WO2019167163A1 - Rolling cylinder-type displacement compressor - Google Patents

Rolling cylinder-type displacement compressor Download PDF

Info

Publication number
WO2019167163A1
WO2019167163A1 PCT/JP2018/007458 JP2018007458W WO2019167163A1 WO 2019167163 A1 WO2019167163 A1 WO 2019167163A1 JP 2018007458 W JP2018007458 W JP 2018007458W WO 2019167163 A1 WO2019167163 A1 WO 2019167163A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
rolling cylinder
oil supply
piston
rolling
Prior art date
Application number
PCT/JP2018/007458
Other languages
French (fr)
Japanese (ja)
Inventor
坪野 勇
香曽我部 弘勝
直洋 土屋
謙治 竹澤
敬悟 渡邉
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to JP2019522340A priority Critical patent/JP6545922B1/en
Priority to PCT/JP2018/007458 priority patent/WO2019167163A1/en
Publication of WO2019167163A1 publication Critical patent/WO2019167163A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/04Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B27/06Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement the cylinders being movable, e.g. rotary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/10Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth equivalents, e.g. rollers, than the inner member

Definitions

  • the present invention relates to a rolling cylinder type positive displacement compressor.
  • a rolling cylinder positive displacement compressor with a fixed pin mechanism has a geometry in which the two strings drawn to both centers from a given point on a circle passing through the center of the pin mechanism and the center of rotation of the rolling cylinder have a constant angle. It is a unique device that uses scientific relations (the law of constant circumference angle).
  • compression elements that constitute a compression chamber that compresses a working fluid such as a refrigerant include a stationary cylinder that is a stationary compression element that does not move, and a movable compression element that accompanies movement.
  • the movable compression element includes a rolling cylinder that rotates, and a revolving piston that takes a posture toward the center of the rolling cylinder along with a revolving motion that passes through a circle passing through the center of the rolling cylinder and the pin mechanism.
  • a compression chamber is formed in cooperation with each other, so that forces act on each other by sliding or the like, and forces act from the working fluid and the support portions of the compression elements by compression of the working fluid. Since the force of the direction which prevents a turning motion from a working fluid acts on a turning piston, the driving force which opposes it becomes essential.
  • the rolling cylinder has a feature that torque that hinders rotational motion from working fluid does not work.
  • Patent Document 1 a driving force is applied to a swing piston by a shaft driven by a motor to counteract the force acting on the swing piston from the working fluid, so that the working fluid is compressed, and the driving force is applied to the rolling cylinder.
  • the configuration not given is described.
  • the torque that acts on the rolling cylinder is only the friction torque that works from the support portion and the torque that works from the orbiting piston.
  • the rotation angle of the rolling cylinder that cooperates to form the compression chamber is one. There is always a range of rotation angles that can be incorporated.
  • An object of the present invention is to reduce a collision between movable compression elements in a rolling cylinder type positive displacement compressor and to suppress a decrease in performance as a compressor.
  • a rolling cylinder type positive displacement compressor of the present invention includes a cylindrical rolling cylinder having a cylinder groove, a swing piston having a slide groove, a stationary cylinder, a pin mechanism, a drive source, a rolling cylinder, and a drive source.
  • the mechanism is inserted into the slide groove, and the revolving piston relatively reciprocates in the cylinder groove, and the suction portion, the compression chamber, and the discharge chamber are formed in the compression portion by the reciprocation.
  • the drive source drives at least the rolling cylinder through the drive transmission unit.
  • FIG. 1 is a longitudinal sectional view showing an RC compressor according to Embodiment 1.
  • FIG. 1 is a perspective view illustrating a rolling cylinder of an RC compressor according to Embodiment 1.
  • FIG. 1 is a perspective view showing a turning piston of an RC compressor according to Embodiment 1.
  • FIG. 1 is a perspective view showing a pin mechanism of an RC compressor according to Embodiment 1.
  • FIG. It is a perspective view which shows the other pin mechanism of RC compressor which concerns on Example 1.
  • FIG. FIG. 3 is a flowchart illustrating a compression process of the RC compressor according to the first embodiment.
  • 1 is an exploded perspective view showing an oil supply pump of an RC compressor according to Embodiment 1.
  • FIG. 6 is a longitudinal sectional view showing an RC compressor according to Embodiment 2.
  • FIG. It is the L section enlarged view of FIG. It is the perspective view seen from the upper side of the rolling cylinder of RC compressor concerning Example 2.
  • FIG. It is the perspective view seen from the downward direction of the rolling cylinder of RC compressor which concerns on Example 2.
  • FIG. FIG. 5 is a perspective view showing a turning piston of an RC compressor according to a second embodiment.
  • 6 is a perspective view showing a pin mechanism of an RC compressor according to Embodiment 2.
  • FIG. It is the schematic diagram which looked at the shaft collar part and rolling cylinder contact part of RC compressor concerning Example 2 from the lower side of the shaft.
  • 6 is a perspective view showing a rolling cylinder of an RC compressor according to Embodiment 3.
  • FIG. 1 is a cross-sectional view illustrating an oil supply pump of an RC compressor according to Embodiment 1.
  • FIG. FIG. 6 is an exploded perspective view showing an oil supply pump of
  • the present invention relates to a rolling cylinder type positive displacement compressor having a fixed pin mechanism for defining the attitude of a revolving piston.
  • the rolling cylinder type positive displacement compressor (hereinafter also referred to as “RC compressor”) of the present invention will be described in detail with reference to the drawings as appropriate using a plurality of embodiments.
  • the same part is demonstrated using the same figure in each Example.
  • symbol in the figure of each Example shows the same thing or an equivalent, and the overlapping description is abbreviate
  • the dimension ratio of each element to show in figure shows one Embodiment. Therefore, the size relationship and angle of each dimension in the illustrated shape also indicate an embodiment.
  • symbol with a parenthesis in a figure shows the Example which added and removed and changed. In the latter case, the addition or removal is described in the text. Further, specific dimension values are not particularly limited, but it is desirable that the outer diameter of the rolling cylinder type positive displacement compressor is in a range from 10 mm to 2000 mm.
  • the present embodiment in which the rolling cylinder is driven to rotate is an RC compressor of a type in which a slider is provided in a pin mechanism that is a support portion of a swing piston, and a piston drive source that is a drive source of the swing piston is not provided.
  • FIG. 1 shows the overall configuration of the RC compressor of the first embodiment.
  • the configuration described in Patent Document 1 is simplified.
  • the RC compressor is roughly composed of a compression unit, a motor 7 as a drive source, and an oil storage unit 125.
  • a compression portion in a casing constituted by a casing cylindrical portion 8a, a casing upper lid 8b and a casing lower lid 8c, a compression portion, a motor 7 serving as a driving source of the compression portion below, a compression portion, A shaft 6 that is a drive transmission unit that connects the motor 7 is disposed.
  • the shaft 6 is arranged in the vertical direction.
  • the compression unit includes a rolling cylinder 1, a turning piston 3, and a stationary cylinder 2 as components that directly act on the compressed working fluid.
  • the rolling cylinder 1 and the turning piston 3 are movable compression elements.
  • the stationary cylinder 2 is a stationary compression element.
  • the movable compression element and the stationary compression element form a working chamber.
  • the working chamber is repeatedly switched to the suction chamber 95, the compression chamber 100, and the discharge chamber 105 during operation of the RC compressor.
  • the cost can be kept low if the revolving piston 3, the rolling cylinder 1 and the stationary cylinder 2 are all made of cast iron.
  • the rolling cylinder 1 may be made of an aluminum alloy, and the turning piston 3 and the stationary cylinder 2 may be made of cast iron.
  • the entire RC compressor can be reduced in weight.
  • the compression part has a structure in which the upper part is covered with a stationary cylinder 2 and the lower part is covered with a frame 4.
  • the compression part is fixedly arranged on the casing cylindrical part 8a by welding or the like.
  • the frame 4 is provided with a main bearing 24 including an upper main bearing 24a and a lower main bearing 24b.
  • the shaft 6 is supported by the main bearing 24 in a rotatable state.
  • the frame 4 supports the shaft 6.
  • the shaft 6 protrudes below the frame 4.
  • the stationary cylinder 2 is fixed to the frame 4 by a cylinder bolt 90.
  • the stationary cylinder 2 is provided with a circular cylinder hole 2b whose center axis is the cylinder rotation axis.
  • the stationary cylinder 2 has a cylinder outer peripheral groove 2m on the outer peripheral side surface thereof. From the upper surface of the stationary cylinder 2, a bypass hole 2e penetrating into the cylinder hole 2b is provided.
  • a pin mechanism 5 is provided on the bottom surface of the cylinder hole 2b.
  • a bypass valve 22 is provided on the upper surface side of the stationary cylinder 2.
  • a discharge cover 230 is fixedly disposed on the upper portion of the stationary cylinder 2.
  • the discharge cover 230 has a discharge cover plate 230b.
  • the working fluid passes through the discharge cover chamber 130 that is a space between the upper surface of the stationary cylinder 2 and the discharge cover plate 230b, and is configured to be swirled into the swirl chamber 140 from the discharge cover port 230a. Yes.
  • the slide piston 3 is provided with a slide groove 3b.
  • a pin mechanism 5 is inserted into the slide groove 3b.
  • the revolving piston 3 is provided with a piston lower surface hole 3g.
  • the pin mechanism 5 is fitted into the slide groove 3 b of the swing piston 3 and serves as a support portion that regulates the position and posture of the swing piston 3.
  • the motor 7 is composed of a rotor 7a fixedly disposed on the shaft 6 and a stator 7b fixedly disposed on the casing cylindrical portion 8a.
  • the rotor 7a attached to the shaft 6 is attached to the stator 7b forming the motor 7 while being slightly lowered. This gives an upward axial thrust to the shaft 6.
  • the oil storage part 125 is an area surrounded by the casing cylindrical part 8a, the casing lower lid 8c, and the sub-frame 35.
  • an oil supply pump 200 having a boosting capability is provided at the lower end of the shaft 6, an oil supply pump 200 having a boosting capability is provided.
  • the shaft 6 is provided with a shaft oil supply vertical hole 6b (oil supply passage) penetrating the center in the central axis direction.
  • the shaft 6 is provided with oil supply horizontal holes (shaft oil supply sub horizontal hole 6g, shaft oil supply lower main bearing hole 6f, shaft oil supply upper main bearing hole 6e) connected to the sub bearing 25, the lower main bearing 24b, and the upper main bearing 24a. ing.
  • the upper main bearing 24a is supplied with oil by a shaft oil supply upper main bearing hole 6e and an oil supply main shaft groove 6k.
  • a part of the oil discharged from the oil supply pump 200 is supplied to the auxiliary bearing 25 through a gap around the pump connecting portion 6z.
  • a back chamber 110 which is a back space is provided mainly below the rolling cylinder 1.
  • a cylinder outer peripheral groove 2m and a frame outer peripheral groove 4m are provided on the outer peripheral portion of the compression portion. These serve as a flow path for the working fluid having a discharge pressure. Furthermore, an oil discharge path 4x for draining oil from the back chamber 110 is provided on the upper surface portion to which the stationary cylinder 2 is attached.
  • the suction pipe 50 introduces a working fluid from the outside to a compression section provided inside the casing 8.
  • the discharge pipe 55 discharges the working fluid pressurized by the compression unit to the outside.
  • the suction pipe 50 and the discharge pipe 55 are provided on the casing upper lid 8b.
  • a hermetic terminal 220 is provided on the casing upper lid 8b.
  • a motor wire 7b3 is connected to the hermetic terminal 220 so that electric power can be supplied to the stator winding 7b2 of the motor 7 from an external power source (not shown).
  • the working fluid introduced from the suction pipe 50 is pressurized in the compression section and discharged from the discharge pipe 55 to the outside.
  • the working fluid introduced from the suction pipe 50 is compressed in the compression unit and blows upward from the discharge hole 2d1, the bypass hole 2e, and the like. Then, the working fluid once collides with the discharge cover 230. At this time, the oil contained in the working fluid adheres to the discharge cover 230 and is separated. The working fluid in which the amount of oil is reduced blows out from the discharge cover port 230a and collides with the inner wall of the casing cylindrical portion 8a. This further separates the oil. Thereafter, the working fluid enters the casing upper chamber 120 and is discharged to the outside of the compressor from the discharge pipe 55 provided in the casing upper lid 8b. Note that in the casing upper chamber 120, the flow rate of the working fluid decreases, so that a slight amount of remaining oil mist tends to settle, and the amount of oil contained in the working fluid becomes extremely small.
  • the auxiliary bearing 25 includes a ball 25a and a ball holder 25b that rotatably supports the ball 25a in all directions. After the lower portion of the shaft 6 is inserted into the ball 25a and the ball 25a is mounted on the ball holder 25b, the ball holder 25b is fixedly disposed on the sub-frame 35 welded to the casing cylindrical portion 8a. As a result, the auxiliary bearing 25 is configured to rotatably support the lower portion of the shaft 6.
  • the RC compressor can be installed with the central axis of the cylindrical casing facing in the horizontal direction (lateral). In this case, there is no problem even if the central axis of the cylinder is inclined. However, in this case, it is necessary to adjust the arrangement of the sub-frame surrounding hole 35a and the sub-frame central hole 35b of the sub-frame 35, which is a partition of the oil storage part 125, so that an appropriate amount of lubricating oil stays in the oil storage part 125. There is.
  • the subframe 35 is provided with a subframe peripheral hole 35a and a subframe center hole 35b. Oil returns to the oil reservoir 125 through these holes.
  • An oil supply pump 200 is provided at the lowermost end of the shaft 6 via a pump connecting portion 6z, and feeds oil into a shaft oil supply vertical hole 6b that communicates with each bearing and compression portion.
  • oil is sealed in the casing at an appropriate stage of assembling the RC compressor, and an oil storage part 125 for storing the oil is formed in the vicinity of the casing lower lid 8c which is the lowermost part.
  • the cylinder groove outer peripheral wall 1w is adopted, but the present invention is also realized when the cylinder groove outer peripheral wall 1w is not adopted. In this sense, 1w is shown as a code with parentheses. Details of the cylinder groove outer peripheral wall 1w will be described later with reference to FIG.
  • the shaft 6 is directly connected to the rolling cylinder 1 of the compression portion. Therefore, the rolling cylinder 1 is directly driven to rotate by the motor 7. That is, the motor 7 is a cylinder drive source.
  • the shaft 6 and the rolling cylinder 1 are integrated, as in the portion indicated as the M portion.
  • the shaft 6 is fixed to the lower surface of the rolling cylinder 1.
  • This integration may be performed from one material, or may be integrated by welding, diffusion bonding, or the like separately processed.
  • finishing may be performed after integration.
  • it is good also as a form which provides a joint in the M part of FIG. 1, and transmits torque.
  • an Oldham joint capable of allowing an eccentric deviation, a universal joint capable of allowing a set angle deviation, a spline joint, and the like can be considered.
  • FIG. 2 shows details of the rolling cylinder 1 of FIG.
  • the rolling cylinder 1 has a configuration including a cylindrical rolling cylinder 1b and a rolling end plate 1a.
  • a shaft 6 is directly connected and fixed to the lower surface of the rolling cylinder 1.
  • the rolling cylinder 1b has a cylinder groove 1c.
  • the rolling end plate 1a constitutes a bottom surface portion (cylinder groove bottom surface portion 1c3) of the cylinder groove 1c.
  • the cylinder groove outer peripheral wall 1w which comprises a part of rolling cylinder 1b is provided in the outer peripheral side both ends of the cylinder groove 1c.
  • a rolling bottom oiling hole 1k is provided at the center of the bottom surface of the cylinder groove 1c. Therefore, the cylinder groove 1c is formed by the cylinder groove curved surface portion 1c1, the cylinder groove flat surface portion 1c2, and the cylinder groove bottom surface portion 1c3.
  • the rolling end plate 1a of the present embodiment has a shape having a rolling end plate portion 1a1 projecting from the bottom of the cylinder groove 1c to the outer peripheral side of the rolling cylinder 1b.
  • the rolling end plate portion 1a1 is urged against the lower surface of the stationary cylinder 2 to improve the sealing performance of the working chamber.
  • a rolling outer periphery cut portion 1g is provided on the outer peripheral surface of the rolling cylinder 1b. And the rolling outer periphery hole 1f which connects the rolling outer periphery cut part 1g and the side surface of the cylinder groove 1c is provided. Further, a rolling end plate recess 1i is provided at a portion where the rolling outer peripheral cut portion 1g and the upper surface of the rolling end plate portion 1a1 are closest to each other. Thereby, the upper surface of the rolling end plate portion 1a1 is lubricated. The rolling end plate recess 1i is provided so as not to directly contact the outer peripheral portion of the rolling end plate portion 1a1 (to the extent that it does not reach the outer peripheral portion of the rolling end plate portion 1a1). Thereby, the discharge gas is prevented from flowing backward from the back chamber 110 which is the back space of the rolling cylinder 1 to the suction side.
  • the rolling outer periphery cut portion collar 1g1 is provided on the upper portion of the rolling outer periphery cut portion 1g. This prevents internal leakage due to communication with a suction groove (not shown) constituting a suction flow path provided on the bottom surface of the cylinder hole 2b of the stationary cylinder 2 facing the rolling cylinder upper surface 1b1, and improves compression performance. be able to.
  • FIG. 3 shows the details of the swiveling piston 3 of FIG. First, a case where the parenthesized symbols 3b1 and 3b2 are not employed will be described.
  • a piston lower surface hole 3g is provided at the center of the piston lower surface 3f.
  • a slide groove 3b is provided on the piston upper surface 3d.
  • the depth of the slide groove 3b is a depth communicating with the piston lower surface hole 3g.
  • the side surface of the orbiting piston 3 is provided with two piston cut surfaces 3c that are parallel to each other and a piston tip surface 3e that connects them. Further, the slide groove 3b has a structure that reaches the piston cut surface 3c, and thereby assumes a function of an oil supply path to the piston cut surface 3c.
  • the pin mechanism 5 is fixed to the bottom surface of the cylinder hole 2b and is inserted into the slide groove 3b of the revolving piston 3 to constitute a pin slide mechanism.
  • FIG. 4A shows an example of a pin mechanism 5 composed of a slider 5a and a fixed pin 5s.
  • the pin mechanism 5 is disassembled into a slider 5a and a fixed pin 5s.
  • the slider 5a has a substantially rectangular parallelepiped shape, and has a slider pair face 5a1 that slides with the slide groove 3b (FIG. 3) of the orbiting piston 3.
  • the slider 5a has a slider mating surface 5a1 slidably contacting the slide groove 3b (FIG. 3).
  • the slider 5a has a slider shaft hole 5a10 and a slider groove 5a2.
  • the slider groove 5a2 is provided on the slider pair surface 5a1 for lubrication.
  • the fixing pin 5s has a substantially cylindrical shape, and a fixing pin flange 5s3 is provided at the lower end thereof.
  • the fixed pin 5s is provided with a fixed pin oil supply vertical hole 5s1 and a fixed pin oil supply horizontal hole 5s2.
  • the fixed pin oil supply vertical hole 5s1 has an opening on the lower surface of the fixed pin flange 5s3.
  • the fixed pin oil supply horizontal hole 5s2 has an opening in the side surface portion of the fixed pin 5s, and is connected to the fixed pin oil supply vertical hole 5s1 inside the fixed pin 5s.
  • the fixing pin 5s is inserted into the slider shaft hole 5a10 of the slider 5a and fixed.
  • the slider 5a is installed in a state where the central axis of the pin mechanism 5 is the rotation axis (a state where the slider 5a is rotatable about the fixed pin 5s).
  • the fixed pin flange 5s3 supports the slider 5a in the axial direction.
  • the fixed pin oil supply vertical hole 5s1 and the fixed pin oil supply horizontal hole 5s2 serve as an oil supply path to the sliding portion between the slider 5a and the fixed pin 5s.
  • FIG. 4B shows another example of a pin mechanism 5 including a slider 5a and a pin bearing 5c.
  • This figure shows a state in which the pin mechanism 5 is disassembled into a slider 5a and a pin bearing 5c.
  • the slider 5a has a shape in which a substantially rectangular parallelepiped portion and a substantially cylindrical slider rotation pin 5a3 are coupled to each other, and has a slider mating surface 5a1 that slides on the slide groove 3b (FIG. 3) of the orbiting piston 3.
  • the slider 5a has a slider groove 5a2.
  • the slider groove 5a2 is provided on the slider pair surface 5a1 for lubrication.
  • the slider rotation pin 5a3 is a shaft portion of the slider 5a.
  • Slider oil supply vertical hole 5a4 has an opening in the lower surface of the substantially rectangular parallelepiped portion of slider 5a.
  • the slider oil supply horizontal hole 5a5 has an opening in the side surface portion of the slider rotation pin 5a3, and is connected to the slider oil supply vertical hole 5a4 inside the slider 5a.
  • the pin bearing 5c has an annular shape and is sandwiched between the slider 5a and the stationary cylinder 2 (FIG. 1) into which the slider 5a is inserted.
  • Slider oil supply vertical hole 5a4 and slider oil supply horizontal hole 5a5 serve as an oil supply path to the sliding part between slider 5a and pin bearing 5c, and lubricate the bearing part.
  • the pin bearing 5c may be a bearing bush constituting a slide bearing, or may be a rolling bearing such as a ball bearing or a roller bearing.
  • the configuration of FIG. 4B is suitable for a large-capacity compressor because the diameter and length of the shaft portion can be set larger than the configuration of FIG. 4A.
  • both the slider-facing surface 5a1 and the side surfaces of the slide groove 3b are flat surfaces, and thus constitute a surface-facing couple. Thereby, the load bearing performance is improved, and the reliability of the compressor can be improved. Further, in this embodiment, since the slider groove 5a2 is provided on the slider pair surface 5a1, oil enters and lubricates the surface pair. For this reason, the load bearing performance is further improved.
  • the shaft 6 has a shaft oil supply vertical hole 6b passing through the central axis thereof.
  • the shaft 6 is provided with a shaft oil supply sub horizontal hole 6g which is an oil supply path to the sub bearing 25, a shaft oil supply lower main bearing hole 6f and a shaft oil supply main bearing hole 6e which are oil supply paths to the main bearing 24. It has been. Further, an oil supply main shaft groove 6k extending from the shaft oil supply upper main bearing hole 6e to the back chamber 110 is provided on the side surface of the shaft 6.
  • the upper opening of the shaft oil supply vertical hole 6b is connected to the rolling bottom oil supply hole 1k so as not to generate a leakage flow path. Further, a pump connecting portion 6 z for insertion into the oil supply pump 200 protrudes from the lower end portion of the shaft 6. And the shaft oil supply vertical hole 6b is opening in the center.
  • FIG. 6 is an exploded perspective view showing the fuel pump 200.
  • reference numerals 204 ′ and 200 ′ with parentheses are not adopted.
  • the oil supply pump 200 uses the principle of a rolling cylinder type positive displacement fluid machine, like the above-described compression section.
  • the oil supply pump 200 is configured to function as a pump that does not cause a compression operation because oil having a low vapor pressure is used as the working fluid.
  • it is not a type in which the refueling revolving piston 203 is driven to rotate, but a type in which the refueling rolling cylinder 201 is rotated coaxially with the shaft 6.
  • the eccentric shaft for the oil pump required for driving the oil supply swivel piston 203 becomes unnecessary, and there is an effect that the configuration is simplified and the manufacturing cost is reduced.
  • the oil supply pump 200 includes an oil supply stationary cylinder 202, an oil supply rolling cylinder 201, an oil supply swivel piston 203, and an oil supply lid 204.
  • the oil supply stationary cylinder 202 has an oil supply shaft through hole 202a and an oil supply cylinder hole 202b.
  • the oil supply rolling cylinder 201 has an oil supply cylinder groove 201c and an oil supply shaft connection hole 201d.
  • the oil supply turning piston 203 has an oil supply pin groove 203b and an oil supply rear hole 203g.
  • the oiling lid 204 is provided with an oiling pin 205 at a position off the center.
  • the oil supply pin 205 is provided at an eccentric position different from the center of the oil supply lid 204.
  • the oil supply lid 204 has an oil supply discharge groove 204d, an oil supply communication groove 204e, an oil supply suction groove 204s, and an oil supply suction hole 204h.
  • the oil supply communication groove 204e is connected to the oil supply discharge groove 204d and has a shape that surrounds the periphery of the oil supply pin 205 and extends to the center of the oil supply lid 204.
  • the oil supply rolling cylinder 201 is inserted into the oil supply cylinder hole 202b of the oil supply stationary cylinder 202, the pump connection portion 6z is passed through the oil supply shaft through hole 202a, and then the pump connection portion 6z is connected to the oil supply shaft. Insert into the connecting hole 201d. Then, after the oil supply swivel piston 203 is fitted into the oil supply cylinder groove 201c, the oil supply pin 205 is covered with an oil supply cover 204 provided eccentrically. Here, the oil supply pin 205 is inserted into the oil supply pin groove 203 b of the oil supply turning piston 203. And finally, it fixes to the sub-frame 35 (FIG. 1) with the three oil supply bolts 209. FIG.
  • the fuel pump 200 is assembled and attached to the sub-frame 35 at the same time using the fuel bolt 209.
  • the assembly to the sub-frame 35 is performed. It is good also as a two-stage process which performs attachment. Thereby, the assembly accuracy of the assembly is improved, and the high performance of the oil supply pump 200 can be realized.
  • FIG. 15 is a top view of a cross section of the height at which the oil supply pin 205 is inserted into the oil supply pin groove 203b in the state where the oil supply pump 200 of FIG. 6 is assembled, and an arrow indicates the oil supply rolling cylinder 201 (shaft). 6) the rotation direction.
  • FIG. 15 shows the timing when the working chamber on the left side of the refueling swivel piston 203 finishes the discharge stroke and changes from the refueling discharge chamber 212 to the refueling suction chamber 211. At this time, the working chamber on the right side finishes the suction stroke and changes from the oil supply / intake chamber 211 to the oil supply / discharge chamber 212.
  • the oil supply swiveling piston 203 has a turning center at the midpoint of the line connecting the center of the oil supply pin 205 and the center of the oil supply rolling cylinder 201. Then, a turning motion is performed in which the distance between the center of the oil supply pin 205 and the center of the oil supply rolling cylinder 201 is a turning diameter. Accordingly, the oil supply swivel piston 203 relatively reciprocates in the oil supply cylinder groove 201c with a stroke twice the distance between the center of the oil supply pin 205 and the center of the oil supply rolling cylinder 201.
  • the free piston type system in which the oil supply rolling cylinder 201 is driven to rotate and the oil supply swiveling piston 203 is restricted by the oil supply pin 205 makes assembly extremely easy.
  • the rolling cylinder method which is a method of revolving the refueling swivel piston 203, the center axis of the refueling pin and the center axis of the refueling rolling cylinder are on the revolving locus of the refueling swirl piston, and are opposed 180 degrees. Otherwise, the pump will not work and will lock.
  • the shape of the components is simple, so high accuracy can be realized at low cost. Improvement in compressor performance due to improved oil pump performance and reduction in manufacturing costs There is an effect that can be realized. Moreover, since the peak of the oil supply / discharge amount appears twice during one rotation of the shaft 6 (FIG. 6), the reliability of the bearing can be improved by matching the oil supply / discharge amount peak to the load peak in the bearing portion. There is an effect.
  • the working fluid enters the compression section through the suction pipe 50 (FIG. 1) from the suction system outside the RC compressor, and is pressurized by the same compression operation as in Patent Document 1.
  • the pressurized working fluid is ejected from the discharge path (reference numeral 2d in FIG. 5) to the upper portion of the stationary cylinder 2.
  • the working fluid Under over-compression conditions where the operating pressure ratio is lower than the pressure ratio corresponding to the specific volume ratio of the RC compressor, the working fluid is also ejected from the bypass hole 2e via the bypass valve 22 (FIG. 1).
  • the oil enters the casing upper chamber 120 while changing the flow direction from the outer peripheral gap of the discharge cover plate 230b at the lower end surface of the casing upper lid 8b, and the oil that could not be separated is separated by the sedimentation action.
  • the pipe 55 exits to the discharge system outside the RC compressor.
  • the axial clearance includes a clearance between the piston upper surface 3d and the bottom surface of the cylinder hole 2b, a clearance between the piston lower surface 3f and the bottom surface of the cylinder groove 1c, a clearance between the rolling cylinder upper surface 1b1 and the bottom surface of the cylinder hole 2b, There is a gap between the upper surface of the rolling end plate portion 1a1 and the lower surface of the stationary cylinder 2 (around the cylinder hole 2b).
  • a familiar coating is provided on these surfaces, the gap is further narrowed, the sealing performance is further improved, and the compressor efficiency is further improved.
  • An example of such a film is a manganese phosphate compound when the material is cast iron.
  • the oil in the oil storage part 125 is fed into the shaft oil supply vertical hole 6b through the pump connecting part 6z by the operation of the oil supply pump 200 described above. And as above-mentioned, it supplies to each bearing part (sub bearing 25, the lower main bearing 24b, the upper main bearing 24a) via the oil supply horizontal hole. Of these, the oil supplied to the upper main bearing 24a and the lower main bearing 24b enters the back chamber 110 via the oil supply main shaft groove 6k. The oil that has entered the back chamber 110 is then discharged to the upper surface of the stator 7b through the oil discharge passage 4x and the frame outer peripheral groove 4m. As a result, the back pressure that is the pressure in the back chamber 110 becomes the discharge pressure.
  • the movable part constituted by the rolling cylinder 1 and the swing piston 3 is always urged to the stationary cylinder 2.
  • the axial clearance between the piston upper surface 3d and the piston lower surface 3f of the revolving piston 3 and the rolling cylinder 1b upper surface and the rolling end plate 1a1 upper surface of the rolling cylinder 1 is reduced, the sealing performance is improved, and the compressor efficiency is improved.
  • the oil discharge passage 4x has the same height as the sliding portion of the lower surface of the stationary cylinder 2 and the upper surface of the rolling end plate portion 1a1, the oil level of the back chamber 110 rises to the sliding portion, and lubrication and sealing properties are achieved. There is an effect of realizing the improvement.
  • the oil in the shaft oil supply vertical hole 6b enters the piston lower surface hole 3g of the orbiting piston 3 via the rolling bottom oil supply hole 1k. And it enters into the slide groove 3b from there.
  • the oil that has entered the slide groove 3b lubricates the sliding portion between the pin mechanism 5 and the slide groove 3b, and enters the sliding gap between the revolving piston 3 and the stationary cylinder 2 or the rolling cylinder 1 to provide lubrication and sealing. .
  • the oil that has entered each gap enters the working chamber again and mixes with the working fluid. Then, it is mixed with the working fluid and discharged from the discharge passage 2d to the discharge cover chamber 130.
  • part of the oil flows into the rolling outer peripheral cut portion 1g through the rolling outer peripheral hole 1f.
  • the oil entered there lubricates the gap between the outer periphery of the rolling cylinder 1b and the inner periphery of the cylinder hole 2b. Further, it enters a rolling end plate recess 1i provided below the rolling outer periphery cut portion 1g, and lubricates between the upper surface of the rolling end plate portion 1a1 and the lower surface of the stationary cylinder 2.
  • oil that has flowed into the working chamber via various seal gaps is mixed with the working fluid in the working chamber, and when the working fluid enters the leakage passage during the suction, compression, or discharge stroke, An oil film is formed on the inside to suppress internal leakage. Furthermore, since the majority of leak flow paths are locations of relative motion between the compression elements, the oil that flows in reduces friction and improves lubricity. In this way, there is an effect of improving the compressor efficiency.
  • the oil mixed with the working fluid in this way is finally ejected together with the working fluid into the discharge cover chamber 130 as described in the description of the flow of the working fluid, with internal circulation in the working chamber. Separate from fluid.
  • the oil thus separated passes through the cylinder outer peripheral groove 2m and the frame outer peripheral groove 4m on the outer periphery of the compression portion and is discharged to the upper surface of the stator 7b in the lower space of the compression portion.
  • FIG. 5 is a flowchart showing a compression process of the RC compressor according to the first embodiment.
  • the shaft 6 (rolling cylinder 1) rotates 180 degrees. That is, when the shaft rotates once, two compression strokes are executed.
  • this force vector is indicated by a white arrow described from the compression chamber 100 at each stage toward the swiveling piston 3. Further, the force vector that the slider 5a of the pin mechanism 5 serving as a support portion counteracts against this force exerts on the swing piston 3 is indicated by a black arrow described in the vicinity of the rotation center at each stage.
  • the orbiting piston 3 comes into contact with the rolling cylinder 1 at a black circle (a boundary corner portion between the piston cut surface 3c and the piston tip surface 3e in FIG. 3). And since the contact location is always the same location as shown in FIG. 5, it turns out that there is no time when contact is lost. Note that contact is not necessary because the force is completely balanced only for a moment when the shaft rotation angle becomes 0 degrees, but in this case, it continues to rotate while maintaining contact due to inertia.
  • the rolling cylinder 1 receives a torque that rotates counterclockwise. However, since the motor 7 that is a cylinder driving source of the rolling cylinder 1 applies a counter torque, the rolling cylinder 1 does not rotate counterclockwise. The compression operation continues.
  • the rolling cylinder 1 and the revolving piston 3 are always in contact with each other, so that there is no rotation play between them.
  • the revolving piston 3 does not collide with the side surface of the cylinder groove 1c of the rolling cylinder 1, so that there is an effect that vibration and noise are reduced.
  • the impact force does not act on the side surface portion of the cylinder groove 1c (FIG. 2) and the boundary corner portion between the piston cut surface 3c and the piston front end surface 3e of the swing piston 3 which is the counterpart, the sliding loss. And wear are reduced, and compressor performance and reliability are improved.
  • the force applied to the pin mechanism 5 that is the support portion of the orbiting piston 3 is not an impact force due to the collision, the reliability of the pin mechanism 5 is improved.
  • the side surface portion of the cylinder groove 1c and the piston cut surface 3c constitute a seal portion.
  • the contact state of both surfaces is stable, a stable oil film is formed and high sealing performance can be realized. Is also suppressed and the compressor performance is improved.
  • a slide groove wall indicated by reference numeral 3b1 in FIG. 3 may be employed. This connects both ends of the slide groove 3b, and has the effect of increasing the rigidity of the orbiting piston 3.
  • the revolving piston 3 to which the working fluid compressive load is applied is supported by the pin mechanism 5.
  • the slide groove wall 3b1 the surface pressure received from the pin mechanism 5 can be lowered without lowering the rigidity of the swing piston 3. It becomes possible.
  • the slide groove wall 3b1 is provided with holes for supplying oil to the piston cut surface 3c and the rolling outer peripheral hole 1f so as not to obstruct the oil flow.
  • a slide groove digging indicated by reference numeral 3b2 in FIG. 3 may be provided.
  • the effect of reducing the resistance of oil in the slide groove 3b and the effect of adjusting the oil supply amount to the rolling outer peripheral hole 1f to an appropriate amount are obtained.
  • FIG. 7 is a longitudinal sectional view showing the RC compressor of this embodiment.
  • the parenthesized code 1w is used, and 210 and 200 'are not used.
  • a piston rotation source for rotating the revolving piston 3 with a crank shaft is provided together with a cylinder driving source for rotating the rolling cylinder 1. Furthermore, the slider is provided in the pin mechanism which is a support part of a piston.
  • the shape of the shaft 6 in the compression part is different. Accordingly, a main balance 80 is installed at the upper part of the rotor 7a, and a counter balance 82 is installed at the lower part of the rotor 7a.
  • the shapes of the rolling cylinder 1, the turning piston 3, and the pin mechanism 5 are partially different from those of the first embodiment.
  • FIG. 8 is an enlarged view of part L in FIG.
  • FIG. 9 is a perspective view from above of the rolling cylinder 1 of FIG.
  • FIG. 10 is a perspective view from below of the rolling cylinder 1 of FIG. 1h which is a code with parentheses is not adopted.
  • the shaft 6 has a large-diameter shaft collar portion 6c at the upper portion thereof.
  • the upper surface of the shaft collar portion 6c is referred to as a cylinder contact surface 6m.
  • the cylinder contact surface 6m is provided with an eccentric shaft 6a having an eccentric amount that is half the distance between the pin central axis, which is the central axis of the pin mechanism 5, and the cylinder axis. That is, in the present embodiment, the crank shaft is formed by protruding the eccentric shaft 6a.
  • an opening of a shaft oil supply vertical hole 6b is provided at the upper end of the eccentric shaft 6a, and a shaft oil supply eccentric groove 6h is provided at the outer peripheral surface of the eccentric shaft 6a.
  • the rolling cylinder 1 has an eccentric shaft insertion hole 1d shown in FIG. 9 at the center of the lower surface of the cylinder groove 1c.
  • the eccentric shaft 6a is inserted into the eccentric shaft insertion hole 1d.
  • a shaft collar contact surface 1e shown in FIG. 10 is provided on the rear peripheral edge of the eccentric shaft insertion hole 1d.
  • the revolving piston 3 rotates with the central axis of the eccentric shaft 6a as a rotation axis and revolves with the central axis of the shaft 6 (drive transmission unit) as a rotation axis.
  • FIG. 11 is a perspective view showing a revolving piston of the RC compressor of this embodiment.
  • the orbiting piston 3 has a orbiting bearing hole 3a, and an orbiting bearing 23 is fixedly disposed therein.
  • FIG. 12 is a perspective view showing a pin mechanism of the RC compressor of this embodiment.
  • the pin mechanism 5 is configured to use the fixed pin 5s as in FIG. 4A of the first embodiment.
  • the slider mating surface 5a1 has a small area because the load is small. .
  • the eccentric shaft 6 a is inserted into the eccentric shaft insertion hole 1 d of the rolling cylinder 1, and is inserted into the swing bearing 23 of the swing piston 3.
  • FIG. 13 is a schematic view of this contact portion as viewed from the lower side of the shaft 6.
  • the rolling cylinder 1 is driven to rotate without the swiveling piston 3. That is, the motor 7 is also a cylinder drive source. That is, the RC compressor of the present embodiment is configured to simultaneously perform the rotational drive of the rolling cylinder 1 and the turning drive of the turning piston 3 by one motor 7.
  • the rotation speed of the rolling cylinder 1 is half of the turning speed of the turning piston 3. Since the rotational speed of the shaft 6 of the present embodiment structurally matches the rotational speed of the revolving piston 3, a deviation from the rotational speed of the rolling cylinder 1 occurs. However, since the rotational torque is transmitted from the shaft 6 to the rolling cylinder 1 by urging the flat plates, it is possible even if there is a difference in rotational speed or rotational center. Further, the torque required for the rolling cylinder 1 is extremely small because there is no torque due to the pressure of the working fluid, and the torque that can be transmitted by the urging of the flat plates is sufficient.
  • the main support portion of the orbiting piston 3 is the eccentric shaft 6a, so that the force applied to the pin mechanism 5 which is another support portion is extremely small, and the reliability of the pin mechanism 5 is improved. There is an effect that it is greatly improved. For this reason, as shown in FIG. 12, the slider mating surface 5a1 can be made smaller, the bearing portion can be enlarged, and the reliability can be improved.
  • the surface roughness may be increased.
  • the shaft collar contact surface 1e is a surface with a little cast skin.
  • a record groove-like groove processing may be performed with a lathe.
  • the rolling cylinder 1 of the first and second embodiments has a cylinder groove outer peripheral wall 1w.
  • This type has high sealing performance between the working chambers, but the outer surface of the rolling cylinder 1b is pressed against the inner surface of the cylinder hole 2b by the force received from the working fluid (the force opposite to the black arrow in FIG. 5). There is a problem that sliding loss increases.
  • the rolling balance hole 1h has a cross-sectional area equivalent to the longitudinal section (rectangular clearance section) of the outer peripheral surface of the rolling cylinder 1b and the inner peripheral surface of the cylinder hole 2b.
  • the pressure difference between both sides of the cylinder groove outer peripheral wall 1w is reduced, and the force with which the outer peripheral surface of the rolling cylinder 1b is pressed against the inner peripheral surface of the cylinder hole 2b is reduced.
  • a sliding loss can be reduced and there exists an effect that a compressor efficiency improves.
  • the lower part of the outer peripheral surface of the rolling cylinder 1b is sealed with the back chamber 110 of the discharge pressure by the upper surface of the rolling end plate part 1a1 as described above, there is no adverse effect on the compressor efficiency due to leakage.
  • FIG. 14 is a perspective view showing a rolling cylinder of the RC compressor of the third embodiment.
  • the rolling cylinder 1 ′ shown in the drawing has any one of the holes 1 k or 1 d with parentheses.
  • Example 1 or 2 Descriptions other than the differences from Example 1 or 2 are omitted.
  • the oil supply lid 204 shown by F in FIG. 6 is changed to a variable oil supply lid 204 'to form a variable capacity oil supply pump 200'.
  • the second embodiment is the same as the first to third embodiments, so the description of the overlapping parts is omitted, and different parts are mainly described.
  • the oil supply pin 205 is fixed to the oil supply lid 204.
  • variable capacity lid 204 ′ shown in FIG. 16 is used in place of the oil supply cover 204 of FIG. 6 and a mechanism capable of moving the oil supply pin 205 is incorporated, thereby providing a variable capacity. Is realized.
  • the oil revolving piston 203 is configured such that the position and posture of the oil pin groove 203 b are restricted by the oil pin 205, so that the center of the oil pin 205 and the oil rolling cylinder A turning motion is performed in which the center point of the center 201 is the turning center and the distance between the center of the oil supply pin 205 and the center of the oil supply rolling cylinder 201 is the turning diameter. Accordingly, the oil supply swivel piston 203 relatively reciprocates in the oil supply cylinder groove 201c with a stroke twice the distance between the center of the oil supply pin 205 and the center of the oil supply rolling cylinder 201. From this, the displacement of the oil supply pump can be changed by shifting the center of the oil supply pin 205 with respect to the shaft rotation axis which is the center axis of the oil supply rolling cylinder 201.
  • the capacity of the oil supply pump is changed by moving the oil supply pin 205 as follows.
  • variable oil supply lid 204 ' is constituted by an oil supply passage plate 204a, an oil supply pin base 204b, and an oil supply pin base presser 204c.
  • the oil supply passage plate 204a has an oil supply suction groove 204s, an oil supply discharge groove 204d, and a screw hole.
  • An oil supply pin 205 is installed in the oil supply pin base 204b, and an oil supply pin drive screw hole 204b1 is provided on the lateral tip surface.
  • the oil supply pin base retainer 204c has an oil supply pin slide hole 204c1, an oil supply suction hole 204h, and a screw hole through which the oil supply pin base 204b slides.
  • the oil supply passage plate 204a, the oil supply pin base 204b, and the oil supply pin base presser 204c are overlapped, and an oil supply pin slide screw 210a that is rotationally driven by the oil supply pin slide motor 210 is screwed into the oil supply pin drive screw hole 204b1.
  • the variable oil supply lid 204 ′ thus manufactured is a variable capacity oil supply pump 200 ′ in the same manner as in FIG. 6.
  • the oil supply pin slide motor 210 When operating the variable capacity oil supply pump 200 ', the oil supply pin slide motor 210 is driven by an oil supply pin slide power supply line (not shown) for supplying electric power from the outside, and the oil supply pin base 204b is slid. Thereby, the oil supply pin 205 can be moved and the capacity
  • a swiveling piston in which a large force is applied from the working fluid by applying a rotational drive torque to a rolling cylinder that does not receive torque from the working fluid.
  • the swivel angle shifts to the smallest range of play with the rolling cylinder. And finally, it will collide with a rolling cylinder and a sliding part.
  • the swivel piston since a large force is acting on the swivel piston in the direction of reducing the swivel angle from the working fluid, the swivel piston does not advance at a stroke even by this collision, and always contacts the rolling cylinder, Continuing the swivel motion against the force from the working fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

The rolling cylinder-type displacement compressor according to the present invention is provided with: a cylindrical rolling cylinder having a cylinder groove; a revolving piston having a slide groove; a stationary cylinder; a pin structure; a drive source; a drive transmission part connecting the rolling cylinder and the drive source to each other; and a casing in which the revolving piston, the rolling cylinder, the stationary cylinder, the pin structure, the drive source, and the drive transmission part are housed. The revolving piston, the rolling cylinder, and the stationary cylinder constitute a compression part. The pin structure is fitted into the slide groove. The revolving piston relatively reciprocates in the cylinder groove. In the compression part, a suction chamber, a compression chamber, and a discharge chamber are formed by the reciprocation. The drive source drives at least the rolling cylinder via the drive transmission part. Accordingly, collisions between movable compression elements in a rolling cylinder-type displacement compressor are reduced, whereby degradation of performance of the compressor can be suppressed.

Description

ローリングシリンダ式容積型圧縮機Rolling cylinder positive displacement compressor
 本発明は、ローリングシリンダ式容積型圧縮機に関する。 The present invention relates to a rolling cylinder type positive displacement compressor.
 固定ピン機構を有するローリングシリンダ式容積型圧縮機は、ピン機構の中心とローリングシリンダの回転中心を通る円上の任意の点から両中心へ引いた2本の弦は一定の角度になるという幾何学的関係(円周角一定の法則)を利用した独特の装置である。この装置において冷媒等の作動流体を圧縮する圧縮室を構成する圧縮要素としては、運動を行わない静止圧縮要素である静止シリンダと、運動を伴う可動圧縮要素とがある。可動圧縮要素には、回転運動するローリングシリンダと、ローリングシリンダとピン機構の中心を通る円上を中心が通る旋回運動とともにローリングシリンダの中心を向く姿勢をとる旋回ピストンとがある。 A rolling cylinder positive displacement compressor with a fixed pin mechanism has a geometry in which the two strings drawn to both centers from a given point on a circle passing through the center of the pin mechanism and the center of rotation of the rolling cylinder have a constant angle. It is a unique device that uses scientific relations (the law of constant circumference angle). In this device, compression elements that constitute a compression chamber that compresses a working fluid such as a refrigerant include a stationary cylinder that is a stationary compression element that does not move, and a movable compression element that accompanies movement. The movable compression element includes a rolling cylinder that rotates, and a revolving piston that takes a posture toward the center of the rolling cylinder along with a revolving motion that passes through a circle passing through the center of the rolling cylinder and the pin mechanism.
 これらの可動圧縮要素には、協働して圧縮室を形成するため、摺動等によって互いに力が働き合うとともに、作動流体の圧縮によって、作動流体や各圧縮要素の支持部から力が働く。旋回ピストンには、作動流体から旋回運動を妨げる向きの力が働くため、それに対抗する駆動力が必須となる。一方、ローリングシリンダには、作動流体から回転運動を妨げるトルクは働かないという特徴がある。 In these movable compression elements, a compression chamber is formed in cooperation with each other, so that forces act on each other by sliding or the like, and forces act from the working fluid and the support portions of the compression elements by compression of the working fluid. Since the force of the direction which prevents a turning motion from a working fluid acts on a turning piston, the driving force which opposes it becomes essential. On the other hand, the rolling cylinder has a feature that torque that hinders rotational motion from working fluid does not work.
 特許文献1には、モータが回転駆動するシャフトで旋回ピストンに駆動力を与え、作動流体から旋回ピストンに働く力に対抗することにより、作動流体の圧縮を実現し、ローリングシリンダには駆動力を与えない構成が記載されている。 In Patent Document 1, a driving force is applied to a swing piston by a shaft driven by a motor to counteract the force acting on the swing piston from the working fluid, so that the working fluid is compressed, and the driving force is applied to the rolling cylinder. The configuration not given is described.
国際公開第2016/067355号International Publication No. 2016/067355
 特許文献1に記載されているように、ローリングシリンダに働くトルクは、支持部から働く摩擦トルクと、旋回ピストンから働くトルクとのみである。 As described in Patent Document 1, the torque that acts on the rolling cylinder is only the friction torque that works from the support portion and the torque that works from the orbiting piston.
 ところで、旋回ピストンとローリングシリンダとの摺動部には、必ず隙間があるため、旋回ピストンがある位置である姿勢をとっても、協働して圧縮室を形成するローリングシリンダの回転角度は一つに決まらず、必ず、組み込み可能な回転角度の範囲(ガタ)がある。 By the way, since there is always a gap in the sliding portion between the swing piston and the rolling cylinder, even if the posture where the swing piston is located is taken, the rotation angle of the rolling cylinder that cooperates to form the compression chamber is one. There is always a range of rotation angles that can be incorporated.
 このため、ローリングシリンダは、上記摩擦トルクにより、必ず回転速度が低下し、ガタの範囲のうちで回転角の小さい方へずれ、最後に、旋回ピストンと摺動部で衝突する。 Therefore, the rotational speed of the rolling cylinder is inevitably lowered by the friction torque, and the rolling cylinder is shifted to the smaller rotation angle within the range of play, and finally collides with the swing piston at the sliding portion.
 ローリングシリンダには、作動流体からの大きなトルクが働いていないため、この衝突によって、ガタの範囲で回転角の大きい方へ一気に進む。その後、同様な衝突を繰り返す。さらに、この衝突が極端に激しくなると、回転角の大きいところへ戻った時点でも旋回ピストンと衝突を起こすことになり、より一層激しい衝突が極めて短い周期で起きることになる。 ∙ Since a large torque from the working fluid does not act on the rolling cylinder, this collision advances rapidly toward the larger rotation angle within the range of play. Then, the same collision is repeated. Furthermore, if this collision becomes extremely intense, it will collide with the revolving piston even when it returns to a place where the rotation angle is large, and a much more severe collision will occur with an extremely short period.
 この結果、摺動部の振動騒音や磨耗による信頼性低下、摺動部における大きな衝撃荷重の発生による摺動損失増大や、摺動部シール隙間の不安定化による油膜形成不良で漏れ損失増大が生じ、圧縮機性能が低下するという問題があった。 As a result, there is a decrease in reliability due to vibration noise and wear of the sliding part, an increase in sliding loss due to the generation of a large impact load in the sliding part, and an increase in leakage loss due to poor oil film formation due to instability of the sliding part seal gap. As a result, there was a problem that the compressor performance was lowered.
 本発明は、ローリングシリンダ式容積型圧縮機において、可動圧縮要素同士の衝突を減らし、圧縮機としての性能の低下を抑制することを目的とする。 An object of the present invention is to reduce a collision between movable compression elements in a rolling cylinder type positive displacement compressor and to suppress a decrease in performance as a compressor.
 本発明のローリングシリンダ式容積型圧縮機は、シリンダ溝を有する円柱状のローリングシリンダと、スライド溝を有する旋回ピストンと、静止シリンダと、ピン機構と、駆動源と、ローリングシリンダと駆動源とを繋ぐ駆動伝達部と、旋回ピストン、ローリングシリンダ、静止シリンダ、ピン機構、駆動源及び駆動伝達部を内蔵するケーシングと、を備え、旋回ピストン、ローリングシリンダ及び静止シリンダは、圧縮部を構成し、ピン機構は、スライド溝に嵌入され、旋回ピストンは、シリンダ溝にて相対的に往復運動をするものであり、圧縮部には、その往復運動により、吸込室、圧縮室及び吐出室が形成され、駆動源は、駆動伝達部を介して、少なくともローリングシリンダを駆動するものである。 A rolling cylinder type positive displacement compressor of the present invention includes a cylindrical rolling cylinder having a cylinder groove, a swing piston having a slide groove, a stationary cylinder, a pin mechanism, a drive source, a rolling cylinder, and a drive source. A drive transmission unit to be connected, and a casing incorporating a swing piston, a rolling cylinder, a stationary cylinder, a pin mechanism, a drive source and a drive transmission unit, and the swing piston, the rolling cylinder and the stationary cylinder constitute a compression unit, and a pin The mechanism is inserted into the slide groove, and the revolving piston relatively reciprocates in the cylinder groove, and the suction portion, the compression chamber, and the discharge chamber are formed in the compression portion by the reciprocation. The drive source drives at least the rolling cylinder through the drive transmission unit.
 本発明によれば、ローリングシリンダ式容積型圧縮機において、可動圧縮要素同士の衝突を減らし、圧縮機としての性能の低下を抑制することができる。 According to the present invention, in a rolling cylinder type positive displacement compressor, collision between movable compression elements can be reduced, and deterioration of performance as a compressor can be suppressed.
実施例1に係るRC圧縮機を示す縦断面図である。1 is a longitudinal sectional view showing an RC compressor according to Embodiment 1. FIG. 実施例1に係るRC圧縮機のローリングシリンダを示す斜視図である。1 is a perspective view illustrating a rolling cylinder of an RC compressor according to Embodiment 1. FIG. 実施例1に係るRC圧縮機の旋回ピストンを示す斜視図である。1 is a perspective view showing a turning piston of an RC compressor according to Embodiment 1. FIG. 実施例1に係るRC圧縮機のピン機構を示す斜視図である。1 is a perspective view showing a pin mechanism of an RC compressor according to Embodiment 1. FIG. 実施例1の係るRC圧縮機の他のピン機構を示す斜視図である。It is a perspective view which shows the other pin mechanism of RC compressor which concerns on Example 1. FIG. 実施例1に係るRC圧縮機の圧縮行程を示すフロー図である。FIG. 3 is a flowchart illustrating a compression process of the RC compressor according to the first embodiment. 実施例1に係るRC圧縮機の給油ポンプを示す分解斜視図である。1 is an exploded perspective view showing an oil supply pump of an RC compressor according to Embodiment 1. FIG. 実施例2に係るRC圧縮機を示す縦断面図である。6 is a longitudinal sectional view showing an RC compressor according to Embodiment 2. FIG. 図7のL部拡大図である。It is the L section enlarged view of FIG. 実施例2に係るRC圧縮機のローリングシリンダの上方から見た斜視図である。It is the perspective view seen from the upper side of the rolling cylinder of RC compressor concerning Example 2. FIG. 実施例2に係るRC圧縮機のローリングシリンダの下方から見た斜視図である。It is the perspective view seen from the downward direction of the rolling cylinder of RC compressor which concerns on Example 2. FIG. 実施例2に係るRC圧縮機の旋回ピストンを示す斜視図である。FIG. 5 is a perspective view showing a turning piston of an RC compressor according to a second embodiment. 実施例2に係るRC圧縮機のピン機構を示す斜視図である。6 is a perspective view showing a pin mechanism of an RC compressor according to Embodiment 2. FIG. 実施例2に係るRC圧縮機のシャフトつば部及びローリングシリンダ接触部をシャフトの下側から見た模式図である。It is the schematic diagram which looked at the shaft collar part and rolling cylinder contact part of RC compressor concerning Example 2 from the lower side of the shaft. 実施例3に係るRC圧縮機のローリングシリンダを示す斜視図である。6 is a perspective view showing a rolling cylinder of an RC compressor according to Embodiment 3. FIG. 実施例1に係るRC圧縮機の給油ポンプを示す横断面図である。1 is a cross-sectional view illustrating an oil supply pump of an RC compressor according to Embodiment 1. FIG. 実施例4に係るRC圧縮機の給油ポンプを示す分解斜視図である。FIG. 6 is an exploded perspective view showing an oil supply pump of an RC compressor according to a fourth embodiment.
 本発明は、旋回ピストンの姿勢を規定する固定ピン機構を有するローリングシリンダ式容積型圧縮機に関する。 The present invention relates to a rolling cylinder type positive displacement compressor having a fixed pin mechanism for defining the attitude of a revolving piston.
 以下、本発明のローリングシリンダ式容積型圧縮機(以下「RC圧縮機」ともいう。)について複数の実施例を用い、適宜図面を参照しながら詳細に説明する。なお、各実施例において共通する部分には同一の図を用いて説明する。また、各実施例の図における同一符号は、同一物または相当物を示し、重複した説明を省略する。なお、図示する各要素の寸法比率は一実施形態を示している。よって、図示される形状における各寸法の大小関係や角度も一実施形態を示す。また、図中で括弧付の符号を付けた部分は、追加したり除去したりして、変形した実施例を示す。後者の場合、追加か除去は、本文中で述べる。また、具体的な寸法値についても、特に限定されるものではないが、ローリングシリンダ式容積型圧縮機の外径が10mmから2000mmまでの範囲であることが望ましい。 Hereinafter, the rolling cylinder type positive displacement compressor (hereinafter also referred to as “RC compressor”) of the present invention will be described in detail with reference to the drawings as appropriate using a plurality of embodiments. In addition, the same part is demonstrated using the same figure in each Example. Moreover, the same code | symbol in the figure of each Example shows the same thing or an equivalent, and the overlapping description is abbreviate | omitted. In addition, the dimension ratio of each element to show in figure shows one Embodiment. Therefore, the size relationship and angle of each dimension in the illustrated shape also indicate an embodiment. Moreover, the part which attached | subjected the code | symbol with a parenthesis in a figure shows the Example which added and removed and changed. In the latter case, the addition or removal is described in the text. Further, specific dimension values are not particularly limited, but it is desirable that the outer diameter of the rolling cylinder type positive displacement compressor is in a range from 10 mm to 2000 mm.
 実施例1に係るRC圧縮機については、図1乃至図6及び図15を用いて説明する。 The RC compressor according to the first embodiment will be described with reference to FIGS. 1 to 6 and FIG.
 ローリングシリンダを回転駆動する本実施例は、旋回ピストンの支持部であるピン機構にスライダを設け、旋回ピストンの駆動源であるピストン駆動源は設けないタイプのRC圧縮機である。 The present embodiment in which the rolling cylinder is driven to rotate is an RC compressor of a type in which a slider is provided in a pin mechanism that is a support portion of a swing piston, and a piston drive source that is a drive source of the swing piston is not provided.
 図1は、実施例1のRC圧縮機の全体構成を示したものである。なお、本図の説明においては、特許文献1に記載されている構成については簡略なものとしている。 FIG. 1 shows the overall configuration of the RC compressor of the first embodiment. In the description of this figure, the configuration described in Patent Document 1 is simplified.
 本図に示すように、RC圧縮機は、大きく分けると、圧縮部と、駆動源であるモータ7と、貯油部125と、で構成されている。 As shown in the figure, the RC compressor is roughly composed of a compression unit, a motor 7 as a drive source, and an oil storage unit 125.
 本図においては、ケーシング円筒部8a、ケーシング上フタ8b及びケーシング下フタ8cで構成されているケーシング内には、圧縮部と、その下方に圧縮部の駆動源となるモータ7と、圧縮部とモータ7とを繋ぐ駆動伝達部であるシャフト6と、が配置されている。シャフト6は、垂直方向に配置されている。 In this figure, in a casing constituted by a casing cylindrical portion 8a, a casing upper lid 8b and a casing lower lid 8c, a compression portion, a motor 7 serving as a driving source of the compression portion below, a compression portion, A shaft 6 that is a drive transmission unit that connects the motor 7 is disposed. The shaft 6 is arranged in the vertical direction.
 圧縮部は、圧縮される作動流体に直接作用する構成要素として、ローリングシリンダ1と、旋回ピストン3と、静止シリンダ2と、を含む。ローリングシリンダ1及び旋回ピストン3は、可動圧縮要素である。また、静止シリンダ2は、静止圧縮要素である。可動圧縮要素と静止圧縮要素とは、作動室を形成する。作動室は、RC圧縮機の運転中、吸込室95、圧縮室100及び吐出室105に繰り返し切り替わる。 The compression unit includes a rolling cylinder 1, a turning piston 3, and a stationary cylinder 2 as components that directly act on the compressed working fluid. The rolling cylinder 1 and the turning piston 3 are movable compression elements. The stationary cylinder 2 is a stationary compression element. The movable compression element and the stationary compression element form a working chamber. The working chamber is repeatedly switched to the suction chamber 95, the compression chamber 100, and the discharge chamber 105 during operation of the RC compressor.
 これらの材質に関しては、旋回ピストン3、ローリングシリンダ1及び静止シリンダ2をすべて鋳鉄で作製すれば、コストを低く抑えることができる。また、ローリングシリンダ1をアルミニウム合金で作製し、旋回ピストン3及び静止シリンダ2を鋳鉄で作製してもよい。このようにすれば、受動的に回転するローリングシリンダ1を軽量化することができるため、動作不良を起こしにくくすることができ、かつ、運転を滑らかにすることができる。さらに、旋回ピストン3、ローリングシリンダ1及び静止シリンダ2をすべてアルミニウム合金で作製すれば、RC圧縮機全体を軽量化することができる。 Regarding these materials, the cost can be kept low if the revolving piston 3, the rolling cylinder 1 and the stationary cylinder 2 are all made of cast iron. Alternatively, the rolling cylinder 1 may be made of an aluminum alloy, and the turning piston 3 and the stationary cylinder 2 may be made of cast iron. In this way, since the rolling cylinder 1 that rotates passively can be reduced in weight, it is possible to make it difficult for malfunctions to occur and smooth operation. Furthermore, if the revolving piston 3, the rolling cylinder 1 and the stationary cylinder 2 are all made of an aluminum alloy, the entire RC compressor can be reduced in weight.
 圧縮部は、上部を静止シリンダ2、下部をフレーム4で覆った構成である。圧縮部は、ケーシング円筒部8aへ溶接等によって固定配置されている。フレーム4には、上主軸受24aと下主軸受24bとからなる主軸受24が設けられている。この主軸受24により、シャフト6が回転可能な状態で支持されている。フレーム4は、シャフト6を支持する。シャフト6は、フレーム4の下方へ突き出ている。なお、静止シリンダ2は、シリンダボルト90によりフレーム4に固定されている。 The compression part has a structure in which the upper part is covered with a stationary cylinder 2 and the lower part is covered with a frame 4. The compression part is fixedly arranged on the casing cylindrical part 8a by welding or the like. The frame 4 is provided with a main bearing 24 including an upper main bearing 24a and a lower main bearing 24b. The shaft 6 is supported by the main bearing 24 in a rotatable state. The frame 4 supports the shaft 6. The shaft 6 protrudes below the frame 4. The stationary cylinder 2 is fixed to the frame 4 by a cylinder bolt 90.
 静止シリンダ2には、シリンダ回転軸を中心軸とする円形のシリンダ穴2bが設けられている。また、静止シリンダ2は、その外周側面にシリンダ外周溝2mを有する。静止シリンダ2の上面からは、シリンダ穴2bへ貫通するバイパス穴2eが設けられている。シリンダ穴2bの底面には、ピン機構5が設けられている。静止シリンダ2の上面側にはバイパス弁22が設けられている。 The stationary cylinder 2 is provided with a circular cylinder hole 2b whose center axis is the cylinder rotation axis. The stationary cylinder 2 has a cylinder outer peripheral groove 2m on the outer peripheral side surface thereof. From the upper surface of the stationary cylinder 2, a bypass hole 2e penetrating into the cylinder hole 2b is provided. A pin mechanism 5 is provided on the bottom surface of the cylinder hole 2b. A bypass valve 22 is provided on the upper surface side of the stationary cylinder 2.
 なお、静止シリンダ2の上部には、吐出カバー230が固定配置されている。吐出カバー230は、吐出カバー板230bを有する。作動流体は、静止シリンダ2の上面と吐出カバー板230bとの間の空間である吐出カバー室130を通過し、吐出カバー口230aから旋回流となって旋回室140へ噴き出るように構成されている。 In addition, a discharge cover 230 is fixedly disposed on the upper portion of the stationary cylinder 2. The discharge cover 230 has a discharge cover plate 230b. The working fluid passes through the discharge cover chamber 130 that is a space between the upper surface of the stationary cylinder 2 and the discharge cover plate 230b, and is configured to be swirled into the swirl chamber 140 from the discharge cover port 230a. Yes.
 旋回ピストン3には、スライド溝3bが設けられている。スライド溝3bには、ピン機構5が挿入されている。また、旋回ピストン3には、ピストン下面穴3gが設けられている。ピン機構5は、旋回ピストン3のスライド溝3bへ嵌合され、旋回ピストン3の位置と姿勢を規制する支持部となる。 The slide piston 3 is provided with a slide groove 3b. A pin mechanism 5 is inserted into the slide groove 3b. The revolving piston 3 is provided with a piston lower surface hole 3g. The pin mechanism 5 is fitted into the slide groove 3 b of the swing piston 3 and serves as a support portion that regulates the position and posture of the swing piston 3.
 モータ7は、シャフト6に固定配置されるロータ7aと、ケーシング円筒部8aに固定配置されるステータ7bと、で構成されている。ここで、モータ7を形成するステータ7bに対してシャフト6に取り付けるロータ7aをわずかに下げて取り付ける。これによりシャフト6に上向きの軸推力を与える。 The motor 7 is composed of a rotor 7a fixedly disposed on the shaft 6 and a stator 7b fixedly disposed on the casing cylindrical portion 8a. Here, the rotor 7a attached to the shaft 6 is attached to the stator 7b forming the motor 7 while being slightly lowered. This gives an upward axial thrust to the shaft 6.
 貯油部125は、ケーシング円筒部8a、ケーシング下フタ8c及び副フレーム35で囲まれた領域である。 The oil storage part 125 is an area surrounded by the casing cylindrical part 8a, the casing lower lid 8c, and the sub-frame 35.
 シャフト6の下端には、昇圧能力を有する給油ポンプ200が設けられている。シャフト6には、中心軸方向に中央を貫通するシャフト給油縦穴6b(給油路)が設けられている。さらに、シャフト6には、副軸受25や下主軸受24bや上主軸受24aへ繋がる給油横穴(シャフト給油副横穴6g、シャフト給油下主軸受穴6f、シャフト給油上主軸受穴6e)が設けられている。上主軸受24aは、シャフト給油上主軸受穴6e及び給油主軸溝6kにより給油されるようになっている。 At the lower end of the shaft 6, an oil supply pump 200 having a boosting capability is provided. The shaft 6 is provided with a shaft oil supply vertical hole 6b (oil supply passage) penetrating the center in the central axis direction. Further, the shaft 6 is provided with oil supply horizontal holes (shaft oil supply sub horizontal hole 6g, shaft oil supply lower main bearing hole 6f, shaft oil supply upper main bearing hole 6e) connected to the sub bearing 25, the lower main bearing 24b, and the upper main bearing 24a. ing. The upper main bearing 24a is supplied with oil by a shaft oil supply upper main bearing hole 6e and an oil supply main shaft groove 6k.
 給油ポンプ200から吐出される油の一部は、ポンプ連結部6zの周囲の隙間を通って、副軸受25に供給されるようになっている。 A part of the oil discharged from the oil supply pump 200 is supplied to the auxiliary bearing 25 through a gap around the pump connecting portion 6z.
 ローリングシリンダ1の主として下方には、背面空間である背面室110が設けられている。 A back chamber 110 which is a back space is provided mainly below the rolling cylinder 1.
 圧縮部の外周部には、シリンダ外周溝2mやフレーム外周溝4mが設けられている。これらは、吐出圧の作動流体の流路となる。さらに、静止シリンダ2を取り付ける上面部には、背面室110の油を抜くための油排出路4xが設けられている。 A cylinder outer peripheral groove 2m and a frame outer peripheral groove 4m are provided on the outer peripheral portion of the compression portion. These serve as a flow path for the working fluid having a discharge pressure. Furthermore, an oil discharge path 4x for draining oil from the back chamber 110 is provided on the upper surface portion to which the stationary cylinder 2 is attached.
 吸込パイプ50は、ケーシング8の内部に設けられている圧縮部へ外部から作動流体を導入するものである。吐出パイプ55は、圧縮部で昇圧された作動流体を外部へ吐出するものである。吸込パイプ50及び吐出パイプ55は、ケーシング上フタ8bに設けられている。このほか、ケーシング上フタ8bには、ハーメチック端子220が設けられている。このハーメチック端子220にモータ線7b3が接続され、外部の電源(図示せず)からモータ7のステータ巻線7b2に電力を供給できるようになっている。 The suction pipe 50 introduces a working fluid from the outside to a compression section provided inside the casing 8. The discharge pipe 55 discharges the working fluid pressurized by the compression unit to the outside. The suction pipe 50 and the discharge pipe 55 are provided on the casing upper lid 8b. In addition, a hermetic terminal 220 is provided on the casing upper lid 8b. A motor wire 7b3 is connected to the hermetic terminal 220 so that electric power can be supplied to the stator winding 7b2 of the motor 7 from an external power source (not shown).
 吸込パイプ50から導入された作動流体は、圧縮部で昇圧され、吐出パイプ55から外部に吐出されるようになっている。 The working fluid introduced from the suction pipe 50 is pressurized in the compression section and discharged from the discharge pipe 55 to the outside.
 ここで、作動流体の流れについて説明する。ここでは、後述する図5も参照して説明する。 Here, the flow of the working fluid will be described. Here, description will be given with reference to FIG.
 吸込パイプ50から導入された作動流体は、圧縮部において圧縮され、吐出穴2d1やバイパス穴2e等から上方へ吹き出す。そして、作動流体は、一旦、吐出カバー230に衝突する。このとき、作動流体に含まれる油は、吐出カバー230に付着し、分離される。油の量が少なくなった作動流体は、吐出カバー口230aから吹き出し、ケーシング円筒部8aの内壁に衝突する。これにより、油が更に分離される。その後、作動流体は、ケーシング上部室120へ入り、ケーシング上フタ8bに設けられた吐出パイプ55から圧縮機の外部に吐出される。なお、ケーシング上部室120においては、作動流体の流速が低下するため、わずかに残った油ミストが沈降しやすくなり、作動流体に含まれる油の量はきわめて少なくなる。 The working fluid introduced from the suction pipe 50 is compressed in the compression unit and blows upward from the discharge hole 2d1, the bypass hole 2e, and the like. Then, the working fluid once collides with the discharge cover 230. At this time, the oil contained in the working fluid adheres to the discharge cover 230 and is separated. The working fluid in which the amount of oil is reduced blows out from the discharge cover port 230a and collides with the inner wall of the casing cylindrical portion 8a. This further separates the oil. Thereafter, the working fluid enters the casing upper chamber 120 and is discharged to the outside of the compressor from the discharge pipe 55 provided in the casing upper lid 8b. Note that in the casing upper chamber 120, the flow rate of the working fluid decreases, so that a slight amount of remaining oil mist tends to settle, and the amount of oil contained in the working fluid becomes extremely small.
 一方、圧縮部の下方には、作動流体の主流は無いが、圧縮部の外周溝であるシリンダ外周溝2mやフレーム外周溝4mを通って、吐出圧の作動流体が流入するようになっている。これにより、圧縮部の下方を含むケーシング空間全域が吐出圧となる。すなわち、高圧チャンバ方式を実現する。 On the other hand, although there is no main flow of working fluid below the compression section, the working fluid of discharge pressure flows through the cylinder outer circumferential groove 2m and the frame outer circumferential groove 4m, which are outer circumferential grooves of the compression section. . Thereby, the whole casing space including the lower part of a compression part becomes discharge pressure. That is, a high pressure chamber system is realized.
 副軸受25は、ボール25aと、そのボール25aを全方位で回転支持するボールホルダ25bと、で構成されている。シャフト6の下部をボール25aへ挿入し、そのボール25aをボールホルダ25bへ装着した後、ボールホルダ25bをケーシング円筒部8aに溶接された副フレーム35に固定配置する。これにより、副軸受25はシャフト6の下部を回転支持するようになっている。 The auxiliary bearing 25 includes a ball 25a and a ball holder 25b that rotatably supports the ball 25a in all directions. After the lower portion of the shaft 6 is inserted into the ball 25a and the ball 25a is mounted on the ball holder 25b, the ball holder 25b is fixedly disposed on the sub-frame 35 welded to the casing cylindrical portion 8a. As a result, the auxiliary bearing 25 is configured to rotatably support the lower portion of the shaft 6.
 なお、RC圧縮機は、円筒形状のケーシングの中心軸を水平方向(横)に向けて設置することもできる。この場合に、円筒の中心軸が斜めになっていても問題はない。ただし、この場合は、貯油部125の仕切りである副フレーム35の副フレーム周囲穴35a及び副フレーム中央穴35bの配置を調整して、適量の潤滑油が貯油部125の滞留するようにする必要がある。 Note that the RC compressor can be installed with the central axis of the cylindrical casing facing in the horizontal direction (lateral). In this case, there is no problem even if the central axis of the cylinder is inclined. However, in this case, it is necessary to adjust the arrangement of the sub-frame surrounding hole 35a and the sub-frame central hole 35b of the sub-frame 35, which is a partition of the oil storage part 125, so that an appropriate amount of lubricating oil stays in the oil storage part 125. There is.
 副フレーム35には、副フレーム周囲穴35a及び副フレーム中央穴35bが設けられている。油は、これらの穴を通って貯油部125へ戻す。シャフト6の最下端には、ポンプ連結部6zを介して給油ポンプ200が設けられ、各軸受や圧縮部へ通じるシャフト給油縦穴6bへ油を送り込む。 The subframe 35 is provided with a subframe peripheral hole 35a and a subframe center hole 35b. Oil returns to the oil reservoir 125 through these holes. An oil supply pump 200 is provided at the lowermost end of the shaft 6 via a pump connecting portion 6z, and feeds oil into a shaft oil supply vertical hole 6b that communicates with each bearing and compression portion.
 また、RC圧縮機組立ての適当な段階でケーシング内に油を封入し、最下部となるケーシング下フタ8c付近に油を溜める貯油部125を形成する。 Also, oil is sealed in the casing at an appropriate stage of assembling the RC compressor, and an oil storage part 125 for storing the oil is formed in the vicinity of the casing lower lid 8c which is the lowermost part.
 なお、本実施例においては、シリンダ溝外周壁1wを採用しているが、シリンダ溝外周壁1wを採用しない場合も、本発明は成立する。この意味で、1wは括弧付の符号として示している。シリンダ溝外周壁1wの詳細は、後段において図2を用いて説明する。 In this embodiment, the cylinder groove outer peripheral wall 1w is adopted, but the present invention is also realized when the cylinder groove outer peripheral wall 1w is not adopted. In this sense, 1w is shown as a code with parentheses. Details of the cylinder groove outer peripheral wall 1w will be described later with reference to FIG.
 また、本実施例においては、括弧付の符号210、200’は採用しない。 In the present embodiment, the reference numerals 210 and 200 'with parentheses are not adopted.
 本実施例においては、シャフト6が圧縮部のローリングシリンダ1に直結した構成を有する。よって、ローリングシリンダ1は、モータ7によって直接回転駆動する。すなわち、モータ7は、シリンダ駆動源となる。 In this embodiment, the shaft 6 is directly connected to the rolling cylinder 1 of the compression portion. Therefore, the rolling cylinder 1 is directly driven to rotate by the motor 7. That is, the motor 7 is a cylinder drive source.
 図1においては、M部として表示した部分のように、シャフト6とローリングシリンダ1とが一体化された構成を有する。言い換えると、シャフト6は、ローリングシリンダ1の下面に固定されている。この一体化は、一つの素材から加工してもいいし、別々で加工したものを溶接や拡散接合等で一体化してもよい。また、加工後の一体化において変形が生じる場合は、一体化した後に仕上げ加工を行ってもよい。さらに、図1のM部に継ぎ手を設けて、トルクの伝達を行う形式としてもよい。継ぎ手としては、偏心ずれを許容できるオルダム継ぎ手や設定角度ずれを許容できる自在継ぎ手やスプライン継ぎ手などが考えられる。 In FIG. 1, the shaft 6 and the rolling cylinder 1 are integrated, as in the portion indicated as the M portion. In other words, the shaft 6 is fixed to the lower surface of the rolling cylinder 1. This integration may be performed from one material, or may be integrated by welding, diffusion bonding, or the like separately processed. In addition, when deformation occurs in integration after processing, finishing may be performed after integration. Furthermore, it is good also as a form which provides a joint in the M part of FIG. 1, and transmits torque. As the joint, an Oldham joint capable of allowing an eccentric deviation, a universal joint capable of allowing a set angle deviation, a spline joint, and the like can be considered.
 シャフト6と一体化したローリングシリンダ1の回転体は、回転中心においてバランスが取れているため、通常設けられるバランス取りのためのアンバランスの設置は不要となる。 Since the rotating body of the rolling cylinder 1 integrated with the shaft 6 is balanced at the center of rotation, an unbalanced installation for balancing, which is normally provided, becomes unnecessary.
 次に、各要素を個別に説明する。 Next, each element will be explained individually.
 図2は、図1のローリングシリンダ1の詳細を示したものである。 FIG. 2 shows details of the rolling cylinder 1 of FIG.
 図2に示すように、ローリングシリンダ1は、円柱形状のローリング円柱1bと、ローリング端板1aと、を含む構成を有する。ローリングシリンダ1の下面には、シャフト6が直結され、固定されている。 As shown in FIG. 2, the rolling cylinder 1 has a configuration including a cylindrical rolling cylinder 1b and a rolling end plate 1a. A shaft 6 is directly connected and fixed to the lower surface of the rolling cylinder 1.
 ローリング円柱1bは、シリンダ溝1cを有する。ローリング端板1aは、シリンダ溝1cの底面部(シリンダ溝底面部1c3)を構成している。そして、シリンダ溝1cの外周側両端部には、ローリング円柱1bの一部を成すシリンダ溝外周壁1wが設けられている。シリンダ溝1cの底面中央には、ローリング底給油穴1kが設けられている。よって、シリンダ溝1cは、シリンダ溝曲面部1c1、シリンダ溝平面部1c2及びシリンダ溝底面部1c3により形成されている。 The rolling cylinder 1b has a cylinder groove 1c. The rolling end plate 1a constitutes a bottom surface portion (cylinder groove bottom surface portion 1c3) of the cylinder groove 1c. And the cylinder groove outer peripheral wall 1w which comprises a part of rolling cylinder 1b is provided in the outer peripheral side both ends of the cylinder groove 1c. A rolling bottom oiling hole 1k is provided at the center of the bottom surface of the cylinder groove 1c. Therefore, the cylinder groove 1c is formed by the cylinder groove curved surface portion 1c1, the cylinder groove flat surface portion 1c2, and the cylinder groove bottom surface portion 1c3.
 本実施例のローリング端板1aは、シリンダ溝1cの底面よりも一段下がった箇所からローリング円柱1bの外周側へ張り出したローリング鏡板部1a1を有する形状とする。ローリング鏡板部1a1が静止シリンダ2の下面に付勢して、作動室のシール性を向上させる構成となっている。 The rolling end plate 1a of the present embodiment has a shape having a rolling end plate portion 1a1 projecting from the bottom of the cylinder groove 1c to the outer peripheral side of the rolling cylinder 1b. The rolling end plate portion 1a1 is urged against the lower surface of the stationary cylinder 2 to improve the sealing performance of the working chamber.
 ローリング円柱1bの外周面には、ローリング外周カット部1gが設けられている。そして、そのローリング外周カット部1gとシリンダ溝1cの側面とを繋ぐローリング外周穴1fが設けられている。さらに、ローリング外周カット部1gとローリング鏡板部1a1の上面とが最も近づいている部分には、ローリング鏡板凹み1iが設けられている。これにより、ローリング鏡板部1a1の上面の潤滑を行う。このローリング鏡板凹み1iは、ローリング鏡板部1a1の外周部に直接接しない程度(ローリング鏡板部1a1の外周部に達しない程度)に設けてある。これにより、吐出ガスがローリングシリンダ1の背面空間である背面室110から吸込側へ逆流しないようにしている。 A rolling outer periphery cut portion 1g is provided on the outer peripheral surface of the rolling cylinder 1b. And the rolling outer periphery hole 1f which connects the rolling outer periphery cut part 1g and the side surface of the cylinder groove 1c is provided. Further, a rolling end plate recess 1i is provided at a portion where the rolling outer peripheral cut portion 1g and the upper surface of the rolling end plate portion 1a1 are closest to each other. Thereby, the upper surface of the rolling end plate portion 1a1 is lubricated. The rolling end plate recess 1i is provided so as not to directly contact the outer peripheral portion of the rolling end plate portion 1a1 (to the extent that it does not reach the outer peripheral portion of the rolling end plate portion 1a1). Thereby, the discharge gas is prevented from flowing backward from the back chamber 110 which is the back space of the rolling cylinder 1 to the suction side.
 ローリング外周カット部1gの上部には、ローリング外周カット部つば1g1が設けられている。これにより、ローリング円柱上面1b1と対向する静止シリンダ2のシリンダ穴2bの底面上に設ける吸込流路を構成する吸込溝(図示せず)との連通による内部漏洩を防止し、圧縮性能を向上させることができる。 The rolling outer periphery cut portion collar 1g1 is provided on the upper portion of the rolling outer periphery cut portion 1g. This prevents internal leakage due to communication with a suction groove (not shown) constituting a suction flow path provided on the bottom surface of the cylinder hole 2b of the stationary cylinder 2 facing the rolling cylinder upper surface 1b1, and improves compression performance. be able to.
 なお、本実施例においては、括弧付の符号である1hは採用しない。 In this embodiment, 1h, which is a parenthesis, is not adopted.
 図3は、図1の旋回ピストン3の詳細を示したものである。まず、括弧付の符号3b1、3b2を採用しない場合について説明する。 FIG. 3 shows the details of the swiveling piston 3 of FIG. First, a case where the parenthesized symbols 3b1 and 3b2 are not employed will be described.
 図3に示すように、ピストン下面3f中央には、ピストン下面穴3gが設けられている。また、ピストン上面3dには、スライド溝3bが設けられている。スライド溝3bの深さは、ピストン下面穴3gと連通する深さとする。また、旋回ピストン3の側面には、互いに平行な2つのピストンカット面3cと、それらをつなぐピストン先端面3eとが設けられている。さらに、スライド溝3bは、ピストンカット面3cに達する構造としてあり、これにより、ピストンカット面3cへの給油路の機能も担うものとしている。 As shown in FIG. 3, a piston lower surface hole 3g is provided at the center of the piston lower surface 3f. A slide groove 3b is provided on the piston upper surface 3d. The depth of the slide groove 3b is a depth communicating with the piston lower surface hole 3g. The side surface of the orbiting piston 3 is provided with two piston cut surfaces 3c that are parallel to each other and a piston tip surface 3e that connects them. Further, the slide groove 3b has a structure that reaches the piston cut surface 3c, and thereby assumes a function of an oil supply path to the piston cut surface 3c.
 次に、2種類のピン機構5について説明する。 Next, two types of pin mechanisms 5 will be described.
 図1に示すとおり、ピン機構5は、シリンダ穴2bの底面に固定されるとともに、旋回ピストン3のスライド溝3bに挿入され、ピンスライド機構を構成している。 As shown in FIG. 1, the pin mechanism 5 is fixed to the bottom surface of the cylinder hole 2b and is inserted into the slide groove 3b of the revolving piston 3 to constitute a pin slide mechanism.
 図4Aは、スライダ5aと固定ピン5sとで構成されたピン機構5の一例を示したものである。 FIG. 4A shows an example of a pin mechanism 5 composed of a slider 5a and a fixed pin 5s.
 本図においては、ピン機構5がスライダ5aと固定ピン5sとに分解された状態を示している。 In this figure, the pin mechanism 5 is disassembled into a slider 5a and a fixed pin 5s.
 スライダ5aは、略直方体形状をなし、旋回ピストン3のスライド溝3b(図3)と摺動するスライダ対偶面5a1を有する。言い換えると、スライダ5aは、スライド溝3b(図3)に摺動可能に接するスライダ対偶面5a1を有する。また、スライダ5aは、スライダ軸穴5a10及びスライダ溝5a2を有する。スライダ溝5a2は、潤滑のためにスライダ対偶面5a1に設けられている。 The slider 5a has a substantially rectangular parallelepiped shape, and has a slider pair face 5a1 that slides with the slide groove 3b (FIG. 3) of the orbiting piston 3. In other words, the slider 5a has a slider mating surface 5a1 slidably contacting the slide groove 3b (FIG. 3). The slider 5a has a slider shaft hole 5a10 and a slider groove 5a2. The slider groove 5a2 is provided on the slider pair surface 5a1 for lubrication.
 一方、固定ピン5sは、略円柱形状であり、その下端に固定ピンフランジ5s3が設けられている。また、固定ピン5sには、固定ピン給油縦穴5s1及び固定ピン給油横穴5s2が設けられている。固定ピン給油縦穴5s1は、固定ピンフランジ5s3の下面に開口部を有する。固定ピン給油横穴5s2は、固定ピン5sの側面部に開口部を有し、固定ピン5sの内部で固定ピン給油縦穴5s1に繋がっている。 On the other hand, the fixing pin 5s has a substantially cylindrical shape, and a fixing pin flange 5s3 is provided at the lower end thereof. The fixed pin 5s is provided with a fixed pin oil supply vertical hole 5s1 and a fixed pin oil supply horizontal hole 5s2. The fixed pin oil supply vertical hole 5s1 has an opening on the lower surface of the fixed pin flange 5s3. The fixed pin oil supply horizontal hole 5s2 has an opening in the side surface portion of the fixed pin 5s, and is connected to the fixed pin oil supply vertical hole 5s1 inside the fixed pin 5s.
 固定ピン5sは、スライダ5aのスライダ軸穴5a10に挿入され、固定される。スライダ5aは、ピン機構5の中心軸を回転軸とする状態(固定ピン5sを軸として回転可能な状態)で設置される。固定ピンフランジ5s3は、スライダ5aを軸方向支持する。固定ピン給油縦穴5s1及び固定ピン給油横穴5s2は、スライダ5aと固定ピン5sとの摺動部への給油路となる。 The fixing pin 5s is inserted into the slider shaft hole 5a10 of the slider 5a and fixed. The slider 5a is installed in a state where the central axis of the pin mechanism 5 is the rotation axis (a state where the slider 5a is rotatable about the fixed pin 5s). The fixed pin flange 5s3 supports the slider 5a in the axial direction. The fixed pin oil supply vertical hole 5s1 and the fixed pin oil supply horizontal hole 5s2 serve as an oil supply path to the sliding portion between the slider 5a and the fixed pin 5s.
 図4Bは、他の例である、スライダ5aとピン軸受5cとで構成されたピン機構5を示したものである。 FIG. 4B shows another example of a pin mechanism 5 including a slider 5a and a pin bearing 5c.
 本図においては、ピン機構5がスライダ5aとピン軸受5cとに分解された状態を示している。 This figure shows a state in which the pin mechanism 5 is disassembled into a slider 5a and a pin bearing 5c.
 スライダ5aは、略直方体形状の部分と略円柱形状のスライダ回転ピン5a3とが結合した形状を有し、旋回ピストン3のスライド溝3b(図3)と摺動するスライダ対偶面5a1を有する。また、スライダ5aは、スライダ溝5a2を有する。スライダ溝5a2は、潤滑のためにスライダ対偶面5a1に設けられている。スライダ回転ピン5a3は、スライダ5aの軸部である。スライダ5aの内部には、スライダ給油縦穴5a4及びスライダ給油横穴5a5が設けられている。スライダ給油縦穴5a4は、スライダ5aの略直方体形状の部分の下面に開口部を有する。スライダ給油横穴5a5は、スライダ回転ピン5a3の側面部に開口部を有し、スライダ5aの内部でスライダ給油縦穴5a4に繋がっている。 The slider 5a has a shape in which a substantially rectangular parallelepiped portion and a substantially cylindrical slider rotation pin 5a3 are coupled to each other, and has a slider mating surface 5a1 that slides on the slide groove 3b (FIG. 3) of the orbiting piston 3. The slider 5a has a slider groove 5a2. The slider groove 5a2 is provided on the slider pair surface 5a1 for lubrication. The slider rotation pin 5a3 is a shaft portion of the slider 5a. Inside the slider 5a, a slider oiling vertical hole 5a4 and a slider oiling horizontal hole 5a5 are provided. Slider oil supply vertical hole 5a4 has an opening in the lower surface of the substantially rectangular parallelepiped portion of slider 5a. The slider oil supply horizontal hole 5a5 has an opening in the side surface portion of the slider rotation pin 5a3, and is connected to the slider oil supply vertical hole 5a4 inside the slider 5a.
 一方、ピン軸受5cは、円環形状を有し、スライダ5aとこれを挿入する静止シリンダ2(図1)との間に挟み込まれる。 On the other hand, the pin bearing 5c has an annular shape and is sandwiched between the slider 5a and the stationary cylinder 2 (FIG. 1) into which the slider 5a is inserted.
 スライダ給油縦穴5a4及びスライダ給油横穴5a5は、スライダ5aとピン軸受5cとの摺動部への給油路となり、軸受部を潤滑する。 Slider oil supply vertical hole 5a4 and slider oil supply horizontal hole 5a5 serve as an oil supply path to the sliding part between slider 5a and pin bearing 5c, and lubricate the bearing part.
 なお、ピン軸受5cは、すべり軸受を構成する軸受ブッシュとしてもよく、玉軸受やローラ軸受等の転がり軸受としてもよい。図4Bの構成は、図4Aの構成と比較して、軸部の径や長さを大きく設定できるため、大容量の圧縮機に適する。 In addition, the pin bearing 5c may be a bearing bush constituting a slide bearing, or may be a rolling bearing such as a ball bearing or a roller bearing. The configuration of FIG. 4B is suitable for a large-capacity compressor because the diameter and length of the shaft portion can be set larger than the configuration of FIG. 4A.
 また、図4A及び図4Bに共通する構成として、スライド溝3bと摺動して対偶を形成するスライダ対偶面5a1がある。スライダ対偶面5a1は、後述のとおり、作動流体から大きな力を受ける箇所であるため、極めて高い耐荷重性が求められる。本実施例においては、スライダ対偶面5a1及びスライド溝3bの側面は、ともに平面とするため、面対偶を構成する。これにより、耐荷重性能が向上し、圧縮機の信頼性を向上できるという効果がある。さらに、本実施例においては、スライダ対偶面5a1にスライダ溝5a2を設けているため、面対偶へ油が入って潤滑する。このため、耐荷重性能が一層向上する。 Further, as a configuration common to FIGS. 4A and 4B, there is a slider pair surface 5a1 that slides with the slide groove 3b to form a pair. As will be described later, the slider pair surface 5a1 is a portion that receives a large force from the working fluid, and therefore requires extremely high load resistance. In the present embodiment, both the slider-facing surface 5a1 and the side surfaces of the slide groove 3b are flat surfaces, and thus constitute a surface-facing couple. Thereby, the load bearing performance is improved, and the reliability of the compressor can be improved. Further, in this embodiment, since the slider groove 5a2 is provided on the slider pair surface 5a1, oil enters and lubricates the surface pair. For this reason, the load bearing performance is further improved.
 次に、図1を用いてシャフト6を説明する。 Next, the shaft 6 will be described with reference to FIG.
 本図においては、シャフト6には、その中心軸に沿ってシャフト給油縦穴6bが貫通している。そして、シャフト6には、副軸受25への給油路であるシャフト給油副横穴6gと、主軸受24への給油路であるシャフト給油下主軸受穴6f及びシャフト給油上主軸受穴6eとが設けられている。また、シャフト6の側面部には、シャフト給油上主軸受穴6eから背面室110へ至る給油主軸溝6kが設けられている。 In this figure, the shaft 6 has a shaft oil supply vertical hole 6b passing through the central axis thereof. The shaft 6 is provided with a shaft oil supply sub horizontal hole 6g which is an oil supply path to the sub bearing 25, a shaft oil supply lower main bearing hole 6f and a shaft oil supply main bearing hole 6e which are oil supply paths to the main bearing 24. It has been. Further, an oil supply main shaft groove 6k extending from the shaft oil supply upper main bearing hole 6e to the back chamber 110 is provided on the side surface of the shaft 6.
 ところで、シャフト給油縦穴6bの上開口部は、図2に示すように、ローリング底給油穴1kと漏れ流路が発生しないように繋がれている。また、シャフト6の下端部には、給油ポンプ200へ挿入するためのポンプ連結部6zが突き出している。そして、その中心には、シャフト給油縦穴6bが開口している。 Incidentally, as shown in FIG. 2, the upper opening of the shaft oil supply vertical hole 6b is connected to the rolling bottom oil supply hole 1k so as not to generate a leakage flow path. Further, a pump connecting portion 6 z for insertion into the oil supply pump 200 protrudes from the lower end portion of the shaft 6. And the shaft oil supply vertical hole 6b is opening in the center.
 次に、図6を用いて給油ポンプ200について説明する。 Next, the oil supply pump 200 will be described with reference to FIG.
 図6は、給油ポンプ200を示す分解斜視図である。なお、図6においては、括弧付の符号204’、200’は採用していない。 FIG. 6 is an exploded perspective view showing the fuel pump 200. In FIG. 6, reference numerals 204 ′ and 200 ′ with parentheses are not adopted.
 給油ポンプ200は、上述の圧縮部と同様に、ローリングシリンダ式容積型流体機械の原理を用いている。給油ポンプ200は、作動流体として蒸気圧が低い油を用いているため、圧縮動作を起こさないポンプとして機能する構成としている。つまり、給油旋回ピストン203を旋回駆動させるタイプではなく、給油ローリングシリンダ201をシャフト6と同軸として回転駆動させるタイプである。これにより、給油旋回ピストン203を駆動させるために必要な給油ポンプ用偏心軸は不要となり、構成が簡略化して製造コストが低減するという効果がある。 The oil supply pump 200 uses the principle of a rolling cylinder type positive displacement fluid machine, like the above-described compression section. The oil supply pump 200 is configured to function as a pump that does not cause a compression operation because oil having a low vapor pressure is used as the working fluid. In other words, it is not a type in which the refueling revolving piston 203 is driven to rotate, but a type in which the refueling rolling cylinder 201 is rotated coaxially with the shaft 6. As a result, the eccentric shaft for the oil pump required for driving the oil supply swivel piston 203 becomes unnecessary, and there is an effect that the configuration is simplified and the manufacturing cost is reduced.
 まず、図6を用いて給油ポンプ200の構成について説明する。 First, the configuration of the oil supply pump 200 will be described with reference to FIG.
 給油ポンプ200は、給油静止シリンダ202と、給油ローリングシリンダ201と、給油旋回ピストン203と、給油フタ204と、を含む。 The oil supply pump 200 includes an oil supply stationary cylinder 202, an oil supply rolling cylinder 201, an oil supply swivel piston 203, and an oil supply lid 204.
 給油静止シリンダ202は、給油シャフト貫通穴202a及び給油シリンダ穴202bを有する。 The oil supply stationary cylinder 202 has an oil supply shaft through hole 202a and an oil supply cylinder hole 202b.
 給油ローリングシリンダ201は、給油シリンダ溝201c及び給油シャフト連結穴201dを有する。 The oil supply rolling cylinder 201 has an oil supply cylinder groove 201c and an oil supply shaft connection hole 201d.
 給油旋回ピストン203は、給油ピン溝203b及び給油背面穴203gを有する。 The oil supply turning piston 203 has an oil supply pin groove 203b and an oil supply rear hole 203g.
 給油フタ204には、その中心から外れた位置に給油ピン205が設けられている。言い換えると、給油ピン205は、給油フタ204の中心とは異なる偏心した位置に設けられている。このほか、給油フタ204は、給油吐出溝204d、給油連通溝204e、給油吸込溝204s及び給油吸込穴204hを有する。給油連通溝204eは、給油吐出溝204dに接続され、かつ、給油ピン205の周囲を囲んで給油フタ204の中央部にまで広がった形状を有している。 The oiling lid 204 is provided with an oiling pin 205 at a position off the center. In other words, the oil supply pin 205 is provided at an eccentric position different from the center of the oil supply lid 204. In addition, the oil supply lid 204 has an oil supply discharge groove 204d, an oil supply communication groove 204e, an oil supply suction groove 204s, and an oil supply suction hole 204h. The oil supply communication groove 204e is connected to the oil supply discharge groove 204d and has a shape that surrounds the periphery of the oil supply pin 205 and extends to the center of the oil supply lid 204.
 給油ポンプ200を組み立てる際には、給油静止シリンダ202の給油シリンダ穴202bに給油ローリングシリンダ201を入れ、ポンプ連結部6zを給油シャフト貫通穴202aに通し、その上で、ポンプ連結部6zを給油シャフト連結穴201dへ挿入する。そして、給油旋回ピストン203を給油シリンダ溝201cへ隙間嵌合させた上で、下方から、給油ピン205が偏心して設けられた給油フタ204を被せる。ここで、給油ピン205は、給油旋回ピストン203の給油ピン溝203bへ挿入する。そして、最後に、3本の給油ボルト209で副フレーム35(図1)に固定する。 When assembling the oil supply pump 200, the oil supply rolling cylinder 201 is inserted into the oil supply cylinder hole 202b of the oil supply stationary cylinder 202, the pump connection portion 6z is passed through the oil supply shaft through hole 202a, and then the pump connection portion 6z is connected to the oil supply shaft. Insert into the connecting hole 201d. Then, after the oil supply swivel piston 203 is fitted into the oil supply cylinder groove 201c, the oil supply pin 205 is covered with an oil supply cover 204 provided eccentrically. Here, the oil supply pin 205 is inserted into the oil supply pin groove 203 b of the oil supply turning piston 203. And finally, it fixes to the sub-frame 35 (FIG. 1) with the three oil supply bolts 209. FIG.
 本実施例においては、給油ボルト209を用いて、給油ポンプ200のアセンブリと副フレーム35への取り付けとを同時に行ったが、まず、給油ポンプ200のアセンブリを行った後で、副フレーム35への取り付けを行うような2段階工程としてもよい。これにより、アセンブリの組立精度が向上し、給油ポンプ200の高性能を実現できるという効果がある。 In this embodiment, the fuel pump 200 is assembled and attached to the sub-frame 35 at the same time using the fuel bolt 209. First, after the fuel pump 200 is assembled, the assembly to the sub-frame 35 is performed. It is good also as a two-stage process which performs attachment. Thereby, the assembly accuracy of the assembly is improved, and the high performance of the oil supply pump 200 can be realized.
 次に、図15を用いて給油ポンプ200の動作について説明する。 Next, the operation of the oil supply pump 200 will be described with reference to FIG.
 図15は、図6の給油ポンプ200を組み立てた状態で、給油ピン205が給油ピン溝203bへ挿入されている高さの断面を上から見た図であり、矢印が給油ローリングシリンダ201(シャフト6)の回転方向である。 FIG. 15 is a top view of a cross section of the height at which the oil supply pin 205 is inserted into the oil supply pin groove 203b in the state where the oil supply pump 200 of FIG. 6 is assembled, and an arrow indicates the oil supply rolling cylinder 201 (shaft). 6) the rotation direction.
 図15においては、給油旋回ピストン203の左側の作動室が吐出行程を終え、給油吐出室212から給油吸込室211へ変わるタイミングを示している。この際、右側の作動室が吸込行程を終え、給油吸込室211から給油吐出室212へ変わる。 FIG. 15 shows the timing when the working chamber on the left side of the refueling swivel piston 203 finishes the discharge stroke and changes from the refueling discharge chamber 212 to the refueling suction chamber 211. At this time, the working chamber on the right side finishes the suction stroke and changes from the oil supply / intake chamber 211 to the oil supply / discharge chamber 212.
 給油吐出溝204dを右側の作動室の真下まで拡大した三日月状にすることで、ローリングシリンダ式容積型圧縮機には生じる圧縮行程が生じない。シャフト6が図15の矢印の向きに回転すると、ポンプ連結部6z(図6)に繋がれた給油ローリングシリンダ201が回転し、給油シリンダ溝201c(図6)内の給油旋回ピストン203も回転する。 By making the oil supply / discharge groove 204d into a crescent shape that extends right below the working chamber on the right side, the compression stroke that occurs in the rolling cylinder type positive displacement compressor does not occur. When the shaft 6 rotates in the direction of the arrow in FIG. 15, the oil supply rolling cylinder 201 connected to the pump connecting portion 6z (FIG. 6) rotates, and the oil supply swivel piston 203 in the oil supply cylinder groove 201c (FIG. 6) also rotates. .
 しかし、給油旋回ピストン203は、給油ピン205によって給油ピン溝203bの位置及び姿勢に制約がかけられる結果、給油ピン205の中心と給油ローリングシリンダ201の中心との結ぶ線分の中点を旋回中心とし、給油ピン205の中心と給油ローリングシリンダ201の中心との間の距離を旋回直径とする旋回運動を行う。それに伴って、給油旋回ピストン203は、給油シリンダ溝201c内を給油ピン205の中心と給油ローリングシリンダ201の中心との間の距離の2倍のストロークで相対的に往復運動する。 However, as a result of the restriction of the position and posture of the oil supply pin groove 203b by the oil supply pin 205, the oil supply swiveling piston 203 has a turning center at the midpoint of the line connecting the center of the oil supply pin 205 and the center of the oil supply rolling cylinder 201. Then, a turning motion is performed in which the distance between the center of the oil supply pin 205 and the center of the oil supply rolling cylinder 201 is a turning diameter. Accordingly, the oil supply swivel piston 203 relatively reciprocates in the oil supply cylinder groove 201c with a stroke twice the distance between the center of the oil supply pin 205 and the center of the oil supply rolling cylinder 201.
 これにより、貯油部125の油が給油吸込穴204hから吸い上げられ、給油連通溝204eに送り出される。そして、油は、給油ピン溝203b及び給油背面穴203g(図6)を経由して、最終的にシャフト給油縦穴6b(図6)へ送り込まれる。 Thereby, the oil in the oil storage part 125 is sucked up from the oil supply suction hole 204h and sent out to the oil supply communication groove 204e. And oil is finally sent into the shaft oil supply vertical hole 6b (FIG. 6) via the oil supply pin groove 203b and the oil supply back hole 203g (FIG. 6).
 次に、給油ポンプ200の特徴及び効果について説明する。 Next, the features and effects of the fueling pump 200 will be described.
 給油ローリングシリンダ201を回転駆動し、給油旋回ピストン203を給油ピン205による運動制約とするフリーピストン的な方式では、組立が極めて容易となる。ローリングシリンダ方式のもう一つの方式である、給油旋回ピストン203を旋回運動させる方式では、給油ピンの中心軸と給油ローリングシリンダの中心軸が給油旋回ピストンの旋回軌跡上にあって、さらに180度対向で配置しないと、ポンプ動作できずにロックする。 The free piston type system in which the oil supply rolling cylinder 201 is driven to rotate and the oil supply swiveling piston 203 is restricted by the oil supply pin 205 makes assembly extremely easy. In the rolling cylinder method, which is a method of revolving the refueling swivel piston 203, the center axis of the refueling pin and the center axis of the refueling rolling cylinder are on the revolving locus of the refueling swirl piston, and are opposed 180 degrees. Otherwise, the pump will not work and will lock.
 しかし、本方式では、旋回ピストンが給油シリンダ溝内を相対的に往復運動する点を考慮し、給油ピンの中心軸を給油ローリングシリンダ中心軸から一定値以内とする管理だけで組立が可能となる。これにより、製造コストが低減できるという効果がある。 However, with this method, considering that the revolving piston relatively reciprocates in the oil cylinder groove, assembly is possible only by managing the center axis of the oil pin within a certain value from the center axis of the oil rolling cylinder. . Thereby, there exists an effect that manufacturing cost can be reduced.
 また、トロコイド給油ポンプなどの歯車ポンプに比べても、構成要素の形状が単純であるため、低コストで高精度を実現でき、給油ポンプの性能向上による圧縮機効率の向上や、製造コストの低減を実現できるという効果がある。また、シャフト6(図6)が1回転する間に、2回の給油吐出量のピークが出るため、軸受部における負荷のピークに給油吐出量ピークを合わせることで、軸受の信頼性を向上できるという効果がある。 Compared to gear pumps such as trochoid oil pumps, the shape of the components is simple, so high accuracy can be realized at low cost. Improvement in compressor performance due to improved oil pump performance and reduction in manufacturing costs There is an effect that can be realized. Moreover, since the peak of the oil supply / discharge amount appears twice during one rotation of the shaft 6 (FIG. 6), the reliability of the bearing can be improved by matching the oil supply / discharge amount peak to the load peak in the bearing portion. There is an effect.
 次に、作動流体(冷媒等)の流れを説明する。 Next, the flow of working fluid (refrigerant etc.) will be described.
 作動流体は、RC圧縮機の外部の吸込系から吸込パイプ50(図1)を通って圧縮部へ入り、特許文献1と同様の圧縮動作によって昇圧する。昇圧した作動流体は、吐出路(図5の符号2d)から静止シリンダ2の上部へ噴き出る。運転圧力比がRC圧縮機の固有容積比に対応した圧力比よりも低い過圧縮条件では、作動流体は、バイパス弁22(図1)を介してバイパス穴2eからも噴き出る。 The working fluid enters the compression section through the suction pipe 50 (FIG. 1) from the suction system outside the RC compressor, and is pressurized by the same compression operation as in Patent Document 1. The pressurized working fluid is ejected from the discharge path (reference numeral 2d in FIG. 5) to the upper portion of the stationary cylinder 2. Under over-compression conditions where the operating pressure ratio is lower than the pressure ratio corresponding to the specific volume ratio of the RC compressor, the working fluid is also ejected from the bypass hole 2e via the bypass valve 22 (FIG. 1).
 そして、図1に示すように、静止シリンダ2の上部に固定配置されている吐出カバー230の吐出カバー板230bに衝突し、作動流体内に含まれる油の多くを分離した後、径方向からずれて吐出カバー室130の内壁に概略沿った角度で設ける吐出カバー口230aから旋回流となって旋回室140へ噴き出る。そこでは、作動流体中に残る油が遠心力でケーシング円筒部8aの内壁に付着して分離される。そして、最後に、吐出カバー板230bの外周隙間からケーシング上フタ8bの下端面で流れの向きを変えられながらケーシング上部室120へ入り、分離しきれなかった油を沈降作用によって分離した後、吐出パイプ55からRC圧縮機外部の吐出系へ出る。 Then, as shown in FIG. 1, after colliding with the discharge cover plate 230 b of the discharge cover 230 fixedly arranged on the upper part of the stationary cylinder 2, and separating most of the oil contained in the working fluid, it is displaced from the radial direction. From the discharge cover port 230 a provided at an angle approximately along the inner wall of the discharge cover chamber 130, the swirl flows into the swirl chamber 140. There, the oil remaining in the working fluid adheres to and separates from the inner wall of the casing cylindrical portion 8a by centrifugal force. Finally, the oil enters the casing upper chamber 120 while changing the flow direction from the outer peripheral gap of the discharge cover plate 230b at the lower end surface of the casing upper lid 8b, and the oil that could not be separated is separated by the sedimentation action. The pipe 55 exits to the discharge system outside the RC compressor.
 これにより、圧縮部下部に流れ込む作動流体の主流は無いが、シリンダ外周溝2mやフレーム外周溝4mを通って、吐出圧の作動流体が流入するため、圧縮部の下部も含むケーシング空間全域が吐出圧となる。 As a result, there is no main flow of working fluid flowing into the lower part of the compression part, but since the working fluid of discharge pressure flows through the cylinder outer peripheral groove 2m and the frame outer peripheral groove 4m, the entire casing space including the lower part of the compression part is discharged. Pressure.
 次の油の流れの説明で述べるが、特に、ローリングシリンダ1の背面の背面室110も吐出圧となることから、ローリングシリンダ1は、旋回ピストン3を挟み込みながら静止シリンダ2へ付勢し、作動室のシール部を形成する軸方向隙間を縮小させる。この軸方向隙間としては、ピストン上面3dとシリンダ穴2bの底面との隙間、ピストン下面3fとシリンダ溝1cの底面との隙間、また、ローリング円柱上面1b1とシリンダ穴2bの底面との隙間、さらに、ローリング鏡板部1a1の上面と静止シリンダ2の下面(シリンダ穴2bの周囲)との隙間がある。これにより、シール性が向上し、圧縮機効率が向上するという効果がある。 As will be described in the following description of the oil flow, in particular, since the back chamber 110 on the back surface of the rolling cylinder 1 also has a discharge pressure, the rolling cylinder 1 is urged toward the stationary cylinder 2 while sandwiching the swiveling piston 3 to operate. The axial clearance forming the chamber seal is reduced. The axial clearance includes a clearance between the piston upper surface 3d and the bottom surface of the cylinder hole 2b, a clearance between the piston lower surface 3f and the bottom surface of the cylinder groove 1c, a clearance between the rolling cylinder upper surface 1b1 and the bottom surface of the cylinder hole 2b, There is a gap between the upper surface of the rolling end plate portion 1a1 and the lower surface of the stationary cylinder 2 (around the cylinder hole 2b). Thereby, there exists an effect that sealing performance improves and compressor efficiency improves.
 さらに、これらの面上に馴染み性の被膜を設けると、隙間が一層狭まり、シール性が一層向上して圧縮機効率が一層向上する。そのような皮膜としては、例えば、材質が鋳鉄の場合、リン酸マンガン化合物がある。特に、ローリング円柱上面1b1とシリンダ穴2bの底面との隙間、さらに、ローリング鏡板部1a1の上面と静止シリンダ2の下面(シリンダ穴2bの周囲)との隙間をともに縮小するため、背面室110から吐出圧の作動流体が圧縮室100や吸込室95への漏れは大幅に低減し、体積効率向上や圧縮機効率向上という効果がある。 Furthermore, when a familiar coating is provided on these surfaces, the gap is further narrowed, the sealing performance is further improved, and the compressor efficiency is further improved. An example of such a film is a manganese phosphate compound when the material is cast iron. In particular, since the clearance between the upper surface of the rolling cylinder 1b1 and the bottom surface of the cylinder hole 2b and the clearance between the upper surface of the rolling end plate portion 1a1 and the lower surface of the stationary cylinder 2 (around the cylinder hole 2b) are both reduced, Leakage of the working fluid at the discharge pressure to the compression chamber 100 and the suction chamber 95 is greatly reduced, and there is an effect of improving volumetric efficiency and compressor efficiency.
 次に、油の流れを説明する。 Next, the flow of oil will be explained.
 図1に示すように、貯油部125の油は、上記の給油ポンプ200の動作により、ポンプ連結部6zを介してシャフト給油縦穴6bへ送り込まれる。そして、上述のとおり、給油横穴を介して各軸受部(副軸受25、下主軸受24b、上主軸受24a)へ供給される。これらのうちで上主軸受24aと下主軸受24bへ供給された油は、給油主軸溝6kを経由して背面室110へ入る。背面室110へ入った油は、その後、油排出路4xを通って、フレーム外周溝4mを経由し、ステータ7bの上面へ排出される。この結果、背面室110の圧力である背圧は吐出圧となる。 As shown in FIG. 1, the oil in the oil storage part 125 is fed into the shaft oil supply vertical hole 6b through the pump connecting part 6z by the operation of the oil supply pump 200 described above. And as above-mentioned, it supplies to each bearing part (sub bearing 25, the lower main bearing 24b, the upper main bearing 24a) via the oil supply horizontal hole. Of these, the oil supplied to the upper main bearing 24a and the lower main bearing 24b enters the back chamber 110 via the oil supply main shaft groove 6k. The oil that has entered the back chamber 110 is then discharged to the upper surface of the stator 7b through the oil discharge passage 4x and the frame outer peripheral groove 4m. As a result, the back pressure that is the pressure in the back chamber 110 becomes the discharge pressure.
 これにより、ローリングシリンダ1と旋回ピストン3とで構成される可動部は、常に静止シリンダ2へ付勢される。この結果、旋回ピストン3のピストン上面3dとピストン下面3f及びローリングシリンダ1のローリング円柱1b上面とローリング鏡板部1a1上面の軸方向隙間が縮小し、シール性が向上して、圧縮機効率が向上する。ここで、油排出路4xは、静止シリンダ2下面とローリング鏡板部1a1上面の摺動部と同じ高さであるため、背面室110の油面がその摺動部まで上昇し、潤滑とシール性の向上を実現するという効果がある。 Thereby, the movable part constituted by the rolling cylinder 1 and the swing piston 3 is always urged to the stationary cylinder 2. As a result, the axial clearance between the piston upper surface 3d and the piston lower surface 3f of the revolving piston 3 and the rolling cylinder 1b upper surface and the rolling end plate 1a1 upper surface of the rolling cylinder 1 is reduced, the sealing performance is improved, and the compressor efficiency is improved. . Here, since the oil discharge passage 4x has the same height as the sliding portion of the lower surface of the stationary cylinder 2 and the upper surface of the rolling end plate portion 1a1, the oil level of the back chamber 110 rises to the sliding portion, and lubrication and sealing properties are achieved. There is an effect of realizing the improvement.
 また、シャフト給油縦穴6bの油は、ローリング底給油穴1kを経由して旋回ピストン3のピストン下面穴3gへ入る。そして、そこからスライド溝3bへ入る。スライド溝3bへ入った油は、ピン機構5とスライド溝3bの摺動部を潤滑するとともに、旋回ピストン3と静止シリンダ2やローリングシリンダ1との摺動する隙間へ入り、潤滑とシールを行う。各隙間へ入った油は、再び作動室へ入り、作動流体と混ざる。そして、吐出路2dから吐出カバー室130へ作動流体に混ざって吐出される。 Also, the oil in the shaft oil supply vertical hole 6b enters the piston lower surface hole 3g of the orbiting piston 3 via the rolling bottom oil supply hole 1k. And it enters into the slide groove 3b from there. The oil that has entered the slide groove 3b lubricates the sliding portion between the pin mechanism 5 and the slide groove 3b, and enters the sliding gap between the revolving piston 3 and the stationary cylinder 2 or the rolling cylinder 1 to provide lubrication and sealing. . The oil that has entered each gap enters the working chamber again and mixes with the working fluid. Then, it is mixed with the working fluid and discharged from the discharge passage 2d to the discharge cover chamber 130.
 さらに、油の一部は、ローリング外周穴1fを通ってローリング外周カット部1gへ流入する。そこに入った油は、ローリング円柱1b外周とシリンダ穴2b内周の隙間を潤滑する。また、ローリング外周カット部1gの下方に設けるローリング鏡板凹み1iへ入り、ローリング鏡板部1a1の上面と静止シリンダ2の下面との間を潤滑する。 Furthermore, part of the oil flows into the rolling outer peripheral cut portion 1g through the rolling outer peripheral hole 1f. The oil entered there lubricates the gap between the outer periphery of the rolling cylinder 1b and the inner periphery of the cylinder hole 2b. Further, it enters a rolling end plate recess 1i provided below the rolling outer periphery cut portion 1g, and lubricates between the upper surface of the rolling end plate portion 1a1 and the lower surface of the stationary cylinder 2.
 一方、いろいろなシール隙間を経由して作動室へ流入した油は、作動室内の作動流体と混ざり、吸込や圧縮や吐出行程中に作動流体が漏れ流路に入ったときに、漏れ流路内に油膜を形成し、内部漏れを抑制する。さらに、大多数の漏れ流路は、圧縮要素間の相対運動箇所であるため、流入した油は、摩擦を低減して潤滑性を向上させる。このようにして、圧縮機効率を向上させるという効果がある。このように作動流体に混ざった油は、作動室での内部循環を伴いながら、作動流体の流れの説明で述べたとおり、最終的に、吐出カバー室130へ作動流体とともに噴き出し、段階的に作動流体から分離する。このようにして分離した油は、圧縮部の外周にある、シリンダ外周溝2mとフレーム外周溝4mを通って、圧縮部の下部空間にあるステータ7bの上面へ排出される。 On the other hand, oil that has flowed into the working chamber via various seal gaps is mixed with the working fluid in the working chamber, and when the working fluid enters the leakage passage during the suction, compression, or discharge stroke, An oil film is formed on the inside to suppress internal leakage. Furthermore, since the majority of leak flow paths are locations of relative motion between the compression elements, the oil that flows in reduces friction and improves lubricity. In this way, there is an effect of improving the compressor efficiency. The oil mixed with the working fluid in this way is finally ejected together with the working fluid into the discharge cover chamber 130 as described in the description of the flow of the working fluid, with internal circulation in the working chamber. Separate from fluid. The oil thus separated passes through the cylinder outer peripheral groove 2m and the frame outer peripheral groove 4m on the outer periphery of the compression portion and is discharged to the upper surface of the stator 7b in the lower space of the compression portion.
 この結果、シャフト給油縦穴6bを通って圧縮部へ上がった油は、全て、ステータ7bの上面に集まる。その後、外周のステータカット面7b1やステータ巻線7b2が通る穴を通って、モータ7の下の空間へ至る。その後、少量が副フレーム中央穴35bを通って副軸受25のボール25aの内外周に給油する以外は、副フレーム周囲穴35aを通って、貯油部125へ戻る。 As a result, all of the oil that has risen to the compression portion through the shaft oil supply vertical hole 6b is collected on the upper surface of the stator 7b. Thereafter, it passes through a hole through which the outer stator cut surface 7b1 and the stator winding 7b2 pass, and reaches a space below the motor 7. Thereafter, a small amount passes through the sub-frame peripheral hole 35a and returns to the oil storage part 125 except that the small amount of oil passes through the sub-frame central hole 35b and is supplied to the inner and outer circumferences of the balls 25a of the sub-bearing 25.
 次に、図5を用いて、圧縮部における圧縮動作を説明し、発明の作用効果を解説する。 Next, with reference to FIG. 5, the compression operation in the compression unit will be explained, and the operational effects of the invention will be explained.
 図5は、実施例1に係るRC圧縮機の圧縮行程を示すフロー図である。 FIG. 5 is a flowchart showing a compression process of the RC compressor according to the first embodiment.
 本図に示す1圧縮行程において、シャフト6(ローリングシリンダ1)は180度回転する。つまり、シャフトが1回転すると、2回の圧縮行程が実行される。 In the one compression stroke shown in this figure, the shaft 6 (rolling cylinder 1) rotates 180 degrees. That is, when the shaft rotates once, two compression strokes are executed.
 図5中の左上シャフト回転角0度からシャフト6が回転していくと、各段階の上寄りの作動室が静止シリンダ2のシリンダ穴2b(図1)の底部に設けられている吸込溝2s2や吸込穴2s1の吸込路2sにかかるため、吸込室95となる。一方、反対側の作動室は、圧縮室100または吐出室105となる。このため、作動流体から旋回ピストン3には、両作動室の圧力差による力がかかる。 When the shaft 6 rotates from the upper left shaft rotation angle 0 degree in FIG. 5, a suction groove 2 s <b> 2 in which an upper working chamber at each stage is provided at the bottom of the cylinder hole 2 b (FIG. 1) of the stationary cylinder 2. Or the suction passage 2s of the suction hole 2s1, so that the suction chamber 95 is formed. On the other hand, the working chamber on the opposite side is the compression chamber 100 or the discharge chamber 105. For this reason, a force due to a pressure difference between the two working chambers is applied from the working fluid to the swiveling piston 3.
 図5において、この力ベクトルは、各段階の圧縮室100から旋回ピストン3に向かって記載した白抜きの矢印で示す。また、この力に対抗する、支持部であるピン機構5のスライダ5aが旋回ピストン3に及ぼす力ベクトルは、各段階の回転中心付近に記載した黒矢印で示す。 In FIG. 5, this force vector is indicated by a white arrow described from the compression chamber 100 at each stage toward the swiveling piston 3. Further, the force vector that the slider 5a of the pin mechanism 5 serving as a support portion counteracts against this force exerts on the swing piston 3 is indicated by a black arrow described in the vicinity of the rotation center at each stage.
 図5から明らかなように、2つの力の作用線は、シャフト回転角0度のみを除いて、常にずれている。このため、2つの力は偶力となり、旋回ピストン3は回転しようとする。実際の要素部品には必ず隙間があるため、実際においても微小な回転が発生する。その回転の向きは、図5から、常に反時計回りとなることがわかる。 As is clear from FIG. 5, the lines of action of the two forces are always deviated except for only the shaft rotation angle of 0 degrees. For this reason, the two forces become couples, and the orbiting piston 3 tries to rotate. Since actual element parts always have gaps, minute rotations are actually generated. It can be seen from FIG. 5 that the direction of rotation is always counterclockwise.
 よって、旋回ピストン3は黒丸の箇所(図3におけるピストンカット面3cとピストン先端面3eとの境界角部)でローリングシリンダ1と接触する。そして、その接触箇所は、図5に示すように、常に同一箇所であるから、接触が無くなる時が皆無であることがわかる。なお、シャフト回転角が0度となる一瞬だけ、完全に力が釣り合うから接触は不要となるが、その場合は、慣性により接触を保持したまま回転し続ける。 Therefore, the orbiting piston 3 comes into contact with the rolling cylinder 1 at a black circle (a boundary corner portion between the piston cut surface 3c and the piston tip surface 3e in FIG. 3). And since the contact location is always the same location as shown in FIG. 5, it turns out that there is no time when contact is lost. Note that contact is not necessary because the force is completely balanced only for a moment when the shaft rotation angle becomes 0 degrees, but in this case, it continues to rotate while maintaining contact due to inertia.
 この接触により、ローリングシリンダ1は、反時計回りに回るトルクを受けることになるが、ローリングシリンダ1のシリンダ駆動源であるモータ7がそれに対抗するトルクをかけるため、反時計回りに回ることなく、圧縮動作が継続する。 By this contact, the rolling cylinder 1 receives a torque that rotates counterclockwise. However, since the motor 7 that is a cylinder driving source of the rolling cylinder 1 applies a counter torque, the rolling cylinder 1 does not rotate counterclockwise. The compression operation continues.
 この結果、ローリングシリンダ1と旋回ピストン3は常時接触するため、両者間で回転ガタが発生しない。これにより、旋回ピストン3がローリングシリンダ1のシリンダ溝1cの側面と衝突することがなくなるため、振動や騒音が低減するという効果がある。また、シリンダ溝1c(図2)の側面部、及びその相手である旋回ピストン3のピストンカット面3cとピストン先端面3eとの境界角部には、衝撃力が作用しなくなるため、摺動損失や磨耗が低減し、圧縮機性能や信頼性が向上するという効果がある。さらに、旋回ピストン3の支持部であるピン機構5にかかる力も、衝突による衝撃的な力では無くなるため、ピン機構5の信頼性が向上するという効果がある。さらに、シリンダ溝1cの側面部とピストンカット面3cとは、シール部を構成するが、両面の接触状況が安定していることから、安定した油膜が形成されて高いシール性が実現でき、漏れが抑制されて圧縮機性能が向上するという効果もある。 As a result, the rolling cylinder 1 and the revolving piston 3 are always in contact with each other, so that there is no rotation play between them. As a result, the revolving piston 3 does not collide with the side surface of the cylinder groove 1c of the rolling cylinder 1, so that there is an effect that vibration and noise are reduced. Further, since the impact force does not act on the side surface portion of the cylinder groove 1c (FIG. 2) and the boundary corner portion between the piston cut surface 3c and the piston front end surface 3e of the swing piston 3 which is the counterpart, the sliding loss. And wear are reduced, and compressor performance and reliability are improved. Furthermore, since the force applied to the pin mechanism 5 that is the support portion of the orbiting piston 3 is not an impact force due to the collision, the reliability of the pin mechanism 5 is improved. Further, the side surface portion of the cylinder groove 1c and the piston cut surface 3c constitute a seal portion. However, since the contact state of both surfaces is stable, a stable oil film is formed and high sealing performance can be realized. Is also suppressed and the compressor performance is improved.
 また、本実施例の他の変形例として、図3の符号3b1で示すスライド溝壁を採用してもよい。これは、スライド溝3bの両端を繋ぐものであり、旋回ピストン3の剛性を高める効果がある。特に、本実施例のように、ローリングシリンダ1だけに駆動力を与えるタイプのローリングシリンダ式容積型圧縮機では、作動流体の圧縮荷重がかかる旋回ピストン3は、ピン機構5に支持される。このため、大きな荷重がスライド溝3bの側面にかかる。そこで、面圧を低減するためにスライド溝3bを深くする必要が生じるが、スライド溝壁3b1を設けることで、旋回ピストン3の剛性を下げずに、ピン機構5から受ける面圧を下げることが可能になる。なお、この変形例においては、スライド溝壁3b1に、ピストンカット面3cやローリング外周穴1fへ給油するための穴を設けてあり、油の流れを阻害しない形状とする。 Further, as another modification of the present embodiment, a slide groove wall indicated by reference numeral 3b1 in FIG. 3 may be employed. This connects both ends of the slide groove 3b, and has the effect of increasing the rigidity of the orbiting piston 3. In particular, as in this embodiment, in a rolling cylinder type positive displacement compressor that applies a driving force only to the rolling cylinder 1, the revolving piston 3 to which the working fluid compressive load is applied is supported by the pin mechanism 5. For this reason, a large load is applied to the side surface of the slide groove 3b. Therefore, it is necessary to deepen the slide groove 3b in order to reduce the surface pressure. However, by providing the slide groove wall 3b1, the surface pressure received from the pin mechanism 5 can be lowered without lowering the rigidity of the swing piston 3. It becomes possible. In this modification, the slide groove wall 3b1 is provided with holes for supplying oil to the piston cut surface 3c and the rolling outer peripheral hole 1f so as not to obstruct the oil flow.
 さらに、他の変形例として、図3の符号3b2で示すスライド溝掘り込みを設けてもよい。これにより、相対的にスライド溝3b内をスライダ5aが動く際に、スライド溝3b内の油の抵抗を低減する効果と、ローリング外周穴1fへの給油量を適量に調節する効果が得られる。 Furthermore, as another modification, a slide groove digging indicated by reference numeral 3b2 in FIG. 3 may be provided. Thereby, when the slider 5a moves relatively in the slide groove 3b, the effect of reducing the resistance of oil in the slide groove 3b and the effect of adjusting the oil supply amount to the rolling outer peripheral hole 1f to an appropriate amount are obtained.
 実施例2に係るRC圧縮機については、図7乃至図13を用いて説明する。 The RC compressor according to the second embodiment will be described with reference to FIGS.
 図7は、本実施例のRC圧縮機を示す縦断面図である。括弧付の符号である1wは採用し、210、200’は採用しない。 FIG. 7 is a longitudinal sectional view showing the RC compressor of this embodiment. The parenthesized code 1w is used, and 210 and 200 'are not used.
 以下では、実施例1と同様の構成については、説明を省略する。 Hereinafter, the description of the same configuration as that of the first embodiment will be omitted.
 本実施例においては、ローリングシリンダ1を回転駆動させるシリンダ駆動源とともに、旋回ピストン3をクランク式のシャフトによって旋回駆動させるピストン回転源を設けている。さらに、ピストンの支持部であるピン機構にスライダを設けている。 In this embodiment, a piston rotation source for rotating the revolving piston 3 with a crank shaft is provided together with a cylinder driving source for rotating the rolling cylinder 1. Furthermore, the slider is provided in the pin mechanism which is a support part of a piston.
 圧縮部におけるシャフト6の形状が異なる。これに伴って、ロータ7aの上部に主バランス80を、ロータ7aの下部にカウンタバランス82を設置している。このほか、ローリングシリンダ1、旋回ピストン3及びピン機構5の形状が実施例1とは部分的に異なっている。 The shape of the shaft 6 in the compression part is different. Accordingly, a main balance 80 is installed at the upper part of the rotor 7a, and a counter balance 82 is installed at the lower part of the rotor 7a. In addition, the shapes of the rolling cylinder 1, the turning piston 3, and the pin mechanism 5 are partially different from those of the first embodiment.
 図8は、図7のL部拡大図である。 FIG. 8 is an enlarged view of part L in FIG.
 図9は、図8のローリングシリンダ1の上方からの斜視図である。図10は、図8のローリングシリンダ1の下方からの斜視図である。括弧付の符号である1hは採用しない。 FIG. 9 is a perspective view from above of the rolling cylinder 1 of FIG. FIG. 10 is a perspective view from below of the rolling cylinder 1 of FIG. 1h which is a code with parentheses is not adopted.
 図8で示すように、シャフト6は、その上部に大径のシャフトつば部6cを有している。シャフトつば部6cの上面は、シリンダ接触面6mと呼ぶ。そして、シリンダ接触面6mには、ピン機構5の中心軸であるピン中心軸とシリンダ軸の軸間距離の半分を偏心量とする偏心シャフト6aを設置している。すなわち、本実施例においては、偏心シャフト6aを突出させたクランク式のシャフトとしている。 As shown in FIG. 8, the shaft 6 has a large-diameter shaft collar portion 6c at the upper portion thereof. The upper surface of the shaft collar portion 6c is referred to as a cylinder contact surface 6m. The cylinder contact surface 6m is provided with an eccentric shaft 6a having an eccentric amount that is half the distance between the pin central axis, which is the central axis of the pin mechanism 5, and the cylinder axis. That is, in the present embodiment, the crank shaft is formed by protruding the eccentric shaft 6a.
 さらに、偏心シャフト6aの上端部にはシャフト給油縦穴6bの開口部を、偏心シャフト6aの外周面にはシャフト給油偏心溝6hを設けている。 Furthermore, an opening of a shaft oil supply vertical hole 6b is provided at the upper end of the eccentric shaft 6a, and a shaft oil supply eccentric groove 6h is provided at the outer peripheral surface of the eccentric shaft 6a.
 また、ローリングシリンダ1は、シリンダ溝1cの下面中央部に、図9に示す偏心シャフト挿入穴1dを有している。偏心シャフト6aは、偏心シャフト挿入穴1dに挿入されるようになっている。偏心シャフト挿入穴1dの背面周縁部には、図10に示すシャフトつば接触面1eを設けている。 Further, the rolling cylinder 1 has an eccentric shaft insertion hole 1d shown in FIG. 9 at the center of the lower surface of the cylinder groove 1c. The eccentric shaft 6a is inserted into the eccentric shaft insertion hole 1d. A shaft collar contact surface 1e shown in FIG. 10 is provided on the rear peripheral edge of the eccentric shaft insertion hole 1d.
 旋回ピストン3は、偏心シャフト6aの中心軸を回転軸として自転するとともに、シャフト6(駆動伝達部)の中心軸を回転軸として公転する。 The revolving piston 3 rotates with the central axis of the eccentric shaft 6a as a rotation axis and revolves with the central axis of the shaft 6 (drive transmission unit) as a rotation axis.
 図11は、本実施例のRC圧縮機の旋回ピストンを示す斜視図である。 FIG. 11 is a perspective view showing a revolving piston of the RC compressor of this embodiment.
 本図に示すとおり、旋回ピストン3は、旋回軸受穴3aを有し、そこに旋回軸受23を固定配置したものである。 As shown in the figure, the orbiting piston 3 has a orbiting bearing hole 3a, and an orbiting bearing 23 is fixedly disposed therein.
 図12は、本実施例のRC圧縮機のピン機構を示す斜視図である。 FIG. 12 is a perspective view showing a pin mechanism of the RC compressor of this embodiment.
 本図に示すとおり、ピン機構5は、実施例1の図4Aと同様に、固定ピン5sを用いる構成であるが、スライダ対偶面5a1は、荷重が小さいことから、面積を小さく設定している。 As shown in the figure, the pin mechanism 5 is configured to use the fixed pin 5s as in FIG. 4A of the first embodiment. However, the slider mating surface 5a1 has a small area because the load is small. .
 次に、以上のような実施例1からの変更点を有する要素を用いた圧縮部の構成について説明する。 Next, the configuration of the compression unit using the elements having the changes from the first embodiment as described above will be described.
 図8においては、ローリングシリンダ1の偏心シャフト挿入穴1dへ偏心シャフト6aを挿入し、それを旋回ピストン3の旋回軸受23へ挿入する。 8, the eccentric shaft 6 a is inserted into the eccentric shaft insertion hole 1 d of the rolling cylinder 1, and is inserted into the swing bearing 23 of the swing piston 3.
 この構成を有する本実施例においては、シャフト6がモータ7によって回されると、旋回ピストン3が旋回運動し、圧縮動作が生じる。この場合、モータ7は、クランク式のシャフト6を用いたピストン回転源となる。シャフト6は、実施例1と同様に、モータ7で発生する軸推力によって、上方へ押し上げられる。この結果、図8に明示されるとおり、シャフトつば部6cの上面であるシリンダ接触面6mがローリングシリンダ1の背面にあるシャフトつば接触面1eに付勢される。 In this embodiment having this configuration, when the shaft 6 is rotated by the motor 7, the revolving piston 3 revolves and a compression operation occurs. In this case, the motor 7 becomes a piston rotation source using the crank type shaft 6. As in the first embodiment, the shaft 6 is pushed upward by the axial thrust generated by the motor 7. As a result, as clearly shown in FIG. 8, the cylinder contact surface 6 m that is the upper surface of the shaft collar portion 6 c is biased to the shaft collar contact surface 1 e that is on the back surface of the rolling cylinder 1.
 図13は、この接触部をシャフト6の下側から見た概略図である。 FIG. 13 is a schematic view of this contact portion as viewed from the lower side of the shaft 6.
 本図においては、シャフト6は、ローリングシリンダ1の回転方向と同じ方向に回転するため、旋回ピストン3を介さずに、ローリングシリンダ1を回転駆動する。すなわち、モータ7は、シリンダ駆動源でもある。つまり、本実施例のRC圧縮機は、1つのモータ7により、ローリングシリンダ1の回転駆動と旋回ピストン3の旋回駆動とを同時に行うものである。 In this figure, since the shaft 6 rotates in the same direction as the rotation direction of the rolling cylinder 1, the rolling cylinder 1 is driven to rotate without the swiveling piston 3. That is, the motor 7 is also a cylinder drive source. That is, the RC compressor of the present embodiment is configured to simultaneously perform the rotational drive of the rolling cylinder 1 and the turning drive of the turning piston 3 by one motor 7.
 次に、圧縮動作を説明し、発明の作用効果を解説する。 Next, the compression operation will be explained and the effects of the invention will be explained.
 力のかかり方は異なるが、RC圧縮機の運転中における作動室の変遷は、図5に示す実施例1の場合と同様であるため、図5を用いて説明する。 Although the way in which the force is applied is different, the transition of the working chamber during the operation of the RC compressor is the same as that in the first embodiment shown in FIG. 5, and will be described with reference to FIG.
 図5に示すように、ローリングシリンダ1の回転速度は、旋回ピストン3の旋回速度の半分である。本実施例のシャフト6の回転速度は、構成的に旋回ピストン3の旋回速度と一致するため、ローリングシリンダ1の回転速度とずれが生じる。しかし、シャフト6からローリングシリンダ1への回転トルク伝達は、平板同士の付勢で行うため、回転速度や回転中心の相違があっても可能な形式である。さらに、ローリングシリンダ1に必要なトルクは、作動流体の圧力によるトルクが無いために極めて小さく、平板同士の付勢で伝達できるトルクで十分足りる。このため、ローリングシリンダ1の回転が旋回ピストン3の動きを早回り、図5の黒丸の箇所が常時接触して、旋回ピストン3の旋回運動をわずかではあるが、助ける。そして、その接触箇所は、図5から明らかなように、常に同一箇所であるから、接触が無くなる時が皆無であることがわかる。なお、本実施例においては、実施例1と異なり、シャフト回転角が0度となる場合でも、同じ箇所で接触し続ける。 As shown in FIG. 5, the rotation speed of the rolling cylinder 1 is half of the turning speed of the turning piston 3. Since the rotational speed of the shaft 6 of the present embodiment structurally matches the rotational speed of the revolving piston 3, a deviation from the rotational speed of the rolling cylinder 1 occurs. However, since the rotational torque is transmitted from the shaft 6 to the rolling cylinder 1 by urging the flat plates, it is possible even if there is a difference in rotational speed or rotational center. Further, the torque required for the rolling cylinder 1 is extremely small because there is no torque due to the pressure of the working fluid, and the torque that can be transmitted by the urging of the flat plates is sufficient. For this reason, the rotation of the rolling cylinder 1 quickly rotates the movement of the revolving piston 3, and the black circles in FIG. 5 are always in contact with each other to assist the revolving motion of the revolving piston 3 to a slight extent. Then, as is apparent from FIG. 5, since the contact location is always the same location, it can be seen that there is no time when contact is lost. In this example, unlike Example 1, even when the shaft rotation angle is 0 degree, the contact continues at the same location.
 この結果、ローリングシリンダ1と旋回ピストン3とは常時接触するため、両者間で回転ガタが発生せず、実施例1と同様の効果がある。 As a result, since the rolling cylinder 1 and the revolving piston 3 are always in contact with each other, no rotation play occurs between them, and the same effect as in the first embodiment is obtained.
 本実施例だけの効果としては、旋回ピストン3の主要な支持部が偏心シャフト6aとなるため、もう一つの支持部であるピン機構5にかかる力が極めて小さくなり、ピン機構5の信頼性が大幅に向上するという効果がある。そのため、図12に示すように、スライダ対偶面5a1を小さくして、軸受部を大きくすることができ、信頼性を向上できるという効果がある。 The only effect of this embodiment is that the main support portion of the orbiting piston 3 is the eccentric shaft 6a, so that the force applied to the pin mechanism 5 which is another support portion is extremely small, and the reliability of the pin mechanism 5 is improved. There is an effect that it is greatly improved. For this reason, as shown in FIG. 12, the slider mating surface 5a1 can be made smaller, the bearing portion can be enlarged, and the reliability can be improved.
 なお、図8に示すシリンダ接触面6mとシャフトつば接触面1eとのトルク伝達効率を高めるためには、表面粗さを増大させてもよい。たとえば、ローリングシリンダ1の材質を鋳鉄とする場合、シャフトつば接触面1eを鋳肌を少し残した面にすることが考えられる。また、放電加工等による梨地面としてもよい。また、旋盤でレコード溝状の溝加工を行ってもよい。 In addition, in order to increase the torque transmission efficiency between the cylinder contact surface 6m and the shaft collar contact surface 1e shown in FIG. 8, the surface roughness may be increased. For example, when the material of the rolling cylinder 1 is cast iron, it is conceivable that the shaft collar contact surface 1e is a surface with a little cast skin. Moreover, it is good also as the pear ground by electric discharge machining etc. Further, a record groove-like groove processing may be performed with a lathe.
 ところで、実施例1及び2のローリングシリンダ1は、シリンダ溝外周壁1wを有するものである。このタイプは、作動室間のシール性が高い反面、作動流体から受ける力により(図5の黒矢印と向きが逆の力)、ローリング円柱1bの外周面がシリンダ穴2bの内周面へ押し付けられ、摺動損失が増大するという問題がある。 Incidentally, the rolling cylinder 1 of the first and second embodiments has a cylinder groove outer peripheral wall 1w. This type has high sealing performance between the working chambers, but the outer surface of the rolling cylinder 1b is pressed against the inner surface of the cylinder hole 2b by the force received from the working fluid (the force opposite to the black arrow in FIG. 5). There is a problem that sliding loss increases.
 そこで、図2や図9、10に示すとおり、シリンダ溝外周壁1wのほぼ中央にローリングバランス穴1hを開けることが考えられる。ローリングバランス穴1hは、ローリング円柱1bの外周面とシリンダ穴2bの内周面の縦方向断面(長方形隙間断面)と同等の断面積を有する。これにより、シリンダ溝外周壁1wの両側の圧力差が小さくなり、ローリング円柱1bの外周面がシリンダ穴2bの内周面へ押し付けられる力が低減する。これにより、摺動損失を低減することができ、圧縮機効率が向上するという効果がある。ここで、ローリング円柱1bの外周面の下部には、上述のとおり、ローリング鏡板部1a1の上面によって吐出圧の背面室110とシールされているため、漏れによる圧縮機効率低下の弊害も無い。 Therefore, as shown in FIG. 2, FIG. 9, and FIG. The rolling balance hole 1h has a cross-sectional area equivalent to the longitudinal section (rectangular clearance section) of the outer peripheral surface of the rolling cylinder 1b and the inner peripheral surface of the cylinder hole 2b. Thereby, the pressure difference between both sides of the cylinder groove outer peripheral wall 1w is reduced, and the force with which the outer peripheral surface of the rolling cylinder 1b is pressed against the inner peripheral surface of the cylinder hole 2b is reduced. Thereby, a sliding loss can be reduced and there exists an effect that a compressor efficiency improves. Here, since the lower part of the outer peripheral surface of the rolling cylinder 1b is sealed with the back chamber 110 of the discharge pressure by the upper surface of the rolling end plate part 1a1 as described above, there is no adverse effect on the compressor efficiency due to leakage.
 実施例3に係るRC圧縮機については、図14を用いて説明する。 The RC compressor according to Example 3 will be described with reference to FIG.
 図14は、実施例3のRC圧縮機のローリングシリンダを示す斜視図である。 FIG. 14 is a perspective view showing a rolling cylinder of the RC compressor of the third embodiment.
 以下、本図に示すローリングシリンダ1’が括弧付の符号1k又は1dで示すいずれかの穴を有する例について説明する。 Hereinafter, an example will be described in which the rolling cylinder 1 ′ shown in the drawing has any one of the holes 1 k or 1 d with parentheses.
 ローリング底給油穴1kを有する場合は、実施例1と同様である。 When the rolling bottom oiling hole 1k is provided, it is the same as the first embodiment.
 一方、偏心シャフト挿入穴1dを有する場合は、実施例2と同様である。 On the other hand, when it has the eccentric shaft insertion hole 1d, it is the same as that of Example 2.
 実施例1又は2と異なる点以外の説明は省略する。 Descriptions other than the differences from Example 1 or 2 are omitted.
 本実施例においては、いずれの場合も、シリンダ溝1cの両端が抜けているため、加工が容易となり、製造コストが低減するという効果がある。また、ローリング外周カット部1gの回転方向後方にローリング外周カット溝部1g2を設ける場合、ローリング外周穴1fから流入した油が、その中に保持され、旋回ピストン3の両側に形成される作動室間の漏れを抑制し、圧縮機効率を向上させるという効果がある。 In this embodiment, in both cases, since both ends of the cylinder groove 1c are missing, there is an effect that the processing becomes easy and the manufacturing cost is reduced. Further, when the rolling outer circumferential cut groove 1g2 is provided behind the rolling outer circumferential cut 1g in the rotational direction, the oil flowing in from the rolling outer circumferential hole 1f is held in the space between the working chambers formed on both sides of the swiveling piston 3. This has the effect of suppressing leakage and improving compressor efficiency.
 実施例4に係るRC圧縮機の給油ポンプについては、図16を用いて説明する。 The oil feed pump of the RC compressor according to the fourth embodiment will be described with reference to FIG.
 図16においては、図6のFで示す給油フタ204を可変給油フタ204’に変更して可変容量給油ポンプ200’としている。これ以外は、実施例1~3と同様であるため、重複部分の説明は省略し、主として、異なる部分について説明する。 In FIG. 16, the oil supply lid 204 shown by F in FIG. 6 is changed to a variable oil supply lid 204 'to form a variable capacity oil supply pump 200'. Other than this, the second embodiment is the same as the first to third embodiments, so the description of the overlapping parts is omitted, and different parts are mainly described.
 図6の給油ポンプ200においては、給油ピン205は、給油フタ204に固定されている。 6, the oil supply pin 205 is fixed to the oil supply lid 204.
 これに対して、本実施例においては、図6の給油フタ204の代わりに、図16に示す可変給油フタ204’を用い、給油ピン205を移動させることができる機構を組み込むことにより、可変容量を実現している。 In contrast, in this embodiment, a variable capacity lid 204 ′ shown in FIG. 16 is used in place of the oil supply cover 204 of FIG. 6 and a mechanism capable of moving the oil supply pin 205 is incorporated, thereby providing a variable capacity. Is realized.
 ローリングシリンダ式の給油ポンプの場合、図6に示すように、給油旋回ピストン203は、給油ピン溝203bが給油ピン205によって位置および姿勢の制約がかけられる結果、給油ピン205の中心と給油ローリングシリンダ201の中心の中点を旋回中心とし、給油ピン205の中心と給油ローリングシリンダ201の中心間距離を旋回直径とする旋回運動を行う。それに伴って、給油旋回ピストン203は給油シリンダ溝201c内を給油ピン205の中心と給油ローリングシリンダ201の中心間距離の2倍のストロークで相対的に往復運動する。このことから、給油ローリングシリンダ201の中心軸であるシャフト回転軸に対して給油ピン205の中心をずらすと、給油ポンプの容量を変化させることができる。 In the case of a rolling cylinder type oil pump, as shown in FIG. 6, the oil revolving piston 203 is configured such that the position and posture of the oil pin groove 203 b are restricted by the oil pin 205, so that the center of the oil pin 205 and the oil rolling cylinder A turning motion is performed in which the center point of the center 201 is the turning center and the distance between the center of the oil supply pin 205 and the center of the oil supply rolling cylinder 201 is the turning diameter. Accordingly, the oil supply swivel piston 203 relatively reciprocates in the oil supply cylinder groove 201c with a stroke twice the distance between the center of the oil supply pin 205 and the center of the oil supply rolling cylinder 201. From this, the displacement of the oil supply pump can be changed by shifting the center of the oil supply pin 205 with respect to the shaft rotation axis which is the center axis of the oil supply rolling cylinder 201.
 本実施例は、次のように給油ピン205の移動により、給油ポンプの容量を変化させる。 In this embodiment, the capacity of the oil supply pump is changed by moving the oil supply pin 205 as follows.
 本実施例においては、図16に示すように、可変給油フタ204’は、給油路板204aと給油ピンベース204bと給油ピンベース押さえ204cとから構成されている。給油路板204aには、給油吸込溝204s、給油吐出溝204d及びネジ穴が開口している。給油ピンベース204bには、給油ピン205が設置され、横先端面に給油ピン駆動ネジ穴204b1が設けられている。また、給油ピンベース押さえ204cには、給油ピンベース204bがスライドする給油ピンスライド穴204c1、給油吸込穴204h及びネジ穴が開口している。給油路板204aと給油ピンベース204bと給油ピンベース押さえ204cとを重ね合わせ、さらに、給油ピン駆動ネジ穴204b1へ給油ピンスライド用モータ210で回転駆動される給油ピンスライドネジ210aを螺合させる。このようにして作製した可変給油フタ204’を、図6と同様にして、可変容量給油ポンプ200’とする。 In this embodiment, as shown in FIG. 16, the variable oil supply lid 204 'is constituted by an oil supply passage plate 204a, an oil supply pin base 204b, and an oil supply pin base presser 204c. The oil supply passage plate 204a has an oil supply suction groove 204s, an oil supply discharge groove 204d, and a screw hole. An oil supply pin 205 is installed in the oil supply pin base 204b, and an oil supply pin drive screw hole 204b1 is provided on the lateral tip surface. The oil supply pin base retainer 204c has an oil supply pin slide hole 204c1, an oil supply suction hole 204h, and a screw hole through which the oil supply pin base 204b slides. The oil supply passage plate 204a, the oil supply pin base 204b, and the oil supply pin base presser 204c are overlapped, and an oil supply pin slide screw 210a that is rotationally driven by the oil supply pin slide motor 210 is screwed into the oil supply pin drive screw hole 204b1. The variable oil supply lid 204 ′ thus manufactured is a variable capacity oil supply pump 200 ′ in the same manner as in FIG. 6.
 可変容量給油ポンプ200’を稼働する際は、外部から電力を供給する給油ピンスライド用電力供給線(図示せず)により給油ピンスライド用モータ210を駆動させて、給油ピンベース204bをスライドさせる。これにより、給油ピン205を移動させて、給油ポンプの容量を自在に変化させることができる。これにより、回転数が高いときに給油過多となる給油ポンプの欠点を、給油ポンプの容量を低下させることにより解決することができる等、いろいろな運転条件における給油量の最適化を図ることができる。これにより、いろいろな運転条件における圧縮機効率を向上できるという効果がある。 When operating the variable capacity oil supply pump 200 ', the oil supply pin slide motor 210 is driven by an oil supply pin slide power supply line (not shown) for supplying electric power from the outside, and the oil supply pin base 204b is slid. Thereby, the oil supply pin 205 can be moved and the capacity | capacitance of an oil supply pump can be changed freely. As a result, it is possible to optimize the amount of oil supply under various operating conditions, such as the disadvantage of the oil pump being excessively oiled when the rotational speed is high can be solved by reducing the capacity of the oil pump. . As a result, the compressor efficiency under various operating conditions can be improved.
 以下、本発明の効果について、まとめて説明する。 Hereinafter, the effects of the present invention will be described together.
 本発明によれば、協働して圧縮室を形成する可動圧縮要素のうち、作動流体からトルクが働かないローリングシリンダに回転駆動トルクを与えることにより、作動流体から大きな力が働く旋回ピストンが、ローリングシリンダとのガタの範囲の最も旋回角度が小さい方へずれる。そして、最終的にローリングシリンダと摺動部とで衝突することになる。しかし、旋回ピストンには、作動流体から旋回角を小さくする方向に大きな力が働いているため、旋回ピストンは、この衝突によっても旋回角が一気に進むことはなく、ローリングシリンダに常時接触して、作動流体からの力に対抗し、旋回運動を継続する。 According to the present invention, among the movable compression elements that cooperate to form a compression chamber, a swiveling piston in which a large force is applied from the working fluid by applying a rotational drive torque to a rolling cylinder that does not receive torque from the working fluid. The swivel angle shifts to the smallest range of play with the rolling cylinder. And finally, it will collide with a rolling cylinder and a sliding part. However, since a large force is acting on the swivel piston in the direction of reducing the swivel angle from the working fluid, the swivel piston does not advance at a stroke even by this collision, and always contacts the rolling cylinder, Continuing the swivel motion against the force from the working fluid.
 この結果、摺動部における衝突が回避され、振動騒音や磨耗が抑制され、信頼性が向上する。さらに、摺動部の衝撃荷重が抑制され、摺動荷重の低下による摺動損失低減や、摺動部シール隙間の安定化による油膜形成の改善で漏れ損失低減を実現でき、圧縮機性能の向上を図ることができる。 As a result, collision at the sliding part is avoided, vibration noise and wear are suppressed, and reliability is improved. In addition, the impact load on the sliding part is suppressed, reducing the sliding loss by reducing the sliding load, and the oil film formation by stabilizing the sliding part seal gap can reduce the leakage loss, improving the compressor performance. Can be achieved.
 1:ローリングシリンダ、1a:ローリング端板、1a1:ローリング鏡板部、1b:ローリング円柱、1b1:ローリング円柱上面、1c:シリンダ溝、1d:偏心シャフト挿入穴、1e:シャフトつば接触面、1f:ローリング外周穴、1g:ローリング外周カット部、1g1:ローリング外周カット部つば、1g2:ローリング外周カット溝部、1h:ローリングバランス穴、1i:ローリング鏡板凹み、1k:ローリング底給油穴、1w:シリンダ溝外周壁、2:静止シリンダ、2b:シリンダ穴、2d:吐出路、2e:バイパス穴、2m:シリンダ外周溝、2s:吸込路、2s1:吸込穴、2s2:吸込溝、3:旋回ピストン、3a:旋回軸受穴、3b:スライド溝、3b1:スライド溝壁、3b2:スライド溝掘り込み、3c:ピストンカット面、3d:ピストン上面、3e:ピストン先端面、3f:ピストン下面、3g:ピストン下面穴、4:フレーム、4m:フレーム外周溝、4x:油排出路、5:ピン機構、5a:スライダ、5a1:スライダ対偶面、5a2:スライダ溝、5a3:スライダ回転ピン、5a4:スライダ給油縦穴、5a5:スライダ給油横穴、5a10:スライダ軸穴、5s:固定ピン、5s1:固定ピン給油縦穴、5s2:固定ピン給油横穴、5s3:固定ピンフランジ、5c:ピン軸受、6:シャフト、6a:偏心シャフト、6b:シャフト給油縦穴、6c:シャフトつば部、6e:シャフト給油上主軸受穴、6f:シャフト給油下主軸受穴、6g:シャフト給油副横穴、6h:シャフト給油偏心溝、6k:給油主軸溝、6m:シリンダ接触面、6z:ポンプ連結部、7:モータ、7a:ロータ、7b:ステータ、7b1:ステータカット面、7b2:ステータ巻線、7b3:モータ線、8a:ケーシング円筒部、8b:ケーシング上フタ、8c:ケーシング下フタ、22:バイパス弁、23:旋回軸受、24:主軸受、24a:上主軸受、24b:下主軸受、25:副軸受、25a:ボール、25b:ボールホルダ、35:副フレーム、35a:副フレーム周囲穴、35b:副フレーム中央穴、50:吸込パイプ、55:吐出パイプ、80:主バランス、82:カウンタバランス、90:シリンダボルト、95:吸込室、100:圧縮室、105:吐出室、110:背面室、120:ケーシング上部室、125:貯油部、130:吐出カバー室、140:旋回室、200:給油ポンプ、200’:可変容量給油ポンプ、201:給油ローリングシリンダ、201c:給油シリンダ溝、201d:給油シャフト連結穴、202:給油静止シリンダ、202a:給油シャフト貫通穴、202b:給油シリンダ穴、203:給油旋回ピストン、203b:給油ピン溝、203g:給油背面穴、204:給油フタ、204’:可変給油フタ、204a:給油路板、204b:給油ピンベース、204b1:給油ピン駆動ネジ穴、204c:給油ピンベース押さえ、204c1:給油ピンスライド穴、204d:給油吐出溝、204e:給油連通溝、204h:給油吸込穴、204s:給油吸込溝、205:給油ピン、209:給油ボルト、210:給油ピンスライド用モータ、210a:給油ピンスライドネジ、211:給油吸込室、212:給油吐出室、220:ハーメチック端子、230:吐出カバー、230a:吐出カバー口、230b:吐出カバー板。 1: rolling cylinder, 1a: rolling end plate, 1a1: rolling end plate, 1b: rolling cylinder, 1b1: rolling cylinder top surface, 1c: cylinder groove, 1d: eccentric shaft insertion hole, 1e: shaft collar contact surface, 1f: rolling Outer peripheral hole, 1 g: Rolling outer peripheral cut portion, 1 g1: Rolling outer peripheral cut portion collar, 1 g2: Rolling outer peripheral cut groove portion, 1h: Rolling balance hole, 1i: Rolling end plate recess, 1k: Rolling bottom oil supply hole, 1w: Cylinder groove outer peripheral wall 2: stationary cylinder, 2b: cylinder hole, 2d: discharge path, 2e: bypass hole, 2m: cylinder outer groove, 2s: suction path, 2s1: suction hole, 2s2: suction groove, 3: revolving piston, 3a: revolving Bearing hole, 3b: slide groove, 3b1: slide groove wall, 3b2: slide groove digging, 3c Piston cut surface, 3d: piston upper surface, 3e: piston tip surface, 3f: piston lower surface, 3g: piston lower surface hole, 4: frame, 4m: frame outer peripheral groove, 4x: oil discharge path, 5: pin mechanism, 5a: slider 5a1: Slider mating surface, 5a2: Slider groove, 5a3: Slider rotation pin, 5a4: Slider oil supply vertical hole, 5a5: Slider oil supply horizontal hole, 5a10: Slider shaft hole, 5s: Fixed pin, 5s1: Fixed pin oil supply vertical hole, 5s2: Fixed pin lubrication horizontal hole, 5s3: Fixed pin flange, 5c: Pin bearing, 6: Shaft, 6a: Eccentric shaft, 6b: Shaft lubrication vertical hole, 6c: Shaft flange, 6e: Shaft lubrication upper main bearing hole, 6f: Shaft lubrication Lower main bearing hole, 6g: Shaft oiling auxiliary horizontal hole, 6h: Shaft oiling eccentric groove, 6k: Oiling main shaft groove, 6m: Cylinder Touch surface, 6z: pump connection portion, 7: motor, 7a: rotor, 7b: stator, 7b1: stator cut surface, 7b2: stator winding, 7b3: motor wire, 8a: casing cylindrical portion, 8b: casing upper lid, 8c: Casing lower lid, 22: Bypass valve, 23: Slewing bearing, 24: Main bearing, 24a: Upper main bearing, 24b: Lower main bearing, 25: Sub bearing, 25a: Ball, 25b: Ball holder, 35: Sub Frame, 35a: Sub-frame peripheral hole, 35b: Sub-frame central hole, 50: Suction pipe, 55: Discharge pipe, 80: Main balance, 82: Counter balance, 90: Cylinder bolt, 95: Suction chamber, 100: Compression chamber , 105: discharge chamber, 110: back chamber, 120: casing upper chamber, 125: oil storage section, 130: discharge cover chamber, 140: swirl chamber, 200: oil supply Pump, 200 ′: Variable displacement oil pump, 201: Oil rolling cylinder, 201c: Oil cylinder groove, 201d: Oil shaft connecting hole, 202: Oil stationary cylinder, 202a: Oil shaft through hole, 202b: Oil cylinder hole, 203: Oil supply swirling piston, 203b: oil supply pin groove, 203g: oil supply back hole, 204: oil supply cover, 204 ': variable oil supply cover, 204a: oil supply path plate, 204b: oil supply pin base, 204b1: oil supply pin drive screw hole, 204c: Oil supply pin base holder, 204c1: Oil supply pin slide hole, 204d: Oil supply discharge groove, 204e: Oil supply communication groove, 204h: Oil supply suction hole, 204s: Oil supply suction groove, 205: Oil supply pin, 209: Oil supply bolt, 210: Oil supply pin Slide motor, 210a: lubrication pin slide screw, 211: lubrication Included chamber, 212: oil supply discharge chamber, 220: hermetic terminal, 230: discharge cover, 230a: discharge cover openings, 230b: discharge cover plate.

Claims (8)

  1.  シリンダ溝を有する円柱状のローリングシリンダと、
     スライド溝を有する旋回ピストンと、
     静止シリンダと、
     ピン機構と、
     駆動源と、
     前記ローリングシリンダと前記駆動源とを繋ぐ駆動伝達部と、
     前記旋回ピストン、前記ローリングシリンダ、前記静止シリンダ、前記ピン機構、前記駆動源及び前記駆動伝達部を内蔵するケーシングと、を備え、
     前記旋回ピストン、前記ローリングシリンダ及び前記静止シリンダは、圧縮部を構成し、
     前記ピン機構は、前記スライド溝に嵌入され、
     前記旋回ピストンは、前記シリンダ溝にて相対的に往復運動をするものであり、
     前記圧縮部には、前記往復運動により、吸込室、圧縮室及び吐出室が形成され、
     前記駆動源は、前記駆動伝達部を介して、少なくとも前記ローリングシリンダを駆動する、ローリングシリンダ式容積型圧縮機。
    A cylindrical rolling cylinder having a cylinder groove;
    A swivel piston having a slide groove;
    A stationary cylinder;
    A pin mechanism;
    A driving source;
    A drive transmission unit connecting the rolling cylinder and the drive source;
    A casing containing the revolving piston, the rolling cylinder, the stationary cylinder, the pin mechanism, the drive source, and the drive transmission unit;
    The swiveling piston, the rolling cylinder and the stationary cylinder constitute a compression part,
    The pin mechanism is inserted into the slide groove,
    The orbiting piston relatively reciprocates in the cylinder groove,
    In the compression part, a suction chamber, a compression chamber and a discharge chamber are formed by the reciprocating motion,
    The driving source is a rolling cylinder positive displacement compressor that drives at least the rolling cylinder via the drive transmission unit.
  2.  前記ピン機構は、前記スライド溝に摺動可能に接するスライダ対偶面を有する、請求項1記載のローリングシリンダ式容積型圧縮機。 2. The rolling cylinder type positive displacement compressor according to claim 1, wherein the pin mechanism has a slider mating face slidably contacting the slide groove.
  3.  前記スライダ対偶面は、前記ピン機構の中心軸の周りに回転可能に設置されている、請求項2記載のローリングシリンダ式容積型圧縮機。 The rolling cylinder type positive displacement compressor according to claim 2, wherein the slider mating surface is rotatably installed around a central axis of the pin mechanism.
  4.  前記駆動伝達部は、偏心シャフトを有し、
     前記偏心シャフトは、前記旋回ピストンに接続され、
     前記旋回ピストンは、前記偏心シャフトを介して、前記駆動源により駆動される、請求項1乃至3のいずれか一項に記載のローリングシリンダ式容積型圧縮機。
    The drive transmission unit has an eccentric shaft,
    The eccentric shaft is connected to the orbiting piston;
    The rolling cylinder positive displacement compressor according to any one of claims 1 to 3, wherein the revolving piston is driven by the drive source via the eccentric shaft.
  5.  前記旋回ピストンは、前記偏心シャフトの中心軸を回転軸として自転するとともに、前記駆動伝達部の中心軸を回転軸として公転する、請求項4記載のローリングシリンダ式容積型圧縮機。 The rolling cylinder positive displacement compressor according to claim 4, wherein the revolving piston rotates around the central axis of the eccentric shaft as a rotation axis and revolves around the central axis of the drive transmission unit as a rotation axis.
  6.  前記駆動伝達部は、クランク式のシャフトを含む、請求項5記載のローリングシリンダ式容積型圧縮機。 The rolling cylinder type positive displacement compressor according to claim 5, wherein the drive transmission unit includes a crank type shaft.
  7.  前記シャフトには、シャフトつば部が設けられ、該シャフトつば部の一部が前記ローリングシリンダに付勢される構成を有する、請求項6記載のローリングシリンダ式容積型圧縮機。 The rolling cylinder type positive displacement compressor according to claim 6, wherein the shaft is provided with a shaft collar portion, and a part of the shaft collar portion is biased by the rolling cylinder.
  8.  前記駆動伝達部と前記ローリングシリンダとは、一体化された構成を有する、請求項1乃至6のいずれか一項に記載のローリングシリンダ式容積型圧縮機。 The rolling cylinder type positive displacement compressor according to any one of claims 1 to 6, wherein the drive transmission unit and the rolling cylinder have an integrated configuration.
PCT/JP2018/007458 2018-02-28 2018-02-28 Rolling cylinder-type displacement compressor WO2019167163A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019522340A JP6545922B1 (en) 2018-02-28 2018-02-28 Rolling cylinder positive displacement compressor
PCT/JP2018/007458 WO2019167163A1 (en) 2018-02-28 2018-02-28 Rolling cylinder-type displacement compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/007458 WO2019167163A1 (en) 2018-02-28 2018-02-28 Rolling cylinder-type displacement compressor

Publications (1)

Publication Number Publication Date
WO2019167163A1 true WO2019167163A1 (en) 2019-09-06

Family

ID=67297591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007458 WO2019167163A1 (en) 2018-02-28 2018-02-28 Rolling cylinder-type displacement compressor

Country Status (2)

Country Link
JP (1) JP6545922B1 (en)
WO (1) WO2019167163A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58220977A (en) * 1982-06-16 1983-12-22 Asuyoshi Shibai Pump
JP2016173045A (en) * 2015-03-17 2016-09-29 株式会社日立製作所 Rolling cylinder type displacement fluid machine
WO2017183330A1 (en) * 2016-04-18 2017-10-26 株式会社日立製作所 Rolling cylinder-type positive displacement compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58220977A (en) * 1982-06-16 1983-12-22 Asuyoshi Shibai Pump
JP2016173045A (en) * 2015-03-17 2016-09-29 株式会社日立製作所 Rolling cylinder type displacement fluid machine
WO2017183330A1 (en) * 2016-04-18 2017-10-26 株式会社日立製作所 Rolling cylinder-type positive displacement compressor

Also Published As

Publication number Publication date
JPWO2019167163A1 (en) 2020-04-09
JP6545922B1 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
JP5260608B2 (en) Scroll compressor
JP5178668B2 (en) Scroll compressor
WO2016067355A1 (en) Rolling cylinder type displacement compressor
JP2008303844A (en) Scroll fluid machine
JP4431160B2 (en) Fluid machinery
KR100657038B1 (en) Fluid compressor
US11668308B2 (en) Compressor having sliding portion provided with oil retainer
JP2004316537A (en) Fluid compressor
JP2008121481A (en) Scroll fluid machine
WO2019167163A1 (en) Rolling cylinder-type displacement compressor
WO2017183330A1 (en) Rolling cylinder-type positive displacement compressor
CN112412792B (en) Compressor and refrigeration cycle device with same
JP6700691B2 (en) Electric compressor
WO2018055824A1 (en) Rolling cylinder-type displacement compressor
JP6541708B2 (en) Rolling cylinder positive displacement compressor
JP2021116727A (en) Horizontal compressor
JP7175657B2 (en) Rolling cylinder positive displacement compressor
JP2009127440A (en) Scroll compressor
US6135736A (en) Scroll machine with non-machined anti-thrust surface
US11674514B2 (en) Compressor with a fitted shaft portion having two sliding surfaces and an oil retainer
JP3574904B2 (en) Closed displacement compressor
JP4436185B2 (en) Compressor
JP2004293530A (en) Fluid compressor
JP2543275B2 (en) Horizontal scroll compressor
WO2021193275A1 (en) Horizontal rotary compressor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019522340

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908080

Country of ref document: EP

Kind code of ref document: A1