WO2019165752A1 - 动态确定偏航控制精度的方法和装置 - Google Patents

动态确定偏航控制精度的方法和装置 Download PDF

Info

Publication number
WO2019165752A1
WO2019165752A1 PCT/CN2018/097911 CN2018097911W WO2019165752A1 WO 2019165752 A1 WO2019165752 A1 WO 2019165752A1 CN 2018097911 W CN2018097911 W CN 2018097911W WO 2019165752 A1 WO2019165752 A1 WO 2019165752A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
wind speed
wind direction
data
yaw
Prior art date
Application number
PCT/CN2018/097911
Other languages
English (en)
French (fr)
Inventor
魏浩
杨微
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to US16/763,226 priority Critical patent/US11868105B2/en
Priority to AU2018411217A priority patent/AU2018411217B2/en
Priority to ES18907756T priority patent/ES2909606T3/es
Priority to EP18907756.3A priority patent/EP3760859B1/en
Publication of WO2019165752A1 publication Critical patent/WO2019165752A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/045Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with model-based controls
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/041Function-oriented details
    • G05B19/0415Function-oriented details adapting phase duration according to measured parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/84Modelling or simulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/309Rate of change of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/321Wind directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/329Azimuth or yaw angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/332Maximum loads or fatigue criteria
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2619Wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present application relates to the field of wind power generation technology, and more particularly to a method and apparatus for dynamically determining the accuracy of yaw control.
  • large-scale megawatt wind turbines generally adopt active yaw technology, and it is expected to make full use of wind energy and obtain optimal power generation efficiency.
  • the wind speed data and wind direction data on which the active yaw technology is based are obtained by an anemometer and a wind vane.
  • yaw error will occur, resulting in power loss.
  • a method of dynamically determining yaw control accuracy may include: collecting a plurality of wind speed data and a plurality of wind direction data for a predetermined period of time and processing the collected plurality of wind speed data and the plurality of wind direction data; establishing a wind speed and a wind direction according to the processed wind speed data and the wind direction data; Corresponding relationship model between change angle, yaw control accuracy, yaw fatigue value and power loss; according to current wind speed data, wind direction data, predetermined yaw fatigue value range and predetermined power loss range, through the corresponding relationship model Determine the yaw control accuracy corresponding to the current wind speed and the current wind direction change angle.
  • an apparatus for dynamically determining the accuracy of yaw control may include: a data acquisition and processing module, collecting a plurality of wind speed data and a plurality of wind direction data for a predetermined period of time and processing the collected plurality of wind speed data and the plurality of wind direction data; the model building module is processed according to Wind speed data and wind direction data establish a correspondence model between wind speed, wind direction change angle, yaw control precision, yaw fatigue value and power loss; accuracy determination module, according to current wind speed data, wind direction data, predetermined yaw fatigue value The range and the predetermined power loss range are determined by the correspondence model to determine the yaw control accuracy corresponding to the current wind speed and the current wind direction change angle.
  • a computer readable storage medium storing instructions that, when executed by a processor, cause a processor to perform the above method.
  • an apparatus for dynamically determining the accuracy of yaw control can include a processor, and a memory storing instructions that, when executed by the processor, cause the processor to perform the method described above.
  • FIG. 1 illustrates a flow chart of a method of dynamically determining yaw control accuracy in accordance with an exemplary embodiment of the present application
  • FIG. 2 shows a block diagram of an apparatus for dynamically determining the accuracy of yaw control, in accordance with an exemplary embodiment of the present application.
  • FIG. 1 illustrates a flow chart of a method of dynamically determining yaw control accuracy in accordance with an exemplary embodiment of the present application.
  • the method for dynamically determining the accuracy of the yaw control may include: an acquisition and processing step S110: collecting a plurality of wind speed data and a plurality of wind direction data and collecting the plurality of wind speed data and the plurality of wind speed data for a predetermined period of time Wind direction data processing; model establishing step S120: establishing a correspondence model between wind speed, wind direction change angle, yaw control precision, yaw fatigue value and power loss according to the processed wind speed data and wind direction data; accuracy determining step S130: The yaw control accuracy corresponding to the current wind speed and the current wind direction change angle is determined by the correspondence model according to the current wind speed data, the wind direction data, the predetermined yaw fatigue value range, and the predetermined power loss range.
  • the collecting and processing step S110 may include: collecting a plurality of wind speed data during the predetermined time period, determining a plurality of wind speed bins and a representative wind speed of each wind speed bin, and determining the wind speed points to which the collected wind speed data belongs.
  • the warehouse adjusts the collected wind speed data to the representative wind speed of the wind speed sub-bin to which the wind speed data belongs.
  • the collecting and processing step S110 may further include: collecting a plurality of wind direction data in the predetermined time period, determining a plurality of wind direction bins and a representative wind direction of each wind direction bin, and determining that each collected wind direction data belongs to The wind direction is divided into positions, and the collected wind direction data is adjusted to the representative wind direction of the wind direction sub-bin to which the wind direction data belongs.
  • the adjustments described above can be made for the wind speed data and/or wind direction data referred to below.
  • the step size of the bin can be defined in accordance with the International Electrotech Commission (IEC) standard, or the step size of the bin can be customized.
  • IEC International Electrotech Commission
  • the wind speed data of 2.75 m/s to 3.25 m/s can be adjusted to 3 m/s;
  • the step size of the wind direction bin is 5 degrees, and when the wind direction of the wind direction bin is 3 degrees, the wind direction data of 1 degree to 6 degrees can be adjusted to 3 degrees.
  • the collecting and processing step S110 may further include low-pass filtering the collected plurality of wind speed data and the plurality of wind direction data to filter out the interference data.
  • the wind direction change angles corresponding to the respective wind speeds may be calculated by: determining wind directions corresponding to the respective wind speeds; calculating angle change values of the wind direction corresponding to the respective wind speeds per unit time as corresponding to the respective wind speeds The direction of the wind changes.
  • the angle change value of the wind direction corresponding to the current wind speed in the unit time can be calculated as the current wind direction change angle. For example, when the wind direction corresponding to the current wind speed is 5 degrees, and the wind direction changes from 5 degrees to 8 degrees per unit time, the current wind direction change angle is 3 degrees.
  • the yaw control accuracy corresponding to each wind speed may be calculated by calculating the number of occurrences of each wind direction change angle or the average value of each wind direction change angle in the wind direction change angle corresponding to any one of the wind speeds;
  • the wind direction change angle or the average value of each wind direction change angle is used as the yaw control accuracy corresponding to any one of the wind speeds.
  • a plurality of wind direction change angles can be calculated.
  • the average wind direction change angle or the average value of each wind direction change angle among the plurality of calculated wind direction change angles may be used as the yaw control accuracy corresponding to the arbitrary one of the wind speeds.
  • the present application is not limited thereto, and the yaw control accuracy corresponding to any one of the wind speeds may be calculated by other appropriate means.
  • a correspondence table between wind speed and yaw control accuracy may be established, or a correspondence table between wind speed, wind direction change angle, and yaw control accuracy may be established to obtain yaw control accuracy as needed.
  • the yaw fatigue value is calculated by calculating the yaw fatigue value as the yaw fatigue value based on the respective wind speeds and the wind direction change angle and the yaw control accuracy corresponding to the respective wind speeds.
  • the power loss is calculated by calculating the power lost by the yaw system as the power loss based on the respective wind speeds and the yaw control accuracy corresponding to the respective wind speeds.
  • the correspondence between the wind speed and the wind direction change angle can be established by calculating the wind direction change angle corresponding to each wind speed, and the wind speed and the yaw control precision can be established by calculating the yaw control accuracy corresponding to each wind speed.
  • Corresponding relationship between the wind speed, wind direction change angle, yaw control accuracy and yaw fatigue value can be established by calculating the yaw fatigue value.
  • Wind speed and yaw control can be established by calculating the power loss operation.
  • the correspondence between accuracy and power loss Corresponding relationship models between wind speed, wind direction change angle, yaw control accuracy, yaw fatigue value and power loss can be obtained according to these correspondences.
  • a corresponding wind direction change angle can be obtained by the wind speed; a corresponding yaw control precision is obtained by the wind speed; and the wind speed, the corresponding wind direction change angle, and the corresponding yaw control precision are obtained Corresponding yaw fatigue value; corresponding power loss can be obtained by the wind speed and the corresponding yaw control precision.
  • the correspondence model can thus be obtained.
  • the correspondence model can represent a correspondence relationship between a wind speed, a wind direction change angle, a yaw control precision, a yaw fatigue value, and a power loss
  • at least one relationship group corresponding to a current wind speed and a current wind direction change angle can be determined
  • the at least one relationship group may have: one yaw control accuracy, one yaw fatigue value, and one power loss.
  • a particular relationship group may be selected from the at least one relationship group based on a predetermined range of yaw fatigue values and a predetermined power loss range, the yaw control accuracy in the particular relationship group being at the predetermined yaw fatigue Within the range of values, the power loss is within the predetermined power loss range.
  • the yaw control accuracy in the specific relationship group can be used as the yaw control accuracy corresponding to the current wind speed and the current wind direction change angle. If there are a plurality of the specific relationship groups, the yaw control accuracy that satisfies one of the following conditions may be selected from the respective yaw control precisions of the plurality of specific relationship groups as the final determined yaw control accuracy: each partial deviation The maximum yaw control accuracy in the flight control accuracy, the minimum yaw control accuracy in each yaw control accuracy, and the average of the yaw control accuracy.
  • the method of the present exemplary embodiment may further include: an accuracy adjustment step of: adjusting the determined yaw control accuracy corresponding to the current wind speed and the current wind direction change angle according to at least one of the following: the current wind direction change angle The topographical features of the location of the wind turbine. For example, if the current wind direction change angle is less than the first threshold, the yaw control accuracy is improved; if the current wind direction change angle is greater than the second threshold, the yaw control accuracy is lowered.
  • the wind direction change angle reaches 9 degrees in 30 seconds and continues for 3 minutes before the yaw wind is started;
  • the yaw control accuracy can be changed from 9 degrees to 3 degrees, that is, the yaw angle is changed to 3 degrees in 30 seconds and the yaw is started for 3 minutes.
  • the wind can be yawed in advance, so that the wind energy can be utilized more early, thereby improving power generation efficiency.
  • FIG. 2 shows a block diagram of an apparatus for dynamically determining the accuracy of yaw control, in accordance with an exemplary embodiment of the present application.
  • the apparatus 200 for dynamically determining the yaw control accuracy of the present exemplary embodiment may include a data acquisition and processing module 210 that acquires a plurality of wind speed data and a plurality of wind direction data for a predetermined period of time and collects The plurality of wind speed data and the plurality of wind direction data are processed; the model establishing module 220 establishes a correspondence between the wind speed, the wind direction change angle, the yaw control precision, the yaw fatigue value, and the power loss according to the processed wind speed data and the wind direction data.
  • the accuracy determining module 230 determines, according to the current wind speed data, the wind direction data, the predetermined yaw fatigue value range, and the predetermined power loss range, the yaw control corresponding to the current wind speed and the current wind direction change angle by the corresponding relationship model Precision.
  • the data collection and processing module 210 collects a plurality of wind speed data during the predetermined time period, determines a plurality of wind speed bins and a representative wind speed of each wind speed bin, and determines a wind speed bin to which the collected wind speed data belongs. The collected wind speed data is adjusted to the representative wind speed of the wind speed bin to which the wind speed data belongs. The data collection and processing module 210 may also collect a plurality of wind direction data during the predetermined time period, determine a plurality of wind direction bins and a representative wind direction of each wind direction bin, and determine a wind direction bin to which the collected wind direction data belongs. The collected wind direction data is adjusted to represent the wind direction of the wind direction bin to which the wind direction data belongs.
  • the adjustments described above can be made for the wind speed data and/or wind direction data referred to below.
  • the step size of the bin can be defined in accordance with the International Electrotech Commission (IEC) standard, or the step size of the bin can be customized. For example, when the step speed of the wind speed bin is 0.5 m/s and the wind speed of the wind speed bin is 3 m/s, the wind speed data of 2.75 m/s to 3.25 m/s can be adjusted to 3 m/s; The step size of the wind direction bin is 5 degrees, and when the wind direction of the wind direction bin is 3 degrees, the wind direction data of 1 degree to 6 degrees can be adjusted to 3 degrees.
  • IEC International Electrotech Commission
  • the data acquisition and processing module 210 may also low pass filter the collected plurality of wind speed data and the plurality of wind direction data to filter out the interference data.
  • the model establishing module 220 determines wind directions corresponding to respective wind speeds, and calculates angle change values of the wind direction corresponding to the respective wind speeds per unit time as wind direction change angles corresponding to the respective wind speeds.
  • the angle change value of the wind direction corresponding to the current wind speed in unit time can be calculated as the current wind direction change angle. For example, when the wind direction corresponding to the current wind speed is 5 degrees, and the wind direction changes from 5 degrees to 8 degrees per unit time, the current wind direction change angle is 3 degrees.
  • the model establishing module 220 calculates the number of occurrences of each wind direction change angle or the average value of each wind direction change angle in the wind direction change angle corresponding to any one wind speed, and changes the wind direction change angle or each wind direction that occurs most frequently.
  • the average value of the angle is used as the yaw control accuracy corresponding to any one of the wind speeds.
  • a plurality of wind direction change angles can be calculated.
  • the average wind direction change angle or the average value of each wind direction change angle among the plurality of calculated wind direction change angles may be used as the yaw control accuracy corresponding to the arbitrary one of the wind speeds.
  • the present application is not limited thereto, and the yaw control accuracy corresponding to any one of the wind speeds may be calculated by other appropriate means.
  • a correspondence table between wind speed and yaw control accuracy may be established, or a correspondence table between wind speed, wind direction change angle, and yaw control accuracy may be established to obtain yaw control accuracy as needed.
  • the model establishing module 220 calculates a yaw fatigue value as a yaw fatigue value according to each wind speed and a wind direction change angle and a yaw control accuracy corresponding to the respective wind speeds.
  • the model building module 220 calculates the power lost by the yaw system as a power loss based on the respective wind speeds and the yaw control accuracy corresponding to the respective wind speeds.
  • the correspondence between the wind speed and the wind direction change angle can be established by calculating the wind direction change angle corresponding to each wind speed, and the wind speed and the yaw control precision can be established by calculating the yaw control accuracy corresponding to each wind speed.
  • Corresponding relationship between the wind speed, wind direction change angle, yaw control accuracy and yaw fatigue value can be established by calculating the yaw fatigue value.
  • Wind speed and yaw control can be established by calculating the power loss operation.
  • the correspondence between accuracy and power loss Corresponding relationship models between wind speed, wind direction change angle, yaw control accuracy, yaw fatigue value and power loss can be obtained according to these correspondences.
  • a corresponding wind direction change angle can be obtained by the wind speed; a corresponding yaw control precision is obtained by the wind speed; and the wind speed, the corresponding wind direction change angle, and the corresponding yaw control precision are obtained Corresponding yaw fatigue value; corresponding power loss can be obtained by the wind speed and the corresponding yaw control precision.
  • the correspondence model can thus be obtained.
  • the correspondence model can represent a correspondence relationship between a wind speed, a wind direction change angle, a yaw control precision, a yaw fatigue value, and a power loss
  • at least one relationship group corresponding to a current wind speed and a current wind direction change angle can be determined
  • the at least one relationship group may have: one yaw control accuracy, one yaw fatigue value, and one power loss.
  • a particular relationship group may be selected from the at least one relationship group based on a predetermined range of yaw fatigue values and a predetermined power loss range, the yaw control accuracy in the particular relationship group being at the predetermined yaw fatigue Within the range of values, the power loss is within the predetermined power loss range.
  • the yaw control accuracy in the specific relationship group can be used as the yaw control accuracy corresponding to the current wind speed and the current wind direction change angle. If there are a plurality of the specific relationship groups, the yaw control accuracy that satisfies one of the following conditions may be selected from the respective yaw control precisions of the plurality of specific relationship groups as the final determined yaw control accuracy: each partial deviation The maximum yaw control accuracy in the flight control accuracy, the minimum yaw control accuracy in each yaw control accuracy, and the average of the yaw control accuracy.
  • the apparatus of the present exemplary embodiment may further include: an accuracy adjustment module (not shown) for adjusting the yaw control accuracy corresponding to the current wind speed and the current wind direction change angle determined according to at least one of the following items: : The size of the current wind direction change angle and the topographical features of the location of the wind turbine. For example, if the current wind direction change angle is less than the first threshold, the yaw control accuracy is improved; if the current wind direction change angle is greater than the second threshold, the yaw control accuracy is lowered.
  • an accuracy adjustment module for adjusting the yaw control accuracy corresponding to the current wind speed and the current wind direction change angle determined according to at least one of the following items: : The size of the current wind direction change angle and the topographical features of the location of the wind turbine. For example, if the current wind direction change angle is less than the first threshold, the yaw control accuracy is improved; if the current wind direction change angle is greater than the second threshold, the yaw control accuracy is lowered.
  • the wind direction change angle reaches 9 degrees in 30 seconds and continues for 3 minutes before the yaw wind is started;
  • the yaw control accuracy can be changed from 9 degrees to 3 degrees, that is, the yaw angle is changed to 3 degrees in 30 seconds and the yaw is started for 3 minutes.
  • the wind can be yawed in advance, so that the wind energy can be utilized more early, thereby improving power generation efficiency.
  • the method and apparatus for dynamically determining the accuracy of yaw control of an exemplary embodiment of the present application may be adapted to dynamically determine the yaw control accuracy of the wind turbine, based on wind speed data and wind direction data in the daily operational data of the wind turbine.
  • the angle of the machine fully considers the relationship between wind speed, wind direction change angle, yaw control accuracy, yaw fatigue value and power loss, thereby dynamically determining the yaw control accuracy and adjusting the determined yaw control accuracy. This achieves adaptive adjustment of yaw control accuracy under different wind speed and wind direction changes, and achieves optimal tracking of yaw control accuracy to maximize wind energy capture.
  • the method and device have the advantages of being simple, efficient, and easy to implement, and can realize the dynamic determination of the yaw control precision and adjust the yaw control precision by modifying the program or instruction executed by the processor.
  • a computer readable storage medium storing instructions that, when executed by a processor, cause a processor to perform any of the above-described embodiments.
  • an apparatus for dynamically determining the accuracy of yaw control can include a processor, and a memory storing instructions that, when executed by the processor, cause the processor to perform any of the above-described embodiments.
  • the computer readable storage medium includes program commands, data files, data structures, and the like, or a combination thereof.
  • a program recorded in a computer readable storage medium can be designed or configured to implement the methods of the present application.
  • a computer readable storage medium includes a hardware system for storing and executing program commands. Examples of hardware systems are magnetic media (such as hard disks, floppy disks, magnetic tapes), optical media (such as CD-ROMs and DVDs), magneto-optical media (such as floppy disks, ROM, RAM, flash memory, etc.).
  • the program includes assembly language code or machine code compiled by the compiler and higher language code interpreted by the interpreter.
  • the hardware system can be implemented with at least one software module to comply with the present application.
  • One or more general purpose or special purpose computers eg, processors, controllers, digital signal processors, microcomputers, field programmable arrays, programmable logic units, microprocessors, or any other capable of executing software or executing instructions) Apparatus
  • processors, controllers, digital signal processors, microcomputers, field programmable arrays, programmable logic units, microprocessors, or any other capable of executing software or executing instructions Apparatus to implement at least a portion of the above method.
  • the at least a portion can be implemented in an operating system or in one or more software applications operating under an operating system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Wind Motors (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

一种动态确定偏航精度的方法和装置。该方法包括:在预定时间段内采集多个风速数据和多个风向数据并对采集的多个风速数据和多个风向数据进行处理;根据经过处理的风速数据和风向数据建立风速、风向变化角度、偏航控制精度、偏航疲劳值和功率损失之间的对应关系模型;根据当前风速数据、风向数据、预定的偏航疲劳值范围和预定的功率损失范围,通过所述对应关系模型确定与当前风速和当前风向变化角度对应的偏航控制精度。

Description

动态确定偏航控制精度的方法和装置 技术领域
本申请涉及风力发电技术领域,更具体地,涉及一种动态确定偏航控制精度的方法和装置。
背景技术
目前,大型的兆瓦级风力发电机组普遍采用主动偏航技术,期望充分利用风能并获得最佳发电效率。主动偏航技术所依据的风速数据和风向数据由风速仪和风向标获得。然而,受到风速和风向的波动性和随机性,以及机舱的对零偏差和偏航控制精度等因素的影响,会产生偏航误差,从而造成功率损失。
发明内容
根据本申请的一方面,提供了一种动态确定偏航控制精度的方法。所述方法可包括:在预定时间段内采集多个风速数据和多个风向数据并对采集的多个风速数据和多个风向数据进行处理;根据经过处理的风速数据和风向数据建立风速、风向变化角度、偏航控制精度、偏航疲劳值和功率损失之间的对应关系模型;根据当前风速数据、风向数据、预定的偏航疲劳值范围和预定的功率损失范围,通过所述对应关系模型确定与当前风速和当前风向变化角度对应的偏航控制精度。
根据本申请的另一方面,提供了一种动态确定偏航控制精度的装置。所述装置可包括:数据采集和处理模块,在预定时间段内采集多个风速数据和多个风向数据并对采集的多个风速数据和多个风向数据进行处理;模型建立模块,根据经过处理的风速数据和风向数据建立风速、风向变化角度、偏航控制精度、偏航疲劳值和功率损失之间的对应关系模型;精度确定模块,根据当前风速数据、风向数据、预定的偏航疲劳值范围和预定的功率损失范围,通过所述对应关系模型确定与当前风速和当前风向变化角度对应的偏航控制精度。
根据本申请的另一方面,提供了一种计算机可读存储介质,存储有当被处理器执行时使得处理器执行上述方法的指令。
根据本申请的另一方面,提供了一种动态确定偏航控制精度的装置。所述装置可包括:处理器;存储器,存储有当被处理器执行时使得处理器执行上述方法的指令。
附图说明
现将详细参照本申请的实施例,所述实施例的示例在附图中示出,其中,相同的标号始终指的是相同的部件。以下将通过参照附图来说明所述实施例,以便解释本申请。
图1示出根据本申请的示例性实施例的动态确定偏航控制精度的方法的流程图;
图2示出根据本申请的示例性实施例的动态确定偏航控制精度的装置的框图。
具体实施方式
以下,将参照附图更加详细地描述发明构思的示例性实施例。
图1示出根据本申请的示例性实施例的动态确定偏航控制精度的方法的流程图。
如图1中所示,动态确定偏航控制精度的方法可包括:采集和处理步骤S110:在预定时间段内采集多个风速数据和多个风向数据并对采集的多个风速数据和多个风向数据进行处理;模型建立步骤S120:根据经过处理的风速数据和风向数据建立风速、风向变化角度、偏航控制精度、偏航疲劳值和功率损失之间的对应关系模型;精度确定步骤S130:根据当前风速数据、风向数据、预定的偏航疲劳值范围和预定的功率损失范围,通过所述对应关系模型确定与当前风速和当前风向变化角度对应的偏航控制精度。
作为示例,采集和处理步骤S110可包括:在所述预定时间段内采集多个风速数据,确定多个风速分仓和每个风速分仓的代表风速,确定采集的各个风速数据所属的风速分仓,将采集的各个风速数据调整为该风速数据所属的风速分仓的代表风速。可选择地,采集和处理步骤S110还可包括:在所述预定时间段内采集多个风向数据,确定多个风向分仓和每个风向分仓的代表风 向,确定采集的各个风向数据所属的风向分仓,将采集的各个风向数据调整为该风向数据所属的风向分仓的代表风向。可针对下文涉及的风速数据和/或风向数据进行如上所述的调整。可按照国际电工委员会(International Electro technical Commission,简称IEC)标准定义分仓的步长,也可自定义分仓的步长。例如,当风速分仓的步长是0.5米/秒,风速分仓的代表风速是3米/秒时,可将2.75米/秒至3.25米/秒的风速数据调整为3米/秒;当风向分仓的步长是5度,风向分仓的代表风向是3度时,可将1度至6度的风向数据调整为3度。
另外,采集和处理步骤S110还可包括:对采集的多个风速数据和多个风向数据进行低通滤波以滤除干扰数据。
作为示例,可通过如下操作计算与各个风速对应的风向变化角度:确定与各个风速对应的风向;计算与所述各个风速对应的风向在单位时间内的角度变化值作为与所述各个风速对应的风向变化角度。可计算与当前风速对应的风向在单位时间内的角度变化值作为当前风向变化角度。例如,当所述与当前风速对应的风向是5度,在单位时间内风向从5度变化为8度时,则当前风向变化角度是3度。
作为示例,可通过如下操作计算与各个风速对应的偏航控制精度:计算与任意一个风速对应的风向变化角度中各个风向变化角度出现的次数或各个风向变化角度的平均值;将出现的次数最多的风向变化角度或各个风向变化角度的平均值作为与所述任意一个风速对应的偏航控制精度。针对任意一个风速,当计算风向变化角度的单位时间不同时,可计算出多个风向变化角度。此时,可将计算出的多个风向变化角度中的出现次数最多的风向变化角度或各个风向变化角度的平均值作为与所述任意一个风速对应的偏航控制精度。然而,本申请不限于此,还可通过其他适当的方式计算与任意一个风速对应的偏航控制精度。例如,可建立风速与偏航控制精度之间的对应关系表,或建立风速、风向变化角度以及偏航控制精度之间的对应关系表,以便根据需要获得偏航控制精度。
作为示例,通过如下操作计算偏航疲劳值:根据各个风速以及与所述各个风速对应的风向变化角度和偏航控制精度仿真计算偏航系统消耗的使用寿命作为偏航疲劳值。
作为示例,通过如下操作计算功率损失:根据所述各个风速以及与所述 各个风速对应的偏航控制精度仿真计算偏航系统损失的功率作为功率损失。
如上所述,通过计算与各个风速对应的风向变化角度的操作可建立风速和风向变化角度之间的对应关系,通过计算与各个风速对应的偏航控制精度的操作可建立风速和偏航控制精度之间的对应关系,通过计算偏航疲劳值的操作可建立风速、风向变化角度、偏航控制精度和偏航疲劳值之间的对应关系,通过计算功率损失的操作可建立风速、偏航控制精度和功率损失之间的对应关系。可根据这些对应关系获得风速、风向变化角度、偏航控制精度、偏航疲劳值和功率损失之间的对应关系模型。例如,基于上述对应关系,可通过风速获得对应的风向变化角度;通过该风速获得对应的偏航控制精度;通过该风速、所述对应的风向变化角度、以及所述对应的偏航控制精度获得对应的偏航疲劳值;可通过该风速和所述对应的偏航控制精度获得对应的功率损失。由此可获得所述对应关系模型。
由于所述对应关系模型可表示风速、风向变化角度、偏航控制精度、偏航疲劳值和功率损失之间的对应关系,因此可确定与当前风速和当前风向变化角度对应的至少一个关系组,所述至少一个关系组可具有:一个偏航控制精度、一个偏航疲劳值和一个功率损失。随后,可基于预定的偏航疲劳值范围和预定的功率损失范围从所述至少一个关系组中选出特定关系组,所述特定关系组中的偏航控制精度在所述预定的偏航疲劳值范围之内,功率损失在所述预定的功率损失范围之内。所述特定关系组中的偏航控制精度可作为与当前风速和当前风向变化角度对应的偏航控制精度。如果所述特定关系组有多个,则可从多个特定关系组的各个偏航控制精度中选择出满足如下条件中的一个条件的偏航控制精度作为最终确定的偏航控制精度:各个偏航控制精度中的最大偏航控制精度、各个偏航控制精度中的最小偏航控制精度、以及各个偏航控制精度的平均值。
作为示例,本示例性实施例的方法还可包括:精度调整步骤:根据以下项中的至少一项调整确定的与当前风速和当前风向变化角度对应的偏航控制精度:当前风向变化角度的大小、风力发电机组所在位置的地形特征。例如,如果当前风向变化角度小于第一阈值,则提高所述偏航控制精度;如果当前风向变化角度大于第二阈值,则降低所述偏航控制精度。
根据本申请的示例性实施例,在未执行本申请的动态确定偏航控制精度的方法的情况下,在30秒内风向变化角度达到9度并持续3分钟才开始偏航 对风;在执行本申请的动态确定偏航控制精度的方法的情况下,偏航控制精度可从9度变化为3度,也就是说,在30秒内风向变化角度达到3度并持续3分钟就开始偏航对风。由此,可提前偏航对风,使风能更早得得到更大利用,从而提高发电效率。
图2示出根据本申请的示例性实施例的动态确定偏航控制精度的装置的框图。
如图2中所示,本示例性实施例的动态确定偏航控制精度的装置200可包括:数据采集和处理模块210,在预定时间段内采集多个风速数据和多个风向数据并对采集的多个风速数据和多个风向数据进行处理;模型建立模块220,根据经过处理的风速数据和风向数据建立风速、风向变化角度、偏航控制精度、偏航疲劳值和功率损失之间的对应关系模型;精度确定模块230,根据当前风速数据、风向数据、预定的偏航疲劳值范围和预定的功率损失范围,通过所述对应关系模型确定与当前风速和当前风向变化角度对应的偏航控制精度。
作为示例,数据采集和处理模块210在所述预定时间段内采集多个风速数据,确定多个风速分仓和每个风速分仓的代表风速,确定采集的各个风速数据所属的风速分仓,将采集各个风速数据调整为该风速数据所属的风速分仓的代表风速。数据采集和处理模块210也可在所述预定时间段内采集多个风向数据,确定多个风向分仓和每个风向分仓的代表风向,确定采集的各个风向数据所属的风向分仓,将采集的各个风向数据调整为该风向数据所属的风向分仓的代表风向。可针对下文涉及的风速数据和/或风向数据进行如上所述的调整。可按照国际电工委员会(International Electro technical Commission,简称IEC)标准定义分仓的步长,也可自定义分仓的步长。例如,当风速分仓的步长是0.5米/秒,风速分仓的代表风速是3米/秒时,可将2.75米/秒至3.25米/秒的风速数据调整为3米/秒;当风向分仓的步长是5度,风向分仓的代表风向是3度时,可将1度至6度的风向数据调整为3度。
另外,数据采集和处理模块210还可对采集的多个风速数据和多个风向数据进行低通滤波以滤除干扰数据。
作为示例,所述模型建立模块220确定与各个风速对应的风向,并且计算与所述各个风速对应的风向在单位时间内的角度变化值作为与所述各个风速对应的风向变化角度。可计算与当前风速对应的风向在单位时间内的角度 变化值作为当前风向变化角度。例如,当所述与当前风速对应的风向是5度,在单位时间内风向从5度变化为8度时,则当前风向变化角度是3度。
作为示例,所述模型建立模块220计算与任意一个风速对应的风向变化角度中各个风向变化角度出现的次数或各个风向变化角度的平均值,并且将出现的次数最多的风向变化角度或各个风向变化角度的平均值作为与所述任意一个风速对应的偏航控制精度。针对任意一个风速,当计算风向变化角度的单位时间不同时,可计算出多个风向变化角度。此时,可将计算出的多个风向变化角度中的出现次数最多的风向变化角度或各个风向变化角度的平均值作为与所述任意一个风速对应的偏航控制精度。然而,本申请不限于此,还可通过其他适当的方式计算与任意一个风速对应的偏航控制精度。例如,可建立风速与偏航控制精度之间的对应关系表,或建立风速、风向变化角度以及偏航控制精度之间的对应关系表,以便根据需要获得偏航控制精度。
作为示例,所述模型建立模块220根据各个风速以及与所述各个风速对应的风向变化角度和偏航控制精度仿真计算偏航系统消耗的使用寿命作为偏航疲劳值。
作为示例,所述模型建立模块220根据各个风速以及与所述各个风速对应的偏航控制精度仿真计算偏航系统损失的功率作为功率损失。
如上所述,通过计算与各个风速对应的风向变化角度的操作可建立风速和风向变化角度之间的对应关系,通过计算与各个风速对应的偏航控制精度的操作可建立风速和偏航控制精度之间的对应关系,通过计算偏航疲劳值的操作可建立风速、风向变化角度、偏航控制精度和偏航疲劳值之间的对应关系,通过计算功率损失的操作可建立风速、偏航控制精度和功率损失之间的对应关系。可根据这些对应关系获得风速、风向变化角度、偏航控制精度、偏航疲劳值和功率损失之间的对应关系模型。例如,基于上述对应关系,可通过风速获得对应的风向变化角度;通过该风速获得对应的偏航控制精度;通过该风速、所述对应的风向变化角度、以及所述对应的偏航控制精度获得对应的偏航疲劳值;可通过该风速和所述对应的偏航控制精度获得对应的功率损失。由此可获得所述对应关系模型。
由于所述对应关系模型可表示风速、风向变化角度、偏航控制精度、偏航疲劳值和功率损失之间的对应关系,因此可确定与当前风速和当前风向变化角度对应的至少一个关系组,所述至少一个关系组可具有:一个偏航控制 精度、一个偏航疲劳值和一个功率损失。随后,可基于预定的偏航疲劳值范围和预定的功率损失范围从所述至少一个关系组中选出特定关系组,所述特定关系组中的偏航控制精度在所述预定的偏航疲劳值范围之内,功率损失在所述预定的功率损失范围之内。所述特定关系组中的偏航控制精度可作为与当前风速和当前风向变化角度对应的偏航控制精度。如果所述特定关系组有多个,则可从多个特定关系组的各个偏航控制精度中选择出满足如下条件中的一个条件的偏航控制精度作为最终确定的偏航控制精度:各个偏航控制精度中的最大偏航控制精度、各个偏航控制精度中的最小偏航控制精度、以及各个偏航控制精度的平均值。
作为示例,本示例性实施例的装置还可包括:精度调整模块(未示出):用于根据以下项中的至少一项调整确定的与当前风速和当前风向变化角度对应的偏航控制精度:当前风向变化角度的大小、风力发电机组所在位置的地形特征。例如,如果当前风向变化角度小于第一阈值,则提高所述偏航控制精度;如果当前风向变化角度大于第二阈值,则降低所述偏航控制精度。
根据本申请的示例性实施例,在未采用本申请的动态确定偏航控制精度的装置的情况下,在30秒内风向变化角度达到9度并持续3分钟才开始偏航对风;在采用本申请的动态确定偏航控制精度的装置的情况下,偏航控制精度可从9度变化为3度,也就是说,在30秒内风向变化角度达到3度并持续3分钟就开始偏航对风。由此,可提前偏航对风,使风能更早得得到更大利用,从而提高发电效率。
本申请的示例性实施例的动态确定偏航控制精度的方法和装置可适用于动态确定风力发电机组的偏航控制精度,可基于风力发电机组日常运行数据中的风速数据和风向数据,从整机的角度,充分考虑了风速、风向变化角度、偏航控制精度、偏航疲劳值和功率损失之间的关系,由此动态确定偏航控制精度,并且可调整确定的偏航控制精度,由此实现不同风速和风向变化角度下的偏航控制精度的自适应调整,实现偏航控制精度的最优跟踪,以便最大化的捕获风能。
所述方法和装置具有简单、高效、易实现的优点,可通过对处理器执行的程序或指令的修改,实现偏航控制精度的动态确定,并调整偏航控制精度。
根据本申请的另一示例性实施例,提供了一种计算机可读存储介质,存储有当被处理器执行时使得处理器执行上述实施例中的任意方法的指令。
根据本申请的另一示例性实施例,提供了一种动态确定偏航控制精度的装置。所述装置可包括:处理器;存储器,存储有当被处理器执行时使得处理器执行上述实施例中的任意方法的指令。
所述计算机可读存储介质包含程序命令、数据文件、数据结构等、或它们的组合。被记录在计算机可读存储介质中的程序可被设计或被配置以实现本申请的方法。计算机可读存储介质包括用于存储并执行程序命令的硬件系统。硬件系统的示例有磁介质(诸如硬盘、软盘、磁带)、光介质(诸如CD-ROM和DVD)、磁光介质(诸如软光盘、ROM、RAM、闪存等)。程序包括由编译器编译的汇编语言代码或机器代码和由解释器解释的更高级语言代码。硬件系统可利用至少一个软件模块来实施以符合本申请。
可使用一个或多个通用或专用计算机(例如,处理器、控制器、数字信号处理器、微型计算机、现场可编程阵列、可编程逻辑单元、微处理器或能够运行软件或执行指令的任何其它装置)来实施上述方法的至少一部分。所述至少一部分可在操作系统中实现,也可在操作系统下操作的一个或多个软件应用中实现。
为了示意和描述的目的,给出了对本申请的描述,该描述的意图不在于以所公开的形式来穷尽或限制本申请。对于本领域普通技术人员来说,在不脱离本申请构思的情况下,可对实施例进行各种修改和改变。

Claims (14)

  1. 一种动态确定偏航控制精度的方法,其特征在于,所述方法包括:
    在预定时间段内采集多个风速数据和多个风向数据并对采集的多个风速数据和多个风向数据进行处理;
    根据经过处理的风速数据和风向数据建立风速、风向变化角度、偏航控制精度、偏航疲劳值和功率损失之间的对应关系模型;
    根据当前风速数据、风向数据、预定的偏航疲劳值范围和预定的功率损失范围,通过所述对应关系模型确定与当前风速和当前风向变化角度对应的偏航控制精度。
  2. 如权利要求1所述的方法,其特征在于,所述在预定时间段内采集多个风速数据和多个风向数据并对采集的多个风速数据和多个风向数据进行处理包括:
    在所述预定时间段内采集多个风速数据,确定多个风速分仓和每个风速分仓的代表风速,确定采集的各个风速数据所属的风速分仓,将采集的各个风速数据调整为该风速数据所属的风速分仓的代表风速。
  3. 如权利要求1所述的方法,其特征在于,通过如下操作计算与各个风速对应的风向变化角度:
    确定与各个风速对应的风向;
    计算与所述各个风速对应的风向在单位时间内的角度变化值作为与所述各个风速对应的风向变化角度。
  4. 如权利要求1所述的方法,其特征在于,通过如下操作计算与各个风速对应的偏航控制精度:
    计算与任意一个风速对应的风向变化角度中各个风向变化角度出现的次数或各个风向变化角度的平均值;
    将出现的次数最多的风向变化角度或各个风向变化角度的平均值作为与所述任意一个风速对应的偏航控制精度。
  5. 如权利要求1所述的方法,其特征在于,通过如下操作计算偏航疲劳值:
    根据各个风速以及与所述各个风速对应的风向变化角度和偏航控制精度仿真计算偏航系统消耗的使用寿命作为偏航疲劳值。
  6. 如权利要求1所述的方法,其特征在于,通过如下操作计算功率损失:
    根据各个风速以及与所述各个风速对应的偏航控制精度仿真计算偏航系统损失的功率作为功率损失。
  7. 一种动态确定偏航控制精度的装置,其特征在于,所述装置包括:
    数据采集和处理模块,在预定时间段内采集多个风速数据和多个风向数据并对采集的多个风速数据和多个风向数据进行处理;
    模型建立模块,根据经过处理的风速数据和风向数据建立风速、风向变化角度、偏航控制精度、偏航疲劳值和功率损失之间的对应关系模型;
    精度确定模块,根据当前风速数据、风向数据、预定的偏航疲劳值范围和预定的功率损失范围,通过所述对应关系模型确定与当前风速和当前风向变化角度对应的偏航控制精度。
  8. 如权利要求7所述的装置,其特征在于,数据采集和处理模块在所述预定时间段内采集多个风速数据,确定多个风速分仓和每个风速分仓的代表风速,确定采集的各个风速数据所属的风速分仓,将采集各个风速数据调整为该风速数据所属的风速分仓的代表风速。
  9. 如权利要求7所述的装置,其特征在于,所述模型建立模块确定与各个风速对应的风向,并且计算与所述各个风速对应的风向在单位时间内的角度变化值作为与所述各个风速对应的风向变化角度。
  10. 如权利要求7所述的装置,其特征在于,所述模型建立模块计算与任意一个风速对应的风向变化角度中各个风向变化角度出现的次数或各个风向变化角度的平均值,并且将出现的次数最多的风向变化角度或各个风向变化角度的平均值作为与所述任意一个风速对应的偏航控制精度。
  11. 如权利要求7所述的装置,其特征在于,所述模型建立模块根据各个风速以及与所述各个风速对应的风向变化角度和偏航控制精度仿真计算偏航系统消耗的使用寿命作为偏航疲劳值。
  12. 如权利要求7所述的装置,其特征在于,所述模型建立模块根据各个风速以及与所述各个风速对应的偏航控制精度仿真计算偏航系统损失的功率作为功率损失。
  13. 一种计算机可读存储介质,存储有当被处理器执行时使得处理器执行如权利要求1-6中任一项所述的方法的指令。
  14. 一种动态确定偏航控制精度的装置,其特征在于,所述装置包括:
    处理器;
    存储器,存储有当被处理器执行时使得处理器执行如权利要求1-6中任一项所述的方法的指令。
PCT/CN2018/097911 2018-02-28 2018-08-01 动态确定偏航控制精度的方法和装置 WO2019165752A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/763,226 US11868105B2 (en) 2018-02-28 2018-08-01 Method and apparatus for dynamically determining yaw control precision
AU2018411217A AU2018411217B2 (en) 2018-02-28 2018-08-01 Method and apparatus for dynamically determining yaw control precision
ES18907756T ES2909606T3 (es) 2018-02-28 2018-08-01 Método y aparato para determinar dinámicamente la precisión de control de guiñada
EP18907756.3A EP3760859B1 (en) 2018-02-28 2018-08-01 Method and apparatus for dynamically determining yaw control precision

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810168123.4 2018-02-28
CN201810168123.4A CN110206682B (zh) 2018-02-28 2018-02-28 动态确定偏航控制精度的方法和装置

Publications (1)

Publication Number Publication Date
WO2019165752A1 true WO2019165752A1 (zh) 2019-09-06

Family

ID=67778910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097911 WO2019165752A1 (zh) 2018-02-28 2018-08-01 动态确定偏航控制精度的方法和装置

Country Status (6)

Country Link
US (1) US11868105B2 (zh)
EP (1) EP3760859B1 (zh)
CN (1) CN110206682B (zh)
AU (1) AU2018411217B2 (zh)
ES (1) ES2909606T3 (zh)
WO (1) WO2019165752A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112145376A (zh) * 2020-09-29 2020-12-29 沈阳航空航天大学 一种风力机全时效率测定方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110206682B (zh) * 2018-02-28 2020-06-26 北京金风科创风电设备有限公司 动态确定偏航控制精度的方法和装置
CN110608135B (zh) * 2019-10-29 2020-10-27 中国船舶重工集团海装风电股份有限公司 一种风电机组偏航控制方法、装置、设备及存储介质
CN110985291B (zh) * 2019-12-13 2021-07-30 中国船舶重工集团海装风电股份有限公司 偏航对风控制方法、装置、设备及存储介质
CN113482853B (zh) * 2021-08-06 2023-02-24 贵州大学 一种偏航控制方法、系统、电子设备及储存介质
CN115828439B (zh) * 2021-09-17 2024-02-02 北京金风科创风电设备有限公司 风力发电机组异常损耗的识别方法及装置
US11674498B1 (en) 2022-04-21 2023-06-13 General Electric Renovables Espana, S.L. Systems and methods for controlling a wind turbine
CN117420773A (zh) * 2023-08-31 2024-01-19 南京国电南自维美德自动化有限公司 一种风电场的尾流协同控制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2351931B1 (en) * 2010-01-12 2014-05-07 Domenico Sivilli Device for controlling the yaw of a fluid-operated generator of electric energy
CN104196680A (zh) * 2014-09-05 2014-12-10 南京达沙信息科技有限公司 基于临近预测的风机预知性偏航控制
CN104314754A (zh) * 2014-08-20 2015-01-28 国家电网公司 一种偏航控制方法与偏航控制系统
CN104632521A (zh) * 2014-12-19 2015-05-20 风脉(武汉)可再生能源技术有限责任公司 一种基于偏航校正的风电功率优化系统及其方法
CN107152374A (zh) * 2017-05-23 2017-09-12 北京三力新能科技有限公司 一种风力发电机组偏航控制方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7822560B2 (en) * 2004-12-23 2010-10-26 General Electric Company Methods and apparatuses for wind turbine fatigue load measurement and assessment
CN100460669C (zh) * 2007-02-08 2009-02-11 上海交通大学 基于风向标和输出功率的风力机偏航控制方法
JP5022102B2 (ja) * 2007-05-25 2012-09-12 三菱重工業株式会社 風力発電装置、風力発電システムおよび風力発電装置の発電制御方法
EP2325480A1 (en) * 2009-11-24 2011-05-25 Siemens Aktiengesellschaft Method for controlling the operation of a wind turbine and wind turbine load control system
DK2749766T3 (en) * 2012-12-27 2017-05-01 Siemens Ag A method for detecting a degree of curvature of a wind turbine
CN104018987B (zh) * 2014-03-26 2017-01-04 同济大学 一种风力发电机偏航系统的控制方法
CN104481804B (zh) * 2014-12-05 2017-02-22 北京金风科创风电设备有限公司 风力发电机组对风矫正控制方法、装置和系统
ES2818100T3 (es) 2015-06-30 2021-04-09 Vestas Wind Sys As Método y sistema de control para turbinas eólicas
DK201570559A1 (en) 2015-08-28 2017-03-27 Vestas Wind Sys As Methods and Systems for Generating Wind Turbine Control Schedules
GB2545448A (en) * 2015-12-16 2017-06-21 Zephir Ltd Turbine arrangement
CN105569922A (zh) * 2015-12-16 2016-05-11 大连尚能科技发展有限公司 一种基于风速影响的风速风向仪的角度测量误差补偿方法
CN107304746B (zh) 2016-04-20 2020-07-17 北京天诚同创电气有限公司 风力发电机组及其运行控制方法与设备
WO2017205221A1 (en) * 2016-05-23 2017-11-30 General Electric Company System and method for forecasting power output of a wind farm
CN106150904B (zh) * 2016-07-01 2018-10-30 华北电力科学研究院有限责任公司 一种风力发电机组偏航系统控制性能优化方法及系统
CN110206682B (zh) * 2018-02-28 2020-06-26 北京金风科创风电设备有限公司 动态确定偏航控制精度的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2351931B1 (en) * 2010-01-12 2014-05-07 Domenico Sivilli Device for controlling the yaw of a fluid-operated generator of electric energy
CN104314754A (zh) * 2014-08-20 2015-01-28 国家电网公司 一种偏航控制方法与偏航控制系统
CN104196680A (zh) * 2014-09-05 2014-12-10 南京达沙信息科技有限公司 基于临近预测的风机预知性偏航控制
CN104632521A (zh) * 2014-12-19 2015-05-20 风脉(武汉)可再生能源技术有限责任公司 一种基于偏航校正的风电功率优化系统及其方法
CN107152374A (zh) * 2017-05-23 2017-09-12 北京三力新能科技有限公司 一种风力发电机组偏航控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3760859A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112145376A (zh) * 2020-09-29 2020-12-29 沈阳航空航天大学 一种风力机全时效率测定方法

Also Published As

Publication number Publication date
AU2018411217B2 (en) 2021-12-02
CN110206682B (zh) 2020-06-26
AU2018411217A1 (en) 2020-05-14
US11868105B2 (en) 2024-01-09
CN110206682A (zh) 2019-09-06
EP3760859A4 (en) 2021-04-21
US20210071638A1 (en) 2021-03-11
EP3760859A1 (en) 2021-01-06
EP3760859B1 (en) 2022-01-12
ES2909606T3 (es) 2022-05-09

Similar Documents

Publication Publication Date Title
WO2019165752A1 (zh) 动态确定偏航控制精度的方法和装置
EP3023636B1 (en) Systems and methods for optimizing operation of a wind farm
EP2940296B1 (en) Systems and methods for optimizing operation of a wind farm
CN112459965B (zh) 考虑风电场尾流的偏航优化控制方法、装置、设备及介质
CN109488528B (zh) 一种风机偏航系统的调整方法及装置
CN113591359B (zh) 一种风电机组切入/切出风速调优方法、系统及设备介质
CN107559144B (zh) 用于风力涡轮机的前馈控制的方法及系统
CN108223269B (zh) 风力发电机组过速故障的穿越方法和装置
WO2019127975A1 (zh) 在极端湍流风况下控制风力发电机组变桨的方法和装置
CN111379665B (zh) 风力发电机组的变桨控制方法及系统
Bao et al. A data-mining compensation approach for yaw misalignment on wind turbine
CN106246465B (zh) 一种风电机组风速风向获取方法及风电机组系统
CN108194265B (zh) 一种风机偏航方法及装置、计算机装置、可读存储介质
CN111456898A (zh) 风电机组的发电功率的调节方法、系统、介质及电子设备
JP2014202190A (ja) 制御装置、制御方法及びプログラム
CN107784371B (zh) 基于非线性拟合的风力偏航状态智能自适应控制方法
CN109751195B (zh) 一种风力发电机功率曲线的获取方法及装置
EP3628861A1 (en) Noise control of wind turbine
CN110943480A (zh) 电力系统调频方法、装置、计算机设备及存储介质
CN116663935B (zh) 风力机发电量计算方法、装置、计算机设备及存储介质
CN111400959A (zh) 风力发电机组的叶片故障诊断方法及装置
CN113279904B (zh) 一种风电机组最大功率跟踪的桨距角寻优方法及装置
CN112561137B (zh) 一种用于包含新能源机组的电网高频切机优化方法
CN117365870A (zh) 一种风电机组叶片失速监测与控制方法及系统
CN114412705A (zh) 基于湍流强度的风电机组机舱位移监测优化方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018411217

Country of ref document: AU

Date of ref document: 20180801

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018907756

Country of ref document: EP

Effective date: 20200928