WO2019165617A1 - 一种车载设备及车辆碰撞分析方法和装置 - Google Patents

一种车载设备及车辆碰撞分析方法和装置 Download PDF

Info

Publication number
WO2019165617A1
WO2019165617A1 PCT/CN2018/077690 CN2018077690W WO2019165617A1 WO 2019165617 A1 WO2019165617 A1 WO 2019165617A1 CN 2018077690 W CN2018077690 W CN 2018077690W WO 2019165617 A1 WO2019165617 A1 WO 2019165617A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
vibration
data
target
collision analysis
Prior art date
Application number
PCT/CN2018/077690
Other languages
English (en)
French (fr)
Inventor
刘均
刘新
金武超
Original Assignee
深圳市元征软件开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市元征软件开发有限公司 filed Critical 深圳市元征软件开发有限公司
Priority to CN201880000123.1A priority Critical patent/CN108401464A/zh
Priority to PCT/CN2018/077690 priority patent/WO2019165617A1/zh
Publication of WO2019165617A1 publication Critical patent/WO2019165617A1/zh

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0808Diagnosing performance data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/08Insurance

Definitions

  • the invention belongs to the field of vehicle safety analysis, and in particular relates to an in-vehicle device and a vehicle collision analysis method and device.
  • the current collision analysis method is mainly based on the damage status of the vehicle body and related monitoring images for post-mortem analysis, which needs to be operated by experienced professionals.
  • the collision analysis needs to wait for the professional to analyze, and the collision analysis time of the collision is greatly delayed, which affects the speed of the vehicle's fixed loss and claims; on the other hand, the collision analysis depends on the experience of the professional, and the accuracy of the analysis is extremely Big uncertainty.
  • the invention solves the above problems of the prior art, improves the efficiency and accuracy of the collision analysis, and lays a good foundation for the later fixed loss and claim.
  • the embodiments of the present invention provide an in-vehicle device and a vehicle collision analysis method and apparatus, which solve the problem of low efficiency and low accuracy of collision analysis in the prior art.
  • a first aspect of the embodiments of the present invention provides a vehicle collision analysis method, where the vehicle collision analysis method includes:
  • a collision analysis report is generated according to the calculation result of the vehicle collision analysis model.
  • the step of acquiring, by the sensor, the target vibration data of the vehicle and/or the direction of the target impact force comprises:
  • the collected vibration data and/or impact force direction data is used as the target vibration data and/or Target impact direction.
  • the step of acquiring, by the sensor, the target vibration data and/or the target impact force direction of the vehicle includes:
  • the method further includes:
  • the vibration sample data and/or the impact force direction sample and the corresponding collision loss are substituted into the vehicle collision analysis model for training, and a vehicle collision analysis model is generated.
  • the first possible implementation of the first aspect, the second possible implementation of the first aspect, or the third possible implementation of the first aspect, in a fourth possible implementation of the first aspect includes:
  • a collision analysis report is generated according to the collision loss, and the collision analysis report is sent to the terminal to which the vehicle is bound.
  • a second aspect of the embodiments of the present invention provides a vehicle collision analysis apparatus, where the vehicle collision analysis apparatus includes:
  • a data acquisition unit configured to collect, by the sensor, target vibration data of the vehicle and/or a target impact force direction
  • a data calculation unit configured to calculate a target vibration data and/or a target impact force direction of the vehicle according to a pre-trained vehicle collision analysis model
  • the analysis report generating unit is configured to generate a collision analysis report according to the calculation result of the vehicle collision analysis model.
  • the data collecting unit includes:
  • a vibration detecting subunit for detecting a vibration period and/or a vibration amplitude of the vehicle according to the vibration sensor
  • a target impact force direction detecting subunit configured to: when the vibration period of the vibration sensor exceeds a preset period threshold, and/or the vibration amplitude exceeds a preset amplitude threshold, the collected vibration data and/or impact force The direction data is used as the target vibration data and/or the target impact force direction.
  • the data collecting unit is further configured to:
  • the device further includes:
  • a sample acquisition subunit for acquiring vibration sample data and/or impact force direction samples according to historical vehicle collision data
  • the model training subunit is configured to train the vibration sample data and/or the impact force direction sample and the corresponding collision loss into the vehicle collision analysis model to generate a vehicle collision analysis model.
  • the analysis report generating unit includes:
  • a calculation subunit configured to calculate a target vibration data of the vehicle and/or a collision loss corresponding to a target impact force direction according to the vehicle collision analysis model
  • a sending subunit configured to generate a collision analysis report according to the collision loss, and send the collision analysis report to the terminal bound by the vehicle.
  • a third aspect of an embodiment of the present invention provides an in-vehicle device including a memory, a processor, and a computer program stored in the memory and operable on the processor, the processor executing the computer program
  • the steps of the vehicle collision analysis method according to any of the first aspects are achieved.
  • a fourth aspect of the embodiments of the present invention provides a computer readable storage medium storing a computer program, the computer program being executed by a processor to implement the vehicle of any of the first aspects The steps of the collision analysis method.
  • the embodiment of the present invention has the beneficial effects of: collecting the target vibration data of the vehicle and/or the data of the target impact force direction by using the sensor, and substituting the collected data into the pre-trained vehicle collision analysis model, according to the
  • the vehicle collision analysis model calculates the collision loss, and generates a collision analysis report based on the calculated collision loss, so that the collision accident can be calculated and analyzed more accurately, objectively and efficiently.
  • FIG. 1 is a schematic flowchart of an implementation process of a vehicle collision analysis method according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart showing an implementation process of collecting target vibration data and/or target impact force of a vehicle by using a sensor according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of an implementation process of another vehicle collision analysis method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a vehicle collision analysis apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an in-vehicle device according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of an implementation process of a vehicle collision analysis method according to an embodiment of the present application, which is described in detail as follows:
  • the vehicle collision analysis method described in the present application includes:
  • step S101 the target vibration data of the vehicle and/or the target impact force direction are collected by the sensor
  • the data collected by the embodiment of the present application may include target vibration data, a target impact force direction, or target vibration data and a target impact force direction.
  • the target vibration data may include a vibration amplitude and/or a vibration period for detecting a direction of an impact force received by the vehicle in the event of a collision, thereby being able to determine other vehicles received when the vehicle collides. , or the angle of collision of other objects, to facilitate subsequent confirmation of the collision responsibility.
  • the target vibration data may be collected by setting a vibration sensor, and the data of the target impact force direction may be collected by setting a multi-axis sensor, such as a gyroscope.
  • the sensor may be disposed on a safety frame of the vehicle, or on a pillar of the vehicle, or may be disposed at a vehicle position determined by the frequency of collisions.
  • a sensor can be provided at a position where the number of collisions is large according to the number of collisions of the vehicle, so that abnormal data at the time of collision can be acquired more efficiently.
  • the position of the vibration sensor or the multi-axis sensor may be arranged in an azimuth distribution in which the vehicle body may collide.
  • the orientation of the possible collision may be combined with the statistical analysis result of the big data to determine the sensor arrangement schemes of the front, rear, left and right directions in which the front, rear, left and right sides of the vehicle have more collision times.
  • the front and rear safety frames are arranged in the front left direction and the right position, or the position on the A, B, C, D columns of the vehicle is close to the ground.
  • the vibration sensor in the present application is used to collect the vibration signal generated during the collision
  • the multi-axis sensor (taking the three-axis sensor as an example) is used to collect the angle information of the collision, that is, the angle of the collision force at the time of collision.
  • Multi-axis sensors can be integrated into the vibration sensor or placed in close proximity.
  • the central control unit is connected to the vibration sensor and/or the multi-axis sensor.
  • the central control unit can be installed in the vehicle-mounted device or can be set in the OBD (English full name: On-Board Diagnostic, Chinese full name: car Diagnostic system) In the equipment, or it can be the vehicle's own ECU (English full name is Electronic Control Unit, Chinese full name is electronic control unit).
  • step S102 the target vibration data and/or the target impact force direction of the vehicle are calculated according to the pre-trained vehicle collision analysis model
  • the vehicle collision analysis model may include a target vibration data analysis model, a target impact force direction analysis model, and a target vibration data and a target impact force direction analysis model.
  • the target vibration data and the target impact force direction analysis model can be preferably used to calculate the target vibration data and the target impact force direction to obtain the loss data of the vehicle collision.
  • the target vibration data analysis model, the target impact force direction analysis model, or the target vibration data and the target impact force direction analysis model may be trained in advance through the historical sample data to generate a trained target vibration data analysis model, The target impact force direction analysis model, or the target vibration data and the target impact force direction analysis model.
  • the training of the vehicle collision analysis model with the target vibration data and the target impact force direction as input is briefly described below:
  • step S201 the vibration sample data or the impact force direction sample and the corresponding collision loss are acquired according to the historical vehicle collision data;
  • the vehicle collision analysis model is the target vibration data analysis model or the target impact force direction training model, only the vibration sample data and the corresponding collision loss need to be acquired, or only the impact force sample data and the corresponding collision loss need to be acquired.
  • the collision loss of the historical vehicle collision data can be measured by a professional in a test scenario to obtain a quantitative analysis result.
  • step S202 the vibration sample data and/or the impact force direction sample and the corresponding collision loss are substituted into the vehicle collision analysis model for training, and a vehicle collision analysis model is generated.
  • the vehicle collision analysis model may be a neural network training model, wherein the vibration data and impact direction data are used as an input vector of the neural network training model, and the collision loss is used as an output vector of the neural network training model. After many trainings, the parameters in the neural network training model will be more and more accurate.
  • step S103 a collision analysis report is generated based on the calculation result of the vehicle collision analysis model.
  • the target vibration of the vehicle can be determined according to the vehicle Data and/or data of the direction of impact of the target
  • the collision loss of the vehicle is calculated, and the collision loss may include one or more of the degree of loss, the lost component, and the value of the loss.
  • the loss level may determine a score value of the degree of loss according to a preset scoring standard; the loss component may determine the lost component according to the collision location determined by the vehicle collision analysis model; the loss value may be according to the The lost component, the degree of loss, and the price of the lost component are combined to determine the value of the loss.
  • the step of generating a collision analysis report according to the calculation result of the vehicle collision analysis model includes:
  • a collision analysis report is generated according to the collision loss, and the collision analysis report is sent to the terminal to which the vehicle is bound.
  • the bound terminal may be a terminal used by a vehicle owner.
  • the collision analysis report can be generated quickly and accurately, which is beneficial to generate a collision analysis report more efficiently and accurately.
  • FIG. 3 is a schematic flowchart of an implementation process of another vehicle collision analysis method according to an embodiment of the present application, which is as follows:
  • step S301 detecting a vibration period and/or a vibration amplitude of the vehicle according to the vibration sensor;
  • the vibration period and the vibration amplitude are affected by factors such as road and engine vibration during the running of the vehicle.
  • the normal range value of the vibration period of the vehicle during normal running can be counted in advance, or the abnormal range value possible when the vehicle collides can be counted.
  • the collected data can be compared with the normal range value or the abnormal range value to determine whether the current state is normal.
  • step S302 when the vibration period of the vibration sensor exceeds a preset period threshold, and/or the vibration amplitude exceeds a preset amplitude threshold, the collected vibration data and/or impact force direction data are targeted Vibration data and / or target impact direction.
  • the present application may further include a condition for triggering calculation, when the vibration period of the vibration sensor exceeds a preset period threshold, and/or the vibration amplitude exceeds a preset amplitude threshold.
  • the acquired vibration data and/or the direction of the impact force direction is taken as the target vibration data and/or the target impact force direction.
  • the trigger condition may be a vibration period alone, or a vibration amplitude alone, or may also detect when the vibration period is abnormal, and then detect whether the vibration amplitude is abnormal. If the vibration period is abnormal and the vibration amplitude is abnormal, the vehicle is judged to be generated. collision.
  • the certain data collected by the sensor before the current time may be buffered.
  • the cached target vibration data and/or the impact force data are substituted into the vehicle collision analysis model for analysis and calculation.
  • step S303 the target vibration data and/or the target impact force direction of the vehicle are calculated according to the pre-trained vehicle collision analysis model
  • step S304 a collision analysis report is generated based on the calculation result of the vehicle collision analysis model.
  • Steps S303-S304 are substantially the same as steps S102-S103 in FIG. 1, and are not described herein again.
  • FIG. 4 is a schematic structural diagram of a vehicle collision analysis apparatus according to an embodiment of the present application, which is described in detail as follows:
  • a data acquisition unit 401 configured to collect target vibration data of the vehicle and/or a target impact force direction by using the sensor
  • a data calculation unit 402 configured to calculate a target vibration data and/or a target impact force direction of the vehicle according to a pre-trained vehicle collision analysis model
  • the analysis report generating unit 403 is configured to generate a collision analysis report according to the calculation result of the vehicle collision analysis model.
  • the data collection unit 402 includes:
  • a vibration detecting subunit for detecting a vibration period and/or a vibration amplitude of the vehicle according to the vibration sensor
  • a target impact force direction detecting subunit configured to: when the vibration period of the vibration sensor exceeds a preset period threshold, and/or the vibration amplitude exceeds a preset amplitude threshold, the collected vibration data and/or impact force The direction data is used as the target vibration data and/or the target impact force direction.
  • the data collection unit is further configured to:
  • the device further comprises:
  • a sample acquisition subunit for acquiring vibration sample data and/or impact force direction samples according to historical vehicle collision data
  • the model training subunit is configured to train the vibration sample data and/or the impact force direction sample and the corresponding collision loss into the vehicle collision analysis model to generate a vehicle collision analysis model.
  • the analysis report generating unit includes:
  • a calculation subunit configured to calculate a target vibration data of the vehicle and/or a collision loss corresponding to a target impact force direction according to the vehicle collision analysis model
  • a sending subunit configured to generate a collision analysis report according to the collision loss, and send the collision analysis report to the terminal bound by the vehicle.
  • the vehicle collision analysis device described in FIG. 4 corresponds to the vehicle collision analysis method described in FIGS. 1 and 3, and will not be described again.
  • FIG. 5 is a schematic diagram of a vehicle according to an embodiment of the present invention.
  • the in-vehicle device 5 of this embodiment includes a processor 50, a memory 51, and a computer program 52 stored in the memory 51 and operable on the processor 50, such as a vehicle collision analysis program.
  • the processor 50 executes the computer program 52, the steps in the above embodiments of the respective vehicle collision analysis methods are implemented, such as steps 101 to 103 shown in FIG.
  • the processor 50 executes the computer program 52
  • the functions of the modules/units in the foregoing device embodiments are implemented, such as the functions of the modules 401 to 403 shown in FIG.
  • the computer program 52 can be partitioned into one or more modules/units that are stored in the memory 51 and executed by the processor 50 to complete this invention.
  • the one or more modules/units may be a series of computer program instruction segments capable of performing a particular function, the instruction segments being used to describe the execution of the computer program 52 in the in-vehicle device 5.
  • the computer program 52 can be divided into a data collection unit, a data calculation unit, and an analysis report generation unit, and the specific functions of each unit are as follows:
  • a data acquisition unit configured to collect, by the sensor, target vibration data of the vehicle and/or a target impact force direction
  • a data calculation unit configured to calculate a target vibration data and/or a target impact force direction of the vehicle according to a pre-trained vehicle collision analysis model
  • the analysis report generating unit is configured to generate a collision analysis report according to the calculation result of the vehicle collision analysis model.
  • the in-vehicle device 5 may include, but is not limited to, a processor 50 and a memory 51. It will be understood by those skilled in the art that FIG. 5 is merely an example of the in-vehicle device 5 and does not constitute a limitation on the in-vehicle device 5, and may include more or less components than those illustrated, or combine some components or different components.
  • the vehicle may also include an input output device, a network access device, a bus, and the like.
  • the so-called processor 50 can be a central processing unit (Central Processing Unit, CPU), can also be other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 51 may be an internal storage unit of the in-vehicle device 5, such as a hard disk or a memory of the in-vehicle device 5.
  • the memory 51 may also be an external storage device of the in-vehicle device 5, such as a plug-in hard disk equipped on the in-vehicle device 5, a smart memory card (SMC), and a secure digital (SD). Card, flash card (Flash Card) and so on.
  • the memory 51 may also include both an internal storage unit of the in-vehicle device 5 and an external storage device.
  • the memory 51 is used to store the computer program and other programs and data required by the vehicle.
  • the memory 51 can also be used to temporarily store data that has been output or is about to be output.
  • each functional unit and module described above is exemplified. In practical applications, the above functions may be assigned to different functional units as needed.
  • the module is completed by dividing the internal structure of the device into different functional units or modules to perform all or part of the functions described above.
  • Each functional unit and module in the embodiment may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit, and the integrated unit may be hardware.
  • Formal implementation can also be implemented in the form of software functional units.
  • the specific names of the respective functional units and modules are only for the purpose of facilitating mutual differentiation, and are not intended to limit the scope of protection of the present application.
  • For the specific working process of the unit and the module in the foregoing system reference may be made to the corresponding process in the foregoing method embodiment, and details are not described herein again.
  • the disclosed apparatus/terminal device and method may be implemented in other manners.
  • the device/terminal device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units.
  • components may be combined or integrated into another system, or some features may be omitted or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated modules/units if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium. Based on such understanding, the present invention implements all or part of the processes in the foregoing embodiments, and may also be completed by a computer program to instruct related hardware.
  • the computer program may be stored in a computer readable storage medium. The steps of the various method embodiments described above may be implemented when the program is executed by the processor. .
  • the computer program comprises computer program code, which may be in the form of source code, object code form, executable file or some intermediate form.
  • the computer readable medium can include any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard drive, a magnetic disk, an optical disk, a computer memory, a read only memory (ROM, Read-Only) Memory), random access memory (RAM, Random) Access Memory), electrical carrier signals, telecommunications signals, and software distribution media.
  • ROM Read Only memory
  • RAM Random Access Memory
  • electrical carrier signals telecommunications signals
  • telecommunications signals and software distribution media. It should be noted that the content contained in the computer readable medium may be appropriately increased or decreased according to the requirements of legislation and patent practice in a jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, computer readable media It does not include electrical carrier signals and telecommunication signals.

Abstract

一种车辆碰撞分析方法包括:通过传感器采集车辆的目标振动数据和/或目标冲击力方向;根据预先训练好的车辆碰撞分析模型对所述车辆的目标振动数据和/或目标冲击力方向进行计算;根据所述车辆碰撞分析模型的计算结果生成碰撞分析报告。通过传感器采集数据,通过车辆碰撞分析模型自动计算的方式与现有的分析方式相比,能够更为准确客观、高效的对碰撞事故进行计算分析。

Description

一种车载设备及车辆碰撞分析方法和装置 技术领域
本发明属于车辆安全分析领域,尤其涉及一种车载设备及车辆碰撞分析方法和装置。
背景技术
在车辆行驶过程中,难免会出现车辆的碰撞、刮蹭等事故。在车辆发生碰撞事故后,需要对车辆的碰撞过程进行分析,从而便于为后续的定损和责任承担提供依据。
目前的碰撞分析方法,主要是依据车身的损坏状况和相关的监控图像进行事后的分析,该分析需要由有经验的专业人员来操作。一方面,该碰撞分析需要等到专业人士来进行分析,碰撞的事故分析时间大大滞后,影响了车辆定损和理赔的速度;另一方面碰撞分析依赖于专业人员的经验,分析的准确性具有极大的不确定性。
本发明即为解决现有技术的上述问题,提高碰撞分析的效率和准确性,为后期的定损和理赔奠定良好的基础。
技术问题
有鉴于此,本发明实施例提供了一种车载设备及车辆碰撞分析方法和装置,以解决现有技术中碰撞分析效率低,准确性不高的问题。
技术解决方案
本发明实施例的第一方面提供了一种车辆碰撞分析方法,所述车辆碰撞分析方法包括:
通过传感器采集车辆的目标振动数据和/或目标冲击力方向;
根据预先训练好的车辆碰撞分析模型对所述车辆的目标振动数据和/或目标冲击力方向进行计算;
根据所述车辆碰撞分析模型的计算结果生成碰撞分析报告。
结合第一方面,在第一方面的第一种可能实现方式中,所述通过传感器采集车辆的目标振动数据和/或目标冲击力方向的步骤包括:
根据振动传感器检测所述车辆的振动周期和/或振动幅度;
当所述振动传感器的振动周期超过预设的周期阈值,和/或所述振动幅度超过预设的幅度阈值时,将采集的振动数据和/或冲击力方向的数据作为目标振动数据和/或目标冲击力方向。
结合第一方面或第一方面的第一种可能实现方式,在第一方面的第二种可能实现方式中,所述通过传感器采集车辆的目标振动数据和/或目标冲击力方向的步骤包括:
根据设置在车辆的保险框上设置的传感器,或者根据设置在车辆的立柱上的传感器,或者根据设置在由碰撞频次确定的车辆位置的传感器,获取所述车辆的目标振动数据和/或目标冲击力方向。
结合第一方面,在第一方面的第三种可能实现方式中,在所述根据预先训练好的车辆碰撞分析模型对所述车辆的目标振动数据和/或目标冲击力方向进行计算的步骤之前,所述方法还包括:
根据历史的车辆碰撞数据,获取振动样本数据和/或冲击力方向样本;
将所述振动样本数据和/或冲击力方向样本及相应的碰撞损失代入车辆碰撞分析模型进行训练,生成车辆碰撞分析模型。
结合第一方面、第一方面的第一种可能实现方式、第一方面的第二种可能实现方式或第一方面的第三种可能实现方式,在第一方面的第四种可能实现方式中,所述根据所述车辆碰撞分析模型的计算结果生成碰撞分析报告的步骤包括:
根据所述车辆碰撞分析模型计算所述车辆的目标振动数据和/或目标冲击力方向所对应的碰撞损失;
根据所述碰撞损失生成碰撞分析报告,将所述碰撞分析报告发送所述车辆绑定的终端。
本发明实施例的第二方面提供了一种车辆碰撞分析装置,所述车辆碰撞分析装置包括:
数据采集单元,用于通过传感器采集车辆的目标振动数据和/或目标冲击力方向;
数据计算单元,用于根据预先训练好的车辆碰撞分析模型对所述车辆的目标振动数据和/或目标冲击力方向进行计算;
分析报告生成单元,用于根据所述车辆碰撞分析模型的计算结果生成碰撞分析报告。
结合第二方面,在第二方面的第一种可能实现方式中,所述数据采集单元包括:
振动检测子单元,用于根据振动传感器检测所述车辆的振动周期和/或振动幅度;
目标冲击力方向检测子单元,用于当所述振动传感器的振动周期超过预设的周期阈值,和/或所述振动幅度超过预设的幅度阈值时,将采集的振动数据和/或冲击力方向的数据作为目标振动数据和/或目标冲击力方向。
结合第二方面,在第二方面的第二种可能实现方式中,所述数据采集单元还用于:
根据设置在车辆的保险框上设置的传感器,或者根据设置在车辆的立柱上的传感器,或者根据设置在由碰撞频次确定的车辆位置的传感器,获取所述车辆的目标振动数据和/或目标冲击力方向。
结合第二方面,在第二方面的第三种可能实现方式中,所述装置还包括:
样本获取子单元,用于根据历史的车辆碰撞数据,获取振动样本数据和/或冲击力方向样本;
模型训练子单元,用于将所述振动样本数据和/或冲击力方向样本及相应的碰撞损失代入车辆碰撞分析模型进行训练,生成车辆碰撞分析模型。
结合第二方面、第二方面的第一种可能实现方式、第二方面的第二种可能实现方式或第二方面的第三种可能实现方式,在第二方面的第四种可能实现方式中,所述分析报告生成单元包括:
计算子单元,用于根据所述车辆碰撞分析模型计算所述车辆的目标振动数据和/或目标冲击力方向所对应的碰撞损失;
发送子单元,用于根据所述碰撞损失生成碰撞分析报告,将所述碰撞分析报告发送所述车辆绑定的终端。
本发明实施例的第三方面提供了一种车载设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面任一项所述车辆碰撞分析方法的步骤。
本发明实施例的第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面任一项所述车辆碰撞分析方法的步骤。
有益效果
本发明实施例与现有技术相比存在的有益效果是:通过传感器采集车辆的目标振动数据和/或目标冲击力方向的数据,将采集的数据代入预先训练好的车辆碰撞分析模型,根据所述车辆碰撞分析模型计算得到碰撞损失,根据计算的碰撞损失生成碰撞分析报告,从而能够更为准确客观、高效的对碰撞事故进行计算分析。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种车辆碰撞分析方法的实现流程示意图;
图2是本发明实施例提供的一种通过传感器采集车辆的目标振动数据和/或目标冲击力方向的实现流程示意图;
图3是本发明实施例提供的又一种车辆碰撞分析方法的实现流程示意图;
图4是本发明实施例提供的一种车辆碰撞分析装置的示意图;
图5是本发明实施例提供的车载设备的示意图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
如图1所示为本申请实施例提供的一种车辆碰撞分析方法的实现流程示意图,详述如下:
本申请所述车辆碰撞分析方法,包括:
在步骤S101中,通过传感器采集车辆的目标振动数据和/或目标冲击力方向;
具体的,本申请实施例所采集的数据,可以包括目标振动数据、目标冲击力方向,或者目标振动数据和目标冲击力方向。所述目标振动数据可以包括振动幅度和/或振动周期,所述目标冲击力方向用于检测车辆在发生碰撞时所受到的冲击力的方向,从而能够确定车辆发生碰撞时,所受到的其它车辆、或者其它物体的碰撞的角度,便于后续确认碰撞责任。
所述目标振动数据,可以通过设置振动传感器进行采集,所述目标冲击力方向的数据,可以通过设置多轴传感器,比如陀螺仪进行采集。
所述传感器可以设置在车辆的保险框上,或者设置在车辆的立柱上,或者还可以设置在由碰撞频次确定的车辆位置。比如,可以根据车辆的碰撞次数所统计得到的发生碰撞次数较多的位置处,设置传感器,从而能够更为有效的获取发生碰撞时的异常数据。比如,所述振动传感器或多轴传感器的设置位置,可以按车身可能碰撞的方位分布布置。所述可能碰撞的方位,可以结合大数据的统计分析结果,确定车辆前、后、左、右四个侧面发生碰撞次数较多的位置确定前、后、左、右四个方向的传感器布置方案;或者,也可以预先设置好,比如在前/后保险框上按照左中右三个位置点布置前后方向的传感器,或者还可以在车辆的A、B、C、D立柱上接近地面的位置布置左右方向的传感器。本申请中的振动传感器用于采集碰撞时产生的振动信号,多轴传感器(以三轴传感器为例)用于采集碰撞的角度信息即碰撞时碰撞力的角度。多轴传感器可集成在振动传感器之内,也可以紧邻设置。
本申请中通过中央控制单元与振动传感器和/或多轴传感器相连,所述中央控制单元可以设置于车载设备内,也可以设置于OBD(英文全称为:On-Board Diagnostic,中文全称为:车载诊断系统)设备内,或者,可以为车辆自身的ECU(英文全称为Electronic Control Unit,中文全称为电子控制单元)。
在步骤S102中,根据预先训练好的车辆碰撞分析模型对所述车辆的目标振动数据和/或目标冲击力方向进行计算;
在本申请中,所述车辆碰撞分析模型可以包括目标振动数据分析模型、目标冲击力方向分析模型以及目标振动数据和目标冲击力方向分析模型。为了能够更为准确可靠的分析和计算车辆碰撞损失,可以优选使用目标振动数据和目标冲击力方向分析模型对目标振动数据和目标冲击力方向进行计算,得到车辆碰撞的损失数据。
在本申请中,可以预先通过历史样本数据,对目标振动数据分析模型、目标冲击力方向分析模型,或者目标振动数据和目标冲击力方向分析模型进行训练,生成训练好的目标振动数据分析模型、目标冲击力方向分析模型,或者目标振动数据和目标冲击力方向分析模型。下面以目标振动数据和目标冲击力方向作为输入的车辆碰撞分析模型进行训练简要进行说明:
如图2所示,在步骤S201中,根据历史的车辆碰撞数据,获取振动样本数据或冲击力方向样本及相应的碰撞损失;
可以理解的,当车辆碰撞分析模型为目标振动数据分析模型或者目标冲击力方向训练模型时,则只需要获取振动样本数据及相应的碰撞损失,或者只需要获取冲击力样本数据及相应的碰撞损失。
所述历史的车辆碰撞数据的碰撞损失,可以在实验场景中,由专业人员对碰撞结果进行测量,得到定量的分析结果。所述历史的车辆碰撞数据的样本量越多,对所述车辆碰撞分析模型的训练次数也就越多,所述车辆碰撞分析模型的准确度也越高。
在步骤S202中,将所述振动样本数据和/或冲击力方向样本及相应的碰撞损失代入车辆碰撞分析模型进行训练,生成车辆碰撞分析模型。
所述车辆碰撞分析模型可以为神经网络训练模型,其中,所述振动数据和冲击力方向的数据作为所述神经网络训练模型的输入向量,所述碰撞损失作为所述神经网络训练模型的输出向量,经过多次训练后,所述神经网络训练模型中的参数也将会越来越准确。
在步骤S103中,根据所述车辆碰撞分析模型的计算结果生成碰撞分析报告。
将采集的车辆的目标振动数据和/或目标冲击力方向的数据代入所述车辆碰撞分析模型后,由于所述车辆碰撞分析模型已经预先训练好其中的参数,因此可以根据的述车辆的目标振动数据和/或目标冲击力方向的数据,计算得到车辆的碰撞损失,所述碰撞损失可以包括损失程度、损失部件、损失价值中的一项或者多项等。其中损失程度可以根据预设的评分标准,确定损失程度的评分值;所述损失部件可以根据所述车辆碰撞分析模型所确定的碰撞位置确定受损失的部件;所述损失价值可以根据所述受损失的部件、损失程度,结合所述受损失的部件的价格,确定损失价值。
其中,所述根据所述车辆碰撞分析模型的计算结果生成碰撞分析报告的步骤包括:
根据所述车辆碰撞分析模型计算所述车辆的目标振动数据和/或目标冲击力方向所对应的碰撞损失;
根据所述碰撞损失生成碰撞分析报告,将所述碰撞分析报告发送所述车辆绑定的终端。所述绑定的终端可以为车主所使用的终端。
由于本申请通过预先训练好的车辆碰撞分析模型,将由传感器采集的数据进行自动的分析和计算,可以快速准确的生成碰撞分析报告,有利于更为高效准确的生成碰撞分析报告。
如图3为本申请实施例提供的又一车辆碰撞分析方法的实现流程示意图,详述如下:
在步骤S301中,根据振动传感器检测所述车辆的振动周期和/或振动幅度;
所述振动周期和振动幅度为所述车辆在行驶过程中,由于道路、发动机振动等因素所影响的。可以预先统计车辆在正常行驶过程的振动周期的正常范围值,或者统计车辆碰撞时可能的异常范围值。可以将采集的数据与正常范围值,或者异常范围值进行比较,确定当前状态是否正常。
在步骤S302中,当所述振动传感器的振动周期超过预设的周期阈值,和/或所述振动幅度超过预设的幅度阈值时,将采集的振动数据和/或冲击力方向的数据作为目标振动数据和/或目标冲击力方向。
为了减少车辆碰撞分析模型的计算次数,本申请还可以包括触发计算的条件进行限定,当所述振动传感器的振动周期超过预设的周期阈值,和/或所述振动幅度超过预设的幅度阈值时,将采集的振动数据和/或冲击力方向的数据作为目标振动数据和/或目标冲击力方向。
其中,所述触发条件可以单独为振动周期,或者单独为振动幅度,或者还可以先检测振动周期异常时,再检测振动幅度是否异常,如果振动周期异常,并且振动幅度异常时,则判断车辆发生碰撞。
可以将传感器所采集的距离当前时间之前的一定数据缓存,当检测到车辆碰撞时,则将缓存的目标振动数据和/或冲击力数据代入车辆碰撞分析模型进行分析计算。
在步骤S303中,根据预先训练好的车辆碰撞分析模型对所述车辆的目标振动数据和/或目标冲击力方向进行计算;
在步骤S304中,根据所述车辆碰撞分析模型的计算结果生成碰撞分析报告。
步骤S303-S304与图1中的步骤S102-S103基本相同,在此不作重复赘述。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
图4为本申请实施例提供的一种车辆碰撞分析装置的结构示意图,详述如下:
本申请实施例所述车辆碰撞分析装置,包括:
数据采集单元401,用于通过传感器采集车辆的目标振动数据和/或目标冲击力方向;
数据计算单元402,用于根据预先训练好的车辆碰撞分析模型对所述车辆的目标振动数据和/或目标冲击力方向进行计算;
分析报告生成单元403,用于根据所述车辆碰撞分析模型的计算结果生成碰撞分析报告。
优选的,所述数据采集单元402包括:
振动检测子单元,用于根据振动传感器检测所述车辆的振动周期和/或振动幅度;
目标冲击力方向检测子单元,用于当所述振动传感器的振动周期超过预设的周期阈值,和/或所述振动幅度超过预设的幅度阈值时,将采集的振动数据和/或冲击力方向的数据作为目标振动数据和/或目标冲击力方向。
优选的,所述数据采集单元还用于:
根据设置在车辆的保险框上设置的传感器,或者根据设置在车辆的立柱上的传感器,或者根据设置在由碰撞频次确定的车辆位置的传感器,获取所述车辆的目标振动数据和/或目标冲击力方向。
优选的,所述装置还包括:
样本获取子单元,用于根据历史的车辆碰撞数据,获取振动样本数据和/或冲击力方向样本;
模型训练子单元,用于将所述振动样本数据和/或冲击力方向样本及相应的碰撞损失代入车辆碰撞分析模型进行训练,生成车辆碰撞分析模型。
优选的,所述分析报告生成单元包括:
计算子单元,用于根据所述车辆碰撞分析模型计算所述车辆的目标振动数据和/或目标冲击力方向所对应的碰撞损失;
发送子单元,用于根据所述碰撞损失生成碰撞分析报告,将所述碰撞分析报告发送所述车辆绑定的终端。
图4所述车辆碰撞分析装置,与图1、图3所述的车辆碰撞分析方法对应,在此不作重复赘述。
图5是本发明一实施例提供的车辆的示意图。如图5所示,该实施例的车载设备5包括:处理器50、存储器51以及存储在所述存储器51中并可在所述处理器50上运行的计算机程序52,例如车辆碰撞分析程序。所述处理器50执行所述计算机程序52时实现上述各个车辆碰撞分析方法实施例中的步骤,例如图1所示的步骤101至103。或者,所述处理器50执行所述计算机程序52时实现上述各装置实施例中各模块/单元的功能,例如图4所示模块401至403的功能。
示例性的,所述计算机程序52可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器51中,并由所述处理器50执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序52在所述车载设备5中的执行过程。例如,所述计算机程序52可以被分割成数据采集单元、数据计算单元和分析报告生成单元,各单元具体功能如下:
数据采集单元,用于通过传感器采集车辆的目标振动数据和/或目标冲击力方向;
数据计算单元,用于根据预先训练好的车辆碰撞分析模型对所述车辆的目标振动数据和/或目标冲击力方向进行计算;
分析报告生成单元,用于根据所述车辆碰撞分析模型的计算结果生成碰撞分析报告。
所述车载设备5可包括,但不仅限于,处理器50、存储器51。本领域技术人员可以理解,图5仅仅是车载设备5的示例,并不构成对车载设备5的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述车辆还可以包括输入输出设备、网络接入设备、总线等。
所称处理器50可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路 (Application Specific Integrated Circuit,ASIC)、现成可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器51可以是所述车载设备5的内部存储单元,例如车载设备5的硬盘或内存。所述存储器51也可以是所述车载设备5的外部存储设备,例如所述车载设备5上配备的插接式硬盘,智能存储卡(Smart Media Card, SMC),安全数字(Secure Digital, SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器51还可以既包括所述车载设备5的内部存储单元也包括外部存储设备。所述存储器51用于存储所述计算机程序以及所述车辆所需的其他程序和数据。所述存储器51还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本发明所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括是电载波信号和电信信号。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种车辆碰撞分析方法,其特征在于,所述方法包括:
    通过传感器采集车辆的目标振动数据和/或目标冲击力方向;
    根据预先训练好的车辆碰撞分析模型对所述车辆的目标振动数据和/或目标冲击力方向进行计算;
    根据所述车辆碰撞分析模型的计算结果生成碰撞分析报告。
  2. 根据权利要求1所述的车辆碰撞分析方法,其特征在于,所述通过传感器采集车辆的目标振动数据和/或目标冲击力方向的步骤包括:
    根据振动传感器检测所述车辆的振动周期和/或振动幅度;
    当所述振动传感器的振动周期超过预设的周期阈值,和/或所述振动幅度超过预设的幅度阈值时,将采集的振动数据和/或冲击力方向的数据作为目标振动数据和/或目标冲击力方向。
  3. 根据权利要求1或2所述的车辆碰撞分析方法,其特征在于,所述通过传感器采集车辆的目标振动数据和/或目标冲击力方向的步骤包括:
    根据设置在车辆的保险框上设置的传感器,或者根据设置在车辆的立柱上的传感器,或者根据设置在由碰撞频次确定的车辆位置的传感器,获取所述车辆的目标振动数据和/或目标冲击力方向。
  4. 根据权利要求1所述的车辆碰撞分析方法,其特征在于,在所述根据预先训练好的车辆碰撞分析模型对所述车辆的目标振动数据和/或目标冲击力方向进行计算的步骤之前,所述方法还包括:
    根据历史的车辆碰撞数据,获取振动样本数据和/或冲击力方向样本;
    将所述振动样本数据和/或冲击力方向样本及相应的碰撞损失代入车辆碰撞分析模型进行训练,生成车辆碰撞分析模型。
  5. 根据权利要求1-4任一项所述的车辆碰撞分析方法,其特征在于,所述根据所述车辆碰撞分析模型的计算结果生成碰撞分析报告的步骤包括:
    根据所述车辆碰撞分析模型计算所述车辆的目标振动数据和/或目标冲击力方向所对应的碰撞损失;
    根据所述碰撞损失生成碰撞分析报告,将所述碰撞分析报告发送所述车辆绑定的终端。
  6. 一种车辆碰撞分析装置,其特征在于,所述车辆碰撞分析装置包括:
    数据采集单元,用于通过传感器采集车辆的目标振动数据和/或目标冲击力方向;
    数据计算单元,用于根据预先训练好的车辆碰撞分析模型对所述车辆的目标振动数据和/或目标冲击力方向进行计算;
    分析报告生成单元,用于根据所述车辆碰撞分析模型的计算结果生成碰撞分析报告。
  7. 根据权利要求6所述的车辆碰撞分析装置,其特征在于,所述数据采集单元包括:
    振动检测子单元,用于根据振动传感器检测所述车辆的振动周期和/或振动幅度;
    目标冲击力方向检测子单元,用于当所述振动传感器的振动周期超过预设的周期阈值,和/或所述振动幅度超过预设的幅度阈值时,将采集的振动数据和/或冲击力方向的数据作为目标振动数据和/或目标冲击力方向。
  8. 根据权利要求6所述的车辆碰撞分析装置,其特征在于,所述装置还包括:
    样本获取子单元,用于根据历史的车辆碰撞数据,获取振动样本数据和/或冲击力方向样本;
    模型训练子单元,用于将所述振动样本数据和/或冲击力方向样本及相应的碰撞损失代入车辆碰撞分析模型进行训练,生成车辆碰撞分析模型。
  9. 一种车载设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至5任一项所述车辆碰撞分析方法的步骤。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至5任一项所述车辆碰撞分析方法的步骤。
PCT/CN2018/077690 2018-02-28 2018-02-28 一种车载设备及车辆碰撞分析方法和装置 WO2019165617A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880000123.1A CN108401464A (zh) 2018-02-28 2018-02-28 一种车载设备及车辆碰撞分析方法和装置
PCT/CN2018/077690 WO2019165617A1 (zh) 2018-02-28 2018-02-28 一种车载设备及车辆碰撞分析方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/077690 WO2019165617A1 (zh) 2018-02-28 2018-02-28 一种车载设备及车辆碰撞分析方法和装置

Publications (1)

Publication Number Publication Date
WO2019165617A1 true WO2019165617A1 (zh) 2019-09-06

Family

ID=63093375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077690 WO2019165617A1 (zh) 2018-02-28 2018-02-28 一种车载设备及车辆碰撞分析方法和装置

Country Status (2)

Country Link
CN (1) CN108401464A (zh)
WO (1) WO2019165617A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11390243B2 (en) * 2018-11-09 2022-07-19 Apollo Intelligent Driving Technology (Beijing) Co., Ltd. Method and apparatus for processing vehicle collision, vehicle, device and storage medium

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109353301A (zh) * 2018-09-26 2019-02-19 北京长城华冠汽车技术开发有限公司 车辆应急求救方法及系统、计算机可读介质
CN109559403A (zh) * 2018-11-30 2019-04-02 阿里巴巴集团控股有限公司 一种基于车辆部件损失数据的车辆定损方法、装置和系统
CN109741483B (zh) * 2018-12-11 2021-12-03 成都路行通信息技术有限公司 一种基于车联网平台的汽车碰撞检测方法
CN111176274B (zh) * 2019-12-26 2023-03-28 西门子(深圳)磁共振有限公司 多轴运动系统的防碰撞方法、系统和存储介质
CN111583633B (zh) * 2020-04-27 2023-10-27 腾讯科技(深圳)有限公司 车辆碰撞的预警方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101407193A (zh) * 2008-11-11 2009-04-15 徐克林 车辆防撞报警装置
CN103310119A (zh) * 2013-07-05 2013-09-18 湖南大学 基于损伤评价的车辆碰撞乘员约束系统摩擦特性的反分析方法
JP2015087945A (ja) * 2013-10-30 2015-05-07 ダイハツ工業株式会社 車両衝突解析方法
CN105956265A (zh) * 2016-04-29 2016-09-21 大连楼兰科技股份有限公司 仿真工况参数流程化用于碰撞事故仿真重现的方法及系统
CN106096624A (zh) * 2016-05-27 2016-11-09 大连楼兰科技股份有限公司 基于人工智能建立不同车型分工况远程定损系统及方法
CN106447575A (zh) * 2016-09-23 2017-02-22 叶春林 车辆安全监管系统
CN106920293A (zh) * 2016-10-27 2017-07-04 蔚来汽车有限公司 车辆事故自动记录分析方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030200123A1 (en) * 2001-10-18 2003-10-23 Burge John R. Injury analysis system and method for insurance claims
CN202033810U (zh) * 2011-01-18 2011-11-09 秦小枢 用于车辆意外管理的汽车综合管理装置
CN102306408B (zh) * 2011-06-21 2013-08-07 五邑大学 一种行车撞击力与撞击方向监测器
CN105547176B (zh) * 2015-12-29 2018-03-06 大连楼兰科技股份有限公司 基于光纤传感器的车辆自动定损方法
CN105719359B (zh) * 2016-01-15 2019-04-30 中国人民解放军装甲兵工程学院 车辆信息的获取方法和装置
CN106056452A (zh) * 2016-05-27 2016-10-26 大连楼兰科技股份有限公司 远程无人定损系统的建立方法及远程无人定损方法
CN106355671A (zh) * 2016-08-18 2017-01-25 中国联合网络通信集团有限公司 一种车辆碰撞事件处理方法、采集终端和处理平台

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101407193A (zh) * 2008-11-11 2009-04-15 徐克林 车辆防撞报警装置
CN103310119A (zh) * 2013-07-05 2013-09-18 湖南大学 基于损伤评价的车辆碰撞乘员约束系统摩擦特性的反分析方法
JP2015087945A (ja) * 2013-10-30 2015-05-07 ダイハツ工業株式会社 車両衝突解析方法
CN105956265A (zh) * 2016-04-29 2016-09-21 大连楼兰科技股份有限公司 仿真工况参数流程化用于碰撞事故仿真重现的方法及系统
CN106096624A (zh) * 2016-05-27 2016-11-09 大连楼兰科技股份有限公司 基于人工智能建立不同车型分工况远程定损系统及方法
CN106447575A (zh) * 2016-09-23 2017-02-22 叶春林 车辆安全监管系统
CN106920293A (zh) * 2016-10-27 2017-07-04 蔚来汽车有限公司 车辆事故自动记录分析方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11390243B2 (en) * 2018-11-09 2022-07-19 Apollo Intelligent Driving Technology (Beijing) Co., Ltd. Method and apparatus for processing vehicle collision, vehicle, device and storage medium

Also Published As

Publication number Publication date
CN108401464A (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
WO2019165617A1 (zh) 一种车载设备及车辆碰撞分析方法和装置
CN106934876B (zh) 一种车辆异常驾驶事件的识别方法及系统
CN109557904B (zh) 一种测试方法、装置、设备和介质
CN111731284A (zh) 一种辅助驾驶方法、装置、车载终端设备和存储介质
US9076340B2 (en) Vehicle detecting system and method
EP3640622B1 (en) Method and apparatus for determining coping capability boundary information of an unmanned vehicle and computer program therefore
CN108399777B (zh) 一种辅助驾驶方法、装置及电子设备
CN110889351B (zh) 视频检测方法、装置、终端设备及可读存储介质
CN110147946B (zh) 一种数据分析方法及装置
CN107817018B (zh) 车道线偏离报警系统的测试系统和测试方法
CN110143202A (zh) 一种危险驾驶识别与预警方法及系统
CN108482382B (zh) 驾驶技术评分方法、设备、存储介质及车辆
WO2019165614A1 (zh) 一种车辆周边环境分析方法、装置及车载设备
CN106809214A (zh) 一种汽车追尾预警方法、装置及电子设备
CN112046492B (zh) 一种带有方向的车辆车速计算方法、装置、设备及介质
JP2020042786A (ja) 自動車画像の処理方法、自動車画像の処理装置及びコンピュータ読み取り可能な記憶媒体
CN107117099A (zh) 一种车辆碰撞提示方法及车辆
CN108806019B (zh) 基于加速度传感器的行车记录数据处理方法及装置
CN109637148B (zh) 车载鸣笛监控系统、方法、存储介质及设备
US20200148160A1 (en) Method and Apparatus for Processing Vehicle Collision, Vehicle, Device and Storage Medium
JP2011131728A (ja) 記録システム
CN113829994B (zh) 基于车外鸣笛声的预警方法、装置、汽车及介质
CN105679092A (zh) 一种驾驶行为分析系统及方法
CN111192327A (zh) 用于确定障碍物朝向的方法和装置
DE102015213594A1 (de) Verfahren, computer-lesbares Medium, und System zum Erfassen einer Verkehrssituation eines oder mehrerer Fahrzeuge in einer Umgebung eines Egofahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907506

Country of ref document: EP

Kind code of ref document: A1