding, which is a reliable welding method, for welding and joining the cylindrical divided pieces, and it is assumed that the weld joint is cracked. Even if a defect occurs, it can be easily detected at an early stage.

本発明の一実施形態に係る線巻式圧力容器の縦断面図(図2のB−B断面図)である。It is a longitudinal cross-sectional view (BB sectional drawing of FIG. 2) of the wire wound type pressure vessel which concerns on one Embodiment of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 内筒分割片の斜視図である。It is a perspective view of an inner cylinder division piece. 外筒分割片の斜視図である。It is a perspective view of an outer cylinder division piece.

以下、本発明を実施するための形態について図面を参照しつつ説明する。なお、以下に説明する線巻式圧力容器は、熱間等方圧加圧装置に用いられるのに好適な圧力容器であるが、本発明に係る線巻式圧力容器は、冷間等方圧加圧装置に用いられる圧力容器としても使用することができる。また、被処理物とともに線巻式圧力容器の中に入れられ、当該被処理物を加圧処理するための圧力媒体は、アルゴンなどのガス、水などの液体である。被処理物としては、例えば、金属粉末・セラミック粉末・樹脂粉末、食品などが挙げられる。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The wire-wound pressure vessel described below is a pressure vessel suitable for use in a hot isostatic pressurizing device, but the wire-wound pressure vessel according to the present invention has a cold isotropic pressure. It can also be used as a pressure vessel used in a pressurizing device. Further, a pressure medium that is placed in a wire-wound pressure vessel together with an object to be processed and pressurizes the object to be processed is a gas such as argon or a liquid such as water. Examples of the object to be processed include metal powder, ceramic powder, resin powder, food, and the like.

(線巻式圧力容器の構成)
図1〜3に基づき、本発明の一実施形態に係る線巻式圧力容器100の構成について説明する。線巻式圧力容器100は、被処理物および、圧力媒体としてのガスが入れられる円筒形状の圧力容器本体1と、圧力容器本体1の外周に、張力を付与した線材を巻回してなる線巻層2とを備える。圧力容器本体1の下端開口は下蓋4で閉止され、上端開口は上蓋3で閉止される。圧力容器本体1の上端部には上部ヘッダー5が配置され、下端部には下部ヘッダー6が配置される。
(Configuration of wire wound pressure vessel)
Based on FIGS. 1-3, the structure of the wire wound type pressure vessel 100 which concerns on one Embodiment of this invention is demonstrated. The wire-wound pressure vessel 100 is formed by winding a cylindrical pressure vessel body 1 into which an object to be processed and a gas as a pressure medium are placed, and a wire rod provided with tension around the outer periphery of the pressure vessel body 1. Layer 2. The lower end opening of the pressure vessel body 1 is closed by the lower lid 4, and the upper end opening is closed by the upper lid 3. An upper header 5 is disposed at the upper end of the pressure vessel body 1, and a lower header 6 is disposed at the lower end.

上記した圧力容器本体1は、周方向において分割された形態の断面円弧形状の複数の内筒分割片9が溶接接合されてなる内筒7と、周方向において分割された形態の断面円弧形状の複数の外筒分割片10が溶接接合されてなる外筒8とで構成される。外筒8は内筒7に外挿される。   The pressure vessel main body 1 described above includes an inner cylinder 7 formed by welding a plurality of inner cylinder divided pieces 9 having a cross-sectional arc shape divided in the circumferential direction, and a cross-section arc-shaped shape divided in the circumferential direction. The outer cylinder 8 is formed by welding a plurality of outer cylinder divided pieces 10 together. The outer cylinder 8 is extrapolated to the inner cylinder 7.

内筒分割片9は、平面視で円弧形状、側面視で長方形の金属(例えば炭素鋼)の板材であり、複数の内筒分割片9を周状に組み合わせ、合わせ面を完全溶込溶接で接合して円筒形状の内筒7とされる。同様に、外筒分割片10は、平面視で円弧形状、側面視で長方形の金属(例えば炭素鋼)の板材であり、複数の外筒分割片10を周状に組み合わせ、合わせ面を完全溶込溶接で接合して円筒形状の外筒8とされる。なお、溶接ビードの図示は省略している。   The inner cylinder divided piece 9 is a plate of a metal (for example, carbon steel) that has an arc shape in a plan view and a rectangular shape in a side view (for example, carbon steel), and a plurality of inner cylinder divided pieces 9 are combined in a circumferential shape. A cylindrical inner cylinder 7 is formed by bonding. Similarly, the outer cylinder divided piece 10 is a metal plate (for example, carbon steel) that has an arc shape in a plan view and a rectangular shape in a side view, and a plurality of outer cylinder divided pieces 10 are combined in a circumferential shape to completely melt the mating surfaces. A cylindrical outer cylinder 8 is formed by joint welding. In addition, illustration of a weld bead is abbreviate | omitted.

外筒8の内径は、外筒8を内筒7に外挿できる寸法とされ、具体的には、内筒7の外径と同じ寸法か、または若干大きい寸法とされる。なお、後述する線巻作業の便宜のため、外筒8の内径を、内筒7の外径寸法よりも若干小さい寸法にして、外筒8を内筒7に焼嵌めにて外挿したり、内筒7を外筒8に冷やし嵌めにて内挿したりして、両円筒を線巻作業の前に一体化するのが好ましい。   The inner diameter of the outer cylinder 8 is a dimension that allows the outer cylinder 8 to be extrapolated to the inner cylinder 7, and specifically, is the same dimension as the outer diameter of the inner cylinder 7 or slightly larger. For the convenience of wire winding described later, the inner diameter of the outer cylinder 8 is slightly smaller than the outer diameter of the inner cylinder 7, and the outer cylinder 8 is extrapolated to the inner cylinder 7 by shrink fitting, It is preferable to insert the inner cylinder 7 into the outer cylinder 8 with a cold fit, and to integrate both cylinders before the wire winding operation.

ここで、外筒8を内筒7に嵌め込むに当たり、円筒軸方向Daに延びるように外筒8(外筒分割片10)の内面に形成された溝10aと、同じく円筒軸方向Daに延びる内筒分割片9間の溶接線(内筒分割片9同士の溶接位置22)とを一致させる。換言すれば、円筒軸垂直方向における断面において(図2)、内筒分割片9同士の溶接位置22と、外筒8の内面に形成された溝10aの位置とを周方向Dcにおいて一致させる。なお、焼嵌めや冷やし嵌めを行わない場合は、内筒7に外筒8を外挿し、その後、線巻作業を行うのに先行して、上記したように、外筒8の内面に形成された溝10aと内筒分割片9間の溶接線(内筒分割片9同士の溶接位置22)とを一致させる。   Here, when the outer cylinder 8 is fitted into the inner cylinder 7, a groove 10a formed on the inner surface of the outer cylinder 8 (outer cylinder divided piece 10) so as to extend in the cylindrical axis direction Da, and also extends in the cylindrical axis direction Da. The welding line between the inner cylinder division pieces 9 (the welding position 22 between the inner cylinder division pieces 9) is made to coincide. In other words, in the cross section in the direction perpendicular to the cylinder axis (FIG. 2), the welding position 22 between the inner cylinder divided pieces 9 and the position of the groove 10a formed on the inner surface of the outer cylinder 8 are made to coincide in the circumferential direction Dc. In the case of not performing shrink fitting or cold fitting, the outer cylinder 8 is formed on the inner surface of the outer cylinder 8 as described above prior to extrapolation of the outer cylinder 8 to the inner cylinder 7 and then performing wire winding work. The weld line between the groove 10a and the inner cylinder divided piece 9 (the welding position 22 between the inner cylinder divided pieces 9) is matched.

なお、溝10aの大きさは図2に示される程度のものである必要はない。前記したように、内筒7と外筒8とは一体化するので、内筒7と外筒8との間には微視的な隙間しか存在しない。そのため、図2に示される溝10aよりも小さな溝としてもよい。   It should be noted that the size of the groove 10a need not be as large as shown in FIG. As described above, since the inner cylinder 7 and the outer cylinder 8 are integrated, there is only a microscopic gap between the inner cylinder 7 and the outer cylinder 8. Therefore, it is good also as a groove | channel smaller than the groove | channel 10a shown by FIG.

内筒分割片9間の上記した溶接線(内筒分割片9同士の溶接位置22)と、円筒軸方向Daに延びる外筒分割片10間の溶接線(外筒分割片10同士の溶接位置23)とは一致せずにずらされる。すなわち、円筒軸垂直方向における断面において(図2)、内筒分割片9同士の溶接位置22と、外筒分割片10同士の溶接位置23とは周方向Dcにおいてずらされる。   The above-described weld line between the inner cylinder divided pieces 9 (weld position 22 between the inner cylinder divided pieces 9) and the weld line between the outer cylinder divided pieces 10 extending in the cylindrical axial direction Da (weld position between the outer cylinder divided pieces 10). 23) is shifted without matching. That is, in the cross section in the direction perpendicular to the cylindrical axis (FIG. 2), the welding position 22 between the inner cylinder divided pieces 9 and the welding position 23 between the outer cylinder divided pieces 10 are shifted in the circumferential direction Dc.

本実施形態では、半円形状の溝10aとされているが、溝10aの形状はこれに限られることはない。但し、応力集中しないように、全体が滑らかな曲面とされた溝であることが好ましい。   In the present embodiment, the semicircular groove 10a is used, but the shape of the groove 10a is not limited to this. However, it is preferable that the groove has a smooth curved surface as a whole so as not to concentrate stress.

内筒7が嵌め込まれた外筒8の外周面には、板状の長尺のスペーサ11が周方向Dcにおいて一定間隔で配置される。なお、スペーサは棒状のものであってもよい。   On the outer peripheral surface of the outer cylinder 8 in which the inner cylinder 7 is fitted, plate-like long spacers 11 are arranged at regular intervals in the circumferential direction Dc. The spacer may be rod-shaped.

圧力容器本体1を構成する外筒8の外周には、複数の上記したスペーサ11を間に挟んで、張力を付与したピアノ線(線材、不図示)が巻回される(線巻作業)。これにより、線巻層2が形成される。ピアノ線は、例えば平形ピアノ線である。ピアノ線へ付与する張力は、設計上予定される所定の圧縮残留応力が内筒7および外筒8に線巻作業終了時に生ずるように予め計算により決められる。   A tensioned piano wire (wire material, not shown) is wound around the outer periphery of the outer cylinder 8 constituting the pressure vessel main body 1 with a plurality of the spacers 11 interposed therebetween (wire winding operation). Thereby, the wire wound layer 2 is formed. The piano wire is, for example, a flat piano wire. The tension applied to the piano wire is determined in advance by calculation so that a predetermined compressive residual stress that is planned in design is generated in the inner cylinder 7 and the outer cylinder 8 at the end of the wire winding operation.

線巻作業終了後は、内筒7および外筒8に十分な圧縮残留応力が生じている。そのため、例えば線巻作業前の寸法として、外筒8の内径を、内筒7の外径よりも大きい寸法とした場合でも、線巻作業終了後は、内筒7と外筒8との間の隙間は消滅して両円筒は一体化する。   After completion of the wire winding operation, sufficient compressive residual stress is generated in the inner cylinder 7 and the outer cylinder 8. Therefore, for example, even when the inner diameter of the outer cylinder 8 is larger than the outer diameter of the inner cylinder 7 as a dimension before the wire winding work, after the wire winding work is finished, the gap between the inner cylinder 7 and the outer cylinder 8 is increased. The gap disappears and both cylinders are integrated.

複数の上記したスペーサ11の存在により、外筒8と線巻層2との間には冷却水路21が形成される。冷却水路21は、外筒8と線巻層2とスペーサ11とで区画された空間であり、円筒軸方向Daに沿って複数の冷却水路21が形成される。ここで、上部ヘッダー5には、冷却水の導入水路5a、および円環状のヘッダー水路5bが形成され、下部ヘッダー6には、冷却水の排出水路6a、および円環状の集水水路6bが形成されている。上部ヘッダー5に形成された導入水路5aからの冷却水は、ヘッダー水路5b、複数の冷却水路21、および集水水路6bをこの順で流れた後、排出水路6aから排出される。   Due to the presence of the plurality of spacers 11 described above, a cooling water channel 21 is formed between the outer cylinder 8 and the wire winding layer 2. The cooling water channel 21 is a space defined by the outer cylinder 8, the wire wound layer 2, and the spacer 11, and a plurality of cooling water channels 21 are formed along the cylindrical axial direction Da. Here, the upper header 5 is formed with a cooling water introduction water channel 5a and an annular header water channel 5b, and the lower header 6 is formed with a cooling water discharge water channel 6a and an annular water collecting channel 6b. Has been. The cooling water from the introduction water channel 5a formed in the upper header 5 flows through the header water channel 5b, the plurality of cooling water channels 21, and the collecting water channel 6b in this order, and then is discharged from the discharge water channel 6a.

また、詳しくは後述するが、外筒8の内面に形成された円筒軸方向Daに延びる溝10aは、内筒7と外筒8とが一体化することで確固としたガス漏れ検知溝となる。溝10a(ガス漏れ検知溝)は、下部ヘッダー6に形成された円環状の集ガス溝6cに連通しており、圧力媒体検知手段としてのガス漏れ検知器13が、ガス漏れ検知配管12および集ガス溝6cを介して溝10aに接続されている。   As will be described in detail later, the groove 10a formed in the inner surface of the outer cylinder 8 and extending in the cylindrical axial direction Da becomes a firm gas leak detection groove when the inner cylinder 7 and the outer cylinder 8 are integrated. . The groove 10a (gas leak detection groove) communicates with an annular gas collection groove 6c formed in the lower header 6. A gas leak detector 13 as a pressure medium detection means is connected to the gas leak detection pipe 12 and the gas collection pipe. It is connected to the groove 10a through the gas groove 6c.

(圧力容器の構造的に弱い部位)
圧力容器本体1内の圧力がゼロ(常圧)の状態では、線巻層2(ピアノ線)からの予圧縮力で周方向Dcの圧縮残留応力が内筒7および外筒8に生じているが、圧力容器本体1内への圧力媒体(ガス)導入により、内筒7および外筒8には周方向Dcの引張応力が発生する。圧力容器本体1内を昇圧していくと、これに伴い引張応力が大きくなっていき、圧縮残留応力は小さくなっていく。やがて、ガス圧による引張応力により圧縮残留応力は相殺され、最終的には、内筒7および外筒8は引張応力が作用した状態となる。圧力容器本体1内から圧力媒体(ガス)を抜くと、内筒7および外筒8は圧縮残留応力が作用した状態に戻る。このように、圧力媒体(ガス)の導入、排出により、内筒7および外筒8には、圧縮応力と引張応力とは交互に作用することになる。
(Structure weak part of pressure vessel)
When the pressure in the pressure vessel main body 1 is zero (normal pressure), compressive residual stress in the circumferential direction Dc is generated in the inner cylinder 7 and the outer cylinder 8 by the precompression force from the wire winding layer 2 (piano wire). However, when the pressure medium (gas) is introduced into the pressure vessel body 1, tensile stress in the circumferential direction Dc is generated in the inner cylinder 7 and the outer cylinder 8. As the pressure vessel body 1 is pressurized, the tensile stress increases and the compressive residual stress decreases. Eventually, the compressive residual stress is canceled by the tensile stress due to the gas pressure, and finally, the inner cylinder 7 and the outer cylinder 8 are in a state where the tensile stress is applied. When the pressure medium (gas) is extracted from the pressure vessel main body 1, the inner cylinder 7 and the outer cylinder 8 return to the state in which the compressive residual stress is applied. Thus, compressive stress and tensile stress act alternately on the inner cylinder 7 and the outer cylinder 8 by the introduction and discharge of the pressure medium (gas).

この場合、材料力学で明らかなように、円筒の内側ほど応力振幅が大きくなるので、内筒7と外筒8とを比べると、内筒7のほうが外筒8よりも応力振幅が大きくなる。線巻層2は、もとより大きな引張応力下にあり、圧力容器本体1内への圧力媒体(ガス)の導入、排出の間も引張応力下で応力が振幅するが、その応力振幅の大きさは、内筒7および外筒8よりも小さい。また、ピアノ線は、両円筒の材料である一般的な炭素鋼よりも強度は格段に大きい。また、内筒7は、高圧の圧力媒体と直接接触する。これらより、圧力容器の安全性の観点から最もクリティカルな部材は内筒7であり、内筒7の各部のうちの溶接接合部(内筒分割片9同士の溶接接合部)が最弱部位である。   In this case, as apparent from the material mechanics, the stress amplitude increases toward the inner side of the cylinder. Therefore, when the inner cylinder 7 and the outer cylinder 8 are compared, the inner cylinder 7 has a greater stress amplitude than the outer cylinder 8. The wire wound layer 2 is originally under a large tensile stress, and the stress is amplified under the tensile stress during the introduction and discharge of the pressure medium (gas) into the pressure vessel main body 1, but the magnitude of the stress amplitude is as follows. It is smaller than the inner cylinder 7 and the outer cylinder 8. Moreover, the strength of the piano wire is much higher than that of a general carbon steel that is a material of both cylinders. Further, the inner cylinder 7 is in direct contact with a high pressure medium. From these, the most critical member from the viewpoint of the safety of the pressure vessel is the inner cylinder 7, and the welded joint (the welded joint between the inner cylinder divided pieces 9) in each part of the inner cylinder 7 is the weakest part. is there.

(内筒の継ぎ目(内筒分割片9同士の溶接接合部)にき裂が発生した場合)
線巻式圧力容器100では、特許文献1に記載の圧力容器の構造のようにセグメント同士の間にギャップを形成しないため、各筒分割片9,10のそれぞれの溶接接合に、信頼性の高い溶接法である完全溶込溶接を採用することができる。
(When a crack occurs at the joint of the inner cylinder (welded joint between the inner cylinder split pieces 9))
In the wire-wound pressure vessel 100, a gap is not formed between the segments as in the structure of the pressure vessel described in Patent Document 1, and therefore, the welded joint of each of the divided pieces 9 and 10 is highly reliable. Full penetration welding, which is a welding method, can be employed.

万が一、内筒7を構成する内筒分割片9同士の溶接接合部にき裂が発生し、疲労現象によりき裂が成長して内筒7を径方向に貫通したとしても、内筒7よりも作用する応力振幅が小さい外筒8は健常に保たれやすい。そのため、内筒7と外筒8との間にガス漏れが生じたとしても、圧力容器本体1は円筒胴としてのその形状を保つことができる。すなわち、圧力容器本体1を2層化(複数層化)したことにより、2層(複数層)同時に致命的な欠陥が生じる確率は低くなる。   Even if a crack occurs in the welded joint portion between the inner cylinder split pieces 9 constituting the inner cylinder 7 and the crack grows due to a fatigue phenomenon and penetrates the inner cylinder 7 in the radial direction, the inner cylinder 7 The outer cylinder 8 having a small stress amplitude acting also is easily kept healthy. Therefore, even if a gas leak occurs between the inner cylinder 7 and the outer cylinder 8, the pressure vessel main body 1 can maintain its shape as a cylindrical cylinder. That is, by making the pressure vessel body 1 into two layers (a plurality of layers), the probability that a fatal defect occurs simultaneously in the two layers (a plurality of layers) is reduced.

また、内筒分割片9間の溶接線に沿って外筒8の内面に溝10aが設けられているため、内筒7の溶接接合部から漏れたガス(圧力媒体)は、この溝10aを通ってガス漏れ検知器13に達し、これにより、内筒7の溶接接合部でのき裂の発生を早い段階で容易に検知することができる。   Further, since the groove 10a is provided on the inner surface of the outer cylinder 8 along the weld line between the inner cylinder divided pieces 9, gas (pressure medium) leaking from the welded joint portion of the inner cylinder 7 passes through the groove 10a. Through this, the gas leak detector 13 is reached, whereby the occurrence of a crack at the welded joint portion of the inner cylinder 7 can be easily detected at an early stage.

また、内筒7の強度確保を考慮しても、溝10aは、一体化されている内筒7と外筒8との間の微視的な隙間に比して十分大きな空間断面積を有するものとすることができる。そのため、内筒7の溶接接合部から漏れたガスは、内筒7と外筒8との間の隙間にはほぼ入り込まず、ほとんどのガスが溝10aを流れる。よって、き裂が小さい段階での微量のガス漏れをガス漏れ検知器13にて検出することができる。   Further, considering the securing of the strength of the inner cylinder 7, the groove 10 a has a sufficiently large space sectional area as compared with the microscopic gap between the integrated inner cylinder 7 and the outer cylinder 8. Can be. For this reason, the gas leaking from the welded joint portion of the inner cylinder 7 hardly enters the gap between the inner cylinder 7 and the outer cylinder 8, and most of the gas flows through the groove 10a. Therefore, a small amount of gas leakage at a stage where the crack is small can be detected by the gas leakage detector 13.

(その他の作用・効果)
また、外筒8と線巻層2との間に冷却水路21を設けたことにより、熱間等方圧加圧のように内部を高温に保つ用途に線巻式圧力容器100が用いられる場合でも、冷却水路21に冷却水を流すことで、圧力容器本体1の温度を安全な温度範囲に保つことができる。
(Other functions / effects)
Further, when the cooling water passage 21 is provided between the outer cylinder 8 and the wire wound layer 2, the wire wound pressure vessel 100 is used for the purpose of keeping the inside at a high temperature like hot isostatic pressing. However, the temperature of the pressure vessel body 1 can be kept in a safe temperature range by flowing the cooling water through the cooling water passage 21.

また、圧力容器本体1を2層化(複数層化)したことで、圧力容器の安全性の観点からの最もクリティカルな部材である内筒7は、冷却水と接触しない構造となる。そのため、冷却水により内筒7が錆びたり腐食したりすることはない。   In addition, since the pressure vessel main body 1 has two layers (a plurality of layers), the inner cylinder 7 that is the most critical member from the viewpoint of safety of the pressure vessel has a structure that does not come into contact with the cooling water. Therefore, the inner cylinder 7 is not rusted or corroded by the cooling water.

(変形例)
上記した実施形態では、外筒8と線巻層2との間にスペーサ11を配置して冷却水路21を設けているが、スペーサ11を配置せずに外筒8の外周面に線材(例えばピアノ線)を直接巻回して線巻層2を形成してもよい。冷間等方圧加圧の場合には、圧力容器本体1内の温度は常温であり、この場合には冷却水路21(冷却水)は不要である。
(Modification)
In the above-described embodiment, the spacer 11 is disposed between the outer cylinder 8 and the wire winding layer 2 to provide the cooling water channel 21, but a wire rod (for example, on the outer peripheral surface of the outer cylinder 8 without the spacer 11 being disposed). The wire winding layer 2 may be formed by directly winding a piano wire. In the case of cold isostatic pressurization, the temperature in the pressure vessel main body 1 is normal temperature, and in this case, the cooling water passage 21 (cooling water) is unnecessary.

また上記した実施形態では、平面視で円弧形状、側面視で長方形の内筒分割片9としたことにより、隣り合う内筒分割片9間の溶接線、およびこれに位置を合わせた外筒8の内面に形成した溝10aは、円筒軸方向Daに延びている。この構造に代えて、例えば、平面視で円弧形状、側面視で平行四辺形の内筒分割片などとしてもよい(外筒分割片10についても同様)。この場合、隣り合う内筒分割片間の溶接線、およびこれに位置を合わせた外筒8の内面に形成する溝は、円筒軸方向Daに対して斜めに延びることとなる。   In the above-described embodiment, the inner cylinder divided piece 9 having a circular arc shape in a plan view and a rectangular shape in a side view has a weld line between adjacent inner cylinder divided pieces 9 and an outer cylinder 8 aligned with the weld line. The groove 10a formed on the inner surface of the cylinder extends in the cylindrical axial direction Da. Instead of this structure, for example, an inner cylinder divided piece having a circular arc shape in a plan view and a parallelogram in a side view may be used (the same applies to the outer cylinder divided piece 10). In this case, the weld line between the adjacent inner cylinder divided pieces and the groove formed on the inner surface of the outer cylinder 8 aligned with this will extend obliquely with respect to the cylindrical axis direction Da.

また上記した実施形態では、周方向Dcにおいて、内筒7および外筒8をそれぞれ分割した形態としているが、円筒軸方向Daにおいて、両円筒7,8をそれぞれ分割した形態とし、分割された部材同士を完全溶込溶接などで溶接接合してもよい。この場合、筒分割片は、円環形状の分割片となる。   In the above-described embodiment, the inner cylinder 7 and the outer cylinder 8 are each divided in the circumferential direction Dc. However, both the cylinders 7 and 8 are divided in the cylindrical axis direction Da, and the divided members are used. You may weld-join each other by complete penetration welding. In this case, the tubular segment is an annular segment.

この場合、内側の内筒7に関し、円筒軸垂直方向(円筒軸方向Daに対して直交する方向)に延びる円形の継ぎ目について、そこからのガス(圧力媒体)漏れを検知できるように、円筒軸垂直方向における断面において、円筒軸垂直方向に延びる上記継ぎ目(溶接接合部)の位置と一致するように外筒8の内面に溝を設けることになる。   In this case, with respect to the inner inner cylinder 7, the cylinder shaft so that gas (pressure medium) leakage from the circular seam extending in the direction perpendicular to the cylinder axis (direction perpendicular to the cylinder axis direction Da) can be detected. In the cross section in the vertical direction, a groove is provided on the inner surface of the outer cylinder 8 so as to coincide with the position of the seam (weld joint) extending in the vertical direction of the cylinder axis.

このように、内筒7を構成する内筒分割片は、内筒7が周方向Dcにおいて分割された断面円弧形状の形態の分割片であってもよいし、円筒軸方向Daにおいて分割された円環形状の形態の分割片であってもよい(外筒8についても同様)。   Thus, the inner cylinder divided piece constituting the inner cylinder 7 may be a divided piece having a circular arc shape in which the inner cylinder 7 is divided in the circumferential direction Dc, or is divided in the cylindrical axial direction Da. It may be a split piece in the form of a ring (the same applies to the outer cylinder 8).

その他に、当業者が想定できる範囲で種々の変更を行えることは勿論である。   In addition, it is needless to say that various modifications can be made within a range that can be assumed by those skilled in the art.

1:圧力容器本体
2:線巻層
3:上蓋
4:下蓋
5:上部ヘッダー
6:下部ヘッダー
7:内筒
8:外筒
9:内筒分割片
10:外筒分割片
10a:溝
11:スペーサ
12:ガス漏れ検知配管
13:ガス漏れ検知器(圧力媒体検知手段)
21:冷却水路
22,23:溶接位置
100:線巻式圧力容器
1: Pressure vessel body 2: Wire winding layer 3: Upper lid 4: Lower lid 5: Upper header 6: Lower header 7: Inner cylinder 8: Outer cylinder 9: Inner cylinder divided piece 10: Outer cylinder divided piece 10a: Groove 11: Spacer 12: Gas leak detection pipe 13: Gas leak detector (pressure medium detection means)
21: Cooling water channel 22, 23: Welding position 100: Wire-wound pressure vessel

Claims (4)

円筒形状の圧力容器本体と、
前記圧力容器本体の外周に巻回された状態で前記圧力容器本体に予圧縮力を付与する線材と、
を備える線巻式圧力容器であって、
前記圧力容器本体は、
分割された形態の複数の内筒分割片が溶接接合されてなる内筒と、
前記内筒に外挿された、内面に溝を有する外筒と、
を有し、
円筒軸垂直方向における断面において、前記内筒分割片同士の溶接位置と、前記溝の位置とが一致していることを特徴とする、線巻式圧力容器。
A cylindrical pressure vessel body;
A wire rod that imparts a precompression force to the pressure vessel body in a state wound around the outer periphery of the pressure vessel body;
A wire wound pressure vessel comprising:
The pressure vessel body is
An inner cylinder formed by welding and joining a plurality of divided pieces of the inner cylinder;
An outer cylinder externally inserted into the inner cylinder and having a groove on the inner surface;
Have
A wire-wound pressure vessel characterized in that, in a cross section in a direction perpendicular to the cylinder axis, a welding position between the inner cylinder divided pieces and a position of the groove coincide with each other.
請求項1に記載の線巻式圧力容器において、
前記内筒分割片は、内筒が周方向において分割された形態の断面円弧形状の分割片であり、
円筒軸垂直方向における断面において、前記内筒分割片同士の溶接位置と、前記溝の位置と、が周方向において一致していることを特徴とする、線巻式圧力容器。
The wire wound pressure vessel according to claim 1,
The inner cylinder divided piece is a divided piece having a circular arc cross section in a form in which the inner cylinder is divided in the circumferential direction,
A wire wound pressure vessel characterized in that, in a cross section in a direction perpendicular to the cylinder axis, a welding position between the inner cylinder divided pieces and a position of the groove coincide with each other in the circumferential direction.
請求項2に記載の線巻式圧力容器において、
前記外筒は、周方向において分割された形態の断面円弧形状の複数の外筒分割片が溶接接合されてなるものであり、
円筒軸垂直方向における断面において、前記内筒分割片同士の溶接位置と、前記外筒分割片同士の溶接位置と、が周方向においてずらされていることを特徴とする、線巻式圧力容器。
The wire wound pressure vessel according to claim 2,
The outer cylinder is formed by welding and joining a plurality of outer cylinder divided pieces having a cross-sectional arc shape divided in the circumferential direction,
A wire wound pressure vessel characterized in that a welding position between the inner cylinder divided pieces and a welding position between the outer cylinder divided pieces are shifted in the circumferential direction in a cross section in a direction perpendicular to the cylindrical axis.
請求項1〜3のいずれかに記載の線巻式圧力容器において、
圧力媒体検知手段が前記溝に接続されていることを特徴とする、線巻式圧力容器。
In the wire wound pressure vessel according to any one of claims 1 to 3,
A wire-wound pressure vessel, characterized in that a pressure medium detecting means is connected to the groove.
JP2015204230A 2015-10-16 2015-10-16 Wire wound pressure vessel Active JP6395686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015204230A JP6395686B2 (en) 2015-10-16 2015-10-16 Wire wound pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015204230A JP6395686B2 (en) 2015-10-16 2015-10-16 Wire wound pressure vessel

Publications (2)

Publication Number Publication Date
JP2017075746A true JP2017075746A (en) 2017-04-20
JP6395686B2 JP6395686B2 (en) 2018-09-26

Family

ID=58550105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015204230A Active JP6395686B2 (en) 2015-10-16 2015-10-16 Wire wound pressure vessel

Country Status (1)

Country Link
JP (1) JP6395686B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109014812A (en) * 2018-08-06 2018-12-18 朱宇柔 A kind of cold isostatic press cylinder body assembling equipment
WO2019168078A1 (en) * 2018-02-28 2019-09-06 株式会社日本製鋼所 Pressure accumulator and method for manufacturing pressure accumulator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109576000B (en) * 2019-01-17 2020-05-15 南京工业大学 Gasifier cylinder with novel structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194328A (en) * 1981-05-26 1982-11-29 Ishikawajima Harima Heavy Ind Co Ltd Leak testing method for weld zone
JPS63106583U (en) * 1986-12-26 1988-07-09
JPS63116702U (en) * 1987-01-21 1988-07-28
JPH02192589A (en) * 1989-01-20 1990-07-30 Kobe Steel Ltd Static hydraulic hot press device
JPH0387196U (en) * 1989-12-22 1991-09-04
JPH05157653A (en) * 1991-12-04 1993-06-25 Nkk Corp Welded part airtight test structure
JP2009162443A (en) * 2008-01-08 2009-07-23 Kobe Steel Ltd Winding type pressure vessel
JP2010091172A (en) * 2008-10-07 2010-04-22 Kobe Steel Ltd Wire-wound type pressure vessel
JP2014505213A (en) * 2011-01-07 2014-02-27 アブーレ・テクノロジーズ・エービー Reduction of residual stress in welding

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194328A (en) * 1981-05-26 1982-11-29 Ishikawajima Harima Heavy Ind Co Ltd Leak testing method for weld zone
JPS63106583U (en) * 1986-12-26 1988-07-09
JPS63116702U (en) * 1987-01-21 1988-07-28
JPH02192589A (en) * 1989-01-20 1990-07-30 Kobe Steel Ltd Static hydraulic hot press device
JPH0387196U (en) * 1989-12-22 1991-09-04
JPH05157653A (en) * 1991-12-04 1993-06-25 Nkk Corp Welded part airtight test structure
JP2009162443A (en) * 2008-01-08 2009-07-23 Kobe Steel Ltd Winding type pressure vessel
JP2010091172A (en) * 2008-10-07 2010-04-22 Kobe Steel Ltd Wire-wound type pressure vessel
JP2014505213A (en) * 2011-01-07 2014-02-27 アブーレ・テクノロジーズ・エービー Reduction of residual stress in welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168078A1 (en) * 2018-02-28 2019-09-06 株式会社日本製鋼所 Pressure accumulator and method for manufacturing pressure accumulator
CN109014812A (en) * 2018-08-06 2018-12-18 朱宇柔 A kind of cold isostatic press cylinder body assembling equipment

Also Published As

Publication number Publication date
JP6395686B2 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
JP6395686B2 (en) Wire wound pressure vessel
US9873165B2 (en) Piston rod manufacturing method
US9909695B2 (en) Joint lock ring system for lined pipes
JP5466387B2 (en) Wire wound pressure vessel
JP5694564B2 (en) Reduction of residual stress in welding
CN102712061B (en) Double-walled pipe, method for manufacturing double-walled pipe, and vapor generator
TWI551388B (en) An inner sleeve for tube welding
US4893944A (en) Non-destructive method of testing a weld obtained by pressure welding two metal parts
JP2011131252A (en) Method for improving residual stress of piping
CN107002914B (en) Fluid conduit element and method for forming a fluid conduit element
CN101504090A (en) Bellows welding member and welding method
WO2001074669A2 (en) A fusion welded liquefiable gas cylindrical vessel
JP5877097B2 (en) Flaw detection method for clamp type pipe joint
JP6404754B2 (en) Steel pipe repair method
CN111318851B (en) Repair method for fillet weld of manhole neck joint of pressure vessel in nuclear power plant
JP2012000659A (en) Method for manufacturing welded structure and welded structure
US8316905B2 (en) Press and a method for manufacturing a press
JP6071867B2 (en) Repair welding method and repair weld structure of welded part
US11872663B2 (en) Repair welding method
JP5896933B2 (en) How to repair welds
JPS6065957A (en) Multilayer pressurized casing
Gough et al. Fitness for Service of Layered Multiwalled Design Vessels
RU2215234C1 (en) High-pressure bottle and method of its manufacture
JP2009162443A (en) Winding type pressure vessel
JP2017087217A (en) Welding method and welding part inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180828

R150 Certificate of patent or registration of utility model

Ref document number: 6395686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150