WO2019167478A1 - Two-dimensional spectroscopic measurement method and two-dimensional spectroscopic measurement device - Google Patents

Two-dimensional spectroscopic measurement method and two-dimensional spectroscopic measurement device Download PDF

Info

Publication number
WO2019167478A1
WO2019167478A1 PCT/JP2019/001898 JP2019001898W WO2019167478A1 WO 2019167478 A1 WO2019167478 A1 WO 2019167478A1 JP 2019001898 W JP2019001898 W JP 2019001898W WO 2019167478 A1 WO2019167478 A1 WO 2019167478A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency comb
optical frequency
optical
comb
spectroscopic measurement
Prior art date
Application number
PCT/JP2019/001898
Other languages
French (fr)
Japanese (ja)
Inventor
薫 美濃島
峰士 加藤
Original Assignee
国立大学法人電気通信大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人電気通信大学 filed Critical 国立大学法人電気通信大学
Priority to JP2019509004A priority Critical patent/JP7194438B2/en
Publication of WO2019167478A1 publication Critical patent/WO2019167478A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry

Definitions

  • the present invention relates to a two-dimensional spectroscopic measurement method and a two-dimensional spectroscopic measurement apparatus.
  • spectroscopic information many techniques such as an imaging method, Fourier transform infrared spectroscopy (FT-IR), and a dispersive infrared spectroscopic method are used. In these methods, it is difficult to obtain two-dimensional spatial information and one-dimensional wavelength information at the same time.
  • FT-IR Fourier transform infrared spectroscopy
  • dispersive infrared spectroscopic method it is difficult to obtain two-dimensional spatial information and one-dimensional wavelength information at the same time.
  • the two-dimensional spatial information and the one-dimensional wavelength information may be collectively referred to as two-dimensional spectral information.
  • Two-dimensional spectroscopy is also called surface spectroscopy or hyperspectral imaging. If two-dimensional spectroscopic information is obtained, for example, an image of an arbitrary wavelength can be extracted from the acquired data, and a celestial body such as a galaxy can be analyzed in detail.
  • two-dimensional spectroscopic information can be acquired by performing FT-IR for each point while scanning each point (a plurality of measurement regions) on the two-dimensional plane.
  • the conventional two-dimensional spectroscopy has a problem that it is difficult to measure a dynamic object because it takes time to sweep the space.
  • two-dimensional spectroscopic information can be acquired at once, spectroscopic measurement of various dynamic objects can be accurately performed.
  • Non-Patent Document 1 discloses a variable bandpass filter that can be applied to a method of acquiring two-dimensional spatial information and one-dimensional wavelength information while sweeping a wavelength band transmitted by a variable bandpass filter. .
  • variable bandpass filter disclosed in Non-Patent Document 1
  • the present invention has been made to solve the above-described problem, and is a two-dimensional spectroscopic measurement method and a two-dimensional spectroscopic measurement that can instantaneously acquire high-resolution spectroscopic information and perform two-dimensional spectroscopic measurement in real time. Providing equipment.
  • the two-dimensional spectroscopic measurement method of the present invention includes a first frequency mode having a predetermined offset frequency with respect to zero on the frequency axis and an integer multiple of a predetermined repetition frequency with respect to the first frequency mode on the frequency axis.
  • the frequency comb is divided into a second optical frequency comb and a third optical frequency comb, the second optical frequency comb is divided into a fourth optical frequency comb and a fifth optical frequency comb, and the fourth optical frequency comb
  • the above-described two-dimensional spectroscopic measurement method further includes a repetition frequency adjustment step of adjusting the repetition frequency according to a phase shift between the fourth optical frequency comb and the fifth optical frequency comb on the time axis. May be.
  • the transmission intensity when the envelope intensity passes through each of the two filters whose wavelength dependences are opposite to each other is acquired.
  • the optical information may be calculated based on the transmission intensity ratio.
  • a predetermined delay time is added to the second optical frequency comb or the third optical frequency comb, and an intensity spectrum including the optical information and A phase spectrum may be acquired.
  • the two-dimensional spectroscopic measurement apparatus includes a first frequency mode having a predetermined offset frequency with respect to zero on the frequency axis and an integer multiple of a predetermined repetition frequency with respect to the first frequency mode on the frequency axis.
  • a first optical frequency comb emitting unit configured to emit a first optical frequency comb having a plurality of second frequency modes arranged at intervals, the repetition frequency being four times the offset frequency, and the first light
  • a first branching unit that divides the frequency comb into a second optical frequency comb and a third optical frequency comb
  • a second branching unit that divides the second optical frequency comb into a fourth optical frequency comb and a fifth optical frequency comb.
  • a phase difference providing unit that shifts the phase on the time axis of the fourth optical frequency comb by 90 ° with respect to the phase on the time axis of the fifth optical frequency comb, and the third optical frequency Comb or the fourth optical frequency comb and
  • the fifth optical frequency comb includes arbitrary optical information, causes the fourth optical frequency comb and the third optical frequency comb to interfere with each other to generate a first interference signal, and the fifth optical frequency comb.
  • An interference signal generator for generating a second interference signal by causing a comb to interfere with the third optical frequency comb; and an envelope for acquiring an envelope strength of the first interference signal and the second interference signal A line intensity acquisition unit; and an optical information extraction unit that extracts the optical information based on the envelope intensity.
  • the envelope intensity acquisition unit includes two filters whose transmittance wavelength dependence is opposite to each other, and the envelope intensity passes through each of the two filters.
  • the optical information extraction unit may calculate the optical information based on the transmission intensity ratio.
  • the above-described two-dimensional spectroscopic measurement apparatus further includes a delay mechanism that adds a predetermined delay time to the second optical frequency comb or the third optical frequency comb, and the optical information extraction unit includes the optical information.
  • the intensity / phase spectrum may be acquired.
  • the optical information is an optical frequency of any one of the third optical frequency comb, the fourth optical frequency comb, and the fifth optical frequency comb.
  • the refractive index distribution on the optical path of the comb, the fluctuation of the refractive index, the path of the third optical frequency comb, or the path of the fourth optical frequency comb and the fifth optical frequency comb Includes any of the sample shapes.
  • a two-dimensional spectroscopic measurement method and a two-dimensional spectroscopic measurement device that instantaneously acquire high-resolution spectroscopic information and enable two-dimensional spectroscopic measurement in real time.
  • FIG. 3 is a schematic diagram of a pulse generation optical system that generates optical frequency combs (optical pulse trains) that are 90 ° out of phase with each other. It is a schematic diagram for demonstrating the time interval of the 1st optical pulse and the 2nd optical pulse on the time axis in an optical frequency comb.
  • FIG. 1 It is a perspective view which shows the mode of permeation
  • FIG. 1 It is a schematic diagram which shows the envelope intensity distribution of the interference signal which the phase mutually shifted 90 degrees.
  • FIG. 1 is a schematic diagram showing an electric field distribution on the time axis (upper stage) and an intensity distribution on the frequency axis (lower stage) of the optical frequency comb.
  • the intensity distribution on the frequency axis represents a spectral distribution.
  • the relationship shown in the equation (1) is established between the repetition time T rep of the optical pulse train oscillated at a constant repetition and the frequency interval f rep .
  • Each optical pulse train is composed of a superposition of many longitudinal modes propagating inside a resonator of the light source.
  • the optical pulse train is composed of a carrier wave, which is a superposition wave of these longitudinal modes, and a wave packet constituting an envelope of the carrier wave.
  • a carrier wave is also called a carrier.
  • the envelope of the carrier wave is also called an envelope.
  • the velocity of the carrier wave and the velocity of the wave packet are different from each other, so that a phase difference occurs with time.
  • the laser resonator is constituted by a dispersion medium.
  • a phase shift ⁇ CEO occurs between adjacent pulses.
  • the period of the phase shift ⁇ CEO is one period at time T CEO .
  • the optical frequency comb is a frequency mode (first frequency mode) having a predetermined carrier envelope offset (CEO, offset frequency) f CEO with respect to zero on the frequency axis. ) F 0 and a plurality of frequency modes (second frequency modes) f m arranged at intervals of an integer multiple of a predetermined repetition frequency f rep with respect to the frequency mode f 0 on the frequency axis.
  • Carrier envelope offset f CEO of the optical frequency comb is equivalent to the reciprocal of the time T CEO.
  • the carrier envelope offset f CEO, shift phi CEO phase, between the time T CEO holds the relationship shown in equation (2).
  • Equation (3) The frequency of the nth spectrum of the optical frequency comb is expressed as shown in Equation (3) using the repetition frequency f rep and the carrier envelope offset f CEO as parameters.
  • the carrier wave and the envelope can be controlled by controlling the parameters related to the plurality of frequency modes of the optical frequency comb based on the above-described correlation.
  • two parameters of the optical frequency comb that is, parameters related to a plurality of frequency modes of the optical frequency comb are controlled so that the repetition frequency f rep and the carrier envelope offset f CEO maintain the relationship of the expression (4). To do.
  • FIG. 2 is a schematic diagram showing the electric field distribution on the time axis of the optical frequency comb in which the repetition frequency f rep and the carrier envelope offset f CEO are controlled so as to maintain the relationship of the expression (4).
  • the same phase and waveform pattern as the reference optical pulse appear in the four optical pulses ahead on the time axis from the reference optical pulse.
  • the relationship of the formula (5) is established between the time T CEO and the carrier envelope offset f CEO .
  • FIG. 3 is a schematic diagram showing an example of an optical system 120 that generates optical pulse trains that are 90 ° out of phase with each other.
  • the optical system 120 includes an optical frequency comb emitting unit 103, a half mirror (second branching unit) 112, a half mirror 118, total reflection mirrors 114 and 116, and a delay applying unit (phase difference). Granting part) 123.
  • the optical frequency comb emitting unit 103 includes a function generator (not shown).
  • the optical frequency comb emitting unit 103 mainly controls the carrier envelope offset f CEO so that the repetition frequency f rep and the carrier envelope offset f CEO keep the relationship of the expression (4) by the operation of the function generator.
  • the envelope offset f CEO is emitted from the controlled optical frequency comb C1.
  • the optical frequency comb C1 passes through the half mirror 112 and is separated into an optical frequency comb C4 and an optical frequency comb C5.
  • the optical frequency comb C4 is reflected by the total reflection mirror 116 and enters the half mirror 118.
  • the optical frequency comb C5 is reflected by the half mirror 112 and the total reflection mirror 114, passes through the delay applying unit 123, and enters the half mirror 118.
  • the delay imparting unit 123 is composed of two total reflection mirrors 121 and 122 with their respective reflecting surfaces facing each other.
  • the optical frequency comb C5 reflected by the total reflection mirror 114 enters the delay applying unit 123, reciprocates a predetermined number of times between the reflection surfaces of the total reflection mirrors 121 and 122 while shifting the optical path, toward the half mirror 118.
  • the positions and the separation distances of the total reflection mirrors 121 and 122 are adjusted so that one phase of the optical frequency combs C4 and C5 incident on the half mirror 118 is shifted by 90 ° with respect to the other phase. That is, in the optical system 120, the optical frequency comb is branched, and one is delayed by an amount corresponding to the time difference between a certain optical pulse and the next optical pulse on the time axis. The time difference between adjacent optical pulses on the time axis corresponds to the repetition time T rep .
  • FIG. 4 shows the first optical pulse ⁇ 1st optical pulse shown in FIG. 3 and FIG. 4> and the second optical pulse ⁇ shown in FIG. 3 and FIG.
  • the repetition frequency f rep of the optical frequency comb C1 is controlled.
  • the repetition time T rep is controlled by controlling the repetition frequency f rep of the optical frequency comb C 1 by operating the function generator of the optical frequency comb emission unit 103. Can be controlled.
  • FIG. 5 is a schematic diagram showing an example of an optical system 124 that can stabilize fluctuations that occur in the optical paths of the optical frequency combs C4 and C5.
  • the optical system 124 includes a half mirror 126 and a feedback mechanism 128 in addition to the configuration of the optical system 120.
  • Half mirror 126 is arranged ahead of half mirror 118 in the direction of travel of optical frequency combs C4 and C5.
  • the feedback mechanism 128 is arranged on the path of optical frequency combs C4 and C5 that are separated by the half mirror 126 and different from the optical frequency combs C4 and C5 that pass through the half mirror 126.
  • the optical frequency combs C4 and C5 combined by the half mirror 118 and including the time difference ⁇ are separated into two by the half mirror 126.
  • One of the separated optical frequency combs (parts of the fourth optical frequency comb and the fifth optical frequency comb) C4 and C5 are reflected by the half mirror 126 and input to the feedback mechanism 128, and the optical frequency comb output unit 103 Feedback.
  • the repetition frequency f rep of the optical frequency comb C1 is adjusted. As shown in FIG.
  • the repetition time T rep of the optical frequency comb C1 emitted from the optical frequency comb emission unit 103 is increased or decreased by the time difference ⁇ .
  • the repetition time T rep with the time difference ⁇ the phase shift between the optical frequency combs C4 and C5 incident on the half mirror 118 is again 90 °, that is, one optical pulse.
  • FIG. 6 is a schematic diagram showing the configuration of an interference intensity signal acquisition optical system 130 that instantaneously obtains interference intensity signals that are 90 ° out of phase with each other, which is an interference signal intensity acquisition apparatus of the present invention.
  • the interference intensity signal acquisition optical system 130 includes an optical frequency comb emission unit 103, a partial optical system 124P, a branching unit 150, a delay mechanism 206, and an imaging camera (envelope intensity acquisition unit) 161.
  • a partial optical system 124P illustrated in FIG. 6 has a configuration in which the optical frequency comb emitting unit 103 is excluded from the optical system 124 illustrated in FIG.
  • the branching unit 150 takes out the optical frequency combs C6 and C7 from the optical frequency comb C3.
  • the branching unit 150 includes a half mirror (interference signal generating unit) 152, half mirrors (first branching units) 153, 155, and 158, and total reflection mirrors 154, 156, and 157.
  • the optical frequency comb emitting unit 103 emits an optical frequency comb (first optical frequency comb) C1 in which the repetition frequency f rep is four times the carrier envelope offset f CEO .
  • the first branching unit 104 divides the optical frequency comb C1 into an optical frequency comb (second optical frequency comb) C2 and an optical frequency comb (third optical frequency comb) C3.
  • the second branching unit 105 divides the optical frequency comb C2 into an optical frequency comb (fourth optical frequency comb) C4 and an optical frequency comb (fifth optical frequency comb) C5 (see FIG. 5).
  • the phase difference providing unit 106 shifts the phase on the time axis of the optical frequency comb C4 and the phase on the time axis of the optical frequency comb C5 by 90 °.
  • the interference signal generation unit 107 generates an interference signal (first interference signal) IM1 by causing the optical frequency comb C4 and the optical frequency comb (third optical frequency comb) C6 including arbitrary optical information to interfere with each other.
  • the frequency comb C5 and an optical frequency comb (third optical frequency comb) C7 including optical information are caused to interfere with each other to generate an interference signal (second interference signal) IM2.
  • the optical information in this specification is added by passing through a sample placed on the optical path, optical characteristics of each optical frequency comb itself, refractive index distribution / fluctuation on the optical path of each optical frequency comb, and so on.
  • This includes all sample shapes.
  • the shape of the sample includes an uneven shape on the surface of the sample, the internal structure of the sample, and the like. That is, according to the interference intensity signal acquisition optical system 130, it is possible to acquire shape information such as the surface of the sample or the internal structure.
  • the optical information is the optical characteristics of the optical frequency comb C3 itself and the optical path of the optical frequency combs C3, C6, C7.
  • the optical information mainly includes optical characteristics including the shape of the sample S.
  • the envelope strength acquisition unit 108 acquires the envelope strength EV of the interference signal IM1 and the interference signal IM2.
  • the optical frequency comb C1 emitted from the optical frequency comb emission unit 103 is separated into optical frequency combs C2 and C3 by a half mirror 153.
  • the optical frequency comb C2 enters the partial optical system 124P and exits as optical frequency combs C4 and C5 whose phases are shifted by 90 ° as described above.
  • the optical frequency comb C3 reflected by the half mirror 153 enters the branching unit 150, is reflected by the total reflection mirror 154, and is separated by the half mirror 155 into optical frequency combs C6 and C7.
  • the delay mechanism 206 is a mechanism for adding a predetermined delay time to the optical frequency comb C3, and is arranged on the path of the optical frequency comb C3. As shown in FIG. 7, the delay mechanism 206 includes two total reflection prisms 207 in which respective reflection surfaces 207 r are arranged to face each other. As the delay mechanism 206 moves along the arrow M, the optical path length of the optical frequency comb C3 changes and a predetermined delay time is added.
  • FIG. 8 is a schematic diagram showing the state of reflection of the optical frequency comb C4 and transmission of the optical frequency comb C5 at the half mirror 118 of the partial optical system 124P (that is, the optical system 124).
  • the optical frequency comb C4 is incident on the reflection surface 118a of the half mirror 118, and is reflected substantially at right angles to the incident direction when viewed from above.
  • the optical frequency comb C5 transmits the surface 118b and the reflective surface 118a opposite to the reflective surface 118a of the half mirror 118, and overlaps the path of the optical frequency comb C4 in top view. The light is emitted from the half mirror 118 along the course. In the height direction, the paths of the optical frequency combs C4 and C5 are shifted from each other.
  • FIG. 9 is a schematic diagram showing a state of reflection of the optical frequency comb C6 and transmission of the optical frequency comb C7 in the half mirror 158 of the branching unit 150.
  • the optical frequency comb C6 is incident on the reflecting surface 158a of the half mirror 158 and is reflected substantially at right angles to the incident direction in a top view.
  • the optical frequency comb C7 transmits the surface 158b and the reflective surface 158a opposite to the reflective surface 158a of the half mirror 158, and overlaps the path of the optical frequency comb C6 in top view. The light is emitted from the half mirror 158 along the course.
  • the paths of the optical frequency combs C6 and C7 are shifted from each other.
  • the height of the path of the optical frequency comb C6 matches the height of the optical frequency comb C4, and the height of the optical frequency comb C7 matches the height of the optical frequency comb C5.
  • FIG. 10 is a schematic diagram showing a state of transmission of the optical frequency combs C4 and C5 and reflection of the optical frequency combs C6 and C7 in the half mirror 152 of the branching unit 150.
  • the optical frequency combs C ⁇ b> 4 and C ⁇ b> 5 emitted from the half mirror 118 pass through the surface 152 b on the opposite side of the reflection surface 152 a of the half mirror 152.
  • the optical frequency combs C6 and C7 emitted from the half mirror 158 are reflected by the reflecting surface 152a of the half mirror 152 at a substantially right angle with respect to the incident direction in a top view and transmitted through the surface 152b.
  • Interference signals IM1 and IM2 are generated.
  • the interference signal IM1 is an interference signal between the optical frequency combs C4 and C6, and the interference signal IM2 is an interference signal between the optical frequency combs C5 and C7.
  • the irradiation positions of the optical frequency combs C4 and C6 in the half mirror 118 are made different from each other, and the irradiation positions of the optical frequency combs C5 and C7 in the half mirror 158 are mutually different. Make it different. Accordingly, the position where the optical frequency combs C4 and C6 are overlapped to generate the interference signal IM1 is different from the position where the optical frequency combs C5 and C7 are overlapped to generate the interference signal IM2.
  • FIG. 11 is a graph showing an example of the envelope intensity EV obtained from the interference signals IM1 and IM2. If the intensity T1 of the interference signal IM1 and the intensity T2 of the interference signal IM2 at a certain moment are acquired by the imaging camera 161, the envelope intensity EV is calculated by calculating ⁇ (T1) 2 + (T2) 2 ⁇ 1/2. Can be obtained instantly.
  • the envelope intensity EV is detected by the imaging camera 161.
  • the envelope intensity EV detected by the imaging camera 161 is appropriately processed by a processing unit (not shown) attached to the imaging camera 161.
  • the processing unit is, for example, a program built in a computer connected to the imaging camera 161.
  • the envelope intensity EV of the interference signals IM1 and IM2 whose phases are shifted from each other by 90 ° can be instantaneously obtained.
  • FIG. 12 is a schematic diagram showing the configuration of the two-dimensional spectroscopic measurement apparatus 200 of the present invention.
  • the two-dimensional spectroscopic measurement apparatus 200 includes a wavelength information acquisition unit 208 in place of the single imaging camera 161 in addition to the configuration of the interference intensity signal acquisition optical system 130 described above.
  • the optical frequency combs C4 and C5 are fed back to the optical frequency comb output unit 103 by the feedback mechanism 128, and the phase shift from the optical frequency combs C4 and C5 (time difference ⁇ , see FIG. 3). Accordingly, the repetition frequency f rep is adjusted.
  • the wavelength information acquisition unit 208 includes a half mirror 231, a total reflection mirror 232, filters F1 and F2, two imaging cameras 241 and 242 having the same number of pixels, and an image processing unit (optical information extraction unit) 250.
  • the total reflection mirror 154 of the interference intensity signal acquisition optical system 130 is replaced with a half mirror 159.
  • the sample S that is the object of spectroscopic measurement is arranged on the path of the optical frequency comb C3 that passes through the half mirror 159.
  • the optical frequency comb C3 reflected by the half mirror 153 passes through the half mirror 159 and is irradiated onto the sample S.
  • the optical frequency comb C3 reflected from the sample S includes optical information including all the spectral information and phase / shape information of the sample S.
  • the optical information of the sample S is also included in the optical frequency combs C6 and C7 divided into two by the half mirror 155 from the optical frequency comb C3.
  • the optical information of the sample S is reflected in the interference signals IM1 and IM2.
  • the envelope strength EV of the interference signals IM1 and IM2 is divided into two by the half mirror 231, and the two divided envelope strengths EV1 and EV2 pass through the filters F1 and F2, respectively.
  • FIG. 13 is a graph showing the wavelength dependence of the transmittance of the filters F1 and F2. As shown in FIG. 13, the wavelength dependences of the transmittances of the filters F1 and F2 are opposite to each other.
  • the transmittance of the filter F1 generally decreases as the wavelength increases.
  • the transmittance of the filter F2 generally increases as the wavelength increases.
  • the wavelength dependency of the transmittance of the filters F1 and F2 is opposite to each other, so that there is a one-to-one correspondence between the light intensity ratio and the wavelength for the envelope intensities EV1 and EV2 that have passed through the filters F1 and F2. Is established.
  • the image processing unit 50 calculates the ratio of the transmission intensities of the envelope strengths EV1 and EV2 for each measurement region of the sample S acquired by the imaging cameras 241 and 242 through the filters F1 and F2. Based on the ratio of the transmission intensity of the envelope intensity EV1 and EV2 calculated for each pixel of the imaging cameras 241 and 242, the signal intensity ratio of each pixel is obtained, and the wavelength expressing each intensity in the distribution of the envelope intensity EV is Determined instantly.
  • the phase information of the optical frequency comb C3 reflected from the sample S at each spatial position (measurement region) is measured.
  • the phase information of the optical frequency comb C3 is a time difference and indicates a physical position difference and a refractive index difference. In this embodiment, when the physical position is acquired instantaneously, it is assumed that the phase spectrum of the optical frequency comb C6 reflected from the sample S basically does not change.
  • the two-dimensional spectroscopic measurement method of the present invention includes an optical frequency comb generation step, a phase difference providing step, a sample irradiation step, an interference signal generation step, an envelope intensity acquisition step, and an optical information extraction step.
  • the envelope intensity EV of the interference signals IM1 and IM2 is instantaneously acquired using the two-dimensional spectroscopic measurement apparatus 200, and the sample S is based on the acquired envelope intensity EV. It is a method that can obtain the optical information.
  • optical frequency comb C1 is generated (see FIG. 1).
  • Optical frequency comb C1 is a frequency mode f 0 having a predetermined carrier envelope offset f CEO against zero on the frequency axis, of the predetermined relative frequency mode f 0 the frequency axis repetition frequency f rep integral multiple of the A plurality of frequency modes f m arranged at intervals.
  • the carrier envelope envelope offset f CEO and the repetition frequency f rep are controlled using a function generator of the optical frequency comb emitting unit 103 or the like.
  • the optical frequency comb C1 is divided into the optical frequency comb C2 and the optical frequency comb C3 by the half mirror 153, and the optical frequency comb C2 is further divided into the optical frequency comb C4 by the half mirror 112 (see FIG. 3).
  • the delay applying unit 123 shifts the phase of the optical frequency comb C5 on the time axis by 90 ° with respect to the phase of the optical frequency comb C4 on the time axis.
  • the sample S is irradiated with the optical frequency comb C3 or the optical frequency combs C4 and C5, and the optical frequency comb C3 or the optical frequency combs C4 and C5 which are emitted from the sample S and include optical information are obtained.
  • the optical frequency comb C3 or the optical frequency combs C4 and C5 includes arbitrary optical information.
  • the optical frequency comb C4 and the optical frequency comb C6 including optical information in any one of them are caused to interfere with each other to generate an interference signal IM1.
  • the optical frequency comb C5 and the optical frequency comb C7 including optical information in any one of them are caused to interfere with each other to generate an interference signal IM2.
  • the interference signals IM1 and IM2 are simultaneously detected by the imaging camera 161 to obtain the envelope strength EV.
  • the optical information of the sample S is extracted based on the envelope intensity EV.
  • the envelope strength EV is divided into two envelope strengths EV1 and EV2, and the transmission strength when the envelope strengths EV1 and EV2 pass through the filters F1 and F2, respectively, is imaged. Obtained by the cameras 241 and 242.
  • wavelength information regarding the sample S is acquired instantaneously based on the ratio of the transmission intensities of the envelope strengths EV1 and EV2 acquired in the envelope intensity acquisition step, and the optical information of the sample S is obtained from the wavelength information described above by the image processing unit 250. Is calculated.
  • the two-dimensional spectroscopic information or the three-dimensional shape of the sample S can be calculated by comparing with the relationship between the wavelength information obtained from the intensity ratio measured in advance and the delay distance.
  • the two-dimensional spectroscopic measurement method of this embodiment further includes a frequency adjustment step in addition to the above-described steps.
  • a frequency adjustment step a part of the optical frequency combs C4 and C5 is fed back to the optical frequency comb output unit 103 by the feedback mechanism 128, and the phase shift from the optical frequency combs C4 and C5 (time difference ⁇ , see FIG. 3) To adjust the repetition frequency f rep .
  • the two-dimensional spectroscopic measurement method of the present embodiment includes the above-described optical frequency comb generation step, phase difference application step, interference signal generation step, envelope intensity acquisition step, and optical information extraction step.
  • the two-dimensional spectroscopic measurement apparatus 200 of this embodiment includes the above-described optical frequency comb emitting unit 103, the first branching unit 104, the second branching unit 105, the phase difference providing unit 106, and the interference signal generating unit 107. And an envelope strength acquisition unit 108 and an image processing unit 250.
  • the optical frequency comb whose rep is controlled is divided into two to generate optical frequency combs whose phases are shifted from each other by 90 °.
  • Two optical frequency combs that are 90 ° out of phase with each other are optical pulse trains that function as reference light. Each of these two optical frequency combs interferes with an optical frequency comb including arbitrary optical information, and an interference signal whose phase is shifted by 90 ° is optically generated in real time.
  • the optical frequency comb including arbitrary optical information is an optical pulse train that functions as probe light.
  • the envelope strength of the interference signal can be acquired instantaneously and in real time during measurement.
  • the repetition frequency f rep and the carrier envelope offset f CEO are controlled with the same degree of stability and accuracy as the atomic clock.
  • the carrier envelope offset f CEO the phase difference between the adjacent optical pulses on the time axis can be utilized, and in principle, the phase difference can be accurately aligned in the entire wavelength range to be measured. .
  • high-resolution spectroscopic information can be acquired instantaneously, and two-dimensional spectroscopic measurement can be performed in real time.
  • the fourth optical frequency comb and the fifth optical frequency comb are fed back to the optical frequency comb emitting unit 103, and the fourth optical frequency comb and the second optical frequency comb are combined.
  • the repetition frequency f rep is adjusted according to the phase shift (time difference ⁇ ) with respect to the optical frequency comb 5.
  • the phase shift between the optical frequency combs of the reference light can be eliminated.
  • the optical path variation of the optical frequency comb can be optically compensated without adding a mechanically driven configuration such as a piezo element to the optical system.
  • the optical information of the sample S is calculated based on the ratio of the transmission intensity of the acquired envelope intensities EV1 and EV2.
  • an intensity / phase spectrum including optical information can be acquired by adding a predetermined delay time to the optical frequency comb C3 by the delay mechanism 206.
  • the optical information obtained by the two-dimensional spectroscopic measurement method and the two-dimensional spectroscopic measurement apparatus 200 of the present embodiment includes the distribution and fluctuation of the refractive index on the optical path of the optical frequency comb C3 or the optical frequency combs C4 and C5, and the shape of the sample S.
  • the three-dimensional shape of the sample S is included. According to the two-dimensional spectroscopic measurement method and the two-dimensional spectroscopic measurement apparatus 200 of the present embodiment, since the three-dimensional shape of the sample S can be acquired based on the envelope strength EV, instantaneous and real-time three-dimensional shape measurement is realized, It can be applied to a wide range of fields including astronomy and physical properties.
  • the optical information of the sample S is given to the optical frequency comb C3.
  • the optical information of the sample S is changed to the optical frequency comb C3. May be given to the optical frequency combs C4 and C5.
  • the polarizations of the optical frequency combs C4 and C5 are multiplexed so as to be orthogonal to each other, and after passing through the sample S, are demultiplexed.
  • interference signals (first interference signal, second interference signal) between the optical frequency combs C4 and C5 including the optical information of the sample S and the optical frequency combs C6 and C7 not including the optical information of the sample S
  • first interference signal second interference signal
  • the optical information of the sample S does not have polarization dependency and can be acquired without considering the polarization dependency.
  • the optical frequency comb C3 reflected from the sample S is acquired.
  • the optical frequency comb C3 transmitted from the sample S by irradiating the sample S with the optical frequency comb C3 is obtained. You may get it.
  • the half mirror 159 may be replaced with a total reflection mirror, and the sample S may be disposed between the total reflection mirror and the half mirror 155 in which the sample S is replaced as described above on the path of the optical frequency comb C3.
  • the phase spectrum of the optical frequency comb C3 reflected from the sample S may change with respect to the wavelength.
  • the change of the phase spectrum of the optical frequency comb C3 in that case must be uniquely determined with respect to the wavelength.
  • the phase spectrum related to the sample S can be obtained by adding a time delay to the optical frequency comb C3 or the optical frequency comb C1 and measuring the delay time dependence of the intensity of the interference signals IM1 and IM2.
  • the delay mechanism 206 is disposed either on the path of the optical frequency comb C3 between the half mirrors 153 and 159 or on the path of the optical frequency comb C2 between the half mirrors 153 and 112, Good.
  • the configuration of the delay mechanism 206 is not particularly limited as long as a predetermined delay time can be added to a predetermined optical frequency comb.
  • the optical frequency comb C3 is given a delay time derived from the shape of the sample S when the sample S is transmitted or reflected.
  • the optical frequency comb C3 to which the delay time is given is measured by the two-dimensional spectroscopic measurement apparatus 200 of the above-described embodiment excluding the delay mechanism 206, whereby the sample
  • the delay time derived from the shape of S can be instantaneously acquired as wavelength information. Acquiring such wavelength information is the same as performing instantaneous three-dimensional shape measurement of the sample S.
  • depth information that is, a three-dimensional shape
  • the optical information of the sample S obtained by the two-dimensional spectroscopic measurement method and the two-dimensional spectroscopic measurement apparatus of the present invention is a three-dimensional shape as long as the time for the optical pulse train of the optical frequency comb to reach the interference signal generation unit is shifted. It is not limited to.
  • the optical information of the sample S obtained by the two-dimensional spectroscopic measurement method and the two-dimensional spectroscopic measurement apparatus of the present invention includes, for example, a refractive index fluctuation.
  • the configuration of the wavelength information acquisition unit and the optical information extraction unit and the processing content by the program of the processing unit can be appropriately changed.
  • the optical frequency combs C4, C5, C6, and C7 may be chirped.
  • an appropriate dispersion medium is installed on the optical path of each of the optical frequency combs C2 and C3 that are the sources of these optical frequency combs, and light is transmitted to the dispersion medium.
  • the frequency combs C2 and C3 may be passed.
  • the optical frequency combs C4, C5, C6, and C7 are chirped through the dispersion medium in this way, the interference signals IM1 and IM2 do not change, so that the same effects as those of the above-described embodiment can be obtained.
  • Optical frequency comb (first optical frequency comb)
  • C2 Optical frequency comb (second optical frequency comb)
  • C3 Optical frequency comb (third optical frequency comb)
  • C4 Optical frequency comb (fourth optical frequency comb)
  • C5 Optical frequency comb (fifth optical frequency comb)
  • C6 Optical frequency comb (third optical frequency comb)
  • C7 Optical frequency comb (third optical frequency comb) S ... Sample

Abstract

In this two-dimensional spectroscopic measurement method, a first optical frequency comb in which a repetition frequency is four times an offset frequency is generated, the first optical frequency comb is divided into second to fifth optical frequency combs, and the phases of the fourth optical frequency comb and the fifth optical frequency comb on a time axis are offset from each other by 90°. In the two-dimensional spectroscopic measurement method, the envelope strength of the following is acquired: an interference signal of the third and fourth optical frequency combs in which either of said optical frequency combs includes optical information regarding a sample; and an interference signal of the third and fifth optical frequency combs in which either of said optical frequency combs includes optical information regarding a sample. The optical information regarding the sample is then extracted on the basis of the envelope strength.

Description

2次元分光計測方法及び2次元分光計測装置Two-dimensional spectroscopic measurement method and two-dimensional spectroscopic measurement device
 本発明は、2次元分光計測方法及び2次元分光計測装置に関する。本願は、2018年3月2日に、日本に出願された特願2018-038101号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a two-dimensional spectroscopic measurement method and a two-dimensional spectroscopic measurement apparatus. This application claims priority based on Japanese Patent Application No. 2018-038101 filed in Japan on March 2, 2018, the contents of which are incorporated herein by reference.
 従来、分光情報を得る手法として、撮像法やフーリエ変換赤外分光法(Fourier Transform Infrared Spectroscopy:FT-IR)、分散型の赤外分光法などをはじめとする多くの手法が用いられている。これらの手法では、2次元の空間情報と1次元の波長情報とを同時に得ることは困難であった。以下、2次元の空間情報と1次元の波長情報とをまとめて、2次元分光情報という場合がある。 Conventionally, as a technique for obtaining spectroscopic information, many techniques such as an imaging method, Fourier transform infrared spectroscopy (FT-IR), and a dispersive infrared spectroscopic method are used. In these methods, it is difficult to obtain two-dimensional spatial information and one-dimensional wavelength information at the same time. Hereinafter, the two-dimensional spatial information and the one-dimensional wavelength information may be collectively referred to as two-dimensional spectral information.
 近年、天文学や地球科学、物性分野などの学術分野では、2次元分光情報に含まれる各情報を同時にリアルタイムで取得可能な2次元分光への期待が高まっている。2次元分光は、面分光、あるいはハイパースペクトルイメージングとも呼ばれる。2次元分光情報が得られれば、例えば取得データから任意の波長の画像を抽出でき、例えば銀河などの拡がった天体について詳細に解析ができる。従来の2次元分光法では、例えば2次元平面の各点(複数の測定領域)をスキャンしつつ、各点についてFT-IRを行い、2次元分光情報を取得できる。ところが、従来の2次元分光法では空間掃引に時間がかかるため、動的対象物の計測が困難であるという問題があった。一方、一度に2次元分光情報を取得できれば、様々な動的対象物の分光計測を正確に行うことができる。 In recent years, in the academic fields such as astronomy, earth science, and physical properties, there is an increasing expectation for two-dimensional spectroscopy that can simultaneously acquire each information included in the two-dimensional spectroscopy information in real time. Two-dimensional spectroscopy is also called surface spectroscopy or hyperspectral imaging. If two-dimensional spectroscopic information is obtained, for example, an image of an arbitrary wavelength can be extracted from the acquired data, and a celestial body such as a galaxy can be analyzed in detail. In the conventional two-dimensional spectroscopy, for example, two-dimensional spectroscopic information can be acquired by performing FT-IR for each point while scanning each point (a plurality of measurement regions) on the two-dimensional plane. However, the conventional two-dimensional spectroscopy has a problem that it is difficult to measure a dynamic object because it takes time to sweep the space. On the other hand, if two-dimensional spectroscopic information can be acquired at once, spectroscopic measurement of various dynamic objects can be accurately performed.
 2次元分光の手法としては、例えば可変バンドパスフィルタで透過させる波長帯を掃引しながら取得する手法などが挙げられる。非特許文献1には、可変バンドパスフィルタで透過させる波長帯を掃引しつつ、2次元の空間情報と1次元の波長情報とを取得する手法に適用可能な可変バンドパスフィルタが開示されている。 As a method of two-dimensional spectroscopy, for example, there is a method of acquiring while sweeping a wavelength band transmitted through a variable band pass filter. Non-Patent Document 1 discloses a variable bandpass filter that can be applied to a method of acquiring two-dimensional spatial information and one-dimensional wavelength information while sweeping a wavelength band transmitted by a variable bandpass filter. .
 しかしながら、非特許文献1に開示されている可変バンドパスフィルタで異なる波長帯の光を透過させて2次元の空間情報と1次元の波長情報とを取得する場合、波長帯を掃引する必要があるため、掃引時間がかかり、瞬時に高解像度の波長情報やスペクトル分布などの分光情報を得るのは困難であるという問題があった。そのため、上述の可変バンドパスフィルタを用いて波長帯を掃引する2次元分光は、動的現象の計測には不向きであった。 However, when two-dimensional spatial information and one-dimensional wavelength information are acquired by transmitting light of different wavelength bands with the variable bandpass filter disclosed in Non-Patent Document 1, it is necessary to sweep the wavelength band. Therefore, there is a problem that it takes a sweep time and it is difficult to obtain spectral information such as high-resolution wavelength information and spectral distribution instantaneously. Therefore, two-dimensional spectroscopy that sweeps the wavelength band using the above-described variable bandpass filter is not suitable for measurement of dynamic phenomena.
 本発明は、上述の問題を解決するためになされたものであって、瞬時に高解像度の分光情報を取得し、リアルタイムで2次元分光計測を可能とする2次元分光計測方法及び2次元分光計測装置を提供する。 The present invention has been made to solve the above-described problem, and is a two-dimensional spectroscopic measurement method and a two-dimensional spectroscopic measurement that can instantaneously acquire high-resolution spectroscopic information and perform two-dimensional spectroscopic measurement in real time. Providing equipment.
 本発明の2次元分光計測方法は、周波数軸で零に対して所定のオフセット周波数を有する第1の周波数モードと前記周波数軸で前記第1の周波数モードに対して所定の繰り返し周波数の整数倍の間隔をあけて並ぶ複数の第2の周波数モードとを有し、前記繰り返し周波数が前記オフセット周波数の4倍である第1の光周波数コムを生成する光周波数コム生成工程と、前記第1の光周波数コムを第2の光周波数コムと第3の光周波数コムに分け、前記第2の光周波数コムを第4の光周波数コムと第5の光周波数コムに分け、前記第4の光周波数コムの時間軸上の位相を前記第5の光周波数コムの時間軸上の位相に対して90°ずらす位相差付与工程と、前記第3の光周波数コムまたは前記第4の光周波数コム及び前記第5の光周波数コムを試料に照射し、前記試料から出射されて光学情報を含む前記第3の光周波数コムまたは前記第4の光周波数コム及び前記第5の光周波数コムを得る試料照射工程と、何れかに前記光学情報を含む前記第4の光周波数コムと前記第3の光周波数コムとを干渉させて第1の干渉信号を生成し、何れかに前記光学情報を含む前記第5の光周波数コムと前記第3の光周波数コムとを干渉させて第2の干渉信号を生成する干渉信号生成工程と、前記第1の干渉信号と前記第2の干渉信号から包絡線強度を取得する包絡線強度取得工程と、前記包絡線強度に基づいて前記試料の光学情報を抽出する光学情報抽出工程と、を備える。 The two-dimensional spectroscopic measurement method of the present invention includes a first frequency mode having a predetermined offset frequency with respect to zero on the frequency axis and an integer multiple of a predetermined repetition frequency with respect to the first frequency mode on the frequency axis. An optical frequency comb generating step of generating a first optical frequency comb having a plurality of second frequency modes arranged at intervals, wherein the repetition frequency is four times the offset frequency; and the first light The frequency comb is divided into a second optical frequency comb and a third optical frequency comb, the second optical frequency comb is divided into a fourth optical frequency comb and a fifth optical frequency comb, and the fourth optical frequency comb A phase difference providing step of shifting the phase on the time axis of the second optical frequency comb by 90 ° with respect to the phase on the time axis of the fifth optical frequency comb, and the third optical frequency comb or the fourth optical frequency comb and the first optical frequency comb Test 5 optical frequency combs And irradiating the sample to obtain the third optical frequency comb or the fourth optical frequency comb and the fifth optical frequency comb that are emitted from the sample and include optical information, The fourth optical frequency comb including the third optical frequency comb is caused to interfere with the third optical frequency comb to generate a first interference signal, and the fifth optical frequency comb including the optical information is included in the third optical frequency comb and the third optical frequency comb. An interference signal generating step of generating a second interference signal by causing interference with the optical frequency comb, and an envelope strength acquisition step of acquiring an envelope strength from the first interference signal and the second interference signal; An optical information extraction step of extracting optical information of the sample based on the envelope intensity.
 上述の2次元分光計測方法では、前記時間軸上における前記第4の光周波数コムと前記第5の光周波数コムとの位相のずれに応じて前記繰り返し周波数を調整する繰り返し周波数調整工程をさらに備えてもよい。 The above-described two-dimensional spectroscopic measurement method further includes a repetition frequency adjustment step of adjusting the repetition frequency according to a phase shift between the fourth optical frequency comb and the fifth optical frequency comb on the time axis. May be.
 また、上述の2次元分光計測方法では、前記包絡線強度取得工程において、透過率の波長依存性が互いに逆である2枚のフィルタのそれぞれを前記包絡線強度が通過したときの透過強度を取得し、前記光学情報抽出工程において、前記透過強度の比に基づいて前記光学情報を算出してもよい。 Further, in the above-described two-dimensional spectroscopic measurement method, in the envelope intensity acquisition step, the transmission intensity when the envelope intensity passes through each of the two filters whose wavelength dependences are opposite to each other is acquired. In the optical information extraction step, the optical information may be calculated based on the transmission intensity ratio.
 また、上述の2次元分光計測方法では、前記光学情報抽出工程において、前記第2の光周波数コムまたは前記第3の光周波数コムに所定の遅延時間を付加し、前記光学情報を含む強度スペクトル及び位相スペクトルを取得してもよい。 In the above two-dimensional spectroscopic measurement method, in the optical information extraction step, a predetermined delay time is added to the second optical frequency comb or the third optical frequency comb, and an intensity spectrum including the optical information and A phase spectrum may be acquired.
 本発明の2次元分光計測装置は、周波数軸で零に対して所定のオフセット周波数を有する第1の周波数モードと前記周波数軸で前記第1の周波数モードに対して所定の繰り返し周波数の整数倍の間隔をあけて並ぶ複数の第2の周波数モードとを有し、前記繰り返し周波数が前記オフセット周波数の4倍である第1の光周波数コムを出射する光周波数コム出射部と、前記第1の光周波数コムを第2の光周波数コムと第3の光周波数コムに分ける第1の分岐部と、前記第2の光周波数コムを第4の光周波数コムと第5の光周波数コムに分ける第2の分岐部と、前記第4の光周波数コムの時間軸上の位相を前記第5の光周波数コムの時間軸上の位相に対して90°ずらす位相差付与部と、前記第3の光周波数コムまたは前記第4の光周波数コム及び前記第5の光周波数コムは任意の光学情報を含み、前記第4の光周波数コムと前記第3の光周波数コムとを干渉させて第1の干渉信号を生成し、前記第5の光周波数コムと前記第3の光周波数コムとを干渉させて第2の干渉信号を生成する干渉信号生成部と、前記第1の干渉信号と前記第2の干渉信号との包絡線強度を取得する包絡線強度取得部と、前記包絡線強度に基づいて前記光学情報を抽出する光学情報抽出部と、を備える。 The two-dimensional spectroscopic measurement apparatus according to the present invention includes a first frequency mode having a predetermined offset frequency with respect to zero on the frequency axis and an integer multiple of a predetermined repetition frequency with respect to the first frequency mode on the frequency axis. A first optical frequency comb emitting unit configured to emit a first optical frequency comb having a plurality of second frequency modes arranged at intervals, the repetition frequency being four times the offset frequency, and the first light A first branching unit that divides the frequency comb into a second optical frequency comb and a third optical frequency comb, and a second branching unit that divides the second optical frequency comb into a fourth optical frequency comb and a fifth optical frequency comb. A phase difference providing unit that shifts the phase on the time axis of the fourth optical frequency comb by 90 ° with respect to the phase on the time axis of the fifth optical frequency comb, and the third optical frequency Comb or the fourth optical frequency comb and The fifth optical frequency comb includes arbitrary optical information, causes the fourth optical frequency comb and the third optical frequency comb to interfere with each other to generate a first interference signal, and the fifth optical frequency comb. An interference signal generator for generating a second interference signal by causing a comb to interfere with the third optical frequency comb; and an envelope for acquiring an envelope strength of the first interference signal and the second interference signal A line intensity acquisition unit; and an optical information extraction unit that extracts the optical information based on the envelope intensity.
 上述の2次元分光計測装置において、前記位相差付与部から出射された前記第4の光周波数コム及び前記第5の光周波数コムの一部を取得し、前記光周波数コム出射部にフィードバックするフィードバック機構をさらに備えてもよい。 In the above-described two-dimensional spectroscopic measurement apparatus, feedback that obtains a part of the fourth optical frequency comb and the fifth optical frequency comb emitted from the phase difference applying unit and feeds back to the optical frequency comb emitting unit. A mechanism may be further provided.
 上述の2次元分光計測装置において、前記包絡線強度取得部は、透過率の波長依存性が互いに逆である2枚のフィルタを備え、前記包絡線強度が前記2枚のフィルタのそれぞれを通過したときの透過強度を取得し、前記光学情報抽出部は、前記透過強度の比に基づいて前記光学情報を算出してもよい。 In the above-described two-dimensional spectroscopic measurement apparatus, the envelope intensity acquisition unit includes two filters whose transmittance wavelength dependence is opposite to each other, and the envelope intensity passes through each of the two filters. And the optical information extraction unit may calculate the optical information based on the transmission intensity ratio.
 上述の2次元分光計測装置は、前記第2の光周波数コムまたは前記第3の光周波数コムに所定の遅延時間を付加する遅延機構をさらに備え、前記光学情報抽出部において、前記光学情報を含む強度・位相スペクトルを取得してもよい。 The above-described two-dimensional spectroscopic measurement apparatus further includes a delay mechanism that adds a predetermined delay time to the second optical frequency comb or the third optical frequency comb, and the optical information extraction unit includes the optical information. The intensity / phase spectrum may be acquired.
 上述の2次元分光計測方法及び2次元分光計測装置において、前記光学情報は、前記第3の光周波数コム、前記第4の光周波数コム及び前記第5の光周波数コムの何れか1つの光周波数コムの光路上の屈折率の分布、前記屈折率の揺らぎ、前記第3の光周波数コムの進路上に、または前記第4の光周波数コム及び前記第5の光周波数コムの進路上に配置した試料の形状の何れかを含む。 In the above-described two-dimensional spectroscopic measurement method and two-dimensional spectroscopic measurement apparatus, the optical information is an optical frequency of any one of the third optical frequency comb, the fourth optical frequency comb, and the fifth optical frequency comb. The refractive index distribution on the optical path of the comb, the fluctuation of the refractive index, the path of the third optical frequency comb, or the path of the fourth optical frequency comb and the fifth optical frequency comb Includes any of the sample shapes.
 本発明によれば、瞬時に高解像度の分光情報を取得し、リアルタイムで2次元分光計測を可能とする2次元分光計測方法及び2次元分光計測装置が提供される。 According to the present invention, there are provided a two-dimensional spectroscopic measurement method and a two-dimensional spectroscopic measurement device that instantaneously acquire high-resolution spectroscopic information and enable two-dimensional spectroscopic measurement in real time.
本発明の2次元分光計測方法を説明するための図であり、光周波数コムの時間軸上の電場分布(上段)及び周波数軸上の強度分布(下段)の模式図である。It is a figure for demonstrating the two-dimensional spectroscopic measurement method of this invention, and is a schematic diagram of the electric field distribution (upper stage) on the time axis of an optical frequency comb, and the intensity distribution (lower stage) on a frequency axis. 繰り返し周波数がキャリア・エンベロップ・オフセットの4倍である関係を保つように制御された光周波数コムの時間軸上の電場分布を示す模式図である。It is a schematic diagram which shows the electric field distribution on the time-axis of the optical frequency comb controlled so that the repetition frequency may maintain the relationship which is 4 times the carrier envelope offset. 互いに位相が90°ずれた光周波数コム(光パルス列)を生成するパルス生成光学系の概略図である。FIG. 3 is a schematic diagram of a pulse generation optical system that generates optical frequency combs (optical pulse trains) that are 90 ° out of phase with each other. 光周波数コムにおける時間軸上で1番目の光パルスと2番目の光パルスとの時間間隔を説明するための模式図である。It is a schematic diagram for demonstrating the time interval of the 1st optical pulse and the 2nd optical pulse on the time axis in an optical frequency comb. 光周波数コムの光路に生じた変動を安定化させる光学系の一例を示す概略図である。It is the schematic which shows an example of the optical system which stabilizes the fluctuation | variation which arose in the optical path of an optical frequency comb. 本発明の2次元分光計測装置に適用可能な干渉信号強度取得装置の構成を示す概略図である。It is the schematic which shows the structure of the interference signal strength acquisition apparatus applicable to the two-dimensional spectroscopic measurement apparatus of this invention. 図6に示す干渉信号強度取得装置及び図11に示す2次元分光計測装置の遅延機構の構成を示す模式図である。It is a schematic diagram which shows the structure of the delay mechanism of the interference signal strength acquisition apparatus shown in FIG. 6 and the two-dimensional spectroscopic measurement apparatus shown in FIG. 図6に示す干渉信号強度取得装置のハーフミラーにおける光周波数コムの透過/反射の様子を示す斜視図である。It is a perspective view which shows the mode of permeation | transmission / reflection of the optical frequency comb in the half mirror of the interference signal strength acquisition apparatus shown in FIG. 図6に示す干渉信号強度取得装置の別のハーフミラーにおける光周波数コムの透過/反射の様子を示す斜視図である。It is a perspective view which shows the mode of transmission / reflection of the optical frequency comb in another half mirror of the interference signal strength acquisition apparatus shown in FIG. 図6に示す干渉信号強度取得装置のさらに別のハーフミラーにおける光周波数コムの透過/反射の様子を示す斜視図である。It is a perspective view which shows the mode of permeation | transmission / reflection of the optical frequency comb in another half mirror of the interference signal strength acquisition apparatus shown in FIG. 互いに位相が90°ずれた干渉信号の包絡線強度分布を示す模式図である。It is a schematic diagram which shows the envelope intensity distribution of the interference signal which the phase mutually shifted 90 degrees. 本発明の2次元分光計測装置の構成を示す概略図である。It is the schematic which shows the structure of the two-dimensional spectroscopy measuring device of this invention. 図12に示す2次元分光計測装置のフィルタの透過率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the transmittance | permeability of the filter of the two-dimensional spectrometry apparatus shown in FIG.
 以下、本発明の2次元分光計測方法及び2次元分光計測装置の実施形態について、図面を参照して説明する。 Hereinafter, embodiments of the two-dimensional spectroscopic measurement method and the two-dimensional spectroscopic measurement apparatus of the present invention will be described with reference to the drawings.
<原理的説明>
 図1は、光周波数コムの時間軸上の電場分布(上段)及び周波数軸上の強度分布(下段)を示す模式図である。周波数軸上の強度分布は、スペクトル分布を表す。図1の上段に示すように、一定の繰り返しで発振される光パルス列の繰り返し時間Trepと周波数間隔frepとの間には、(1)式に示す関係が成り立つ。
<Principle explanation>
FIG. 1 is a schematic diagram showing an electric field distribution on the time axis (upper stage) and an intensity distribution on the frequency axis (lower stage) of the optical frequency comb. The intensity distribution on the frequency axis represents a spectral distribution. As shown in the upper part of FIG. 1, the relationship shown in the equation (1) is established between the repetition time T rep of the optical pulse train oscillated at a constant repetition and the frequency interval f rep .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 それぞれの光パルス列は、光源の共振器などの内部で伝搬する多くの縦モードの重ね合わせから成り立っている。光パルス列は、これらの縦モードの重ね合わせの波である搬送波と、搬送波の包絡線を構成する波束によって構成されている。搬送波は、キャリアとも呼ばれる。搬送波の包絡線は、エンベロップとも呼ばれる。このような光パルス列では、搬送波の速度と波束の速度は互いに異なるため、時間の経過に伴い、位相差が生じる。レーザー共振器は分散媒質によって構成される。時間軸上で所定の繰り返し時間Trepの間隔ごとに繰り返し発せられる光パルス列では、隣り合うパルス間に位相のずれφCEOが生じる。位相のずれφCEOの周期は、時間TCEOで一周期する。 Each optical pulse train is composed of a superposition of many longitudinal modes propagating inside a resonator of the light source. The optical pulse train is composed of a carrier wave, which is a superposition wave of these longitudinal modes, and a wave packet constituting an envelope of the carrier wave. A carrier wave is also called a carrier. The envelope of the carrier wave is also called an envelope. In such an optical pulse train, the velocity of the carrier wave and the velocity of the wave packet are different from each other, so that a phase difference occurs with time. The laser resonator is constituted by a dispersion medium. In an optical pulse train that is repeatedly emitted at intervals of a predetermined repetition time T rep on the time axis, a phase shift φ CEO occurs between adjacent pulses. The period of the phase shift φ CEO is one period at time T CEO .
 時間軸上における上述の超短パルス列をフーリエ変換し、周波数軸上で観測すると、図1の下段に示すように、互いに繰り返し時間Trepの逆数に相当する繰り返し周波数frepの間隔をあけて並んだ多数の周波数モードが観測される。 When the above ultrashort pulse train on the time axis is Fourier-transformed and observed on the frequency axis, as shown in the lower part of FIG. 1, they are arranged at intervals of the repetition frequency f rep corresponding to the reciprocal of the repetition time T rep. Many frequency modes are observed.
 図1の下段に示すように、光周波数コムは、周波数軸で零に対して所定のキャリア・エンベロップ・オフセット(Carrier Envelope Offset: CEO、オフセット周波数)fCEOを有する周波数モード(第1の周波数モード)fと、周波数軸で周波数モードfに対して所定の繰り返し周波数frepの整数倍の間隔をあけて並ぶ複数の周波数モード(第2の周波数モード)fと、を有する。光周波数コムのキャリア・エンベロップ・オフセットfCEOは、時間TCEOの逆数に相当する。そして、キャリア・エンベロップ・オフセットfCEO、位相のずれφCEO、時間TCEOの間には、(2)式に示す関係が成り立つ。 As shown in the lower part of FIG. 1, the optical frequency comb is a frequency mode (first frequency mode) having a predetermined carrier envelope offset (CEO, offset frequency) f CEO with respect to zero on the frequency axis. ) F 0 and a plurality of frequency modes (second frequency modes) f m arranged at intervals of an integer multiple of a predetermined repetition frequency f rep with respect to the frequency mode f 0 on the frequency axis. Carrier envelope offset f CEO of the optical frequency comb is equivalent to the reciprocal of the time T CEO. The carrier envelope offset f CEO, shift phi CEO phase, between the time T CEO, holds the relationship shown in equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 光周波数コムのn番目のスペクトルの周波数は、繰り返し周波数frepとキャリア・エンベロップ・オフセットfCEOとをパラメータとして、(3)式のように表される。 The frequency of the nth spectrum of the optical frequency comb is expressed as shown in Equation (3) using the repetition frequency f rep and the carrier envelope offset f CEO as parameters.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上述の相互関係をふまえ、光周波数コムの複数の周波数モードに関するパラメータを制御することで、搬送波や包絡線を制御することができる。本実施形態では、光周波数コムの2つのパラメータ、すなわち繰り返し周波数frepとキャリア・エンベロップ・オフセットfCEOが(4)式の関係を保つように、光周波数コムの複数の周波数モードに関するパラメータを制御する。 The carrier wave and the envelope can be controlled by controlling the parameters related to the plurality of frequency modes of the optical frequency comb based on the above-described correlation. In this embodiment, two parameters of the optical frequency comb, that is, parameters related to a plurality of frequency modes of the optical frequency comb are controlled so that the repetition frequency f rep and the carrier envelope offset f CEO maintain the relationship of the expression (4). To do.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 図2は、繰り返し周波数frepとキャリア・エンベロップ・オフセットfCEOが(4)式の関係を保つように制御された光周波数コムの時間軸上の電場分布を示す模式図である。図2に示すように、時間軸上で隣り合う光パルスの位相のずれは、(π/2)=90°になる。基準とする光パルスから時間軸上で4つ前方の光パルスには、基準とする光パルスと同じ位相及び波形パターンが表れる。時間TCEOとキャリア・エンベロップ・オフセットfCEOとの間には、(5)式の関係が成り立つ。 FIG. 2 is a schematic diagram showing the electric field distribution on the time axis of the optical frequency comb in which the repetition frequency f rep and the carrier envelope offset f CEO are controlled so as to maintain the relationship of the expression (4). As shown in FIG. 2, the phase shift between adjacent optical pulses on the time axis is (π / 2) = 90 °. The same phase and waveform pattern as the reference optical pulse appear in the four optical pulses ahead on the time axis from the reference optical pulse. The relationship of the formula (5) is established between the time T CEO and the carrier envelope offset f CEO .
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 図3は、互いに位相が90°ずれた光パルス列を生成する光学系120の一例を示す概略図である。図3に示すように、光学系120は、光周波数コム出射部103と、ハーフミラー(第2の分岐部)112、ハーフミラー118と、全反射ミラー114,116と、遅延付与部(位相差付与部)123とを備える。光周波数コム出射部103は、不図示のファンクションジェネレーターなどを備える。光周波数コム出射部103は、ファンクションジェネレーターの操作によって繰り返し周波数frepとキャリア・エンベロップ・オフセットfCEOが(4)式の関係を保つように主にキャリア・エンベロップ・オフセットfCEOを制御し、キャリア・エンベロップ・オフセットfCEOが制御された光周波数コムC1を出射する。 FIG. 3 is a schematic diagram showing an example of an optical system 120 that generates optical pulse trains that are 90 ° out of phase with each other. As shown in FIG. 3, the optical system 120 includes an optical frequency comb emitting unit 103, a half mirror (second branching unit) 112, a half mirror 118, total reflection mirrors 114 and 116, and a delay applying unit (phase difference). Granting part) 123. The optical frequency comb emitting unit 103 includes a function generator (not shown). The optical frequency comb emitting unit 103 mainly controls the carrier envelope offset f CEO so that the repetition frequency f rep and the carrier envelope offset f CEO keep the relationship of the expression (4) by the operation of the function generator. The envelope offset f CEO is emitted from the controlled optical frequency comb C1.
 光周波数コムC1は、ハーフミラー112を透過し、光周波数コムC4と光周波数コムC5に分離される。光周波数コムC4は、全反射ミラー116で反射され、ハーフミラー118に入射する。光周波数コムC5は、ハーフミラー112及び全反射ミラー114で反射され、遅延付与部123を通り、ハーフミラー118に入射する。遅延付与部123は、それぞれの反射面を対向させた2枚の全反射ミラー121,122で構成されている。全反射ミラー114で反射された光周波数コムC5は、遅延付与部123に入射し、光路をずらしつつ全反射ミラー121,122の反射面の間を所定の回数往復し、ハーフミラー118に向けて出射する。ハーフミラー118に入射する光周波数コムC4,C5の一方の位相が他方の位相に対して90°だけずれるように、全反射ミラー121,122の位置及び離間距離が調整されている。すなわち、光学系120では、光周波数コムを分岐し、一方を他方に対してある光パルスと時間軸上で1つ後の光パルスとの時間差の分だけ、遅延させる。時間軸上で隣り合う光パルスの時間差は、繰り返し時間Trep分に相当する。 The optical frequency comb C1 passes through the half mirror 112 and is separated into an optical frequency comb C4 and an optical frequency comb C5. The optical frequency comb C4 is reflected by the total reflection mirror 116 and enters the half mirror 118. The optical frequency comb C5 is reflected by the half mirror 112 and the total reflection mirror 114, passes through the delay applying unit 123, and enters the half mirror 118. The delay imparting unit 123 is composed of two total reflection mirrors 121 and 122 with their respective reflecting surfaces facing each other. The optical frequency comb C5 reflected by the total reflection mirror 114 enters the delay applying unit 123, reciprocates a predetermined number of times between the reflection surfaces of the total reflection mirrors 121 and 122 while shifting the optical path, toward the half mirror 118. Exit. The positions and the separation distances of the total reflection mirrors 121 and 122 are adjusted so that one phase of the optical frequency combs C4 and C5 incident on the half mirror 118 is shifted by 90 ° with respect to the other phase. That is, in the optical system 120, the optical frequency comb is branched, and one is delayed by an amount corresponding to the time difference between a certain optical pulse and the next optical pulse on the time axis. The time difference between adjacent optical pulses on the time axis corresponds to the repetition time T rep .
 図3に示すように、光学系120では、各種ミラーの振動や空気揺らぎなどによって、光周波数コムC4,C5の各々の光路長差が変動する。このことをふまえ、光周波数コムC1の繰り返し周波数frepを制御し、光周波数コムC1の光パルスの繰り返し時間Trepを微調整することによって、光周波数コムC4,C5の光路差の変動を吸収し、光周波数コムC4,C5を安定させることができる。図4は、時間軸上で基準とする光周波数コムC1の1番目の光パルス〈図3及び図4に示す“1st”の光パルス〉と2番目の光パルス〈図3及び図4に示す“2nd”の光パルス〉との時間間隔を説明するための模式図である。1番目の光パルスと時間軸上で隣り合う2番目の光パルスとの繰り返し時間Trep1,Trep2,Trep3は、繰り返し周波数frep1,frep2,frep3によって(6)式~(8)式のように表される。 As shown in FIG. 3, in the optical system 120, the optical path length difference of each of the optical frequency combs C4 and C5 varies due to vibrations of various mirrors, air fluctuations, and the like. Based on this, the fluctuation of the optical path difference between the optical frequency combs C4 and C5 is absorbed by controlling the repetition frequency f rep of the optical frequency comb C1 and finely adjusting the repetition time T rep of the optical pulse of the optical frequency comb C1. In addition, the optical frequency combs C4 and C5 can be stabilized. FIG. 4 shows the first optical pulse <1st optical pulse shown in FIG. 3 and FIG. 4> and the second optical pulse <shown in FIG. 3 and FIG. It is a schematic diagram for demonstrating the time interval with "2nd" optical pulse>. The repetition times T rep1 , T rep2 , and T rep3 between the first optical pulse and the second optical pulse adjacent on the time axis are expressed by the following equations (6) to (8) according to the repetition frequencies f rep1 , f rep2 , and f rep3 . It is expressed as an expression.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 図4及び(6)式~(8)式に示すTrepとfrepとの相対関係をふまえ、光周波数コムC1の繰り返し周波数frepを制御する。 Based on the relative relationship between T rep and f rep shown in FIGS. 4 and (6) to (8), the repetition frequency f rep of the optical frequency comb C1 is controlled.
 図4及び(6)式~(8)式からわかるように、光周波数コム出射部103のファンクションジェネレーターなどを操作し、光周波数コムC1の繰り返し周波数frepを制御することによって、繰り返し時間Trepを制御できる。 As can be seen from FIGS. 4 and (6) to (8), the repetition time T rep is controlled by controlling the repetition frequency f rep of the optical frequency comb C 1 by operating the function generator of the optical frequency comb emission unit 103. Can be controlled.
 図3に示すように、互いに位相が90°ずれた光周波数コムC4,C5の時間軸上における光パルス1つ分のずれに対して、光周波数コムC4,C5のそれぞれの光路に生じた変動によって、さらに時間差δが加わる、または時間差δが減じられる。図5は、光周波数コムC4,C5の光路に生じた変動を安定化させることが可能な光学系124の一例を示す概略図である。光学系124は、光学系120の構成に加え、ハーフミラー126と、フィードバック機構128と、を備える。ハーフミラー126は、ハーフミラー118より光周波数コムC4,C5の進行方向の前方に配置されている。フィードバック機構128は、ハーフミラー126で分離され、且つハーフミラー126を透過する光周波数コムC4,C5とは異なる光周波数コムC4,C5の進路上に配置されている。ハーフミラー118によって合波され、且つ時間差δを含む光周波数コムC4,C5は、ハーフミラー126で2つに分離される。分離された一方の光周波数コム(第4の光周波数コム及び第5の光周波数コムの一部)C4,C5はハーフミラー126で反射され、フィードバック機構128に入力し、光周波数コム出射部103にフィードバックされる。このことによって、光周波数コムC1の繰り返し周波数frepが調整される。図5に示すように、光周波数コム出射部103から出射される光周波数コムC1の繰り返し時間Trepが時間差δだけ増減される。繰り返し時間Trepが時間差δで調整されることによって、ハーフミラー118に入射する光周波数コムC4,C5同士の位相のずれが再び90°、すなわち光パルス1つ分になる。 As shown in FIG. 3, with respect to the shift of one optical pulse on the time axis of the optical frequency combs C4 and C5 whose phases are shifted from each other by 90 °, fluctuations generated in the respective optical paths of the optical frequency combs C4 and C5. Thus, the time difference δ is further added or the time difference δ is reduced. FIG. 5 is a schematic diagram showing an example of an optical system 124 that can stabilize fluctuations that occur in the optical paths of the optical frequency combs C4 and C5. The optical system 124 includes a half mirror 126 and a feedback mechanism 128 in addition to the configuration of the optical system 120. Half mirror 126 is arranged ahead of half mirror 118 in the direction of travel of optical frequency combs C4 and C5. The feedback mechanism 128 is arranged on the path of optical frequency combs C4 and C5 that are separated by the half mirror 126 and different from the optical frequency combs C4 and C5 that pass through the half mirror 126. The optical frequency combs C4 and C5 combined by the half mirror 118 and including the time difference δ are separated into two by the half mirror 126. One of the separated optical frequency combs (parts of the fourth optical frequency comb and the fifth optical frequency comb) C4 and C5 are reflected by the half mirror 126 and input to the feedback mechanism 128, and the optical frequency comb output unit 103 Feedback. As a result, the repetition frequency f rep of the optical frequency comb C1 is adjusted. As shown in FIG. 5, the repetition time T rep of the optical frequency comb C1 emitted from the optical frequency comb emission unit 103 is increased or decreased by the time difference δ. By adjusting the repetition time T rep with the time difference δ, the phase shift between the optical frequency combs C4 and C5 incident on the half mirror 118 is again 90 °, that is, one optical pulse.
<干渉信号強度取得装置>
 図6は、本発明の干渉信号強度取得装置であって、互いに90°だけ位相がずれた干渉強度信号を瞬時に得る干渉強度信号取得光学系130の構成を示す概略図である。干渉強度信号取得光学系130は、光周波数コム出射部103と、部分光学系124Pと、分岐部150と、遅延機構206と、撮像カメラ(包絡線強度取得部)161とを備える。図6に示す部分光学系124Pは、図5に示す光学系124のうち、光周波数コム出射部103を除いた構成を示す。分岐部150は、光周波数コムC6,C7を光周波数コムC3から取り出す。分岐部150は、ハーフミラー(干渉信号生成部)152、ハーフミラー(第1の分岐部)153,155,158と、全反射ミラー154,156,157とを備える。
<Interference signal intensity acquisition device>
FIG. 6 is a schematic diagram showing the configuration of an interference intensity signal acquisition optical system 130 that instantaneously obtains interference intensity signals that are 90 ° out of phase with each other, which is an interference signal intensity acquisition apparatus of the present invention. The interference intensity signal acquisition optical system 130 includes an optical frequency comb emission unit 103, a partial optical system 124P, a branching unit 150, a delay mechanism 206, and an imaging camera (envelope intensity acquisition unit) 161. A partial optical system 124P illustrated in FIG. 6 has a configuration in which the optical frequency comb emitting unit 103 is excluded from the optical system 124 illustrated in FIG. The branching unit 150 takes out the optical frequency combs C6 and C7 from the optical frequency comb C3. The branching unit 150 includes a half mirror (interference signal generating unit) 152, half mirrors (first branching units) 153, 155, and 158, and total reflection mirrors 154, 156, and 157.
 光周波数コム出射部103は、繰り返し周波数frepがキャリア・エンベロップ・オフセットfCEOの4倍である光周波数コム(第1の光周波数コム)C1を出射する。第1の分岐部104は、光周波数コムC1を光周波数コム(第2の光周波数コム)C2と光周波数コム(第3の光周波数コム)C3に分ける。第2の分岐部105は、光周波数コムC2を光周波数コム(第4の光周波数コム)C4と光周波数コム(第5の光周波数コム)C5に分ける(図5参照)。位相差付与部106は、光周波数コムC4の時間軸上の位相と光周波数コムC5の時間軸上の位相とを90°ずらす。干渉信号生成部107は、光周波数コムC4と任意の光学情報を含む光周波数コム(第3の光周波数コム)C6とを干渉させて干渉信号(第1の干渉信号)IM1を生成し、光周波数コムC5と光学情報を含む光周波数コム(第3の光周波数コム)C7とを干渉させて干渉信号(第2の干渉信号)IM2を生成する。 The optical frequency comb emitting unit 103 emits an optical frequency comb (first optical frequency comb) C1 in which the repetition frequency f rep is four times the carrier envelope offset f CEO . The first branching unit 104 divides the optical frequency comb C1 into an optical frequency comb (second optical frequency comb) C2 and an optical frequency comb (third optical frequency comb) C3. The second branching unit 105 divides the optical frequency comb C2 into an optical frequency comb (fourth optical frequency comb) C4 and an optical frequency comb (fifth optical frequency comb) C5 (see FIG. 5). The phase difference providing unit 106 shifts the phase on the time axis of the optical frequency comb C4 and the phase on the time axis of the optical frequency comb C5 by 90 °. The interference signal generation unit 107 generates an interference signal (first interference signal) IM1 by causing the optical frequency comb C4 and the optical frequency comb (third optical frequency comb) C6 including arbitrary optical information to interfere with each other. The frequency comb C5 and an optical frequency comb (third optical frequency comb) C7 including optical information are caused to interfere with each other to generate an interference signal (second interference signal) IM2.
 本明細書における光学情報には、各光周波数コム自身が有する光学的特性や各光周波数コムの光路上の屈折率の分布・揺らぎや、光路上に配置された試料を通過することにより付加される試料の形状などがすべて含まれる。また、試料の形状には、試料の表面の凹凸形状、試料の内部の構造などが含まれる。つまり、干渉強度信号取得光学系130によれば、試料の表面あるいは内部構造といった形状の情報を取得できる。例えば、図6に示す干渉強度信号取得光学系130のように試料Sが設置されていない場合、光学情報は光周波数コムC3自身が有する光学的特性や光周波数コムC3,C6,C7の光路上の屈折率の分布・揺らぎを意味する。一方、後述する2次元分光計測装置200のように測定対象の試料Sが配置されている場合、光学情報としては試料Sの形状を含む光学的特性が主体になる。図11に示すように、包絡線強度取得部108は、干渉信号IM1と干渉信号IM2との包絡線強度EVを取得する。 The optical information in this specification is added by passing through a sample placed on the optical path, optical characteristics of each optical frequency comb itself, refractive index distribution / fluctuation on the optical path of each optical frequency comb, and so on. This includes all sample shapes. Further, the shape of the sample includes an uneven shape on the surface of the sample, the internal structure of the sample, and the like. That is, according to the interference intensity signal acquisition optical system 130, it is possible to acquire shape information such as the surface of the sample or the internal structure. For example, when the sample S is not installed as in the interference intensity signal acquisition optical system 130 shown in FIG. 6, the optical information is the optical characteristics of the optical frequency comb C3 itself and the optical path of the optical frequency combs C3, C6, C7. This means the refractive index distribution and fluctuation. On the other hand, when the sample S to be measured is arranged as in a two-dimensional spectroscopic measurement apparatus 200 described later, the optical information mainly includes optical characteristics including the shape of the sample S. As illustrated in FIG. 11, the envelope strength acquisition unit 108 acquires the envelope strength EV of the interference signal IM1 and the interference signal IM2.
 図6に示すように、光周波数コム出射部103から出射された光周波数コムC1は、ハーフミラー153によって、光周波数コムC2,C3に分離される。光周波数コムC2は、部分光学系124Pに入射し、上述したように互いに位相が90°だけずれた光周波数コムC4,C5として出射する。一方、ハーフミラー153で反射された光周波数コムC3は、分岐部150に入射し、全反射ミラー154で反射され、ハーフミラー155で光周波数コムC6,C7に分離される。 As shown in FIG. 6, the optical frequency comb C1 emitted from the optical frequency comb emission unit 103 is separated into optical frequency combs C2 and C3 by a half mirror 153. The optical frequency comb C2 enters the partial optical system 124P and exits as optical frequency combs C4 and C5 whose phases are shifted by 90 ° as described above. On the other hand, the optical frequency comb C3 reflected by the half mirror 153 enters the branching unit 150, is reflected by the total reflection mirror 154, and is separated by the half mirror 155 into optical frequency combs C6 and C7.
 遅延機構206は、光周波数コムC3に所定の遅延時間を付加する機構であり、光周波数コムC3の進路上に配置されている。遅延機構206は、図7に示すように、それぞれの反射面207rが対向配置された2個の全反射プリズム207を有する。遅延機構206が矢印Mに沿って移動することによって、光周波数コムC3の光路長が変わり、所定の遅延時間が付加される。 The delay mechanism 206 is a mechanism for adding a predetermined delay time to the optical frequency comb C3, and is arranged on the path of the optical frequency comb C3. As shown in FIG. 7, the delay mechanism 206 includes two total reflection prisms 207 in which respective reflection surfaces 207 r are arranged to face each other. As the delay mechanism 206 moves along the arrow M, the optical path length of the optical frequency comb C3 changes and a predetermined delay time is added.
 図8は、部分光学系124P(すなわち、光学系124)のハーフミラー118における光周波数コムC4の反射及び光周波数コムC5の透過の様子を示す模式図である。図7に示すように、光周波数コムC4,C5のうち、光周波数コムC4は、ハーフミラー118の反射面118aに入射し、上面視で入射方向に対して略直角に反射される。一方、光周波数コムC4,C5のうち、光周波数コムC5は、ハーフミラー118の反射面118aとは反対側の面118b及び反射面118aを透過し、上面視で光周波数コムC4の進路と重なる進路に沿ってハーフミラー118から出射される。高さ方向においては、光周波数コムC4,C5のそれぞれの進路は、互いにずれている。 FIG. 8 is a schematic diagram showing the state of reflection of the optical frequency comb C4 and transmission of the optical frequency comb C5 at the half mirror 118 of the partial optical system 124P (that is, the optical system 124). As shown in FIG. 7, out of the optical frequency combs C4 and C5, the optical frequency comb C4 is incident on the reflection surface 118a of the half mirror 118, and is reflected substantially at right angles to the incident direction when viewed from above. On the other hand, of the optical frequency combs C4 and C5, the optical frequency comb C5 transmits the surface 118b and the reflective surface 118a opposite to the reflective surface 118a of the half mirror 118, and overlaps the path of the optical frequency comb C4 in top view. The light is emitted from the half mirror 118 along the course. In the height direction, the paths of the optical frequency combs C4 and C5 are shifted from each other.
 図9は、分岐部150のハーフミラー158における光周波数コムC6の反射及び光周波数コムC7の透過の様子を示す模式図である。図9に示すように、光周波数コムC6,C7のうち、光周波数コムC6は、ハーフミラー158の反射面158aに入射し、上面視で入射方向に対して略直角に反射される。一方、光周波数コムC6,C7のうち、光周波数コムC7は、ハーフミラー158の反射面158aとは反対側の面158b及び反射面158aを透過し、上面視で光周波数コムC6の進路と重なる進路に沿ってハーフミラー158から出射される。高さ方向においては、光周波数コムC6,C7のそれぞれの進路は、互いにずれている。光周波数コムC6の進路の高さは光周波数コムC4の高さと一致し、光周波数コムC7の高さは光周波数コムC5の高さと一致している。 FIG. 9 is a schematic diagram showing a state of reflection of the optical frequency comb C6 and transmission of the optical frequency comb C7 in the half mirror 158 of the branching unit 150. As shown in FIG. 9, among the optical frequency combs C6 and C7, the optical frequency comb C6 is incident on the reflecting surface 158a of the half mirror 158 and is reflected substantially at right angles to the incident direction in a top view. On the other hand, of the optical frequency combs C6 and C7, the optical frequency comb C7 transmits the surface 158b and the reflective surface 158a opposite to the reflective surface 158a of the half mirror 158, and overlaps the path of the optical frequency comb C6 in top view. The light is emitted from the half mirror 158 along the course. In the height direction, the paths of the optical frequency combs C6 and C7 are shifted from each other. The height of the path of the optical frequency comb C6 matches the height of the optical frequency comb C4, and the height of the optical frequency comb C7 matches the height of the optical frequency comb C5.
 図10は、分岐部150のハーフミラー152における光周波数コムC4,C5の透過及び光周波数コムC6,C7の反射の様子を示す模式図である。図10に示すように、ハーフミラー118から出射された光周波数コムC4,C5は、ハーフミラー152の反射面152aとは反対側の面152bを透過する。一方、ハーフミラー158から出射された光周波数コムC6,C7は、ハーフミラー152の反射面152aによって上面視で入射方向に対して略直角に反射され、面152bを透過した光周波数コムC4,C5と干渉し合い、干渉信号IM1,IM2が生成される。干渉信号IM1は光周波数コムC4,C6同士の干渉信号であり、干渉信号IM2は光周波数コムC5,C7同士の干渉信号である。本実施形態では、図8から図10に示すように、ハーフミラー118における光周波数コムC4,C6同士の照射位置を互いに異ならせ、ハーフミラー158における光周波数コムC5,C7同士の照射位置を互いに異ならせる。このことによって、光周波数コムC4,C6が重なって干渉信号IM1が生成される位置と、光周波数コムC5,C7が重なって干渉信号IM2が生成される位置とを異ならせる。 FIG. 10 is a schematic diagram showing a state of transmission of the optical frequency combs C4 and C5 and reflection of the optical frequency combs C6 and C7 in the half mirror 152 of the branching unit 150. As shown in FIG. 10, the optical frequency combs C <b> 4 and C <b> 5 emitted from the half mirror 118 pass through the surface 152 b on the opposite side of the reflection surface 152 a of the half mirror 152. On the other hand, the optical frequency combs C6 and C7 emitted from the half mirror 158 are reflected by the reflecting surface 152a of the half mirror 152 at a substantially right angle with respect to the incident direction in a top view and transmitted through the surface 152b. Interference signals IM1 and IM2 are generated. The interference signal IM1 is an interference signal between the optical frequency combs C4 and C6, and the interference signal IM2 is an interference signal between the optical frequency combs C5 and C7. In this embodiment, as shown in FIGS. 8 to 10, the irradiation positions of the optical frequency combs C4 and C6 in the half mirror 118 are made different from each other, and the irradiation positions of the optical frequency combs C5 and C7 in the half mirror 158 are mutually different. Make it different. Accordingly, the position where the optical frequency combs C4 and C6 are overlapped to generate the interference signal IM1 is different from the position where the optical frequency combs C5 and C7 are overlapped to generate the interference signal IM2.
 光周波数コムC4,C5同士の位相が互いに90°ずれているので、干渉信号IM1,IM2同士の位相は、互いに90°ずれている。図11は、干渉信号IM1,IM2から得られる包絡線強度EVの一例を示すグラフである。撮像カメラ161によって、ある瞬間の干渉信号IM1の強度T1と干渉信号IM2の強度T2を取得すれば、{(T1)+(T2)1/2を算出することによって、包絡線強度EVが瞬時に得られる。 Since the phases of the optical frequency combs C4 and C5 are shifted from each other by 90 °, the phases of the interference signals IM1 and IM2 are shifted from each other by 90 °. FIG. 11 is a graph showing an example of the envelope intensity EV obtained from the interference signals IM1 and IM2. If the intensity T1 of the interference signal IM1 and the intensity T2 of the interference signal IM2 at a certain moment are acquired by the imaging camera 161, the envelope intensity EV is calculated by calculating {(T1) 2 + (T2) 2 } 1/2. Can be obtained instantly.
 上述のように、包絡線強度EVは、撮像カメラ161によって検出される。撮像カメラ161で検出された包絡線強度EVは、撮像カメラ161に付属の処理部(図示略)によって適宜処理される。処理部は、例えば撮像カメラ161に接続されているコンピュータに内蔵されているプログラムなどである。干渉強度信号取得光学系130では、互いに90°だけ位相がずれた干渉信号IM1,IM2の包絡線強度EVが瞬時に得られる。 As described above, the envelope intensity EV is detected by the imaging camera 161. The envelope intensity EV detected by the imaging camera 161 is appropriately processed by a processing unit (not shown) attached to the imaging camera 161. The processing unit is, for example, a program built in a computer connected to the imaging camera 161. In the interference intensity signal acquisition optical system 130, the envelope intensity EV of the interference signals IM1 and IM2 whose phases are shifted from each other by 90 ° can be instantaneously obtained.
<2次元分光計測装置>
 図12は、本発明の2次元分光計測装置200の構成を示す概略図である。図12に示すように、2次元分光計測装置200は、上述した干渉強度信号取得光学系130の構成に加え、単体の撮像カメラ161に替えて、波長情報取得部208を備える。2次元分光計測装置200においても、フィードバック機構128によって光周波数コムC4,C5が光周波数コム出射部103にフィードバックされ、光周波数コムC4,C5との位相のずれ(時間差δ、図3参照)に応じて繰り返し周波数frepが調整されている。
<Two-dimensional spectroscopic measurement device>
FIG. 12 is a schematic diagram showing the configuration of the two-dimensional spectroscopic measurement apparatus 200 of the present invention. As illustrated in FIG. 12, the two-dimensional spectroscopic measurement apparatus 200 includes a wavelength information acquisition unit 208 in place of the single imaging camera 161 in addition to the configuration of the interference intensity signal acquisition optical system 130 described above. Also in the two-dimensional spectroscopic measurement apparatus 200, the optical frequency combs C4 and C5 are fed back to the optical frequency comb output unit 103 by the feedback mechanism 128, and the phase shift from the optical frequency combs C4 and C5 (time difference δ, see FIG. 3). Accordingly, the repetition frequency f rep is adjusted.
 波長情報取得部208は、ハーフミラー231と、全反射ミラー232と、フィルタF1,F2と、互いに同じ画素数を有する2台の撮像カメラ241,242と、画像処理部(光学情報抽出部)250とを備える。干渉強度信号取得光学系130の全反射ミラー154は、ハーフミラー159に替えられている。分光計測の対象である試料Sは、ハーフミラー159を透過する光周波数コムC3の進路上に配置されている。 The wavelength information acquisition unit 208 includes a half mirror 231, a total reflection mirror 232, filters F1 and F2, two imaging cameras 241 and 242 having the same number of pixels, and an image processing unit (optical information extraction unit) 250. With. The total reflection mirror 154 of the interference intensity signal acquisition optical system 130 is replaced with a half mirror 159. The sample S that is the object of spectroscopic measurement is arranged on the path of the optical frequency comb C3 that passes through the half mirror 159.
 図12に示すように、ハーフミラー153で反射された光周波数コムC3は、ハーフミラー159を透過し、試料Sに照射される。試料Sから反射された光周波数コムC3には、試料Sの分光情報や位相・形状に関する情報をすべて含む光学情報が含まれる。光周波数コムC3からハーフミラー155によって2つに分けられた光周波数コムC6,C7にも試料Sの光学情報が含まれる。試料Sの光学情報は、干渉信号IM1,IM2に反映される。干渉信号IM1,IM2の包絡線強度EVは、ハーフミラー231によって2つに分けられ、分けられた2つの包絡線強度EV1,EV2はそれぞれフィルタF1,F2を通過する。 As shown in FIG. 12, the optical frequency comb C3 reflected by the half mirror 153 passes through the half mirror 159 and is irradiated onto the sample S. The optical frequency comb C3 reflected from the sample S includes optical information including all the spectral information and phase / shape information of the sample S. The optical information of the sample S is also included in the optical frequency combs C6 and C7 divided into two by the half mirror 155 from the optical frequency comb C3. The optical information of the sample S is reflected in the interference signals IM1 and IM2. The envelope strength EV of the interference signals IM1 and IM2 is divided into two by the half mirror 231, and the two divided envelope strengths EV1 and EV2 pass through the filters F1 and F2, respectively.
 図13は、フィルタF1,F2の透過率の波長依存性を示すグラフである。図13に示すように、フィルタF1,F2の透過率の波長依存性は互いに逆である。フィルタF1の透過率は、波長が増加するにしたがって概ね低下する。一方、フィルタF2の透過率は、波長が増加するにしたがって概ね上昇する。このようにフィルタF1,F2の透過率の波長依存性が互いに逆であることによって、これらのフィルタF1,F2を通過させた包絡線強度EV1,EV2に関する光強度比と波長との1対1対応が成立する。 FIG. 13 is a graph showing the wavelength dependence of the transmittance of the filters F1 and F2. As shown in FIG. 13, the wavelength dependences of the transmittances of the filters F1 and F2 are opposite to each other. The transmittance of the filter F1 generally decreases as the wavelength increases. On the other hand, the transmittance of the filter F2 generally increases as the wavelength increases. As described above, the wavelength dependency of the transmittance of the filters F1 and F2 is opposite to each other, so that there is a one-to-one correspondence between the light intensity ratio and the wavelength for the envelope intensities EV1 and EV2 that have passed through the filters F1 and F2. Is established.
 画像処理部50では、フィルタF1,F2を通して撮像カメラ241,242で取得した試料Sの測定領域ごとの包絡線強度EV1,EV2の透過強度の比が算出される。撮像カメラ241,242の各画素について算出した包絡線強度EV1,EV2の透過強度の比に基づいて、各画素の信号強度比が求まり、包絡線強度EVの分布内の各強度を発現する波長が瞬時に決定される。瞬時に波長情報を得ることで、各空間位置(測定領域)における試料Sから反射された光周波数コムC3の位相情報が計測される。光周波数コムC3の位相情報は、時間差であって、物理的な位置の違いや屈折率の違いを示す。本実施形態では、物理的な位置を瞬時に取得する際には、試料Sから反射された光周波数コムC6の位相スペクトルは基本的に変化しないと想定する。 The image processing unit 50 calculates the ratio of the transmission intensities of the envelope strengths EV1 and EV2 for each measurement region of the sample S acquired by the imaging cameras 241 and 242 through the filters F1 and F2. Based on the ratio of the transmission intensity of the envelope intensity EV1 and EV2 calculated for each pixel of the imaging cameras 241 and 242, the signal intensity ratio of each pixel is obtained, and the wavelength expressing each intensity in the distribution of the envelope intensity EV is Determined instantly. By obtaining the wavelength information instantaneously, the phase information of the optical frequency comb C3 reflected from the sample S at each spatial position (measurement region) is measured. The phase information of the optical frequency comb C3 is a time difference and indicates a physical position difference and a refractive index difference. In this embodiment, when the physical position is acquired instantaneously, it is assumed that the phase spectrum of the optical frequency comb C6 reflected from the sample S basically does not change.
<2次元分光計測方法>
 本発明の2次元分光計測方法は、光周波数コム生成工程と、位相差付与工程と、試料照射工程と、干渉信号生成工程と、包絡線強度取得工程と、光学情報抽出工程とを備える。本発明の一実施形態の2次元分光計測方法は、2次元分光計測装置200を用いて干渉信号IM1,IM2の包絡線強度EVを瞬時に取得し、取得した包絡線強度EVに基づいて試料Sの光学情報を得ることが可能な方法である。
<Two-dimensional spectroscopic measurement method>
The two-dimensional spectroscopic measurement method of the present invention includes an optical frequency comb generation step, a phase difference providing step, a sample irradiation step, an interference signal generation step, an envelope intensity acquisition step, and an optical information extraction step. In the two-dimensional spectroscopic measurement method according to an embodiment of the present invention, the envelope intensity EV of the interference signals IM1 and IM2 is instantaneously acquired using the two-dimensional spectroscopic measurement apparatus 200, and the sample S is based on the acquired envelope intensity EV. It is a method that can obtain the optical information.
 光周波数コム生成工程では、光周波数コムC1を生成する(図1参照)。光周波数コムC1は、周波数軸で零に対して所定のキャリア・エンベロップ・オフセットfCEOを有する周波数モードfと、周波数軸で周波数モードfに対して所定の繰り返し周波数frepの整数倍の間隔をあけて並ぶ複数の周波数モードfと、を有する。光周波数コムC1では、frep=4×fCEOの関係が成立している。前述の関係を成立させるために、光周波数コム出射部103のファンクションジェネレーターなどを用いて、キャリア・エンベロップ・オフセットfCEO及び繰り返し周波数frepを制御する。 In the optical frequency comb generation step, an optical frequency comb C1 is generated (see FIG. 1). Optical frequency comb C1 is a frequency mode f 0 having a predetermined carrier envelope offset f CEO against zero on the frequency axis, of the predetermined relative frequency mode f 0 the frequency axis repetition frequency f rep integral multiple of the A plurality of frequency modes f m arranged at intervals. In the optical frequency comb C1, a relationship of f rep = 4 × f CEO is established. In order to establish the above-mentioned relationship, the carrier envelope envelope offset f CEO and the repetition frequency f rep are controlled using a function generator of the optical frequency comb emitting unit 103 or the like.
 次に、位相差付与工程では、光周波数コムC1をハーフミラー153で光周波数コムC2と光周波数コムC3に分け、光周波数コムC2をさらにハーフミラー112(図3参照)で光周波数コムC4と光周波数コムC5に分ける。続いて、遅延付与部123によって、光周波数コムC5の時間軸上の位相を光周波数コムC4の時間軸上の位相に対して90°ずらす。 Next, in the phase difference providing step, the optical frequency comb C1 is divided into the optical frequency comb C2 and the optical frequency comb C3 by the half mirror 153, and the optical frequency comb C2 is further divided into the optical frequency comb C4 by the half mirror 112 (see FIG. 3). Divide into optical frequency comb C5. Subsequently, the delay applying unit 123 shifts the phase of the optical frequency comb C5 on the time axis by 90 ° with respect to the phase of the optical frequency comb C4 on the time axis.
 次に、試料照射工程では、光周波数コムC3または光周波数コムC4,C5を試料Sに照射し、試料Sから出射されて光学情報を含む光周波数コムC3または光周波数コムC4,C5を得る。 Next, in the sample irradiation step, the sample S is irradiated with the optical frequency comb C3 or the optical frequency combs C4 and C5, and the optical frequency comb C3 or the optical frequency combs C4 and C5 which are emitted from the sample S and include optical information are obtained.
 本実施形態では、光周波数コムC3、または光周波数コムC4,C5に任意の光学情報を含む。干渉信号生成工程では、何れかに光学情報を含む光周波数コムC4と光周波数コムC6とを合わせて干渉させ、干渉信号IM1を生成する。干渉信号生成工程では、何れかに光学情報を含む光周波数コムC5と光周波数コムC7とを合わせて干渉させ、干渉信号IM2を生成する。 In this embodiment, the optical frequency comb C3 or the optical frequency combs C4 and C5 includes arbitrary optical information. In the interference signal generation step, the optical frequency comb C4 and the optical frequency comb C6 including optical information in any one of them are caused to interfere with each other to generate an interference signal IM1. In the interference signal generating step, the optical frequency comb C5 and the optical frequency comb C7 including optical information in any one of them are caused to interfere with each other to generate an interference signal IM2.
 次に、包絡線強度取得工程では、干渉信号IM1,IM2を撮像カメラ161で同時に検出し、包絡線強度EVを得る。 Next, in the envelope strength acquisition step, the interference signals IM1 and IM2 are simultaneously detected by the imaging camera 161 to obtain the envelope strength EV.
 次に、光学情報抽出工程では、包絡線強度EVに基づいて試料Sの光学情報を抽出する。本実施形態では、包絡線強度取得工程において、包絡線強度EVを2つの包絡線強度EV1,EV2に分け、包絡線強度EV1,EV2がフィルタF1,F2のそれぞれを通過したときの透過強度を撮像カメラ241,242で取得する。その後、包絡線強度取得工程で取得した包絡線強度EV1,EV2の透過強度の比に基づいて試料Sに関する波長情報を瞬時に取得し、画像処理部250によって前述の波長情報から試料Sの光学情報を算出する。具体的には、予め計測した強度の比から求めた波長情報と遅延距離の関係と比較することで、試料Sの2次元分光情報または3次元形状を算出できる。 Next, in the optical information extraction step, the optical information of the sample S is extracted based on the envelope intensity EV. In this embodiment, in the envelope strength acquisition step, the envelope strength EV is divided into two envelope strengths EV1 and EV2, and the transmission strength when the envelope strengths EV1 and EV2 pass through the filters F1 and F2, respectively, is imaged. Obtained by the cameras 241 and 242. Thereafter, wavelength information regarding the sample S is acquired instantaneously based on the ratio of the transmission intensities of the envelope strengths EV1 and EV2 acquired in the envelope intensity acquisition step, and the optical information of the sample S is obtained from the wavelength information described above by the image processing unit 250. Is calculated. Specifically, the two-dimensional spectroscopic information or the three-dimensional shape of the sample S can be calculated by comparing with the relationship between the wavelength information obtained from the intensity ratio measured in advance and the delay distance.
 本実施形態の2次元分光計測方法は、上述の各工程に加え、さらに周波数調整工程を備えている。周波数調整工程では、フィードバック機構128によって光周波数コムC4,C5の一部を光周波数コム出射部103にフィードバックし、光周波数コムC4,C5との位相のずれ(時間差δ、図3参照)に応じて繰り返し周波数frepを調整する。 The two-dimensional spectroscopic measurement method of this embodiment further includes a frequency adjustment step in addition to the above-described steps. In the frequency adjustment step, a part of the optical frequency combs C4 and C5 is fed back to the optical frequency comb output unit 103 by the feedback mechanism 128, and the phase shift from the optical frequency combs C4 and C5 (time difference δ, see FIG. 3) To adjust the repetition frequency f rep .
 以上説明したように、本実施形態の2次元分光計測方法は、上述の光周波数コム生成工程と、位相差付与工程と、干渉信号生成工程と、包絡線強度取得工程と、光学情報抽出工程と、を備える。本実施形態の2次元分光計測装置200は、上述の光周波数コム出射部103と、第1の分岐部104と、第2の分岐部105と、位相差付与部106と、干渉信号生成部107と、包絡線強度取得部108と、画像処理部250と、を備える。本実施形態の2次元分光計測方法及び2次元分光計測装置200では、光周波数コムの繰り返し周波数frepとキャリア・エンベロップ・オフセットfCEOを制御してfrep=4×fCEOとし、繰り返し周波数frepが制御された光周波数コムを2つに分けて互いに位相が90°ずれた光周波数コムを生成する。互いに位相が90°ずれた2つの光周波数コムは、参照光として機能する光パルス列である。これらの2つの光周波数コムのそれぞれと任意の光学情報を含む光周波数コムとを干渉させ、90°位相がずれた干渉信号を光学的にリアルタイムで生成する。任意の光学情報を含む光周波数コムは、プローブ光として機能する光パルス列である。このことによって、干渉信号の包絡線強度を瞬時に、計測時においてリアルタイムに取得できる。光周波数コムを用いることによって、繰り返し周波数frepとキャリア・エンベロップ・オフセットfCEOが原子時計と同程度の安定性と正確性をもって制御される。キャリア・エンベロップ・オフセットfCEOを制御することによって、時間軸上で隣り合う光パルス同士の位相差を活かし、計測時のターゲットとする全波長域で原理的に位相差を正確に揃えることができる。したがって、本実施形態の2次元分光計測方法及び2次元分光計測装置200によれば、瞬時に高解像度の分光情報を取得でき、リアルタイムで2次元分光計測を行うことができる。 As described above, the two-dimensional spectroscopic measurement method of the present embodiment includes the above-described optical frequency comb generation step, phase difference application step, interference signal generation step, envelope intensity acquisition step, and optical information extraction step. . The two-dimensional spectroscopic measurement apparatus 200 of this embodiment includes the above-described optical frequency comb emitting unit 103, the first branching unit 104, the second branching unit 105, the phase difference providing unit 106, and the interference signal generating unit 107. And an envelope strength acquisition unit 108 and an image processing unit 250. In the two-dimensional spectroscopic measurement method and the two-dimensional spectroscopic measurement apparatus 200 of the present embodiment, the repetition frequency f rep and the carrier envelope offset f CEO of the optical frequency comb are controlled to be f rep = 4 × f CEO , and the repetition frequency f The optical frequency comb whose rep is controlled is divided into two to generate optical frequency combs whose phases are shifted from each other by 90 °. Two optical frequency combs that are 90 ° out of phase with each other are optical pulse trains that function as reference light. Each of these two optical frequency combs interferes with an optical frequency comb including arbitrary optical information, and an interference signal whose phase is shifted by 90 ° is optically generated in real time. The optical frequency comb including arbitrary optical information is an optical pulse train that functions as probe light. As a result, the envelope strength of the interference signal can be acquired instantaneously and in real time during measurement. By using the optical frequency comb, the repetition frequency f rep and the carrier envelope offset f CEO are controlled with the same degree of stability and accuracy as the atomic clock. By controlling the carrier envelope offset f CEO , the phase difference between the adjacent optical pulses on the time axis can be utilized, and in principle, the phase difference can be accurately aligned in the entire wavelength range to be measured. . Therefore, according to the two-dimensional spectroscopic measurement method and the two-dimensional spectroscopic measurement apparatus 200 of the present embodiment, high-resolution spectroscopic information can be acquired instantaneously, and two-dimensional spectroscopic measurement can be performed in real time.
 本実施形態の2次元分光計測方法及び2次元分光計測装置200では、第4の光周波数コムと第5の光周波数コムを光周波数コム出射部103にフィードバックし、第4の光周波数コムと第5の光周波数コムとの位相のずれ(時間差δ)に応じて繰り返し周波数frepを調整する。このことによって、参照光の光周波数コム同士の位相のずれをなくすことができる。本実施形態の2次元分光計測方法及び2次元分光計測装置200によれば、2次元分光計測装置200を構成するミラーなどの光学素子が振動して光周波数コムの光路に変動が生じた場合であっても、従来のようにピエゾ素子などのように機械的に駆動する構成を光学系に追加しなくても、光周波数コムの光路の変動を光学的に補償できる。 In the two-dimensional spectroscopic measurement method and the two-dimensional spectroscopic measurement apparatus 200 of the present embodiment, the fourth optical frequency comb and the fifth optical frequency comb are fed back to the optical frequency comb emitting unit 103, and the fourth optical frequency comb and the second optical frequency comb are combined. The repetition frequency f rep is adjusted according to the phase shift (time difference δ) with respect to the optical frequency comb 5. As a result, the phase shift between the optical frequency combs of the reference light can be eliminated. According to the two-dimensional spectroscopic measurement method and the two-dimensional spectroscopic measurement apparatus 200 of the present embodiment, when an optical element such as a mirror constituting the two-dimensional spectroscopic measurement apparatus 200 vibrates and the optical path of the optical frequency comb changes. Even in such a case, the optical path variation of the optical frequency comb can be optically compensated without adding a mechanically driven configuration such as a piezo element to the optical system.
 本実施形態の2次元分光計測方法及び2次元分光計測装置200では、透過率の波長依存性が互いに逆である2枚のフィルタF1,F2を包絡線強度EV1,EV2が通過したときの透過強度を取得し、取得した包絡線強度EV1,EV2の透過強度の比に基づいて試料Sの光学情報を算出する。このような検出手法によって、包絡線強度EVに含まれる試料Sの波長情報を瞬時に取得でき、取得した波長情報から試料Sの光学情報をリアルタイムで高解像度に取得できる。 In the two-dimensional spectroscopic measurement method and the two-dimensional spectroscopic measurement apparatus 200 according to the present embodiment, the transmission intensities when the envelope intensities EV1 and EV2 pass through two filters F1 and F2 whose transmittances have wavelength dependencies opposite to each other. And the optical information of the sample S is calculated based on the ratio of the transmission intensity of the acquired envelope intensities EV1 and EV2. By such a detection method, the wavelength information of the sample S included in the envelope intensity EV can be acquired instantaneously, and the optical information of the sample S can be acquired in real time with high resolution from the acquired wavelength information.
 本実施形態の2次元分光計測方法及び2次元分光計測装置200では、遅延機構206によって光周波数コムC3に所定の遅延時間を付加することによって、光学情報を含む強度・位相スペクトルを取得できる。 In the two-dimensional spectroscopic measurement method and the two-dimensional spectroscopic measurement apparatus 200 according to the present embodiment, an intensity / phase spectrum including optical information can be acquired by adding a predetermined delay time to the optical frequency comb C3 by the delay mechanism 206.
 本実施形態の2次元分光計測方法及び2次元分光計測装置200で得られる光学情報は、光周波数コムC3または光周波数コムC4,C5の光路上の屈折率の分布・揺らぎ、試料Sの形状の何れかを含み、上述の構成では試料Sの3次元形状が含まれる。本実施形態の2次元分光計測方法及び2次元分光計測装置200によれば、包絡線強度EVに基づいて試料Sの3次元形状を取得できるので、瞬時かつリアルタイムの3次元形状計測を実現し、天文分野や物性分野をはじめとする広い分野に適用できる。 The optical information obtained by the two-dimensional spectroscopic measurement method and the two-dimensional spectroscopic measurement apparatus 200 of the present embodiment includes the distribution and fluctuation of the refractive index on the optical path of the optical frequency comb C3 or the optical frequency combs C4 and C5, and the shape of the sample S. In any of the above-described configurations, the three-dimensional shape of the sample S is included. According to the two-dimensional spectroscopic measurement method and the two-dimensional spectroscopic measurement apparatus 200 of the present embodiment, since the three-dimensional shape of the sample S can be acquired based on the envelope strength EV, instantaneous and real-time three-dimensional shape measurement is realized, It can be applied to a wide range of fields including astronomy and physical properties.
 以上、本発明の好ましい実施形態について詳述したが、本発明は上述の実施形態に限定されない。本発明は、特許請求の範囲内に記載された本発明の要旨の範囲内において、変更可能である。 As mentioned above, although the preferable embodiment of this invention was explained in full detail, this invention is not limited to the above-mentioned embodiment. The present invention can be modified within the scope of the gist of the present invention described in the claims.
 例えば、上述の実施形態では、光周波数コムC3が試料Sを通過することによって、光周波数コムC3に試料Sの光学情報が付与されるが、試料Sの光学情報は、光周波数コムC3に替えて光周波数コムC4,C5に付与されてもよい。その場合は、光周波数コムC4,C5の偏光を互いに直交させて合波し、試料Sを通過させた後に分波する。試料Sの光学情報を含む光周波数コムC4,C5のそれぞれと試料Sの光学情報を含まない光周波数コムC6,C7との干渉信号(第1の干渉信号、第2の干渉信号)を得ることによって、上述の実施形態と同様の作用効果が得られる。但し、試料Sの光学情報は、偏光依存性を有しておらず、偏光依存性を考慮せずに取得できると想定する。 For example, in the above-described embodiment, when the optical frequency comb C3 passes through the sample S, the optical information of the sample S is given to the optical frequency comb C3. However, the optical information of the sample S is changed to the optical frequency comb C3. May be given to the optical frequency combs C4 and C5. In that case, the polarizations of the optical frequency combs C4 and C5 are multiplexed so as to be orthogonal to each other, and after passing through the sample S, are demultiplexed. Obtaining interference signals (first interference signal, second interference signal) between the optical frequency combs C4 and C5 including the optical information of the sample S and the optical frequency combs C6 and C7 not including the optical information of the sample S Thus, the same effect as that of the above-described embodiment can be obtained. However, it is assumed that the optical information of the sample S does not have polarization dependency and can be acquired without considering the polarization dependency.
 図12に示す2次元分光計測装置200では、試料Sから反射された光周波数コムC3を取得しているが、光周波数コムC3を試料Sに照射して試料Sから透過した光周波数コムC3を取得してもよい。その場合、ハーフミラー159を全反射ミラーに替え、試料Sを光周波数コムC3の進路上で前述のように置き換えた全反射ミラーとハーフミラー155との間に配置すればよい。 In the two-dimensional spectroscopic measurement apparatus 200 shown in FIG. 12, the optical frequency comb C3 reflected from the sample S is acquired. However, the optical frequency comb C3 transmitted from the sample S by irradiating the sample S with the optical frequency comb C3 is obtained. You may get it. In this case, the half mirror 159 may be replaced with a total reflection mirror, and the sample S may be disposed between the total reflection mirror and the half mirror 155 in which the sample S is replaced as described above on the path of the optical frequency comb C3.
 上述の実施形態の2次元分光計測装置200において、試料Sに関する位相スペクトルを測定する際には、試料Sから反射された光周波数コムC3の位相スペクトルが波長に対して変化してもよい。但し、その場合の光周波数コムC3の位相スペクトルの変化は、波長に対して一意に決まらなければならない。試料Sに関する位相スペクトルは、光周波数コムC3または光周波数コムC1に対して時間遅延を加え、干渉信号IM1,IM2の強度の遅延時間依存性を測定することによって取得できる。 In the two-dimensional spectroscopic measurement apparatus 200 of the above-described embodiment, when measuring the phase spectrum related to the sample S, the phase spectrum of the optical frequency comb C3 reflected from the sample S may change with respect to the wavelength. However, the change of the phase spectrum of the optical frequency comb C3 in that case must be uniquely determined with respect to the wavelength. The phase spectrum related to the sample S can be obtained by adding a time delay to the optical frequency comb C3 or the optical frequency comb C1 and measuring the delay time dependence of the intensity of the interference signals IM1 and IM2.
 上述の実施形態において、遅延機構206は、ハーフミラー153,159の間の光周波数コムC3の進路上、ハーフミラー153,112の間の光周波数コムC2の進路上のいずれかに配置されればよい。遅延機構206の構成は、所定の光周波数コムに所定の遅延時間を付加できれば、特に限定されない。上述の実施形態の2次元分光計測装置200において、試料Sの3次元形状を瞬時に計測する際には、遅延機構206で時間掃引する必要はない。光周波数コムC3には、試料Sを透過あるいは反射させたときに、試料Sの形状に由来する遅延時間が与えられる。試料Sの3次元形状を瞬時に計測する場合は、遅延時間が与えられた光周波数コムC3を、遅延機構206を除いた上述の実施形態の2次元分光計測装置200で計測することによって、試料Sの形状に由来する遅延時間を波長情報として瞬時に取得できる。このような波長情報を取得することは、試料Sの瞬時3次元形状計測を行うことと同じである。 In the above-described embodiment, if the delay mechanism 206 is disposed either on the path of the optical frequency comb C3 between the half mirrors 153 and 159 or on the path of the optical frequency comb C2 between the half mirrors 153 and 112, Good. The configuration of the delay mechanism 206 is not particularly limited as long as a predetermined delay time can be added to a predetermined optical frequency comb. In the two-dimensional spectroscopic measurement apparatus 200 of the above-described embodiment, when the three-dimensional shape of the sample S is instantaneously measured, it is not necessary to sweep the time with the delay mechanism 206. The optical frequency comb C3 is given a delay time derived from the shape of the sample S when the sample S is transmitted or reflected. When the three-dimensional shape of the sample S is instantaneously measured, the optical frequency comb C3 to which the delay time is given is measured by the two-dimensional spectroscopic measurement apparatus 200 of the above-described embodiment excluding the delay mechanism 206, whereby the sample The delay time derived from the shape of S can be instantaneously acquired as wavelength information. Acquiring such wavelength information is the same as performing instantaneous three-dimensional shape measurement of the sample S.
 上述の実施形態では、光周波数コムの光学的特性に起因する正確さと安定性が維持された状態で、試料Sの典型的な光学情報として奥行き情報、すなわち3次元形状が得られる。但し、本発明の2次元分光計測方法及び2次元分光計測装置によって得られる試料Sの光学情報は、光周波数コムの光パルス列が干渉信号生成部に到達する時間をずらすものであれば3次元形状に限定されない。本発明の2次元分光計測方法及び2次元分光計測装置によって得られる試料Sの光学情報には、例えば屈折率の揺らぎなどが含まれる。取得したい試料Sの光学情報の種類に応じて、波長情報取得部や光学情報抽出部の構成、処理部のプログラムによる処理内容を適宜変更できる。 In the above-described embodiment, depth information, that is, a three-dimensional shape, is obtained as typical optical information of the sample S while maintaining accuracy and stability due to the optical characteristics of the optical frequency comb. However, the optical information of the sample S obtained by the two-dimensional spectroscopic measurement method and the two-dimensional spectroscopic measurement apparatus of the present invention is a three-dimensional shape as long as the time for the optical pulse train of the optical frequency comb to reach the interference signal generation unit is shifted. It is not limited to. The optical information of the sample S obtained by the two-dimensional spectroscopic measurement method and the two-dimensional spectroscopic measurement apparatus of the present invention includes, for example, a refractive index fluctuation. Depending on the type of optical information of the sample S to be acquired, the configuration of the wavelength information acquisition unit and the optical information extraction unit and the processing content by the program of the processing unit can be appropriately changed.
 上述の実施形態では、光周波数コムC4,C5,C6,C7をチャープしてもよい。光周波数コムC4,C5,C6,C7をチャープする場合は、これらの光周波数コムの元である光周波数コムC2,C3のそれぞれの光路上に適当な分散媒質を設置し、その分散媒質に光周波数コムC2,C3を通過させればよい。このように分散媒質を通過させて光周波数コムC4,C5,C6,C7をチャープした場合、干渉信号IM1,IM2は変化しないので、上述の実施形態と同様の作用効果が得られる。 In the above-described embodiment, the optical frequency combs C4, C5, C6, and C7 may be chirped. When chirping the optical frequency combs C4, C5, C6, and C7, an appropriate dispersion medium is installed on the optical path of each of the optical frequency combs C2 and C3 that are the sources of these optical frequency combs, and light is transmitted to the dispersion medium. The frequency combs C2 and C3 may be passed. When the optical frequency combs C4, C5, C6, and C7 are chirped through the dispersion medium in this way, the interference signals IM1 and IM2 do not change, so that the same effects as those of the above-described embodiment can be obtained.
103・・・光周波数コム出射部
104・・・第1の分岐部
105・・・第2の分岐部
106・・・位相差付与部
107・・・干渉信号生成部
108・・・包絡線強度取得部
130・・・干渉強度信号取得光学系(干渉信号強度取得装置)
C1・・・光周波数コム(第1の光周波数コム)
C2・・・光周波数コム(第2の光周波数コム)
C3・・・光周波数コム(第3の光周波数コム)
C4・・・光周波数コム(第4の光周波数コム)
C5・・・光周波数コム(第5の光周波数コム)
C6・・・光周波数コム(第3の光周波数コム)
C7・・・光周波数コム(第3の光周波数コム)
S・・・試料
DESCRIPTION OF SYMBOLS 103 ... Optical frequency comb output part 104 ... 1st branch part 105 ... 2nd branch part 106 ... Phase difference providing part 107 ... Interference signal generation part 108 ... Envelope strength Acquisition unit 130 ... interference intensity signal acquisition optical system (interference signal intensity acquisition device)
C1... Optical frequency comb (first optical frequency comb)
C2: Optical frequency comb (second optical frequency comb)
C3: Optical frequency comb (third optical frequency comb)
C4: Optical frequency comb (fourth optical frequency comb)
C5: Optical frequency comb (fifth optical frequency comb)
C6: Optical frequency comb (third optical frequency comb)
C7: Optical frequency comb (third optical frequency comb)
S ... Sample

Claims (10)

  1.  周波数軸で零に対して所定のオフセット周波数を有する第1の周波数モードと前記周波数軸で前記第1の周波数モードに対して所定の繰り返し周波数の整数倍の間隔をあけて並ぶ複数の第2の周波数モードとを有し、前記繰り返し周波数が前記オフセット周波数の4倍である第1の光周波数コムを生成する光周波数コム生成工程と、
     前記第1の光周波数コムを第2の光周波数コムと第3の光周波数コムに分け、前記第2の光周波数コムを第4の光周波数コムと第5の光周波数コムに分け、前記第4の光周波数コムの時間軸上の位相を前記第5の光周波数コムの時間軸上の位相に対して90°ずらす位相差付与工程と、
     前記第3の光周波数コムまたは前記第4の光周波数コム及び前記第5の光周波数コムを試料に照射し、前記試料から出射されて光学情報を含む前記第3の光周波数コム、または前記第4の光周波数コム及び前記第5の光周波数コムを得る試料照射工程と、
     何れかに前記光学情報を含む前記第4の光周波数コムと前記第3の光周波数コムとを干渉させて第1の干渉信号を生成し、何れかに前記光学情報を含む前記第5の光周波数コムと前記第3の光周波数コムとを干渉させて第2の干渉信号を生成する干渉信号生成工程と、
     前記第1の干渉信号と前記第2の干渉信号から包絡線強度を取得する包絡線強度取得工程と、
     前記包絡線強度に基づいて前記試料の光学情報を抽出する光学情報抽出工程と、
     を備える2次元分光計測方法。
    A first frequency mode having a predetermined offset frequency with respect to zero on the frequency axis, and a plurality of second frequency lines arranged at intervals of an integral multiple of a predetermined repetition frequency with respect to the first frequency mode on the frequency axis. An optical frequency comb generating step of generating a first optical frequency comb having a frequency mode, wherein the repetition frequency is four times the offset frequency;
    Dividing the first optical frequency comb into a second optical frequency comb and a third optical frequency comb; dividing the second optical frequency comb into a fourth optical frequency comb and a fifth optical frequency comb; A phase difference providing step of shifting the phase on the time axis of the fourth optical frequency comb by 90 ° with respect to the phase on the time axis of the fifth optical frequency comb;
    Irradiating a sample with the third optical frequency comb or the fourth optical frequency comb and the fifth optical frequency comb, the third optical frequency comb emitted from the sample and including optical information, or the first A sample irradiation step for obtaining four optical frequency combs and the fifth optical frequency comb;
    The fifth optical frequency comb including the optical information is generated by causing the fourth optical frequency comb including the optical information to interfere with the third optical frequency comb to generate a first interference signal. An interference signal generating step of generating a second interference signal by causing a frequency comb to interfere with the third optical frequency comb;
    An envelope strength acquisition step of acquiring an envelope strength from the first interference signal and the second interference signal;
    An optical information extraction step of extracting optical information of the sample based on the envelope intensity;
    A two-dimensional spectroscopic measurement method comprising:
  2.  前記時間軸上における前記第4の光周波数コムと前記第5の光周波数コムとの位相のずれに応じて前記繰り返し周波数を調整する繰り返し周波数調整工程をさらに備える、
     請求項1に記載の2次元分光計測方法。
    A repetition frequency adjustment step of adjusting the repetition frequency according to a phase shift between the fourth optical frequency comb and the fifth optical frequency comb on the time axis;
    The two-dimensional spectroscopic measurement method according to claim 1.
  3.  前記包絡線強度取得工程において、
     透過率の波長依存性が互いに逆である2枚のフィルタのそれぞれを前記包絡線強度が通過したときの透過強度を取得し、
     前記光学情報抽出工程において、
      前記透過強度の比に基づいて前記光学情報を算出する、
     請求項1または請求項2に記載の2次元分光計測方法。
    In the envelope strength acquisition step,
    Obtaining the transmission intensity when the envelope intensity passes through each of the two filters whose transmittance wavelength dependence is opposite to each other;
    In the optical information extraction step,
    Calculating the optical information based on the ratio of the transmitted intensity;
    The two-dimensional spectroscopic measurement method according to claim 1 or 2.
  4.  前記光学情報抽出工程において、
      前記第2の光周波数コムまたは前記第3の光周波数コムに所定の遅延時間を付加し、前記光学情報を含む強度・位相スペクトルを取得する、
     請求項1から請求項3の何れか一項に記載の2次元分光計測方法。
    In the optical information extraction step,
    A predetermined delay time is added to the second optical frequency comb or the third optical frequency comb, and an intensity / phase spectrum including the optical information is acquired.
    The two-dimensional spectroscopic measurement method according to any one of claims 1 to 3.
  5.  前記光学情報は、前記第3の光周波数コム、前記第4の光周波数コム及び前記第5の光周波数コムの何れか1つの光周波数コムの光路上の屈折率の分布、前記屈折率の揺らぎ、前記試料の形状の何れかを含む、
     請求項1から請求項4の何れか一項に記載の2次元分光計測方法。
    The optical information includes a refractive index distribution on an optical path of any one of the third optical frequency comb, the fourth optical frequency comb, and the fifth optical frequency comb, and fluctuation of the refractive index. Including any of the sample shapes,
    The two-dimensional spectroscopic measurement method according to any one of claims 1 to 4.
  6.  周波数軸で零に対して所定のオフセット周波数を有する第1の周波数モードと前記周波数軸で前記第1の周波数モードに対して所定の繰り返し周波数の整数倍の間隔をあけて並ぶ複数の第2の周波数モードとを有し、前記繰り返し周波数が前記オフセット周波数の4倍である第1の光周波数コムを出射する光周波数コム出射部と、
     前記第1の光周波数コムを第2の光周波数コムと第3の光周波数コムに分ける第1の分岐部と、
     前記第2の光周波数コムを第4の光周波数コムと第5の光周波数コムに分ける第2の分岐部と、
     前記第4の光周波数コムの時間軸上の位相を前記第5の光周波数コムの時間軸上の位相に対して90°ずらす位相差付与部と、
     前記第3の光周波数コムまたは前記第4の光周波数コム及び前記第5の光周波数コムは任意の光学情報を含み、前記第4の光周波数コムと前記第3の光周波数コムとを干渉させて第1の干渉信号を生成し、前記第5の光周波数コムと前記第3の光周波数コムとを干渉させて第2の干渉信号を生成する干渉信号生成部と、
     前記第1の干渉信号と前記第2の干渉信号との包絡線強度を取得する包絡線強度取得部と、
     前記包絡線強度に基づいて前記光学情報を抽出する光学情報抽出部と、
     を備える2次元分光計測装置。
    A first frequency mode having a predetermined offset frequency with respect to zero on the frequency axis, and a plurality of second frequency lines arranged at intervals of an integral multiple of a predetermined repetition frequency with respect to the first frequency mode on the frequency axis. An optical frequency comb emitting unit that emits a first optical frequency comb having a frequency mode and the repetition frequency is four times the offset frequency;
    A first branch that divides the first optical frequency comb into a second optical frequency comb and a third optical frequency comb;
    A second branch that divides the second optical frequency comb into a fourth optical frequency comb and a fifth optical frequency comb;
    A phase difference providing unit that shifts the phase on the time axis of the fourth optical frequency comb by 90 ° with respect to the phase on the time axis of the fifth optical frequency comb;
    The third optical frequency comb or the fourth optical frequency comb and the fifth optical frequency comb contain arbitrary optical information, and cause the fourth optical frequency comb and the third optical frequency comb to interfere with each other. Generating a first interference signal, and causing the fifth optical frequency comb and the third optical frequency comb to interfere with each other to generate a second interference signal;
    An envelope strength acquisition unit for acquiring an envelope strength of the first interference signal and the second interference signal;
    An optical information extraction unit that extracts the optical information based on the envelope intensity;
    A two-dimensional spectroscopic measurement apparatus.
  7.  前記位相差付与部から出射された前記第4の光周波数コム及び前記第5の光周波数コムの一部を取得し、前記光周波数コム出射部にフィードバックするフィードバック機構をさらに備える、
     請求項6に記載の2次元分光計測装置。
    A feedback mechanism for acquiring a part of the fourth optical frequency comb and the fifth optical frequency comb emitted from the phase difference providing unit and feeding back to the optical frequency comb output unit;
    The two-dimensional spectroscopic measurement apparatus according to claim 6.
  8.  前記包絡線強度取得部は、
      透過率の波長依存性が互いに逆である2枚のフィルタを備え、
      前記包絡線強度が前記2枚のフィルタのそれぞれを通過したときの透過強度を取得し、
     前記光学情報抽出部は、
      前記透過強度の比に基づいて前記光学情報を算出する、
     請求項6または請求項7に記載の2次元分光計測装置。
    The envelope strength acquisition unit
    It has two filters whose wavelength dependency of transmittance is opposite to each other,
    Obtaining the transmission intensity when the envelope intensity passes through each of the two filters;
    The optical information extraction unit
    Calculating the optical information based on the ratio of the transmitted intensity;
    The two-dimensional spectroscopic measurement apparatus according to claim 6 or 7.
  9.  前記第2の光周波数コムまたは前記第3の光周波数コムに所定の遅延時間を付加する遅延機構をさらに備え、
     前記光学情報抽出部において、
      前記光学情報を含む強度・位相スペクトルを取得する、
     請求項6から請求項8の何れか一項に記載の2次元分光計測装置。
    A delay mechanism for adding a predetermined delay time to the second optical frequency comb or the third optical frequency comb;
    In the optical information extraction unit,
    Obtaining an intensity / phase spectrum including the optical information;
    The two-dimensional spectroscopic measurement apparatus according to any one of claims 6 to 8.
  10.  前記光学情報は、前記第3の光周波数コム、前記第4の光周波数コム及び前記第5の光周波数コムの何れか1つの光周波数コムの光路上の屈折率の分布、前記屈折率の揺らぎ、前記第3の光周波数コムの進路上に、または前記第4の光周波数コム及び前記第5の光周波数コムの進路上に配置した試料の形状の何れかを含む、
     請求項6から請求項9の何れか一項に記載の2次元分光計測装置。
    The optical information includes a refractive index distribution on an optical path of any one of the third optical frequency comb, the fourth optical frequency comb, and the fifth optical frequency comb, and fluctuation of the refractive index. Any of the shapes of the samples arranged on the path of the third optical frequency comb or on the paths of the fourth optical frequency comb and the fifth optical frequency comb,
    The two-dimensional spectroscopic measurement apparatus according to any one of claims 6 to 9.
PCT/JP2019/001898 2018-03-02 2019-01-22 Two-dimensional spectroscopic measurement method and two-dimensional spectroscopic measurement device WO2019167478A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019509004A JP7194438B2 (en) 2018-03-02 2019-01-22 Two-dimensional spectroscopic measurement method and two-dimensional spectroscopic measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018038101 2018-03-02
JP2018-038101 2018-03-02

Publications (1)

Publication Number Publication Date
WO2019167478A1 true WO2019167478A1 (en) 2019-09-06

Family

ID=67805795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001898 WO2019167478A1 (en) 2018-03-02 2019-01-22 Two-dimensional spectroscopic measurement method and two-dimensional spectroscopic measurement device

Country Status (2)

Country Link
JP (1) JP7194438B2 (en)
WO (1) WO2019167478A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7123402B1 (en) * 2006-01-17 2006-10-17 Lucent Technologies Inc. Cloning optical-frequency comb sources
US20110069309A1 (en) * 2009-09-18 2011-03-24 Newbury Nathan R Comb-based spectroscopy with synchronous sampling for real-time averaging
JP2011529180A (en) * 2008-07-25 2011-12-01 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Synchronous interferometer with frequency comb
JP2012013574A (en) * 2010-07-01 2012-01-19 Optical Comb Inc Optical type measurement device and prism for interferometer of the same
JP2013507005A (en) * 2009-10-02 2013-02-28 イムラ アメリカ インコーポレイテッド Optical signal processing by mode-locked laser
JP2015155822A (en) * 2014-02-20 2015-08-27 株式会社東京精密 Optical signal generation device, distance measurement device, spectroscopic characteristic measurement device, frequency response measurement device, and optical signal generation method
JP2017090259A (en) * 2015-11-10 2017-05-25 国立大学法人電気通信大学 Method for correcting refractive index, and method and device for measuring distance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7123402B1 (en) * 2006-01-17 2006-10-17 Lucent Technologies Inc. Cloning optical-frequency comb sources
JP2011529180A (en) * 2008-07-25 2011-12-01 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Synchronous interferometer with frequency comb
US20110069309A1 (en) * 2009-09-18 2011-03-24 Newbury Nathan R Comb-based spectroscopy with synchronous sampling for real-time averaging
JP2013507005A (en) * 2009-10-02 2013-02-28 イムラ アメリカ インコーポレイテッド Optical signal processing by mode-locked laser
JP2012013574A (en) * 2010-07-01 2012-01-19 Optical Comb Inc Optical type measurement device and prism for interferometer of the same
JP2015155822A (en) * 2014-02-20 2015-08-27 株式会社東京精密 Optical signal generation device, distance measurement device, spectroscopic characteristic measurement device, frequency response measurement device, and optical signal generation method
JP2017090259A (en) * 2015-11-10 2017-05-25 国立大学法人電気通信大学 Method for correcting refractive index, and method and device for measuring distance

Also Published As

Publication number Publication date
JPWO2019167478A1 (en) 2021-01-07
JP7194438B2 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
JP6008299B2 (en) Optical interferometer, information acquisition apparatus, and information acquisition method
CN106537104B (en) Device and method for light beam characterization
EP2409140B1 (en) Coherent anti-stokes raman spectroscopy
JP2022109486A (en) Optical measurement device and optical measurement method
CN110274880A (en) A kind of optical spectrum detecting method and system of high-precision spatial resolution
JP2010008139A (en) Terahertz measuring instrument, time waveform acquiring method, terahertz measuring method and inspection device
JP7194437B2 (en) Interference signal strength acquisition method and interference signal strength acquisition device
KR101398835B1 (en) Spectral interferometer using comb generation and detection technique for real-time profile measurement
WO2019167478A1 (en) Two-dimensional spectroscopic measurement method and two-dimensional spectroscopic measurement device
EP3327411A1 (en) Optical system
WO2014116128A1 (en) Acousto-optic rf signal spectrum analyzer
JP2015197513A (en) Light source device, and information acquisition device using the same
JP7079509B2 (en) Measuring device and irradiation device
JPWO2017002535A1 (en) Measuring device
JP6765648B2 (en) Photodetector, photodetector and photodetector
JP7272652B2 (en) Two-dimensional spectroscopy and two-dimensional spectroscopic device
JP7128516B2 (en) How to measure interference signals in dual comb spectroscopy
JP2014092425A (en) Optical interference tomographic imaging apparatus and optical interference tomographic imaging method
WO2023027104A1 (en) Wavefront control device and adaptive optics device
JP3992699B2 (en) Time-resolved spectrometer
JP2016029340A (en) Measuring device
JP6205907B2 (en) Imaging device
KR102320418B1 (en) Method and apparatus for measuring an object
Kato et al. All-optical Hilbert transform with optical frequency comb for one-shot three-dimensional imaging
Veenendaal et al. Applying Energy Absorption Interferometry to THz direct detectors using photomixers

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019509004

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760780

Country of ref document: EP

Kind code of ref document: A1