WO2019165684A1 - 一种扩展相位阵列天线偏转角度的天线罩 - Google Patents

一种扩展相位阵列天线偏转角度的天线罩 Download PDF

Info

Publication number
WO2019165684A1
WO2019165684A1 PCT/CN2018/082966 CN2018082966W WO2019165684A1 WO 2019165684 A1 WO2019165684 A1 WO 2019165684A1 CN 2018082966 W CN2018082966 W CN 2018082966W WO 2019165684 A1 WO2019165684 A1 WO 2019165684A1
Authority
WO
WIPO (PCT)
Prior art keywords
super
radome
phase
array antenna
deflection angle
Prior art date
Application number
PCT/CN2018/082966
Other languages
English (en)
French (fr)
Inventor
何赛灵
刘一超
Original Assignee
常熟市浙大紫金光电技术研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常熟市浙大紫金光电技术研究中心 filed Critical 常熟市浙大紫金光电技术研究中心
Publication of WO2019165684A1 publication Critical patent/WO2019165684A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/422Housings not intimately mechanically associated with radiating elements, e.g. radome comprising two or more layers of dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism

Definitions

  • the present invention belongs to the field of optics, and more particularly to a casket composed of a cascaded (including curved surface) super-surface structure for extending the deflection angle of a phased array antenna.
  • the phased array antenna Due to its good directivity, the phased array antenna is widely used in radar systems, wireless communications and satellite broadcasting.
  • the deflection angle of the phased array antenna is generally limited to the range of -60 to 60 degrees, so it is important to further increase the deflection angle to -90 to 90 degrees.
  • the advantage of this method is that the range of scanning angle can be greatly increased, and the requirement of -90 to 90 can be satisfied.
  • the disadvantage is that the design is complex, requires a time-consuming optimization process, and the material needs a negative refractive index material, the loss is large and the processing is inconvenient, which limits its practical application.
  • Transforming optical method The advantage of this method is that the relationship between the angle of deflection and the material parameters can be precisely designed. The disadvantage is that the material parameters are complex (non-uniform and anisotropic) and difficult to process.
  • IV Optical surface conversion method. This is an improved version of the transforming optical method.
  • the two layers of isotropic natural materials are used to form a pre-set layered structure to meet the high anisotropic material parameter requirements after transformation.
  • the advantage is that the material parameters are greatly simplified, so that the processing is changed. It's easy.
  • all of the above methods are "position-based" ideas. In terms of geometric optics, that is, the declination depends only on the position where the light hits the radome. When a wide beam hits the radome, it is different. The position will cause the beams to have different deflection angles so that the beam will diverge back through the radome. This location-based approach therefore reduces the directivity of the antenna.
  • a further disadvantage of the above method is that they are all three-dimensional body structures, which results in a thick radome and costly material.
  • the present invention uses a "direction-based" radome, the angle of deflection of the beam after passing through the radome depends only on the angle of incidence, independent of the incident position. This method does not reduce the directivity of the antenna. Moreover, the present invention uses a cascaded super-surface structure which, due to its two-dimensional surface structure, makes the radome lightweight and saves material.
  • the invention expands the scanning angle without reducing the directivity of the antenna, and provides a radome for optimizing the spatial phase of the extended phase array antenna deflection angle.
  • the invention provides a radome for extending the deflection angle of a phase array antenna, which is formed by cascading two or more super surfaces, and the phase distribution of each super surface is obtained by calculation, and then further optimized by numerical optimization. Phase distribution.
  • the following steps are elaborated by cascading two super-surfaces (the first one is the plane and the second is the curved surface), and the goal is to extend the angle of -60 to 60 degrees to -90 to 90 degrees:
  • the invention provides a radome that expands the deflection angle of the phase array antenna, which is formed by cascading two or more super surfaces, and calculates the spatial phase distribution of each super-surface according to the requirements of the angular deflection and the requirements of the parallel rays.
  • the method further includes global optimization with a minimum deflection angle deviation as an objective function to obtain a phase optimal distribution.
  • the super-surface structure is planar or curved.
  • the deflection angle of the phased array antenna is extended to 90 degrees.
  • trajectory of the super-surface center ray of the previous stage is used to calculate the phase compensation distribution of the second super-surface (curved surface structure).
  • R is the radius of the radome
  • is the wavelength
  • is the incident angle
  • ⁇ 2 ( ⁇ ) is the phase of the incident position corresponding to the central ray when the incident angle is ⁇ ;
  • step of optimizing the phase distribution of the super-surface of the planar structure is performed to obtain the phase distribution of the first super-surface:
  • is half the length of the super surface, x corresponding to the incident position, ⁇ is the wavelength, n is the number of coefficients optimized, a n is a coefficient to be optimized;
  • the objective function is the difference between the exit angle of the design and the actual exit angle:
  • the ⁇ target is a preset extended angle, and ⁇ can be actually calculated by the above two formulas, and optimized by an optimization algorithm to obtain a coefficient distribution a n .
  • the invention provides a radome for extending the deflection angle of a phase array antenna, comprising three planar super-surface cascading radomes, the first super-surface focusing the parallel light on the focal plane, ie the second super-surface position, The second supersurface deflects the beam so that the center beam is incident perpendicularly onto the third supersurface, making the energy more concentrated, and the third supersurface focal plane is also on the second supersurface, making the divergent rays It becomes parallel light, the phase distribution map of three super surfaces, and the corresponding formula is:
  • f 1 is the focal length of the first super surface and the second super surface
  • f 2 is the focal length of the third super surface
  • ⁇ 0 is an arbitrary value
  • the invention provides a radome for extending the deflection angle of a phase array antenna, and a radome composed of two planar super-surfaces, the first super-surface is a convex lens, the second super-surface is a concave lens, and the two super-surface phases are Distribution:
  • f 1 and f 2 are the focal lengths of the first super-surface and the second super-surface, respectively.
  • the present invention effectively solves the contradiction of increasing the deflection angle of the phase array antenna without reducing its directivity.
  • the present invention can solve this contradiction is that the multi-layer super-surface is used, and the final beam exit direction is not only related to the first incident position, but also related to the subsequent incident position, and these related quantities are rationally designed. Together, they cancel each other out and eventually become irrelevant to the position.
  • the radome of the present invention is simple in fabrication, small in material quality, thin in thickness, and saves space and materials.
  • the manufacturing process is a mature circuit board etching technology that can be mass-produced.
  • the space between the super surfaces can completely put some other things, saving space, as long as it does not affect the propagation of the beam.
  • the invention uses two or more layers of two-dimensional structure, can be attached to the surface of the structure, is convenient for integration, and has a wide application range.
  • a radome made of a flexible circuit board can be attached to the surface of the antenna and integrated perfectly with the entire antenna or radar system.
  • Figure 1 is a schematic diagram of the method of the invention.
  • Figure 2 is a schematic diagram of an embodiment.
  • Figure 3 is a super surface phase distribution diagram of the embodiment.
  • Figure 4 is a simulation diagram of an embodiment.
  • Fig. 5 is a view showing the direction of the second embodiment.
  • Figure 6 is a schematic diagram of Embodiment 3.
  • Fig. 7 is a view showing the super-surface phase distribution of the third embodiment.
  • Fig. 8 is a simulation diagram of the third embodiment.
  • Fig. 9 is a view showing the direction of the third embodiment.
  • Figure 10 is a schematic diagram of Embodiment 4.
  • Figure 11 is a diagram showing the super-surface phase distribution of Example 4.
  • Figure 12 is a simulation diagram of Embodiment 4.
  • Figure 13 is a pattern of Embodiment 4.
  • a and b are traditional "location-based" radome designs, that is, only one layer of structure S 0 ; c and d are "direction-based" radome design, which is a multi-layer structure S 1 ⁇ S N . It can be seen that the conventional method diverges the parallel beams, and the method of the present invention allows the outgoing beams to remain parallel.
  • the invention provides a radome for extending the deflection angle of a phase array antenna, which is formed by cascading two or more super surfaces, and the phase distribution of each super surface is obtained by calculation, and then further optimized by numerical optimization to obtain a better phase. distributed.
  • the following is a detailed description of two super-surfaces (the first is a plane and the second is a surface). The goal is to extend the angle of -60 to 60 degrees to -90 to 90 degrees:
  • Step 1 Calculate the phase distribution of the supersurface of the surface structure:
  • R is the radius of the radome
  • is the wavelength
  • is the incident angle
  • ⁇ 2 ( ⁇ ) is the phase of the incident position corresponding to the central ray when the incident angle is ⁇ ;
  • Step 2 Optimize the phase distribution of the supersurface of the planar structure:
  • is half the length of the super surface, x corresponding to the incident position, ⁇ is the wavelength, n is the number of coefficients optimized, a n is a coefficient to be optimized.
  • Our objective function is the difference between the exit angle of the design and the actual exit angle:
  • can actually be derived from equations (1) and (2).
  • the coefficient distribution a n is obtained by optimization by an optimization algorithm (global search algorithm, genetic algorithm or other optimization algorithm);
  • phase distribution obtained after design can be realized by the board processing microstructure.
  • Embodiment 2 is a schematic diagram of Embodiment 2.
  • This embodiment uses a radome formed by three planar super surface cascades.
  • the first super-surface L 11 is equivalent to a convex lens that focuses the parallel light on the focal plane, that is, the position of L 12 .
  • the second super-surface L 12 acts as a deflection for the beam so that the center beam can be incident perpendicularly onto the third super-surface L 13 to concentrate the energy.
  • L 13 is equivalent to a convex lens whose focal plane is also L 12 , which makes the divergent light become parallel light. Thus, after three super-surfaces, a bundle of parallel light can change its corner. If the focal length of L 13 is smaller than the focal length of L 11 , the angle can be increased.
  • Figure 3 shows the phase distribution of three supersurfaces. The corresponding formula is:
  • Figures 4 and 5 show the electric field amplitude map and the antenna pattern at the incident angles of 0, 15, 30, and 45 degrees, respectively.
  • black represents a place where the electric field strength is large. It can be seen from the pattern that the radome can extend the antenna angle from 45 degrees to 60 degrees.
  • Embodiment 3 employs two planar super-surface radomes
  • FIG. 6 is a schematic diagram of Embodiment 3.
  • the first super-surface L 21 is a convex lens
  • the second super-surface L 22 is a concave lens. It can be seen from the figure that the exit angle is larger than the incident angle and meets the design requirements. Specific to the relationship between the exit angle and the incident angle, the phase distribution of the two supersurfaces is obtained by numerical simulation. As shown in Fig. 7, the corresponding formula is:
  • Figure 8 and Figure 9 show the electric field amplitude map and the antenna pattern at 0, 15, 30, and 45 degrees of incidence, respectively. In Fig. 8, black represents a place where the electric field strength is large. It can be seen from the pattern that the radome can expand the antenna angle from 45 degrees to 60 degrees, and the directivity is better than that of FIG.
  • FIG. 10 is a schematic diagram thereof.
  • the phase distribution of the second curved supersurface L 32 can be calculated by the following formula (1), and the supersurface L 31 of the first curved surface can be optimized by the formulas (2) and (3).
  • Figure 11 is a phase distribution diagram of the calculated L 32 and the optimized two super-surfaces of L 31 .
  • Figure 12 and Figure 13 show the electric field amplitude map and the antenna pattern at an incident angle of 0, 30, and 60 degrees, respectively. It can be seen that at 60 degrees of incidence, the antenna exit angle is 90 degrees.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明公开了一种扩展相位阵列天线偏转角度的天线罩。该天线罩由两个或多个超表面级联而成,根据角度偏转要求和平行光线的要求计算出每层超表面的空间相位分布。本发明通过对超表面相位的补偿与优化,得到级联式的超表面,其可以将相位阵列天线从-60~60度扩展到-90~90度的范围,不会降低天线的方向性。由于材料是二维的超表面结构,因此本发明天线罩比较轻巧而且节省材料和空间。

Description

一种扩展相位阵列天线偏转角度的天线罩 技术领域
本发明属于光学领域,更具体地涉及到一种级联式(包括曲面)的超表面结构组成的天线罩,用于扩展相位阵列天线的偏转角度。
背景技术
相位阵列天线由于其方向性好,偏转角度迅速可调的优点被广泛应用于雷达系统、无线通讯和卫星广播中。然而相位阵列天线的偏转角度一般限制在-60~60度范围内,因此进一步提高其偏转角度到-90~90度非常重要。目前有几种方法可以用来进一步提高其扩展角度,总结如下:(I)机械方法,即通过机械转动辅助角度调节。该方法由于使用机械加速减速过程,减小了角度扫描的速度,进而降低了整体相位阵列天线系统的响应速度。(II)负折射率材料天线罩方法。该方法的优点是可以大幅度增大扫描角度的范围,可以满足-90~90的要求。缺点是设计复杂,需要耗时的优化过程,且材料需要负折射率材料,损耗大且加工制作不方便,这些都限制了其实际应用。(III)变换光学方法。该方法的优点是可以精确设计偏转的角度和材料参数的关系,缺点是材料参数复杂(非均匀且各向异性),不易加工制作。(IV)光学表面变换方法。这是变换光学方法的改进版,用两种各向同性的自然材料组成预先设定的层状结构来满足变换后高各向异性的材料参数需求,优点是材料参数大大简化,使得加工制作变得容易。但是上面所有的方法都是“基于位置”的思想,用几何光学来说,也 就是说偏角只依赖于光线打在天线罩上的位置,当一宽波束打在天线罩上的时候,不同的位置将会使波束有不同的偏折角度,这样波束经过天线罩就回发散。因此这种基于位置的方法会降低天线的方向性。上面的方法还有一个缺点就是他们都是三维的体结构,这导致天线罩比较厚重、而且耗费材料。
本发明使用一种“基于方向”的天线罩,波束经过天线罩后的偏转角度只依赖于入射时候的角度,而和入射位置无关。该方法不会降低天线的方向性。而且本发明使用了级联的超表面结构,由于是二维的面结构,使得天线罩轻巧而且节省材料。
发明内容
1、发明目的。
本发明在不降低天线方向性的基础上扩展扫描角度,提供了一种优化空间相位的扩展相位阵列天线偏转角度的天线罩。
2、本发明所采用的技术方案。
本发明提出了一种扩展相位阵列天线偏转角度的天线罩,总用两个或多个超表面级联而成,通过计算得到每个超表面的相位分布,然后进一步通过数值优化得到更好的相位分布。下面以两个超表面(第一个为平面,第二个为曲面)级联来具体阐述步骤,目标是将-60~60度的角度扩展到-90~90度:
本发明提出一种扩展相位阵列天线偏转角度的天线罩,由两个或多个超表面级联而成,根据角度偏转要求和平行光线的要求计算出每层超表面的空间相位分布。
更进一步,还包括以最小偏转角度偏差为目标函数进行全局优化,得到相位最优分布。
更进一步,所述的超表面结构为平面型或曲面形。
更进一步,相位阵列天线的偏转角度扩展到90度。
更进一步,采用前一级超表面中心光线的轨迹来计算第二个超表面(曲面结构)的相位补偿分布。
本发明一种扩展相位阵列天线偏转角度的天线罩,
计算曲面结构的超表面的相位分布:
通过中心光线的轨迹来计算第二个超表面曲面结构的相位分布,即
Figure PCTCN2018082966-appb-000001
其中R为天线罩的半径,λ为波长,θ为入射角,φ 2(θ)为入射角度为θ的时候,中心光线对应的入射位置的相位;
更进一步,还包括优化平面结构的超表面的相位分布步骤,得到第一个超表面的相位分布:
Figure PCTCN2018082966-appb-000002
其中ρ为超表面长度的一半,x对应入射位置,λ为波长,n为优化系数的个数,a n为需要优化的系数;
目标函数为设计的出射角度与实际的出射角度的差值:
f(x,θ 入射)=|θ 目标实际|
其中θ 目标为预先设定的扩展后的角度,θ 实际可以由上述两个公式推 算得到,通过优化算法进行优化后得到系数分布a n
本发明提出一种扩展相位阵列天线偏转角度的天线罩,包括3个平面型的超表面级联形成的天线罩,第一个超表面将平行光聚焦于焦平面即第二个超表面位置,第二个超表面对波束起到偏转作用,使中心波束垂直入射到第三个超表面上,使得能量更为集中,第三个超表面焦平面也在第二个超表面上,使得发散光线变为平行光,3个超表面的相位分布图,相应的公式为:
Figure PCTCN2018082966-appb-000003
其中f 1为第一个超表面和第二个超表面的焦距,f 2为第三个超表面的焦距,φ 0为任意值。
本发明提出一种扩展相位阵列天线偏转角度的天线罩,两个平面型超表面构成的天线罩,第一块超表面为一凸透镜,第二块超表面为一凹透镜,两块超表面的相位分布图:
Figure PCTCN2018082966-appb-000004
其中f 1和f 2分别为第一块超表面和第二块超表面的焦距。
3、本发明所产生的技术效果。
(1)本发明有效的解决了增大相位阵列天线偏转角度的同时又不降低其方向性这一矛盾。
本发明之所以能解决该矛盾是因为用了多层的超表面,最终的波束出射方向不仅和第一个入射的位置有关,而且和之后的入射位置也有关,通过合理设计使得这些相关的量加起来互相抵消,最终变为对位置不相关的量。
(2)本发明的天线罩工艺制作简单、材料质量小、厚度薄,节省空间和材料。
制作工艺是目前成熟的电路板刻蚀技术,可以批量生产制造。超表面之间的空间完全可以放一些其他的东西,节省了空间,只要不影响波束的传播即可。
(3)本发明用了两层或多层的二维结构,可以贴于结构的表面,方便集成,应用范围广。使用柔性的电路板制作的天线罩完全可以贴于天线的表面,与整个天线或雷达系统完美集成。
附图说明
图1为发明的方法原理图。
图2为实施例的原理图。
图3为实施例的超表面相位分布图。
图4为实施例的仿真图。
图5为实施例2的方向图。
图6为实施例3的原理图。
图7为实施例3的超表面相位分布图。
图8为实施例3的仿真图。
图9为实施例3的方向图。
图10为实施例4的原理图。
图11为实施例4的超表面相位分布图。
图12为实施例4的仿真图。
图13为实施例4的方向图。
具体实施方式
为了使专利局的审查员尤其是公众能够更加清楚地理解本发明的技术实质和有益效果,申请人将在下面以实施例的方式作详细说明,但是对实施例的描述均不是对本发明方案的限制,任何依据本发明构思所作出的仅仅为形式上的而非实质性的等效变换都应视为本发明的技术方案范畴。
如图1所示,a和b为传统的“基于位置”的天线罩设计,也就是只有一层结构S 0;c和d为“基于方向”的天线罩设计,是多层结构S 1~S N。可以看出传统的方法会使平行光束发散,而本发明的方法可以使出射光束仍旧为平行的。
下面以附图的形式说明3个具体的实施方式。
实施例1:
本发明提出了一种扩展相位阵列天线偏转角度的天线罩,用两个或多个超表面级联而成,通过计算得到每个超表面的相位分布,然后进一步通过数值优化得到更好的相位分布。下面以两个超表面(第一个为平面,第二个为曲面)级联来具体阐述,目标是将-60~60度的角度扩展到-90~90度:
步骤1、计算曲面结构的超表面的相位分布:
我们可以通过中心光线的轨迹来计算第二个超表面(曲面结构)的相位分布,即
Figure PCTCN2018082966-appb-000005
其中R为天线罩的半径,λ为波长,θ为入射角,φ 2(θ)为入射角度为θ的时候,中心光线对应的入射位置的相位;
步骤2、优化平面结构的超表面的相位分布:
我们可以得出第一个超表面的相位分布:
Figure PCTCN2018082966-appb-000006
其中ρ为超表面长度的一半,x对应入射位置,λ为波长,n为优化系数的个数,a n为需要优化的系数。我们的目标函数为设计的出射角度与实际的出射角度的差值:
f(x,θ 入射)=|θ 目标实际|  (3)
其中θ 目标为我们预先设定的扩展后的角度,比如θ 目标=1.5θ 入射,满足0度入射0度出射,60度入射90度出射。θ 实际可以由公式(1)和公式(2)推算得到。通过优化算法(全局搜索算法、遗传算法或者其他优化算法)进行优化后得到系数分布a n
步骤3、电磁仿真查看性能:
由于我们是按照几何光学计算和优化的,这里我们将步骤1,2得到的超表面相位分布在数值仿真软件中仿真,查看其对于波动光学的效果。
我们可以将同样的方法应用到都是平面、都是曲面、3个或多个 超表面的设计中。设计后得到的相位分布可以通过电路板加工微结构实现。
实施例2
图2为实施例2的原理图。本实施例使用3个平面型的超表面级联形成的天线罩。其中第一个超表面L 11相当于一个凸透镜,将平行光聚焦于焦平面,也就是L 12的位置。第二个超表面L 12对波束起到一个偏转的作用,使中心波束可以垂直入射到第三个超表面L 13上面,使得能量更为集中。L 13相当于一个凸透镜,其焦平面也在L 12,可以使得发散光线变为平行光。这样经过三个超表面,一束平行光可以改变其转角,如果L 13的焦距小于L 11的焦距,则可以增大其角度。图3为3个超表面的相位分布图,相应的公式为:
Figure PCTCN2018082966-appb-000007
其中f 1=5λ为L 11和L 12的焦距,f 2=3.7λ为L 13的焦距,φ 0为任意值。图4和图5分别为入射角度0,15,30,45度时候的电场幅度图和天线的方向图。图4中黑色代表电场强度大的地方。从方向图中可以看出该天线罩可以将天线角度从45度扩展到60度。
实施例3:
实施例3采用了两个平面型超表面构成的天线罩,图6为实施例3的原理图。其中第一块超表面L 21为一凸透镜,第二块超表面L 22为 一凹透镜。由图中可以看出出射角度大于入射角,符合设计要求。具体到出射角度和入射角度的关系,通过数值模拟得到了两块超表面的相位分布图,如图7所示,相应的公式为:
Figure PCTCN2018082966-appb-000008
其中f 1=65λ和f 2=56λ分别为L 21和L 22的焦距,两个超表面间距为9λ。图8和图9分别为0,15,30,45度入射的时候电场幅度图和天线的方向图。图8中黑色代表电场强度大的地方。从方向图中可以看出该天线罩可以将天线角度从45度扩展到60度,而且方向性比图5的要好。
实施例4:
实施例4是为了进一步增大天线的扩展角度,采用了一个平面型和一个曲面型的双超表面天线罩,图10为其原理图。第二个曲面型的超表面L 32的相位分布可以通过下面公式(1)计算得到,第一个曲面型的超表面L 31可以通过公式(2)和(3)优化得到。这里取R=15λ,ρ=8λ,优化后的a n为(-0.0947,0.0026,0.0007,-0.0007,0.0016)。图11为计算得到的L 32和优化得到的L 31两个超表面的相位分布图。图12和图13分别为入射角度为0,30,60度时候的电场幅度图和天线的方向图。由此可以看出60度入射的时候,天线出射角度为90度。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都 包含在本发明的保护范围之内。

Claims (10)

  1. 一种扩展相位阵列天线偏转角度的天线罩,其特征在于:由两个或多个超表面级联而成相位阵列天线,根据角度偏转要求和平行光线的要求计算出每层超表面的空间相位分布。
  2. 根据权利要求1所述的扩展相位阵列天线偏转角度的天线罩,其特征在于:还包括以最小偏转角度偏差为目标函数进行全局优化,得到相位最优分布。
  3. 根据权利要求1所述的扩展相位阵列天线偏转角度的天线罩,其特征在于:所述的超表面结构为平面型或曲面形。
  4. 根据权利要求1所述的天线罩,其特征在于:相位阵列天线的偏转角度扩展到90度。
  5. 根据权利要求1所述的天线罩,其特征在于:超表面材料和结构通过印刷电路板刻蚀微结构获得。
  6. 根据权利要求1所述的天线罩,其特征在于:采用前一级超表面中心光线的轨迹来计算第二个超表面的相位补偿分布。
  7. 一种扩展相位阵列天线偏转角度的天线罩,其特征在于:
    计算曲面结构的超表面的相位分布:
    通过中心光线的轨迹来计算第二个超表面曲面结构的相位分布,即
    Figure PCTCN2018082966-appb-100001
    其中R为天线罩的半径,λ为波长,θ为入射角,φ 2(θ)为入射角度为θ的时候,中心光线对应的入射位置的相位;
  8. 根据权利要求7所述的扩展相位阵列天线偏转角度的天线罩, 其特征在于:还包括优化平面结构的超表面的相位分布步骤,得到第一个超表面的相位分布:
    Figure PCTCN2018082966-appb-100002
    其中ρ为超表面长度的一半,x对应入射位置,λ为波长,n为优化系数的个数,a n为需要优化的系数;
    目标函数为设计的出射角度与实际的出射角度的差值:
    f(x,θ 入射)=|θ 目标实际|
    其中θ 目标为预先设定的扩展后的角度,θ 实际可以由上述两个公式推算得到,通过优化算法进行优化后得到系数分布a n
  9. 一种扩展相位阵列天线偏转角度的天线罩,其特征在于:3个平面型的超表面级联形成的天线罩,第一个超表面将平行光聚焦于焦平面即第二个超表面位置,第二个超表面对波束起到偏转作用,使中心波束垂直入射到第三个超表面上,使得能量更为集中,第三个超表面焦平面也在第二个超表面上,使得发散光线变为平行光,3个超表面的相位分布图,相应的公式为:
    Figure PCTCN2018082966-appb-100003
    其中f 1为第一个超表面和第二个超表面的焦距,f 2为第三个超表面的焦距,φ 0为任意值。
  10. 一种扩展相位阵列天线偏转角度的天线罩,其特征在于:两个 平面型超表面构成的天线罩,第一块超表面为一凸透镜,第二块超表面为一凹透镜,两块超表面的相位分布图:
    Figure PCTCN2018082966-appb-100004
    其中f 1和f 2分别为第一块超表面和第二块超表面的焦距。
PCT/CN2018/082966 2018-03-02 2018-04-13 一种扩展相位阵列天线偏转角度的天线罩 WO2019165684A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810173826.6A CN108183327B (zh) 2018-03-02 2018-03-02 一种扩展相位阵列天线偏转角度的天线罩
CN201810173826.6 2018-03-02

Publications (1)

Publication Number Publication Date
WO2019165684A1 true WO2019165684A1 (zh) 2019-09-06

Family

ID=62553138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082966 WO2019165684A1 (zh) 2018-03-02 2018-04-13 一种扩展相位阵列天线偏转角度的天线罩

Country Status (2)

Country Link
CN (1) CN108183327B (zh)
WO (1) WO2019165684A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422191A (zh) * 2021-05-11 2021-09-21 西安电子科技大学 一种可调介质板及其设计方法、反射面天线
FR3118835A1 (fr) * 2021-01-14 2022-07-15 Thales Radôme et systeme d'antenne avec fonction de compensation d'elevation
CN114818142A (zh) * 2022-05-11 2022-07-29 南京航空航天大学 一种弹道导弹天线罩头罩幅相补偿仿真方法及系统
WO2023152070A1 (en) 2022-02-11 2023-08-17 Saint-Gobain Performance Plastics France Radome with a surface varying refraction angle for phased array antenna
CN114818142B (zh) * 2022-05-11 2024-06-07 南京航空航天大学 一种弹道导弹天线罩头罩幅相补偿仿真方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109101727B (zh) * 2018-08-13 2020-06-26 厦门大学 一种基于变换光学的共形天线设计方法
US11581640B2 (en) * 2019-12-16 2023-02-14 Huawei Technologies Co., Ltd. Phased array antenna with metastructure for increased angular coverage
CN111190163B (zh) * 2020-02-21 2022-08-02 奥比中光科技集团股份有限公司 一种基于可重构光学超表面层的扫描装置及扫描方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101378147A (zh) * 2008-10-07 2009-03-04 浙江大学 利用微波二极管构建的工字形电控波束扫描天线罩
CN102629707A (zh) * 2012-04-12 2012-08-08 中国科学院光电技术研究所 一种利用人工结构材料降低副瓣电平的天线罩
CN106058457A (zh) * 2016-05-13 2016-10-26 武汉市迅捷时代信息技术有限公司 一种超薄低通频选超材料透波天线罩及其天线系统
CN106911007A (zh) * 2017-03-16 2017-06-30 西安电子科技大学 用于多频带频率选择透波角度的多层超材料表面结构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7656345B2 (en) * 2006-06-13 2010-02-02 Ball Aerospace & Technoloiges Corp. Low-profile lens method and apparatus for mechanical steering of aperture antennas
CN105609961A (zh) * 2015-12-22 2016-05-25 中国人民解放军空军工程大学 一种基于梯度超表面的透射双功能器件
CN106876982B (zh) * 2017-02-22 2021-08-06 西安电子科技大学 改善多天线系统性能的超表面及采用超表面的多天线系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101378147A (zh) * 2008-10-07 2009-03-04 浙江大学 利用微波二极管构建的工字形电控波束扫描天线罩
CN102629707A (zh) * 2012-04-12 2012-08-08 中国科学院光电技术研究所 一种利用人工结构材料降低副瓣电平的天线罩
CN106058457A (zh) * 2016-05-13 2016-10-26 武汉市迅捷时代信息技术有限公司 一种超薄低通频选超材料透波天线罩及其天线系统
CN106911007A (zh) * 2017-03-16 2017-06-30 西安电子科技大学 用于多频带频率选择透波角度的多层超材料表面结构

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIANG, TAO ET AL.: "Low-DC Voltage-Controlled Steering-Antenna Radome Utilizing Tunable Active Metamaterial", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 60, no. 01, 31 January 2012 (2012-01-31), pages 170 - 178, XP011391038, doi:10.1109/TMTT.2011.2171981 *
MIAO, ZHILONG: "Application of the Metamaterial in the Antenna Design", CHINA MASTER'S THESES FULL- TEXT DATABASE (ELECTRONIC JOURNALS, 15 January 2014 (2014-01-15), pages 40 - 53, ISSN: 1674-0246 *
SUN, YONGZHI ET AL.: "New Steerable Antenna with Controllable Metamaterial", PROCEEDINGS OF THE 42ND EUROPEAN MICROWAVE CONFERENCE, 30 November 2012 (2012-11-30), pages 936 - 939 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3118835A1 (fr) * 2021-01-14 2022-07-15 Thales Radôme et systeme d'antenne avec fonction de compensation d'elevation
WO2022152805A1 (fr) 2021-01-14 2022-07-21 Thales Radôme et systeme d'antenne avec fonction de compensation d'elevation
CN113422191A (zh) * 2021-05-11 2021-09-21 西安电子科技大学 一种可调介质板及其设计方法、反射面天线
CN113422191B (zh) * 2021-05-11 2022-07-26 西安电子科技大学 一种可调介质板及其设计方法、反射面天线
WO2023152070A1 (en) 2022-02-11 2023-08-17 Saint-Gobain Performance Plastics France Radome with a surface varying refraction angle for phased array antenna
CN114818142A (zh) * 2022-05-11 2022-07-29 南京航空航天大学 一种弹道导弹天线罩头罩幅相补偿仿真方法及系统
CN114818142B (zh) * 2022-05-11 2024-06-07 南京航空航天大学 一种弹道导弹天线罩头罩幅相补偿仿真方法及系统

Also Published As

Publication number Publication date
CN108183327B (zh) 2021-11-19
CN108183327A (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
WO2019165684A1 (zh) 一种扩展相位阵列天线偏转角度的天线罩
Nayeri et al. Bifocal design and aperture phase optimizations of reflectarray antennas for wide-angle beam scanning performance
CN113097735A (zh) 一种多功能超表面及隐身天线
CN106025550B (zh) 一种以电性能为目标的双反射面天线副面位置调整方法
CN108832311B (zh) 基于超表面的平面卡塞格伦涡旋场天线
CN111525270B (zh) 一种反射型极化转换超表面的轨道角动量产生结构设计
CN104377452B (zh) 一种基于人工电磁表面的纯介质电磁透镜的设计方法
Liao et al. Ray-tracing model for generalized geodesic-lens multiple-beam antennas
CN110600879A (zh) 一种全向圆极化涡旋电磁波的产生方法
Yurchenko et al. Numerical optimization of a cylindrical reflector-in-radome antenna system
CN111981438A (zh) 超表面透镜角反射器
CN108808248B (zh) 基于超表面的凸面共形卡塞格伦涡旋场天线
CN214754180U (zh) 一种透射式超表面单元结构及电磁波幅相调控器件
Hua et al. Bidirectional radiation high-gain antenna based on phase gradient metasurface
CN108923130B (zh) 基于超表面的涡旋场反射面天线
CN115441203A (zh) 透反射全旋向解耦多功能超表面集成器件及其设计方法
Miao et al. Boundary-source coherent beamforming using metasurface
Kalaagi et al. Retrodirective metasurface operating simultaneously at multiple incident angles
Alonso-DelPino et al. Efficiency optimization of spherical reflectors by feed position adjustments
CN109992821B (zh) 一种四波束反射型轨道角动量天线设计方法
CN108183333B (zh) 柔性柱面共形超散射器及其结构设计方法
Li et al. Phase compensation of composite material radomes based on the radiation pattern
Meng et al. Design of diffractive Cassegrain antenna at W band
He et al. Predicting influence of the rest spherical surface on the instantaneous parabolic surface of multi-beam for radio astronomy
CN108832305B (zh) 基于超表面的卡塞格伦涡旋场天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18908093

Country of ref document: EP

Kind code of ref document: A1