WO2019165524A1 - Máquina elétrica girante e invólucro para uma máquina elétrica girante - Google Patents

Máquina elétrica girante e invólucro para uma máquina elétrica girante Download PDF

Info

Publication number
WO2019165524A1
WO2019165524A1 PCT/BR2018/050057 BR2018050057W WO2019165524A1 WO 2019165524 A1 WO2019165524 A1 WO 2019165524A1 BR 2018050057 W BR2018050057 W BR 2018050057W WO 2019165524 A1 WO2019165524 A1 WO 2019165524A1
Authority
WO
WIPO (PCT)
Prior art keywords
longitudinal
flow channels
layer
electric machine
internal
Prior art date
Application number
PCT/BR2018/050057
Other languages
English (en)
French (fr)
Inventor
Alcides FEDIUK JUNIOR
Guilherme SCHNEIDER POREPP
Original Assignee
Weg Equipamentos Elétricos S.a.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weg Equipamentos Elétricos S.a. filed Critical Weg Equipamentos Elétricos S.a.
Priority to PCT/BR2018/050057 priority Critical patent/WO2019165524A1/pt
Priority to BR112020017511-0A priority patent/BR112020017511A2/pt
Publication of WO2019165524A1 publication Critical patent/WO2019165524A1/pt

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/207Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium with openings in the casing specially adapted for ambient air

Definitions

  • the present invention relates to a rotating electric machine having a housing with a double layer cooling system.
  • Electrical machines are widely known in the art and may comprise both electric motors and electric generators.
  • a concern commonly associated with this type of machine is the need for a ventilation or cooling system, ie a system capable of dissipating the heat generated by the machine while maintaining its internal temperature within pre-set operating limits.
  • Water-cooled, rotating electric machines are widely used in the industrial and marine industries due to their high power density and small dimensions. This is because the heat exchanger of the equipment is located around the electric machine by means of water flow channels, which form the so-called “water mantle”.
  • the mantle comprises a metal housing consisting of an internal water flow layer, longitudinal channels parallel to the main axis of the rotating electric machine or a helical channel that surrounds the entire length of the housing.
  • helical runoff channels can be fabricated by casting or milling from a metal cylinder.
  • Document PI 1003641 -5 shows a drive motor cooling jacket that includes a jacket body extruded material having an outer peripheral surface, an inner peripheral surface and a plurality of discrete cooling passages located between the inner and outer peripheral surfaces, the passages being intended for multidirectional flow within the extruded body.
  • US 20130126144 already shows a cooling jacket for an electric motor that has one or more waveform tubes, covering the electric motor, to drive the working fluid, where each waveform tube has a routing portion and a reverse portion, parallel to the electric motor shaft, for conducting the working fluid flowing in opposite directions, wherein the routing portion includes at least two routing sub-tubes, and the inverted portion includes at least two inverted subsets; and a curved portion connected between the forwarding portion and the inverted portion.
  • water-cooled rotating electric machines have a centrifugal fan in the front or rear of the machine, responsible for the internal air flow, and the machines generally have two longitudinal ducts that connect the air outlet of the internal fan of the electric machine with the air return at the end of the machine opposite the internal fan.
  • air flow ducts have adequate cross-sectional area to the air flow through it, however, such ducts have low heat exchange area with the water flow channels.
  • the internal air temperature of the motor reaches temperatures close to and even above the temperature of the stator conductor windings.
  • motor bearing housings have their high temperatures due to their heat exchange area with the motor's internal air.
  • the present invention achieves the above objectives by means of a rotating electric machine of the type comprising a housing enclosing an internal volume and housing a stator and a rotor concentric to the stator and disposed on a main axis of the machine, wherein the The housing comprises a double layer cooling system, wherein an inner layer is formed by a plurality of longitudinal flow channels and an outer layer is formed by a plurality of longitudinal air flow channels, wherein there is heat exchange between layer inner and outer layers, but there is no fluidic communication between the longitudinal flow channels and the longitudinal air flow channels.
  • the longitudinal flow channels and the longitudinal air flow channels are aligned with the direction of the main axis line of the electric machine.
  • the housing comprises an inner wall separating the internal volume of the machine from the inner layer, an intermediate wall separating the inner layer from the outer layer, and an outer wall separating the outer layer from the outer environment.
  • the longitudinal flow channels of the inner layer liquid are laterally delimited by longitudinal bars extending radially between the inner wall and the intermediate wall.
  • the longitudinal air flow channels of the outer layer are laterally delimited by longitudinal bars extending radially between the intermediate wall and the outer wall.
  • the rotating electric machine further comprises two end heads, each end head having an internal fluid path and an external fluid path, wherein the internal fluid path and the external fluid path do not communicate fluidly with each other, in that the internal fluidic path is in fluidic communication with the longitudinal outflow channels of the inner layer, wherein the external fluidic path is in fluidic communication with the longitudinal outflow channels of the outer layer, and wherein the external fluidic pathway connects the longitudinal airflow channels with the internal volume of the machine.
  • the internal fluidic path is formed by radially disposed cavities so as to connect each longitudinal water flow channel with its adjacent channel, thus forming a single sinuous water channel. runoff, the winding runoff channel having only one water inlet and only one water outlet.
  • Each end head is fixed to the housing by a bolted joint.
  • the present invention also contemplates a casing for a rotating electric machine comprising an inner layer formed by a plurality of longitudinal flow channels, an outer layer formed by a plurality of longitudinal air flow channels, wherein the outer layer exchanges heat with the inner layer, and wherein the outer layer is fluidly isolated from the inner layer.
  • the housing comprises an inner wall separating the internal volume of the machine from the inner layer, an intermediate wall separating the inner layer from the outer layer, and an outer wall separating the outer layer from the outer environment.
  • the longitudinal liquid-flow channels of the inner layer are laterally delimited by longitudinal bars extending radially between the inner wall and the intermediate wall.
  • the longitudinal air flow channels of the outer layer are laterally delimited by longitudinal bars extending radially between the intermediate wall and the outer wall.
  • the housing further comprises two end heads, each end head having an internal fluid path and an external fluid path, wherein the internal fluid path and the external fluid path do not communicate fluidly with each other, wherein the The internal fluidic path is in fluidic communication with the longitudinal outflow channels of the inner layer, wherein the external fluidic path is in fluidic communication with the longitudinal outflow channels of the outer layer, and in which the external fluidic path connects the longitudinal channels of air flow with the internal volume of the machine.
  • Figure 1 is a perspective cross-sectional view of a rotating electric machine comprising the cooling system according to the present invention
  • FIG. 2 is a schematic view showing the cooling circuits of the cooling system of the present invention.
  • Figure 3 is a perspective view of the casing of the rotating electric machine according to the present invention.
  • Figure 4 is a perspective cross-sectional view of the rotating electric machine casing according to the present invention, where the end heads are shown in exploded configuration;
  • Figure 5 is a cross-sectional view of the front portion of the casing of the rotating electric machine according to the present invention, where the end head is shown in exploded configuration;
  • Figure 6 is an enlarged cross-sectional view of the region of engagement between the end head and the casing of the rotating electric machine according to the present invention, the casing and head being shown in an unmounted configuration;
  • Figure 7 is an enlarged cross-sectional view of the region of engagement between the end head and the casing of the rotating electric machine according to the present invention, the casing and head being shown in assembled configuration;
  • Figure 8 is a cross-sectional view of the rotating electric machine according to the present invention, where water flow and air flow are illustrated in shadow.
  • the rotating electric machine is an electric motor
  • the cooling system of the present invention could be applied to any type of rotating electric machine.
  • Figure 1 illustrates an electric motor of the type comprising a housing or housing 1 housing a stator 2, with a conductor winding system arranged axially along grooves in a ferromagnetic core, and a concentric rotor 3 to the stator.
  • the rotor rotates with a mainshaft 4 of the machine, with the housing 1 closed by covers 5,6 with openings for passage of the shaft ends.
  • the operation of rotating stator and rotor electric machines is well known to those skilled in the art and therefore will not be described in detail here.
  • the housing 1 is preferably of a metallic material and comprises a double layer cooling system, wherein an inner layer 7 is formed by a plurality of longitudinal flow channels of liquid (generally water) and an outer layer 8 It is formed by a plurality of longitudinal air flow channels. Preferably, the channels are aligned with the direction of the mainshaft line of the electric machine.
  • liquid generally water
  • outer layer 8 It is formed by a plurality of longitudinal air flow channels.
  • the channels are aligned with the direction of the mainshaft line of the electric machine.
  • the outer layer 8 acts as a ventilation system that has a large contact area with the inner layer 7 and is capable of heat exchange. with it.
  • the outer layer 8 is capable of removing heat from the interior (internal volume) of the machine and exchanging heat with the internal cooling layer 7.
  • FIG 2 shows schematically the double layer refrigeration system.
  • the channels of the liquid inner layer 7 do not communicate fluidly.
  • the housing 1 comprises an inner wall 1a separating the machine cavity from the double layer cooling system, an intermediate wall 1b separating the inner layer from liquid 7 of the outer air layer 8, and an outer wall 1 c, which promotes the separation between the internal air of the machine and the surrounding air.
  • the inner, middle and outer walls are metallic.
  • the inner layer 7 has parallel and spaced longitudinal bars 9, and for the lateral delimitation of the air channels, the outer layer 8 has longitudinal bars 10 parallel and spaced.
  • the longitudinal bars 9 extend radially between the inner wall 1 a and the intermediate wall 1 b
  • the longitudinal bars 10 extend radially between the intermediate wall 1 b and the outer wall 1 c.
  • the longitudinal bars 9 and 10 are metallic.
  • the metal housing 1 receives two end heads 11 which form, together with the layer channels 7, 8, fluidically independent air and liquid circulation circuits.
  • the head 11 comprises two independent fluid paths, the inner path 12 and the outer path 13.
  • Inner path 12 is formed by radially recessed cavities to form water return curves connecting each longitudinal water flow channel with its adjacent channel, thereby forming a single winding water channel (see schematic illustration of the figure 2).
  • the winding water channel includes only one water inlet 7a and only one water outlet 7b.
  • the coolant usually water enters the water inlet 7a, runs through the entire continuous winding circuit and exits through the water outlet 7b.
  • the outer path 13 comprises one or more curved cavities connecting the channels of the outer air layer 8 with the internal air volume of the machine.
  • path 13 may include a plurality of openings communicating individually or in groups with the outer air layer channels 8 or just one opening communicating with all the air layer channels.
  • the path 13 may comprise a plurality of openings in communication with the inner cavity or an opening in communication with the internal cavity. In the embodiment illustrated in the figures, such communication is made by a plurality of openings in the radial direction on the surface located at the inside diameter of the head.
  • the heads are fixed to the housing 1 by means of bolted union 14.
  • bolts of bolted union 14 may be inserted into corresponding holes formed in the longitudinal bars 9, 10 of layers 7,8.
  • the heads 11 can be easily removed to allow cleaning of the flow channels when necessary.
  • figure 8 shows the water flow as a darker shading on the inner layer 7 and path 12 and the air flow as a lighter shading on the outer layer 8 and path 13, the heat exchange being through the intermediate cylindrical wall 1 b.
  • intermediate wall 1b could be constructed with a fin surface on the face in contact with air, in order to increase heat transfer between air and water.

Abstract

A presente invenção refere-se a um uma máquina elétrica girante tendo um invólucro com um sistema de resfriamento de dupla camada, o qual permite um aumento da área de troca térmica entre o fluido de resfriamento e o ar interno da máquina, reduzindo a temperatura do volume interno da máquina. A máquina elétrica compreende um invólucro (1) com um sistema de resfriamento de dupla camada, onde uma camada interna (7) é formada por uma pluralidade de canais longitudinais de escoamento de líquido e uma camada externa (8) é formada por uma pluralidade de canais longitudinais de escoamento de ar, em que há troca de calor entre camada interna (7) e camada externa (8) mas não há comunicação fluídica entre os canais longitudinais de escoamento de líquido e os canais longitudinais de escoamento de ar.

Description

“MÁQUINA ELÉTRICA GIRANTE E INVÓLUCRO PARA UMA MÁQUINA ELÉTRICA GIRANTE”
CAMPO DA INVENÇÃO
[0001] A presente invenção refere-se a um uma máquina elétrica girante tendo um invólucro com um sistema de resfriamento de dupla camada.
FUNDAMENTOS DA INVENÇÃO
[0002] Máquinas elétricas são largamente conhecidas da técnica e podem compreender tanto motores elétricos quanto geradores elétricos. Uma preocupação comumente associada a esse tipo de máquina é a necessidade de um sistema de ventilação ou refrigeração, ou seja, um sistema capaz de dissipar o calor gerado pela máquina, mantendo sua temperatura interna dentro de limites de operação preestabelecidos.
[0003] As máquinas elétricas girantes resfriadas por manto d’água possuem amplo uso no ramo industrial e naval devido à sua elevada densidade de potência e dimensões reduzidas. Isso decorre de o trocador de calor do equipamento estar situado em torno da máquina elétrica por meio de canais de escoamento de água, os quais formam o chamado “manto d’água”.
[0004] São conhecidas da técnica diversas construções diferentes para o manto d’água. Em uma construção usual, o manto compreende um invólucro metálico constituído de uma camada interna de escoamento de água, em canais longitudinais paralelos ao eixo principal da máquina elétrica girante ou em um canal helicoidal que envolve todo o comprimento do invólucro. Geralmente, canais helicoidais de escoamento de água podem ser fabricados por meio de fundição ou fresamento, a partir de um cilindro metálico.
[0005] Algumas soluções conhecidas do estado da técnica buscam alcançar uma solução de resfriamento aperfeiçoada.
[0006] O documento PI 1003641 -5, por exemplo, mostra uma camisa de refrigeração para motor de acionamento que inclui um corpo de camisa extrudado que tem uma superfície periférica externa, uma superfície periférica interna e uma pluralidade de passagens de refrigeração discretas, localizadas entre as superfícies periféricas internas e externas, sendo que as passagens visam um fluxo multidirecional no interior do corpo extrudado.
[0007] Já o documento US 20130126144 mostra uma camisa de resfriamento para um motor elétrico que tem um ou mais tubos em forma de onda, cobrindo o motor elétrico, para conduzir o fluido de trabalho, em que cada tubo em forma de onda tem uma porção de encaminhamento e uma porção reversa, paralela ao eixo do motor elétrico, para conduzir o fluido de trabalho fluindo em direções opostas, em que a porção de encaminhamento inclui pelo menos dois sub-tubos de encaminhamento, e a porção invertida inclui pelo menos dois subconjuntos invertidos; e uma porção curva, conectada entre a porção de encaminhamento e a porção invertida.
[0008] Embora as soluções de resfriamento conhecidas apresentem boa capacidade de resfriamento, permanece no estado da técnica a necessidade por uma solução que seja dedicada ao ar interno.
[0009] Essa questão é importante pois quando a temperatura do ar interno da máquina elétrica permanece elevada tem-se o aumento das temperaturas de componentes da máquina elétrica que são resfriados totalmente ou parcialmente pelo ar interno.
[0010] Nas soluções conhecidas, as máquinas elétricas girantes resfriadas por manto d’água apresentam um ventilador centrífugo na região frontal ou traseira da máquina, responsável pelo escoamento do ar interno, sendo que, em geral, as máquinas apresentam dois dutos longitudinais que ligam a saída de ar do ventilador interno da máquina elétrica com o retorno de ar na extremidade da máquina oposta ao ventilador interno. Geralmente, tais dutos de escoamento de ar apresentam área de seção transversal adequada à vazão de ar que por ela escoa, entretanto, tais dutos possuem baixa área de troca térmica com os canais de escoamento de água. Dessa maneira, a temperatura do ar de ventilação interno do motor atinge temperaturas próximas e até mesmo superiores à temperatura dos enrolamentos de condutores do estator. Como resultado, os mancais de rolamentos do motor têm suas temperaturas elevadas em decorrência da área de troca térmica desses com o ar interno do motor.
OBJETIVOS DA INVENÇÃO
[0011] Assim, é um dos objetivos da presente invenção proporcionar uma máquina elétrica girante em que o sistema de resfriamento é capaz de oferecer uma boa capacidade de resfriamento do ar interno.
[0012] É mais um dos objetivos da presente invenção proporcionar uma máquina elétrica girante em que o invólucro possui um sistema de resfriamento que aumenta a área de troca térmica entre o fluido de resfriamento e o ar interno da máquina, reduzindo a temperatura média do ar interno.
[0013] É ainda outro dos objetivos da presente invenção proporcionar uma máquina elétrica girante em que o sistema de resfriamento é capaz de reduzir significativamente a temperatura dos componentes da máquina que são resfriados pelo sistema.
[0014] É mais um dos objetivos da presente invenção proporcionar uma máquina elétrica girante em que o sistema de resfriamento é construído de forma a possibilitar acesso para limpeza dos canais de escoamento do líquido de resfriamento.
BREVE DESCRIÇÃO DA INVENÇÃO
[0015] A presente invenção atinge os objetivos acima por meio de uma máquina elétrica girante do tipo que compreende um invólucro que delimita um volume interno e aloja um estator e um rotor concêntrico ao estator e disposto em um eixo principal da máquina, em que o invólucro compreende um sistema de resfriamento de dupla camada, onde uma camada interna é formada por uma pluralidade de canais longitudinais de escoamento de líquido e uma camada externa é formada por uma pluralidade de canais longitudinais de escoamento de ar, em que há troca de calor entre camada interna e camada externa, mas não há comunicação fluídica entre os canais longitudinais de escoamento de líquido e os canais longitudinais de escoamento de ar.
[0016] Em uma concretização da presente invenção, os canais longitudinais de escoamento de líquido e os canais longitudinais de escoamento de ar são alinhados com a direção da linha do eixo principal da máquina elétrica.
[0017] O invólucro compreende uma parede interna, que separa o volume interno da máquina da camada interna, uma parede intermediária, que separa a camada interna da camada externa, e uma parede externa, que separa a camada externa do ambiente externo.
[0018] Os canais longitudinais de escoamento de líquido da camada interna são delimitados lateralmente por barras longitudinais que se estendem radialmente entre a parede interna e a parede intermediária.
[0019] Os canais longitudinais de escoamento de ar da camada externa são delimitados lateralmente por barras longitudinais que se estendem radialmente entre a parede intermediária e a parede externa.
[0020] A máquina elétrica girante compreende ainda dois cabeçotes de extremidade, cada um dos cabeçotes de extremidade possuindo um caminho fluídico interno e um caminho fluídico externo, em que o caminho fluídico interno e o caminho fluídico externo não se comunicam fluidicamente entre si, em que o caminho fluídico interno está em comunicação fluídica com os canais longitudinais de escoamento de líquido da camada interna, em que o caminho fluídico externo está em comunicação fluídica com os canais longitudinais de escoamento de ar da camada externa, e em que o caminho fluídico externo conecta os canais longitudinais de escoamento de ar com o volume interno da máquina.
[0021] O caminho fluídico interno é formado por cavidades radialmente dispostas de modo a conectar cada canal longitudinal de escoamento de água com seu canal adjacente, formando assim um único canal sinuoso de escoamento de água, o canal sinuoso de escoamento de água possuindo apenas uma entrada de água e apenas uma saída de água.
[0022] Cada cabeçote de extremidade é fixado ao invólucro através de uma união parafusada.
[0023] A presente invenção também contempla um invólucro para uma máquina elétrica girante que compreende uma camada interna formada por uma pluralidade de canais longitudinais de escoamento de líquido, uma camada externa formada por uma pluralidade de canais longitudinais de escoamento de ar, em que a camada externa troca calor com a camada interna, e em que a camada externa é fluidicamente isolada da camada interna.
[0024] O invólucro compreende uma parede interna, que separa o volume interno da máquina da camada interna, uma parede intermediária, que separa a camada interna da camada externa, e uma parede externa, que separa a camada externa do ambiente externo.
[0025] Os canais longitudinais de escoamento de líquido da camada interna são delimitados lateralmente por barras longitudinais que se estendem radialmente entre a parede interna e a parede intermediária.
[0026] Os canais longitudinais de escoamento de ar da camada externa são delimitados lateralmente por barras longitudinais que se estendem radialmente entre a parede intermediária e a parede externa.
[0027] O invólucro compreende ainda dois cabeçotes de extremidade, cada um dos cabeçotes de extremidade possuindo um caminho fluídico interno e um caminho fluídico externo, em que o caminho fluídico interno e o caminho fluídico externo não se comunicam fluidicamente entre si, em que o caminho fluídico interno está em comunicação fluídica com os canais longitudinais de escoamento de líquido da camada interna, em que o caminho fluídico externo está em comunicação fluídica com os canais longitudinais de escoamento de ar da camada externa, e em que o caminho fluídico externo conecta os canais longitudinais de escoamento de ar com o volume interno da máquina. BREVE DESCRIÇÃO DOS DESENHOS
[0028] A presente invenção será descrita a seguir com mais detalhes, com referências aos desenhos anexos, nos quais:
[0029] Figura 1 - é uma vista em perspectiva em seção transversal de uma máquina elétrica girante que compreende o sistema de resfriamento de acordo com a presente invenção;
[0030] Figura 2 - é uma vista em esquemática mostrando os circuitos de refrigeração do sistema de resfriamento da presente invenção;
[0031] Figura 3 - é uma vista em perspectiva do invólucro da máquina elétrica girante de acordo com a presente invenção;
[0032] Figura 4 - é uma vista em perspectiva da seção transversal do invólucro da máquina elétrica girante de acordo com a presente invenção, onde os cabeçotes de extremidade são mostrados em configuração explodida;
[0033] Figura 5 - é uma vista em seção transversal da porção frontal do invólucro da máquina elétrica girante de acordo com a presente invenção, onde o cabeçote de extremidade é mostrado em configuração explodida;
[0034] Figura 6 - é uma vista ampliada da seção transversal da região de encaixe entre o cabeçote de extremidade e o invólucro da máquina elétrica girante de acordo com a presente invenção, sendo o invólucro e o cabeçote mostrados em configuração não montada;
[0035] Figura 7 - é uma vista ampliada em seção transversal da região de encaixe entre o cabeçote de extremidade e o invólucro da máquina elétrica girante de acordo com a presente invenção, sendo o invólucro e o cabeçote mostrados em configuração montada; e
[0036] Figura 8 - é uma vista da seção transversal da máquina elétrica girante de acordo com a presente invenção, onde o fluxo de água e o fluxo de ar são ilustrados em sombreado.
DESCRIÇÃO DETALHADA DA INVENÇÃO
[0037] A presente invenção será descrita a seguir com base em uma concretização preferida mostrada nas figuras 1 a 8.
[0038] Embora a presente descrição detalhada seja feita com base em uma concretização exemplificativa da invenção onde a máquina elétrica girante é um motor elétrico, deve ser entendido que o sistema de resfriamento da presente invenção poderia ser aplicado a qualquer tipo de máquina elétrica girante.
[0039] A figura 1 ilustra um motor elétrico do tipo que compreende uma carcaça ou invólucro 1 que aloja um estator 2, com um sistema de enrolamentos de condutores dispostos de forma axial ao longo de ranhuras em um núcleo ferromagnético, e um rotor 3 concêntrico ao estator. O rotor gira com um eixo principal 4 da máquina, sendo que o invólucro 1 fechado por tampas 5, 6 com aberturas para passagem das extremidades do eixo. O funcionamento de máquinas elétricas girantes com estator e rotor é plenamente conhecido pelos técnicos no assunto e, portanto, não será aqui pormenorizadamente descrito.
[0040] O invólucro 1 é, preferencialmente, de um material metálico e compreende um sistema de resfriamento de dupla camada, onde uma camada interna 7 é formada por uma pluralidade de canais longitudinais de escoamento de líquido (geralmente água) e uma camada externa 8 é formada por uma pluralidade de canais longitudinais de escoamento de ar. Preferencialmente, os canais são alinhados com a direção da linha do eixo principal da máquina elétrica.
[0041] Assim, enquanto a camada interna 7 atua como um sistema de resfriamento de manto d’água, a camada externa 8 atua como um sistema de ventilação que possui uma larga área de contato com a camada interna 7 e é capaz de trocar calor com a mesma. Com essa construção, a camada externa 8 é capaz de retirar calor do interior (volume interno) da máquina e trocar calor com a camada de resfriamento interna 7.
[0042] A figura 2 mostra, esquematicamente, o sistema de refrigeração de camada dupla. Como ficará claro a partir da descrição a seguir, os canais da camada interna de líquido 7 não se comunicam fluidicamente com os canais da camada externa de ar 8, há apenas troca de calor entre as camadas.
[0043] Preferencialmente, como melhor ilustrado nas figuras 6 a 8, o invólucro 1 compreende uma parede interna 1 a, que separa a cavidade da máquina do sistema de resfriamento em dupla camada, uma parede intermediária 1 b, que separa a camada interna de líquido 7 da camada externa de ar 8, e uma parede externa 1 c, que promove a separação entre o ar interno da máquina e o ar do ambiente ao seu redor. Na concretização preferida da invenção, as paredes interna, intermediária e externa são metálicas.
[0044] Como melhor ilustrado nas figuras 4 e 5, para formação dos canais de líquido longitudinais, a camada interna 7 possui barras longitudinais 9 paralelas e espaçadas, e para a delimitação lateral dos canais de ar, a camada externa 8 possui barras longitudinais 10 paralelas e espaçadas. Assim, as barras longitudinais 9 estendem-se radialmente entre a parede interna 1 a e a parede intermediária 1 b, e as barras longitudinais 10 estendem-se radialmente entre a parede intermediária 1 b e a parede externa 1 c. Na concretização preferida da invenção, as barras longitudinais 9 e 10 são metálicas.
[0045] Como melhor ilustrado nas figuras 3 a 7, de modo a garantir que não haja comunicação fluídica entre a camada interna de líquido 7 e a camada externa de ar 8, o invólucro metálico 1 recebe dois cabeçotes de extremidade 1 1 que formam, junto com os canais das camadas 7, 8, circuitos de circulação de líquido e de ar fluidicamente independentes.
[0046] O cabeçote 1 1 compreende dois caminhos fluídicos independentes, o caminho interno 12 e caminho externo 13.
[0047] O caminho interno 12 é formado por cavidades radialmente dispostas de modo a formar curvas de retorno de água conectando cada canal longitudinal de escoamento de água com seu canal adjacente, formando assim um único canal sinuoso de escoamento de água (vide ilustração esquemática da figura 2). Na concretização preferida da presente invenção, o canal sinuoso de escoamento de água inclui apenas uma entrada de água 7a e apenas uma saída de água 7b. Assim, o líquido de resfriamento (geralmente água) entra pela entrada de água 7a, percorre todo o circuito contínuo sinuoso e sai pela saída de água 7b.
[0048] O caminho externo 13 compreende uma ou mais cavidades curvas que conectam os canais da camada externa de ar 8 com o volume de ar interno da máquina. Nesse sentido, deve ser ressaltado que o caminho 13 pode incluir uma pluralidade de aberturas que se comunicam, individualmente ou em grupos, com os canais da camada de ar externa 8 ou apenas uma abertura em comunicação com todos os canais da camada de ar. De modo similar, na comunicação do cabeçote com o volume interno da máquina, o caminho 13 pode compreender uma pluralidade de aberturas em comunicação com a cavidade interna ou uma abertura em comunicação com a cavidade interna. Na concretização ilustrada nas figuras, essa comunicação é feita por uma pluralidade de aberturas na direção radial na superfície situada no diâmetro interno do cabeçote.
[0049] Preferencialmente, os cabeçotes são fixados ao involucro 1 por meio de união parafusada 14. Conforme mostrado nos desenhos, os parafusos da união parafusada 14 podem ser inseridos em furos correspondentes formados nas barras longitudinais 9, 10 das camadas 7,8.
[0050] Assim, os cabeçotes 1 1 podem ser facilmente removidos, de modo a permitir a limpeza dos canais de escoamento de líquido, quando necessário.
[0051] Na solução de resfriamento da presente invenção, há transferência de calor entre ar e líquido de resfriamento (geralmente água) através da parede cilíndrica intermediária 1 b. Essa característica confere à presente invenção maior área de transferência de calor entre ar interno e água, e assim, maior eficiência de resfriamento do volume interno da máquina e, consequentemente, dos componentes internos da máquina.
[0052] Nesse sentido, a figura 8 mostra o fluxo de água como um sombreado mais escuro na camada interna 7 e caminho 12 e o fluxo de ar como um sombreado mais claro na camada externa 8 e caminho 13, sendo que a troca térmica se dá através da parede cilíndrica intermediária 1 b.
[0053] Deve ser ressaltado que a parede intermediária 1 b poderia ser construída com uma superfície aletada na face em contato com o ar, de modo a aumentar a transferência de calor entre ar e água.
[0054] A redução da temperatura dos componentes internos da máquina apresenta diversas vantagens:
[0055] - a redução de temperatura dos mancais permite que se utilize mancais menores, além da redução do diâmetro do eixo principal da máquina elétrica; e
[0056] - a redução de temperatura das cabeças de bobina do estator da máquina elétrica possibilita aumento de potência para a máquina elétrica, mantendo suas dimensões, ou redução dimensional da máquina para uma mesma potência.
[0057] Tendo sido descrito um exemplo de concretização preferida da presente invenção, deve ser entendido que o escopo da presente invenção abrange outras variações possíveis do conceito inventivo descrito, sendo limitadas tão somente pelo teor das reivindicações, aí incluídos os possíveis equivalentes.

Claims

REIVINDICAÇÕES
1 . Máquina elétrica girante do tipo que compreende um invólucro (1 ) que delimita um volume interno e aloja um estator (2), um rotor (3) concêntrico ao estator e disposto em um eixo principal (4) da máquina, caracterizada pelo fato de que o invólucro (1 ) compreende um sistema de resfriamento de dupla camada, onde uma camada interna (7) é formada por uma pluralidade de canais longitudinais de escoamento de líquido e uma camada externa (8) é formada por uma pluralidade de canais longitudinais de escoamento de ar, em que há troca de calor entre camada interna (7) e camada externa (8) mas não há comunicação fluídica entre os canais longitudinais de escoamento de líquido e os canais longitudinais de escoamento de ar.
2. Máquina elétrica girante de acordo com a reivindicação 1 , caracterizada pelo fato de que os canais longitudinais de escoamento de líquido (7) e os canais longitudinais de escoamento de ar (8) são alinhados com a direção da linha do eixo principal (4) da máquina elétrica.
3. Máquina elétrica girante de acordo com a reivindicação 1 ou 2, caracterizada pelo fato de que o invólucro (1 ) compreende uma parede interna (1 a), que separa o volume interno da máquina da camada interna (7), uma parede intermediária (1 b), que separa a camada interna (7) da camada externa (8), e uma parede externa (1 c).
4. Máquina elétrica girante de acordo com a reivindicação 3, caracterizada pelo fato de que os canais longitudinais de escoamento de líquido da camada interna (7) são delimitados lateralmente por barras longitudinais (9) que se estendem radialmente entre a parede interna (1 a) e a parede intermediária (1 b); e os canais longitudinais de escoamento de ar da camada externa (8) são delimitados lateralmente por barras longitudinais (10) que se estendem radialmente entre a parede intermediária (1 b) e a parede externa (1 c).
5. Máquina elétrica girante de acordo com quais uma das reivindicações 1 a 4, caracterizada pelo fato de que compreende ainda dois cabeçotes de extremidade (1 1 ), cada um dos cabeçotes de extremidade possuindo um caminho fluídico interno (12) e um caminho fluídico externo (13), em que: o caminho fluídico interno (12) e o caminho fluídico externo (13) não se comunicam fluidicamente entre si;
o caminho fluídico interno (12) está em comunicação fluídica com os canais longitudinais de escoamento de líquido da camada interna (7); e
o caminho fluídico externo (13), está em comunicação fluídica com os canais longitudinais de escoamento de ar da camada externa (8), o caminho fluídico externo (13) conectando os canais longitudinais de escoamento de ar com o volume interno da máquina.
6. Máquina elétrica girante de acordo com a reivindicação 5, caracterizada pelo fato de que o caminho fluídico interno (12) é formado por cavidades radialmente dispostas de modo a conectar cada canal longitudinal de escoamento de água com seu canal adjacente, formando um único canal sinuoso de escoamento de água, o canal sinuoso de escoamento de água possuindo apenas uma entrada de água (7a) e apenas uma saída de água (7b).
7. Máquina elétrica girante de acordo com a reivindicação 5 ou 6, caracterizada pelo fato de que cada cabeçote de extremidade (1 1 ) é fixado ao invólucro (1 ) através de uma união parafusada (14).
8. Invólucro para uma máquina elétrica girante do tipo que compreende um invólucro (1 ) que delimita um volume interno e aloja um estator (2), um rotor (3) concêntrico ao estator e disposto em um eixo principal (4) da máquina, caracterizado pelo fato de que compreende uma camada interna (7) formada por uma pluralidade de canais longitudinais de escoamento de líquido,
uma camada externa (8) formada por uma pluralidade de canais longitudinais de escoamento de ar,
em que a camada externa (8) troca calor com a camada interna (7), e em que a camada externa (8) é fluidicamente isolada da camada interna (7).
9. Invólucro, de acordo com a reivindicação 8, caracterizado pelo fato de que compreende uma parede interna (1 a), que separa o volume interno da máquina da primeira camada (7), uma parede intermediária (1 b), que separa a camada interna (7) da camada externa (8), e uma parede externa (1 c), que separa a camada externa (8) do ambiente externo;
em que
os canais longitudinais de escoamento de líquido da camada interna (7) são delimitados lateralmente por barras longitudinais (9) que se estendem radialmente entre a parede interna (1 a) e a parede intermediária (1 b); os canais longitudinais de escoamento de ar da camada externa (8) são delimitados lateralmente por barras longitudinais (10) que se estendem radialmente entre a parede intermediária (1 b) e a parede externa (1 c).
10. Invólucro de acordo com a reivindicação 8 ou 9, caracterizado pelo fato de que compreende ainda dois cabeçotes de extremidade (1 1 ), cada um dos cabeçotes de extremidade possuindo um caminho fluídico interno (12) e um caminho fluídico externo (13), em que:
o caminho fluídico interno (12) e o caminho fluídico externo (13) não se comunicam fluidicamente entre si;
o caminho fluídico interno (12) está em comunicação fluídica com os canais longitudinais de escoamento de líquido da camada interna (7); e
o caminho fluídico externo (13), está em comunicação fluídica com os canais longitudinais de escoamento de ar da camada externa (8), o caminho fluídico externo (13) conectando os canais longitudinais de escoamento de ar com o volume interno da máquina.
PCT/BR2018/050057 2018-03-02 2018-03-02 Máquina elétrica girante e invólucro para uma máquina elétrica girante WO2019165524A1 (pt)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/BR2018/050057 WO2019165524A1 (pt) 2018-03-02 2018-03-02 Máquina elétrica girante e invólucro para uma máquina elétrica girante
BR112020017511-0A BR112020017511A2 (pt) 2018-03-02 2018-03-02 Máquina elétrica girante e invólucro para uma máquina elétrica girante

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/BR2018/050057 WO2019165524A1 (pt) 2018-03-02 2018-03-02 Máquina elétrica girante e invólucro para uma máquina elétrica girante

Publications (1)

Publication Number Publication Date
WO2019165524A1 true WO2019165524A1 (pt) 2019-09-06

Family

ID=67805639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2018/050057 WO2019165524A1 (pt) 2018-03-02 2018-03-02 Máquina elétrica girante e invólucro para uma máquina elétrica girante

Country Status (2)

Country Link
BR (1) BR112020017511A2 (pt)
WO (1) WO2019165524A1 (pt)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111521048A (zh) * 2020-07-02 2020-08-11 领航产业技术研究院(山东)有限公司 一种旋转筒式水冷装置
EP4044410A1 (en) * 2021-02-12 2022-08-17 ABB Schweiz AG Liquid cooled electric motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859482A (en) * 1997-02-14 1999-01-12 General Electric Company Liquid cooled electric motor frame
US5939808A (en) * 1998-06-03 1999-08-17 Adames; Fermin Electric motor housing with integrated heat removal facilities
US20030222519A1 (en) * 2002-05-28 2003-12-04 Emerson Electric Co. Cooling jacket for electric machines
US20050268464A1 (en) * 2004-06-04 2005-12-08 Deere & Company, A Delaware Corporation. Method of making a motor/generator cooling jacket
US20080185924A1 (en) * 2007-02-01 2008-08-07 Honeywell International Inc. Electric motor cooling jacket
US20100007227A1 (en) * 2007-09-20 2010-01-14 Smith Mark C Cooling jacket for drive motor
US20130126144A1 (en) * 2011-11-23 2013-05-23 Delta Electronics, Inc. Cooling jacket

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859482A (en) * 1997-02-14 1999-01-12 General Electric Company Liquid cooled electric motor frame
US5939808A (en) * 1998-06-03 1999-08-17 Adames; Fermin Electric motor housing with integrated heat removal facilities
US20030222519A1 (en) * 2002-05-28 2003-12-04 Emerson Electric Co. Cooling jacket for electric machines
US20050268464A1 (en) * 2004-06-04 2005-12-08 Deere & Company, A Delaware Corporation. Method of making a motor/generator cooling jacket
US20080185924A1 (en) * 2007-02-01 2008-08-07 Honeywell International Inc. Electric motor cooling jacket
US20100007227A1 (en) * 2007-09-20 2010-01-14 Smith Mark C Cooling jacket for drive motor
US20130126144A1 (en) * 2011-11-23 2013-05-23 Delta Electronics, Inc. Cooling jacket

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111521048A (zh) * 2020-07-02 2020-08-11 领航产业技术研究院(山东)有限公司 一种旋转筒式水冷装置
CN111521048B (zh) * 2020-07-02 2020-12-01 领航产业技术研究院(山东)有限公司 一种旋转筒式水冷装置
EP4044410A1 (en) * 2021-02-12 2022-08-17 ABB Schweiz AG Liquid cooled electric motor
WO2022171776A1 (en) * 2021-02-12 2022-08-18 Abb Schweiz Ag Liquid cooled electric motor

Also Published As

Publication number Publication date
BR112020017511A2 (pt) 2020-12-22

Similar Documents

Publication Publication Date Title
BR102016007559B1 (pt) Máquina elétrica e método de resfriamento de uma máquina elétrica
US20070210655A1 (en) Electric machine with improved water cooling system
KR102361466B1 (ko) 포드 추진 디바이스 및 이를 냉각하기 위한 방법
BRPI0709889A2 (pt) mÁquina elÉtrica
US3445695A (en) Cooling system for hermetic dynamoelectric devices
BRPI0811221B1 (pt) sistema de compressor para uso subaquático na área offshore
CN107925305B (zh) 用于电动机器的冷却系统
BR102016012110A2 (pt) estator que compreende um radiador integrado
WO2019165524A1 (pt) Máquina elétrica girante e invólucro para uma máquina elétrica girante
CN109936257B (zh) 包括交换器和多个冷却回路的电动机
TWM517473U (zh) 具有雙螺旋冷卻液流道的液冷式機殼
EP2636129A1 (en) Axial flux electrical machines
US20120091837A1 (en) Generator cooling arrangement of a wind turbine
JP2016135049A (ja) 密閉型回転電機
CN110620478A (zh) 用于旋转电机的冷却装置和用于驱动车辆的旋转电机
WO2019165523A1 (pt) Máquina elétrica girante com canais trocadores de calor para ar e para líquido
CN219420500U (zh) 一种电机内循环风冷散热的结构
GB285845A (en) Improvements in or relating to cooling arrangements for dynamo electrical machines
KR102076756B1 (ko) 전동기
WO2022265009A1 (ja) 回転電機用ケース、及び回転電機
BR112020017503B1 (pt) Máquina elétrica girante com canais trocadores de calor para ar e para líquido
JPH0445679B2 (pt)
JP6456507B2 (ja) 回転電機
JPS60257738A (ja) 液中形回転電機の冷却構造
US20240097523A1 (en) Liquid cooled electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020017511

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020017511

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200827

122 Ep: pct application non-entry in european phase

Ref document number: 18907663

Country of ref document: EP

Kind code of ref document: A1