WO2019127975A1 - 在极端湍流风况下控制风力发电机组变桨的方法和装置 - Google Patents

在极端湍流风况下控制风力发电机组变桨的方法和装置 Download PDF

Info

Publication number
WO2019127975A1
WO2019127975A1 PCT/CN2018/082372 CN2018082372W WO2019127975A1 WO 2019127975 A1 WO2019127975 A1 WO 2019127975A1 CN 2018082372 W CN2018082372 W CN 2018082372W WO 2019127975 A1 WO2019127975 A1 WO 2019127975A1
Authority
WO
WIPO (PCT)
Prior art keywords
pitch
pitch parameter
parameter
current
historical
Prior art date
Application number
PCT/CN2018/082372
Other languages
English (en)
French (fr)
Inventor
李永明
赵树椿
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Priority to ES18782868T priority Critical patent/ES2885248T3/es
Priority to US16/090,173 priority patent/US11208984B2/en
Priority to AU2018241181A priority patent/AU2018241181B2/en
Priority to EP18782868.6A priority patent/EP3524810B1/en
Publication of WO2019127975A1 publication Critical patent/WO2019127975A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/046Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with learning or adaptive control, e.g. self-tuning, fuzzy logic or neural network
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/309Rate of change of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present application relates to the field of wind power generation and, more particularly, to a method and apparatus for controlling wind turbine pitch in extreme turbulent wind conditions.
  • An aspect of the present application provides a method of controlling a wind turbine pitch in an extreme turbulent wind condition, the method comprising: acquiring a current first pitch parameter; acquiring a historical second pitch parameter within a predetermined predetermined time period; And determining an update threshold based on the acquired historical second pitch parameter; comparing the current first pitch parameter with the determined update threshold; and updating the current first pitch parameter based on the result of the comparison.
  • Another aspect of the present application provides an apparatus for controlling a wind turbine pitch in an extreme turbulent wind condition, the apparatus comprising: a current parameter acquisition unit that acquires a current first pitch parameter; a historical parameter acquisition unit that acquires a predetermined schedule a historical second pitch parameter in the time period; a determining unit, determining an update threshold based on the acquired historical second pitch parameter; comparing the unit, comparing the current first pitch parameter with the determined update threshold; updating the unit, based on the comparison The result updates the current first pitch parameter.
  • Another aspect of the present application provides a system for controlling wind turbine pitch in extreme turbulent wind conditions, the system comprising: a processor; a memory storing a computer program, when the computer program is executed by the processor, Perform the method described above.
  • Another aspect of the present application provides a computer readable storage medium storing a computer program that, when executed, implements the method described above.
  • the method, device and system for controlling the wind turbine pitch of the present application since it is not necessary to judge whether or not the extreme turbulence is present, the serious power loss caused by the inaccurate judgment is avoided, and the extreme turbulent wind condition is effectively avoided.
  • the problem that the limit load of the components of the wind turbine caused by the pitch is too fast is too large, and the pitch operation performed under normal turbulent wind conditions is not affected, and the development cost of the whole machine is reduced.
  • FIG. 1 is a flow chart showing a method of controlling wind turbine pitch, in accordance with an embodiment of the present application
  • FIG. 2 is a flowchart showing a method of determining an update threshold based on acquired historical pitch parameters, in accordance with an embodiment of the present application
  • FIG. 3 is a flowchart illustrating a method of establishing a predetermined mapping relationship according to an embodiment of the present application
  • FIG. 4 is a block diagram showing an apparatus for controlling wind turbine pitch, in accordance with an embodiment of the present application.
  • FIG. 5 is a graph showing a method of controlling wind turbine pitching according to an embodiment of the present application.
  • FIG. 1 is a flow chart showing a method of controlling wind turbine pitch, in accordance with an embodiment of the present application.
  • step S110 the current first pitch parameter is acquired.
  • step S120 the historical second pitch parameter within the previous predetermined time period is acquired.
  • the pitch parameters include a pitch angle, a pitch rate, and the like.
  • the pitch control system of the wind turbine generates pitch parameters for controlling the pitch system to perform the next pitch operation in real time based on information such as outside wind speed, wind direction, and the like.
  • the historical second pitch parameter within the previous predetermined time period may represent a time at which the current first pitch parameter is generated or a second pitch parameter generated during a period of time prior to the time at which step S110 is performed.
  • the historical second pitch parameter within the previous predetermined time period may be a historical second pitch parameter within a one minute time prior to the current time (ie, a predetermined time period of length 1 minute), or may be the current time Historical second pitch parameters for the previous 10 minutes (ie, a predetermined time period of 10 minutes).
  • the length of the predetermined time period may be determined according to the wind turbine model, actual wind conditions, or based on engineering experience.
  • the historical second pitch parameter within the previous predetermined time period may also represent a predetermined number of second pitch parameters generated prior to generating the current first pitch parameter. .
  • first pitch parameter and the second pitch parameter are different types of pitch parameters, both of which can be used to achieve control of the blades (blades) of the wind turbine.
  • first pitch parameter and the second pitch parameter are the same type of pitch parameters.
  • step S130 an update threshold is determined based on the acquired historical second pitch parameter.
  • FIG. 2 is a flow chart showing a method of determining an update threshold based on acquired historical pitch parameters, in accordance with an embodiment of the present application.
  • step S210 a predetermined statistical value of the acquired historical second pitch parameter is calculated.
  • the predetermined statistical value may be a statistical value that is statistically used to reflect the overall condition of the historical pitch parameter.
  • the predetermined statistical value may be an average value, a median, etc. of historical pitch parameters within a predetermined time period.
  • step S220 an update threshold corresponding to the calculated predetermined statistical value is determined based on the predetermined mapping relationship.
  • the mapping relationship represents a mapping between a predetermined statistical value of the second pitch parameter and an update threshold.
  • the update threshold is used to define the size of the first pitch parameter.
  • the form of the mapping may be a mathematical function relationship, a graph, a data table, etc., any form that can characterize a mapping between a predetermined statistical value and an updated threshold, and the present application does not limit the form of the mapping.
  • step S140 the current first pitch parameter is compared to the determined update threshold.
  • step S150 the current first pitch parameter is updated based on the result of the comparison.
  • the specific details performed in step S150 are related to the type of the first pitch parameter and the second pitch parameter.
  • the second pitch parameter is the pitch rate, or the first pitch parameter and the second pitch parameter are both the pitch rate
  • the current first pitch parameter is greater than Or equal to the update threshold (eg, under extreme turbulent wind conditions)
  • the current first pitch parameter is not updated, and if the current first pitch parameter is less than the update threshold, the current first pitch parameter is updated equal to the update threshold.
  • the second pitch parameter is the pitch angle, or the first pitch parameter and the second pitch parameter are both the pitch angle
  • the current first pitch parameter is less than Or equal to the update threshold (eg, under extreme turbulent wind conditions)
  • the current first pitch parameter is not updated, and if the current first pitch parameter is greater than the threshold, the current first pitch parameter is updated equal to the update threshold.
  • FIG. 3 is a flow chart illustrating a method of establishing a predetermined mapping relationship in accordance with an embodiment of the present application.
  • step S310 a historical first pitch parameter and a historical second pitch parameter of a predetermined time length in a normal turbulent wind condition are acquired.
  • the predetermined length of time may be longer than the length of the predetermined period of time described with reference to FIG. For example, when the predetermined time period described with reference to FIG. 1 is 1 minute, the predetermined time length may be 1 day. The longer the predetermined time length, the richer the amount of data acquired, and the more accurate the mapping relationship determined according to the method described in FIG.
  • step S320 a predetermined statistical value of the historical second pitch parameter within each predetermined time period within a predetermined time period is calculated.
  • the predetermined statistical value in step S120 is identical in type to the predetermined statistical value described with reference to FIG.
  • the predetermined statistic value described in step S320 is also an average value.
  • step S330 the highest value of the historical first pitch parameter within each predetermined time period within the predetermined time length is determined as the update threshold.
  • step S320 In addition to determining a predetermined statistical value of the historical first pitch parameter within each predetermined time period within a predetermined time length in step S320, An update threshold for a historical second pitch parameter within each predetermined time period within a predetermined length of time is determined.
  • the highest value of the historical pitch parameter is taken as the update threshold.
  • the maximum value can include the maximum and minimum values.
  • the most specific value is the maximum or minimum depending on the specific type of the first pitch parameter. For example, when the first pitch parameter is the pitch angle, the maximum value is the minimum value; when the first pitch parameter is the pitch rate, the maximum value is the maximum value.
  • step S340 the calculated predetermined statistical value is mapped to the update threshold of the corresponding predetermined time period.
  • a mapping relationship between a predetermined statistical value and an updated threshold may be established using a mathematical function relationship, a graph, a data table, or the like, which is not limited in this application.
  • step S340 further includes: mapping the same predetermined statistical value to multiple The highest value in the set formed by the update threshold of the historical first pitch parameter within a predetermined time period. That is, when a plurality of identical statistical values are obtained in step S330, the same statistical values are combined, such that a single statistical value corresponds to a single update threshold.
  • the same predetermined statistical value is mapped to an update threshold of a historical second pitch parameter within a plurality of predetermined time periods.
  • the four predetermined statistical values having the same size as 10 have a set of update thresholds of magnitudes of 9.9, 9.6, 9.8, and 9.6, respectively.
  • the maximum value of the set should take a minimum value of 9.6.
  • the highest value (i.e., 9.6) in the set of update thresholds that map the same predetermined statistical value (i.e., 10 degrees) to the historical pitch parameters of the plurality of predetermined time periods will be established.
  • Second pitch parameter the pitch angle
  • first pitch parameter the pitch rate
  • the paddle in each predetermined time period (for example, 1 minute or 1 hour).
  • the relationship between the average value and the pitch rate of the corresponding predetermined time period using statistical or other methods to find the relationship between the average value and the maximum value as the relationship between the pitch angle and the maximum value of the pitch rate.
  • the average value of the pitch angle in the predetermined time period when the fan is running is taken as an input, and the maximum value of the current pitch rate is obtained by the relationship, and the pitch rate is suddenly changed to become too large (ie, greater than the maximum Value), thereby reducing the load at extreme wind speeds.
  • FIG. 4 is a block diagram showing an apparatus 800 for controlling wind turbine pitch in extreme turbulent wind conditions, in accordance with an embodiment of the present application.
  • the apparatus 400 for controlling wind turbine pitching includes a current parameter acquisition unit 410, a history parameter acquisition unit 420, a determination unit 430, a comparison unit 440, and an update unit 450.
  • the current parameter acquisition unit 410 acquires the current first pitch parameter.
  • the history parameter acquisition unit 420 acquires the historical second pitch parameter within the previous predetermined time period.
  • first pitch parameter and the second pitch parameter are different types of pitch parameters, both of which can be used to achieve control of the blades (blades) of the wind turbine.
  • first pitch parameter and the second pitch parameter are the same type of pitch parameters.
  • the determining unit 430 determines an update threshold based on the acquired historical second pitch parameter.
  • the determination unit 430 includes a statistical value calculation unit 431 and an update threshold determination unit 432.
  • the statistical value calculation unit 431 calculates a predetermined statistical value of the acquired history second pitch parameter.
  • the predetermined statistical value may be a statistical value that is statistically used to reflect the overall condition of the historical pitch parameter.
  • the predetermined statistical value may be an average value, a median, etc. of historical pitch parameters within a predetermined time period.
  • the update threshold determination unit 432 determines an update threshold corresponding to the calculated predetermined statistical value based on the predetermined mapping relationship.
  • the mapping relationship represents a mapping between a predetermined statistical value of the second pitch parameter and an update threshold.
  • the update threshold is used to define the size of the first pitch parameter.
  • the form of the mapping may be a mathematical function relationship, a graph, a data table, etc., any form that can characterize a mapping between a predetermined statistical value and an updated threshold, and the present application does not limit the form of the mapping.
  • Comparison unit 440 compares the current first pitch parameter to the determined update threshold.
  • the update unit 450 updates the current first pitch parameter based on the result of the comparison.
  • the specific details performed by the update unit 450 are related to the types of the first pitch parameter and the second pitch parameter.
  • the update unit 450 if the current pitch parameter is greater than or equal to Updating the threshold, the update unit 450 does not update the current pitch parameter, and if the current pitch parameter is less than the update threshold, the update unit 450 updates the current pitch parameter equal to the update threshold.
  • the update unit 450 does not update the current pitch parameter, and if the current pitch parameter is greater than the threshold, the update unit 450 updates the current pitch parameter equal to the update threshold.
  • the apparatus 400 for controlling wind turbine pitching further includes a mapping relationship establishing unit 460.
  • the mapping relationship establishing unit 460 establishes a predetermined mapping relationship.
  • the mapping relationship establishing unit 460 includes a historical pitch parameter acquiring unit 461, a predetermined statistic value calculating unit 462, a maximum value determining unit 463, and a mapping unit 464.
  • the historical pitch parameter acquisition unit 461 acquires a historical first pitch parameter and a historical second pitch parameter of a predetermined time length in a normal turbulent wind condition.
  • the predetermined statistic value calculation unit 462 calculates a predetermined statistic value of the history second pitch parameter within each predetermined time period within the predetermined time period.
  • the maximum value determining unit 463 determines the highest value of the historical first pitch parameter within each predetermined time period within the predetermined time length as the update threshold.
  • the maximum value can include the maximum and minimum values.
  • the most specific value is the maximum or minimum depending on the specific type of the first pitch parameter. For example, in the example where the first pitch parameter is the pitch angle, the most value is the minimum value; in the example where the first pitch parameter is the pitch rate, the highest value is the maximum value.
  • Mapping unit 464 maps the calculated predetermined statistical value to an updated threshold for a corresponding predetermined time period.
  • the mapping relationship between the predetermined statistical value and the updated threshold may be established by using a mathematical function relationship, a graph, a data table, or the like, which is not limited in this application.
  • the mapping relationship establishing unit 460 maps the same predetermined statistical value to the plurality. The highest value in the set formed by the update threshold of the historical first pitch parameter within a predetermined time period. That is, when the predetermined statistic value calculation unit 462 obtains a plurality of identical statistic values, the mapping relationship establishing unit 460 performs merging processing on these same statistic values such that a single statistic value corresponds to a single update threshold.
  • FIG. 5 is a graph showing a method of controlling wind turbine pitching according to an embodiment of the present application.
  • the graph depicts an embodiment in accordance with an embodiment of the present application in an extreme turbulent wind condition having an average wind speed of 19 m/s with both the pitch parameter and the second pitch parameter being pitch angles.
  • the horizontal axis in Fig. 5 represents time (s), (a) shows the change of wind speed (m/s) with time in extreme turbulent wind conditions, and (b) shows the pitch angle of wind turbine (degree) changes with time, (c) shows the maximum value (ie, minimum) of the pitch angle (degree) as a function of time, and (d) shows the wind turbine top load (kN/m) ) changes over time.
  • the solid line indicates data not using the method of controlling the wind turbine pitch according to the embodiment of the present application
  • the chain line indicates the method of controlling the wind turbine pitch according to the embodiment of the present application. The data.
  • a method of controlling wind turbine pitching according to an embodiment of the present application can be found, and the maximum value (ie, minimum value) of the pitch angle changes at each moment (refer to (c) of FIG. 5 ).
  • the method of controlling the wind turbine pitch according to the embodiment of the present application can limit such variation of the pitch angle. , to avoid the pitch angle becoming too small, so that the pitch angle does not change extremely.
  • the pitch angle obtained by the method of controlling wind turbine pitching according to an embodiment of the present application is significantly larger than the method of controlling wind turbine pitching according to an embodiment of the present application. The pitch angle obtained.
  • the top load occurs in the maximum load of 550 s to 560 s, and the implementation according to the present application
  • the method of controlling wind turbine pitching since the pitch angle does not undergo extreme operational changes, the pitching action is relatively slow, so that the load extreme value is significantly smaller in 550s to 560s than in the embodiment according to the embodiment of the present application.
  • a computer readable medium can comprise a computer program that, when executed, causes a device to perform at least a portion of the method steps described above.
  • a computer readable medium can be included in a magnetic medium, an optical medium, other medium, or a combination thereof (eg, a CD-ROM, a hard drive, a read only memory, a flash drive, etc.).
  • the computer readable medium can be an tangible and non-transitory manufactured article of manufacture.
  • the method, device and system for controlling the wind turbine pitch of the present application since it is not necessary to judge whether or not the extreme turbulence is present, the serious power loss caused by the inaccurate judgment is avoided, and the extreme turbulent wind condition is effectively avoided.
  • the problem that the limit load of the components of the wind turbine caused by the pitch is too fast is too large, and the pitch operation performed under normal turbulent wind conditions is not affected, and the development cost of the whole machine is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Evolutionary Computation (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

一种在极端湍流风况下控制风力发电机组变桨的方法和装置,该方法包括:获取当前第一变桨参数;获取之前预定时间段内的历史第二变桨参数;基于获取的历史第二变桨参数确定更新阈值;将当前第一变桨参数与确定的更新阈值进行比较;基于比较的结果更新当前第一变桨参数。

Description

在极端湍流风况下控制风力发电机组变桨的方法和装置 技术领域
本申请涉及风力发电领域,更具体地讲,涉及一种在极端湍流风况下控制风力发电机组变桨的方法和装置。
背景技术
风能作为一种清洁的可再生能源,越来越受到重视,装机量也不断增加。随着风力发电技术的不断发展,风力发电机组的各种研究也日益深入。
当风力发电机组在极端湍流风况下运行时,风力发电机组的极限载荷较大,甚至涉及风力发电机组的安全运行。因此,如何控制在极端湍流风况下的风力发电机组防止极限载荷过大是一个亟待解决的问题。
发明内容
本申请的一个方面提供一种在极端湍流风况下控制风力发电机组变桨的方法,所述方法包括:获取当前第一变桨参数;获取之前预定时间段内的历史第二变桨参数;基于获取的历史第二变桨参数确定更新阈值;将当前第一变桨参数与确定的更新阈值进行比较;基于比较的结果更新当前第一变桨参数。
本申请的另一方面提供一种在极端湍流风况下控制风力发电机组变桨的装置,所述装置包括:当前参数获取单元,获取当前第一变桨参数;历史参数获取单元,获取之前预定时间段内的历史第二变桨参数;确定单元,基于获取的历史第二变桨参数确定更新阈值;比较单元,将当前第一变桨参数与确定的更新阈值进行比较;更新单元,基于比较的结果更新当前第一变桨参数。
本申请的另一方面提供一种在极端湍流风况下控制风力发电机组变桨的系统,所述系统包括:处理器;存储器,存储有计算机程序,当所述计算机程序被处理器执行时,执行实现上面所述的方法。
本申请的另一方面提供一种存储有计算机程序的计算机可读存储介质, 当所述计算机程序被执行时实现上面所述的方法。
根据本申请的控制风力发电机组变桨的方法、装置和系统,由于不需要对是否处于极端湍流进行判断,因此避免了因判断不准确造成的严重功率损失,并且有效避免在极端湍流风况下变桨执行过快导致的风力发电机组的部件的极限载荷过大的问题,同时不会影响在正常湍流风况下执行的变桨操作,降低了整机开发成本。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍:
图1是示出根据本申请的实施例的控制风力发电机组变桨的方法的流程图;
图2是示出根据本申请的实施例的基于获取的历史变桨参数确定更新阈值的方法的流程图;
图3是示出根据本申请的实施例的建立预先确定的映射关系的方法的流程图;
图4是示出根据本申请的实施例的控制风力发电机组变桨的装置的框图;
图5是示出根据本申请的实施例的控制风力发电机组变桨的方法的曲线图。
具体实施方式
现在,将参照附图更充分地描述不同的示例实施例。
应理解的是,本申请实施例中提及的极端湍流风况以及正常湍流风况均指IEC标准中定义的风况。
图1是示出根据本申请的实施例的控制风力发电机组变桨的方法的流程图。
在步骤S110中,获取当前第一变桨参数。
在步骤S120中,获取之前预定时间段内的历史第二变桨参数。
变桨参数(第一变桨参数和第二变桨参数)包括桨距角、变桨速率等。风力发电机组的变桨控制系统实时地基于外界风速、风向等信息产生用于控制变桨系统执行接下来的变桨操作的变桨参数。
之前预定时间段内的历史第二变桨参数可表示产生当前第一变桨参数的时刻或执行步骤S110的时刻之前的一段时间内产生的第二变桨参数。例如,之前预定时间段内的历史第二变桨参数可以是当前时刻之前的1分钟的时间(即,长度为1分钟的预定时间段)内的历史第二变桨参数,或者可以是当前时刻之前的10分钟的时间(即,长度为10分钟的预定时间段)内的历史第二变桨参数。预定时间段的长度可根据风力发电机组的机型、实际风况或者根据工程经验而确定。此外,在变桨参数的产生被周期性执行的情况下,之前预定时间段内的历史第二变桨参数可也表示在产生当前第一变桨参数之前产生的预定数量的第二变桨参数。
在一些实施例中,第一变桨参数和第二变桨参数是不同类型的变桨参数,都可用于实现对风力发电机组的桨叶(叶片)的控制。在另一些实施例中,第一变桨参数和第二变桨参数是相同类型的变桨参数。
在步骤S130中,基于获取的历史第二变桨参数确定更新阈值。
下面,将参照图2详细描述基于获取的历史第二变桨参数确定更新阈值的另一方法。
图2是示出根据本申请的实施例的基于获取的历史变桨参数确定更新阈值的方法的流程图。
在步骤S210中,计算获取的历史第二变桨参数的预定统计值。
预定统计值可以是统计学上用于反映历史变桨参数的总体状况的统计值。例如,预定统计值可以是预定时间段内的历史变桨参数的平均值、中位数等。
在步骤S220中,基于预先确定的映射关系,确定与计算的预定统计值对应的更新阈值。
该映射关系体现第二变桨参数的预定统计值与更新阈值之间的映射。该更新阈值用于限定第一变桨参数的大小。该映射的形式可以是数学函数关系、曲线图、数据表格等任何可以表征预定统计值与更新阈值之间的映射的形式,并且本申请对该映射的形式不进行限制。
返回参照图1,在步骤S140中,将当前第一变桨参数与确定的更新阈值进行比较。
在步骤S150中,基于比较的结果更新当前第一变桨参数。
在一些实施例中,步骤S150执行的具体细节与第一变桨参数和第二变桨 参数的类型有关。
在第一变桨参数为桨距角、第二变桨参数是变桨速率或者在第一变桨参数和第二变桨参数同为变桨速率的示例中,如果当前第一变桨参数大于或等于更新阈值(例如,在极端湍流风况下),则不更新当前第一变桨参数,如果当前第一变桨参数小于更新阈值,则更新当前第一变桨参数等于更新阈值。
在第一变桨参数为变桨速率、第二变桨参数是桨距角或者在第一变桨参数和第二变桨参数同为桨距角的示例中,如果当前第一变桨参数小于或等于更新阈值(例如,在极端湍流风况下),则不更新当前第一变桨参数,如果当前第一变桨参数大于阈值,则更新当前第一变桨参数等于更新阈值。
通过根据正常湍流风况下的变桨参数数据对在极端湍流风况导致的过小的桨距角或者对过大的变桨速率进行限制,有效避免在极端湍流风况下变桨执行过快导致的风力发电机组的部件的极限载荷过大的问题;此外,由于对不是过小的桨距角或者不是过大的变桨速率不进行限制,因此不会影响在正常湍流风况下执行的变桨操作。
下面,将参照图3详细描述建立预先确定的映射关系的一个方法。
图3是示出根据本申请的实施例的建立预先确定的映射关系的方法的流程图。
在步骤S310中,获取正常湍流风况下的预定时间长度的历史第一变桨参数和历史第二变桨参数。
预定时间长度可比参照图1描述的预定时间段的长度长。例如,当参照图1描述的预定时间段为1分钟时,预定时间长度可以是1天。预定时间长度越长,获取的数据量越丰富,根据图3描述的方法确定的映射关系就越准确。
在步骤S320中,计算预定时间长度内的每个预定时间段内的历史第二变桨参数的预定统计值。
应该理解的是,步骤S120中的预定统计值与参照图2描述的预定统计值在类型上是相同的。例如,当参照图1描述的预定统计值为平均值时,步骤S320中描述的预定统计值也为平均值。
在步骤S330中,确定预定时间长度内的每个预定时间段内的历史第一变桨参数的最值作为更新阈值。
在参照图3描述的建立预先确定的映射关系的方法中,除了需要在步骤 S320中确定预定时间长度内的每个预定时间段内的历史第一变桨参数的预定统计值之外,还需要确定预定时间长度内的每个预定时间段内的历史第二变桨参数的更新阈值。这里,将历史变桨参数的最值作为更新阈值。
最值可包括最大值和最小值。最值具体是最大值还是最小值取决于第一变桨参数的具体类型。例如,当第一变桨参数是桨距角时,最值是最小值;当第一变桨参数是变桨速率时,最值是最大值。
在步骤S340中,将计算的预定统计值映射到对应的预定时间段的更新阈值。
如参照图2所描述的,可使用数学函数关系、曲线图、数据表格等形式或方法来建立预定统计值和更新阈值之间的映射关系,本申请对此不进行限定。
在一些实施例中,当预定时间长度内的多个预定时间段内的历史第二变桨参数的预定统计值为同一预定统计值时,步骤S340还包括:将该同一预定统计值映射到多个预定时间段内的历史第一变桨参数的更新阈值形成的集合中的最值。也就是说,当在步骤S330中得到多个相同的统计值时,对这些相同的统计值进行合并处理,从而使得单个统计值对应单个更新阈值。
下面给出在第一变桨参数和第二变桨参数均为桨距角的情况下,将该同一预定统计值映射到多个预定时间段内的历史第二变桨参数的更新阈值形成的集合中的最值的一个示例。针对各个预定时间段计算出预定统计值和更新阈值之后形成的数据如下面的表1所示。
【表1】
Figure PCTCN2018082372-appb-000001
在表1中可以看出,在经历步骤S320和S330之后,存在相同的统计值,诸如,存在4个大小同为10的预定统计值,存在3个大小同为11的预定统计值。
4个大小同为10的预定统计值具有大小分别为9.9、9.6、9.8、9.6的更 新阈值的集合。在第一变桨参数和第二变桨参数均为桨距角的情况下,该集合的最值应当取最小值9.6。因此,将建立将该同一预定统计值(即,10度)映射到所述多个预定时间段内的历史的变桨参数的更新阈值形成的集合中的最值(即,9.6)。通过对3个大小同为11的预定统计值进行同样的处理,可将表1的映射关系转换为下面的表2的映射关系。
【表2】
Figure PCTCN2018082372-appb-000002
下面,以第一变桨参数为变桨速率,第二变桨参数为桨距角为例,介绍根据本申请的在极端湍流风况下控制风力发电机组变桨的方法的一个示例。
首先,建立正常湍流风况下运行的桨距角(第二变桨参数)与变桨速率(第一变桨参数)的关系,以保证在正常湍流风况中变桨速率不会被限制,而在极端湍流风况中变桨速率受到限制,从而避免执行变桨操作过快导致的载荷过大的问题。
例如,根据转速或风速信号在预定时间长度(例如,10小时或一个星期)里的标准差判断为正常湍流风后,计算每个预定时间段(例如,1分钟或1个小时)里的桨距角平均值及对应的预定时间段的变桨速率的最大值,用统计或其他方法找出平均值与最大值之间的关系,作为桨距角与变桨速率的最大值之间的关系。
然后,将风机运行时在预定时间段里的桨距角平均值作为输入,并通过该关系,得出当前变桨速率的最大值,限制变桨速率突然变得过大(即,大于该最大值),从而降低极端风速的载荷。
图4是示出根据本申请的实施例的在极端湍流风况下控制风力发电机组变桨的装置800的框图。
控制风力发电机组变桨的装置400包括:当前参数获取单元410、历史参数获取单元420、确定单元430、比较单元440和更新单元450。
当前参数获取单元410获取当前第一变桨参数。
历史参数获取单元420获取之前预定时间段内的历史第二变桨参数。
在一个实施例中,第一变桨参数和第二变桨参数是不同类型的变桨参数,都可用于实现对风力发电机组的桨叶(叶片)的控制。在另一实施例中,第 一变桨参数和第二变桨参数是相同类型的变桨参数。
确定单元430基于获取的历史第二变桨参数确定更新阈值。
确定单元430包括统计值计算单元431和更新阈值确定单元432。统计值计算单元431计算获取的历史第二变桨参数的预定统计值。预定统计值可以是统计学上用于反映历史变桨参数的总体状况的统计值。例如,预定统计值可以是预定时间段内的历史变桨参数的平均值、中位数等。
更新阈值确定单元432基于预先确定的映射关系,确定与计算的预定统计值对应的更新阈值。该映射关系体现第二变桨参数的预定统计值与更新阈值之间的映射。该更新阈值用于限定第一变桨参数的大小。该映射的形式可以是数学函数关系、曲线图、数据表格等任何可以表征预定统计值与更新阈值之间的映射的形式,并且本申请对该映射的形式不进行限制。
比较单元440将当前第一变桨参数与确定的更新阈值进行比较。
更新单元450基于比较的结果更新当前第一变桨参数。
这里,更新单元450执行的具体细节与第一变桨参数和第二变桨参数的类型有关。
在第一变桨参数为桨距角、第二变桨参数是变桨速率或者在第一变桨参数和第二变桨参数同为变桨速率的示例中,如果当前变桨参数大于或等于更新阈值,则更新单元450不更新当前变桨参数,如果当前变桨参数小于更新阈值,则更新单元450更新当前变桨参数等于更新阈值。
在第一变桨参数为变桨速率、第二变桨参数是桨距角或者在第一变桨参数和第二变桨参数同为桨距角的示例中,如果当前变桨参数小于或等于更新阈值,则更新单元450不更新当前变桨参数,如果当前变桨参数大于阈值,则更新单元450更新当前变桨参数等于更新阈值。
通过根据正常湍流风况下的变桨参数数据对过小的桨距角或者对过大的变桨速率进行限制,有效避免在极端湍流风况下变桨执行过快导致的风力发电机组的部件的极限载荷过大的问题;此外,由于对不是过小的桨距角或者不是过大的变桨速率不进行限制,因此不会影响在正常湍流风况下执行的变桨操作。
在一些实施例中,控制风力发电机组变桨的装置400还包括映射关系建立单元460。
映射关系建立单元460建立预先确定的映射关系。
映射关系建立单元460包括:历史变桨参数获取单元461、预定统计值计算单元462、最值确定单元463和映射单元464。
历史变桨参数获取单元461获取正常湍流风况下的预定时间长度的历史第一变桨参数和历史第二变桨参数。
预定统计值计算单元462计算预定时间长度内的每个预定时间段内的历史第二变桨参数的预定统计值。
最值确定单元463确定预定时间长度内的每个预定时间段内的历史第一变桨参数的最值作为更新阈值。
最值可包括最大值和最小值。最值具体是最大值还是最小值取决于第一变桨参数的具体类型。例如,在第一变桨参数是桨距角的示例中,最值是最小值;在第一变桨参数是变桨速率的示例中,最值是最大值。
映射单元464将计算的预定统计值映射到对应的预定时间段的更新阈值。
可使用数学函数关系、曲线图、数据表格等形式或方法来建立预定统计值和更新阈值之间的映射关系,本申请对此不进行限定。
在一些实施例中,当预定时间长度内的多个预定时间段内的历史第二变桨参数的预定统计值为同一预定统计值时,映射关系建立单元460将该同一预定统计值映射到多个预定时间段内的历史第一变桨参数的更新阈值形成的集合中的最值。也就是说,当预定统计值计算单元462得到多个相同的统计值时,映射关系建立单元460对这些相同的统计值进行合并处理,从而使得单个统计值对应单个更新阈值。
下面,将参照图5描述控制风力发电机组变桨的方法的效果。
图5是示出根据本申请的实施例的控制风力发电机组变桨的方法的曲线图。
参照图5,该曲线图描述了在第一变桨参数和第二变桨参数均为桨距角的情况下,在平均风速为19m/s的极端湍流风况中根据本申请的实施例的控制风力发电机组变桨的时序仿真结果。其中,图5中的横轴均表示时间(s),(a)示出了极端湍流风况下风速(m/s)随时间的变化,(b)示出了风力发电机组的桨距角(度)随时间的变化,(c)示出了桨距角的最值(即,最小值)(度)随时间的变化,(d)示出了风力发电机组塔顶载荷(kN/m)随时间的变化。此外,在图5中,实线表示未采用根据本申请的实施例的控制风力发电机组变桨的方法的数据,点划线表示采用根据本申请的实施例的控制 风力发电机组变桨的方法的数据。
如图所示,可发现根据本申请的实施例的控制风力发电机组变桨的方法,桨距角的最值(即,最小值)在每个时刻均有变化(参照图5的(c))。在图5的(b)中,当根据传统方法获得的桨距角的变得过小时,根据本申请的实施例的控制风力发电机组变桨的方法可对桨距角的这种变化进行限制,避免桨距角变得过小,从而使桨距角不会出现极端变化。例如,在时间为540s至546s的区间,根据本申请的实施例的控制风力发电机组变桨的方法获得的桨距角明显大于未采用根据本申请的实施例的控制风力发电机组变桨的方法获得的桨距角。从图5的(d)可以看出,在未采用根据本申请的实施例的控制风力发电机组变桨的方法中,塔顶载荷在550s~560s中出现最大极限载荷,而根据本申请的实施例的控制风力发电机组变桨的方法,由于桨距角不会出现极端运行变化,因此变桨动作相对缓慢,使得在550s~560s中载荷极值明显小于未采用根据本申请的实施例的控制风力发电机组变桨的方法的情况。
在一些实施例中,计算机可读介质可包括在执行时使得装置执行上述方法步骤的至少一部分的计算机程序。在一些实施例中,计算机可读介质可被包括在磁介质、光介质、其他介质或它们的组合(例如,CD-ROM、硬盘驱动器、只读存储器、闪存驱动器等)中。在这样的实施例中,计算机可读介质可以是可触知和非暂时实现的制造品。
根据本申请的控制风力发电机组变桨的方法、装置和系统,由于不需要对是否处于极端湍流进行判断,因此避免了因判断不准确造成的严重功率损失,并且有效避免在极端湍流风况下变桨执行过快导致的风力发电机组的部件的极限载荷过大的问题,同时不会影响在正常湍流风况下执行的变桨操作,降低了整机开发成本。

Claims (18)

  1. 一种在极端湍流风况下控制风力发电机组变桨的方法,其特征在于,所述方法包括:
    获取当前第一变桨参数;
    获取之前预定时间段内的历史第二变桨参数;
    基于获取的历史第二变桨参数确定更新阈值;
    将当前第一变桨参数与确定的更新阈值进行比较;
    基于比较的结果更新当前第一变桨参数。
  2. 如权利要求1所述的方法,其特征在于,确定更新阈值的步骤包括:
    计算获取的历史第二变桨参数的预定统计值;
    基于预先确定的映射关系,确定与计算的预定统计值对应的更新阈值,其中,所述映射关系体现第二变桨参数的预定统计值与更新阈值之间的映射。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    建立所述映射关系,
    其中,建立所述映射关系的步骤包括:
    获取正常湍流风况下的预定时间长度的历史第一变桨参数和历史第二变桨参数;
    计算预定时间长度内的每个预定时间段内的历史第二变桨参数的预定统计值;
    确定预定时间长度内的每个预定时间段内的历史第一变桨参数的最值作为更新阈值;
    将计算的预定统计值映射到对应的预定时间段的更新阈值。
  4. 如权利要求3所述的方法,其特征在于,当预定时间长度内的多个预定时间段内的历史第二变桨参数的预定统计值为同一预定统计值时,将所述同一预定统计值映射到所述多个预定时间段内的历史第一变桨参数的更新阈值形成的集合中的最值。
  5. 如权利要求3和4中的任意一项所述的方法,其特征在于,第一变桨参数为桨距角,最值为最小值;或者,第一变桨参数为变桨速率,最值为最大值。
  6. 如权利要求2至4中的任意一项所述的方法,其特征在于,统计值为 平均值。
  7. 如权利要求1所述的方法,其特征在于,第一变桨参数为桨距角,第二变桨参数是变桨速率,基于比较的结果更新当前第一变桨参数的步骤包括:如果当前第一变桨参数大于或等于更新阈值,则不更新当前第一变桨参数,如果当前第一变桨参数小于更新阈值,则更新当前第一变桨参数等于更新阈值;或者,
    第一变桨参数为变桨速率,第二变桨参数是桨距角,基于比较的结果更新当前第一变桨参数的步骤包括:如果当前第一变桨参数小于或等于更新阈值,则不更新当前第一变桨参数,如果当前第一变桨参数大于阈值,则更新当前第一变桨参数等于更新阈值。
  8. 如权利要求1所述的方法,其特征在于,第一变桨参数的类型与第二变桨参数的类型相同或不同。
  9. 一种在极端湍流风况下控制风力发电机组变桨的装置,其特征在于,所述装置包括:
    当前参数获取单元,获取当前第一变桨参数;
    历史参数获取单元,获取之前预定时间段内的历史第二变桨参数;
    确定单元,基于获取的历史第二变桨参数确定更新阈值;
    比较单元,将当前第一变桨参数与确定的更新阈值进行比较;
    更新单元,基于比较的结果更新当前第一变桨参数。
  10. 如权利要求9所述的装置,其特征在于,确定单元包括:
    统计值计算单元,计算获取的历史第二变桨参数的预定统计值;
    更新阈值确定单元,基于预先确定的映射关系,确定与计算的预定统计值对应的更新阈值,其中,所述映射关系体现第二变桨参数的预定统计值与更新阈值之间的映射。
  11. 如权利要求10所述的装置,其特征在于,所述装置还包括:
    映射关系建立单元,建立所述映射关系,
    其中,映射关系建立单元包括:
    历史变桨参数获取单元,获取正常湍流风况下的预定时间长度的历史第一变桨参数和历史第二变桨参数;
    预定统计值计算单元,计算预定时间长度内的每个预定时间段内的历史第二变桨参数的预定统计值;
    最值确定单元,确定预定时间长度内的每个预定时间段内的历史第一变桨参数的最值作为更新阈值;
    映射单元,将计算的预定统计值映射到对应的预定时间段的更新阈值。
  12. 如权利要求11所述的装置,其特征在于,当预定时间长度内的多个预定时间段内的历史第二变桨参数的预定统计值为同一预定统计值时,将所述同一预定统计值映射到所述多个预定时间段内的历史第一变桨参数的更新阈值形成的集合中的最值。
  13. 如权利要求11和12中的任意一项所述的装置,其特征在于,第一变桨参数为桨距角,最值为最小值;或者,第一变桨参数为变桨速率,最值为最大值。
  14. 如权利要求10至12中的任意一项所述的装置,其特征在于,统计值为平均值。
  15. 如权利要求9所述的装置,其特征在于,第一变桨参数为桨距角,第二变桨参数是变桨速率,如果当前第一变桨参数大于或等于更新阈值,则更新单元不更新当前第一变桨参数,如果当前第一变桨参数小于更新阈值,则更新单元更新当前第一变桨参数等于更新阈值;或者,
    第一变桨参数为变桨速率,第二变桨参数是桨距角,如果当前第一变桨参数小于或等于更新阈值,则更新单元不更新当前第一变桨参数,如果当前第一变桨参数大于阈值,则更新单元更新当前第一变桨参数等于更新阈值。
  16. 如权利要求9所述的装置,其特征在于,第一变桨参数的类型与第二变桨参数的类型相同或不同。
  17. 一种在极端湍流风况下控制风力发电机组变桨的系统,所述系统包括:
    处理器;
    存储器,存储有计算机程序,当所述计算机程序被处理器执行时,执行实现权利要求1至8中的任意一项所述的方法。
  18. 一种存储有计算机程序的计算机可读存储介质,当所述计算机程序被执行时实现权利要求1至8中的任意一项所述的方法。
PCT/CN2018/082372 2017-12-28 2018-04-09 在极端湍流风况下控制风力发电机组变桨的方法和装置 WO2019127975A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES18782868T ES2885248T3 (es) 2017-12-28 2018-04-09 Método y aparato para controlar el paso variable de un conjunto generador eólico en condiciones de viento de turbulencia extrema
US16/090,173 US11208984B2 (en) 2017-12-28 2018-04-09 Method and apparatus for controlling pitch of wind turbine in extreme turbulence wind conditions
AU2018241181A AU2018241181B2 (en) 2017-12-28 2018-04-09 Method and apparatus for controlling pitch of wind turbine in extreme turbulence wind conditions
EP18782868.6A EP3524810B1 (en) 2017-12-28 2018-04-09 Method and apparatus for controlling variable pitch of wind-driven generator set under extreme turbulent wind conditions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711457552.5A CN109973301B (zh) 2017-12-28 2017-12-28 在极端湍流风况下控制风力发电机组变桨的方法和装置
CN201711457552.5 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019127975A1 true WO2019127975A1 (zh) 2019-07-04

Family

ID=65529216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082372 WO2019127975A1 (zh) 2017-12-28 2018-04-09 在极端湍流风况下控制风力发电机组变桨的方法和装置

Country Status (6)

Country Link
US (1) US11208984B2 (zh)
EP (1) EP3524810B1 (zh)
CN (1) CN109973301B (zh)
AU (1) AU2018241181B2 (zh)
ES (1) ES2885248T3 (zh)
WO (1) WO2019127975A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109973301A (zh) * 2017-12-28 2019-07-05 新疆金风科技股份有限公司 在极端湍流风况下控制风力发电机组变桨的方法和装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110700995B (zh) * 2019-10-16 2021-03-02 三一重能股份有限公司 风力发电机组控制方法、装置、存储介质及主控系统
CN113391575A (zh) * 2020-03-13 2021-09-14 新疆金风科技股份有限公司 风力发电机组的变桨执行机构在线状态辨识方法及装置
CN113740931B (zh) * 2020-05-29 2023-12-22 金风科技股份有限公司 风力发电机组的阵风检测方法及装置
US11313354B2 (en) 2020-06-17 2022-04-26 General Electric Company System and method for protecting a wind turbine from overloading due to pitch system fault
CN112594128B (zh) * 2020-12-14 2022-03-01 山东中车风电有限公司 风力发电机组电网缺相故障中变桨系统保护系统及方法
CN112523944B (zh) * 2020-12-29 2022-02-11 重庆邮电大学 一种风力发电机变桨系统自适应动态面控制方法
CN113960384B (zh) * 2021-09-16 2024-04-19 佛山市顺德区美的电子科技有限公司 一种缺相检测方法、装置、存储介质及家用设备
CN117948233A (zh) * 2024-03-27 2024-04-30 昆明理工大学 一种高原山地风电机组参与电网调频的桨叶载荷确定方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104573A2 (en) * 2002-06-06 2003-12-18 Elliott Bayly Wind energy conversion device
US20100241280A1 (en) * 2009-03-23 2010-09-23 Acciona Windpower, S.A. Wind turbine control
CN102168650A (zh) * 2011-05-26 2011-08-31 连云港杰瑞电子有限公司 基于主控的兆瓦级风力机统一和独立变桨混合控制方法
CN103410660A (zh) * 2013-05-14 2013-11-27 湖南工业大学 基于支持向量机的风力发电变桨距自学习控制方法
CN105649876A (zh) * 2015-12-31 2016-06-08 北京金风科创风电设备有限公司 风力发电机组的控制方法和装置
CN105756854A (zh) * 2016-03-03 2016-07-13 北京金风科创风电设备有限公司 风力发电机组的变桨控制方法、装置及系统
CN106121914A (zh) * 2016-08-26 2016-11-16 三重型能源装备有限公司 极端状态下风机的停机方法和系统
EP2915998B1 (de) * 2014-03-05 2018-02-28 Nordex Energy GmbH Verfahren zum Betrieb einer Windenergieanlage

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339666A (en) * 1980-12-24 1982-07-13 United Technologies Corporation Blade pitch angle control for a wind turbine generator
EP1230479B1 (en) * 1999-11-03 2004-09-01 Vestas Wind Systems A/S Method of controlling the operation of a wind turbine and wind turbine for use in said method
US7121795B2 (en) 2004-06-30 2006-10-17 General Electric Company Method and apparatus for reducing rotor blade deflections, loads, and/or peak rotational speed
US7351033B2 (en) 2005-09-09 2008-04-01 Mcnerney Gerald Wind turbine load control method
US8174136B2 (en) * 2006-04-26 2012-05-08 Alliance For Sustainable Energy, Llc Adaptive pitch control for variable speed wind turbines
US7560823B2 (en) * 2006-06-30 2009-07-14 General Electric Company Wind energy system and method of operation thereof
EP2162620B1 (en) * 2007-04-30 2014-04-02 Vestas Wind Systems A/S A method of operating a wind turbine and a wind turbine
DK2386751T3 (en) * 2010-05-12 2016-11-28 Siemens Ag Windmill
DK177434B1 (en) * 2010-06-18 2013-05-21 Vestas Wind Sys As Method for controlling a wind turbine
CN103150473A (zh) * 2013-03-01 2013-06-12 风脉(武汉)可再生能源技术有限责任公司 一种风电机组发电效率实时监控诊断方法及装置
CN103401273B (zh) * 2013-08-01 2015-11-18 宁夏回族自治区电力设计院 风电场变桨距型风机功率优化分配方法
US10273940B2 (en) * 2016-05-12 2019-04-30 General Electric Company System and method for detecting pitch bearing damage in a wind turbine
CN109973301B (zh) * 2017-12-28 2020-07-24 新疆金风科技股份有限公司 在极端湍流风况下控制风力发电机组变桨的方法和装置
US10605228B2 (en) * 2018-08-20 2020-03-31 General Electric Company Method for controlling operation of a wind turbine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104573A2 (en) * 2002-06-06 2003-12-18 Elliott Bayly Wind energy conversion device
US20100241280A1 (en) * 2009-03-23 2010-09-23 Acciona Windpower, S.A. Wind turbine control
CN102168650A (zh) * 2011-05-26 2011-08-31 连云港杰瑞电子有限公司 基于主控的兆瓦级风力机统一和独立变桨混合控制方法
CN103410660A (zh) * 2013-05-14 2013-11-27 湖南工业大学 基于支持向量机的风力发电变桨距自学习控制方法
EP2915998B1 (de) * 2014-03-05 2018-02-28 Nordex Energy GmbH Verfahren zum Betrieb einer Windenergieanlage
CN105649876A (zh) * 2015-12-31 2016-06-08 北京金风科创风电设备有限公司 风力发电机组的控制方法和装置
CN105756854A (zh) * 2016-03-03 2016-07-13 北京金风科创风电设备有限公司 风力发电机组的变桨控制方法、装置及系统
CN106121914A (zh) * 2016-08-26 2016-11-16 三重型能源装备有限公司 极端状态下风机的停机方法和系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109973301A (zh) * 2017-12-28 2019-07-05 新疆金风科技股份有限公司 在极端湍流风况下控制风力发电机组变桨的方法和装置
CN109973301B (zh) * 2017-12-28 2020-07-24 新疆金风科技股份有限公司 在极端湍流风况下控制风力发电机组变桨的方法和装置
US11208984B2 (en) 2017-12-28 2021-12-28 Xinjiang Gold Wind Science & Technology Co., Ltd. Method and apparatus for controlling pitch of wind turbine in extreme turbulence wind conditions

Also Published As

Publication number Publication date
EP3524810A1 (en) 2019-08-14
US20210199087A1 (en) 2021-07-01
AU2018241181A1 (en) 2019-07-18
ES2885248T3 (es) 2021-12-13
CN109973301A (zh) 2019-07-05
AU2018241181B2 (en) 2019-10-03
EP3524810B1 (en) 2021-05-26
CN109973301B (zh) 2020-07-24
US11208984B2 (en) 2021-12-28
EP3524810A4 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
WO2019127975A1 (zh) 在极端湍流风况下控制风力发电机组变桨的方法和装置
US20170022974A1 (en) Operating wind turbines
JP7194868B1 (ja) 風に対するヨーの異常を検出するための方法および装置、並びにそれらのデバイスおよび記憶媒体
US9822764B2 (en) System for automatic power estimation adjustment
WO2022048228A1 (zh) 风电机组的载荷控制方法和装置
WO2023092783A1 (zh) 一种可抑制多扰动因素的风机模糊自适应变桨距控制方法
CN109558968B (zh) 风电场出力相关性分析方法及装置
CN109723609A (zh) 一种风电机组变桨系统的故障预警方法及系统
CN108204342B (zh) 风力发电机的叶片结冰识别方法和装置
WO2016197621A1 (zh) 一种调整服务器的频率的方法及装置
CN114444291B (zh) 一种风机发电量损失精细化测算方法、系统、设备和介质
KR101556229B1 (ko) 풍력발전단지 출력 제어 방법
CN114396385A (zh) 一种基于泵站运行的调度控制方法
CN109931230B (zh) 检测风力发电机组的有功功率的方法和设备
CN109751195B (zh) 一种风力发电机功率曲线的获取方法及装置
CN116663935B (zh) 风力机发电量计算方法、装置、计算机设备及存储介质
CN113468767B (zh) 一种海上风电机组发电量评估方法与系统
CN115076020B (zh) 变速抽水蓄能机组水泵工况的寻优方法、装置及设备
CN111120221A (zh) 风力发电机组的发电性能评估的方法及设备
CN109409783A (zh) 确定风电机组限功率数据的方法、装置、设备及存储介质
CN115271287A (zh) 一种增发电量的确定方法、装置、设备及存储介质
CN115653847A (zh) 风电机组偏航检测方法、装置、存储介质及电子设备
CN114673638A (zh) 一种风力发电机叶片覆冰监测方法及装置
CN117948233A (zh) 一种高原山地风电机组参与电网调频的桨叶载荷确定方法
CN109944740A (zh) 风电场场群控制方法和设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018782868

Country of ref document: EP

Effective date: 20181025

WWE Wipo information: entry into national phase

Ref document number: 2018782868

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018782868

Country of ref document: EP

Effective date: 20181121

ENP Entry into the national phase

Ref document number: 2018782868

Country of ref document: EP

Effective date: 20181121

ENP Entry into the national phase

Ref document number: 2018241181

Country of ref document: AU

Date of ref document: 20180409

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18782868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE