JP7194437B2 - Interference signal strength acquisition method and interference signal strength acquisition device - Google Patents

Interference signal strength acquisition method and interference signal strength acquisition device Download PDF

Info

Publication number
JP7194437B2
JP7194437B2 JP2019509000A JP2019509000A JP7194437B2 JP 7194437 B2 JP7194437 B2 JP 7194437B2 JP 2019509000 A JP2019509000 A JP 2019509000A JP 2019509000 A JP2019509000 A JP 2019509000A JP 7194437 B2 JP7194437 B2 JP 7194437B2
Authority
JP
Japan
Prior art keywords
optical frequency
frequency comb
optical
interference signal
comb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019509000A
Other languages
Japanese (ja)
Other versions
JPWO2019167476A1 (en
Inventor
薫 美濃島
峰士 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE UNIVERSITY OF ELECTRO-COMUNICATINS
Original Assignee
THE UNIVERSITY OF ELECTRO-COMUNICATINS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE UNIVERSITY OF ELECTRO-COMUNICATINS filed Critical THE UNIVERSITY OF ELECTRO-COMUNICATINS
Publication of JPWO2019167476A1 publication Critical patent/JPWO2019167476A1/en
Application granted granted Critical
Publication of JP7194437B2 publication Critical patent/JP7194437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

本発明は、干渉信号強度取得方法及び干渉信号強度取得装置に関する。本願は、2018年3月2日に、日本に出願された特願2018-038103号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to an interference signal strength acquisition method and an interference signal strength acquisition apparatus. This application claims priority based on Japanese Patent Application No. 2018-038103 filed in Japan on March 2, 2018, the content of which is incorporated herein.

従来、分光情報を得る手法として、撮像法やフーリエ変換赤外分光法(Fourier Transform Infrared Spectroscopy:FT-IR)、分散型の赤外分光法などをはじめとする多くの手法が用いられている。これらの手法では、2次元の空間情報と1次元の波長情報とを同時に得ることは困難であった。以下、2次元の空間情報と1次元の波長情報とをまとめて、2次元分光情報という場合がある。 Conventionally, many techniques such as imaging, Fourier Transform Infrared Spectroscopy (FT-IR), and dispersive infrared spectroscopy have been used as techniques for obtaining spectral information. With these methods, it is difficult to obtain two-dimensional spatial information and one-dimensional wavelength information at the same time. Hereinafter, two-dimensional spatial information and one-dimensional wavelength information may be collectively referred to as two-dimensional spectral information.

近年、天文学や地球科学、物性分野などの学術分野では、2次元分光情報に含まれる各情報を同時にリアルタイムで取得可能な2次元分光への期待が高まっている。2次元分光は、面分光、あるいはハイパースペクトルイメージングとも呼ばれる。2次元分光情報が得られれば、例えば取得データから任意の波長の画像を抽出でき、例えば銀河などの拡がった天体について詳細に解析できる。従来の2次元分光法では、例えば2次元平面の各点(複数の測定領域)をスキャンしつつ、各点についてFT-IRを行い、2次元分光情報を取得できる。ところが、従来の2次元分光法では空間掃引に時間がかかるため、動的対象物の計測が困難であるという問題があった。一方、一度に2次元分光情報を取得できれば、様々な動的対象物の分光計測を正確に行うことができる。 In recent years, in academic fields such as astronomy, earth science, and physical physics, there are increasing expectations for two-dimensional spectroscopy that can simultaneously acquire each piece of information included in two-dimensional spectroscopic information in real time. Two-dimensional spectroscopy is also called area spectroscopy or hyperspectral imaging. If two-dimensional spectral information can be obtained, for example, an image of an arbitrary wavelength can be extracted from the acquired data, and an extended celestial body such as a galaxy can be analyzed in detail. In the conventional two-dimensional spectroscopy, for example, while scanning each point (a plurality of measurement areas) on a two-dimensional plane, FT-IR is performed for each point, thereby acquiring two-dimensional spectral information. However, the conventional two-dimensional spectroscopic method has a problem that it is difficult to measure a dynamic object because it takes time to sweep the space. On the other hand, if two-dimensional spectroscopic information can be acquired at once, spectroscopic measurement of various dynamic objects can be accurately performed.

2次元分光の手法としては、例えば可変バンドパスフィルタで透過させる波長帯を掃引しながら取得する手法などが挙げられる。非特許文献1には、可変バンドパスフィルタで透過させる波長帯を掃引しつつ、2次元の空間情報と1次元の波長情報とを取得する手法に適用可能な可変バンドパスフィルタが開示されている。 As a method of two-dimensional spectroscopy, for example, there is a method of acquiring while sweeping a wavelength band to be transmitted by a variable bandpass filter. Non-Patent Document 1 discloses a variable bandpass filter that can be applied to a method of acquiring two-dimensional spatial information and one-dimensional wavelength information while sweeping the wavelength band transmitted by the variable bandpass filter. .

H. R. Morris, C. C. Hoyt, P. Miller and P. J. Treado, “Liquid Crystal Tunable Filter Raman Chemical Imaging,” Appl. Spectrosc. vol. 50, no. 6, pp. 805-811 (1996).H. R. Morris, C. C. Hoyt, P. Miller and P. J. Treado, "Liquid Crystal Tunable Filter Raman Chemical Imaging," Appl. Spectrosc. vol. 50, no. 6, pp. 805-811 (1996).

しかしながら、非特許文献1に開示されている可変バンドパスフィルタで異なる波長帯の光を透過させて2次元の空間情報と1次元の波長情報とを取得する場合、波長帯を掃引する必要があるため、掃引時間がかかり、瞬時に高解像度の波長情報やスペクトル分布を得るのは困難であるという問題があった。そのため、上述の可変バンドパスフィルタを用いて波長帯を掃引する2次元分光は、動的現象の計測には不向きであった。このような問題を解決するために、波長帯や遅延時間の掃引をせずに波長情報を直接取得可能とする技術が求められていた。 However, when acquiring two-dimensional spatial information and one-dimensional wavelength information by transmitting light in different wavelength bands with the variable bandpass filter disclosed in Non-Patent Document 1, it is necessary to sweep the wavelength band. Therefore, there is a problem that it takes a long time to sweep, and it is difficult to instantaneously obtain high-resolution wavelength information and spectral distribution. Therefore, two-dimensional spectroscopy that sweeps the wavelength band using the variable bandpass filter described above is not suitable for measuring dynamic phenomena. In order to solve such problems, there has been a demand for a technology that enables direct acquisition of wavelength information without sweeping the wavelength band or delay time.

測定対象の試料の波長情報を直接取得可能とする1つの方法として、試料の光学情報を含まない光パルス列と試料の光学情報を含む光パルス列とのスペクトル干渉を用いて、波長依存の干渉信号の包絡線強度を測定する方法が挙げられる。また、波長依存の干渉信号の包絡線強度を測定する手段として、例えばヒルベルト変換に基づく手法が挙げられる。ところが、ヒルベルト変換では高速フーリエ変換(Fast Fourier Transform:FFT)を行うので、変換対象の一連の干渉波形を予め取得しなければならない。そのため、ヒルベルト変換に基づく2次元分光法では、ある瞬間での包絡線強度を算出できないという問題があった。 As one method for directly obtaining wavelength information of a sample to be measured, spectral interference between an optical pulse train that does not contain optical information of the sample and an optical pulse train that contains optical information of the sample is used to generate a wavelength-dependent interference signal. A method of measuring the envelope strength is included. Also, as means for measuring the envelope intensity of the wavelength-dependent interference signal, for example, a method based on the Hilbert transform can be used. However, since the Hilbert transform performs Fast Fourier Transform (FFT), a series of interference waveforms to be transformed must be acquired in advance. Therefore, the two-dimensional spectroscopic method based on the Hilbert transform has a problem that the envelope intensity at a certain moment cannot be calculated.

本発明は、上述の問題を解決するためになされたものであって、瞬時に干渉信号の包絡線強度を取得可能な干渉信号強度取得方法及び干渉信号強度取得装置を提供する。 SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and provides an interference signal strength acquisition method and an interference signal strength acquisition apparatus capable of instantaneously acquiring the envelope curve strength of an interference signal.

本発明の干渉信号強度取得方法は、周波数軸で零に対して所定のオフセット周波数を有する第1の周波数モードと前記周波数軸で前記第1の周波数モードに対して所定の繰り返し周波数の整数倍の間隔をあけて並ぶ複数の第2の周波数モードとを有し、前記繰り返し周波数が前記オフセット周波数の4倍である第1の光周波数コムを生成する光周波数コム生成工程と、前記第1の光周波数コムを第2の光周波数コムと第3の光周波数コムに分け、前記第2の光周波数コムを第4の光周波数コムと第5の光周波数コムに分け、前記第4の光周波数コムの時間軸上の位相を前記第5の光周波数コムの時間軸上の位相に対して90°ずらす位相差付与工程と、前記第3の光周波数コム、または前記第4の光周波数コム及び前記第5の光周波数コムは任意の光学情報を含み、前記第4の光周波数コムと前記第3の光周波数コムとを干渉させて第1の干渉信号を生成し、前記第5の光周波数コムと前記第3の光周波数コムとを干渉させて第2の干渉信号を生成する干渉信号生成工程と、前記第1の干渉信号と前記第2の干渉信号から包絡線強度を取得する包絡線強度取得工程と、を備える。 The interference signal strength acquisition method of the present invention includes a first frequency mode having a predetermined offset frequency with respect to zero on the frequency axis and an integral multiple of a predetermined repetition frequency for the first frequency mode on the frequency axis. an optical frequency comb generating step for generating a first optical frequency comb having a plurality of spaced apart second frequency modes, wherein the repetition frequency is four times the offset frequency; dividing the frequency comb into a second optical frequency comb and a third optical frequency comb, dividing the second optical frequency comb into a fourth optical frequency comb and a fifth optical frequency comb, and dividing the fourth optical frequency comb A phase difference providing step of shifting the phase on the time axis of the fifth optical frequency comb by 90° with respect to the phase on the time axis of the fifth optical frequency comb, the third optical frequency comb, or the fourth optical frequency comb and the a fifth optical frequency comb containing arbitrary optical information, causing interference between the fourth optical frequency comb and the third optical frequency comb to generate a first interference signal, and the fifth optical frequency comb An interference signal generation step of generating a second interference signal by interfering with the third optical frequency comb, and an envelope strength of obtaining an envelope strength from the first interference signal and the second interference signal and an obtaining step.

上述の干渉信号強度取得方法において、前記時間軸上における前記第4の光周波数コムと前記第5の光周波数コムとの位相のずれに応じて前記繰り返し周波数を調整する繰り返し周波数調整工程をさらに備えてもよい。 The interference signal intensity acquisition method described above further includes a repetition frequency adjustment step of adjusting the repetition frequency according to a phase shift between the fourth optical frequency comb and the fifth optical frequency comb on the time axis. may

本発明の干渉信号強度取得装置は、周波数軸で零に対して所定のオフセット周波数を有する第1の周波数モードと前記周波数軸で前記第1の周波数モードに対して所定の繰り返し周波数の整数倍の間隔をあけて並ぶ複数の第2の周波数モードとを有し、前記繰り返し周波数が前記オフセット周波数の4倍である第1の光周波数コムを出射する光周波数コム出射部と、前記第1の光周波数コムを第2の光周波数コムと第3の光周波数コムに分ける第1の分岐部と、前記第2の光周波数コムを第4の光周波数コムと第5の光周波数コムに分ける第2の分岐部と、前記第4の光周波数コムの時間軸上の位相を前記第5の光周波数コムの時間軸上の位相に対して90°ずらす位相差付与部と、前記第3の光周波数コム、または前記第4の光周波数コム及び前記第5の光周波数コムは任意の光学情報を含み、前記第4の光周波数コムと前記第3の光周波数コムとを干渉させて第1の干渉信号を生成し、前記第5の光周波数コムと前記第3の光周波数コムとを干渉させて第2の干渉信号を生成する干渉信号生成部と、前記第1の干渉信号と前記第2の干渉信号との包絡線強度を取得する包絡線強度取得部と、を備える。 The interference signal strength acquisition apparatus of the present invention includes a first frequency mode having a predetermined offset frequency with respect to zero on the frequency axis and an integral multiple of a predetermined repetition frequency for the first frequency mode on the frequency axis. an optical frequency comb output unit for outputting a first optical frequency comb having a plurality of spaced second frequency modes, the repetition frequency being four times the offset frequency; and the first light. A first branching section that divides the frequency comb into a second optical frequency comb and a third optical frequency comb, and a second branching section that divides the second optical frequency comb into a fourth optical frequency comb and a fifth optical frequency comb. a branching unit, a phase difference providing unit that shifts the phase on the time axis of the fourth optical frequency comb by 90° with respect to the phase on the time axis of the fifth optical frequency comb, and the third optical frequency The comb, or the fourth optical frequency comb and the fifth optical frequency comb contain arbitrary optical information, and the fourth optical frequency comb and the third optical frequency comb are caused to interfere to generate a first interference an interference signal generator that generates a signal and causes the fifth optical frequency comb and the third optical frequency comb to interfere with each other to generate a second interference signal; and an envelope strength obtaining unit that obtains the strength of the envelope with respect to the interference signal.

上述の干渉信号強度取得装置において、前記位相差付与部から出射された前記第4の光周波数コム及び前記第5の光周波数コムの一部を取得し、前記光周波数コム出射部にフィードバックするフィードバック機構をさらに備えてもよい。 In the interference signal strength acquisition device described above, a part of the fourth optical frequency comb and the fifth optical frequency comb emitted from the phase difference applying unit is acquired, and feedback is provided to the optical frequency comb output unit A mechanism may be further provided.

本発明によれば、瞬時に干渉信号の包絡線強度を取得可能な干渉信号強度取得方法及び干渉信号強度取得装置が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the interference signal strength acquisition method and interference signal strength acquisition apparatus which can acquire the envelope curve strength of an interference signal instantaneously are provided.

本発明の2次元分光計測方法を説明するための図であり、光周波数コムの時間軸上の電場分布(上段)及び周波数軸上の強度分布(下段)の模式図である。It is a figure for demonstrating the two-dimensional spectroscopy measurement method of this invention, and is a schematic diagram of the electric field distribution on a time-axis (upper stage) and intensity distribution (lower stage) on a frequency-axis of an optical frequency comb. 繰り返し周波数がキャリア・エンベロップ・オフセットの4倍である関係を保つように制御された光周波数コムの時間軸上の電場分布を示す模式図である。FIG. 4 is a schematic diagram showing the electric field distribution on the time axis of an optical frequency comb controlled so as to maintain the relationship that the repetition frequency is four times the carrier envelope offset. 互いに位相が90°ずれた光周波数コム(光パルス列)を生成するパルス生成光学系の概略図である。1 is a schematic diagram of a pulse generating optical system for generating optical frequency combs (optical pulse trains) that are 90° out of phase with each other; FIG. 光周波数コムにおける時間軸上で1番目の光パルスと2番目の光パルスとの時間間隔を説明するための模式図である。FIG. 4 is a schematic diagram for explaining the time interval between the first optical pulse and the second optical pulse on the time axis in the optical frequency comb; 光周波数コムの光路に生じた変動を安定化させる光学系の一例を示す概略図である。FIG. 4 is a schematic diagram showing an example of an optical system for stabilizing fluctuations occurring in the optical path of an optical frequency comb; 本発明の2次元分光計測装置に適用可能な干渉信号強度取得装置の構成を示す概略図である。It is a schematic diagram showing the configuration of an interference signal intensity acquisition device that can be applied to the two-dimensional spectroscopic measurement device of the present invention. 図6に示す干渉信号強度取得装置及び図11に示す2次元分光計測装置の遅延機構の構成を示す模式図である。11. It is a schematic diagram which shows the structure of the delay mechanism of the interference signal intensity|strength acquisition apparatus shown in FIG. 6, and the two-dimensional spectroscopy measurement apparatus shown in FIG. 図6に示す干渉信号強度取得装置のハーフミラーにおける光周波数コムの透過及び反射の様子を示す斜視図である。FIG. 7 is a perspective view showing transmission and reflection of an optical frequency comb on a half mirror of the interference signal intensity acquisition device shown in FIG. 6 ; 図6に示す干渉信号強度取得装置の別のハーフミラーにおける光周波数コムの透過及び反射の様子を示す斜視図である。FIG. 7 is a perspective view showing how an optical frequency comb is transmitted and reflected by another half mirror of the interference signal intensity acquisition device shown in FIG. 6 ; 図6に示す干渉信号強度取得装置のさらに別のハーフミラーにおける光周波数コムの透過及び反射の様子を示す斜視図である。FIG. 7 is a perspective view showing how an optical frequency comb is transmitted and reflected by still another half mirror of the interference signal intensity acquisition device shown in FIG. 6 ; 互いに位相が90°ずれた干渉信号の包絡線強度分布を示す模式図である。FIG. 4 is a schematic diagram showing envelope intensity distributions of interference signals that are out of phase with each other by 90°; 本発明の2次元分光計測装置の構成を示す概略図である。1 is a schematic diagram showing the configuration of a two-dimensional spectrometer of the present invention; FIG. 図12に示す2次元分光計測装置のフィルタの透過率の波長依存性を示すグラフである。13 is a graph showing the wavelength dependence of the transmittance of the filter of the two-dimensional spectrometer shown in FIG. 12;

以下、本発明の干渉信号強度取得方法及び干渉信号強度取得装置の実施形態について、図面を参照して説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of an interference signal strength acquisition method and an interference signal strength acquisition device of the present invention will be described with reference to the drawings.

<原理的説明>
図1は、光周波数コムの時間軸上の電場分布(上段)及び周波数軸上の強度分布(下段)を示す模式図である。周波数軸上の強度分布は、スペクトル分布を表す。図1の上段に示すように、一定の繰り返しで発振される光パルス列の繰り返し時間Trepと周波数間隔frepとの間には、(1)式に示す関係が成り立つ。
<Explanation of principle>
FIG. 1 is a schematic diagram showing an electric field distribution on the time axis (upper stage) and an intensity distribution on the frequency axis (lower stage) of an optical frequency comb. The intensity distribution on the frequency axis represents the spectral distribution. As shown in the upper part of FIG. 1, the relationship shown in Equation (1) holds between the repetition time T rep and the frequency interval f rep of the optical pulse train that is oscillated with constant repetition.

Figure 0007194437000001
Figure 0007194437000001

それぞれの光パルス列は、光源の共振器などの内部で伝搬する多くの縦モードの重ね合わせから成り立っている。光パルス列は、これらの縦モードの重ね合わせの波である搬送波と、搬送波の包絡線を構成する波束によって構成されている。搬送波は、キャリアとも呼ばれる。搬送波の包絡線は、エンベロップとも呼ばれる。このような光パルス列では、搬送波の速度と波束の速度は互いに異なるため、時間の経過に伴い、位相差が生じる。レーザー共振器は分散媒質によって構成される。時間軸上で所定の繰り返し時間Trepの間隔ごとに繰り返し発せられる光パルス列では、隣り合うパルス間に位相のずれφCEOが生じる。位相のずれφCEOの周期は、時間TCEOで一周期する。Each optical pulse train consists of a superposition of many longitudinal modes propagating inside the cavity of the light source. An optical pulse train is composed of a carrier wave, which is a superposed wave of these longitudinal modes, and a wave packet that constitutes the envelope of the carrier wave. A carrier wave is also called a carrier. A carrier envelope is also called an envelope. In such an optical pulse train, the velocity of the carrier wave and the velocity of the wave packet are different from each other, so a phase difference occurs over time. A laser cavity is composed of a dispersive medium. In an optical pulse train that is repeatedly emitted at intervals of a predetermined repetition time T rep on the time axis, a phase shift φ CEO occurs between adjacent pulses. The period of phase shift φ CEO is one cycle at time T CEO .

時間軸上における上述の超短パルス列をフーリエ変換し、周波数軸上で観測すると、図1の下段に示すように、互いに繰り返し時間Trepの逆数に相当する繰り返し周波数frepの間隔をあけて並んだ多数の周波数モードが観測される。When the above-mentioned ultrashort pulse train on the time axis is Fourier transformed and observed on the frequency axis, as shown in the lower part of FIG. However, many frequency modes are observed.

図1の下段に示すように、光周波数コムは、周波数軸で零に対して所定のキャリア・エンベロップ・オフセット(Carrier Envelope Offset: CEO、オフセット周波数)fCEOを有する周波数モード(第1の周波数モード)fと、周波数軸で周波数モードfに対して所定の繰り返し周波数frepの整数倍の間隔をあけて並ぶ複数の周波数モード(第2の周波数モード)fと、を有する。光周波数コムのキャリア・エンベロップ・オフセットfCEOは、時間TCEOの逆数に相当する。キャリア・エンベロップ・オフセットfCEO、位相のずれφCEO、時間TCEOの間には、(2)式に示す関係が成り立つ。As shown in the lower part of FIG. 1, the optical frequency comb has a frequency mode (first frequency mode ) f 0 and a plurality of frequency modes (second frequency modes) f m arranged on the frequency axis at intervals of integral multiples of a predetermined repetition frequency f rep with respect to the frequency mode f 0 . The carrier envelope offset f CEO of the optical frequency comb corresponds to the reciprocal of the time T CEO . The relationship shown in Equation (2) holds among the carrier envelope offset f CEO , phase shift φ CEO , and time T CEO .

Figure 0007194437000002
Figure 0007194437000002

光周波数コムのn番目のスペクトルの周波数は、繰り返し周波数frepとキャリア・エンベロップ・オフセットfCEOとをパラメータとして、(3)式のように表される。The frequency of the n-th spectrum of the optical frequency comb is represented by Equation (3) using the repetition frequency f rep and the carrier envelope offset f CEO as parameters.

Figure 0007194437000003
Figure 0007194437000003

上述の相互関係をふまえ、光周波数コムの複数の周波数モードに関するパラメータを制御することで、搬送波や包絡線を制御することができる。本実施形態では、光周波数コムの2つのパラメータ、すなわち繰り返し周波数frepとキャリア・エンベロップ・オフセットfCEOが(4)式の関係を保つように、光周波数コムの複数の周波数モードに関するパラメータを制御する。Based on the interrelationship described above, the carrier wave and envelope can be controlled by controlling the parameters of the multiple frequency modes of the optical frequency comb. In this embodiment, the parameters for multiple frequency modes of the optical frequency comb are controlled so that the two parameters of the optical frequency comb, that is, the repetition frequency f rep and the carrier envelope offset f CEO maintain the relationship of equation (4). do.

Figure 0007194437000004
Figure 0007194437000004

図2は、繰り返し周波数frepとキャリア・エンベロップ・オフセットfCEOが(4)式の関係を保つように制御された光周波数コムの時間軸上の電場分布を示す模式図である。図2に示すように、時間軸上で隣り合う光パルスの位相のずれは、(π/2)=90°になる。基準とする光パルスから時間軸上で4つ前方の光パルスには、基準とする光パルスと同じ位相及び波形パターンが表れる。時間TCEOとキャリア・エンベロップ・オフセットfCEOとの間には、(5)式の関係が成り立つ。FIG. 2 is a schematic diagram showing the electric field distribution on the time axis of an optical frequency comb in which the repetition frequency f rep and the carrier envelope offset f CEO are controlled to maintain the relationship of formula (4). As shown in FIG. 2, the phase shift between optical pulses adjacent to each other on the time axis is (π/2)=90°. The same phase and waveform pattern as those of the reference optical pulse appear in the optical pulse that is four ahead on the time axis from the reference optical pulse. The relationship of equation (5) holds between the time T CEO and the carrier envelope offset f CEO .

Figure 0007194437000005
Figure 0007194437000005

図3は、互いに位相が90°ずれた光パルス列を生成する光学系120の一例を示す概略図である。図3に示すように、光学系120は、光周波数コム出射部103と、ハーフミラー(第2の分岐部)112、ハーフミラー118と、全反射ミラー114,116と、遅延付与部(位相差付与部)123とを備える。光周波数コム出射部103は、不図示のファンクションジェネレーターなどを備える。光周波数コム出射部103は、ファンクションジェネレーターの操作によって繰り返し周波数frepとキャリア・エンベロップ・オフセットfCEOが(4)式の関係を保つように、主にキャリア・エンベロップ・オフセットfCEOを制御し、キャリア・エンベロップ・オフセットfCEOが制御された光周波数コムC1を出射する。FIG. 3 is a schematic diagram showing an example of an optical system 120 that generates optical pulse trains that are 90° out of phase with each other. As shown in FIG. 3, the optical system 120 includes an optical frequency comb output unit 103, a half mirror (second branch unit) 112, a half mirror 118, total reflection mirrors 114 and 116, and a delay imparting unit (phase difference provision unit) 123. The optical frequency comb output unit 103 includes a function generator (not shown) and the like. The optical frequency comb output unit 103 mainly controls the carrier envelope offset f CEO so that the repetition frequency f rep and the carrier envelope offset f CEO maintain the relationship of formula (4) by operating the function generator, A carrier-envelope offset f CEO controlled optical frequency comb C1 is launched.

光周波数コムC1は、ハーフミラー112を透過し、光周波数コムC4と光周波数コムC5に分離される。光周波数コムC4は、全反射ミラー116で反射され、ハーフミラー118に入射する。光周波数コムC5は、ハーフミラー112及び全反射ミラー114で反射され、遅延付与部123を通り、ハーフミラー118に入射する。遅延付与部123は、それぞれの反射面を対向させた2枚の全反射ミラー121,122で構成されている。全反射ミラー114で反射された光周波数コムC5は、遅延付与部123に入射し、光路をずらしつつ全反射ミラー121,122の反射面の間を所定の回数往復し、ハーフミラー118に向けて出射する。ハーフミラー118に入射する光周波数コムC4,C5の一方の位相が他方の位相に対して90°ずれるように、全反射ミラー121,122の位置及び離間距離が調整されている。すなわち、光学系120では、光周波数コムを分岐し、一方を他方に対して、ある光パルスと時間軸上で1つ後の光パルスとの時間差の分だけ、遅延させる。時間軸上で隣り合う光パルスの時間差は、繰り返し時間Trep分に相当する。The optical frequency comb C1 passes through the half mirror 112 and is separated into an optical frequency comb C4 and an optical frequency comb C5. Optical frequency comb C4 is reflected by total reflection mirror 116 and enters half mirror 118 . The optical frequency comb C5 is reflected by the half mirror 112 and the total reflection mirror 114, passes through the delay applying unit 123, and enters the half mirror 118. FIG. The delay imparting section 123 is composed of two total reflection mirrors 121 and 122 with their reflection surfaces facing each other. The optical frequency comb C5 reflected by the total reflection mirror 114 enters the delay applying unit 123, reciprocates a predetermined number of times between the reflection surfaces of the total reflection mirrors 121 and 122 while shifting the optical path, and is directed toward the half mirror 118. emit. The positions and separation distances of the total reflection mirrors 121 and 122 are adjusted so that the phase of one of the optical frequency combs C4 and C5 incident on the half mirror 118 is shifted by 90° from the phase of the other. That is, in the optical system 120, the optical frequency comb is branched, and one is delayed with respect to the other by the time difference between a certain optical pulse and the optical pulse one after on the time axis. The time difference between adjacent optical pulses on the time axis corresponds to the repetition time T rep .

図3に示すように、光学系120では、各種ミラーの振動や空気揺らぎなどによって、光周波数コムC4,C5の各々の光路長差が変動する。このことをふまえ、光周波数コムC1の繰り返し周波数frepを制御し、光周波数コムC1の光パルスの繰り返し時間Trepを微調整することによって、光周波数コムC4,C5の光路差の変動を吸収し、光周波数コムC4,C5を安定させることができる。図4は、時間軸上で基準とする光周波数コムC1の1番目の光パルス〈図3及び図4に示す“1st”の光パルス〉と2番目の光パルス〈図3及び図4に示す“2nd”の光パルス〉との時間間隔を説明するための模式図である。1番目の光パルスと時間軸上で隣り合う2番目の光パルスとの繰り返し時間Trep1,Trep2,Trep3は、繰り返し周波数frep1,frep2,frep3によって(6)式~(8)式のように表される。As shown in FIG. 3, in the optical system 120, the optical path length difference between the optical frequency combs C4 and C5 fluctuates due to vibrations of various mirrors, air fluctuations, and the like. Based on this, the repetition frequency f rep of the optical frequency comb C1 is controlled, and the optical pulse repetition time T rep of the optical frequency comb C1 is finely adjusted to absorb the variation in the optical path difference of the optical frequency combs C4 and C5. and the optical frequency combs C4 and C5 can be stabilized. FIG. 4 shows the first optical pulse <the “1st” optical pulse shown in FIGS. 3 and 4> and the second optical pulse <shown in FIGS. "2nd" light pulse> is a schematic diagram for explaining the time interval. Repetition times T rep1 , T rep2 , and T rep3 between the first optical pulse and the second optical pulse adjacent on the time axis are given by equations (6) to (8) using the repetition frequencies f rep1 , f rep2 , and f rep3 . is expressed as

Figure 0007194437000006
Figure 0007194437000006

Figure 0007194437000007
Figure 0007194437000007

Figure 0007194437000008
Figure 0007194437000008

図4及び(6)式~(8)式に示すTrepとfrepとの相対関係をふまえ、光周波数コムC1の繰り返し周波数frepを制御する。Based on the relative relationship between T rep and f rep shown in FIG. 4 and equations (6) to (8), the repetition frequency f rep of the optical frequency comb C1 is controlled.

図4及び(6)式~(8)式からわかるように、光周波数コム出射部103のファンクションジェネレーターなどを操作し、光周波数コムC1の繰り返し周波数frepを制御することによって、繰り返し時間Trepを制御できる。As can be seen from FIG. 4 and equations (6) to (8), the repetition time T rep can be controlled.

図3に示すように、互いに位相が90°ずれた光周波数コムC4,C5の時間軸上における光パルス1つ分のずれに対して、光周波数コムC4,C5のそれぞれの光路に生じた変動によって、さらに時間差δが加わる、または時間差δが減じられる。図5は、光周波数コムC4,C5の光路に生じた変動を安定化させることが可能な光学系124の一例を示す概略図である。光学系124は、光学系120の構成に加え、ハーフミラー126と、フィードバック機構128と、を備える。ハーフミラー126は、ハーフミラー118より光周波数コムC4,C5の進行方向の前方に配置されている。フィードバック機構128は、ハーフミラー126で分離され、且つハーフミラー126を透過する光周波数コムC4,C5とは異なる光周波数コムC4,C5の進路上に配置されている。ハーフミラー118によって合波され、且つ時間差δを含む光周波数コムC4,C5は、ハーフミラー126で2つに分離される。分離された一方の光周波数コム(第4の光周波数コム及び第5の光周波数コムの一部)C4,C5はハーフミラー126で反射され、フィードバック機構128に入力し、光周波数コム出射部103にフィードバックされる。このことによって、光周波数コムC1の繰り返し周波数frepが調整される。図5に示すように、光周波数コム出射部103から出射される光周波数コムC1の繰り返し時間Trepが時間差δだけ増減される。繰り返し時間Trepが時間差δで調整されることによって、ハーフミラー118に入射する光周波数コムC4,C5同士の位相のずれが再び90°、すなわち光パルス1つ分になる。As shown in FIG. 3, with respect to the shift of one optical pulse on the time axis of the optical frequency combs C4 and C5 that are 90° out of phase with each other, the fluctuations occurring in the optical paths of the optical frequency combs C4 and C5. The time difference δ is further added or reduced by . FIG. 5 is a schematic diagram showing an example of an optical system 124 capable of stabilizing fluctuations occurring in the optical paths of the optical frequency combs C4 and C5. The optical system 124 includes a half mirror 126 and a feedback mechanism 128 in addition to the configuration of the optical system 120 . The half mirror 126 is arranged ahead of the half mirror 118 in the traveling direction of the optical frequency combs C4 and C5. The feedback mechanism 128 is separated by the half mirror 126 and arranged on the paths of the optical frequency combs C4 and C5 different from the optical frequency combs C4 and C5 passing through the half mirror 126 . The optical frequency combs C4 and C5 combined by the half mirror 118 and including the time difference δ are split into two by the half mirror 126 . One of the separated optical frequency combs (a part of the fourth optical frequency comb and the fifth optical frequency comb) C4 and C5 is reflected by the half mirror 126, enters the feedback mechanism 128, and enters the optical frequency comb output section 103. feedback to This adjusts the repetition frequency f rep of the optical frequency comb C1. As shown in FIG. 5, the repetition time T rep of the optical frequency comb C1 output from the optical frequency comb output unit 103 is increased or decreased by the time difference δ. By adjusting the repetition time T rep with the time difference δ, the phase shift between the optical frequency combs C4 and C5 incident on the half mirror 118 again becomes 90°, that is, one optical pulse.

<干渉信号強度取得装置>
図6は、本発明の干渉信号強度取得装置であって、互いに90°だけ位相がずれた干渉強度信号を瞬時に得る干渉強度信号取得光学系130の構成を示す概略図である。干渉強度信号取得光学系130は、光周波数コム出射部103と、部分光学系124Pと、分岐部150と、遅延機構206と、撮像カメラ(包絡線強度取得部)161とを備える。図6に示す部分光学系124Pは、図5に示す光学系124のうち、光周波数コム出射部103を除いた構成を示す。分岐部150は、光周波数コムC6,C7を光周波数コムC3から取り出す。分岐部150は、ハーフミラー(干渉信号生成部)152、ハーフミラー(第1の分岐部)153,155,158と、全反射ミラー154,156,157とを備える。
<Interference signal intensity acquisition device>
FIG. 6 is a schematic diagram showing the configuration of an interference intensity signal acquisition optical system 130 which is an interference signal intensity acquisition apparatus of the present invention and which instantaneously acquires interference intensity signals with a phase difference of 90°. The interference intensity signal acquisition optical system 130 includes an optical frequency comb output unit 103, a partial optical system 124P, a branch unit 150, a delay mechanism 206, and an imaging camera (envelope intensity acquisition unit) 161. A partial optical system 124P shown in FIG. 6 shows a configuration of the optical system 124 shown in FIG. The branching unit 150 extracts the optical frequency combs C6 and C7 from the optical frequency comb C3. The splitter 150 includes a half mirror (interference signal generator) 152 , half mirrors (first splitter) 153 , 155 and 158 , and total reflection mirrors 154 , 156 and 157 .

光周波数コム出射部103は、繰り返し周波数frepがキャリア・エンベロップ・オフセットfCEOの4倍である光周波数コム(第1の光周波数コム)C1を出射する。第1の分岐部104は、光周波数コムC1を光周波数コム(第2の光周波数コム)C2と光周波数コム(第3の光周波数コム)C3に分ける。第2の分岐部105は、光周波数コムC2を光周波数コム(第4の光周波数コム)C4と光周波数コム(第5の光周波数コム)C5に分ける(図5参照)。位相差付与部106は、光周波数コムC4の時間軸上の位相と光周波数コムC5の時間軸上の位相とを90°ずらす。干渉信号生成部107は、光周波数コムC4と任意の光学情報を含む光周波数コム(第3の光周波数コム)C6とを干渉させて干渉信号(第1の干渉信号)IM1を生成し、光周波数コムC5と光学情報を含む光周波数コム(第3の光周波数コム)C7とを干渉させて干渉信号(第2の干渉信号)IM2を生成する。The optical frequency comb output unit 103 outputs an optical frequency comb (first optical frequency comb) C1 whose repetition frequency f rep is four times the carrier envelope offset f CEO . The first branching unit 104 divides the optical frequency comb C1 into an optical frequency comb (second optical frequency comb) C2 and an optical frequency comb (third optical frequency comb) C3. The second branching unit 105 divides the optical frequency comb C2 into an optical frequency comb (fourth optical frequency comb) C4 and an optical frequency comb (fifth optical frequency comb) C5 (see FIG. 5). The phase difference applying unit 106 shifts the phase of the optical frequency comb C4 on the time axis from the phase of the optical frequency comb C5 on the time axis by 90°. The interference signal generation unit 107 generates an interference signal (first interference signal) IM1 by causing the optical frequency comb C4 and an optical frequency comb (third optical frequency comb) C6 containing arbitrary optical information to interfere with each other. An interference signal (second interference signal) IM2 is generated by causing interference between the frequency comb C5 and an optical frequency comb (third optical frequency comb) C7 containing optical information.

本明細書における光学情報は、各光周波数コム自身が有する光学的特性や各光周波数コムの光路上の屈折率の分布・揺らぎ、光路上に配置された試料を通過することにより付加される試料の形状などをすべて含む。例えば、図6に示す干渉強度信号取得光学系130のように試料Sが設置されていない場合、光学情報は光周波数コムC3自身が有する光学的特性や光周波数コムC3,C6,C7の光路上の屈折率の分布・揺らぎを意味する。一方、後述する2次元分光計測装置200のように測定対象の試料Sが配置されている場合、光学情報としては試料Sの形状を含む光学的特性が主体になる。図11に示すように、包絡線強度取得部108は、干渉信号IM1と干渉信号IM2との包絡線強度EVを取得する。 The optical information in this specification refers to the optical characteristics of each optical frequency comb itself, the distribution and fluctuation of the refractive index on the optical path of each optical frequency comb, and the sample added by passing through the sample placed on the optical path. including all the shapes of For example, when the sample S is not installed as in the interference intensity signal acquisition optical system 130 shown in FIG. means the distribution and fluctuation of the refractive index of On the other hand, when a sample S to be measured is arranged as in the two-dimensional spectroscopic measurement device 200 described later, optical characteristics including the shape of the sample S are the main optical information. As shown in FIG. 11, the envelope strength obtaining unit 108 obtains the envelope strength EV of the interference signal IM1 and the interference signal IM2.

図6に示すように、光周波数コム出射部103から出射された光周波数コムC1は、ハーフミラー153によって、光周波数コムC2,C3に分離される。光周波数コムC2は、部分光学系124Pに入射し、上述したように互いに位相が90°だけずれた光周波数コムC4,C5として出射する。一方、ハーフミラー153で反射された光周波数コムC3は、分岐部150に入射し、全反射ミラー154で反射され、ハーフミラー155で光周波数コムC6,C7に分離される。 As shown in FIG. 6, the optical frequency comb C1 emitted from the optical frequency comb emitting portion 103 is separated by the half mirror 153 into optical frequency combs C2 and C3. The optical frequency comb C2 enters the partial optical system 124P and exits as optical frequency combs C4 and C5 that are out of phase with each other by 90° as described above. On the other hand, the optical frequency comb C3 reflected by the half mirror 153 enters the splitter 150, is reflected by the total reflection mirror 154, and is separated by the half mirror 155 into optical frequency combs C6 and C7.

遅延機構206は、光周波数コムC3に所定の遅延時間を付加する機構であり、光周波数コムC3の進路上に配置されている。遅延機構206は、図7に示すように、それぞれの反射面207rが対向配置された2個の全反射プリズム207を有する。遅延機構206が矢印Mに沿って移動することによって、光周波数コムC3の光路長が変わり、所定の遅延時間が付加される。 The delay mechanism 206 is a mechanism that adds a predetermined delay time to the optical frequency comb C3, and is arranged on the path of the optical frequency comb C3. As shown in FIG. 7, the delay mechanism 206 has two total reflection prisms 207 with their reflecting surfaces 207r facing each other. By moving the delay mechanism 206 along the arrow M, the optical path length of the optical frequency comb C3 is changed and a predetermined delay time is added.

図8は、部分光学系124P(すなわち、光学系124)のハーフミラー118における光周波数コムC4の反射及び光周波数コムC5の透過の様子を示す模式図である。図8に示すように、光周波数コムC4,C5のうち、光周波数コムC4は、ハーフミラー118の反射面118aに入射し、上面視で入射方向に対して略直角に反射される。一方、光周波数コムC4,C5のうち、光周波数コムC5は、ハーフミラー118の反射面118aとは反対側の面118b及び反射面118aを透過し、上面視で光周波数コムC4の進路と重なる進路に沿ってハーフミラー118から出射される。高さ方向においては、光周波数コムC4,C5のそれぞれの進路は、互いにずれている。 FIG. 8 is a schematic diagram showing reflection of the optical frequency comb C4 and transmission of the optical frequency comb C5 at the half mirror 118 of the partial optical system 124P (that is, the optical system 124). As shown in FIG. 8, of the optical frequency combs C4 and C5, the optical frequency comb C4 is incident on the reflecting surface 118a of the half mirror 118 and reflected substantially perpendicularly to the incident direction when viewed from above. On the other hand, of the optical frequency combs C4 and C5, the optical frequency comb C5 is transmitted through the reflecting surface 118b and the reflecting surface 118a of the half mirror 118 opposite to the reflecting surface 118a, and overlaps the course of the optical frequency comb C4 in top view. It is emitted from the half mirror 118 along the course. In the height direction, the paths of the optical frequency combs C4 and C5 are deviated from each other.

図9は、分岐部150のハーフミラー158における光周波数コムC6の反射及び光周波数コムC7の透過の様子を示す模式図である。図9に示すように、光周波数コムC6,C7のうち、光周波数コムC6は、ハーフミラー158の反射面158aに入射し、上面視で入射方向に対して略直角に反射される。一方、光周波数コムC6,C7のうち、光周波数コムC7は、ハーフミラー158の反射面158aとは反対側の面158b及び反射面158aを透過し、上面視で光周波数コムC6の進路と重なる進路に沿ってハーフミラー158から出射される。高さ方向においては、光周波数コムC6,C7のそれぞれの進路は、互いにずれている。光周波数コムC6の進路の高さは光周波数コムC4の高さと一致し、光周波数コムC7の高さは光周波数コムC5の高さと一致している。 FIG. 9 is a schematic diagram showing reflection of the optical frequency comb C6 and transmission of the optical frequency comb C7 at the half mirror 158 of the splitter 150. As shown in FIG. As shown in FIG. 9, of the optical frequency combs C6 and C7, the optical frequency comb C6 is incident on the reflecting surface 158a of the half mirror 158 and reflected substantially perpendicularly to the incident direction when viewed from above. On the other hand, among the optical frequency combs C6 and C7, the optical frequency comb C7 is transmitted through the surface 158b opposite to the reflecting surface 158a of the half mirror 158 and the reflecting surface 158a, and overlaps with the path of the optical frequency comb C6 when viewed from above. It is emitted from the half mirror 158 along the course. In the height direction, the paths of the optical frequency combs C6 and C7 are deviated from each other. The height of the course of the optical frequency comb C6 matches the height of the optical frequency comb C4, and the height of the optical frequency comb C7 matches the height of the optical frequency comb C5.

図10は、分岐部150のハーフミラー152における光周波数コムC4,C5の透過及び光周波数コムC6,C7の反射の様子を示す模式図である。図10に示すように、ハーフミラー118から出射された光周波数コムC4,C5は、ハーフミラー152の反射面152aとは反対側の面152bを透過する。一方、ハーフミラー158から出射された光周波数コムC6,C7は、ハーフミラー152の反射面152aによって上面視で入射方向に対して略直角に反射され、面152bを透過した光周波数コムC4,C5と干渉し合い、干渉信号IM1,IM2が生成される。干渉信号IM1は光周波数コムC4,C6同士の干渉信号であり、干渉信号IM2は光周波数コムC5,C7同士の干渉信号である。本実施形態では、図8から図10に示すように、ハーフミラー118における光周波数コムC4,C6同士の照射位置を互いに異ならせ、ハーフミラー158における光周波数コムC5,C7同士の照射位置を互いに異ならせる。このことによって、光周波数コムC4,C6が重なって干渉信号IM1が生成される位置と、光周波数コムC5,C7が重なって干渉信号IM2が生成される位置とを異ならせる。 FIG. 10 is a schematic diagram showing transmission of the optical frequency combs C4 and C5 and reflection of the optical frequency combs C6 and C7 at the half mirror 152 of the splitter 150. FIG. As shown in FIG. 10, the optical frequency combs C4 and C5 emitted from the half mirror 118 pass through the surface 152b of the half mirror 152 opposite to the reflecting surface 152a. On the other hand, the optical frequency combs C6 and C7 emitted from the half mirror 158 are reflected by the reflecting surface 152a of the half mirror 152 at a substantially right angle to the incident direction in a top view, and the optical frequency combs C4 and C5 transmitted through the surface 152b. and generate interference signals IM1 and IM2. The interference signal IM1 is an interference signal between the optical frequency combs C4 and C6, and the interference signal IM2 is an interference signal between the optical frequency combs C5 and C7. In this embodiment, as shown in FIGS. 8 to 10, the irradiation positions of the optical frequency combs C4 and C6 on the half mirror 118 are different from each other, and the irradiation positions of the optical frequency combs C5 and C7 on the half mirror 158 are mutually different. make different. As a result, the position where the optical frequency combs C4 and C6 overlap to generate the interference signal IM1 is different from the position where the optical frequency combs C5 and C7 overlap to generate the interference signal IM2.

光周波数コムC4,C5同士の位相が互いに90°ずれているので、干渉信号IM1,IM2同士の位相は、互いに90°ずれている。図11は、干渉信号IM1,IM2から得られる包絡線強度EVの一例を示すグラフである。撮像カメラ161によって、ある瞬間の干渉信号IM1の強度T1と干渉信号IM2の強度T2を取得すれば、{(T1)+(T2)1/2を算出することによって、包絡線強度EVが瞬時に得られる。Since the optical frequency combs C4 and C5 are out of phase with each other by 90°, the phases of the interference signals IM1 and IM2 are out of phase with each other by 90°. FIG. 11 is a graph showing an example of envelope strength EV obtained from interference signals IM1 and IM2. If the intensity T1 of the interference signal IM1 and the intensity T2 of the interference signal IM2 at a certain moment are obtained by the imaging camera 161, the envelope intensity EV is calculated by calculating {(T1) 2 +(T2) 2 } 1/2 is obtained instantly.

上述のように、包絡線強度EVは、撮像カメラ161によって検出される。撮像カメラ161で検出された包絡線強度EVは、撮像カメラ161に付属の処理部(図示略)によって適宜処理される。処理部は、例えば撮像カメラ161に接続されているコンピュータに内蔵されているプログラムなどである。干渉強度信号取得光学系130では、互いに90°だけ位相がずれた干渉信号IM1,IM2の包絡線強度EVが瞬時に得られる。 The envelope intensity EV is detected by the imaging camera 161 as described above. The envelope intensity EV detected by the imaging camera 161 is appropriately processed by a processing unit (not shown) attached to the imaging camera 161 . The processing unit is, for example, a program installed in a computer connected to the imaging camera 161 . The interference intensity signal acquisition optical system 130 instantaneously obtains the envelope intensity EV of the interference signals IM1 and IM2 that are out of phase with each other by 90°.

<干渉信号強度取得方法>
本発明の干渉信号強度取得方法は、干渉信号強度取得光学系130を用いて干渉信号IM1,IM2の包絡線強度EVを取得可能な方法であり、光周波数コム生成工程と、位相差付与工程と、干渉信号生成工程と、包絡線強度取得工程と、を備える。
<Interference signal intensity acquisition method>
The interference signal intensity acquisition method of the present invention is a method that can acquire the envelope intensity EV of the interference signals IM1 and IM2 using the interference signal intensity acquisition optical system 130, and includes an optical frequency comb generation step and a phase difference provision step. , an interference signal generation step, and an envelope strength acquisition step.

光周波数コム生成工程では、光周波数コムC1を生成する(図1参照)。光周波数コムC1は、周波数軸で零に対して所定のキャリア・エンベロップ・オフセットfCEOを有する周波数モードfと、周波数軸で周波数モードfに対して所定の繰り返し周波数frepの整数倍の間隔をあけて並ぶ複数の周波数モードfと、を有する。光周波数コムC1において、frep=4×fCEOの関係が成立している。前述の関係を成立させるために、光周波数コム出射部103のファンクションジェネレーターを用いて、キャリア・エンベロップ・オフセットfCEO及び繰り返し周波数frepを制御する。In the optical frequency comb generating step, an optical frequency comb C1 is generated (see FIG. 1). The optical frequency comb C1 has a frequency mode f 0 with a predetermined carrier envelope offset f CEO with respect to zero on the frequency axis, and an integer multiple of a predetermined repetition frequency f rep with respect to the frequency mode f 0 on the frequency axis. and a plurality of spaced apart frequency modes fm . In the optical frequency comb C1, the relationship f rep =4×f CEO holds. In order to establish the above relationship, the function generator of the optical frequency comb output unit 103 is used to control the carrier envelope offset f CEO and the repetition frequency f rep .

次に、位相差付与工程では、光周波数コムC1をハーフミラー153で光周波数コムC2と光周波数コムC3に分け、光周波数コムC2をさらにハーフミラー112(図3参照)で光周波数コムC4と光周波数コムC5に分ける。続いて、遅延付与部123によって、光周波数コムC5の時間軸上の位相を光周波数コムC4の時間軸上の位相に対して90°ずらす。 Next, in the phase difference providing step, the optical frequency comb C1 is divided into an optical frequency comb C2 and an optical frequency comb C3 by a half mirror 153, and the optical frequency comb C2 is further divided into an optical frequency comb C4 by a half mirror 112 (see FIG. 3). Divide into optical frequency comb C5. Subsequently, the delay applying unit 123 shifts the phase of the optical frequency comb C5 on the time axis by 90° with respect to the phase of the optical frequency comb C4 on the time axis.

本実施形態では、光周波数コムC3、または光周波数コムC4,C5に任意の光学情報を含む。干渉信号生成工程では、何れかに光学情報を含む光周波数コムC4と光周波数コムC6とを合わせて干渉させ、干渉信号IM1を生成する。干渉信号生成工程では、何れかに光学情報を含む光周波数コムC5と光周波数コムC7とを合わせて干渉させ、干渉信号IM2を生成する。 In this embodiment, optical information is included in optical frequency comb C3 or optical frequency combs C4 and C5. In the interference signal generating step, the optical frequency comb C4 and the optical frequency comb C6, which contain optical information, are combined and caused to interfere with each other to generate the interference signal IM1. In the interference signal generating step, the optical frequency comb C5 and the optical frequency comb C7, which contain optical information, are combined and interfered to generate the interference signal IM2.

次に、包絡線強度取得工程では、干渉信号IM1,IM2を撮像カメラ161で同時に検出し、包絡線強度EVを得る。本実施形態の干渉信号強度取得方法は、上述の各工程に加え、さらに周波数調整工程を備えている。周波数調整工程では、フィードバック機構128によって光周波数コムC4,C5の一部を光周波数コム出射部103にフィードバックし、光周波数コムC4,C5との位相のずれ(時間差δ、図3参照)に応じて繰り返し周波数frepを調整する。Next, in the envelope strength acquisition step, the interference signals IM1 and IM2 are simultaneously detected by the imaging camera 161 to obtain the envelope strength EV. The interference signal strength acquisition method of the present embodiment further includes a frequency adjustment step in addition to the steps described above. In the frequency adjustment step, part of the optical frequency combs C4 and C5 is fed back to the optical frequency comb output unit 103 by the feedback mechanism 128, and the phase shift (time difference δ, see FIG. 3) with the optical frequency combs C4 and C5 is adjusted. to adjust the repetition frequency f rep .

<2次元分光計測装置>
図12は、2次元分光計測装置200の構成を示す概略図である。図12に示すように、2次元分光計測装置200は、上述した干渉強度信号取得光学系130の構成に加え、単体の撮像カメラ161に替えて、波長情報取得部208を備える。2次元分光計測装置200においても、フィードバック機構128によって光周波数コムC4,C5が光周波数コム出射部103にフィードバックされ、光周波数コムC4,C5との位相のずれ(時間差δ、図3参照)に応じて繰り返し周波数frepが調整されている。
<Two-dimensional spectrometer>
FIG. 12 is a schematic diagram showing the configuration of the two-dimensional spectrometer 200. As shown in FIG. As shown in FIG. 12, the two-dimensional spectrometer 200 includes a wavelength information acquisition unit 208 in place of the single imaging camera 161 in addition to the configuration of the interference intensity signal acquisition optical system 130 described above. Also in the two-dimensional spectrometer 200, the optical frequency combs C4 and C5 are fed back to the optical frequency comb output unit 103 by the feedback mechanism 128, and the phase shift (time difference δ, see FIG. 3) with the optical frequency combs C4 and C5 The repetition frequency f rep is adjusted accordingly.

波長情報取得部208は、ハーフミラー231と、全反射ミラー232と、フィルタF1,F2と、互いに同じ画素数を有する2台の撮像カメラ241,242と、画像処理部(光学情報抽出部)250と、を備える。干渉強度信号取得光学系130の全反射ミラー154は、ハーフミラー159に替えられている。分光計測の対象である試料Sは、ハーフミラー159を透過する光周波数コムC3の進路上に配置されている。 The wavelength information acquisition unit 208 includes a half mirror 231, a total reflection mirror 232, filters F1 and F2, two imaging cameras 241 and 242 having the same number of pixels, and an image processing unit (optical information extraction unit) 250. And prepare. The total reflection mirror 154 of the interference intensity signal acquisition optical system 130 is replaced with a half mirror 159 . A sample S to be spectroscopically measured is placed on the path of the optical frequency comb C3 passing through the half mirror 159 .

図12に示すように、ハーフミラー153で反射された光周波数コムC3は、ハーフミラー159を透過し、試料Sに照射される。試料Sから反射された光周波数コムC3には、試料Sの分光情報や位相・形状に関する情報をすべて含む光学情報が含まれる。光周波数コムC3からハーフミラー155によって2つに分けられた光周波数コムC6,C7にも試料Sの光学情報が含まれる。試料Sの光学情報は、干渉信号IM1,IM2に反映される。干渉信号IM1,IM2の包絡線強度EVは、ハーフミラー231によって2つに分けられ、分けられた2つの包絡線強度EV1,EV2はそれぞれフィルタF1,F2を通過する。 As shown in FIG. 12, the optical frequency comb C3 reflected by the half mirror 153 is transmitted through the half mirror 159 and irradiated onto the sample S. As shown in FIG. The optical frequency comb C3 reflected from the sample S contains optical information including all spectral information and phase/shape information of the sample S. The optical information of the sample S is also included in the optical frequency combs C6 and C7 divided into two from the optical frequency comb C3 by the half mirror 155 . Optical information of the sample S is reflected in the interference signals IM1 and IM2. The envelope intensities EV of the interference signals IM1 and IM2 are divided into two by the half mirror 231, and the two divided envelope intensities EV1 and EV2 pass through the filters F1 and F2, respectively.

図13は、フィルタF1,F2の透過率の波長依存性を示すグラフである。図13に示すように、フィルタF1,F2の透過率の波長依存性は互いに逆である。フィルタF1の透過率は、波長が増加するにしたがって概ね低下する。一方、フィルタF2の透過率は、波長が増加するにしたがって概ね上昇する。このようにフィルタF1,F2の透過率の波長依存性が互いに逆であることによって、フィルタF1,F2を通過した包絡線強度EV1,EV2に関する光強度比と波長との1対1対応が成立する。 FIG. 13 is a graph showing the wavelength dependence of transmittance of filters F1 and F2. As shown in FIG. 13, the wavelength dependencies of the transmittances of the filters F1 and F2 are opposite to each other. The transmittance of filter F1 generally decreases as the wavelength increases. On the other hand, the transmittance of filter F2 generally increases as the wavelength increases. Since the wavelength dependencies of the transmittances of the filters F1 and F2 are thus opposite to each other, a one-to-one correspondence is established between the light intensity ratio and the wavelength regarding the envelope intensities EV1 and EV2 that have passed through the filters F1 and F2. .

画像処理部50では、フィルタF1,F2を通して撮像カメラ241,242で取得した試料Sの測定領域ごとの包絡線強度EV1,EV2の透過強度の比が算出される。撮像カメラ241,242の各画素について算出した包絡線強度EV1,EV2の透過強度の比に基づいて、各画素の信号強度比が求まり、包絡線強度EVの分布内の各強度を発現する波長が瞬時に決定される。瞬時に波長情報を得ることで、各空間位置(測定領域)における試料Sから反射された光周波数コムC3の位相情報が計測される。光周波数コムC3の位相情報は、時間差であって、物理的な位置の違いや屈折率の違いを示す。本実施形態では、物理的な位置を瞬時に取得する際には、試料Sから反射された光周波数コムC6の位相スペクトルは基本的に変化しないと想定する。 The image processing unit 50 calculates the transmission intensity ratio of the envelope intensities EV1 and EV2 for each measurement region of the sample S acquired by the imaging cameras 241 and 242 through the filters F1 and F2. Based on the transmission intensity ratio of the envelope intensities EV1 and EV2 calculated for each pixel of the imaging cameras 241 and 242, the signal intensity ratio of each pixel is obtained, and the wavelength that expresses each intensity within the distribution of the envelope intensity EV is determined. determined instantly. By instantaneously obtaining wavelength information, phase information of the optical frequency comb C3 reflected from the sample S at each spatial position (measurement area) is measured. The phase information of the optical frequency comb C3 is a time difference and indicates a difference in physical position and a difference in refractive index. In this embodiment, it is assumed that the phase spectrum of the optical frequency comb C6 reflected from the sample S is essentially unchanged when the physical position is acquired instantaneously.

<2次元分光計測方法>
上述の2次元分光計測装置200を用いた2次元分光計測方法は、2次元分光計測装置200を用いて干渉信号IM1,IM2の包絡線強度EVを瞬時に取得し、取得した包絡線強度EVに基づいて試料Sの光学情報を得ることが可能な方法である。2次元分光計測装置200を用いた2次元分光計測方法は、光周波数コム生成工程と、位相差付与工程と、干渉信号生成工程と、包絡線強度取得工程と、光学情報抽出工程と、を備える。2次元分光計測装置200を用いた2次元分光計測方法における光周波数コム生成工程と、位相差付与工程と、干渉信号生成工程と、包絡線強度取得工程は上述の干渉信号強度取得方法の各工程と同様であるため、各工程の重複する説明は省略する。
<Two-dimensional spectroscopic measurement method>
The two-dimensional spectroscopic measurement method using the two-dimensional spectroscopic measurement device 200 described above uses the two-dimensional spectroscopic measurement device 200 to instantaneously acquire the envelope strength EV of the interference signals IM1 and IM2, and the obtained envelope strength EV is It is a method capable of obtaining optical information of the sample S based on the above. A two-dimensional spectroscopic measurement method using the two-dimensional spectroscopic measurement device 200 includes an optical frequency comb generation process, a phase difference application process, an interference signal generation process, an envelope intensity acquisition process, and an optical information extraction process. . The optical frequency comb generation step, the phase difference provision step, the interference signal generation step, and the envelope intensity acquisition step in the two-dimensional spectroscopic measurement method using the two-dimensional spectroscopic measurement device 200 are each step of the interference signal intensity acquisition method described above. , redundant description of each step is omitted.

光学情報抽出工程では、包絡線強度EVに基づいて試料Sの光学情報を抽出する。本実施形態では、包絡線強度取得工程において、包絡線強度EVを2つの包絡線強度EV1,EV2に分け、包絡線強度EV1,EV2がフィルタF1,F2のそれぞれを通過したときの透過強度を撮像カメラ241,242で取得する。光学情報抽出工程では、包絡線強度取得工程で取得した包絡線強度EV1,EV2の透過強度の比に基づいて試料Sに関する波長情報を瞬時に取得し、画像処理部250によって前述の波長情報から試料Sの光学情報を算出する。具体的には、予め計測した強度比から求めた波長情報と遅延距離との関係と比較することによって、試料Sの2次元分光情報及び3次元形状を算出できる。 In the optical information extraction step, optical information of the sample S is extracted based on the envelope intensity EV. In the present embodiment, in the envelope strength acquisition step, the envelope strength EV is divided into two envelope strengths EV1 and EV2, and the transmission intensities when the envelope strengths EV1 and EV2 pass through the filters F1 and F2, respectively, are captured. Acquired by cameras 241 and 242 . In the optical information extraction step, wavelength information about the sample S is instantaneously acquired based on the transmission intensity ratio of the envelope intensities EV1 and EV2 acquired in the envelope intensity acquisition step. Calculate the optical information of S. Specifically, the two-dimensional spectral information and the three-dimensional shape of the sample S can be calculated by comparing with the relationship between the wavelength information obtained from the intensity ratio measured in advance and the delay distance.

2次元分光計測装置200においても、フィードバック機構128によって光周波数コムC4,C5を光周波数コム出射部103にフィードバックし、光周波数コムC4,C5との位相のずれ(時間差δ、図3参照)に応じて繰り返し周波数frepを調整する。Also in the two-dimensional spectrometer 200, the optical frequency combs C4 and C5 are fed back to the optical frequency comb output unit 103 by the feedback mechanism 128, and the phase shift (time difference δ, see FIG. 3) with the optical frequency combs C4 and C5 is corrected. Adjust the repetition frequency f rep accordingly.

以上説明したように、本実施形態の干渉信号強度取得方法は、上述の光周波数コム生成工程と、位相差付与工程と、干渉信号生成工程と、包絡線強度取得工程と、を備える。本実施形態の干渉強度信号取得光学系130は、上述の光周波数コム出射部103と、第1の分岐部104と、第2の分岐部105と、位相差付与部106と、干渉信号生成部107と、包絡線強度取得部108と、を備える。本実施形態の干渉信号強度取得方法及び干渉強度信号取得光学系130では、光周波数コムの繰り返し周波数frepとキャリア・エンベロップ・オフセットfCEOを制御してfrep=4×fCEOとし、繰り返し周波数frepを調整した光周波数コムを2つに分けて互いに位相が90°ずれた光周波数コムを生成する。互いに位相が90°ずれた2つの光周波数コムは、参照光として機能する光パルス列である。これら2つの光周波数コムのそれぞれと任意の光学情報を含む光周波数コムとを干渉させ、90°位相がずれた干渉信号を光学的にリアルタイムで生成する。任意の光学情報を含む光周波数コムは、プローブ光として機能する光パルス列である。このことによって、干渉信号の包絡線強度を瞬時に、計測時においてリアルタイムに取得できる。光周波数コムを用いることによって、繰り返し周波数frepとキャリア・エンベロップ・オフセットfCEOが原子時計と同程度の安定性と正確性を有して制御される。キャリア・エンベロップ・オフセットfCEOを制御することによって、時間軸上で隣り合う光パルス同士の位相差を活かし、計測時のターゲットとする全波長域で原理的に位相差を正確に揃えることができる。したがって、本実施形態の干渉信号強度取得方法及び干渉強度信号取得光学系130によれば、互いに位相が正確に90°ずれた参照光を生成でき、参照光及びプローブ光を安定して制御できると共に、干渉信号の包絡線強度を高精度に取得できる。As described above, the interference signal intensity acquisition method of this embodiment includes the above-described optical frequency comb generation step, phase difference provision step, interference signal generation step, and envelope intensity acquisition step. The interference intensity signal acquisition optical system 130 of the present embodiment includes the optical frequency comb output unit 103, the first branch unit 104, the second branch unit 105, the phase difference applying unit 106, and the interference signal generation unit. 107 and an envelope strength acquisition unit 108 . In the interference signal intensity acquisition method and the interference intensity signal acquisition optical system 130 of the present embodiment, the repetition frequency f rep of the optical frequency comb and the carrier envelope offset f CEO are controlled to set f rep =4×f CEO , and the repetition frequency The optical frequency comb whose f rep is adjusted is divided into two to generate optical frequency combs that are 90° out of phase with each other. Two optical frequency combs that are 90° out of phase with each other are optical pulse trains that function as reference light. Each of these two optical frequency combs is interfered with an optical frequency comb containing arbitrary optical information to optically generate a 90° out-of-phase interference signal in real time. An optical frequency comb containing arbitrary optical information is an optical pulse train that functions as probe light. As a result, the envelope intensity of the interference signal can be obtained instantaneously in real time during measurement. By using an optical frequency comb, the repetition frequency f rep and carrier envelope offset f CEO can be controlled with stability and accuracy comparable to an atomic clock. By controlling the carrier-envelope offset fCEO , the phase difference between adjacent optical pulses on the time axis can be utilized, and in principle, the phase difference can be accurately aligned in the entire target wavelength range during measurement. . Therefore, according to the interference signal intensity acquisition method and the interference intensity signal acquisition optical system 130 of the present embodiment, it is possible to generate reference beams whose phases are accurately shifted by 90° from each other, and to stably control the reference beam and the probe beam. , the envelope strength of the interference signal can be obtained with high accuracy.

本実施形態の干渉信号強度取得方法及び干渉強度信号取得光学系130では、光周波数コムC4と光周波数コムC5を光周波数コム出射部103にフィードバックし、光周波数コムC4と光周波数コムC5との位相のずれ(時間差δ)に応じて繰り返し周波数frepを調整する。このことによって、参照光の光周波数コム同士の位相のずれをなくすことができる。本実施形態の干渉信号強度取得方法及び干渉強度信号取得光学系130によれば、干渉強度信号取得光学系130を構成するミラーなどの光学素子が振動して光周波数コムの光路に変動が生じた場合であっても、従来のようにピエゾ素子などのように機械的に駆動する構成を光学系に追加しなくても、光周波数コムの光路の変動を光学的に補償できる。In the interference signal intensity acquisition method and the interference intensity signal acquisition optical system 130 of the present embodiment, the optical frequency comb C4 and the optical frequency comb C5 are fed back to the optical frequency comb output unit 103, and the optical frequency comb C4 and the optical frequency comb C5 The repetition frequency f rep is adjusted according to the phase shift (time difference δ). This can eliminate the phase shift between the optical frequency combs of the reference light. According to the interference signal intensity acquisition method and the interference intensity signal acquisition optical system 130 of the present embodiment, optical elements such as mirrors constituting the interference intensity signal acquisition optical system 130 vibrate, causing fluctuations in the optical path of the optical frequency comb. Even in this case, variations in the optical path of the optical frequency comb can be optically compensated without adding a mechanically driven configuration such as a piezo element to the optical system as in the conventional art.

以上、本発明の好ましい実施形態について詳述したが、本発明は上述の実施形態に限定されない。本発明は、特許請求の範囲内に記載された本発明の要旨の範囲内において、変更可能である。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments. The invention can be modified within the scope of the invention described in the claims.

例えば、上述の実施形態では、光周波数コムC3が試料Sを通過することによって、光周波数コムC3に試料Sの光学情報が付与される。試料Sの光学情報は、光周波数コムC3に替えて光周波数コムC4,C5に付与されてもよい。その場合は、光周波数コムC4,C5の偏光を互いに直交させて合波し、試料Sを通過させた後に分波する。試料Sの光学情報を含む光周波数コムC4,C5のそれぞれと試料Sの光学情報を含まない光周波数コムC6,C7との干渉信号(第1の干渉信号、第2の干渉信号)を得ることによって、上述の実施形態と同様の作用効果が得られる。但し、試料Sの光学情報は、偏光依存性を有しておらず、偏光依存性を考慮せずに取得できると想定する。 For example, in the above-described embodiment, the optical information of the sample S is imparted to the optical frequency comb C3 by passing the sample S through the optical frequency comb C3. The optical information of the sample S may be given to the optical frequency combs C4 and C5 instead of the optical frequency comb C3. In that case, the polarizations of the optical frequency combs C4 and C5 are made orthogonal to each other, combined, passed through the sample S, and then demultiplexed. Obtaining interference signals (first interference signal, second interference signal) between the optical frequency combs C4 and C5 containing the optical information of the sample S and the optical frequency combs C6 and C7 not containing the optical information of the sample S. , the same effect as the above-described embodiment can be obtained. However, it is assumed that the optical information of the sample S does not have polarization dependence and can be obtained without considering the polarization dependence.

図12に示す2次元分光計測装置200では、試料Sから反射された光周波数コムC3を取得しているが、光周波数コムC3を試料Sに照射して試料Sから透過した光周波数コムC3を取得してもよい。その場合、ハーフミラー159を全反射ミラーに替え、試料Sを光周波数コムC3の進路上で前述のように置き換えた全反射ミラーとハーフミラー155との間に配置すればよい。 In the two-dimensional spectrometer 200 shown in FIG. 12, the optical frequency comb C3 reflected from the sample S is acquired. may be obtained. In that case, the half mirror 159 may be replaced with a total reflection mirror, and the sample S may be placed between the replaced total reflection mirror and the half mirror 155 on the path of the optical frequency comb C3.

上述の実施形態の2次元分光計測装置200において、試料Sに関する位相スペクトルを測定する際に、試料Sから反射した光周波数コムC3の位相スペクトルが変化してもよい。その場合、光周波数コムC3の位相スペクトルは、波長に対して一意に決まらなければならない。試料Sに関する位相スペクトルは、光周波数コムC3または光周波数コムC1に対して時間遅延を加え、干渉信号IM1,IM2の強度の遅延時間依存性を測定することによって取得できる。 In the two-dimensional spectrometer 200 of the above-described embodiment, when measuring the phase spectrum of the sample S, the phase spectrum of the optical frequency comb C3 reflected from the sample S may change. In that case, the phase spectrum of the optical frequency comb C3 must be uniquely determined with respect to wavelength. A phase spectrum for the sample S can be obtained by adding a time delay to the optical frequency comb C3 or the optical frequency comb C1 and measuring the delay time dependence of the intensity of the interference signals IM1 and IM2.

103・・・光周波数コム出射部
104・・・第1の分岐部
105・・・第2の分岐部
106・・・位相差付与部
107・・・干渉信号生成部
108・・・包絡線強度取得部
130・・・干渉強度信号取得光学系(干渉信号強度取得装置)
C1・・・光周波数コム(第1の光周波数コム)
C2・・・光周波数コム(第2の光周波数コム)
C3・・・光周波数コム(第3の光周波数コム)
C4・・・光周波数コム(第4の光周波数コム)
C5・・・光周波数コム(第5の光周波数コム)
C6・・・光周波数コム(第3の光周波数コム)
C7・・・光周波数コム(第3の光周波数コム)
103... Optical frequency comb emitting part 104... First branching part 105... Second branching part 106... Phase difference providing part 107... Interference signal generating part 108... Envelope intensity Acquisition unit 130: interference intensity signal acquisition optical system (interference signal intensity acquisition device)
C1... Optical frequency comb (first optical frequency comb)
C2... Optical frequency comb (second optical frequency comb)
C3... Optical frequency comb (third optical frequency comb)
C4... Optical frequency comb (fourth optical frequency comb)
C5... Optical frequency comb (fifth optical frequency comb)
C6... Optical frequency comb (third optical frequency comb)
C7... Optical frequency comb (third optical frequency comb)

Claims (4)

周波数軸で零に対して所定のオフセット周波数を有する第1の周波数モードと前記周波数軸で前記第1の周波数モードに対して所定の繰り返し周波数の整数倍の間隔をあけて並ぶ複数の第2の周波数モードとを有し、前記繰り返し周波数が前記オフセット周波数の4倍である第1の光周波数コムを生成する光周波数コム生成工程と、
前記第1の光周波数コムを第2の光周波数コムと第3の光周波数コムに分け、前記第2の光周波数コムを第4の光周波数コムと第5の光周波数コムに分け、前記第4の光周波数コムの時間軸上の位相を前記第5の光周波数コムの時間軸上の位相に対して90°ずらす位相差付与工程と、
前記第3の光周波数コムまたは前記第4の光周波数コム及び前記第5の光周波数コムは任意の光学情報を含み、前記第4の光周波数コムと前記第3の光周波数コムとを干渉させて第1の干渉信号を生成し、前記第5の光周波数コムと前記第3の光周波数コムとを干渉させて第2の干渉信号を生成する干渉信号生成工程と、
前記第1の干渉信号と前記第2の干渉信号から包絡線強度を取得する包絡線強度取得工程と、
を備える干渉信号強度取得方法。
a first frequency mode having a predetermined offset frequency with respect to zero on the frequency axis; an optical frequency comb generating step for generating a first optical frequency comb having a frequency mode, wherein the repetition frequency is four times the offset frequency;
dividing the first optical frequency comb into a second optical frequency comb and a third optical frequency comb, dividing the second optical frequency comb into a fourth optical frequency comb and a fifth optical frequency comb, a phase difference giving step of shifting the phase on the time axis of the 4 optical frequency combs by 90° with respect to the phase on the time axis of the fifth optical frequency comb;
The third optical frequency comb or the fourth optical frequency comb and the fifth optical frequency comb contain arbitrary optical information, and cause the fourth optical frequency comb and the third optical frequency comb to interfere. an interference signal generating step of generating a first interference signal by using the third optical frequency comb and causing the fifth optical frequency comb and the third optical frequency comb to interfere to generate a second interference signal;
an envelope strength obtaining step of obtaining envelope strength from the first interference signal and the second interference signal;
An interference signal strength acquisition method comprising:
前記時間軸上における前記第4の光周波数コムと前記第5の光周波数コムとの位相のずれに応じて前記繰り返し周波数を調整する繰り返し周波数調整工程をさらに備える、
請求項1に記載の干渉信号強度取得方法。
Further comprising a repetition frequency adjustment step of adjusting the repetition frequency according to a phase shift between the fourth optical frequency comb and the fifth optical frequency comb on the time axis,
The interference signal intensity acquisition method according to claim 1.
周波数軸で零に対して所定のオフセット周波数を有する第1の周波数モードと前記周波数軸で前記第1の周波数モードに対して所定の繰り返し周波数の整数倍の間隔をあけて並ぶ複数の第2の周波数モードとを有し、前記繰り返し周波数が前記オフセット周波数の4倍である第1の光周波数コムを出射する光周波数コム出射部と、
前記第1の光周波数コムを第2の光周波数コムと第3の光周波数コムに分ける第1の分岐部と、
前記第2の光周波数コムを第4の光周波数コムと第5の光周波数コムに分ける第2の分岐部と、
前記第4の光周波数コムの時間軸上の位相を前記第5の光周波数コムの時間軸上の位相に対して90°ずらす位相差付与部と、
前記第3の光周波数コムまたは前記第4の光周波数コム及び前記第5の光周波数コムは任意の光学情報を含み、前記第4の光周波数コムと前記第3の光周波数コムとを干渉させて第1の干渉信号を生成し、前記第5の光周波数コムと前記第3の光周波数コムとを干渉させて第2の干渉信号を生成する干渉信号生成部と、
前記第1の干渉信号と前記第2の干渉信号との包絡線強度を取得する包絡線強度取得部と、
を備える干渉信号強度取得装置。
a first frequency mode having a predetermined offset frequency with respect to zero on the frequency axis; an optical frequency comb output unit for outputting a first optical frequency comb having a frequency mode, the repetition frequency being four times the offset frequency;
a first branching section that divides the first optical frequency comb into a second optical frequency comb and a third optical frequency comb;
a second branching section that divides the second optical frequency comb into a fourth optical frequency comb and a fifth optical frequency comb;
a phase difference applying unit that shifts the phase on the time axis of the fourth optical frequency comb by 90° with respect to the phase on the time axis of the fifth optical frequency comb;
The third optical frequency comb or the fourth optical frequency comb and the fifth optical frequency comb contain arbitrary optical information, and cause the fourth optical frequency comb and the third optical frequency comb to interfere. an interference signal generation unit that generates a first interference signal by using the above, and generates a second interference signal by causing the fifth optical frequency comb and the third optical frequency comb to interfere with each other;
an envelope intensity acquisition unit that acquires the envelope intensity of the first interference signal and the second interference signal;
An interference signal strength acquisition device comprising:
前記位相差付与部から出射された前記第4の光周波数コム及び前記第5の光周波数コムの一部を取得し、前記光周波数コム出射部にフィードバックするフィードバック機構をさらに備える、
請求項3に記載の干渉信号強度取得装置。
Further comprising a feedback mechanism that acquires a part of the fourth optical frequency comb and the fifth optical frequency comb emitted from the phase difference applying unit and feeds it back to the optical frequency comb output unit,
The interference signal strength acquisition device according to claim 3.
JP2019509000A 2018-03-02 2019-01-22 Interference signal strength acquisition method and interference signal strength acquisition device Active JP7194437B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018038103 2018-03-02
JP2018038103 2018-03-02
PCT/JP2019/001857 WO2019167476A1 (en) 2018-03-02 2019-01-22 Interference signal strength acquisition method and interference signal strength acquisition device

Publications (2)

Publication Number Publication Date
JPWO2019167476A1 JPWO2019167476A1 (en) 2021-01-07
JP7194437B2 true JP7194437B2 (en) 2022-12-22

Family

ID=67805792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019509000A Active JP7194437B2 (en) 2018-03-02 2019-01-22 Interference signal strength acquisition method and interference signal strength acquisition device

Country Status (2)

Country Link
JP (1) JP7194437B2 (en)
WO (1) WO2019167476A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023163018A1 (en) * 2022-02-24 2023-08-31 国立大学法人電気通信大学 Optical measurement device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7123402B1 (en) 2006-01-17 2006-10-17 Lucent Technologies Inc. Cloning optical-frequency comb sources
US20110069309A1 (en) 2009-09-18 2011-03-24 Newbury Nathan R Comb-based spectroscopy with synchronous sampling for real-time averaging
JP2011529180A (en) 2008-07-25 2011-12-01 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Synchronous interferometer with frequency comb
JP2012013574A (en) 2010-07-01 2012-01-19 Optical Comb Inc Optical type measurement device and prism for interferometer of the same
JP2013507005A (en) 2009-10-02 2013-02-28 イムラ アメリカ インコーポレイテッド Optical signal processing by mode-locked laser
JP2015155822A (en) 2014-02-20 2015-08-27 株式会社東京精密 Optical signal generation device, distance measurement device, spectroscopic characteristic measurement device, frequency response measurement device, and optical signal generation method
JP2017090259A (en) 2015-11-10 2017-05-25 国立大学法人電気通信大学 Method for correcting refractive index, and method and device for measuring distance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7123402B1 (en) 2006-01-17 2006-10-17 Lucent Technologies Inc. Cloning optical-frequency comb sources
JP2011529180A (en) 2008-07-25 2011-12-01 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Synchronous interferometer with frequency comb
US20110069309A1 (en) 2009-09-18 2011-03-24 Newbury Nathan R Comb-based spectroscopy with synchronous sampling for real-time averaging
JP2013507005A (en) 2009-10-02 2013-02-28 イムラ アメリカ インコーポレイテッド Optical signal processing by mode-locked laser
JP2012013574A (en) 2010-07-01 2012-01-19 Optical Comb Inc Optical type measurement device and prism for interferometer of the same
JP2015155822A (en) 2014-02-20 2015-08-27 株式会社東京精密 Optical signal generation device, distance measurement device, spectroscopic characteristic measurement device, frequency response measurement device, and optical signal generation method
JP2017090259A (en) 2015-11-10 2017-05-25 国立大学法人電気通信大学 Method for correcting refractive index, and method and device for measuring distance

Also Published As

Publication number Publication date
JPWO2019167476A1 (en) 2021-01-07
WO2019167476A1 (en) 2019-09-06

Similar Documents

Publication Publication Date Title
JP7339416B2 (en) Measuring device and method
JP6654948B2 (en) Method and apparatus for measuring pulse light waveform
JP6585093B2 (en) Devices and methods for characterization of light beams
KR101990251B1 (en) Apparatus for optical coherence tomography and method for image generate using thereof
US20220236416A1 (en) Optical measurement device and optical measurement method
RU2561867C2 (en) Device and method for optical coherence tomography
EP2409140B1 (en) Coherent anti-stokes raman spectroscopy
JP7194437B2 (en) Interference signal strength acquisition method and interference signal strength acquisition device
JP7079509B2 (en) Measuring device and irradiation device
WO2023027104A1 (en) Wavefront control device and adaptive optics device
KR101398835B1 (en) Spectral interferometer using comb generation and detection technique for real-time profile measurement
JP7194438B2 (en) Two-dimensional spectroscopic measurement method and two-dimensional spectroscopic measurement device
US20140367579A1 (en) Measuring apparatus and specimen information obtaining system
EP3327411A1 (en) Optical system
JP2015197513A (en) Light source device, and information acquisition device using the same
JP7272652B2 (en) Two-dimensional spectroscopy and two-dimensional spectroscopic device
JP7128516B2 (en) How to measure interference signals in dual comb spectroscopy
JP2016029340A (en) Measuring device
JP3992699B2 (en) Time-resolved spectrometer
JP4074271B2 (en) Time-resolved spectrometer
Veenendaal et al. Applying Energy Absorption Interferometry to THz direct detectors using photomixers
JP6205907B2 (en) Imaging device
Kato et al. All-optical Hilbert transform with optical frequency comb for one-shot three-dimensional imaging
RU2673784C1 (en) Two-component general track interferometer
JP2022180146A (en) Dispersion measuring device and dispersion measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221205

R150 Certificate of patent or registration of utility model

Ref document number: 7194437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150