WO2019167876A1 - Optical filter and device using optical filter - Google Patents

Optical filter and device using optical filter Download PDF

Info

Publication number
WO2019167876A1
WO2019167876A1 PCT/JP2019/007035 JP2019007035W WO2019167876A1 WO 2019167876 A1 WO2019167876 A1 WO 2019167876A1 JP 2019007035 W JP2019007035 W JP 2019007035W WO 2019167876 A1 WO2019167876 A1 WO 2019167876A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin
optical filter
compound
organic pigment
Prior art date
Application number
PCT/JP2019/007035
Other languages
French (fr)
Japanese (ja)
Inventor
武志 茂木
嘉彦 安藤
達郎 三井
勝也 長屋
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to CN201980011899.8A priority Critical patent/CN111684320B/en
Priority to JP2020503489A priority patent/JP7207395B2/en
Priority to KR1020207024301A priority patent/KR20200125604A/en
Publication of WO2019167876A1 publication Critical patent/WO2019167876A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present invention relates to an optical filter and an apparatus using the optical filter. Specifically, the present invention relates to an optical filter containing an organic pigment having absorption in a specific wavelength region, and a solid-state imaging device and a camera module using the optical filter.
  • a solid-state imaging device such as a video camera, a digital still camera, or a mobile phone with a camera function uses a CCD or CMOS image sensor, which is a solid-state imaging device for color images.
  • CCD or CMOS image sensor silicon photodiodes having sensitivity to near infrared rays that cannot be sensed by human eyes at the light receiving portion are used.
  • These solid-state image sensors need to be corrected for visibility so that they appear natural to the human eye.
  • Optical filters that selectively transmit or cut light in a specific wavelength region (for example, near-infrared cut) Filter) is often used.
  • a near-infrared cut filter those manufactured by various methods are conventionally used.
  • a near-infrared cut filter in which a transparent resin is used as a substrate and a near-infrared absorbing pigment is contained in the transparent resin is known (see, for example, Patent Document 1).
  • the near-infrared cut filter described in Patent Document 1 may not always have sufficient near-infrared absorption characteristics.
  • Patent Document 2 the present applicant uses a transparent resin substrate containing a near-infrared absorbing dye having an absorption maximum in a specific wavelength region, so that there is little change in optical characteristics even when the incident angle is changed, and A near-infrared cut filter having a high visible light transmittance is proposed.
  • Patent Document 3 discloses a near-infrared ray that uses a phthalocyanine dye having a specific structure to achieve both a high visible light transmittance and a long absorption maximum wavelength, both of which are conventional problems. It is described that a cut filter can be obtained.
  • the applied base material has a sufficiently strong absorption band in the vicinity of 700 nm, but in the near-infrared wavelength region of, for example, 900 to 1200 nm. Has almost no absorption. Therefore, light in the near-infrared wavelength region is cut almost only by the reflection of the dielectric multilayer film, but with such a configuration, slight stray light due to internal reflection in the optical filter and reflection between the optical filter and the lens is generated. When shooting in a dark environment, it may cause ghost and flare. In particular, in recent years, there has been a strong demand for high-quality cameras even for mobile devices such as smartphones, and conventional optical filters may not be used favorably.
  • an infrared shielding filter as in Patent Document 4 has been proposed as an optical filter using a base material having a wide absorption in the near infrared wavelength region.
  • a broad absorption in the near-infrared wavelength region is achieved mainly by applying a compound having a dithiolene structure, but the absorption intensity near 700 nm is not sufficient.
  • image degradation may occur due to color shading.
  • Patent Document 5 discloses a near-infrared cut filter having a near-infrared absorbing glass base material and a layer containing a near-infrared absorbing dye, but the color shading is sufficiently improved even with the configuration described in Patent Document 5. There was a case that could not be done.
  • FIG. 5 of Patent Document 5 shows an optical characteristic graph at 0 ° incidence and at 30 ° incidence, but the region of the skirt portion of the visible light transmission band (630 to 700 nm) even at 30 ° incidence. ) A large wavelength shift is observed.
  • the present inventors have examined the use of a dye having an absorption maximum in the near-infrared wavelength region of 900 to 1200 nm for the optical filter.
  • a dye having an absorption maximum in the near-infrared wavelength region of 900 to 1200 nm for the optical filter.
  • the above dyes sometimes have a problem of deterioration in optical properties due to low heat resistance and UV resistance.
  • the near-infrared absorptance in the 900 to 1200 nm wavelength region and the 430 to 580 nm wavelength region due to the deterioration of the pigment.
  • the desired spectral characteristics cannot be obtained. Therefore, it is important to improve heat resistance and UV resistance of a dye having an absorption maximum at 900 to 1200 nm.
  • Patent Documents 6 and 7 As a method for improving the heat resistance and UV resistance of the above-mentioned pigment, for example, a method using a pigment as a pigment (particle dispersed state) instead of a dye (dissolved state) is known (for example, Patent Documents 6 and 7). .
  • a near-infrared cut filter using a diimonium dye having a problem of heat resistance is used by dissolving the dye in a dispersion medium (toluene) and then dispersing it in a resin (dye).
  • the present invention achieves high levels of both color shading suppression and ghost suppression of camera images and transmittance characteristics in the visible light wavelength region, which could not be sufficiently achieved by conventional optical filters, and is exposed to high temperatures for a long time. It is an object of the present invention to provide an optical filter having good heat resistance that can maintain optical characteristics even in such a case.
  • the substrate has a layer containing an organic pigment having an absorption maximum in a specific wavelength region, and on at least one surface of the substrate.
  • a dielectric multilayer film By forming a dielectric multilayer film, it is possible to obtain an optical filter that can achieve near infrared cut characteristics, visible light transmittance, color shading suppression effect and ghost suppression effect while maintaining the transmittance in the visible light region. I found it.
  • the present inventors can obtain an optical filter excellent in heat resistance by maintaining the haze value at a very low level by making the organic pigment fine particles and making the average particle diameter in a specific range. I found. Examples of embodiments of the present invention completed based on these findings are shown below.
  • An optical filter having a base material satisfying the following requirement (a) and having a dielectric multilayer film on at least one surface of the base material: (A) It has a layer containing an organic pigment (S) having an absorption maximum in a wavelength region of 900 nm to 1200 nm.
  • R 1 is independently a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a carboxy group, a phosphoric acid group, -SR i group, -SO 2 R i groups, -OSO 2 R i group or a group represented by L a ⁇
  • R 2 represents any one of R h and R 2 independently represents a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphate group, a —NR g R h group, a —SR i group, —SO 2 R i group, —OSO 2 R i group or any of the following L a to L h is represented, and R g and R h are each independently a hydrogen atom, —C (O) R i group or the following L a to L represents either e, R g
  • the substituent L is an aliphatic hydrocarbon group having 1 to 12 carbon atoms, or an alkyl group having 1 to 12 carbon atoms. At least one selected from the group consisting of a halogen-substituted alkyl group, an alicyclic hydrocarbon group having 3 to 14 carbon atoms, an aromatic hydrocarbon group having 6 to 14 carbon atoms and a heterocyclic group having 3 to 14 carbon atoms Yes, n represents an integer of 0 to 4, X represents an anion necessary for neutralizing the electric charge.
  • the transparent resin constituting the transparent resin layer is a cyclic polyolefin resin, an aromatic polyether resin, a polyimide resin, a fluorene polycarbonate resin, a fluorene polyester resin, a polycarbonate resin, a polyamide resin, or a polyarylate.
  • Resin polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin, Item characterized by being at least one resin selected from the group consisting of an allyl ester curable resin, a silsesquioxane ultraviolet curable resin, an acrylic ultraviolet curable resin, and a vinyl ultraviolet curable resin [ [6] The optical filter according to [6].
  • the item wherein the substrate contains a dispersant having an acidic functional group and the content thereof is 5 to 300 parts by mass with respect to 100 parts by mass of the organic pigment (S).
  • the optical filter according to any one of [1] to [7].
  • optical filter according to any one of items [1] to [8], which is for a solid-state imaging device.
  • a solid-state imaging device comprising the optical filter according to any one of items [1] to [9].
  • a camera module comprising the optical filter according to any one of items [1] to [9].
  • an optical filter that has excellent near-infrared cut characteristics, little incident angle dependency, and excellent transmittance characteristics in the visible light wavelength region, color shading suppression effect, ghost suppression effect, and heat resistance. Can do.
  • FIGS. 1A and 1B are schematic views showing examples of preferable configurations of the optical filter of the present invention.
  • FIG. 2 is a spectral transmission spectrum of the optical filter obtained in Example 1. It is a schematic diagram for demonstrating the color shading evaluation of the camera image performed in the Example and the comparative example. It is a schematic diagram for demonstrating the ghost evaluation of the camera image performed in the Example and the comparative example.
  • the optical filter of the present invention has a base material that satisfies the requirement (a) described below, and has a dielectric multilayer film on at least one surface of the base material.
  • the thickness of the optical filter of the present invention is preferably thin considering the recent trend of thinning and weight reduction of solid-state imaging devices. Since the optical filter of the present invention includes the substrate, it can be thinned.
  • the thickness of the optical filter of the present invention is preferably 210 ⁇ m or less, more preferably 190 ⁇ m or less, further preferably 160 ⁇ m or less, particularly preferably 130 ⁇ m or less, and the lower limit is not particularly limited, but is preferably 20 ⁇ m or more.
  • the base material used in the present invention satisfies the following requirement (a).
  • (A) It has a layer containing an organic pigment (S) having an absorption maximum in a wavelength region of 900 nm to 1200 nm. Moreover, it is preferable that the base material further satisfies the following requirement (b).
  • (B) It has a layer containing the compound (A) having an absorption maximum in a wavelength region of 650 nm or more and 760 nm or less.
  • the component constituting the layer containing the organic pigment (S) is not particularly limited, and examples thereof include a transparent resin, a sol-gel material, a low-temperature-curing glass material, and the like.
  • a transparent resin is preferable from the viewpoint.
  • Organic pigment (S) is not particularly limited as long as it is an organic pigment having an absorption maximum in a wavelength region of 900 nm to 1200 nm.
  • the compound (S) having an absorption maximum in a wavelength region of 900 nm to 1200 nm. Can be obtained as a dispersion of the organic pigment (S) by dispersing it together with a dispersion medium and, if necessary, a dispersant and other additives by a known method.
  • the compound (S) is not particularly limited as long as the compound has an absorption maximum in a wavelength region of 900 nm or more and 1200 nm or less, but is preferably a diimonium compound, a metal dithiolate complex compound, a pyrrolopyrrole compound, or a cyanine compound. At least one compound selected from the group consisting of a compound, a croconium compound and a naphthalocyanine compound, more preferably at least one compound selected from the group consisting of a diimonium compound and a metal dithiolate complex compound, Particularly preferred are diimonium compounds represented by the following formula (I).
  • a compound (S) it is possible to impart good near infrared absorption characteristics and excellent visible light transmittance.
  • R 1 is independently a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a carboxy group, a phosphoric acid group, -SR i group, -SO 2 R i groups, -OSO 2 R i group or a group represented by L a ⁇
  • R 2 represents any one of R h and R 2 independently represents a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphate group, a —NR g R h group, a —SR i group, —SO 2 R i group, —OSO 2 R i group or any of the following L a to L h is represented, and R g and R h are each independently a hydrogen atom, —C (O) R i group or the following L a to L represents either e, R g
  • the substituent L is an aliphatic hydrocarbon group having 1 to 12 carbon atoms, or an alkyl group having 1 to 12 carbon atoms. At least one selected from the group consisting of a halogen-substituted alkyl group, an alicyclic hydrocarbon group having 3 to 14 carbon atoms, an aromatic hydrocarbon group having 6 to 14 carbon atoms and a heterocyclic group having 3 to 14 carbon atoms Yes, n represents an integer of 0 to 4, X represents an anion necessary for neutralizing the electric charge.
  • R 1 is preferably a hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclohexyl group, adamantyl group, trifluoromethyl group.
  • R 2 is preferably a chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclohexyl group, phenyl group, hydroxyl group , Amino group, dimethylamino group, cyano group, nitro group, methoxy group, ethoxy group, n-propoxy group, n-butoxy group, acetylamino group, propionylamino group, N-methylacetylamino group, trifluoromethanoylamino Group, pentafluoroethanoylamino group, tert-butanoylamino group, cyclohexylinoylamino group, n-butylsulfonyl group, methylthio group, ethylthio group, n-propylthio
  • X is an anion necessary for neutralizing electric charge.
  • X is a divalent anion
  • X is one
  • X is a monovalent anion
  • X is two. is there.
  • the two anions may be the same or different, but are preferably the same from the viewpoint of synthesis.
  • X will not be specifically limited if it is such an anion, As an example, the thing of following Table 1 can be mentioned.
  • X is (X-10), (X-16), (X-17), (X-21), (X-21) in Table 1 above from the viewpoint of heat resistance, light resistance and spectral properties of the diimonium compound.
  • X-22), (X-24) and (X-28) are particularly preferred.
  • Examples of the diimonium compound represented by the above formula (I) include those listed in Tables 2-1 to 2-4 below.
  • the compound (S) may be synthesized by a generally known method.
  • Japanese Patent No. 4168031 Japanese Patent No. 4225296, JP-T 2010-516823, JP-A No. 63-165392 It can be synthesized with reference to the method described in the publication.
  • the absorption maximum wavelength of the compound (S) is preferably 920 nm to 1195 nm, more preferably 950 nm to 1190 nm, and further preferably 980 nm to 1180 nm.
  • the absorption maximum wavelength of the compound (S) is in such a range, unnecessary near-infrared rays can be efficiently cut, and an excellent ghost suppression effect can be obtained.
  • the organic pigment (S) is preferably used by dispersing the compound (S) in a dispersion medium by a generally known method, for example, a method using a known disperser.
  • a dispersion medium having extremely high solubility with respect to the compound (S) is selected, the compound (S) is dissolved in the dispersion medium and becomes a dye. In this case, desired spectral characteristics cannot be obtained, and heat resistance and UV resistance are significantly reduced. Therefore, it is necessary to select a dispersion medium that has low solubility in the compound (S) and does not form a dye.
  • the dispersion medium dyes the compound (S) is determined by adding the dispersion medium to the compound (S) and dropping it into a glass plate so that the concentration of the compound (S) is 0.1% by mass. After drying, it can be confirmed by observing with a scanning electron microscope. When the compound (S) is present in the form of particles, it can be determined that it is pigmented, and when the particulate material is not confirmed, it can be determined that it is dyed.
  • the dispersion medium is not particularly limited as long as it does not dye the compound (S), but a solvent having a relatively high polarity is preferable from the viewpoint of safety in the dispersion process.
  • a solvent having a relatively high polarity is preferable from the viewpoint of safety in the dispersion process.
  • alcohols such as isopropanol and ethanol
  • Ketones such as methyl ethyl ketone and methyl isobutyl ketone
  • esters such as butyl acetate and ethyl acetate
  • ethers such as propylene glycol monomethyl ether.
  • the compound (S) is a diimonium compound
  • alcohols such as isopropanol and ethanol are particularly preferable from the viewpoint of storage stability of the dispersion.
  • a halogen solvent such as methylene chloride because the compound (S) is dyed.
  • Disperser examples of the disperser used when dispersing the compound (S) in a dispersion medium include a bead mill, a ball mill, a vibrating ball mill, a planetary ball mill, a sand mill, a colloid mill, a jet mill, and a roller mill.
  • the organic pigment (S) may be prepared by refining the primary particles of the compound (S) by so-called salt milling.
  • salt milling method for example, a method disclosed in Japanese Patent Laid-Open No. 8-179111 can be employed.
  • the compound (S) may be dispersed using a known dispersant.
  • the dispersant include a urethane-based dispersant, a polyethyleneimine-based dispersant, a polyoxyethylene alkyl ether-based dispersant, a polyoxyethylene alkylphenyl ether-based dispersant, a polyethylene glycol diester-based dispersant, and a sorbitan fatty acid ester-based dispersant.
  • Examples of commercially available products include (meth) acrylic dispersants such as Disperbyk-2000, Disperbyk-2001, BYK-LPN6919, BYK-LPN21116, BYK-LPN22102 (manufactured by BYK (BYK)), Disperbyk-161, Disperbyk.
  • Disperbyk-165, Disperbyk-167, Disperbyk-170, Disperbyk-182 manufactured by BYK Corporation
  • Solsperse 76500 manufactured by Lubrizol Co., Ltd.
  • Solsperse 24000 Polyethyleneimine-based dispersants such as Lubrizol Co., Ltd.
  • polyester dispersants such as those manufactured by Ajinomoto Fine Techno Co., Ltd., BYK-LPN21324 (manufactured by BYK Corporation), Mariarim SC series, Esliem AD series, Esliem C2093I (above, NOF Corporation) Etc.
  • Examples of the (meth) acrylic dispersant include, for example, JP 2011-232735 A, JP 2011-237769 A, JP 2012-32767 A, International Publication 2011/129078, International Publication 2012. Copolymers disclosed in the / 001945 pamphlet and the like can also be used.
  • a dispersing agent can be used 1 type or in combination of 2 or more types.
  • a dispersant having an acidic functional group in terms of good dispersion stability and small chemical action on the compound (S).
  • the dispersant having an acidic functional group is not particularly limited as long as it is a dispersant having a carboxylic acid, a sulfonic acid, a phenolic hydroxyl group, or a salt thereof.
  • an ethylenically unsaturated monomer having an acidic functional group And other copolymerizable ethylenically unsaturated monomers.
  • Examples of commercially available products include the above-mentioned Mariarim SC series, DISPERBYK-103, DISPERBYK-110, DISPERBYK-118, and the like.
  • the content of the dispersant can be appropriately selected depending on the type of the dispersant, but is preferably 5 to 300 parts by weight, more preferably 10 to 200 parts by weight, and more preferably 100 parts by weight of the organic pigment (S).
  • the amount is preferably 20 to 150 parts by mass. It is preferable for the content of the dispersant to be in the above range because the dispersion stability of the dispersion is good and the heat resistance, water resistance and adhesion of the substrate and optical filter are excellent.
  • Centrifugation treatment can remove coarse organic pigment particles that are insufficiently dispersed, thereby reducing the average particle size of the organic pigment, and as a result, haze of the optical filter can be reduced.
  • time of sputum centrifugation processing For example, it is 1 minute or more and 60 minutes or less.
  • centrifugal acceleration of the centrifuge at the time of performing sputum centrifuge For example, it can be set as 10 G or more and 50,000 G or less.
  • Average particle diameter of organic pigment (S) is preferably 200 nm or less, more preferably 5 to 190 nm, still more preferably 10 to 180 nm, and particularly preferably 15 to 150 nm.
  • the average particle diameter of the organic pigment (S) in the present invention is a value obtained by the measurement method described in Examples described later.
  • an optical filter excellent in heat resistance can be obtained while maintaining the haze value at an extremely low level.
  • the content of the entire organic pigment (S) is, for example, a base material made of a transparent resin substrate containing the organic pigment (S) or an organic pigment (S).
  • a base material in which a resin layer such as an overcoat layer made of a curable resin or the like is used on a transparent resin substrate containing S
  • it is preferably 0.01 with respect to 100 parts by mass of the transparent resin.
  • a glass support or a resin support as a base is used as the substrate.
  • a transparent resin containing the organic pigment (S) Preferably it is 0.1 with respect to 100 mass parts of resin which forms a layer. 5.0 parts by weight, more preferably 0.2 to 4.0 mass parts, and particularly preferably 0.3 to 3.0 parts by.
  • an optical filter having both good near infrared absorption characteristics and high visible light transmittance can be obtained.
  • the component constituting the layer containing the compound (A) is not particularly limited, and examples thereof include a transparent resin, a sol-gel material, a low-temperature-curing glass material, and the like.
  • a transparent resin is preferable from the viewpoint of compatibility with A).
  • the compound (A) is not particularly limited as long as it is a compound having an absorption maximum in a wavelength region of 650 nm or more and 760 nm or less, but is preferably a solvent-soluble dye compound, and is a squarylium compound, a phthalocyanine compound, and a cyanine compound. It is more preferable that it is at least one selected from the group consisting of compounds, it is more preferable that a squarylium compound is included, and it is particularly preferable that there are two or more compounds including a squarylium compound.
  • the compound (A) is two or more types including a squarylium compound, two or more types of squarylium compounds having different structures may be used, or a combination of a squarylium compound and another compound (A) may be used.
  • the other compound (A) a phthalocyanine compound and a cyanine compound are particularly preferable.
  • the squarylium-based compound has excellent visible light permeability, steep absorption characteristics, and a high molar extinction coefficient, but may generate fluorescence that causes scattered light during light absorption. In such a case, an optical filter with less scattered light and better camera image quality can be obtained by using a combination of the squarylium compound and the other compound (A).
  • the absorption maximum wavelength of the compound (A) is preferably 660 nm or more and 755 nm or less, more preferably 670 nm or more and 750 nm or less, and further preferably 680 nm or more and 745 nm or less.
  • the difference between the absorption maximum wavelengths of the compound (A) to be applied having the shortest absorption maximum wavelength and the longest absorption maximum wavelength is preferably 10 to The thickness is 60 nm, more preferably 15 to 55 nm, still more preferably 20 to 50 nm. It is preferable that the difference in absorption maximum wavelength is in the above-mentioned range because scattered light due to fluorescence can be sufficiently reduced and a wide absorption band near 700 nm and an excellent visible light transmittance can be compatible.
  • the total content of the compound (A) is, for example, a base material made of a transparent resin substrate containing the organic pigment (S) and the compound (A) or a transparent resin containing the compound (A) as the base material.
  • a base material in which a resin layer such as an overcoat layer made of a curable resin containing an organic pigment (S) is laminated on a substrate, it is preferably 0.04 with respect to 100 parts by mass of the transparent resin. 2.0 parts by mass, more preferably 0.06 to 1.5 parts by mass, and still more preferably 0.08 to 1.0 parts by mass.
  • a glass support or a resin support as a base is used as the substrate.
  • the compound (A) 100 When using a substrate in which a transparent resin layer such as an overcoat layer made of a curable resin containing the organic pigment (S) and the compound (A) is laminated on a support such as a body, the compound (A) 100 forming a transparent resin layer containing Relative to the amount unit, preferably 0.4 to 5.0 parts by mass, more preferably in a range of 0.6 to 4.0 mass parts, more preferably 0.8 to 3.5 mass parts.
  • the substrate may be a single layer or a multilayer as long as it has a layer containing an organic pigment (S). Moreover, the compound (A) may be contained in the same layer as the organic pigment (S) or in a different layer.
  • the layer containing the organic pigment (S) and the layer containing the compound (A) are the same, for example, a base material made of a transparent resin substrate containing the organic pigment (S) and the compound (A), an organic pigment (S ) And a transparent resin substrate containing the compound (A) on a substrate such as an overcoat layer made of a curable resin or the like, a support such as a glass support or a base resin support And a substrate on which a transparent resin layer such as an overcoat layer made of a curable resin containing the organic pigment (S) and the compound (A) is laminated.
  • an overcoat made of a curable resin containing the compound (A) on a transparent resin substrate containing the organic pigment (S) A base material on which a resin layer such as a layer is laminated, or a base material on which a resin layer such as an overcoat layer made of a curable resin containing an organic pigment (S) is laminated on a transparent resin substrate containing the compound (A)
  • An overcoat layer made of a curable resin containing an organic pigment (S) on a support such as a glass support or a base resin support, and an overcoat layer made of a curable resin containing a compound (A) Can be mentioned.
  • the organic pigment (S) The average particle size is more preferably 150 nm or less, and particularly preferably 100 nm or less.
  • the average transmittance of the substrate in the wavelength region of 430 to 580 nm is preferably 75% or more, more preferably 78% or more, and particularly preferably 80% or more.
  • a substrate having such transmission characteristics is used, high light transmission characteristics can be achieved in the visible light region, and a highly sensitive camera function can be achieved.
  • the thickness of the substrate can be appropriately selected according to the desired application and is not particularly limited, but is preferably 10 to 200 ⁇ m, more preferably 20 to 180 ⁇ m, and further preferably 25 to 150 ⁇ m.
  • an optical filter using the substrate can be reduced in thickness and weight, and can be suitably used for various applications such as a solid-state imaging device.
  • a base material made of the transparent resin substrate is used in a lens unit such as a camera module, it is preferable because the lens unit can be reduced in height and weight.
  • the transparent resin used for the transparent resin layer, the transparent resin substrate and the resin support constituting the substrate is not particularly limited as long as it does not impair the effects of the present invention.
  • thermal stability and film Glass transition temperature (Tg) is preferably 110 to 380 ° C., in order to obtain a film capable of forming a dielectric multilayer film by high temperature vapor deposition performed at a vapor deposition temperature of 100 ° C. or higher while ensuring moldability to
  • a resin having a temperature of 110 to 370 ° C., more preferably 120 to 360 ° C. is used.
  • the glass transition temperature of the resin is 140 ° C. or higher because a film capable of depositing a dielectric multilayer film at a higher temperature can be obtained.
  • the total light transmittance (JIS K7105) of the resin plate is preferably 75 to 95%, more preferably 78 to 95. %, More preferably 80 to 95% of the resin can be used. If a resin having a total light transmittance in such a range is used, the resulting substrate exhibits good transparency as an optical film.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by a gel permeation chromatography (GPC) method of the transparent resin is usually 15,000 to 350,000, preferably 30,000 to 250,000.
  • the average molecular weight (Mn) is usually 10,000 to 150,000, preferably 20,000 to 100,000.
  • transparent resins examples include cyclic polyolefin resins, aromatic polyether resins, polyimide resins, fluorene polycarbonate resins, fluorene polyester resins, polycarbonate resins, polyamide (aramid) resins, polyarylate resins, and polysulfones.
  • ester-based curable resins examples include ester-based curable resins, silsesquioxane-based ultraviolet curable resins, acrylic-based ultraviolet curable resins, and vinyl-based ultraviolet curable resins.
  • Transparent resins may be used alone or in combination of two or more.
  • the cyclic polyolefin-based resin is obtained from at least one monomer selected from the group consisting of a monomer represented by the following formula (X 0 ) and a monomer represented by the following formula (Y 0 ).
  • a resin and a resin obtained by hydrogenating the resin are preferable.
  • R x1 to R x4 each independently represents an atom or group selected from the following (i ′) to (ix ′), and k x , mx and p x are each independently 0 Represents an integer of ⁇ 4.
  • R x1 and R x2 or R x3 and R x4 are bonded to each other to form a monocyclic or polycyclic hydrocarbon ring or heterocyclic ring (provided that R x1 to R which are not involved in the bond) x4 each independently represents an atom or group selected from (i ′) to (vi ′).
  • Ix ′ A monocyclic hydrocarbon ring or heterocycle formed by bonding R x2 and R x3 to each other (provided that R x1 and R x4 not involved in the bonding are each independently the above (i Represents an atom or group selected from ') to (vi').
  • R y1 and R y2 each independently represent an atom or group selected from the above (i ′) to (vi ′), or R y1 and R y2 are bonded to each other formed monocyclic or polycyclic alicyclic hydrocarbon, an aromatic hydrocarbon or heterocyclic, k y and p y are each independently an integer of 0-4.
  • the aromatic polyether-based resin preferably has at least one structural unit selected from the group consisting of a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2).
  • R 1 to R 4 each independently represents a monovalent organic group having 1 to 12 carbon atoms, and a to d each independently represents an integer of 0 to 4.
  • R 1 ⁇ R 4 and a ⁇ d independently has the same meaning as R 1 ⁇ R 4 and a ⁇ d of the formula (1)
  • Y represents a single bond
  • R 7 and R 8 each independently represent a halogen atom, a monovalent organic group having 1 to 12 carbon atoms or a nitro group
  • g and h each independently represents 0 to 4 Represents an integer
  • m represents 0 or 1.
  • R 7 is not a cyano group.
  • the aromatic polyether resin further has at least one structural unit selected from the group consisting of a structural unit represented by the following formula (3) and a structural unit represented by the following formula (4). Is preferred.
  • R 5 and R 6 each independently represent a monovalent organic group having 1 to 12 carbon atoms
  • Z represents a single bond, —O—, —S—, —SO 2 —, — CO—, —CONH—, —COO— or a divalent organic group having 1 to 12 carbon atoms
  • e and f each independently represents an integer of 0 to 4, and n represents 0 or 1.
  • R 7 , R 8 , Y, m, g and h are each independently synonymous with R 7 , R 8 , Y, m, g and h in formula (2), and R 5 , R 6 , Z, n, e and f are each independently synonymous with R 5 , R 6 , Z, n, e and f in the formula (3).
  • the polyimide resin is not particularly limited as long as it is a high molecular compound containing an imide bond in a repeating unit.
  • the method described in JP-A-2006-199945 and JP-A-2008-163107 is used. Can be synthesized.
  • the fluorene polycarbonate resin is not particularly limited as long as it is a polycarbonate resin containing a fluorene moiety, and can be synthesized by, for example, a method described in JP-A-2008-163194.
  • the fluorene polyester resin is not particularly limited as long as it is a polyester resin containing a fluorene moiety.
  • the fluorene polyester resin can be synthesized by a method described in JP 2010-285505 A or JP 2011-197450 A. Can do.
  • the fluorinated aromatic polymer resin is not particularly limited, but is selected from the group consisting of an aromatic ring having at least one fluorine atom, an ether bond, a ketone bond, a sulfone bond, an amide bond, an imide bond, and an ester bond.
  • the polymer preferably contains a repeating unit containing at least one bond, and can be synthesized, for example, by the method described in JP-A-2008-181121.
  • the acrylic ultraviolet curable resin is not particularly limited, but is synthesized from a resin composition containing a compound having one or more acrylic or methacrylic groups in the molecule and a compound that decomposes by ultraviolet rays to generate active radicals. Can be mentioned.
  • the acrylic ultraviolet curable resin is a base material in which a transparent resin layer containing a compound (A) and a curable resin is laminated on a glass support or a resin support as a base, or a compound ( When using a base material in which a resin layer such as an overcoat layer made of a curable resin or the like is used on a transparent resin substrate containing A), it can be particularly preferably used as the curable resin.
  • Epoxy resin Although it does not specifically limit as an epoxy-type resin, It can divide roughly into an ultraviolet curing type and a thermosetting type.
  • the ultraviolet curable epoxy resin for example, synthesized from a composition containing a compound having one or more epoxy groups in the molecule and a compound that generates an acid by ultraviolet rays (hereinafter also referred to as “photo acid generator”).
  • thermosetting epoxy resins include those synthesized from a composition containing one or more epoxy groups in the molecule and an acid anhydride. Can do.
  • the epoxy ultraviolet curable resin contains, as the base material, a base material obtained by laminating a transparent resin layer containing the compound (A) on a glass support or a base resin support, and the compound (A). In the case of using a base material in which a resin layer such as an overcoat layer made of a curable resin is laminated on a transparent resin substrate to be used, it can be particularly suitably used as the curable resin.
  • cyclic polyolefin resins examples include Arton manufactured by JSR Corporation, ZEONOR manufactured by Nippon Zeon Co., Ltd., APEL manufactured by Mitsui Chemicals, Inc., and TOPAS manufactured by Polyplastics Corporation.
  • polyethersulfone resins examples include Sumika Excel PES manufactured by Sumitomo Chemical Co., Ltd.
  • polyimide resins examples include Neoprim L manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • commercially available polycarbonate resins include Pure Ace manufactured by Teijin Limited.
  • Examples of commercially available fluorene polycarbonate resins include Iupizeta EP-5000 manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • Examples of commercially available fluorene polyester resins include OKP4HT manufactured by Osaka Gas Chemical Co., Ltd.
  • Examples of commercially available acrylic resins include NIPPON CATALYST ACRYVIEWER.
  • Examples of commercially available silsesquioxane-based ultraviolet curable resins include Silplus manufactured by Nippon Steel Chemical Co., Ltd.
  • the base material may further contain other pigment (X) not corresponding to the organic pigment (S) and the compound (A).
  • the other dye (X) is not particularly limited as long as the absorption maximum wavelength is in the region of wavelength less than 650 nm or more than 760 nm and less than 900 nm, but the dye having the absorption maximum wavelength in the region of more than 760 nm and less than 900 nm is preferable.
  • examples of such dyes include squarylium compounds, phthalocyanine compounds, cyanine compounds, naphthalocyanine compounds, croconium compounds, octaphyrin compounds, diimonium compounds, pyrrolopyrrole compounds, and boron dipyrromethene (BODIPY). And at least one compound selected from the group consisting of a compound, a perylene compound, and a metal dithiolate compound.
  • the content of the other dye (X) is, for example, when a base material made of a transparent resin substrate containing the other dye (X) is used as the base material, with respect to 100 parts by mass of the transparent resin.
  • the amount is preferably 0.005 to 1.0 part by mass, more preferably 0.01 to 0.9 part by mass, particularly preferably 0.02 to 0.8 part by mass.
  • a transparent material containing other dye (X) is used.
  • resin forming the resin layer Preferably 0.05 to 4.0 mass parts, more preferably 0.1 to 3.0 mass parts, and particularly preferably 0.2 to 2.0 parts by mass.
  • the base material may further contain an antioxidant, a near-ultraviolet absorber, a fluorescence quencher, and the like as other components as long as the effects of the present invention are not impaired. These other components may be used alone or in combination of two or more.
  • Examples of the near ultraviolet absorber include azomethine compounds, indole compounds, benzotriazole compounds, triazine compounds, and the like.
  • antioxidants examples include 2,6-di-t-butyl-4-methylphenol, 2,2′-dioxy-3,3′-di-t-butyl-5,5′-dimethyldiphenylmethane, tetrakis [Methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane, tris (2,4-di-t-butylphenyl) phosphite and the like.
  • these other components may be mixed with a resin or the like when producing a substrate, or may be added when a resin is synthesized.
  • the addition amount is appropriately selected according to the desired properties, but is usually 0.01 to 5.0 parts by weight, preferably 0.05 to 2.0 parts by weight with respect to 100 parts by weight of the resin. Part.
  • the base material is a base material including a transparent resin substrate containing an organic pigment (S)
  • the transparent resin substrate can be formed by, for example, melt molding or cast molding, and further if necessary.
  • a substrate on which an overcoat layer is laminated can be produced by coating a coating agent such as an antireflection agent, a hard coat agent and / or an antistatic agent.
  • the substrate is made of a curable resin containing an organic pigment (S) on a support such as a glass support or a base resin support or a transparent resin substrate containing no organic pigment (S).
  • a transparent resin layer such as an overcoat layer is laminated
  • a resin solution containing the compound (A) on the support or the transparent resin substrate for example, preferably by melt molding or cast molding a resin solution containing the compound (A) on the support or the transparent resin substrate.
  • a method such as spin coating, slit coating, and ink jet, and then the solvent is dried and removed, and if necessary, light irradiation or heating is performed to form an organic pigment on the support or the transparent resin substrate.
  • a substrate on which a transparent resin layer containing (S) is formed can be produced.
  • melt molding a method of melt molding pellets obtained by melt-kneading a resin, an organic pigment (S) and other components as necessary; a resin and an organic pigment (S) And a method of melt-molding a resin composition containing other components as necessary; or removing the solvent from the resin composition containing the organic pigment (S), the resin, the solvent and, if necessary, the other components
  • the method of melt-molding the obtained pellet is mentioned.
  • the melt molding method include injection molding, melt extrusion molding, and blow molding.
  • ⁇ Cast molding As the cast molding, a method of removing a solvent by casting a resin composition containing an organic pigment (S), a resin, a solvent and, if necessary, other components on a suitable support; or an organic pigment (S ), A photocurable resin and / or a thermosetting resin, and if necessary, a curable composition containing other components is cast on a suitable support to remove the solvent, It can also be produced by a method of curing by an appropriate method such as heating.
  • the base material is a base material made of a transparent resin substrate containing the organic pigment (S)
  • the base material can be obtained by peeling the coating film from the support after cast molding.
  • the base material is a curable resin containing an organic pigment (S) on a support such as a glass support or a base resin support or on a transparent resin substrate containing no organic pigment (S).
  • the base material can be obtained by not peeling the coating film after cast molding.
  • a near-infrared absorbing glass plate for example, a phosphate system containing a copper component such as “BS-11” manufactured by Matsunami Glass Industrial Co., Ltd. or “NF-50T” manufactured by AGC Sakai Techno Glass Co., Ltd.) Glass plate
  • transparent glass plate for example, non-alkali glass plate such as “OA-10G” manufactured by Nippon Electric Glass Co., Ltd., “AN100” manufactured by Asahi Glass Co., Ltd.
  • steel belt for example, steel drum, and transparent resin (for example, polyester film) , Cyclic olefin resin film) support.
  • the amount of residual solvent in the transparent resin layer (transparent resin substrate) obtained by the above method should be as small as possible.
  • the amount of the residual solvent is preferably 3 parts by mass or less, more preferably 1 part by mass or less, further preferably 0.5 parts by mass with respect to 100 parts by mass of the transparent resin layer (transparent resin substrate). It is as follows. When the amount of residual solvent is in the above range, a transparent resin layer (transparent resin substrate) that can easily exhibit a desired function is obtained, which hardly causes deformation of the base material or changes in optical properties.
  • the optical filter of the present invention has a dielectric multilayer film on at least one surface of the substrate.
  • the dielectric multilayer film in the present invention is a film having the ability to reflect near-infrared light or a film having an antireflection effect in the visible light region. Infrared cut characteristics can be achieved.
  • the dielectric multilayer film may be provided on one side of the substrate or on both sides.
  • the optical filter When it is provided on one side, it is possible to obtain an optical filter that is excellent in production cost and manufacturability and has high strength and is less likely to warp or twist when provided on both sides.
  • the optical filter When the optical filter is applied to a solid-state imaging device, it is preferable that the optical filter is less warped or twisted. Therefore, it is preferable to provide a dielectric multilayer film on both surfaces of the resin substrate.
  • the dielectric multilayer film preferably has reflection characteristics over the entire wavelength range of 700 to 1100 nm, more preferably 700 to 1150 nm, and even more preferably 700 to 1200 nm.
  • the first optical layer mainly having a reflection characteristic in the vicinity of a wavelength of 700 to 950 nm when measured from an angle of 5 ° with respect to the vertical direction of the optical filter is used.
  • a configuration (see FIG. 1 (a)) having a second optical layer on one side of the material and having a reflection characteristic mainly in the vicinity of 900 nm to 1150 nm on the other side of the substrate, and the vertical direction of the optical filter
  • the form (refer FIG.1 (b)) which has on the other surface of a base material etc. are mentioned.
  • Examples of the dielectric multilayer film include those in which a high refractive index material layer and a low refractive index material layer are alternately laminated.
  • a material constituting the high refractive index material layer a material having a refractive index of 1.7 or more can be used, and a material having a refractive index of usually 1.7 to 2.5 is selected.
  • Such materials include titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide, or indium oxide as the main components, and titanium oxide, tin oxide, and / or Alternatively, a material containing a small amount of cerium oxide or the like (eg, 0 to 10 parts by mass with respect to 100 parts by mass of the main component) can be used.
  • a material having a refractive index of 1.6 or less can be used, and a material having a refractive index of usually 1.2 to 1.6 is selected.
  • examples of such materials include silica, alumina, lanthanum fluoride, magnesium fluoride, and sodium hexafluoride sodium.
  • the method for laminating the high refractive index material layer and the low refractive index material layer is not particularly limited as long as a dielectric multilayer film in which these material layers are laminated is formed.
  • a multilayer film can be formed.
  • each of the high refractive index material layer and the low refractive index material layer is usually preferably from 0.1 ⁇ to 0.5 ⁇ , where ⁇ (nm) is the near infrared wavelength to be blocked.
  • the value of ⁇ (nm) is, for example, 700 to 1400 nm, preferably 750 to 1300 nm.
  • the optical thickness obtained by multiplying the refractive index (n) by the thickness (d) (n ⁇ d) by ⁇ / 4 the high refractive index material layer, and the low refractive index.
  • the thicknesses of the respective layers of the refractive index material layer are almost the same value, and there is a tendency that the blocking / transmission of a specific wavelength can be easily controlled from the relationship between the optical characteristics of reflection / refraction.
  • the total number of stacked high refractive index material layers and low refractive index material layers in the dielectric multilayer film is preferably 16 to 70 layers, more preferably 20 to 60 layers, as a whole, 24 Particularly preferred is ⁇ 50 layers. If the thickness of each layer, the thickness of the dielectric multilayer film as a whole of the optical filter, and the total number of layers are within the above ranges, a sufficient manufacturing margin can be secured, and the warpage of the optical filter and cracks in the dielectric multilayer film can be reduced. can do.
  • the material type constituting the high refractive index material layer and the low refractive index material layer, the high refractive index material layer, and the low refractive index are adjusted in accordance with the absorption characteristics of the near-infrared absorber such as the compound (A) or the organic pigment (S).
  • the near-infrared absorber such as the compound (A) or the organic pigment (S).
  • Appropriate selection of the thickness of each refractive index material layer, the order of stacking, and the number of stacks ensure sufficient light-cutting characteristics in the near-infrared wavelength region while ensuring sufficient transmittance in the visible light region.
  • the reflectance when near-infrared rays inject from an oblique direction can be reduced.
  • optical thin film design software for example, Essential Macleod, Thin Film Center
  • both the antireflection effect in the visible light region and the light cut effect in the near infrared region are compatible.
  • the target transmittance at a wavelength of 400 to 700 nm is set to 100%
  • the target Tolerance value is set to 1
  • the target transmittance at a wavelength of 705 to 950 nm is set to 0%.
  • Parameter setting method such as setting Target Tolerance value to 0.5 can be mentioned.
  • the optical filter of the present invention is within the range not impairing the effects of the present invention, between the base material and the dielectric multilayer film, the surface opposite to the surface on which the dielectric multilayer film is provided, or the dielectric multilayer film.
  • an anti-reflection film On the opposite side of the surface of the film where the substrate is provided, an anti-reflection film, a hard layer is used for the purpose of improving the surface hardness of the substrate or the dielectric multilayer film, improving the chemical resistance, antistatic and scratching.
  • Functional films such as a coating film and an antistatic film can be provided as appropriate.
  • the optical filter of the present invention may include one layer made of the functional film or two or more layers.
  • the optical filter of the present invention may include two or more similar layers or two or more different layers.
  • the method for laminating the functional film is not particularly limited, but a coating agent containing an antireflection agent, a hard coating agent and / or an antistatic agent, etc. is melt-molded or cast in the same manner as described above on a base material or a dielectric multilayer film. Examples of the method include molding.
  • the coating agent can be produced by applying the coating agent on a base material or a dielectric multilayer film with a bar coater or the like and then curing it by ultraviolet irradiation or the like.
  • the coating agent examples include curable compositions containing ultraviolet (UV) / electron beam (EB) curable resins and thermosetting resins.
  • UV ultraviolet
  • EB electron beam
  • Specific examples of the curable resin contained in the curable composition include vinyl compounds, urethane, urethane acrylate, acrylate, epoxy, and epoxy acrylate resins.
  • the curable composition may contain a polymerization initiator.
  • a polymerization initiator a known photopolymerization initiator or a thermal polymerization initiator can be used, and a photopolymerization initiator and a thermal polymerization initiator may be used in combination.
  • a polymerization initiator may be used individually by 1 type, and may use 2 or more types together.
  • the mixing ratio of the polymerization initiator is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 10 parts by mass, when the total amount of the curable composition is 100 parts by mass. More preferably, it is 1 to 5 parts by mass.
  • the blending ratio of the polymerization initiator is within the above range, it is possible to obtain a functional film such as an antireflective film, a hard coat film or an antistatic film having excellent curing characteristics and handleability of the curable composition and having a desired hardness. it can.
  • an organic solvent may be added as a solvent to the curable composition, and known organic solvents can be used.
  • the organic solvent include alcohols such as methanol, ethanol, isopropanol, butanol and octanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ethyl lactate, ⁇ -butyrolactone, propylene Esters such as glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate; Ethers such as ethylene glycol monomethyl ether and diethylene glycol monobutyl ether; Aromatic hydrocarbons such as benzene, toluene and xylene; Dimethylformamide, dimethylacetamide, N- Examples include amides such as methylpyrrolidone.
  • solvents may be used alone or in combination of two or more.
  • the thickness of the functional film is preferably 0.1 to 20 ⁇ m, more preferably 0.5 to 10 ⁇ m, and particularly preferably 0.7 to 5 ⁇ m.
  • the corona is applied to the surface of the base material, the functional film or the dielectric multilayer film.
  • Surface treatment such as treatment or plasma treatment may be performed.
  • the optical filter of the present invention has a wide viewing angle and has excellent near-infrared cutting ability and the like. Therefore, it is useful for correcting the visibility of a solid-state imaging device such as a CCD or CMOS image sensor of a camera module.
  • a solid-state imaging device such as a CCD or CMOS image sensor of a camera module.
  • digital still cameras, smartphone cameras, mobile phone cameras, digital video cameras, wearable device cameras, PC cameras, surveillance cameras, automotive cameras, TVs, car navigation systems, personal digital assistants, video game machines, and portable game machines It is useful for fingerprint authentication system, digital music player, etc. Furthermore, it is also useful as a heat ray cut filter attached to a glass plate of an automobile or a building.
  • the solid-state imaging device of the present invention includes the optical filter of the present invention.
  • the solid-state imaging device is an image sensor including a solid-state imaging device such as a CCD or a CMOS image sensor.
  • a digital still camera a camera for a smartphone, a camera for a mobile phone, a camera for a wearable device, a digital camera It can be used for applications such as video cameras.
  • the camera module of the present invention includes the optical filter of the present invention.
  • Part means “part by mass” unless otherwise specified.
  • measurement method of each physical property value and the evaluation method of the physical property are as follows.
  • the molecular weight of the resin was measured by the following method (a) or (b) in consideration of the solubility of each resin in a solvent.
  • GPC gel permeation chromatography
  • Standard polystyrene equivalent weight average molecular weight (Mw) and number average molecular weight (Mn) were measured using a GPC apparatus (HLC-8220 type, column: TSKgel ⁇ -M, developing solvent: THF) manufactured by Tosoh Corporation.
  • Tg Glass transition temperature
  • DSC6200 differential scanning calorimeter
  • the average particle diameter of the organic pigment was measured by the following method.
  • the prepared dispersion liquid of the organic pigment is diluted with a solvent having the same composition as the dispersion medium until the pigment concentration becomes 0.5% by mass, dropped on a glass plate and dried, and then scanned with an electron microscope (SEM) ( Observation was performed with Hitachi High-Technologies Corporation “S4800”. SEM images were taken from a plurality of fields of view, and the particle size of 100 arbitrarily selected particles was measured on a scale and converted into a magnification to calculate an average particle size. In addition, extremely large or small particles were excluded, and when the particle shape was not spherical, the longest diameter (major axis) observed was taken as the particle diameter.
  • ⁇ Spectral transmittance> The transmittance in each wavelength region of the substrate and the optical filter was measured using a spectrophotometer (U-4100) manufactured by Hitachi High-Technologies Corporation. The transmittance is measured using the spectrophotometer under the condition that light is incident on the substrate and the filter perpendicularly.
  • ⁇ Haze> The haze of the substrate and the optical filter was measured using a haze meter (Haze Guard II) manufactured by Toyo Seiki Seisakusho Co., Ltd. Measurements were taken at three different locations and the average value was used.
  • ⁇ Camera image color shading evaluation> The color shading evaluation when the optical filter was incorporated in the camera module was performed by the following method.
  • a camera module is created in the same manner as in Japanese Patent Application Laid-Open No. 2016-110067, and a white plate having a size of 300 mm ⁇ 400 mm is formed using the created camera module as a D65 light source (standard light source device “Macbeth Judge II” manufactured by X-Rite) Images were taken below, and the difference in color between the center and edge of the white plate in the camera image was evaluated according to the following criteria.
  • the positional relationship between the white plate 112 and the camera module was adjusted so that the white plate 112 occupied 90% or more of the area in the camera image 111 when shooting.
  • Ghost evaluation when the optical filter was incorporated in the camera module was performed by the following method.
  • a camera module is created in the same manner as in Japanese Patent Application Laid-Open No. 2016-110067, and the camera module is used to take a picture under a halogen lamp light source (“Luminer Ace LA-150TX” manufactured by Hayashi Watch Industry Co., Ltd.) in a dark room.
  • a halogen lamp light source (“Luminer Ace LA-150TX” manufactured by Hayashi Watch Industry Co., Ltd.) in a dark room.
  • the degree of ghost generation around the light source in the image was evaluated according to the following criteria.
  • DCM dodec-3-ene
  • the temperature was raised to ° C. After confirming that 3-hydroxy-1-adamantyl acrylate was dissolved and the solution was clarified, 27.047 g of 3-hydroxy-1-adamantyl acrylate was additionally charged, and the reaction was continued at 70 ° C. The reaction was completed after confirming that the absorption spectrum of the isocyanate group (2280 cm ⁇ 1 ) almost disappeared in the infrared absorption spectrum.
  • the reaction mixture was purified by silica gel column chromatography using ethyl acetate / hexane as an eluent, and then diluted with isopropyl alcohol to obtain urethane acrylate compound (I) (50% by mass solution).
  • ⁇ Preparation Example 2> In a 0.25 L plastic container, 5 g of the compound (s-15) shown in Table 2-4 above, 95 g of methyl isobutyl ketone (MIBK) as a dispersion medium, 0.05 mm diameter zirconia beads (“YTZ-0. 05 ”) 175 g was charged and dispersed for 1 hr with a paint shaker. Thereafter, the mixture was cooled to room temperature, and zirconia beads were filtered off with a metal mesh to obtain an organic pigment dispersion (S-2).
  • MIBK methyl isobutyl ketone
  • ⁇ Preparation Example 3> In a 0.25 L plastic container, 5 g of the compound (s-4) shown in Table 2-4 (maximum absorption wavelength 1100 nm in dichloromethane), 95 g of methyl isobutyl ketone (MIBK) as a dispersion medium, zirconia having a diameter of 0.05 mm 175 g of beads (“YTZ-0.05” manufactured by Nikkato Co., Ltd.) was added and dispersed for 1 hr using a paint shaker. Thereafter, the mixture was cooled to room temperature, and zirconia beads were filtered off with a metal mesh to obtain an organic pigment dispersion (S-3).
  • MIBK methyl isobutyl ketone
  • ⁇ Preparation Example 4> In a 0.25 L plastic container, 5 g of the compound (s-6) shown in Table 2-4 (maximum absorption wavelength 1093 nm in dichloromethane), 95 g of methyl isobutyl ketone (MIBK) as a dispersion medium, zirconia having a diameter of 0.05 mm 175 g of beads (“YTZ-0.05” manufactured by Nikkato Co., Ltd.) was added and dispersed for 1 hr using a paint shaker. Thereafter, the mixture was cooled to room temperature, and zirconia beads were filtered off with a metal mesh to obtain an organic pigment dispersion (S-4).
  • MIBK methyl isobutyl ketone
  • Preparation Example 5 The organic pigment dispersion (S-1) obtained in Preparation Example 1 was centrifuged at a centrifugal acceleration of 36000 G for 10 minutes in a centrifuge (“cooled centrifuge CR-22N” manufactured by himac), and the dispersion after the treatment The liquid was filtered through a polypropylene filter (pore size: 3 ⁇ m) to obtain an organic pigment dispersion (S-5).
  • Example 1 an optical filter having a substrate formed by forming a transparent resin layer containing an organic pigment (S) on both surfaces of a transparent resin substrate containing a compound (A) was prepared according to the following procedure and conditions.
  • i-Pr represents an isopropyl group.
  • a resin composition (1) having the following composition was applied to one side of the obtained transparent resin substrate with a bar coater and heated in an oven at 70 ° C. for 3 minutes to volatilize and remove the solvent. At this time, the coating conditions of the bar coater were adjusted so that the thickness after drying was 3 ⁇ m. Next, it exposed using the conveyor type exposure machine (exposure amount 500mJ / cm ⁇ 2 >, 200mW), the resin composition (1) was hardened, and the transparent resin layer was formed on the substrate made from transparent resin. Similarly, a transparent resin layer made of the resin composition (1) is formed on the other surface of the transparent resin substrate, and the organic pigment (S) is transparent on both surfaces of the transparent resin substrate containing the compound (A). A substrate having a resin layer was obtained.
  • Resin composition (1) 100 g of tricyclodecane dimethanol acrylate, 3 g of 1-hydroxycyclohexyl phenyl ketone, 50 g of pigment dispersion (S-1) obtained in Preparation Example 1 (2.5 g in terms of organic pigment (S)) ), 117 g of isopropyl alcohol.
  • a dielectric multilayer film (I) is formed as a first optical layer on one side of the obtained base material, and a dielectric multilayer film (II) is formed as a second optical layer on the other side of the base material.
  • an optical filter having a thickness of about 0.105 mm was obtained.
  • the dielectric multilayer film (I) is formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers at a deposition temperature of 100 ° C. (26 layers in total).
  • the dielectric multilayer film (II) is formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers at a deposition temperature of 100 ° C. (20 layers in total).
  • the silica layer and the titania layer are in order of the titania layer, the silica layer, the titania layer,..., The silica layer, the titania layer, and the silica layer from the substrate side.
  • the outermost layer of the optical filter was a silica layer.
  • the dielectric multilayer films (I) and (II) were designed as follows. Regarding the thickness and the number of layers of each layer, the wavelength-dependent characteristics of the base material refractive index and the applied organic pigment (S) and the anti-reflection effect in the visible light region and the selective transmission / reflection performance in the near-infrared region can be achieved. Optimization was performed using optical thin film design software (Essential Macleod, manufactured by Thin Film Center) in accordance with the absorption characteristics of the compound (A). When performing optimization, in this example, the input parameters (Target values) to the software are as shown in Table 3 below.
  • the dielectric multilayer film (I) is formed by alternately stacking a silica layer having a film thickness of 31 to 157 nm and a titania layer having a film thickness of 10 to 95 nm.
  • the dielectric multi-layer film (II) is a multi-layer vapor-deposited film having 20 layers, in which a silica layer having a thickness of 37 to 194 nm and a titania layer having a thickness of 12 to 114 nm are alternately stacked. It was.
  • An example of the optimized film configuration is shown in Table 4 below.
  • the spectral transmittance and haze measured from the vertical direction of the obtained optical filter were measured to evaluate the optical characteristics in each wavelength region and the heat resistance described above. The results are shown in FIG.
  • Example 2 An optical filter was obtained and evaluated in the same manner as in Example 1 except that the resin composition (2) shown below was used instead of the resin composition (1). The results are shown in Table 5.
  • Resin composition (2) 50 g of urethane acrylate compound (1) obtained in Synthesis Example 2 (converted to solid content), 50 g of tricyclodecane dimethanol acrylate, 3 g of 1-hydroxycyclohexyl phenyl ketone, obtained in Preparation Example 1 50 g of pigment dispersion (S-1) (2.5 g in terms of organic pigment (S)), 117 g of isopropyl alcohol.
  • Example 3 An optical filter was obtained in the same manner as in Example 1 except that the resin composition (3) shown below was used instead of the resin composition (1), and the same evaluation was performed. The results are shown in Table 5.
  • Resin composition (3) 50 g of urethane acrylate compound (1) obtained in Synthesis Example 2 (in terms of solid content), 30 g of 3-hydroxy-1-adamantyl acrylate, 20 g of tricyclodecane dimethanol acrylate, 1-hydroxycyclohexylphenyl 3 g of ketone, 50 g of pigment dispersion (S-1) obtained in Preparation Example 1 (2.5 g in terms of organic pigment (S)), 117 g of isopropyl alcohol.
  • Example 4 An optical filter was obtained and evaluated in the same manner as in Example 1 except that the resin composition (4) shown below was used instead of the resin composition (1). The results are shown in Table 5.
  • Resin composition (4) 100 g of tricyclodecane dimethanol acrylate, 3 g of 1-hydroxycyclohexyl phenyl ketone, 50 g of the pigment dispersion (S-2) obtained in Preparation Example 2 (2.5 g in terms of organic pigment (S)) ), 117 g of methyl isobutyl ketone.
  • Example 5 instead of the transparent resin substrate, a glass substrate (a transparent glass substrate “OA-10G (thickness 150 ⁇ m) cut to 60 mm length and 60 mm width)” (manufactured by Nippon Electric Glass Co., Ltd.) was used. Resin composition (1) An optical filter was obtained and evaluated in the same manner as in Example 1 except that the resin composition (5) shown below was used instead of 1. The results are shown in Table 5.
  • Resin composition (5) 100 g of tricyclodecane dimethanol acrylate, 3 g of 1-hydroxycyclohexyl phenyl ketone, 50 g of the pigment dispersion (S-2) obtained in Preparation Example 2 (2.5 g in terms of organic pigment (S)) ), Compound (a-1) 0.5 g, compound (a-2) 0.4 g, methyl isobutyl ketone 112 g.
  • Example 6 Optical in the same manner as in Example 5 except that a transparent resin film (Zeonor film ZF16 (thickness 100 ⁇ m)) (manufactured by Nippon Zeon Co., Ltd.) cut to a size of 60 mm in length and 60 mm in width was used instead of the glass substrate. A filter was obtained and evaluated, and the results are shown in Table 5.
  • a transparent resin film Zeonor film ZF16 (thickness 100 ⁇ m)
  • Example 7 An optical filter was obtained and evaluated in the same manner as in Example 3 except that the resin composition (6) shown below was used instead of the resin composition (1). The results are shown in Table 5.
  • Resin composition (6) 50 g of urethane acrylate compound (1) obtained in Synthesis Example 2 (in terms of solid content), 30 g of 3-hydroxy-1-adamantyl acrylate, 20 g of tricyclodecane dimethanol acrylate, 1-hydroxycyclohexylphenyl 3 g of ketone, 56 g of the pigment dispersion (S-3) obtained in Preparation Example 3 (2.8 g in terms of organic pigment (S)), and 117 g of isopropyl alcohol.
  • Example 8 An optical filter was obtained and evaluated in the same manner as in Example 3 except that the resin composition (7) shown below was used instead of the resin composition (1). The results are shown in Table 5.
  • Resin composition (7) 50 g of urethane acrylate compound (1) obtained in Synthesis Example 2 (converted to solid content), 30 g of 3-hydroxy-1-adamantyl acrylate, 20 g of tricyclodecane dimethanol acrylate, 1-hydroxycyclohexylphenyl 3 g of ketone, 52 g of pigment dispersion (S-4) obtained in Preparation Example 4 (2.6 g in terms of organic pigment (S)), and 117 g of isopropyl alcohol.
  • Example 9 An optical filter was obtained and evaluated in the same manner as in Example 3 except that the resin composition (8) shown below was used instead of the resin composition (1). The results are shown in Table 5.
  • Resin composition (8) 50 g of urethane acrylate compound (1) obtained in Synthesis Example 2 (converted to solid content), 30 g of 3-hydroxy-1-adamantyl acrylate, 20 g of tricyclodecane dimethanol acrylate, 1-hydroxycyclohexylphenyl 3 g of ketone, 50 g of the pigment dispersion (S-5) obtained in Preparation Example 5 (2.5 g in terms of organic pigment (S)), and 117 g of isopropyl alcohol.
  • the peeled coating film was further dried at 100 ° C. under reduced pressure for 8 hours to obtain a transparent resin substrate having a thickness of 0.1 mm, a length of 60 mm, and a width of 60 mm.
  • Resin composition (6) 100 g of tricyclodecane dimethanol acrylate, 3 g of 1-hydroxycyclohexyl phenyl ketone, 154.5 g of methyl ethyl ketone.
  • Resin composition (7) Tricyclodecane dimethanol acrylate 100 g, 1-hydroxycyclohexyl phenyl ketone 3 g, compound (s-15) 2.5 g, compound (a-1) 0.5 g, compound (a-2) 0 .4 g, methylene chloride 155 g.
  • Form (1) A transparent resin substrate containing a compound (A) has a transparent resin layer containing an organic pigment (S) on both sides.
  • Form (2) Transparent glass substrate (“OA-10G manufactured by Nippon Electric Glass Co., Ltd.) (Thickness 150 ⁇ m) ”) having a transparent resin layer containing an organic pigment (S) on both sides.
  • Form (3) Compound (A) on both sides of a resin support (“ Zeonor Film ZF16 ”manufactured by Nippon Zeon Co., Ltd.) And a transparent resin layer containing an organic pigment (S) Form (4): having a transparent resin layer containing an organic pigment (S) on both sides of a resin support Form (5): Compound (A) and Compound (S Form (6): having a transparent resin layer containing compound (S) on both sides of the transparent glass substrate Form (7): made of transparent resin containing compound (A) Has resin layers on both sides of the substrate
  • Substrate 11 First optical layer 12: Second optical layer 13: Third optical layer 14: Fourth optical layer 111: Camera image 112: White plate 113: Example of central portion of white plate 114: White plate Example 121: Camera image 122: Light source 123: Example of a ghost around the light source

Abstract

The present invention addresses the problem of providing an optical filter that is capable of suppressing the color shading and the ghosting in a camera image while exhibiting high light transmittance characteristics in the visible light wavelength region, and has a suitable heat resistance so that the optical characteristics thereof can be maintained even after long term exposure to a high temperature. The optical filter according to the present invention is characterized by having a base material that satisfies a requirement (a), and having a dielectric multi-layer formed on at least one side of the base material. (a): The base material includes a layer containing an organic pigment (S) that has an absorption maximum in a wavelength range between 900 nm and 1200 nm, inclusive.

Description

光学フィルターおよび光学フィルターを用いた装置Optical filter and device using optical filter
 本発明は、光学フィルターおよび光学フィルターを用いた装置に関する。詳しくは、特定の波長領域に吸収を有する有機顔料を含む光学フィルター、ならびに該光学フィルターを用いた固体撮像装置およびカメラモジュールに関する。 The present invention relates to an optical filter and an apparatus using the optical filter. Specifically, the present invention relates to an optical filter containing an organic pigment having absorption in a specific wavelength region, and a solid-state imaging device and a camera module using the optical filter.
 ビデオカメラ、デジタルスチルカメラ、カメラ機能付き携帯電話などの固体撮像装置にはカラー画像の固体撮像素子であるCCDやCMOSイメージセンサーが使用されている。これら固体撮像素子は、その受光部において人間の目では感知できない近赤外線に感度を有するシリコンフォトダイオードが使用されている。これらの固体撮像素子では、人間の目で見て自然な色合いにさせる視感度補正を行うことが必要であり、特定の波長領域の光線を選択的に透過もしくはカットする光学フィルター(例えば近赤外線カットフィルター)を用いることが多い。 A solid-state imaging device such as a video camera, a digital still camera, or a mobile phone with a camera function uses a CCD or CMOS image sensor, which is a solid-state imaging device for color images. For these solid-state imaging devices, silicon photodiodes having sensitivity to near infrared rays that cannot be sensed by human eyes at the light receiving portion are used. These solid-state image sensors need to be corrected for visibility so that they appear natural to the human eye. Optical filters that selectively transmit or cut light in a specific wavelength region (for example, near-infrared cut) Filter) is often used.
 このような近赤外線カットフィルターとしては、従来から、各種方法で製造されたものが使用されている。例えば、基材として透明樹脂を用い、透明樹脂中に近赤外線吸収色素を含有させた近赤外線カットフィルターが知られている(例えば特許文献1参照)。しかしながら、特許文献1に記載された近赤外線カットフィルターは、近赤外線吸収特性が必ずしも充分ではない場合があった。 As such a near-infrared cut filter, those manufactured by various methods are conventionally used. For example, a near-infrared cut filter in which a transparent resin is used as a substrate and a near-infrared absorbing pigment is contained in the transparent resin is known (see, for example, Patent Document 1). However, the near-infrared cut filter described in Patent Document 1 may not always have sufficient near-infrared absorption characteristics.
 本出願人は、特許文献2において、特定の波長領域に吸収極大がある近赤外線吸収色素を含有する透明樹脂製基板を用いることで、入射角度を変化させても光学特性の変化が少なく、かつ、高い可視光透過率を有する近赤外線カットフィルターを提案している。また、特許文献3には、特定の構造を有するフタロシアニン系色素を用いることで、従来の課題であった優れた可視光透過率と吸収極大波長の長波長化とを高いレベルで両立した近赤外線カットフィルターを得ることができる旨が記載されている。 In the patent document 2, the present applicant uses a transparent resin substrate containing a near-infrared absorbing dye having an absorption maximum in a specific wavelength region, so that there is little change in optical characteristics even when the incident angle is changed, and A near-infrared cut filter having a high visible light transmittance is proposed. Patent Document 3 discloses a near-infrared ray that uses a phthalocyanine dye having a specific structure to achieve both a high visible light transmittance and a long absorption maximum wavelength, both of which are conventional problems. It is described that a cut filter can be obtained.
 しかし、特許文献2および3に記載の近赤外線カットフィルターでは、適用されている基材が、700nm付近には十分な強度の吸収帯を持っているものの、例えば900~1200nmといった近赤外線波長領域にはほぼ吸収を持たない。そのため、近赤外線波長領域の光線は、ほぼ誘電体多層膜の反射でのみカットしているが、このような構成では光学フィルター中の内部反射や、光学フィルターとレンズ間の反射によるわずかな迷光が、暗い環境下で撮影を行う際にゴーストやフレアの原因となる場合があった。特に、近年はスマートフォンなどのモバイル機器であってもカメラの高画質化が強く求められており、従来の光学フィルターでは好適に使用できない場合があった。 However, in the near-infrared cut filters described in Patent Documents 2 and 3, the applied base material has a sufficiently strong absorption band in the vicinity of 700 nm, but in the near-infrared wavelength region of, for example, 900 to 1200 nm. Has almost no absorption. Therefore, light in the near-infrared wavelength region is cut almost only by the reflection of the dielectric multilayer film, but with such a configuration, slight stray light due to internal reflection in the optical filter and reflection between the optical filter and the lens is generated. When shooting in a dark environment, it may cause ghost and flare. In particular, in recent years, there has been a strong demand for high-quality cameras even for mobile devices such as smartphones, and conventional optical filters may not be used favorably.
 一方、近赤外線波長領域に幅広い吸収をもつ基材を用いた光学フィルターとして、特許文献4のような赤外線遮蔽フィルターが提案されている。特許文献4では、主にジチオレン構造を有する化合物を適用することで近赤外線波長領域の幅広い吸収を達成しているが、700nm付近の吸収強度は十分ではない。特に、近年のカメラモジュール低背化に伴う高入射角条件(例えば45度入射)での使用では、色シェーディングによる画像劣化が起こる場合があった。 On the other hand, an infrared shielding filter as in Patent Document 4 has been proposed as an optical filter using a base material having a wide absorption in the near infrared wavelength region. In Patent Document 4, a broad absorption in the near-infrared wavelength region is achieved mainly by applying a compound having a dithiolene structure, but the absorption intensity near 700 nm is not sufficient. In particular, when the camera module is used under a high incident angle condition (for example, 45 degree incidence) accompanying a recent reduction in the height of the camera module, image degradation may occur due to color shading.
 また、特許文献5には、近赤外線吸収ガラス基材と近赤外線吸収色素を含有する層とを有する近赤外線カットフィルターが開示されているが、特許文献5に記載の構成でも色シェーディングを十分改良することができない場合があった。例えば、特許文献5の図5には、0度入射時と30度入射時の光学特性グラフが示されているが、30度入射時においても可視光透過帯の裾部分の領域(630~700nm)で大きな波長シフトが観測されている。 Further, Patent Document 5 discloses a near-infrared cut filter having a near-infrared absorbing glass base material and a layer containing a near-infrared absorbing dye, but the color shading is sufficiently improved even with the configuration described in Patent Document 5. There was a case that could not be done. For example, FIG. 5 of Patent Document 5 shows an optical characteristic graph at 0 ° incidence and at 30 ° incidence, but the region of the skirt portion of the visible light transmission band (630 to 700 nm) even at 30 ° incidence. ) A large wavelength shift is observed.
 本発明者らは、上述した課題を解決するために、900~1200nmといった近赤外線波長領域に吸収極大を持つ色素を光学フィルターに用いることを検討した。しかしながら、このような色素は、前記近赤外線波長領域とともに430~580nmの可視光領域にも吸収を持つ場合が多いため、ゴーストの改善と可視光透過率の両立が課題であった。さらに、上記色素は耐熱性や耐UV性が低いことに起因する光学特性の低下が問題となることがあった。具体的には、溶剤を揮発させるための乾燥工程や硬化性樹脂を硬化させるためのUV照射工程において、色素が劣化することにより、900~1200nm波長領域の近赤外線吸収率および430~580nm波長領域の透過率が低下し、所望の分光特性が得られないという問題があった。それゆえ、900~1200nmに吸収極大を持つ色素は耐熱性や耐UV性を高めることが重要である。 In order to solve the above-mentioned problems, the present inventors have examined the use of a dye having an absorption maximum in the near-infrared wavelength region of 900 to 1200 nm for the optical filter. However, since such dyes often have absorption in the visible light region of 430 to 580 nm as well as in the near infrared wavelength region, it has been a problem to improve both the ghost and the visible light transmittance. In addition, the above dyes sometimes have a problem of deterioration in optical properties due to low heat resistance and UV resistance. Specifically, in the drying process for volatilizing the solvent and the UV irradiation process for curing the curable resin, the near-infrared absorptance in the 900 to 1200 nm wavelength region and the 430 to 580 nm wavelength region due to the deterioration of the pigment. There is a problem that the desired spectral characteristics cannot be obtained. Therefore, it is important to improve heat resistance and UV resistance of a dye having an absorption maximum at 900 to 1200 nm.
 また、上記課題に加えて、近年では車載用途などへの展開に鑑み、耐熱性に対する要求も益々厳しくなっている。すなわち、高温に長時間さらされた場合においても、分光特性の変化を極力抑制できることが求められている。 In addition to the above-mentioned problems, in recent years, the demand for heat resistance has become increasingly severe in view of the development for in-vehicle applications. That is, it is required that the change in spectral characteristics can be suppressed as much as possible even when exposed to a high temperature for a long time.
 上述した色素の耐熱性や耐UV性を向上させる方法として、例えば色素を染料(溶解状態)としてではなく、顔料(粒子分散状態)として用いる方法が知られている(例えば特許文献6,7)。特許文献7では、耐熱性に課題のあるジイモニウム系色素を用いた近赤外線カットフィルターに関して、色素を分散媒(トルエン)に分散させた後、樹脂中に分散させることで、溶解して使用(染料として使用)した場合に対して耐熱性や耐UV性が向上することが示されている。しかしながら、上記先行文献の技術を用いても、近赤外線領域の吸収は十分なものではないばかりか、ヘイズ値が極めて高いフィルムしか得ることができず、上記課題を解決できるものではなかった。 As a method for improving the heat resistance and UV resistance of the above-mentioned pigment, for example, a method using a pigment as a pigment (particle dispersed state) instead of a dye (dissolved state) is known (for example, Patent Documents 6 and 7). . In Patent Document 7, a near-infrared cut filter using a diimonium dye having a problem of heat resistance is used by dissolving the dye in a dispersion medium (toluene) and then dispersing it in a resin (dye). It is shown that the heat resistance and UV resistance are improved as compared to the case of use as However, even if the techniques of the above-mentioned prior art are used, not only the absorption in the near infrared region is sufficient, but only a film having a very high haze value can be obtained, and the above-mentioned problems cannot be solved.
特開平6-200113号公報Japanese Patent Laid-Open No. 6-200113 特開2011-100084号公報JP 2011-100084 A 国際公開2015/025779号パンフレットInternational Publication No. 2015/025779 Pamphlet 国際公開2014/168190号パンフレットInternational Publication No. 2014/168190 Pamphlet 国際公開2014/030628号パンフレットInternational Publication 2014/030628 Pamphlet 特開2001-019898号公報JP 2001-019898 A 特開2010-249964号公報JP 2010-249964 A
 本発明は、従来の光学フィルターでは十分になし得なかった、カメラ画像の色シェーディング抑制およびゴースト抑制と可視光波長領域での透過率特性とを高いレベルで両立し、かつ、高温に長時間晒された場合においても光学特性を維持可能な良好な耐熱性を有する光学フィルターを提供することを課題とする。 The present invention achieves high levels of both color shading suppression and ghost suppression of camera images and transmittance characteristics in the visible light wavelength region, which could not be sufficiently achieved by conventional optical filters, and is exposed to high temperatures for a long time. It is an object of the present invention to provide an optical filter having good heat resistance that can maintain optical characteristics even in such a case.
 本発明者らは、前記課題を解決するために鋭意検討した結果、基材が特定の波長領域に吸収極大を有する有機顔料を含む層を有すること、かつ、前記基材の少なくとも一方の面に誘電体多層膜を形成することにより、可視光領域の透過率を維持しつつ、近赤外線カット特性、可視光透過率、色シェーディング抑制効果およびゴースト抑制効果を達成可能な光学フィルターが得られることを見出した。 As a result of intensive studies to solve the above problems, the present inventors have found that the substrate has a layer containing an organic pigment having an absorption maximum in a specific wavelength region, and on at least one surface of the substrate. By forming a dielectric multilayer film, it is possible to obtain an optical filter that can achieve near infrared cut characteristics, visible light transmittance, color shading suppression effect and ghost suppression effect while maintaining the transmittance in the visible light region. I found it.
 また、本発明者らは、前記有機顔料を微粒子化させて平均粒子径を特定の範囲にすることで、ヘイズ値を極めて低いレベルに維持し、かつ耐熱性に優れた光学フィルターが得られることを見出した。
 これらの知見に基づいて完成させた本発明の態様の例を以下に示す。
In addition, the present inventors can obtain an optical filter excellent in heat resistance by maintaining the haze value at a very low level by making the organic pigment fine particles and making the average particle diameter in a specific range. I found.
Examples of embodiments of the present invention completed based on these findings are shown below.
 [1] 下記要件(a)を満たす基材を有し、かつ、前記基材の少なくとも一方の面に誘電体多層膜を有することを特徴とする光学フィルター:
(a)波長900nm以上1200nm以下の領域に吸収極大を有する有機顔料(S)を含む層を有する。
[1] An optical filter having a base material satisfying the following requirement (a) and having a dielectric multilayer film on at least one surface of the base material:
(A) It has a layer containing an organic pigment (S) having an absorption maximum in a wavelength region of 900 nm to 1200 nm.
 [2] 前記基材が、さらに下記要件(b)を満たすことを特徴とする、項[1]に記載の光学フィルター:
(b)波長650nm以上760nm以下の領域に吸収極大を有する化合物(A)を含む層を有する。
[2] The optical filter according to item [1], wherein the substrate further satisfies the following requirement (b):
(B) It has a layer containing the compound (A) having an absorption maximum in a wavelength region of 650 nm or more and 760 nm or less.
 [3] 前記化合物(A)が、スクアリリウム系化合物、フタロシアニン系化合物およびシアニン系化合物からなる群より選ばれる少なくとも1種の化合物であることを特徴とする項[2]に記載の光学フィルター。 [3] The optical filter according to item [2], wherein the compound (A) is at least one compound selected from the group consisting of squarylium compounds, phthalocyanine compounds, and cyanine compounds.
 [4] 前記有機顔料(S)が、下記式(I)で表されるジイモニウム系化合物を含むことを特徴とする、項[1]~[3]のいずれか1項に記載の光学フィルター。 [4] The optical filter according to any one of items [1] to [3], wherein the organic pigment (S) contains a diimonium compound represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000002
 式(I)中、
 R1は、独立に水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、カルボキシ基、リン酸基、-SRi基、-SO2i基、-OSO2i基または下記La~Lhのいずれかを表し、R2は、独立にハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-NRgh基、-SRi基、-SO2i基、-OSO2i基または下記La~Lhのいずれかを表し、RgおよびRhは、それぞれ独立に水素原子、-C(O)Ri基または下記La~Leのいずれかを表し、Riは下記La~Leのいずれかを表し、
(La)炭素数1~12の脂肪族炭化水素基
(Lb)炭素数1~12のハロゲン置換アルキル基
(Lc)炭素数3~14の脂環式炭化水素基
(Ld)炭素数6~14の芳香族炭化水素基
(Le)炭素数2~14の複素環基
(Lf)炭素数1~12のアルコキシ基
(Lg)置換基Lを有してもよい炭素数1~12のアシル基
(Lh)置換基Lを有してもよい炭素数1~12のアルコキシカルボニル基
 置換基Lは、炭素数1~12の脂肪族炭化水素基、炭素数1~12のハロゲン置換アルキル基、炭素数3~14の脂環式炭化水素基、炭素数6~14の芳香族炭化水素基および炭素数3~14の複素環基からなる群より選ばれる少なくとも1種であり、
 nは0~4の整数を表し、
 Xは電荷を中和させるのに必要なアニオンを表す。
Figure JPOXMLDOC01-appb-C000002
In formula (I),
R 1 is independently a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a carboxy group, a phosphoric acid group, -SR i group, -SO 2 R i groups, -OSO 2 R i group or a group represented by L a ~ R 2 represents any one of R h and R 2 independently represents a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphate group, a —NR g R h group, a —SR i group, —SO 2 R i group, —OSO 2 R i group or any of the following L a to L h is represented, and R g and R h are each independently a hydrogen atom, —C (O) R i group or the following L a to L represents either e, R i represents any of the following L a ~ L e,
(L a ) an aliphatic hydrocarbon group having 1 to 12 carbon atoms (L b ) a halogen-substituted alkyl group having 1 to 12 carbon atoms (L c ) an alicyclic hydrocarbon group having 3 to 14 carbon atoms (L d ) carbon C 6-14 aromatic hydrocarbon group (L e ) C 2-14 heterocyclic group (L f ) C 1-12 alkoxy group (L g ) carbon number optionally having substituent L An alkoxycarbonyl group having 1 to 12 carbon atoms which may have an acyl group (L h ) substituent L having 1 to 12 substituents. The substituent L is an aliphatic hydrocarbon group having 1 to 12 carbon atoms, or an alkyl group having 1 to 12 carbon atoms. At least one selected from the group consisting of a halogen-substituted alkyl group, an alicyclic hydrocarbon group having 3 to 14 carbon atoms, an aromatic hydrocarbon group having 6 to 14 carbon atoms and a heterocyclic group having 3 to 14 carbon atoms Yes,
n represents an integer of 0 to 4,
X represents an anion necessary for neutralizing the electric charge.
 [5] 前記有機顔料(S)の平均粒子径が200nm以下であることを特徴とする項[1]~[4]のいずれか1項に記載の光学フィルター。 [5] The optical filter according to any one of items [1] to [4], wherein the organic pigment (S) has an average particle size of 200 nm or less.
 [6] 前記有機顔料(S)を含む層が透明樹脂層であることを特徴とする、項[1]~[5]のいずれか1項に記載の光学フィルター。 [6] The optical filter according to any one of items [1] to [5], wherein the layer containing the organic pigment (S) is a transparent resin layer.
 [7] 前記透明樹脂層を構成する透明樹脂が、環状ポリオレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系硬化型樹脂、シルセスキオキサン系紫外線硬化型樹脂、アクリル系紫外線硬化型樹脂およびビニル系紫外線硬化型樹脂からなる群より選ばれる少なくとも1種の樹脂であることを特徴とする項[6]に記載の光学フィルター。 [7] The transparent resin constituting the transparent resin layer is a cyclic polyolefin resin, an aromatic polyether resin, a polyimide resin, a fluorene polycarbonate resin, a fluorene polyester resin, a polycarbonate resin, a polyamide resin, or a polyarylate. Resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin, Item characterized by being at least one resin selected from the group consisting of an allyl ester curable resin, a silsesquioxane ultraviolet curable resin, an acrylic ultraviolet curable resin, and a vinyl ultraviolet curable resin [ [6] The optical filter according to [6].
 [8] 前記基材が、酸性官能基を有する分散剤を含有し、かつ、その含有量が前記有機顔料(S)100質量部に対して5~300質量部であることを特徴とする項[1]~[7]のいずれか1項に記載の光学フィルター。 [8] The item wherein the substrate contains a dispersant having an acidic functional group and the content thereof is 5 to 300 parts by mass with respect to 100 parts by mass of the organic pigment (S). The optical filter according to any one of [1] to [7].
 [9] 固体撮像装置用である項[1]~[8]のいずれか1項に記載の光学フィルター。 [9] The optical filter according to any one of items [1] to [8], which is for a solid-state imaging device.
 [10] 項[1]~[9]のいずれか1項に記載の光学フィルターを具備する固体撮像装置。
 [11] 項[1]~[9]のいずれか1項に記載の光学フィルターを具備するカメラモジュール。
[10] A solid-state imaging device comprising the optical filter according to any one of items [1] to [9].
[11] A camera module comprising the optical filter according to any one of items [1] to [9].
 本発明によれば、近赤外線カット特性に優れ、入射角依存性が少なく、可視光波長域での透過率特性、色シェーディング抑制効果、ゴースト抑制効果および耐熱性に優れた光学フィルターを提供することができる。 According to the present invention, it is possible to provide an optical filter that has excellent near-infrared cut characteristics, little incident angle dependency, and excellent transmittance characteristics in the visible light wavelength region, color shading suppression effect, ghost suppression effect, and heat resistance. Can do.
図1(a)、(b)は、本発明の光学フィルターの好ましい構成の例を示した模式図である。FIGS. 1A and 1B are schematic views showing examples of preferable configurations of the optical filter of the present invention. 図2は、実施例1で得られた光学フィルターの分光透過スペクトルである。FIG. 2 is a spectral transmission spectrum of the optical filter obtained in Example 1. 実施例および比較例で行ったカメラ画像の色シェーディング評価を説明するための模式図である。It is a schematic diagram for demonstrating the color shading evaluation of the camera image performed in the Example and the comparative example. 実施例および比較例で行ったカメラ画像のゴースト評価を説明するための模式図である。It is a schematic diagram for demonstrating the ghost evaluation of the camera image performed in the Example and the comparative example.
 以下、本発明に係る光学フィルターおよび該光学フィルターを用いた装置について詳細に説明する。 Hereinafter, the optical filter according to the present invention and an apparatus using the optical filter will be described in detail.
 本発明の光学フィルターは、後述する要件(a)を満たす基材を有し、かつ、前記基材の少なくとも一方の面に誘電体多層膜を有することを特徴とする。
 本発明の光学フィルターの厚みは、近年の固体撮像装置の薄型化、軽量化等の流れを考慮すると、薄いことが好ましい。本発明の光学フィルターは、前記基材を含むため、薄型化が可能である。
The optical filter of the present invention has a base material that satisfies the requirement (a) described below, and has a dielectric multilayer film on at least one surface of the base material.
The thickness of the optical filter of the present invention is preferably thin considering the recent trend of thinning and weight reduction of solid-state imaging devices. Since the optical filter of the present invention includes the substrate, it can be thinned.
 本発明の光学フィルターの厚みは、好ましくは210μm以下、より好ましくは190μm以下、さらに好ましくは160μm以下、特に好ましくは130μm以下であり、下限は特に限定されないが、20μm以上であることが好ましい。 The thickness of the optical filter of the present invention is preferably 210 μm or less, more preferably 190 μm or less, further preferably 160 μm or less, particularly preferably 130 μm or less, and the lower limit is not particularly limited, but is preferably 20 μm or more.
 [基材]
 本発明で用いられる基材は、下記要件(a)を満たす。
(a)波長900nm以上1200nm以下の領域に吸収極大を有する有機顔料(S)を含む層を有する。
 また、前記基材は、さらに下記要件(b)を満たすことが好ましい。
(b)波長650nm以上760nm以下の領域に吸収極大を有する化合物(A)を含む層を有する。
 以下、各要件について説明する。
[Base material]
The base material used in the present invention satisfies the following requirement (a).
(A) It has a layer containing an organic pigment (S) having an absorption maximum in a wavelength region of 900 nm to 1200 nm.
Moreover, it is preferable that the base material further satisfies the following requirement (b).
(B) It has a layer containing the compound (A) having an absorption maximum in a wavelength region of 650 nm or more and 760 nm or less.
Hereinafter, each requirement will be described.
 <要件(a)>
 要件(a)において、有機顔料(S)を含む層を構成する成分は特に限定されず、例えば、透明樹脂、ゾルゲル材料、低温硬化ガラス材料などが挙げられるが、取扱いが容易であること等の観点から透明樹脂であることが好ましい。
<Requirement (a)>
In the requirement (a), the component constituting the layer containing the organic pigment (S) is not particularly limited, and examples thereof include a transparent resin, a sol-gel material, a low-temperature-curing glass material, and the like. A transparent resin is preferable from the viewpoint.
 ≪有機顔料(S)≫
 有機顔料(S)は、波長900nm以上1200nm以下の領域に吸収極大を有している有機顔料であれば特に限定されず、例えば、波長900nm以上1200nm以下の領域に吸収極大を有する化合物(S)を、分散媒および必要に応じて分散剤やその他の添加剤とともに、公知の方法で分散させることにより、有機顔料(S)の分散体として得ることができる。
≪Organic pigment (S) ≫
The organic pigment (S) is not particularly limited as long as it is an organic pigment having an absorption maximum in a wavelength region of 900 nm to 1200 nm. For example, the compound (S) having an absorption maximum in a wavelength region of 900 nm to 1200 nm. Can be obtained as a dispersion of the organic pigment (S) by dispersing it together with a dispersion medium and, if necessary, a dispersant and other additives by a known method.
 (1) 化合物(S)
 前記化合物(S)は、波長900nm以上1200nm以下の領域に吸収極大を有している化合物であれば特に限定されないが、好ましくはジイモニウム系化合物、金属ジチオラート錯体系化合物、ピロロピロール系化合物、シアニン系化合物、クロコニウム系化合物およびナフタロシアニン系化合物からなる群より選ばれる少なくとも1種の化合物であり、さらに好ましくはジイモニウム系化合物および金属ジチオラート錯体系化合物からなる群より選ばれる少なくとも1種の化合物であり、特に好ましくは下記式(I)で表されるジイモニウム系化合物である。このような化合物(S)を用いることにより、良好な近赤外線吸収特性と優れた可視光透過率を付与することができる。
(1) Compound (S)
The compound (S) is not particularly limited as long as the compound has an absorption maximum in a wavelength region of 900 nm or more and 1200 nm or less, but is preferably a diimonium compound, a metal dithiolate complex compound, a pyrrolopyrrole compound, or a cyanine compound. At least one compound selected from the group consisting of a compound, a croconium compound and a naphthalocyanine compound, more preferably at least one compound selected from the group consisting of a diimonium compound and a metal dithiolate complex compound, Particularly preferred are diimonium compounds represented by the following formula (I). By using such a compound (S), it is possible to impart good near infrared absorption characteristics and excellent visible light transmittance.
Figure JPOXMLDOC01-appb-C000003
 式(I)中、
 R1は、独立に水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、カルボキシ基、リン酸基、-SRi基、-SO2i基、-OSO2i基または下記La~Lhのいずれかを表し、R2は、独立にハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-NRgh基、-SRi基、-SO2i基、-OSO2i基または下記La~Lhのいずれかを表し、RgおよびRhは、それぞれ独立に水素原子、-C(O)Ri基または下記La~Leのいずれかを表し、Riは下記La~Leのいずれかを表し、
(La)炭素数1~12の脂肪族炭化水素基
(Lb)炭素数1~12のハロゲン置換アルキル基
(Lc)炭素数3~14の脂環式炭化水素基
(Ld)炭素数6~14の芳香族炭化水素基
(Le)炭素数2~14の複素環基
(Lf)炭素数1~12のアルコキシ基
(Lg)置換基Lを有してもよい炭素数1~12のアシル基
(Lh)置換基Lを有してもよい炭素数1~12のアルコキシカルボニル基
 置換基Lは、炭素数1~12の脂肪族炭化水素基、炭素数1~12のハロゲン置換アルキル基、炭素数3~14の脂環式炭化水素基、炭素数6~14の芳香族炭化水素基および炭素数3~14の複素環基からなる群より選ばれる少なくとも1種であり、
 nは0~4の整数を表し、
 Xは電荷を中和させるのに必要なアニオンを表す。
Figure JPOXMLDOC01-appb-C000003
In formula (I),
R 1 is independently a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a carboxy group, a phosphoric acid group, -SR i group, -SO 2 R i groups, -OSO 2 R i group or a group represented by L a ~ R 2 represents any one of R h and R 2 independently represents a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphate group, a —NR g R h group, a —SR i group, —SO 2 R i group, —OSO 2 R i group or any of the following L a to L h is represented, and R g and R h are each independently a hydrogen atom, —C (O) R i group or the following L a to L represents either e, R i represents any of the following L a ~ L e,
(L a ) an aliphatic hydrocarbon group having 1 to 12 carbon atoms (L b ) a halogen-substituted alkyl group having 1 to 12 carbon atoms (L c ) an alicyclic hydrocarbon group having 3 to 14 carbon atoms (L d ) carbon C 6-14 aromatic hydrocarbon group (L e ) C 2-14 heterocyclic group (L f ) C 1-12 alkoxy group (L g ) carbon number optionally having substituent L An alkoxycarbonyl group having 1 to 12 carbon atoms which may have an acyl group (L h ) substituent L having 1 to 12 substituents. The substituent L is an aliphatic hydrocarbon group having 1 to 12 carbon atoms, or an alkyl group having 1 to 12 carbon atoms. At least one selected from the group consisting of a halogen-substituted alkyl group, an alicyclic hydrocarbon group having 3 to 14 carbon atoms, an aromatic hydrocarbon group having 6 to 14 carbon atoms and a heterocyclic group having 3 to 14 carbon atoms Yes,
n represents an integer of 0 to 4,
X represents an anion necessary for neutralizing the electric charge.
 前記R1としては、好ましくは水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロヘキシル基、アダマンチル基、トリフルオロメチル基、ペンタフルオロエチル基、3-ピリジニル基、エポキシ基、フェニル基、ベンジル基、フルオレニル基であり、より好ましくはイソプロピル基、sec-ブチル基、tert-ブチル基、ベンジル基である。 R 1 is preferably a hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclohexyl group, adamantyl group, trifluoromethyl group. , A pentafluoroethyl group, a 3-pyridinyl group, an epoxy group, a phenyl group, a benzyl group, and a fluorenyl group, and more preferably an isopropyl group, a sec-butyl group, a tert-butyl group, and a benzyl group.
 前記R2としては、好ましくは塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロヘキシル基、フェニル基、水酸基、アミノ基、ジメチルアミノ基、シアノ基、ニトロ基、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、アセチルアミノ基、プロピオニルアミノ基、N-メチルアセチルアミノ基、トリフルオロメタノイルアミノ基、ペンタフルオロエタノイルアミノ基、tert-ブタノイルアミノ基、シクロヘキシノイルアミノ基、n-ブチルスルホニル基、メチルチオ基、エチルチオ基、n-プロピルチオ基、n-ブチルチオ基であり、より好ましくは塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、水酸基、ジメチルアミノ基、メトキシ基、エトキシ基、アセチルアミノ基、プロピオニルアミノ基、トリフルオロメタノイルアミノ基、ペンタフルオロエタノイルアミノ基、tert-ブタノイルアミノ基、シクロヘキシノイルアミノ基であり、特に好ましくは、メチル基、エチル基、n-プロピル基、イソプロピル基である。同じ芳香環に結合しているR2の数(nの値)は、0~4であれば特に限定されないが、0もしくは1であることが好ましい。 R 2 is preferably a chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclohexyl group, phenyl group, hydroxyl group , Amino group, dimethylamino group, cyano group, nitro group, methoxy group, ethoxy group, n-propoxy group, n-butoxy group, acetylamino group, propionylamino group, N-methylacetylamino group, trifluoromethanoylamino Group, pentafluoroethanoylamino group, tert-butanoylamino group, cyclohexylinoylamino group, n-butylsulfonyl group, methylthio group, ethylthio group, n-propylthio group, n-butylthio group, more preferably chlorine Atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl Group, tert-butyl group, hydroxyl group, dimethylamino group, methoxy group, ethoxy group, acetylamino group, propionylamino group, trifluoromethanoylamino group, pentafluoroethanoylamino group, tert-butanoylamino group, cyclohexyl group A cynoylamino group, particularly preferably a methyl group, an ethyl group, an n-propyl group, or an isopropyl group. The number of R 2 bonded to the same aromatic ring (value of n) is not particularly limited as long as it is 0 to 4, but is preferably 0 or 1.
 前記Xは電荷を中和するのに必要なアニオンであり、Xが2価のアニオンである場合にはXは1つであり、Xが1価のアニオンである場合にはXは2つである。後者の場合は2つのアニオンが同一であっても異なっていてもよいが、合成上の観点から同一である方が好ましい。Xはこのようなアニオンであれば特に限定されないが、一例として、下記表1に記載のものを挙げることができる。 X is an anion necessary for neutralizing electric charge. When X is a divalent anion, X is one, and when X is a monovalent anion, X is two. is there. In the latter case, the two anions may be the same or different, but are preferably the same from the viewpoint of synthesis. Although X will not be specifically limited if it is such an anion, As an example, the thing of following Table 1 can be mentioned.
Figure JPOXMLDOC01-appb-T000004
 Xとしては、ジイモニウム系化合物の耐熱性、耐光性および分光特性の観点から、上記表1中の(X-10)、(X-16)、(X-17)、(X-21)、(X-22)、(X-24)、(X-28)が特に好ましい。
Figure JPOXMLDOC01-appb-T000004
X is (X-10), (X-16), (X-17), (X-21), (X-21) in Table 1 above from the viewpoint of heat resistance, light resistance and spectral properties of the diimonium compound. X-22), (X-24) and (X-28) are particularly preferred.
 上記式(I)で表されるジイモニウム系化合物としては、例えば、下記表2-1~2-4に記載のものを挙げることができる。 Examples of the diimonium compound represented by the above formula (I) include those listed in Tables 2-1 to 2-4 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 前記化合物(S)は、一般的に知られている方法で合成すればよく、例えば、特許第4168031号公報、特許第4252961号公報、特表2010-516823号公報、特開昭63-165392号公報等に記載されている方法などを参照して合成することができる。 The compound (S) may be synthesized by a generally known method. For example, Japanese Patent No. 4168031, Japanese Patent No. 4225296, JP-T 2010-516823, JP-A No. 63-165392 It can be synthesized with reference to the method described in the publication.
 前記化合物(S)の吸収極大波長は、好ましくは920nm以上1195nm以下、より好ましくは950nm以上1190nm以下、さらに好ましくは980nm以上1180nm以下である。化合物(S)の吸収極大波長がこのような範囲にあると、不要な近赤外線を効率よくカットすることができ、優れたゴースト抑制効果を得ることができる。 The absorption maximum wavelength of the compound (S) is preferably 920 nm to 1195 nm, more preferably 950 nm to 1190 nm, and further preferably 980 nm to 1180 nm. When the absorption maximum wavelength of the compound (S) is in such a range, unnecessary near-infrared rays can be efficiently cut, and an excellent ghost suppression effect can be obtained.
 (2) 分散媒
 有機顔料(S)は、一般的に知られている方法、例えば公知の分散機を用いる方法で前記化合物(S)を分散媒に分散させて使用することが好ましい。本発明において、化合物(S)に対して溶解性が著しく高い分散媒を選択した場合、化合物(S)が分散媒中に溶解し染料化してしまう。この場合、所望の分光特性が得られなくなるばかりか、耐熱性や耐UV性を著しく低下させてしまう。従って、化合物(S)に対して溶解性が低く、染料化しない分散媒を選択する必要がある。分散媒が化合物(S)を染料化するか否かは、化合物(S)の濃度が0.1質量%となるように、化合物(S)に分散媒を加えて、ガラス板状に滴下して乾燥後、走査型電子顕微鏡にて観察することで確認することができる。化合物(S)が粒子状に存在している場合は顔料化するものと判断でき、粒子状の物質が確認されない場合は染料化するものと判断できる。
(2) Dispersion medium The organic pigment (S) is preferably used by dispersing the compound (S) in a dispersion medium by a generally known method, for example, a method using a known disperser. In the present invention, when a dispersion medium having extremely high solubility with respect to the compound (S) is selected, the compound (S) is dissolved in the dispersion medium and becomes a dye. In this case, desired spectral characteristics cannot be obtained, and heat resistance and UV resistance are significantly reduced. Therefore, it is necessary to select a dispersion medium that has low solubility in the compound (S) and does not form a dye. Whether the dispersion medium dyes the compound (S) is determined by adding the dispersion medium to the compound (S) and dropping it into a glass plate so that the concentration of the compound (S) is 0.1% by mass. After drying, it can be confirmed by observing with a scanning electron microscope. When the compound (S) is present in the form of particles, it can be determined that it is pigmented, and when the particulate material is not confirmed, it can be determined that it is dyed.
 分散媒としては、化合物(S)を染料化してしまうもの以外であれば特に限定されないが、分散プロセスでの安全性の点から比較的極性の高い溶媒が好ましく、例えばイソプロパノール、エタノール等のアルコール類、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸ブチル、酢酸エチル等のエステル類、プロピレングリコールモノメチルエーテル等のエーテル類が挙げられる。 The dispersion medium is not particularly limited as long as it does not dye the compound (S), but a solvent having a relatively high polarity is preferable from the viewpoint of safety in the dispersion process. For example, alcohols such as isopropanol and ethanol , Ketones such as methyl ethyl ketone and methyl isobutyl ketone, esters such as butyl acetate and ethyl acetate, and ethers such as propylene glycol monomethyl ether.
 化合物(S)がジイモニウム系化合物の場合は、分散液の保存安定性の点から、イソプロパノール、エタノール等のアルコール類が特に好ましい。なお、塩化メチレンなどのハロゲン溶媒を用いた場合には化合物(S)が染料化してしまうため好ましくない。 When the compound (S) is a diimonium compound, alcohols such as isopropanol and ethanol are particularly preferable from the viewpoint of storage stability of the dispersion. Note that it is not preferable to use a halogen solvent such as methylene chloride because the compound (S) is dyed.
 (3) 分散機
 前記化合物(S)を分散媒に分散させる際に用いられる分散機としては、例えば、ビーズミル、ボールミル、振動ボールミル、遊星ボールミル、サンドミル、コロイドミル、ジェットミル及びローラミルなどが挙げられる。
 また、いわゆるソルトミリングにより、化合物(S)の一次粒子を微細化して有機顔料(S)を調製してもよい。ソルトミリングの方法としては、例えば、特開平8-179111号公報に開示されている方法を採用することができる。
(3) Disperser Examples of the disperser used when dispersing the compound (S) in a dispersion medium include a bead mill, a ball mill, a vibrating ball mill, a planetary ball mill, a sand mill, a colloid mill, a jet mill, and a roller mill. .
Further, the organic pigment (S) may be prepared by refining the primary particles of the compound (S) by so-called salt milling. As a salt milling method, for example, a method disclosed in Japanese Patent Laid-Open No. 8-179111 can be employed.
 (4) 分散剤
 分散安定性向上を目的として、公知の分散剤を用いて化合物(S)を分散させてもよい。分散剤としては、例えば、ウレタン系分散剤、ポリエチレンイミン系分散剤、ポリオキシエチレンアルキルエーテル系分散剤、ポリオキシエチレンアルキルフェニルエーテル系分散剤、ポリエチレングリコールジエステル系分散剤、ソルビタン脂肪酸エステル系分散剤、ポリエステル系分散剤、(メタ)アクリル系分散剤等が挙げられる。市販品として、例えば、Disperbyk-2000、Disperbyk-2001、BYK-LPN6919、BYK-LPN21116、BYK-LPN22102(以上、ビックケミー(BYK)社製)等の(メタ)アクリル系分散剤、Disperbyk-161、Disperbyk-162、Disperbyk-165、Disperbyk-167、Disperbyk-170、Disperbyk-182(以上、ビックケミー(BYK)社製)、ソルスパース76500(ルーブリゾール(株)社製)等のウレタン系分散剤、ソルスパース24000(ルーブリゾール(株)社製)等のポリエチレンイミン系分散剤、アジスパーPB821、アジスパーPB822、アジスパーPB880、アジスパーPB881(以上、味の素ファインテクノ(株)社製)等のポリエステル系分散剤の他、BYK-LPN21324(ビックケミー(BYK)社製)、マリアリムSCシリーズ、エスリームADシリーズ、エスリームC2093I(以上、日油(株)社製)などを使用することができる。また、(メタ)アクリル系分散剤として、例えば、特開2011-232735号公報、特開2011-237769号公報、特開2012-32767号公報、国際公開第2011/129078号パンフレット、国際公開第2012/001945号パンフレット等に開示されている共重合体も使用することもできる。分散剤は、1種又は2種以上を組み合わせて使用することができる。
(4) Dispersant For the purpose of improving dispersion stability, the compound (S) may be dispersed using a known dispersant. Examples of the dispersant include a urethane-based dispersant, a polyethyleneimine-based dispersant, a polyoxyethylene alkyl ether-based dispersant, a polyoxyethylene alkylphenyl ether-based dispersant, a polyethylene glycol diester-based dispersant, and a sorbitan fatty acid ester-based dispersant. , Polyester dispersants, (meth) acrylic dispersants, and the like. Examples of commercially available products include (meth) acrylic dispersants such as Disperbyk-2000, Disperbyk-2001, BYK-LPN6919, BYK-LPN21116, BYK-LPN22102 (manufactured by BYK (BYK)), Disperbyk-161, Disperbyk. -162, Disperbyk-165, Disperbyk-167, Disperbyk-170, Disperbyk-182 (manufactured by BYK Corporation), Solsperse 76500 (manufactured by Lubrizol Co., Ltd.) and the like, Solsperse 24000 ( Polyethyleneimine-based dispersants such as Lubrizol Co., Ltd.), Ajisper PB821, Azisper PB822, Azisper PB880, Azisper PB881 In addition to polyester dispersants such as those manufactured by Ajinomoto Fine Techno Co., Ltd., BYK-LPN21324 (manufactured by BYK Corporation), Mariarim SC series, Esliem AD series, Esliem C2093I (above, NOF Corporation) Etc.) can be used. Examples of the (meth) acrylic dispersant include, for example, JP 2011-232735 A, JP 2011-237769 A, JP 2012-32767 A, International Publication 2011/129078, International Publication 2012. Copolymers disclosed in the / 001945 pamphlet and the like can also be used. A dispersing agent can be used 1 type or in combination of 2 or more types.
 本発明では、酸性官能基を有する分散剤を用いることが、分散安定性が良好な点、および化合物(S)に対する化学的な作用が小さい点で好ましい。前記酸性官能基を有する分散剤としては、カルボン酸、スルホン酸、フェノール系水酸基またはこれらの塩を有する分散剤であれば特に限定されないが、例えば、酸性官能基を有するエチレン性不飽和単量体と他の共重合可能なエチレン性不飽和単量体との共重合体などが挙げられる。また、市販品としては、上述したマリアリムSCシリーズ、DISPERBYK-103、DISPERBYK-110、DISPERBYK-118などが挙げられる。 In the present invention, it is preferable to use a dispersant having an acidic functional group in terms of good dispersion stability and small chemical action on the compound (S). The dispersant having an acidic functional group is not particularly limited as long as it is a dispersant having a carboxylic acid, a sulfonic acid, a phenolic hydroxyl group, or a salt thereof. For example, an ethylenically unsaturated monomer having an acidic functional group And other copolymerizable ethylenically unsaturated monomers. Examples of commercially available products include the above-mentioned Mariarim SC series, DISPERBYK-103, DISPERBYK-110, DISPERBYK-118, and the like.
  分散剤の含有量は、分散剤の種類により適宜選択可能であるが、前記有機顔料(S)100質量部に対して、好ましくは5~300質量部、より好ましくは10~200質量部、更に好ましくは20~150質量部である。分散剤の含有量が前記範囲内であることにより、分散液の分散安定性が良好であり、かつ基材や光学フィルターの耐熱性、耐水性および密着性が優れるため好ましい。 The content of the dispersant can be appropriately selected depending on the type of the dispersant, but is preferably 5 to 300 parts by weight, more preferably 10 to 200 parts by weight, and more preferably 100 parts by weight of the organic pigment (S). The amount is preferably 20 to 150 parts by mass. It is preferable for the content of the dispersant to be in the above range because the dispersion stability of the dispersion is good and the heat resistance, water resistance and adhesion of the substrate and optical filter are excellent.
 本発明では、分散工程に続いて遠心分離処理を行うことが好ましい。遠心分離処理により、分散が不十分な粗大な有機顔料粒子を除去し、有機顔料の平均粒子径を低減させることができ、結果として光学フィルターのヘイズを低減することができる。 In the present invention, it is preferable to perform a centrifugal separation process following the dispersion step. Centrifugation treatment can remove coarse organic pigment particles that are insufficiently dispersed, thereby reducing the average particle size of the organic pigment, and as a result, haze of the optical filter can be reduced.
  遠心分離処理の時間としては、特に限定されないが、例えば1分以上60分以下とすることができる。また、 遠心分離を行う際の遠心分離機の遠心加速度としては特に限定されないが、例えば10G以上50,000G以下とすることができる。 Although it does not specifically limit as time of sputum centrifugation processing, For example, it is 1 minute or more and 60 minutes or less. Moreover, it is although it does not specifically limit as centrifugal acceleration of the centrifuge at the time of performing sputum centrifuge, For example, it can be set as 10 G or more and 50,000 G or less.
 (5) 有機顔料(S)の平均粒子径
 有機顔料(S)の平均粒子径は、好ましくは200nm以下、より好ましくは5~190nm、さらに好ましくは10~180nm、特に好ましくは15~150nmである。ここで、本発明における有機顔料(S)の平均粒子径は、後述する実施例に記載の測定方法で求めた値である。有機顔料(S)の平均粒子径が前記範囲にあると、ヘイズ値を極めて低いレベルに維持し、かつ耐熱性に優れた光学フィルターを得ることができる。
(5) Average particle diameter of organic pigment (S) The average particle diameter of the organic pigment (S) is preferably 200 nm or less, more preferably 5 to 190 nm, still more preferably 10 to 180 nm, and particularly preferably 15 to 150 nm. . Here, the average particle diameter of the organic pigment (S) in the present invention is a value obtained by the measurement method described in Examples described later. When the average particle diameter of the organic pigment (S) is in the above range, an optical filter excellent in heat resistance can be obtained while maintaining the haze value at an extremely low level.
 (6) 有機顔料(S)の含有量
 有機顔料(S)全体の含有量は、前記基材として、例えば、有機顔料(S)を含有する透明樹脂製基板からなる基材や、有機顔料(S)を含有する透明樹脂製基板上に硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材を用いる場合には、透明樹脂100質量部に対して、好ましくは0.01~2.0質量部、より好ましくは0.02~1.5質量部、特に好ましくは0.03~1.0質量部であり、前記基材として、ガラス支持体やベースとなる樹脂製支持体などの支持体上に有機顔料(S)を含有する硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材を用いる場合には、有機顔料(S)を含む透明樹脂層を形成する樹脂100質量部に対して、好ましくは0.1~5.0質量部、より好ましくは0.2~4.0質量部、特に好ましくは0.3~3.0質量部である。有機顔料(S)の含有量が前記範囲内にあると、良好な近赤外線吸収特性と高い可視光透過率とを両立した光学フィルターを得ることができる。なお、本発明では、基材としてガラス支持体やベースとなる樹脂製支持体などの支持体上に有機顔料(S)を含有する硬化性樹脂等からなるオーバーコート層を設けることが望ましい。
(6) Content of organic pigment (S) The content of the entire organic pigment (S) is, for example, a base material made of a transparent resin substrate containing the organic pigment (S) or an organic pigment (S). When using a base material in which a resin layer such as an overcoat layer made of a curable resin or the like is used on a transparent resin substrate containing S), it is preferably 0.01 with respect to 100 parts by mass of the transparent resin. 2.0 parts by mass, more preferably 0.02 to 1.5 parts by mass, particularly preferably 0.03 to 1.0 parts by mass. As the substrate, a glass support or a resin support as a base is used. When using a substrate in which a transparent resin layer such as an overcoat layer made of a curable resin containing an organic pigment (S) is used on a support such as a body, a transparent resin containing the organic pigment (S) Preferably it is 0.1 with respect to 100 mass parts of resin which forms a layer. 5.0 parts by weight, more preferably 0.2 to 4.0 mass parts, and particularly preferably 0.3 to 3.0 parts by. When the content of the organic pigment (S) is within the above range, an optical filter having both good near infrared absorption characteristics and high visible light transmittance can be obtained. In the present invention, it is desirable to provide an overcoat layer made of a curable resin containing an organic pigment (S) on a support such as a glass support or a base resin support as a base material.
 <要件(b)>
 要件(b)において、化合物(A)を含む層を構成する成分は特に限定されず、例えば、透明樹脂、ゾルゲル材料、低温硬化ガラス材料などが挙げられるが、取扱いが容易であることや化合物(A)との相溶性の観点から透明樹脂であることが好ましい。
<Requirement (b)>
In the requirement (b), the component constituting the layer containing the compound (A) is not particularly limited, and examples thereof include a transparent resin, a sol-gel material, a low-temperature-curing glass material, and the like. A transparent resin is preferable from the viewpoint of compatibility with A).
 ≪化合物(A)≫
 化合物(A)は、波長650nm以上760nm以下の領域に吸収極大を有する化合物であれば特に限定されないが、溶剤可溶型の色素化合物であることが好ましく、スクアリリウム系化合物、フタロシアニン系化合物およびシアニン系化合物からなる群より選ばれる少なくとも1種であることがより好ましく、スクアリリウム系化合物を含むことがさらに好ましく、スクアリリウム系化合物を含む2種以上であることが特に好ましい。化合物(A)がスクアリリウム系化合物を含む2種以上である場合、構造の異なるスクアリリウム系化合物が2種以上でもよく、スクアリリウム系化合物とその他の化合物(A)との組み合わせでもよい。その他の化合物(A)としては、フタロシアニン系化合物およびシアニン系化合物が特に好ましい。
<< Compound (A) >>
The compound (A) is not particularly limited as long as it is a compound having an absorption maximum in a wavelength region of 650 nm or more and 760 nm or less, but is preferably a solvent-soluble dye compound, and is a squarylium compound, a phthalocyanine compound, and a cyanine compound. It is more preferable that it is at least one selected from the group consisting of compounds, it is more preferable that a squarylium compound is included, and it is particularly preferable that there are two or more compounds including a squarylium compound. When the compound (A) is two or more types including a squarylium compound, two or more types of squarylium compounds having different structures may be used, or a combination of a squarylium compound and another compound (A) may be used. As the other compound (A), a phthalocyanine compound and a cyanine compound are particularly preferable.
 スクアリリウム系化合物は、優れた可視光透過性、急峻な吸収特性および高いモル吸光係数を有するが、光線吸収時に散乱光の原因となる蛍光を発生させる場合がある。そのような場合、スクアリリウム系化合物とその他の化合物(A)とを組み合わせて使用することにより、散乱光が少なくカメラ画質がより良好な光学フィルターを得ることができる。 The squarylium-based compound has excellent visible light permeability, steep absorption characteristics, and a high molar extinction coefficient, but may generate fluorescence that causes scattered light during light absorption. In such a case, an optical filter with less scattered light and better camera image quality can be obtained by using a combination of the squarylium compound and the other compound (A).
 化合物(A)の吸収極大波長は、好ましくは660nm以上755nm以下、より好ましくは670nm以上750nm以下、さらに好ましくは680nm以上745nm以下である。 The absorption maximum wavelength of the compound (A) is preferably 660 nm or more and 755 nm or less, more preferably 670 nm or more and 750 nm or less, and further preferably 680 nm or more and 745 nm or less.
 化合物(A)が2種以上の化合物の組み合わせである場合、適用する化合物(A)のうち最も吸収極大波長が短いものと最も吸収極大波長の長いものの吸収極大波長の差は、好ましくは10~60nm、より好ましくは15~55nm、さらに好ましくは20~50nmである。吸収極大波長の差が上記範囲にあると、蛍光による散乱光を十分低減できるとともに、700nm付近の幅広い吸収帯と優れた可視光透過率を両立できるため好ましい。 When the compound (A) is a combination of two or more kinds of compounds, the difference between the absorption maximum wavelengths of the compound (A) to be applied having the shortest absorption maximum wavelength and the longest absorption maximum wavelength is preferably 10 to The thickness is 60 nm, more preferably 15 to 55 nm, still more preferably 20 to 50 nm. It is preferable that the difference in absorption maximum wavelength is in the above-mentioned range because scattered light due to fluorescence can be sufficiently reduced and a wide absorption band near 700 nm and an excellent visible light transmittance can be compatible.
 化合物(A)全体の含有量は、前記基材として、例えば、有機顔料(S)および化合物(A)を含有する透明樹脂製基板からなる基材や、化合物(A)を含有する透明樹脂製基板上に有機顔料(S)を含有する硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材を用いる場合には、透明樹脂100質量部に対して、好ましくは0.04~2.0質量部、より好ましくは0.06~1.5質量部、さらに好ましくは0.08~1.0質量部であり、前記基材として、ガラス支持体やベースとなる樹脂製支持体などの支持体上に有機顔料(S)および化合物(A)を含有する硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材を用いる場合には、化合物(A)を含む透明樹脂層を形成する樹脂100質量部に対して、好ましくは0.4~5.0質量部、より好ましくは0.6~4.0質量部、さらに好ましくは0.8~3.5質量部である。 The total content of the compound (A) is, for example, a base material made of a transparent resin substrate containing the organic pigment (S) and the compound (A) or a transparent resin containing the compound (A) as the base material. When using a base material in which a resin layer such as an overcoat layer made of a curable resin containing an organic pigment (S) is laminated on a substrate, it is preferably 0.04 with respect to 100 parts by mass of the transparent resin. 2.0 parts by mass, more preferably 0.06 to 1.5 parts by mass, and still more preferably 0.08 to 1.0 parts by mass. As the substrate, a glass support or a resin support as a base is used. When using a substrate in which a transparent resin layer such as an overcoat layer made of a curable resin containing the organic pigment (S) and the compound (A) is laminated on a support such as a body, the compound (A) 100 forming a transparent resin layer containing Relative to the amount unit, preferably 0.4 to 5.0 parts by mass, more preferably in a range of 0.6 to 4.0 mass parts, more preferably 0.8 to 3.5 mass parts.
 前記基材は、有機顔料(S)を含む層を有していれば、単層であっても多層であってもよい。また、化合物(A)は有機顔料(S)と同一の層に含まれていても異なる層に含まれていてもよい。 The substrate may be a single layer or a multilayer as long as it has a layer containing an organic pigment (S). Moreover, the compound (A) may be contained in the same layer as the organic pigment (S) or in a different layer.
 有機顔料(S)を含む層と化合物(A)を含む層とが同一である場合、例えば、有機顔料(S)および化合物(A)を含む透明樹脂製基板からなる基材、有機顔料(S)および化合物(A)を含む透明樹脂製基板上に硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材、ガラス支持体やベースとなる樹脂製支持体などの支持体上に有機顔料(S)および化合物(A)を含有する硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材を挙げることができる。 When the layer containing the organic pigment (S) and the layer containing the compound (A) are the same, for example, a base material made of a transparent resin substrate containing the organic pigment (S) and the compound (A), an organic pigment (S ) And a transparent resin substrate containing the compound (A) on a substrate such as an overcoat layer made of a curable resin or the like, a support such as a glass support or a base resin support And a substrate on which a transparent resin layer such as an overcoat layer made of a curable resin containing the organic pigment (S) and the compound (A) is laminated.
 有機顔料(S)を含む層と化合物(A)を含む層とが異なる場合、例えば、有機顔料(S)を含む透明樹脂製基板上に化合物(A)を含む硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材、化合物(A)を含む透明樹脂製基板上に有機顔料(S)を含む硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材、ガラス支持体やベースとなる樹脂製支持体などの支持体上に有機顔料(S)を含む硬化性樹脂等からなるオーバーコート層と化合物(A)を含む硬化性樹脂等からなるオーバーコート層とが積層された基材などを挙げることができる。なお、本発明では、化合物(A)を含む透明樹脂製基板上に有機顔料(S)を含有する硬化性樹脂等からなるオーバーコート層を設けることが好ましく、この場合において、有機顔料(S)の平均粒子径が150nm以下であることが更に好ましく、100nm以下であることが特に好ましい。 When the layer containing the organic pigment (S) and the layer containing the compound (A) are different, for example, an overcoat made of a curable resin containing the compound (A) on a transparent resin substrate containing the organic pigment (S) A base material on which a resin layer such as a layer is laminated, or a base material on which a resin layer such as an overcoat layer made of a curable resin containing an organic pigment (S) is laminated on a transparent resin substrate containing the compound (A) An overcoat layer made of a curable resin containing an organic pigment (S) on a support such as a glass support or a base resin support, and an overcoat layer made of a curable resin containing a compound (A) Can be mentioned. In the present invention, it is preferable to provide an overcoat layer made of a curable resin containing an organic pigment (S) on a transparent resin substrate containing the compound (A). In this case, the organic pigment (S) The average particle size is more preferably 150 nm or less, and particularly preferably 100 nm or less.
 <その他の特性および物性>
 波長430~580nmの領域における基材の平均透過率は、好ましくは75%以上、さらに好ましくは78%以上、特に好ましくは80%以上である。このような透過特性を有する基材を用いると、可視光領域において高い光線透過特性を達成でき、高感度なカメラ機能を達成することができる。
<Other properties and physical properties>
The average transmittance of the substrate in the wavelength region of 430 to 580 nm is preferably 75% or more, more preferably 78% or more, and particularly preferably 80% or more. When a substrate having such transmission characteristics is used, high light transmission characteristics can be achieved in the visible light region, and a highly sensitive camera function can be achieved.
 基材の厚みは、所望の用途に応じて適宜選択することができ、特に限定されないが、好ましくは10~200μm、より好ましくは20~180μm、さらに好ましくは25~150μmである。基材の厚みが前記範囲にあると、該基材を用いた光学フィルターを薄型化および軽量化することができ、固体撮像装置等の様々な用途に好適に用いることができる。特に、前記透明樹脂製基板からなる基材をカメラモジュール等のレンズユニットに用いた場合には、レンズユニットの低背化、軽量化を実現することができるため好ましい。 The thickness of the substrate can be appropriately selected according to the desired application and is not particularly limited, but is preferably 10 to 200 μm, more preferably 20 to 180 μm, and further preferably 25 to 150 μm. When the thickness of the substrate is in the above range, an optical filter using the substrate can be reduced in thickness and weight, and can be suitably used for various applications such as a solid-state imaging device. In particular, when a base material made of the transparent resin substrate is used in a lens unit such as a camera module, it is preferable because the lens unit can be reduced in height and weight.
 <透明樹脂>
 前記基材を構成する透明樹脂層、透明樹脂製基板および樹脂製支持体に用いられる透明樹脂としては、本発明の効果を損なわないものである限り特に限定されないが、例えば、熱安定性およびフィルムへの成形性を確保し、かつ、100℃以上の蒸着温度で行う高温蒸着により誘電体多層膜を形成しうるフィルムとするため、ガラス転移温度(Tg)が、好ましくは110~380℃、より好ましくは110~370℃、さらに好ましくは120~360℃である樹脂が挙げられる。また、前記樹脂のガラス転移温度が140℃以上であると、誘電体多層膜をより高温で蒸着形成しえるフィルムが得られるため、特に好ましい。
<Transparent resin>
The transparent resin used for the transparent resin layer, the transparent resin substrate and the resin support constituting the substrate is not particularly limited as long as it does not impair the effects of the present invention. For example, thermal stability and film Glass transition temperature (Tg) is preferably 110 to 380 ° C., in order to obtain a film capable of forming a dielectric multilayer film by high temperature vapor deposition performed at a vapor deposition temperature of 100 ° C. or higher while ensuring moldability to Preferably, a resin having a temperature of 110 to 370 ° C., more preferably 120 to 360 ° C. is used. Further, it is particularly preferable that the glass transition temperature of the resin is 140 ° C. or higher because a film capable of depositing a dielectric multilayer film at a higher temperature can be obtained.
 透明樹脂としては、当該樹脂からなる厚さ0.1mmの樹脂板を形成した場合に、この樹脂板の全光線透過率(JIS K7105)が、好ましくは75~95%、より好ましくは78~95%、さらに好ましくは80~95%となる樹脂を用いることができる。全光線透過率がこのような範囲となる樹脂を用いれば、得られる基板は光学フィルムとして良好な透明性を示す。 As a transparent resin, when a resin plate made of the resin having a thickness of 0.1 mm is formed, the total light transmittance (JIS K7105) of the resin plate is preferably 75 to 95%, more preferably 78 to 95. %, More preferably 80 to 95% of the resin can be used. If a resin having a total light transmittance in such a range is used, the resulting substrate exhibits good transparency as an optical film.
 透明樹脂のゲルパーミエーションクロマトグラフィー(GPC)法により測定される、ポリスチレン換算の重量平均分子量(Mw)は、通常15,000~350,000、好ましくは30,000~250,000であり、数平均分子量(Mn)は、通常10,000~150,000、好ましくは20,000~100,000である。 The weight average molecular weight (Mw) in terms of polystyrene measured by a gel permeation chromatography (GPC) method of the transparent resin is usually 15,000 to 350,000, preferably 30,000 to 250,000. The average molecular weight (Mn) is usually 10,000 to 150,000, preferably 20,000 to 100,000.
 透明樹脂としては、例えば、環状ポリオレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド(アラミド)系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート(PEN)系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系硬化型樹脂、シルセスキオキサン系紫外線硬化型樹脂、アクリル系紫外線硬化型樹脂およびビニル系紫外線硬化型樹脂を挙げることができる。 Examples of transparent resins include cyclic polyolefin resins, aromatic polyether resins, polyimide resins, fluorene polycarbonate resins, fluorene polyester resins, polycarbonate resins, polyamide (aramid) resins, polyarylate resins, and polysulfones. Resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate (PEN) resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin, allyl Examples thereof include ester-based curable resins, silsesquioxane-based ultraviolet curable resins, acrylic-based ultraviolet curable resins, and vinyl-based ultraviolet curable resins.
 透明樹脂は、1種単独で用いても、2種以上を組み合わせて用いてもよい。 Transparent resins may be used alone or in combination of two or more.
 ≪環状ポリオレフィン系樹脂≫
 環状ポリオレフィン系樹脂としては、下記式(X0)で表される単量体および下記式(Y0)で表される単量体からなる群より選ばれる少なくとも1種の単量体から得られる樹脂、および当該樹脂を水素添加することで得られる樹脂が好ましい。
≪Cyclic polyolefin resin≫
The cyclic polyolefin-based resin is obtained from at least one monomer selected from the group consisting of a monomer represented by the following formula (X 0 ) and a monomer represented by the following formula (Y 0 ). A resin and a resin obtained by hydrogenating the resin are preferable.
Figure JPOXMLDOC01-appb-C000009
 式(X0)中、Rx1~Rx4はそれぞれ独立に、下記(i')~(ix')より選ばれる原子または基を表し、kx、mxおよびpxはそれぞれ独立に、0~4の整数を表す。
(i')水素原子
(ii')ハロゲン原子
(iii')トリアルキルシリル基
(iv')酸素原子、硫黄原子、窒素原子またはケイ素原子を含む連結基を有する、置換または非置換の炭素数1~30の炭化水素基
(v')置換または非置換の炭素数1~30の炭化水素基
(vi')極性基(但し、(ii')および(iv')を除く。)
(vii')Rx1とRx2またはRx3とRx4とが、相互に結合して形成されたアルキリデン基(但し、前記結合に関与しないRx1~Rx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。)
(viii')Rx1とRx2またはRx3とRx4とが、相互に結合して形成された単環もしくは多環の炭化水素環または複素環(但し、前記結合に関与しないRx1~Rx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。)
(ix')Rx2とRx3とが、相互に結合して形成された単環の炭化水素環または複素環(但し、前記結合に関与しないRx1とRx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。)
Figure JPOXMLDOC01-appb-C000009
In the formula (X 0 ), R x1 to R x4 each independently represents an atom or group selected from the following (i ′) to (ix ′), and k x , mx and p x are each independently 0 Represents an integer of ~ 4.
(I ′) a hydrogen atom (ii ′) a halogen atom (iii ′) a trialkylsilyl group (iv ′) a substituted or unsubstituted carbon atom having a linking group containing an oxygen atom, a sulfur atom, a nitrogen atom or a silicon atom 30 to 30 hydrocarbon group (v ′) substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms (vi ′) polar group (excluding (ii ′) and (iv ′))
(Vii ′) an alkylidene group formed by bonding R x1 and R x2 or R x3 and R x4 to each other (provided that R x1 to R x4 not involved in the bonding are independently the above (i ′ )-(Vi ′) represents an atom or group selected from.
(Viii ′) R x1 and R x2 or R x3 and R x4 are bonded to each other to form a monocyclic or polycyclic hydrocarbon ring or heterocyclic ring (provided that R x1 to R which are not involved in the bond) x4 each independently represents an atom or group selected from (i ′) to (vi ′).
(Ix ′) A monocyclic hydrocarbon ring or heterocycle formed by bonding R x2 and R x3 to each other (provided that R x1 and R x4 not involved in the bonding are each independently the above (i Represents an atom or group selected from ') to (vi').
Figure JPOXMLDOC01-appb-C000010
 式(Y0)中、Ry1およびRy2はそれぞれ独立に、前記(i')~(vi')より選ばれる原子または基を表すか、Ry1とRy2とが、相互に結合して形成された単環もしくは多環の脂環式炭化水素、芳香族炭化水素または複素環を表し、kyおよびpyはそれぞれ独立に、0~4の整数を表す。
Figure JPOXMLDOC01-appb-C000010
In the formula (Y 0 ), R y1 and R y2 each independently represent an atom or group selected from the above (i ′) to (vi ′), or R y1 and R y2 are bonded to each other formed monocyclic or polycyclic alicyclic hydrocarbon, an aromatic hydrocarbon or heterocyclic, k y and p y are each independently an integer of 0-4.
 ≪芳香族ポリエーテル系樹脂≫
 芳香族ポリエーテル系樹脂は、下記式(1)で表される構造単位および下記式(2)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を有することが好ましい。
≪Aromatic polyether resin≫
The aromatic polyether-based resin preferably has at least one structural unit selected from the group consisting of a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000011
 式(1)中、R1~R4はそれぞれ独立に、炭素数1~12の1価の有機基を示し、a~dはそれぞれ独立に、0~4の整数を示す。
Figure JPOXMLDOC01-appb-C000011
In formula (1), R 1 to R 4 each independently represents a monovalent organic group having 1 to 12 carbon atoms, and a to d each independently represents an integer of 0 to 4.
Figure JPOXMLDOC01-appb-C000012
 式(2)中、R1~R4およびa~dはそれぞれ独立に、前記式(1)中のR1~R4およびa~dと同義であり、Yは、単結合、-SO2-または-CO-を示し、R7およびR8はそれぞれ独立に、ハロゲン原子、炭素数1~12の1価の有機基またはニトロ基を示し、gおよびhはそれぞれ独立に、0~4の整数を示し、mは0または1を示す。但し、mが0のとき、R7はシアノ基ではない。
Figure JPOXMLDOC01-appb-C000012
In the formula (2), in each of R 1 ~ R 4 and a ~ d independently has the same meaning as R 1 ~ R 4 and a ~ d of the formula (1), Y represents a single bond, -SO 2 -Or -CO-, R 7 and R 8 each independently represent a halogen atom, a monovalent organic group having 1 to 12 carbon atoms or a nitro group, and g and h each independently represents 0 to 4 Represents an integer, and m represents 0 or 1. However, when m is 0, R 7 is not a cyano group.
 また、前記芳香族ポリエーテル系樹脂は、さらに下記式(3)で表される構造単位および下記式(4)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を有することが好ましい。 The aromatic polyether resin further has at least one structural unit selected from the group consisting of a structural unit represented by the following formula (3) and a structural unit represented by the following formula (4). Is preferred.
Figure JPOXMLDOC01-appb-C000013
 式(3)中、R5およびR6はそれぞれ独立に、炭素数1~12の1価の有機基を示し、Zは、単結合、-O-、-S-、-SO2-、-CO-、-CONH-、-COO-または炭素数1~12の2価の有機基を示し、eおよびfはそれぞれ独立に、0~4の整数を示し、nは0または1を示す。
Figure JPOXMLDOC01-appb-C000013
In formula (3), R 5 and R 6 each independently represent a monovalent organic group having 1 to 12 carbon atoms, and Z represents a single bond, —O—, —S—, —SO 2 —, — CO—, —CONH—, —COO— or a divalent organic group having 1 to 12 carbon atoms, e and f each independently represents an integer of 0 to 4, and n represents 0 or 1.
Figure JPOXMLDOC01-appb-C000014
 式(4)中、R7、R8、Y、m、gおよびhはそれぞれ独立に、前記式(2)中のR7、R8、Y、m、gおよびhと同義であり、R5、R6、Z、n、eおよびfはそれぞれ独立に、前記式(3)中のR5、R6、Z、n、eおよびfと同義である。
Figure JPOXMLDOC01-appb-C000014
In formula (4), R 7 , R 8 , Y, m, g and h are each independently synonymous with R 7 , R 8 , Y, m, g and h in formula (2), and R 5 , R 6 , Z, n, e and f are each independently synonymous with R 5 , R 6 , Z, n, e and f in the formula (3).
 ≪ポリイミド系樹脂≫
 ポリイミド系樹脂としては、特に限定されず、繰り返し単位にイミド結合を含む高分子化合物であればよく、例えば、特開2006-199945号公報や特開2008-163107号公報に記載されている方法で合成することができる。
≪Polyimide resin≫
The polyimide resin is not particularly limited as long as it is a high molecular compound containing an imide bond in a repeating unit. For example, the method described in JP-A-2006-199945 and JP-A-2008-163107 is used. Can be synthesized.
 ≪フルオレンポリカーボネート系樹脂≫
 フルオレンポリカーボネート系樹脂としては、特に限定されず、フルオレン部位を含むポリカーボネート樹脂であればよく、例えば、特開2008-163194号公報に記載されている方法で合成することができる。
≪Fluorene polycarbonate resin≫
The fluorene polycarbonate resin is not particularly limited as long as it is a polycarbonate resin containing a fluorene moiety, and can be synthesized by, for example, a method described in JP-A-2008-163194.
 ≪フルオレンポリエステル系樹脂≫
 フルオレンポリエステル系樹脂としては、特に限定されず、フルオレン部位を含むポリエステル樹脂であればよく、例えば、特開2010-285505号公報や特開2011-197450号公報に記載されている方法で合成することができる。
≪Fluorene polyester resin≫
The fluorene polyester resin is not particularly limited as long as it is a polyester resin containing a fluorene moiety. For example, the fluorene polyester resin can be synthesized by a method described in JP 2010-285505 A or JP 2011-197450 A. Can do.
 ≪フッ素化芳香族ポリマー系樹脂≫
 フッ素化芳香族ポリマー系樹脂としては、特に限定されないが、フッ素原子を少なくとも1つ有する芳香族環と、エーテル結合、ケトン結合、スルホン結合、アミド結合、イミド結合およびエステル結合からなる群より選ばれる少なくとも1つの結合を含む繰り返し単位とを含有するポリマーであることが好ましく、例えば特開2008-181121号公報に記載されている方法で合成することができる。
≪Fluorinated aromatic polymer resin≫
The fluorinated aromatic polymer resin is not particularly limited, but is selected from the group consisting of an aromatic ring having at least one fluorine atom, an ether bond, a ketone bond, a sulfone bond, an amide bond, an imide bond, and an ester bond. The polymer preferably contains a repeating unit containing at least one bond, and can be synthesized, for example, by the method described in JP-A-2008-181121.
 ≪アクリル系紫外線硬化型樹脂≫
 アクリル系紫外線硬化型樹脂としては、特に限定されないが、分子内に一つ以上のアクリル基もしくはメタクリル基を有する化合物と、紫外線によって分解して活性ラジカルを発生させる化合物を含有する樹脂組成物から合成されるものを挙げることができる。アクリル系紫外線硬化型樹脂は、前記基材として、ガラス支持体上やベースとなる樹脂製支持体上に化合物(A)および硬化性樹脂を含む透明樹脂層が積層された基材や、化合物(A)を含有する透明樹脂製基板上に硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材を用いる場合、該硬化性樹脂として特に好適に使用することができる。
≪Acrylic UV curable resin≫
The acrylic ultraviolet curable resin is not particularly limited, but is synthesized from a resin composition containing a compound having one or more acrylic or methacrylic groups in the molecule and a compound that decomposes by ultraviolet rays to generate active radicals. Can be mentioned. The acrylic ultraviolet curable resin is a base material in which a transparent resin layer containing a compound (A) and a curable resin is laminated on a glass support or a resin support as a base, or a compound ( When using a base material in which a resin layer such as an overcoat layer made of a curable resin or the like is used on a transparent resin substrate containing A), it can be particularly preferably used as the curable resin.
 ≪エポキシ系樹脂≫
 エポキシ系樹脂としては、特に限定されないが、紫外線硬化型と熱硬化型に大別することができる。紫外線硬化型エポキシ系樹脂としては、例えば、分子内に一つ以上のエポキシ基を有する化合物と、紫外線によって酸を発生させる化合物(以下「光酸発生剤」ともいう)を含有する組成物から合成されるものを挙げることができ、熱硬化型エポキシ系樹脂としては、例えば、分子内に一つ以上のエポキシ基を有する化合物と、酸無水物を含有する組成物から合成されるものを挙げることができる。エポキシ系紫外線硬化型樹脂は、前記基材として、ガラス支持体上やベースとなる樹脂製支持体上に化合物(A)を含む透明樹脂層が積層された基材や、化合物(A)を含有する透明樹脂製基板上に硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材を用いる場合、該硬化性樹脂として特に好適に使用することができる。
≪Epoxy resin≫
Although it does not specifically limit as an epoxy-type resin, It can divide roughly into an ultraviolet curing type and a thermosetting type. As the ultraviolet curable epoxy resin, for example, synthesized from a composition containing a compound having one or more epoxy groups in the molecule and a compound that generates an acid by ultraviolet rays (hereinafter also referred to as “photo acid generator”). Examples of thermosetting epoxy resins include those synthesized from a composition containing one or more epoxy groups in the molecule and an acid anhydride. Can do. The epoxy ultraviolet curable resin contains, as the base material, a base material obtained by laminating a transparent resin layer containing the compound (A) on a glass support or a base resin support, and the compound (A). In the case of using a base material in which a resin layer such as an overcoat layer made of a curable resin is laminated on a transparent resin substrate to be used, it can be particularly suitably used as the curable resin.
 ≪市販品≫
 透明樹脂の市販品としては、以下の市販品等を挙げることができる。環状ポリオレフィン系樹脂の市販品としては、JSR(株)製アートン、日本ゼオン(株)製ゼオノア、三井化学(株)製APEL、ポリプラスチックス(株)製TOPASなどを挙げることができる。ポリエーテルサルホン系樹脂の市販品としては、住友化学(株)製スミカエクセルPESなどを挙げることができる。ポリイミド系樹脂の市販品としては、三菱ガス化学(株)製ネオプリムLなどを挙げることができる。ポリカーボネート系樹脂の市販品としては、帝人(株)製ピュアエースなどを挙げることができる。フルオレンポリカーボネート系樹脂の市販品としては、三菱ガス化学(株)製ユピゼータEP-5000などを挙げることができる。フルオレンポリエステル系樹脂の市販品としては、大阪ガスケミカル(株)製OKP4HTなどを挙げることができる。アクリル系樹脂の市販品としては、(株)日本触媒製アクリビュアなどを挙げることができる。シルセスキオキサン系紫外線硬化型樹脂の市販品としては、新日鐵化学(株)製シルプラスなどを挙げることができる。
≪Commercial product≫
The following commercial products etc. can be mentioned as a commercial item of transparent resin. Examples of commercially available cyclic polyolefin resins include Arton manufactured by JSR Corporation, ZEONOR manufactured by Nippon Zeon Co., Ltd., APEL manufactured by Mitsui Chemicals, Inc., and TOPAS manufactured by Polyplastics Corporation. Examples of commercially available polyethersulfone resins include Sumika Excel PES manufactured by Sumitomo Chemical Co., Ltd. Examples of commercially available polyimide resins include Neoprim L manufactured by Mitsubishi Gas Chemical Co., Ltd. Examples of commercially available polycarbonate resins include Pure Ace manufactured by Teijin Limited. Examples of commercially available fluorene polycarbonate resins include Iupizeta EP-5000 manufactured by Mitsubishi Gas Chemical Co., Ltd. Examples of commercially available fluorene polyester resins include OKP4HT manufactured by Osaka Gas Chemical Co., Ltd. Examples of commercially available acrylic resins include NIPPON CATALYST ACRYVIEWER. Examples of commercially available silsesquioxane-based ultraviolet curable resins include Silplus manufactured by Nippon Steel Chemical Co., Ltd.
 <その他の色素(X)>
 前記基材には、さらに、有機顔料(S)および化合物(A)に該当しない、その他の色素(X)が含まれていてもよい。
<Other dye (X)>
The base material may further contain other pigment (X) not corresponding to the organic pigment (S) and the compound (A).
 その他の色素(X)としては、吸収極大波長が波長650nm未満もしくは波長760nm超900nm未満の領域にある色素であれば特に限定されないが、吸収極大波長が760nm超900nm未満の領域にある色素が好ましい。このような色素としては、例えば、スクアリリウム系化合物、フタロシアニン系化合物、シアニン系化合物、ナフタロシアニン系化合物、クロコニウム系化合物、オクタフィリン系化合物、ジイモニウム系化合物、ピロロピロール系化合物、ボロンジピロメテン(BODIPY)系化合物、ペリレン系化合物および金属ジチオラート系化合物からなる群より選ばれる少なくとも1種の化合物が挙げられる。 The other dye (X) is not particularly limited as long as the absorption maximum wavelength is in the region of wavelength less than 650 nm or more than 760 nm and less than 900 nm, but the dye having the absorption maximum wavelength in the region of more than 760 nm and less than 900 nm is preferable. . Examples of such dyes include squarylium compounds, phthalocyanine compounds, cyanine compounds, naphthalocyanine compounds, croconium compounds, octaphyrin compounds, diimonium compounds, pyrrolopyrrole compounds, and boron dipyrromethene (BODIPY). And at least one compound selected from the group consisting of a compound, a perylene compound, and a metal dithiolate compound.
 その他の色素(X)の含有量は、前記基材として、例えば、その他の色素(X)を含有する透明樹脂製基板からなる基材を用いる場合には、透明樹脂100質量部に対して、好ましくは0.005~1.0質量部、より好ましくは0.01~0.9質量部、特に好ましくは0.02~0.8質量部であり、前記基材として、ガラス支持体やベースとなる樹脂製支持体などの支持体上にその他の色素(X)を含有する硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材や、有機顔料(S)を含有する透明樹脂製基板上にその他の色素(X)を含有する硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材を用いる場合には、その他の色素(X)を含む透明樹脂層を形成する樹脂100質量部に対して、好ましくは0.05~4.0質量部、より好ましくは0.1~3.0質量部、特に好ましくは0.2~2.0質量部である。 The content of the other dye (X) is, for example, when a base material made of a transparent resin substrate containing the other dye (X) is used as the base material, with respect to 100 parts by mass of the transparent resin. The amount is preferably 0.005 to 1.0 part by mass, more preferably 0.01 to 0.9 part by mass, particularly preferably 0.02 to 0.8 part by mass. Contains a base material in which a transparent resin layer such as an overcoat layer made of a curable resin containing other dye (X) is laminated on a support such as a resin support or an organic pigment (S) In the case of using a substrate in which a resin layer such as an overcoat layer made of a curable resin containing other dye (X) is used on a transparent resin substrate to be transparent, a transparent material containing other dye (X) is used. For 100 parts by mass of resin forming the resin layer Preferably 0.05 to 4.0 mass parts, more preferably 0.1 to 3.0 mass parts, and particularly preferably 0.2 to 2.0 parts by mass.
 <その他成分>
 前記基材は、本発明の効果を損なわない範囲において、その他成分として、さらに酸化防止剤、近紫外線吸収剤および蛍光消光剤などを含有してもよい。これらその他成分は、1種単独で用いてもよいし、2種以上を併用してもよい。
<Other ingredients>
The base material may further contain an antioxidant, a near-ultraviolet absorber, a fluorescence quencher, and the like as other components as long as the effects of the present invention are not impaired. These other components may be used alone or in combination of two or more.
 前記近紫外線吸収剤としては、例えばアゾメチン系化合物、インドール系化合物、ベンゾトリアゾール系化合物、トリアジン系化合物などが挙げられる。 Examples of the near ultraviolet absorber include azomethine compounds, indole compounds, benzotriazole compounds, triazine compounds, and the like.
 前記酸化防止剤としては、例えば2,6-ジ-t-ブチル-4-メチルフェノール、2,2'-ジオキシ-3,3'-ジ-t-ブチル-5,5'-ジメチルジフェニルメタン、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、およびトリス(2,4-ジ-t-ブチルフェニル)ホスファイトなどが挙げられる。 Examples of the antioxidant include 2,6-di-t-butyl-4-methylphenol, 2,2′-dioxy-3,3′-di-t-butyl-5,5′-dimethyldiphenylmethane, tetrakis [Methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane, tris (2,4-di-t-butylphenyl) phosphite and the like.
 なお、これらその他成分は、基材を製造する際に、樹脂などとともに混合してもよいし、樹脂を合成する際に添加してもよい。また、添加量は、所望の特性に応じて適宜選択されるものであるが、樹脂100質量部に対して、通常0.01~5.0質量部、好ましくは0.05~2.0質量部である。 In addition, these other components may be mixed with a resin or the like when producing a substrate, or may be added when a resin is synthesized. The addition amount is appropriately selected according to the desired properties, but is usually 0.01 to 5.0 parts by weight, preferably 0.05 to 2.0 parts by weight with respect to 100 parts by weight of the resin. Part.
 <基材の製造方法>
 前記基材が、有機顔料(S)を含有する透明樹脂製基板を含む基材である場合、該透明樹脂製基板は、例えば、溶融成形またはキャスト成形により形成することができ、さらに、必要により、成形後に、反射防止剤、ハードコート剤および/または帯電防止剤等のコーティング剤をコーティングすることで、オーバーコート層が積層された基材を製造することができる。
<Manufacturing method of substrate>
When the base material is a base material including a transparent resin substrate containing an organic pigment (S), the transparent resin substrate can be formed by, for example, melt molding or cast molding, and further if necessary. After forming, a substrate on which an overcoat layer is laminated can be produced by coating a coating agent such as an antireflection agent, a hard coat agent and / or an antistatic agent.
 前記基材が、ガラス支持体やベースとなる樹脂製支持体などの支持体上または有機顔料(S)を含有しない透明樹脂製基板上に有機顔料(S)を含有する硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材である場合、例えば、前記支持体または前記透明樹脂製基板上に化合物(A)を含む樹脂溶液を溶融成形またはキャスト成形することで、好ましくはスピンコート、スリットコート、インクジェットなどの方法にて塗工した後に溶媒を乾燥除去し、必要に応じてさらに光照射や加熱を行うことで、前記支持体または前記透明樹脂製基板上に有機顔料(S)を含む透明樹脂層が形成された基材を製造することができる。 The substrate is made of a curable resin containing an organic pigment (S) on a support such as a glass support or a base resin support or a transparent resin substrate containing no organic pigment (S). In the case of a substrate on which a transparent resin layer such as an overcoat layer is laminated, for example, preferably by melt molding or cast molding a resin solution containing the compound (A) on the support or the transparent resin substrate. Is applied by a method such as spin coating, slit coating, and ink jet, and then the solvent is dried and removed, and if necessary, light irradiation or heating is performed to form an organic pigment on the support or the transparent resin substrate. A substrate on which a transparent resin layer containing (S) is formed can be produced.
 ≪溶融成形≫
 前記溶融成形としては、具体的には、樹脂と有機顔料(S)と必要に応じて他の成分とを溶融混練りして得られたペレットを溶融成形する方法;樹脂と有機顔料(S)と必要応じて他の成分とを含有する樹脂組成物を溶融成形する方法;または、有機顔料(S)、樹脂、溶剤および必要に応じて他の成分を含む樹脂組成物から溶剤を除去して得られたペレットを溶融成形する方法などが挙げられる。溶融成形方法としては、射出成形、溶融押出成形またはブロー成形などを挙げることができる。
≪Melt molding≫
Specifically, as the melt molding, a method of melt molding pellets obtained by melt-kneading a resin, an organic pigment (S) and other components as necessary; a resin and an organic pigment (S) And a method of melt-molding a resin composition containing other components as necessary; or removing the solvent from the resin composition containing the organic pigment (S), the resin, the solvent and, if necessary, the other components The method of melt-molding the obtained pellet is mentioned. Examples of the melt molding method include injection molding, melt extrusion molding, and blow molding.
 ≪キャスト成形≫
 前記キャスト成形としては、有機顔料(S)、樹脂、溶剤および必要に応じて他の成分を含む樹脂組成物を適当な支持体の上にキャスティングして溶剤を除去する方法;または有機顔料(S)と、光硬化性樹脂および/または熱硬化性樹脂と、必要に応じて他の成分とを含む硬化性組成物を適当な支持体の上にキャスティングして溶媒を除去した後、紫外線照射や加熱などの適切な手法により硬化させる方法などにより製造することもできる。
≪Cast molding≫
As the cast molding, a method of removing a solvent by casting a resin composition containing an organic pigment (S), a resin, a solvent and, if necessary, other components on a suitable support; or an organic pigment (S ), A photocurable resin and / or a thermosetting resin, and if necessary, a curable composition containing other components is cast on a suitable support to remove the solvent, It can also be produced by a method of curing by an appropriate method such as heating.
 前記基材が、有機顔料(S)を含有する透明樹脂製基板からなる基材である場合には、該基材は、キャスト成形後、支持体から塗膜を剥離することにより得ることができ、また、前記基材が、ガラス支持体やベースとなる樹脂製支持体などの支持体上または有機顔料(S)を含有しない透明樹脂製基板上に有機顔料(S)を含有する硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材である場合には、該基材は、キャスト成形後、塗膜を剥離しないことで得ることができる。 When the base material is a base material made of a transparent resin substrate containing the organic pigment (S), the base material can be obtained by peeling the coating film from the support after cast molding. The base material is a curable resin containing an organic pigment (S) on a support such as a glass support or a base resin support or on a transparent resin substrate containing no organic pigment (S). In the case of a base material on which a transparent resin layer such as an overcoat layer made of, etc. is laminated, the base material can be obtained by not peeling the coating film after cast molding.
 前記支持体としては、例えば、近赤外線吸収ガラス板(例えば、松浪硝子工業社製「BS-11」やAGC テクノグラス社製「NF-50T」などのような銅成分を含有するリン酸塩系ガラス板)、透明ガラス板(例えば、日本電気硝子社製「OA-10G」や旭硝子社製「AN100」などのような無アルカリガラス板)、スチールベルト、スチールドラムおよび透明樹脂(例えば、ポリエステルフィルム、環状オレフィン系樹脂フィルム)製支持体が挙げられる。 As the support, for example, a near-infrared absorbing glass plate (for example, a phosphate system containing a copper component such as “BS-11” manufactured by Matsunami Glass Industrial Co., Ltd. or “NF-50T” manufactured by AGC Sakai Techno Glass Co., Ltd.) Glass plate), transparent glass plate (for example, non-alkali glass plate such as “OA-10G” manufactured by Nippon Electric Glass Co., Ltd., “AN100” manufactured by Asahi Glass Co., Ltd.), steel belt, steel drum, and transparent resin (for example, polyester film) , Cyclic olefin resin film) support.
 前記方法で得られた透明樹脂層(透明樹脂製基板)中の残留溶剤量は可能な限り少ない方がよい。具体的には、前記残留溶剤量は、透明樹脂層(透明樹脂製基板)100質量部に対して、好ましくは3質量部以下、より好ましくは1質量部以下、さらに好ましくは0.5質量部以下である。残留溶剤量が前記範囲にあると、基材の変形や光学特性の変化が起こりにくい、所望の機能を容易に発揮できる透明樹脂層(透明樹脂製基板)が得られる。 The amount of residual solvent in the transparent resin layer (transparent resin substrate) obtained by the above method should be as small as possible. Specifically, the amount of the residual solvent is preferably 3 parts by mass or less, more preferably 1 part by mass or less, further preferably 0.5 parts by mass with respect to 100 parts by mass of the transparent resin layer (transparent resin substrate). It is as follows. When the amount of residual solvent is in the above range, a transparent resin layer (transparent resin substrate) that can easily exhibit a desired function is obtained, which hardly causes deformation of the base material or changes in optical properties.
 [誘電体多層膜]
 本発明の光学フィルターは、前記基材の少なくとも一方の面に誘電体多層膜を有する。本発明における誘電体多層膜とは、近赤外線を反射する能力を有する膜または可視光領域における反射防止効果を有する膜であり、誘電体多層膜を有することでより優れた可視光透過率と近赤外線カット特性を達成することができる。
[Dielectric multilayer film]
The optical filter of the present invention has a dielectric multilayer film on at least one surface of the substrate. The dielectric multilayer film in the present invention is a film having the ability to reflect near-infrared light or a film having an antireflection effect in the visible light region. Infrared cut characteristics can be achieved.
 本発明では、誘電体多層膜は前記基材の片面に設けてもよいし、両面に設けてもよい。片面に設ける場合、製造コストや製造容易性に優れ、両面に設ける場合、高い強度を有し、反りやねじれが生じにくい光学フィルターを得ることができる。光学フィルターを固体撮像素子用途に適用する場合、光学フィルターの反りやねじれが小さい方が好ましいことから、誘電体多層膜を樹脂製基板の両面に設けることが好ましい。 In the present invention, the dielectric multilayer film may be provided on one side of the substrate or on both sides. When it is provided on one side, it is possible to obtain an optical filter that is excellent in production cost and manufacturability and has high strength and is less likely to warp or twist when provided on both sides. When the optical filter is applied to a solid-state imaging device, it is preferable that the optical filter is less warped or twisted. Therefore, it is preferable to provide a dielectric multilayer film on both surfaces of the resin substrate.
 前記誘電体多層膜は、好ましくは波長700~1100nm、より好ましくは波長700~1150nm、さらに好ましくは700~1200nmの範囲全体にわたって反射特性を有することが望ましい。 The dielectric multilayer film preferably has reflection characteristics over the entire wavelength range of 700 to 1100 nm, more preferably 700 to 1150 nm, and even more preferably 700 to 1200 nm.
 基材の両面に誘電体多層膜を有する形態として、光学フィルターの垂直方向に対して5°の角度から測定した場合に、主に波長700~950nm付近に反射特性を有する第一光学層を基材の片面に有し、主に900nm~1150nm付近に反射特性を有する第二光学層を基材の他方の面上に有する形態(図1(a)参照)や、光学フィルターの垂直方向に対して5°の角度から測定した場合に、主に波長700~1150nm付近に反射特性を有する第三光学層を基材の片面に有し、可視光領域の反射防止特性を有する第四光学層を基材の他方の面上に有する形態(図1(b)参照)などが挙げられる。 As a form having a dielectric multilayer film on both surfaces of the base material, the first optical layer mainly having a reflection characteristic in the vicinity of a wavelength of 700 to 950 nm when measured from an angle of 5 ° with respect to the vertical direction of the optical filter is used. A configuration (see FIG. 1 (a)) having a second optical layer on one side of the material and having a reflection characteristic mainly in the vicinity of 900 nm to 1150 nm on the other side of the substrate, and the vertical direction of the optical filter A fourth optical layer having a third optical layer having a reflection characteristic mainly in the vicinity of a wavelength of 700 to 1150 nm on one side of the substrate and having an antireflection characteristic in the visible light region. The form (refer FIG.1 (b)) which has on the other surface of a base material etc. are mentioned.
 誘電体多層膜としては、高屈折率材料層と低屈折率材料層とを交互に積層したものが挙げられる。高屈折率材料層を構成する材料としては、屈折率が1.7以上の材料を用いることができ、屈折率が通常は1.7~2.5の材料が選択される。このような材料としては、例えば、酸化チタン、酸化ジルコニウム、五酸化タンタル、五酸化ニオブ、酸化ランタン、酸化イットリウム、酸化亜鉛、硫化亜鉛または酸化インジウム等を主成分とし、酸化チタン、酸化錫および/または酸化セリウム等を少量(例えば、主成分100質量部に対して0~10質量部)含有させたものが挙げられる。 Examples of the dielectric multilayer film include those in which a high refractive index material layer and a low refractive index material layer are alternately laminated. As a material constituting the high refractive index material layer, a material having a refractive index of 1.7 or more can be used, and a material having a refractive index of usually 1.7 to 2.5 is selected. Examples of such materials include titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide, or indium oxide as the main components, and titanium oxide, tin oxide, and / or Alternatively, a material containing a small amount of cerium oxide or the like (eg, 0 to 10 parts by mass with respect to 100 parts by mass of the main component) can be used.
 低屈折率材料層を構成する材料としては、屈折率が1.6以下の材料を用いることができ、屈折率が通常は1.2~1.6の材料が選択される。このような材料としては、例えば、シリカ、アルミナ、フッ化ランタン、フッ化マグネシウムおよび六フッ化アルミニウムナトリウムが挙げられる。 As the material constituting the low refractive index material layer, a material having a refractive index of 1.6 or less can be used, and a material having a refractive index of usually 1.2 to 1.6 is selected. Examples of such materials include silica, alumina, lanthanum fluoride, magnesium fluoride, and sodium hexafluoride sodium.
 高屈折率材料層と低屈折率材料層とを積層する方法については、これらの材料層を積層した誘電体多層膜が形成される限り特に限定はない。例えば、基材上に、直接、CVD法、スパッタ法、真空蒸着法、イオンアシスト蒸着法またはイオンプレーティング法等により、高屈折率材料層と低屈折率材料層とを交互に積層した誘電体多層膜を形成することができる。 The method for laminating the high refractive index material layer and the low refractive index material layer is not particularly limited as long as a dielectric multilayer film in which these material layers are laminated is formed. For example, a dielectric in which high-refractive index material layers and low-refractive index material layers are alternately stacked directly on a substrate by CVD, sputtering, vacuum deposition, ion-assisted deposition, or ion plating. A multilayer film can be formed.
 高屈折率材料層および低屈折率材料層の各層の厚さは、通常、遮断しようとする近赤外線波長をλ(nm)とすると、0.1λ~0.5λの厚さが好ましい。λ(nm)の値としては、例えば700~1400nm、好ましくは750~1300nmである。厚さがこの範囲であると、屈折率(n)と膜厚(d)との積(n×d)がλ/4で算出される光学的膜厚と、高屈折率材料層および低屈折率材料層の各層の厚さとがほぼ同じ値となって、反射・屈折の光学的特性の関係から、特定波長の遮断・透過を容易にコントロールできる傾向にある。 The thickness of each of the high refractive index material layer and the low refractive index material layer is usually preferably from 0.1λ to 0.5λ, where λ (nm) is the near infrared wavelength to be blocked. The value of λ (nm) is, for example, 700 to 1400 nm, preferably 750 to 1300 nm. When the thickness is within this range, the optical thickness obtained by multiplying the refractive index (n) by the thickness (d) (n × d) by λ / 4, the high refractive index material layer, and the low refractive index. The thicknesses of the respective layers of the refractive index material layer are almost the same value, and there is a tendency that the blocking / transmission of a specific wavelength can be easily controlled from the relationship between the optical characteristics of reflection / refraction.
 誘電体多層膜における高屈折率材料層と低屈折率材料層との合計の積層数は、光学フィルター全体として16~70層であることが好ましく、20~60層であることがより好ましく、24~50層であることが特に好ましい。各層の厚み、光学フィルター全体としての誘電体多層膜の厚みや合計の積層数が前記範囲にあると、十分な製造マージンを確保できる上に、光学フィルターの反りや誘電体多層膜のクラックを低減することができる。 The total number of stacked high refractive index material layers and low refractive index material layers in the dielectric multilayer film is preferably 16 to 70 layers, more preferably 20 to 60 layers, as a whole, 24 Particularly preferred is ˜50 layers. If the thickness of each layer, the thickness of the dielectric multilayer film as a whole of the optical filter, and the total number of layers are within the above ranges, a sufficient manufacturing margin can be secured, and the warpage of the optical filter and cracks in the dielectric multilayer film can be reduced. can do.
 本発明では、化合物(A)や有機顔料(S)などの近赤外線吸収剤の吸収特性に合わせて高屈折率材料層および低屈折率材料層を構成する材料種、高屈折率材料層および低屈折率材料層の各層の厚さ、積層の順番、積層数を適切に選択することで、可視光領域に十分な透過率を確保した上で近赤外線波長域に十分な光線カット特性を有し、且つ、斜め方向から近赤外線が入射した際の反射率を低減することができる。 In the present invention, the material type constituting the high refractive index material layer and the low refractive index material layer, the high refractive index material layer, and the low refractive index are adjusted in accordance with the absorption characteristics of the near-infrared absorber such as the compound (A) or the organic pigment (S). Appropriate selection of the thickness of each refractive index material layer, the order of stacking, and the number of stacks ensure sufficient light-cutting characteristics in the near-infrared wavelength region while ensuring sufficient transmittance in the visible light region. And the reflectance when near-infrared rays inject from an oblique direction can be reduced.
 ここで、前記条件を最適化するには、例えば、光学薄膜設計ソフト(例えば、Essential Macleod、Thin Film Center社製)を用い、可視光領域の反射防止効果と近赤外線領域の光線カット効果を両立できるようにパラメーターを設定すればよい。上記ソフトの場合、例えば第一光学層の設計にあたっては、波長400~700nmの目標透過率を100%、Target Toleranceの値を1とした上で、波長705~950nmの目標透過率を0%、Target Toleranceの値を0.5にするなどのパラメーター設定方法が挙げられる。これらのパラメーターは基材(i)の各種特性などに合わせて波長範囲をさらに細かく区切ってTarget Toleranceの値を変えることもできる。 Here, in order to optimize the above conditions, for example, optical thin film design software (for example, Essential Macleod, Thin Film Center) is used, and both the antireflection effect in the visible light region and the light cut effect in the near infrared region are compatible. Set the parameters so that you can. In the case of the above-mentioned software, for example, in designing the first optical layer, the target transmittance at a wavelength of 400 to 700 nm is set to 100%, the target Tolerance value is set to 1, and the target transmittance at a wavelength of 705 to 950 nm is set to 0%. Parameter setting method such as setting Target Tolerance value to 0.5 can be mentioned. These parameters can change the value of Target Tolerance by further finely dividing the wavelength range according to various characteristics of the substrate (i).
 [その他の機能膜]
 本発明の光学フィルターは、本発明の効果を損なわない範囲において、基材と誘電体多層膜との間、基材の誘電体多層膜が設けられた面と反対側の面、または誘電体多層膜の基材が設けられた面と反対側の面に、基材や誘電体多層膜の表面硬度の向上、耐薬品性の向上、帯電防止および傷消しなどの目的で、反射防止膜、ハードコート膜や帯電防止膜などの機能膜を適宜設けることができる。
[Other functional membranes]
The optical filter of the present invention is within the range not impairing the effects of the present invention, between the base material and the dielectric multilayer film, the surface opposite to the surface on which the dielectric multilayer film is provided, or the dielectric multilayer film. On the opposite side of the surface of the film where the substrate is provided, an anti-reflection film, a hard layer is used for the purpose of improving the surface hardness of the substrate or the dielectric multilayer film, improving the chemical resistance, antistatic and scratching. Functional films such as a coating film and an antistatic film can be provided as appropriate.
 本発明の光学フィルターは、前記機能膜からなる層を1層含んでもよく、2層以上含んでもよい。本発明の光学フィルターが前記機能膜からなる層を2層以上含む場合には、同様の層を2層以上含んでもよいし、異なる層を2層以上含んでもよい。 The optical filter of the present invention may include one layer made of the functional film or two or more layers. When the optical filter of the present invention includes two or more layers made of the functional film, it may include two or more similar layers or two or more different layers.
 機能膜を積層する方法としては、特に限定されないが、反射防止剤、ハードコート剤および/または帯電防止剤等を含むコーティング剤を基材または誘電体多層膜に、前記と同様に溶融成形またはキャスト成形する方法等を挙げることができる。 The method for laminating the functional film is not particularly limited, but a coating agent containing an antireflection agent, a hard coating agent and / or an antistatic agent, etc. is melt-molded or cast in the same manner as described above on a base material or a dielectric multilayer film. Examples of the method include molding.
 また、前記コーティング剤をバーコーター等で基材または誘電体多層膜上に塗布した後、紫外線照射等により硬化することによっても製造することができる。 Also, the coating agent can be produced by applying the coating agent on a base material or a dielectric multilayer film with a bar coater or the like and then curing it by ultraviolet irradiation or the like.
 前記コーティング剤としては、紫外線(UV)/電子線(EB)硬化型樹脂や熱硬化型樹脂を含む硬化性組成物などが挙げられる。前記硬化性組成物に含まれる硬化性樹脂としては、具体的には、ビニル化合物類や、ウレタン系、ウレタンアクリレート系、アクリレート系、エポキシ系およびエポキシアクリレート系樹脂などが挙げられる。 Examples of the coating agent include curable compositions containing ultraviolet (UV) / electron beam (EB) curable resins and thermosetting resins. Specific examples of the curable resin contained in the curable composition include vinyl compounds, urethane, urethane acrylate, acrylate, epoxy, and epoxy acrylate resins.
 また、前記硬化性組成物は、重合開始剤を含んでいてもよい。前記重合開始剤としては、公知の光重合開始剤または熱重合開始剤を用いることができ、光重合開始剤と熱重合開始剤を併用してもよい。重合開始剤は、1種単独で用いてもよいし、2種以上を併用してもよい。 Moreover, the curable composition may contain a polymerization initiator. As the polymerization initiator, a known photopolymerization initiator or a thermal polymerization initiator can be used, and a photopolymerization initiator and a thermal polymerization initiator may be used in combination. A polymerization initiator may be used individually by 1 type, and may use 2 or more types together.
 前記硬化性組成物中、重合開始剤の配合割合は、硬化性組成物の全量を100質量部とした場合、好ましくは0.1~10質量部、より好ましくは0.5~10質量部、さらに好ましくは1~5質量部である。重合開始剤の配合割合が前記範囲にあると、硬化性組成物の硬化特性および取り扱い性が優れ、所望の硬度を有する反射防止膜、ハードコート膜や帯電防止膜などの機能膜を得ることができる。 In the curable composition, the mixing ratio of the polymerization initiator is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 10 parts by mass, when the total amount of the curable composition is 100 parts by mass. More preferably, it is 1 to 5 parts by mass. When the blending ratio of the polymerization initiator is within the above range, it is possible to obtain a functional film such as an antireflective film, a hard coat film or an antistatic film having excellent curing characteristics and handleability of the curable composition and having a desired hardness. it can.
 さらに、前記硬化性組成物には溶剤として有機溶剤を加えてもよく、有機溶剤としては、公知のものを使用することができる。有機溶剤の具体例としては、メタノール、エタノール、イソプロパノール、ブタノール、オクタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、乳酸エチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエステル類;エチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類を挙げることができる。 Furthermore, an organic solvent may be added as a solvent to the curable composition, and known organic solvents can be used. Specific examples of the organic solvent include alcohols such as methanol, ethanol, isopropanol, butanol and octanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ethyl lactate, γ-butyrolactone, propylene Esters such as glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate; Ethers such as ethylene glycol monomethyl ether and diethylene glycol monobutyl ether; Aromatic hydrocarbons such as benzene, toluene and xylene; Dimethylformamide, dimethylacetamide, N- Examples include amides such as methylpyrrolidone.
 これら溶剤は、1種単独で用いてもよいし、2種以上を併用してもよい。 These solvents may be used alone or in combination of two or more.
 前記機能膜の厚さは、好ましくは0.1~20μm、さらに好ましくは0.5~10μm、特に好ましくは0.7~5μmである。 The thickness of the functional film is preferably 0.1 to 20 μm, more preferably 0.5 to 10 μm, and particularly preferably 0.7 to 5 μm.
 また、基材と機能膜および/または誘電体多層膜との密着性や、機能膜と誘電体多層膜との密着性を上げる目的で、基材、機能膜または誘電体多層膜の表面にコロナ処理やプラズマ処理等の表面処理をしてもよい。 Further, in order to improve the adhesion between the base material and the functional film and / or the dielectric multilayer film, and the adhesion between the functional film and the dielectric multilayer film, the corona is applied to the surface of the base material, the functional film or the dielectric multilayer film. Surface treatment such as treatment or plasma treatment may be performed.
 [光学フィルターの用途]
 本発明の光学フィルターは、視野角が広く、優れた近赤外線カット能等を有する。したがって、カメラモジュールのCCDやCMOSイメージセンサー等の固体撮像素子の視感度補正用として有用である。特に、デジタルスチルカメラ、スマートフォン用カメラ、携帯電話用カメラ、デジタルビデオカメラ、ウェアラブルデバイス用カメラ、PCカメラ、監視カメラ、自動車用カメラ、テレビ、カーナビゲーション、携帯情報端末、ビデオゲーム機、携帯ゲーム機、指紋認証システム、デジタルミュージックプレーヤー等に有用である。さらに、自動車や建物等のガラス板等に装着される熱線カットフィルターなどとしても有用である。
[Use of optical filter]
The optical filter of the present invention has a wide viewing angle and has excellent near-infrared cutting ability and the like. Therefore, it is useful for correcting the visibility of a solid-state imaging device such as a CCD or CMOS image sensor of a camera module. In particular, digital still cameras, smartphone cameras, mobile phone cameras, digital video cameras, wearable device cameras, PC cameras, surveillance cameras, automotive cameras, TVs, car navigation systems, personal digital assistants, video game machines, and portable game machines It is useful for fingerprint authentication system, digital music player, etc. Furthermore, it is also useful as a heat ray cut filter attached to a glass plate of an automobile or a building.
 [固体撮像装置]
 本発明の固体撮像装置は、本発明の光学フィルターを具備する。ここで、固体撮像装置とは、CCDやCMOSイメージセンサー等といった固体撮像素子を備えたイメージセンサーであり、具体的にはデジタルスチルカメラ、スマートフォン用カメラ、携帯電話用カメラ、ウェアラブルデバイス用カメラ、デジタルビデオカメラ等の用途に用いることができる。例えば、本発明のカメラモジュールは、本発明の光学フィルターを具備する。
[Solid-state imaging device]
The solid-state imaging device of the present invention includes the optical filter of the present invention. Here, the solid-state imaging device is an image sensor including a solid-state imaging device such as a CCD or a CMOS image sensor. Specifically, a digital still camera, a camera for a smartphone, a camera for a mobile phone, a camera for a wearable device, a digital camera It can be used for applications such as video cameras. For example, the camera module of the present invention includes the optical filter of the present invention.
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。なお、「部」は、特に断りのない限り「質量部」を意味する。また、各物性値の測定方法および物性の評価方法は以下のとおりである。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. “Part” means “part by mass” unless otherwise specified. Moreover, the measurement method of each physical property value and the evaluation method of the physical property are as follows.
 <分子量>
 樹脂の分子量は、各樹脂の溶剤への溶解性等を考慮し、下記の(a)または(b)の方法にて測定を行った。
(a)ウォターズ(WATERS)社製のゲルパーミエ-ションクロマトグラフィー(GPC)装置(150C型、カラム:東ソー社製Hタイプカラム、展開溶剤:o-ジクロロベンゼン)を用い、標準ポリスチレン換算の質量平均分子量(Mw)および数平均分子量(Mn)を測定した。
(b)東ソー社製GPC装置(HLC-8220型、カラム:TSKgelα‐M、展開溶剤:THF)を用い、標準ポリスチレン換算の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。
<Molecular weight>
The molecular weight of the resin was measured by the following method (a) or (b) in consideration of the solubility of each resin in a solvent.
(A) Weight average molecular weight in terms of standard polystyrene using a gel permeation chromatography (GPC) apparatus manufactured by WATERS (150C type, column: H type column manufactured by Tosoh Corporation, developing solvent: o-dichlorobenzene) (Mw) and number average molecular weight (Mn) were measured.
(B) Standard polystyrene equivalent weight average molecular weight (Mw) and number average molecular weight (Mn) were measured using a GPC apparatus (HLC-8220 type, column: TSKgelα-M, developing solvent: THF) manufactured by Tosoh Corporation.
 <ガラス転移温度(Tg)>
 エスアイアイ・ナノテクノロジーズ株式会社製の示差走査熱量計(DSC6200)を用いて、昇温速度:毎分20℃、窒素気流下で測定した。
<Glass transition temperature (Tg)>
Using a differential scanning calorimeter (DSC6200) manufactured by SII Nano Technologies, Inc., the rate of temperature increase was measured at 20 ° C. per minute under a nitrogen stream.
 <平均粒子径>
 有機顔料の平均粒子径は以下の方法で測定した。調製した有機顔料の分散液を分散媒と同一組成の溶剤で顔料濃度が0.5質量%となるまで希釈し、これをガラス板に滴下して乾燥した後、走査型電子顕微鏡(SEM)(株式会社日立ハイテクノロジーズ製「S4800」)にて観察を行った。複数の視野でSEM画像を撮り、任意で選択した100個の粒子について粒子径をスケールで測定して倍率換算し、平均粒子径を算出した。なお、極端に大きい又は小さい粒子は除外し、粒子形状が球状では無い場合には観察される最も長い径(長径)を粒子径とした。
<Average particle size>
The average particle diameter of the organic pigment was measured by the following method. The prepared dispersion liquid of the organic pigment is diluted with a solvent having the same composition as the dispersion medium until the pigment concentration becomes 0.5% by mass, dropped on a glass plate and dried, and then scanned with an electron microscope (SEM) ( Observation was performed with Hitachi High-Technologies Corporation “S4800”. SEM images were taken from a plurality of fields of view, and the particle size of 100 arbitrarily selected particles was measured on a scale and converted into a magnification to calculate an average particle size. In addition, extremely large or small particles were excluded, and when the particle shape was not spherical, the longest diameter (major axis) observed was taken as the particle diameter.
 <分光透過率>
 基材および光学フィルターの各波長域における透過率は、株式会社日立ハイテクノロジーズ製の分光光度計(U-4100)を用いて測定した。なお、この透過率は、光が基材およびフィルターに対して垂直に入射する条件で、該分光光度計を使用して測定したものである。
<Spectral transmittance>
The transmittance in each wavelength region of the substrate and the optical filter was measured using a spectrophotometer (U-4100) manufactured by Hitachi High-Technologies Corporation. The transmittance is measured using the spectrophotometer under the condition that light is incident on the substrate and the filter perpendicularly.
 <ヘイズ>
 基材および光学フィルターのヘイズは、株式会社東洋精機製作所製ヘイズメーター(ヘイズガードII)を用いて測定した。異なる3か所について測定を行い、その平均値を用いた。
<Haze>
The haze of the substrate and the optical filter was measured using a haze meter (Haze Guard II) manufactured by Toyo Seiki Seisakusho Co., Ltd. Measurements were taken at three different locations and the average value was used.
 <耐熱性>
 光学フィルターを85℃×1000hrの条件で処理し、該処理前後の波長430~580nmにおける平均透過率を測定した。次式により算出される透過率の維持率を耐熱性の指標とした。維持率の数値が高い程、耐熱性が良好である。
 透過率の維持率(%)=(処理後の430~580nm平均透過率)/(処理前の430~580nm平均透過率)×100
<Heat resistance>
The optical filter was treated under the conditions of 85 ° C. × 1000 hr, and the average transmittance at wavelengths of 430 to 580 nm before and after the treatment was measured. The transmittance maintenance ratio calculated by the following formula was used as an index of heat resistance. The higher the maintenance factor, the better the heat resistance.
Transmittance maintenance rate (%) = (average transmittance from 430 to 580 nm after treatment) / (average transmittance from 430 to 580 nm before treatment) × 100
 <カメラ画像の色シェーディング評価>
 光学フィルターをカメラモジュールに組み込んだ際の色シェーディング評価は下記の方法で行った。特開2016-110067号公報と同様の方法でカメラモジュールを作成し、作成したカメラモジュールを用いて300mm×400mmサイズの白色板をD65光源(X-Rite社製標準光源装置「マクベスジャッジII」)下で撮影し、カメラ画像における白色板の中央部と端部における色目の違いを以下の基準で評価した。
<Camera image color shading evaluation>
The color shading evaluation when the optical filter was incorporated in the camera module was performed by the following method. A camera module is created in the same manner as in Japanese Patent Application Laid-Open No. 2016-110067, and a white plate having a size of 300 mm × 400 mm is formed using the created camera module as a D65 light source (standard light source device “Macbeth Judge II” manufactured by X-Rite) Images were taken below, and the difference in color between the center and edge of the white plate in the camera image was evaluated according to the following criteria.
 全く問題がなく許容可能なレベルをA、若干色目の違いは認められるが高画質カメラモジュールとして実用上問題がなく許容可能なレベルをB、色目の違いが有り高画質カメラモジュール用途としては許容不可能なレベルをC、明らかな色目の違いが有り一般的なカメラモジュール用途としても許容不可能なレベルをDと判定した。 There is no problem at all and an acceptable level is A, and a slight difference in color is recognized, but there is no problem in practical use as a high-quality camera module. The possible level was determined as C, and the level unacceptable for general camera module use with a clear color difference was determined as D.
 なお、図3に示すように、撮影を行う際はカメラ画像111の中で白色板112が面積の90%以上を占めるように白色板112とカメラモジュールの位置関係を調節した。 As shown in FIG. 3, the positional relationship between the white plate 112 and the camera module was adjusted so that the white plate 112 occupied 90% or more of the area in the camera image 111 when shooting.
 <カメラ画像のゴースト評価>
 光学フィルターをカメラモジュールに組み込んだ際のゴースト評価は下記の方法で行った。特開2016-110067号公報と同様の方法でカメラモジュールを作成し、作成したカメラモジュールを用いて暗室中ハロゲンランプ光源(林時計工業社製「ルミナーエースLA-150TX」)下で撮影し、カメラ画像における光源周辺のゴースト発生具合を以下の基準で評価した。
<Ghost evaluation of camera images>
Ghost evaluation when the optical filter was incorporated in the camera module was performed by the following method. A camera module is created in the same manner as in Japanese Patent Application Laid-Open No. 2016-110067, and the camera module is used to take a picture under a halogen lamp light source (“Luminer Ace LA-150TX” manufactured by Hayashi Watch Industry Co., Ltd.) in a dark room. The degree of ghost generation around the light source in the image was evaluated according to the following criteria.
 全く問題がなく許容可能なレベルをA、若干のゴーストは認められるが高画質カメラモジュールとして実用上問題がなく許容可能なレベルをB、ゴーストが発生しており高画質カメラモジュール用途としては許容不可能なレベルをC、ゴーストの度合いがひどく一般的なカメラモジュール用途としても許容不可能なレベルをDと判定した。 Acceptable level with no problem at all, A slight ghost is recognized, but acceptable as a high-quality camera module, practically acceptable level is B, ghost is generated and unacceptable for high-quality camera module application The possible level was determined as C, and the level of ghosts was determined to be unacceptable for general camera module applications as D.
 なお、図4に示すように、撮影を行う際は、光源122がカメラ画像121の右上端部となるように調節した。 Note that, as shown in FIG. 4, when shooting, the light source 122 was adjusted to be the upper right end of the camera image 121.
 [合成例]
 下記実施例で用いた化合物(A)および化合物(S)は、一般的に知られている方法で合成した。前記方法としては、例えば、特開昭60-228448号公報、特開平1-146846号公報、特開平1-228960号公報、特許第4081149号公報、「フタロシアニン -化学と機能―」(アイピーシー、1997年)、特開2009-108267号公報、特開2010-241873号公報、特許第3699464号公報、特許第4740631号公報などに記載されている方法を挙げることができる。
[Synthesis example]
Compound (A) and compound (S) used in the following examples were synthesized by a generally known method. Examples of the method include, for example, JP-A-60-228448, JP-A-1-146646, JP-A-1-228960, and Japanese Patent No. 4081149, “Phthalocyanine—Chemistry and Function” (IPC, 1997), JP 2009-108267 A, JP 2010-241873 A, JP 3699464 A, JP 4740631 A, and the like.
 <合成例1>
 下記式(a)で表される8-メチル-8-メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(以下「DNM」ともいう。)100g、1-ヘキセン(分子量調節剤)18gおよびトルエン(開環重合反応用溶媒)300gを、窒素置換した反応容器に仕込み、この溶液を80℃に加熱した。次いで、反応容器内の溶液に、重合触媒として、トリエチルアルミニウムのトルエン溶液(0.6mol/リットル)0.2gと、メタノール変性の六塩化タングステンのトルエン溶液(濃度0.025mol/リットル)0.9gとを添加し、この溶液を80℃で3時間加熱攪拌することにより開環重合反応させて開環重合体溶液を得た。この重合反応における重合転化率は97%であった。
<Synthesis Example 1>
8-methyl-8-methoxycarbonyltetracyclo represented by the following formula (a) [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene (hereinafter also referred to as “DNM”) 100 g, 1-hexene (molecular weight regulator) 18 g and toluene (ring-opening polymerization solvent) 300 g were charged into a nitrogen-substituted reaction vessel. The solution was heated to 80 ° C. Next, 0.2 g of a toluene solution of triethylaluminum (0.6 mol / liter) and 0.9 g of a toluene solution of methanol-modified tungsten hexachloride (concentration 0.025 mol / liter) were used as a polymerization catalyst. And the solution was heated and stirred at 80 ° C. for 3 hours to cause a ring-opening polymerization reaction to obtain a ring-opening polymer solution. The polymerization conversion rate in this polymerization reaction was 97%.
Figure JPOXMLDOC01-appb-C000015
 このようにして得られた開環重合体溶液1,000gをオートクレーブに仕込み、この開環重合体溶液に、RuHCl(CO)[P(C6533を0.12g添加し、水素ガス圧100kg/cm2、反応温度165℃の条件下で、3時間加熱撹拌して水素添加反応を行った。得られた反応溶液(水素添加重合体溶液)を冷却した後、水素ガスを放圧した。この反応溶液を大量のメタノール中に注いで凝固物を分離回収し、これを乾燥して、水素添加重合体(以下「樹脂A」ともいう。)を得た。得られた樹脂Aは、数平均分子量(Mn)が32,000、重量平均分子量(Mw)が137,000であり、ガラス転移温度(Tg)が165℃であった。
Figure JPOXMLDOC01-appb-C000015
1,000 g of the ring-opening polymer solution thus obtained was charged into an autoclave, and 0.12 g of RuHCl (CO) [P (C 6 H 5 ) 3 ] 3 was added to the ring-opening polymer solution. Under the conditions of a hydrogen gas pressure of 100 kg / cm 2 and a reaction temperature of 165 ° C., the hydrogenation reaction was performed by heating and stirring for 3 hours. After cooling the obtained reaction solution (hydrogenated polymer solution), the hydrogen gas was released. This reaction solution was poured into a large amount of methanol to separate and recover the coagulated product, and dried to obtain a hydrogenated polymer (hereinafter also referred to as “resin A”). The obtained resin A had a number average molecular weight (Mn) of 32,000, a weight average molecular weight (Mw) of 137,000, and a glass transition temperature (Tg) of 165 ° C.
 <合成例2>
 攪拌装置、温度計およびコンデンサーを備えた反応容器に、室温にて2,6-ジ-t-ブチル-4-クレゾール0.0194g、3-ヒドロキシ-1-アダマンチルアクリレート(三菱ガス化学(株)製、分子量:222)27.047g、および、イソホロンジイソシアネート(エボニック社製、分子量:222)26.481gをメチルエチルケトン(MEK)19gに溶解させ、ジオクチルスズジラウレート0.405gを加えた後、撹拌しながら70℃に昇温した。3-ヒドロキシ-1-アダマンチルアクリレートが溶解し、溶液が透明化したことを確認した後、3-ヒドロキシ-1-アダマンチルアクリレート27.047gを追加投入し、70℃にて反応を継続した。赤外吸収スペクトルでイソシアネート基の吸収スペクトル(2280cm-1)がほぼ消失したことを確認して反応を終了した。溶出液として酢酸エチル/ヘキサンを用いたシリカゲルカラムクロマトグラフィーにて反応混合物を精製した後、イソプロピルアルコールで希釈することで、ウレタンアクリレート化合物(I)(50質量%溶液)を得た。
<Synthesis Example 2>
In a reaction vessel equipped with a stirrer, a thermometer, and a condenser, 0.0194 g of 2,6-di-t-butyl-4-cresol at room temperature, 3-hydroxy-1-adamantyl acrylate (Mitsubishi Gas Chemical Co., Ltd.) , Molecular weight: 222) 27.047 g and isophorone diisocyanate (manufactured by Evonik, molecular weight: 222) 26.481 g were dissolved in 19 g of methyl ethyl ketone (MEK), and 0.405 g of dioctyltin dilaurate was added thereto, followed by stirring with stirring. The temperature was raised to ° C. After confirming that 3-hydroxy-1-adamantyl acrylate was dissolved and the solution was clarified, 27.047 g of 3-hydroxy-1-adamantyl acrylate was additionally charged, and the reaction was continued at 70 ° C. The reaction was completed after confirming that the absorption spectrum of the isocyanate group (2280 cm −1 ) almost disappeared in the infrared absorption spectrum. The reaction mixture was purified by silica gel column chromatography using ethyl acetate / hexane as an eluent, and then diluted with isopropyl alcohol to obtain urethane acrylate compound (I) (50% by mass solution).
 [有機顔料の調製例]
 <調製例1>
 0.25Lのプラスチック容器に、上記表2-4に記載の化合物(s-15)(ジクロロメタン中での吸収極大波長1083nm)5g、酸性官能基を有する分散剤(日油株式会社製「マリアリムSC-0505K」)5g、分散媒としてイソプロピルアルコール(IPA)95g、直径0.05mmのジルコニアビーズ(ニッカトー社製「YTZ-0.05」)175gを投入し、ペイントシェーカー(株式会社東洋精機製作所製)にて1hr分散処理を行った。その後、室温まで冷却し、金属メッシュでジルコニアビーズをろ別することで有機顔料分散液(S-1)を得た。
[Preparation example of organic pigment]
<Preparation Example 1>
In a 0.25 L plastic container, 5 g of the compound (s-15) shown in Table 2-4 (maximum absorption wavelength 1083 nm in dichloromethane), a dispersant having an acidic functional group (“Marialim SC manufactured by NOF Corporation”) -0505K ") 5 g, isopropyl alcohol (IPA) 95 g as dispersion medium, and 175 g of zirconia beads having a diameter of 0.05 mm (" YTZ-0.05 "manufactured by Nikkato Co., Ltd.) were added, and a paint shaker (manufactured by Toyo Seiki Seisakusho) The dispersion process was performed for 1 hr. Thereafter, the mixture was cooled to room temperature, and zirconia beads were filtered off with a metal mesh to obtain an organic pigment dispersion (S-1).
 <調製例2>
 0.25Lのプラスチック容器に上記表2-4に記載の化合物(s-15)5g、分散媒としてメチルイソブチルケトン(MIBK)95g、直径0.05mmのジルコニアビーズ(ニッカトー社製「YTZ-0.05」)175gを投入し、ペイントシェーカーにて1hr分散処理を行った。その後、室温まで冷却し、金属メッシュでジルコニアビーズをろ別することで有機顔料分散液(S-2)を得た。
<Preparation Example 2>
In a 0.25 L plastic container, 5 g of the compound (s-15) shown in Table 2-4 above, 95 g of methyl isobutyl ketone (MIBK) as a dispersion medium, 0.05 mm diameter zirconia beads (“YTZ-0. 05 ") 175 g was charged and dispersed for 1 hr with a paint shaker. Thereafter, the mixture was cooled to room temperature, and zirconia beads were filtered off with a metal mesh to obtain an organic pigment dispersion (S-2).
 <調製例3>
 0.25Lのプラスチック容器に上記表2-4に記載の化合物(s-4)(ジクロロメタン中での吸収極大波長1100nm)5g、分散媒としてメチルイソブチルケトン(MIBK)95g、直径0.05mmのジルコニアビーズ(ニッカトー社製「YTZ-0.05」)175gを投入し、ペイントシェーカーにて1hr分散処理を行った。その後、室温まで冷却し、金属メッシュでジルコニアビーズをろ別することで有機顔料分散液(S-3)を得た。
<Preparation Example 3>
In a 0.25 L plastic container, 5 g of the compound (s-4) shown in Table 2-4 (maximum absorption wavelength 1100 nm in dichloromethane), 95 g of methyl isobutyl ketone (MIBK) as a dispersion medium, zirconia having a diameter of 0.05 mm 175 g of beads (“YTZ-0.05” manufactured by Nikkato Co., Ltd.) was added and dispersed for 1 hr using a paint shaker. Thereafter, the mixture was cooled to room temperature, and zirconia beads were filtered off with a metal mesh to obtain an organic pigment dispersion (S-3).
 <調製例4>
 0.25Lのプラスチック容器に上記表2-4に記載の化合物(s-6)(ジクロロメタン中での吸収極大波長1093nm)5g、分散媒としてメチルイソブチルケトン(MIBK)95g、直径0.05mmのジルコニアビーズ(ニッカトー社製「YTZ-0.05」)175gを投入し、ペイントシェーカーにて1hr分散処理を行った。その後、室温まで冷却し、金属メッシュでジルコニアビーズをろ別することで有機顔料分散液(S-4)を得た。
<Preparation Example 4>
In a 0.25 L plastic container, 5 g of the compound (s-6) shown in Table 2-4 (maximum absorption wavelength 1093 nm in dichloromethane), 95 g of methyl isobutyl ketone (MIBK) as a dispersion medium, zirconia having a diameter of 0.05 mm 175 g of beads (“YTZ-0.05” manufactured by Nikkato Co., Ltd.) was added and dispersed for 1 hr using a paint shaker. Thereafter, the mixture was cooled to room temperature, and zirconia beads were filtered off with a metal mesh to obtain an organic pigment dispersion (S-4).
 <調製例5>
 調製例1で得た有機顔料分散液(S-1)を遠心分離装置(himac製「冷却遠心機 CR-22N」)にて36000Gの遠心加速度で10分間、遠心分離処理し、処理後の分散液をポリプロピレン製フィルター(孔径3μm)にて濾過することで、有機顔料分散液(S-5)を得た。
<Preparation Example 5>
The organic pigment dispersion (S-1) obtained in Preparation Example 1 was centrifuged at a centrifugal acceleration of 36000 G for 10 minutes in a centrifuge (“cooled centrifuge CR-22N” manufactured by himac), and the dispersion after the treatment The liquid was filtered through a polypropylene filter (pore size: 3 μm) to obtain an organic pigment dispersion (S-5).
 [実施例1]
 実施例1では、化合物(A)を含む透明樹脂製基板の両面に有機顔料(S)を含む透明樹脂層を形成してなる基材を有する光学フィルターを以下の手順および条件で作成した。
[Example 1]
In Example 1, an optical filter having a substrate formed by forming a transparent resin layer containing an organic pigment (S) on both surfaces of a transparent resin substrate containing a compound (A) was prepared according to the following procedure and conditions.
 容器に、合成例1で得られた樹脂A 100g、化合物(A)として下記式(a-1)で表わされる化合物(a-1)(ジクロロメタン中での吸収極大波長713nm)0.07gおよび下記式(a-2)で表わされる化合物(a-2)(ジクロロメタン中での吸収極大波長736nm)0.06gおよび塩化メチレンを加えて樹脂濃度が20質量%の溶液を調製した。得られた溶液を平滑なガラス板上にキャストし、20℃で8時間乾燥した後、ガラス板から剥離した。剥離した塗膜をさらに減圧下100℃で8時間乾燥して、厚さ0.1mm、縦60mm、横60mmの透明樹脂製基板を得た。 In a container, 100 g of the resin A obtained in Synthesis Example 1, 0.07 g of the compound (A-1) represented by the following formula (a-1) (absorption maximum wavelength 713 nm in dichloromethane) as the compound (A) and 0.06 g of the compound (a-2) represented by the formula (a-2) (absorption maximum wavelength 736 nm in dichloromethane) and methylene chloride were added to prepare a solution having a resin concentration of 20% by mass. The obtained solution was cast on a smooth glass plate, dried at 20 ° C. for 8 hours, and then peeled off from the glass plate. The peeled coating film was further dried at 100 ° C. under reduced pressure for 8 hours to obtain a transparent resin substrate having a thickness of 0.1 mm, a length of 60 mm, and a width of 60 mm.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 上記式(a-1)中、i-Prはイソプロピル基を示す。
 得られた透明樹脂製基板の片面に、下記組成の樹脂組成物(1)をバーコーターで塗布し、オーブン中70℃で3分間加熱し、溶剤を揮発除去した。この際、乾燥後の厚みが3μmとなるように、バーコーターの塗布条件を調整した。次に、コンベア式露光機を用いて露光(露光量500mJ/cm2,200mW)を行い、樹脂組成物(1)を硬化させ、透明樹脂製基板上に透明樹脂層を形成した。同様に、透明樹脂製基板のもう一方の面にも樹脂組成物(1)からなる透明樹脂層を形成し、化合物(A)を含む透明樹脂製基板の両面に有機顔料(S)を含む透明樹脂層を有する基材を得た。
Figure JPOXMLDOC01-appb-C000017
In the above formula (a-1), i-Pr represents an isopropyl group.
A resin composition (1) having the following composition was applied to one side of the obtained transparent resin substrate with a bar coater and heated in an oven at 70 ° C. for 3 minutes to volatilize and remove the solvent. At this time, the coating conditions of the bar coater were adjusted so that the thickness after drying was 3 μm. Next, it exposed using the conveyor type exposure machine (exposure amount 500mJ / cm < 2 >, 200mW), the resin composition (1) was hardened, and the transparent resin layer was formed on the substrate made from transparent resin. Similarly, a transparent resin layer made of the resin composition (1) is formed on the other surface of the transparent resin substrate, and the organic pigment (S) is transparent on both surfaces of the transparent resin substrate containing the compound (A). A substrate having a resin layer was obtained.
 樹脂組成物(1):トリシクロデカンジメタノールアクリレート100g、1-ヒドロキシシクロヘキシルフェニルケトン3g、調製例1で得られた顔料分散液(S-1)50g(有機顔料(S)換算で2.5g)、イソプロピルアルコール117g。 Resin composition (1): 100 g of tricyclodecane dimethanol acrylate, 3 g of 1-hydroxycyclohexyl phenyl ketone, 50 g of pigment dispersion (S-1) obtained in Preparation Example 1 (2.5 g in terms of organic pigment (S)) ), 117 g of isopropyl alcohol.
 続いて、得られた基材の片面に第一光学層として誘電体多層膜(I)を形成し、さらに基材のもう一方の面に第二光学層として誘電体多層膜(II)を形成し、厚さ約0.105mmの光学フィルターを得た。 Subsequently, a dielectric multilayer film (I) is formed as a first optical layer on one side of the obtained base material, and a dielectric multilayer film (II) is formed as a second optical layer on the other side of the base material. Thus, an optical filter having a thickness of about 0.105 mm was obtained.
 誘電体多層膜(I)は、蒸着温度100℃でシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計26層)。誘電体多層膜(II)は、蒸着温度100℃でシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計20層)。誘電体多層膜(I)および(II)のいずれにおいても、シリカ層およびチタニア層は、基材側からチタニア層、シリカ層、チタニア層、・・・シリカ層、チタニア層、シリカ層の順で交互に積層されており、光学フィルターの最外層をシリカ層とした。 The dielectric multilayer film (I) is formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers at a deposition temperature of 100 ° C. (26 layers in total). The dielectric multilayer film (II) is formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers at a deposition temperature of 100 ° C. (20 layers in total). In both of the dielectric multilayer films (I) and (II), the silica layer and the titania layer are in order of the titania layer, the silica layer, the titania layer,..., The silica layer, the titania layer, and the silica layer from the substrate side. The outermost layer of the optical filter was a silica layer.
 誘電体多層膜(I)および(II)の設計は、以下のようにして行った。
 各層の厚さと層数については、可視光領域の反射防止効果と近赤外線領域の選択的な透過・反射性能を達成できるよう基材屈折率の波長依存特性や、適用した有機顔料(S)および化合物(A)の吸収特性に合わせて光学薄膜設計ソフト(Essential Macleod、Thin Film Center社製)を用いて最適化を行った。最適化を行う際、本実施例においてはソフトへの入力パラメーター(Target値)を下記表3の通りとした。
The dielectric multilayer films (I) and (II) were designed as follows.
Regarding the thickness and the number of layers of each layer, the wavelength-dependent characteristics of the base material refractive index and the applied organic pigment (S) and the anti-reflection effect in the visible light region and the selective transmission / reflection performance in the near-infrared region can be achieved. Optimization was performed using optical thin film design software (Essential Macleod, manufactured by Thin Film Center) in accordance with the absorption characteristics of the compound (A). When performing optimization, in this example, the input parameters (Target values) to the software are as shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000018
 膜構成最適化の結果、実施例1では、誘電体多層膜(I)は、膜厚31~157nmのシリカ層と膜厚10~95nmのチタニア層とが交互に積層されてなる、積層数26の多層蒸着膜となり、誘電体多層膜(II)は、膜厚37~194nmのシリカ層と膜厚12~114nmのチタニア層とが交互に積層されてなる、積層数20の多層蒸着膜となった。最適化を行った膜構成の一例を下記表4に示す。
Figure JPOXMLDOC01-appb-T000018
As a result of the optimization of the film configuration, in Example 1, the dielectric multilayer film (I) is formed by alternately stacking a silica layer having a film thickness of 31 to 157 nm and a titania layer having a film thickness of 10 to 95 nm. The dielectric multi-layer film (II) is a multi-layer vapor-deposited film having 20 layers, in which a silica layer having a thickness of 37 to 194 nm and a titania layer having a thickness of 12 to 114 nm are alternately stacked. It was. An example of the optimized film configuration is shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000019
 得られた光学フィルターの垂直方向から測定した分光透過率およびヘイズを測定し、各波長領域における光学特性を評価するとともに、上述した耐熱性を評価した。結果を図2および表5に示す。
Figure JPOXMLDOC01-appb-T000019
The spectral transmittance and haze measured from the vertical direction of the obtained optical filter were measured to evaluate the optical characteristics in each wavelength region and the heat resistance described above. The results are shown in FIG.
 また、得られた光学フィルターを用いてカメラモジュールを作成し、カメラ画像の色シェーディングおよびゴーストの評価を行った。結果を表5に示す。得られたカメラ画像はシェーディングおよびゴーストにおいて良好な結果であった。 Also, a camera module was created using the obtained optical filter, and color shading and ghost of the camera image were evaluated. The results are shown in Table 5. The obtained camera images showed good results in shading and ghosting.
 [実施例2]
 樹脂組成物(1)の代わりに下記に示す樹脂組成物(2)を用いたこと以外は実施例1と同様にして光学フィルターを得て評価を行った。結果を表5に示す。
[Example 2]
An optical filter was obtained and evaluated in the same manner as in Example 1 except that the resin composition (2) shown below was used instead of the resin composition (1). The results are shown in Table 5.
 樹脂組成物(2):合成例2で得られたウレタンアクリレート化合物(1)50g(固形分換算)、トリシクロデカンジメタノールアクリレート50g、1-ヒドロキシシクロヘキシルフェニルケトン3g、調製例1で得られた顔料分散液(S-1)50g(有機顔料(S)換算で2.5g)、イソプロピルアルコール117g。 Resin composition (2): 50 g of urethane acrylate compound (1) obtained in Synthesis Example 2 (converted to solid content), 50 g of tricyclodecane dimethanol acrylate, 3 g of 1-hydroxycyclohexyl phenyl ketone, obtained in Preparation Example 1 50 g of pigment dispersion (S-1) (2.5 g in terms of organic pigment (S)), 117 g of isopropyl alcohol.
 [実施例3]
 樹脂組成物(1)の代わりに下記に示す樹脂組成物(3)を用いたこと以外は実施例1と同様にして光学フィルターを得て、同様の評価を行った。結果を表5に示す。
[Example 3]
An optical filter was obtained in the same manner as in Example 1 except that the resin composition (3) shown below was used instead of the resin composition (1), and the same evaluation was performed. The results are shown in Table 5.
 樹脂組成物(3):合成例2で得られたウレタンアクリレート化合物(1)50g(固形分換算)、3-ヒドロキシ-1-アダマンチルアクリレート30g、トリシクロデカンジメタノールアクリレート20g、1-ヒドロキシシクロヘキシルフェニルケトン3g、調製例1で得られた顔料分散液(S-1)50g(有機顔料(S)換算で2.5g)、イソプロピルアルコール117g。 Resin composition (3): 50 g of urethane acrylate compound (1) obtained in Synthesis Example 2 (in terms of solid content), 30 g of 3-hydroxy-1-adamantyl acrylate, 20 g of tricyclodecane dimethanol acrylate, 1-hydroxycyclohexylphenyl 3 g of ketone, 50 g of pigment dispersion (S-1) obtained in Preparation Example 1 (2.5 g in terms of organic pigment (S)), 117 g of isopropyl alcohol.
 [実施例4]
 樹脂組成物(1)の代わりに下記に示す樹脂組成物(4)を用いたこと以外は実施例1と同様にして光学フィルターを得て評価を行った。結果を表5に示す。
[Example 4]
An optical filter was obtained and evaluated in the same manner as in Example 1 except that the resin composition (4) shown below was used instead of the resin composition (1). The results are shown in Table 5.
 樹脂組成物(4):トリシクロデカンジメタノールアクリレート100g、1-ヒドロキシシクロヘキシルフェニルケトン3g、調製例2で得られた顔料分散液(S-2)50g(有機顔料(S)換算で2.5g)、メチルイソブチルケトン117g。 Resin composition (4): 100 g of tricyclodecane dimethanol acrylate, 3 g of 1-hydroxycyclohexyl phenyl ketone, 50 g of the pigment dispersion (S-2) obtained in Preparation Example 2 (2.5 g in terms of organic pigment (S)) ), 117 g of methyl isobutyl ketone.
 [実施例5]
 透明樹脂基板の代わりにガラス基板(縦60mm、横60mmの大きさにカットした透明ガラス基板「OA-10G(厚み150μm)」(日本電気硝子(株)製)を用い、樹脂組成物(1)の代わりに下記に示す樹脂組成物(5)を用いたこと以外は実施例1と同様にして光学フィルターを得て評価を行った。結果を表5に示す。
[Example 5]
Instead of the transparent resin substrate, a glass substrate (a transparent glass substrate “OA-10G (thickness 150 μm) cut to 60 mm length and 60 mm width)” (manufactured by Nippon Electric Glass Co., Ltd.) was used. Resin composition (1) An optical filter was obtained and evaluated in the same manner as in Example 1 except that the resin composition (5) shown below was used instead of 1. The results are shown in Table 5.
 樹脂組成物(5):トリシクロデカンジメタノールアクリレート100g、1-ヒドロキシシクロヘキシルフェニルケトン3g、調製例2で得られた顔料分散液(S-2)50g(有機顔料(S)換算で2.5g)、化合物(a-1)0.5g、化合物(a-2)0.4g、メチルイソブチルケトン112g。 Resin composition (5): 100 g of tricyclodecane dimethanol acrylate, 3 g of 1-hydroxycyclohexyl phenyl ketone, 50 g of the pigment dispersion (S-2) obtained in Preparation Example 2 (2.5 g in terms of organic pigment (S)) ), Compound (a-1) 0.5 g, compound (a-2) 0.4 g, methyl isobutyl ketone 112 g.
 [実施例6]
 ガラス基板の代わりに縦60mm、横60mmの大きさにカットした透明樹脂フィルム(ゼオノアフィルムZF16(厚み100μm)」(日本ゼオン(株)製)を用いたこと以外は実施例5と同様にして光学フィルターを得て評価を行った。結果を表5に示す。
[Example 6]
Optical in the same manner as in Example 5 except that a transparent resin film (Zeonor film ZF16 (thickness 100 μm)) (manufactured by Nippon Zeon Co., Ltd.) cut to a size of 60 mm in length and 60 mm in width was used instead of the glass substrate. A filter was obtained and evaluated, and the results are shown in Table 5.
 [実施例7]
 樹脂組成物(1)の代わりに下記に示す樹脂組成物(6)を用いたこと以外は実施例3と同様にして光学フィルターを得て評価を行った。結果を表5に示す。
[Example 7]
An optical filter was obtained and evaluated in the same manner as in Example 3 except that the resin composition (6) shown below was used instead of the resin composition (1). The results are shown in Table 5.
 樹脂組成物(6):合成例2で得られたウレタンアクリレート化合物(1)50g(固形分換算)、3-ヒドロキシ-1-アダマンチルアクリレート30g、トリシクロデカンジメタノールアクリレート20g、1-ヒドロキシシクロヘキシルフェニルケトン3g、調製例3で得られた顔料分散液(S-3)56g(有機顔料(S)換算で2.8g)、イソプロピルアルコール117g。 Resin composition (6): 50 g of urethane acrylate compound (1) obtained in Synthesis Example 2 (in terms of solid content), 30 g of 3-hydroxy-1-adamantyl acrylate, 20 g of tricyclodecane dimethanol acrylate, 1-hydroxycyclohexylphenyl 3 g of ketone, 56 g of the pigment dispersion (S-3) obtained in Preparation Example 3 (2.8 g in terms of organic pigment (S)), and 117 g of isopropyl alcohol.
 [実施例8]
 樹脂組成物(1)の代わりに下記に示す樹脂組成物(7)を用いたこと以外は実施例3と同様にして光学フィルターを得て評価を行った。結果を表5に示す。
[Example 8]
An optical filter was obtained and evaluated in the same manner as in Example 3 except that the resin composition (7) shown below was used instead of the resin composition (1). The results are shown in Table 5.
 樹脂組成物(7):合成例2で得られたウレタンアクリレート化合物(1)50g(固形分換算)、3-ヒドロキシ-1-アダマンチルアクリレート30g、トリシクロデカンジメタノールアクリレート20g、1-ヒドロキシシクロヘキシルフェニルケトン3g、調製例4で得られた顔料分散液(S-4)52g(有機顔料(S)換算で2.6g)、イソプロピルアルコール117g。 Resin composition (7): 50 g of urethane acrylate compound (1) obtained in Synthesis Example 2 (converted to solid content), 30 g of 3-hydroxy-1-adamantyl acrylate, 20 g of tricyclodecane dimethanol acrylate, 1-hydroxycyclohexylphenyl 3 g of ketone, 52 g of pigment dispersion (S-4) obtained in Preparation Example 4 (2.6 g in terms of organic pigment (S)), and 117 g of isopropyl alcohol.
 [実施例9]
 樹脂組成物(1)の代わりに下記に示す樹脂組成物(8)を用いたこと以外は実施例3と同様にして光学フィルターを得て評価を行った。結果を表5に示す。
[Example 9]
An optical filter was obtained and evaluated in the same manner as in Example 3 except that the resin composition (8) shown below was used instead of the resin composition (1). The results are shown in Table 5.
 樹脂組成物(8):合成例2で得られたウレタンアクリレート化合物(1)50g(固形分換算)、3-ヒドロキシ-1-アダマンチルアクリレート30g、トリシクロデカンジメタノールアクリレート20g、1-ヒドロキシシクロヘキシルフェニルケトン3g、調製例5で得られた顔料分散液(S-5)50g(有機顔料(S)換算で2.5g)、イソプロピルアルコール117g。 Resin composition (8): 50 g of urethane acrylate compound (1) obtained in Synthesis Example 2 (converted to solid content), 30 g of 3-hydroxy-1-adamantyl acrylate, 20 g of tricyclodecane dimethanol acrylate, 1-hydroxycyclohexylphenyl 3 g of ketone, 50 g of the pigment dispersion (S-5) obtained in Preparation Example 5 (2.5 g in terms of organic pigment (S)), and 117 g of isopropyl alcohol.
 [比較例1]
 容器に、合成例1で得られた樹脂A 100部、化合物(A)として上記化合物(a-1)(ジクロロメタン中での吸収極大波長713nm)0.07gおよび上記化合物(a-2)(ジクロロメタン中での吸収極大波長736nm)0.06g、および上記表2-2に記載の化合物(s-6)(ジクロロメタン中での吸収極大波長1093nm)0.2gおよび塩化メチレンを加えて樹脂濃度が20質量%の溶液を調製した。なお、化合物(s-6)は塩化メチレンに溶解して染料化していた。得られた溶液を平滑なガラス板上にキャストし、20℃で8時間乾燥した後、ガラス板から剥離した。剥離した塗膜をさらに減圧下100℃で8時間乾燥して、厚さ0.1mm、縦60mm、横60mmの透明樹脂製基板を得た。
[Comparative Example 1]
In a container, 100 parts of the resin A obtained in Synthesis Example 1, 0.07 g of the compound (a-1) (absorption maximum wavelength 713 nm in dichloromethane) as the compound (A) and the compound (a-2) (dichloromethane) 0.06 g of absorption maximum wavelength in water (736 nm) and 0.2 g of compound (s-6) (absorption maximum wavelength of 1093 nm in dichloromethane) described in Table 2-2 above and methylene chloride were added to give a resin concentration of 20 A mass% solution was prepared. Compound (s-6) was dissolved in methylene chloride to form a dye. The obtained solution was cast on a smooth glass plate, dried at 20 ° C. for 8 hours, and then peeled off from the glass plate. The peeled coating film was further dried at 100 ° C. under reduced pressure for 8 hours to obtain a transparent resin substrate having a thickness of 0.1 mm, a length of 60 mm, and a width of 60 mm.
 得られた透明樹脂製基板を用い、かつ、樹脂組成物(1)の代わりに下記に示す樹脂組成物(6)を用いたこと以外は実施例1と同様にして光学フィルターを得て評価を行った。結果を表5に示す。 An optical filter was obtained and evaluated in the same manner as in Example 1 except that the obtained transparent resin substrate was used and the resin composition (6) shown below was used instead of the resin composition (1). went. The results are shown in Table 5.
 樹脂組成物(6):トリシクロデカンジメタノールアクリレート100g、1-ヒドロキシシクロヘキシルフェニルケトン3g、メチルエチルケトン154.5g。 Resin composition (6): 100 g of tricyclodecane dimethanol acrylate, 3 g of 1-hydroxycyclohexyl phenyl ketone, 154.5 g of methyl ethyl ketone.
 [比較例2]
 樹脂組成物(5)の代わりに下記に示す樹脂組成物(7)を用いたこと以外は実施例5と同様にして光学フィルターを得て評価を行った。なお、化合物(s-15)は塩化メチレンに溶解して染料化していた。結果を表5に示す。
[Comparative Example 2]
An optical filter was obtained and evaluated in the same manner as in Example 5 except that the resin composition (7) shown below was used instead of the resin composition (5). Compound (s-15) was dissolved in methylene chloride to form a dye. The results are shown in Table 5.
 樹脂組成物(7):トリシクロデカンジメタノールアクリレート100g、1-ヒドロキシシクロヘキシルフェニルケトン3g、化合物(s-15)2.5g、化合物(a-1)0.5g、化合物(a-2)0.4g、塩化メチレン155g。 Resin composition (7): Tricyclodecane dimethanol acrylate 100 g, 1-hydroxycyclohexyl phenyl ketone 3 g, compound (s-15) 2.5 g, compound (a-1) 0.5 g, compound (a-2) 0 .4 g, methylene chloride 155 g.
 [比較例3~4]
 表5に示す構成としたこと以外は、実施例1と同様にして光学フィルターを得て評価を行った。結果を表5に示す。
[Comparative Examples 3 to 4]
An optical filter was obtained and evaluated in the same manner as in Example 1 except that the configuration shown in Table 5 was adopted. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000020
 表5中の基材の形態および各種化合物などの記号は下記の通りである。
Figure JPOXMLDOC01-appb-T000020
The symbols of the base material form and various compounds in Table 5 are as follows.
 <基材の形態>
 形態(1):化合物(A)を含む透明樹脂製基板の両面に有機顔料(S)を含む透明樹脂層を有する
 形態(2):透明ガラス基板(日本電気硝子(株)製「OA-10G(厚み150μm)」)の両面に有機顔料(S)を含む透明樹脂層を有する
 形態(3):樹脂製支持体(日本ゼオン(株)製「ゼオノアフィルムZF16」)の両面に化合物(A)および有機顔料(S)を含む透明樹脂層を有する
 形態(4):樹脂製支持体の両面に有機顔料(S)を含む透明樹脂層を有する
 形態(5):化合物(A)および化合物(S)を含む透明樹脂製基板の両面に樹脂層を有する
 形態(6):透明ガラス基板の両面に化合物(S)を含む透明樹脂層を有する
 形態(7):化合物(A)を含む透明樹脂製基板の両面に樹脂層を有する
<Form of substrate>
Form (1): A transparent resin substrate containing a compound (A) has a transparent resin layer containing an organic pigment (S) on both sides. Form (2): Transparent glass substrate (“OA-10G manufactured by Nippon Electric Glass Co., Ltd.) (Thickness 150 μm) ”) having a transparent resin layer containing an organic pigment (S) on both sides. Form (3): Compound (A) on both sides of a resin support (“ Zeonor Film ZF16 ”manufactured by Nippon Zeon Co., Ltd.) And a transparent resin layer containing an organic pigment (S) Form (4): having a transparent resin layer containing an organic pigment (S) on both sides of a resin support Form (5): Compound (A) and Compound (S Form (6): having a transparent resin layer containing compound (S) on both sides of the transparent glass substrate Form (7): made of transparent resin containing compound (A) Has resin layers on both sides of the substrate
 <透明樹脂>
 樹脂A:環状ポリオレフィン系樹脂(樹脂合成例1)
 モノマーA:トリシクロデカンジメタノールアクリレート
 モノマーB:合成例2で得られたウレタンアクリレート化合物(1)
 モノマーC:3-ヒドロキシ-1-アダマンチルアクリレート
<Transparent resin>
Resin A: Cyclic polyolefin resin (resin synthesis example 1)
Monomer A: Tricyclodecane dimethanol acrylate Monomer B: Urethane acrylate compound (1) obtained in Synthesis Example 2
Monomer C: 3-hydroxy-1-adamantyl acrylate
 <希釈溶媒>
 希釈溶媒(1):イソプロピルアルコール
 希釈溶媒(2):メチルイソブチルケトン
 希釈溶媒(3):メチルエチルケトン
 希釈溶媒(4):塩化メチレン
<Diluted solvent>
Dilution solvent (1): Isopropyl alcohol Dilution solvent (2): Methyl isobutyl ketone Dilution solvent (3): Methyl ethyl ketone Dilution solvent (4): Methylene chloride
10:基材
11:第一光学層
12:第二光学層
13:第三光学層
14:第四光学層
111:カメラ画像
112:白色板
113:白色板の中央部の例
114:白色板の端部の例
121:カメラ画像
122:光源
123:光源周辺のゴーストの例
10: Substrate 11: First optical layer 12: Second optical layer 13: Third optical layer 14: Fourth optical layer 111: Camera image 112: White plate 113: Example of central portion of white plate 114: White plate Example 121: Camera image 122: Light source 123: Example of a ghost around the light source

Claims (11)

  1.  下記要件(a)を満たす基材を有し、かつ、前記基材の少なくとも一方の面に誘電体多層膜が形成されていることを特徴とする光学フィルター:
    (a)波長900nm以上1200nm以下の領域に吸収極大を有する有機顔料(S)を含む層を有する。
    An optical filter having a base material satisfying the following requirement (a) and having a dielectric multilayer film formed on at least one surface of the base material:
    (A) It has a layer containing an organic pigment (S) having an absorption maximum in a wavelength region of 900 nm to 1200 nm.
  2.  前記基材が、さらに下記要件(b)を満たすことを特徴とする請求項1に記載の光学フィルター:
    (b)波長650nm以上760nm以下の領域に吸収極大を有する化合物(A)を含む層を有する。
    The optical filter according to claim 1, wherein the substrate further satisfies the following requirement (b):
    (B) It has a layer containing the compound (A) having an absorption maximum in a wavelength region of 650 nm or more and 760 nm or less.
  3.  前記化合物(A)が、スクアリリウム系化合物、フタロシアニン系化合物およびシアニン系化合物からなる群より選ばれる少なくとも1種の化合物であることを特徴とする請求項2に記載の光学フィルター。 3. The optical filter according to claim 2, wherein the compound (A) is at least one compound selected from the group consisting of squarylium compounds, phthalocyanine compounds, and cyanine compounds.
  4.  前記有機顔料(S)が、下記式(I)で表されるジイモニウム系化合物を含むことを特徴とする、請求項1~3のいずれか1項に記載の光学フィルター。
    Figure JPOXMLDOC01-appb-C000001
    [式(I)中、
     R1は、独立に水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、カルボキシ基、リン酸基、-SRi基、-SO2i基、-OSO2i基または下記La~Lhのいずれかを表し、R2は、独立にハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-NRgh基、-SRi基、-SO2i基、-OSO2i基または下記La~Lhのいずれかを表し、RgおよびRhは、それぞれ独立に水素原子、-C(O)Ri基または下記La~Leのいずれかを表し、Riは下記La~Leのいずれかを表し、
    (La)炭素数1~12の脂肪族炭化水素基
    (Lb)炭素数1~12のハロゲン置換アルキル基
    (Lc)炭素数3~14の脂環式炭化水素基
    (Ld)炭素数6~14の芳香族炭化水素基
    (Le)炭素数2~14の複素環基
    (Lf)炭素数1~12のアルコキシ基
    (Lg)置換基Lを有してもよい炭素数1~12のアシル基
    (Lh)置換基Lを有してもよい炭素数1~12のアルコキシカルボニル基
     置換基Lは、炭素数1~12の脂肪族炭化水素基、炭素数1~12のハロゲン置換アルキル基、炭素数3~14の脂環式炭化水素基、炭素数6~14の芳香族炭化水素基および炭素数3~14の複素環基からなる群より選ばれる少なくとも1種であり、
     nは0~4の整数を表し、
     Xは電荷を中和させるのに必要なアニオンを表す。)
    The optical filter according to any one of claims 1 to 3, wherein the organic pigment (S) contains a diimonium compound represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (I),
    R 1 is independently a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a carboxy group, a phosphoric acid group, -SR i group, -SO 2 R i groups, -OSO 2 R i group or a group represented by L a ~ R 2 represents any one of R h and R 2 independently represents a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphate group, a —NR g R h group, a —SR i group, —SO 2 R i group, —OSO 2 R i group or any of the following L a to L h is represented, and R g and R h are each independently a hydrogen atom, —C (O) R i group or the following L a to L represents either e, R i represents any of the following L a ~ L e,
    (L a ) an aliphatic hydrocarbon group having 1 to 12 carbon atoms (L b ) a halogen-substituted alkyl group having 1 to 12 carbon atoms (L c ) an alicyclic hydrocarbon group having 3 to 14 carbon atoms (L d ) carbon C 6-14 aromatic hydrocarbon group (L e ) C 2-14 heterocyclic group (L f ) C 1-12 alkoxy group (L g ) carbon number optionally having substituent L An alkoxycarbonyl group having 1 to 12 carbon atoms which may have an acyl group (L h ) substituent L having 1 to 12 substituents. The substituent L is an aliphatic hydrocarbon group having 1 to 12 carbon atoms, or an alkyl group having 1 to 12 carbon atoms. At least one selected from the group consisting of a halogen-substituted alkyl group, an alicyclic hydrocarbon group having 3 to 14 carbon atoms, an aromatic hydrocarbon group having 6 to 14 carbon atoms and a heterocyclic group having 3 to 14 carbon atoms Yes,
    n represents an integer of 0 to 4,
    X represents an anion necessary for neutralizing the electric charge. )
  5.  前記有機顔料(S)の平均粒子径が200nm以下であることを特徴とする請求項1~4のいずれか1項に記載の光学フィルター。 The optical filter according to any one of claims 1 to 4, wherein an average particle diameter of the organic pigment (S) is 200 nm or less.
  6.  前記有機顔料(S)を含む層が透明樹脂層であることを特徴とする、請求項1~5のいずれか1項に記載の光学フィルター。 6. The optical filter according to claim 1, wherein the layer containing the organic pigment (S) is a transparent resin layer.
  7.  前記透明樹脂層を構成する透明樹脂が、環状ポリオレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系硬化型樹脂、シルセスキオキサン系紫外線硬化型樹脂、アクリル系紫外線硬化型樹脂およびビニル系紫外線硬化型樹脂からなる群より選ばれる少なくとも1種の樹脂であることを特徴とする請求項6に記載の光学フィルター。 The transparent resin constituting the transparent resin layer is a cyclic polyolefin resin, aromatic polyether resin, polyimide resin, fluorene polycarbonate resin, fluorene polyester resin, polycarbonate resin, polyamide resin, polyarylate resin, Polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin, allyl ester resin 7. The resin according to claim 6, wherein the resin is at least one resin selected from the group consisting of a curable resin, a silsesquioxane ultraviolet curable resin, an acrylic ultraviolet curable resin, and a vinyl ultraviolet curable resin. Optical filter.
  8.  前記基材が、酸性官能基を有する分散剤を含有し、かつ、その含有量が前記有機顔料(S)100質量部に対して5~300質量部であることを特徴とする請求項1~7のいずれか1項に記載の光学フィルター。 The base material contains a dispersant having an acidic functional group, and the content thereof is 5 to 300 parts by mass with respect to 100 parts by mass of the organic pigment (S). 8. The optical filter according to any one of 7 above.
  9.  固体撮像装置用である請求項1~8のいずれか1項に記載の光学フィルター。 The optical filter according to any one of claims 1 to 8, which is used for a solid-state imaging device.
  10.  請求項1~9のいずれか1項に記載の光学フィルターを具備する固体撮像装置。 A solid-state imaging device comprising the optical filter according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか1項に記載の光学フィルターを具備するカメラモジュール。 A camera module comprising the optical filter according to any one of claims 1 to 9.
PCT/JP2019/007035 2018-02-27 2019-02-25 Optical filter and device using optical filter WO2019167876A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980011899.8A CN111684320B (en) 2018-02-27 2019-02-25 Optical filter, solid-state imaging device, and camera module
JP2020503489A JP7207395B2 (en) 2018-02-27 2019-02-25 Optical filters and devices using optical filters
KR1020207024301A KR20200125604A (en) 2018-02-27 2019-02-25 Optical filters and devices using optical filters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018032979 2018-02-27
JP2018-032979 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019167876A1 true WO2019167876A1 (en) 2019-09-06

Family

ID=67805065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007035 WO2019167876A1 (en) 2018-02-27 2019-02-25 Optical filter and device using optical filter

Country Status (5)

Country Link
JP (1) JP7207395B2 (en)
KR (1) KR20200125604A (en)
CN (1) CN111684320B (en)
TW (1) TW201945179A (en)
WO (1) WO2019167876A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7415815B2 (en) 2020-06-22 2024-01-17 Agc株式会社 optical filter

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207142A (en) * 2000-01-25 2001-07-31 Tomoegawa Paper Co Ltd Infrared-absorbing adhesive composition and infrared- absorbing sheet using the same
JP2010018773A (en) * 2008-06-12 2010-01-28 Nippon Shokubai Co Ltd Near-infrared ray absorbing pressure-sensitive adhesive composition
WO2011074619A1 (en) * 2009-12-16 2011-06-23 日本カーリット株式会社 Near-infrared absorptive coloring matter and near-infrared absorptive composition
JP2013155353A (en) * 2012-01-31 2013-08-15 Fujifilm Corp Infrared absorptive liquid composition, infrared cut filter and production method thereof using it, and camera module and production method thereof
WO2014002864A1 (en) * 2012-06-25 2014-01-03 Jsr株式会社 Solid-state image capture element optical filter and application thereof
JP2014052482A (en) * 2012-09-06 2014-03-20 Nippon Sheet Glass Co Ltd Infrared cut filter and imaging device
WO2016158620A1 (en) * 2015-03-31 2016-10-06 コニカミノルタ株式会社 Optical film
WO2017164024A1 (en) * 2016-03-22 2017-09-28 Jsr株式会社 Optical filter and apparatus using optical filter
JP2018045011A (en) * 2016-09-13 2018-03-22 富士フイルム株式会社 Infrared absorbent, composition, film, optical filter, laminate, solid state imaging device, image display apparatus, and infrared sensor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3163813B2 (en) 1992-12-28 2001-05-08 日本ゼオン株式会社 Near-infrared absorbing resin composition and molded article
JP3987240B2 (en) 1999-07-05 2007-10-03 三井化学株式会社 Infrared light absorbing film and method for producing the same
CN101300064A (en) * 2005-11-02 2008-11-05 东洋油墨制造株式会社 Dispersing agent, method for producing same and pigment composition using same
JP5489669B2 (en) 2008-11-28 2014-05-14 Jsr株式会社 Near-infrared cut filter and device using near-infrared cut filter
JP5235762B2 (en) 2009-04-14 2013-07-10 日本カーリット株式会社 Resin composition for hard coat
KR101414139B1 (en) 2012-09-03 2014-08-06 장 제임스 Snap Ring having Multi Roller
KR20150081315A (en) * 2012-11-30 2015-07-13 후지필름 가부시키가이샤 Curable resin composition, and image-sensor-chip production method and image sensor chip using same
JP6263843B2 (en) 2013-02-28 2018-01-24 株式会社リコー Communication management system, communication management method, and program
KR101590137B1 (en) 2013-08-30 2016-02-01 주식회사 솔켐 Styrene-based copolymer containing dicyanophenyl functional groups and phthalocyanine-based compound synthesized from the copolymer
JP6645243B2 (en) * 2015-03-19 2020-02-14 Jsr株式会社 Curable composition, cured film, infrared light transmitting filter, and solid-state imaging device
CN107407754B (en) * 2015-03-27 2020-02-07 Jsr株式会社 Optical filter and device using the same
CN108449956A (en) * 2015-11-30 2018-08-24 Jsr株式会社 Optical filter, ambient light sensor and sensor assembly
WO2017122738A1 (en) * 2016-01-15 2017-07-20 東洋インキScホールディングス株式会社 Near-infrared absorbing composition and filter for solid-state imaging device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207142A (en) * 2000-01-25 2001-07-31 Tomoegawa Paper Co Ltd Infrared-absorbing adhesive composition and infrared- absorbing sheet using the same
JP2010018773A (en) * 2008-06-12 2010-01-28 Nippon Shokubai Co Ltd Near-infrared ray absorbing pressure-sensitive adhesive composition
WO2011074619A1 (en) * 2009-12-16 2011-06-23 日本カーリット株式会社 Near-infrared absorptive coloring matter and near-infrared absorptive composition
JP2013155353A (en) * 2012-01-31 2013-08-15 Fujifilm Corp Infrared absorptive liquid composition, infrared cut filter and production method thereof using it, and camera module and production method thereof
WO2014002864A1 (en) * 2012-06-25 2014-01-03 Jsr株式会社 Solid-state image capture element optical filter and application thereof
JP2014052482A (en) * 2012-09-06 2014-03-20 Nippon Sheet Glass Co Ltd Infrared cut filter and imaging device
WO2016158620A1 (en) * 2015-03-31 2016-10-06 コニカミノルタ株式会社 Optical film
WO2017164024A1 (en) * 2016-03-22 2017-09-28 Jsr株式会社 Optical filter and apparatus using optical filter
JP2018045011A (en) * 2016-09-13 2018-03-22 富士フイルム株式会社 Infrared absorbent, composition, film, optical filter, laminate, solid state imaging device, image display apparatus, and infrared sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7415815B2 (en) 2020-06-22 2024-01-17 Agc株式会社 optical filter

Also Published As

Publication number Publication date
TW201945179A (en) 2019-12-01
JPWO2019167876A1 (en) 2021-02-25
KR20200125604A (en) 2020-11-04
CN111684320A (en) 2020-09-18
CN111684320B (en) 2023-03-31
JP7207395B2 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
WO2018043564A1 (en) Optical filter and device using optical filter
WO2016158461A1 (en) Optical filter and device using optical filter
JP7163918B2 (en) Near-infrared cut filter and device using the near-infrared cut filter
JP6358114B2 (en) Optical filter and device using optical filter
JP7200985B2 (en) Optical filters, camera modules and electronics
WO2014002864A1 (en) Solid-state image capture element optical filter and application thereof
WO2015056734A1 (en) Optical filter, solid-state image pickup device, and camera module
WO2013054864A1 (en) Optical filter, solid state image-capturing device using same, and camera module using same
JP6578718B2 (en) Optical filter and device using optical filter
JP2017032685A (en) Optical filter and device with optical filter
TW201506463A (en) Optical filter and device using the same
WO2019167876A1 (en) Optical filter and device using optical filter
CN112180487A (en) Camera module and electronic device
JP2021120733A (en) Optical filter and application of the same
JP2021070782A (en) Resin composition, resin layer, and optical filter
JP2019053157A (en) Optical filter and device using optical filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761712

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503489

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761712

Country of ref document: EP

Kind code of ref document: A1