WO2019163911A1 - 眼科光学系、眼科装置、及び眼科システム - Google Patents

眼科光学系、眼科装置、及び眼科システム Download PDF

Info

Publication number
WO2019163911A1
WO2019163911A1 PCT/JP2019/006608 JP2019006608W WO2019163911A1 WO 2019163911 A1 WO2019163911 A1 WO 2019163911A1 JP 2019006608 W JP2019006608 W JP 2019006608W WO 2019163911 A1 WO2019163911 A1 WO 2019163911A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
concave mirror
unit
eye
optical system
Prior art date
Application number
PCT/JP2019/006608
Other languages
English (en)
French (fr)
Inventor
正宏 水田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2020501043A priority Critical patent/JP7230902B2/ja
Publication of WO2019163911A1 publication Critical patent/WO2019163911A1/ja
Priority to US16/999,770 priority patent/US20200387007A1/en
Priority to JP2023021922A priority patent/JP2023062076A/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/022Ophthalmic lenses having special refractive features achieved by special materials or material structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/006Systems in which light light is reflected on a plurality of parallel surfaces, e.g. louvre mirrors, total internal reflection [TIR] lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • G02B17/0808Catadioptric systems using two curved mirrors on-axis systems with at least one of the mirrors having a central aperture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the disclosed technology relates to an ophthalmic optical system, an ophthalmic apparatus, and an ophthalmic system.
  • An ophthalmologic apparatus for performing ophthalmologic diagnosis and ophthalmic surgical procedures has been realized.
  • an ophthalmologic apparatus capable of observing a fundus of a subject's eye (hereinafter referred to as an eye to be examined) over a wide range.
  • a wide-angle optical system is used.
  • the wide-angle optical system is configured only with a lens, the aperture of the lens is increased for the purpose of securing a working distance (working distance) between the eye to be examined and the objective lens.
  • the wide-angle optical system increases in size, increases in weight, and increases in manufacturing cost.
  • Patent Document 1 and Patent Document 2 disclose an ophthalmologic apparatus including an optical system for acquiring a fundus wide-angle image.
  • the ophthalmic optical system is: An ophthalmic optical system having a reflection unit including a first concave mirror and a second concave mirror, and a lens unit that receives light from the reflection unit, Each of the first concave mirror and the second concave mirror of the reflection unit has an opening on the optical axis, and at least one of the focal point of the first concave mirror and the focal point of the second concave mirror is located in the opening of the other concave mirror.
  • the lens unit includes a lens that receives the condensed light from the reflecting unit, and the lens converts the angle of the condensed light by the second concave mirror to a smaller angle.
  • An ophthalmologic apparatus according to the second aspect of the disclosed technology is provided.
  • a light source that emits light of a predetermined wavelength;
  • the ophthalmic optical system ;
  • a scanning member that scans the light from the light source toward the eye to be examined through the lens unit and the reflection unit, and is disposed at a position conjugate with the pupil of the lens unit;
  • An imaging unit that images the fundus of the eye to be inspected with light scanned by the scanning member; including.
  • An ophthalmologic system is: A first acquisition unit that acquires a first image of a paraxial region where the fundus of the eye to be examined and the optical axis crossed, which are captured by the ophthalmologic apparatus, A second acquisition unit for acquiring a second image of the annular region of the fundus of the eye around the paraxial region; A forming unit that combines the first image acquired by the first acquisition unit and the second image acquired by the second acquisition unit to form a wide-area image of the eye to be examined; including.
  • FIG. 1 is a configuration diagram illustrating an example of a configuration of an optical system according to Embodiment 1.
  • FIG. 2 is a lateral aberration diagram of the optical system according to Example 1.
  • FIG. 6 is a configuration diagram illustrating an example of a configuration of an optical system according to Embodiment 2.
  • FIG. 6 is a lateral aberration diagram of the optical system according to Example 2.
  • FIG. It is a schematic diagram which shows an example of the reflective mirror unit which concerns on 2nd Embodiment. It is a schematic diagram which shows the other examples of the reflective mirror unit which concerns on 2nd Embodiment.
  • FIG. 1 An example of the configuration of the ophthalmologic apparatus 10 according to the present embodiment is shown in FIG.
  • An imaging device 14 that images the eye 12 to be examined and a control device 16 that controls the imaging device 14 are provided.
  • the imaging device 14 includes an SLO unit 18 and an OCT unit 20 as imaging functions.
  • the SLO unit 18 functions as a scanning laser ophthalmoscope (hereinafter referred to as “SLO”).
  • the OCT unit 20 functions as optical coherence tomography (hereinafter referred to as “OCT”).
  • the control device 16 controls the operation by exchanging information with the imaging device 14.
  • the control device 16 generates an SLO image based on the signal detected by the SLO unit 18.
  • control device 16 generates an OCT image based on the signal detected by the OCT unit 20.
  • the control device 16 is realized by a computer including, for example, a CPU (Central Processing Unit), a ROM, and a RAM (Random Access Memory), but is not limited thereto, and is realized by other hardware configurations. Also good.
  • the posterior eye part particularly the fundus oculi, is exemplified as the observation target, but the present invention is not limited to this, and the anterior eye part may be used.
  • An example of the anterior segment is the cornea.
  • the horizontal direction is “X direction”
  • the vertical direction with respect to the horizontal plane is “Y direction”.
  • the direction toward is “Z direction”.
  • the acquisition of the SLO image is realized by the SLO unit 18 including the light source and the sensor, the scanning device 19 including the optical scanner, and the control device 16 that controls them.
  • SLO light light emitted from the SLO unit 18
  • the scanning device 19 includes a first scanner 22 (Y direction) and a third scanner 29 (X direction) as optical scanners that scan SLO light. Therefore, the SLO light emitted from the SLO unit 18 is two-dimensionally scanned by the scanning device 19. The reflected light reflected by the fundus F enters the SLO unit 18 via the pupil P and the scanning device 19.
  • the sensor of the SLO unit 18 generates a signal corresponding to the reflected light and outputs it to the control device 16.
  • the control device 16 generates an SLO image of the fundus F based on the signal detected by the sensor. Since SLO is a well-known imaging function, detailed description is omitted.
  • an OCT unit 20 including a light source, a reference optical system, an interferometer, a spectroscope, and a sensor, a scanning device 19 including an optical scanner, and a control device 16 that controls them.
  • the light emitted from the light source is branched in the OCT unit 20 and enters the reference optical system as reference light and the scanning device 19 as measurement light.
  • the measurement light is applied to the fundus F via the scanning device 19 and the pupil P.
  • the scanning device 19 includes a second scanner 24 (Y direction) and a third scanner 29 (X direction) as optical scanners that scan the measurement light.
  • the measurement light emitted from the OCT unit 20 is two-dimensionally scanned by the scanning device 19.
  • the measurement light reflected by the fundus F enters the OCT unit 20 via the pupil P and the scanning device 19.
  • the interferometer of the OCT unit 20 generates interference light by causing measurement light and reference light to interfere with each other.
  • Each spectral component of the interference light separated by the spectroscope is detected by a sensor.
  • a signal detected by the sensor is input to the control device 16.
  • the control device 16 generates an OCT image of the fundus F based on the detection signal.
  • SD-OCT Spectrum Domain-OCT
  • SS-OCT Swept Source-OCT
  • the SLO light and the OCT measurement light are collectively referred to as scanning light.
  • the optical system 28A constituting the common optical system 28 is not limited to functioning as an optical system shared by the SLO and the OCT shown in FIG. 1, but for the SLO or OCT, for the SLO device or the OCT device. Needless to say, the optical system can be used as a single-use optical system.
  • the scanning angle A of the scanning light SL with the pupil P as the reference position corresponds to the viewing angle 12A (FOV: Field of View) of the observer.
  • the viewing angle 12A As the scanning angle A increases, the viewing angle 12A increases.
  • FIG. 2 schematically shows a state in which the scanning light SL is refracted at the center of the pupil P.
  • the viewing angle 12A can also be defined by a scanning angle B (hereinafter also referred to as an internal scanning angle B).
  • the internal scanning angle B represents the scanning angle of the scanning light SL with the eyeball center O as a reference position.
  • the external scanning angle A and the internal scanning angle B have a corresponding relationship although the reference positions are different.
  • the external scanning angle A is used as the scanning angle corresponding to the viewing angle 12A.
  • the viewing angle 12A realized by the ophthalmologic apparatus 10 including the optical system 28A as a wide-angle optical system is, for example, about 120 degrees for the external irradiation angle A and about 160 degrees for the internal irradiation angle B.
  • the external irradiation angle A is about 45 degrees and the internal irradiation angle B is about 60 degrees.
  • the external irradiation angle A corresponds to the viewing angle A, that is, the range of the fundus that can be imaged. Therefore, in the following description, the viewing angle 12A is referred to as the imaging range 12A.
  • the user can arbitrarily set an imaging position and an imaging area within the imaging range 12A by controlling the scanning angle in the scanning device 19.
  • the SLO optical system includes an SLO unit 18 and a scanning device 19.
  • the OCT optical system includes an OCT unit 20 and a scanning device 19.
  • the scanning device 19 includes a first optical scanner 22, a second optical scanner 24, and a third optical scanner 28 as optical scanners for scanning the scanning light.
  • the scanning device 19 further includes a common optical system 28. Since the third optical scanner 28 is shared between the SLO optical system and the OCT optical system, it is included in the common optical system 28.
  • the common optical system 28 further includes an optical system 28A as a wide-angle optical system. The scanning light emitted from the third optical scanner 29 enters the eye 12 to be examined through the optical system 28A.
  • the scanning device 19 further includes a dichroic mirror 26.
  • the dichroic mirror 26 is disposed between the first optical scanner and the third optical scanner.
  • the SLO light emitted from the first optical scanner 22 is guided to the third optical scanner 29 via the dichroic mirror 26.
  • the OCT measurement light emitted from the second optical scanner 24 is guided to the third optical scanner 29 via the dichroic mirror 26.
  • the optical path length between the first optical scanner 22 and the dichroic mirror 26 matches the optical path length between the second optical scanner 24 and the dichroic mirror 26.
  • the first optical scanner 22, the second optical scanner 24 and the third optical scanner 29 are arranged at a position conjugate with the center of the pupil P. Since the dichroic mirror 26 is shared by the SLO optical system and the OCT optical system as described above, the dichroic mirror 26 may be included in the common optical system 28.
  • optical scanner examples include a polygon mirror and a galvanometer mirror.
  • optical scanners 22, 24, and 29, polygon mirrors, galvanometer mirrors, or a combination thereof may be used.
  • the optical scanners 22, 24, and 29 are not limited to polygon mirrors or galvanometer mirrors, and may be any deflecting optical element that deflects scanning light in a predetermined direction.
  • the ophthalmologic apparatus 10 is required to image the fundus imaging range 12A of the eye 12 to be examined over a wide range.
  • the optical system 28A is configured using only lenses, it has been difficult to obtain a wider field of view by setting the external illumination angle A in the eye 12 to be an ultra-wide angle. This is to ensure the working distance between the eye 12 and the surface of the optical system closest to the eye 12 (working distance), to improve the aberration performance for obtaining a high resolution image, and to suppress flare and ghost. This is because it is required to solve a plurality of problems of reducing the size and weight of the apparatus main body and reducing the manufacturing difficulty and cost. These problems sometimes conflicted with each other as a wider-angle visual field was obtained.
  • the ophthalmologic apparatus 10 includes an optical system 28A as a wide-angle optical system.
  • the optical system 28A is included in the common optical system 28, and is shared by the SLO optical system and the OCT optical system. Therefore, the ophthalmologic apparatus 10 including the optical system 28A can acquire a wide-angle SLO image and a wide-angle OCT image.
  • the optical system 28A includes, in order from the eye 12 side, a reflection unit 280 that relays an image of the eye 12 to be examined, a first lens group 281 as a subsequent lens unit, and a second lens group 282. Is provided.
  • the reflection unit 280 includes a pair of concave mirrors and relays the image of the pupil Pp of the eye 12 to be examined.
  • the first concave mirror 280A and the second concave mirror 280B which are a pair of concave mirrors, are configured such that their focal points have a non-aberration equal magnification conjugate relationship.
  • a conjugate image of the pupil Pp of the subject eye 12 arranged in the vicinity of the opening 280Bh of the second concave mirror 280B on the subject eye side is formed in the vicinity of the opening 280Ah of the first concave mirror 208A on the opposite side to the subject eye.
  • An image Pp ′ of the pupil Pp formed near the opening 280Ah of the first concave mirror 280A is obtained by relaying the pupil Pp near the opening 280Bh by the reflection unit 280. Therefore, it is preferable that the position of the pupil Pp of the eye to be examined and the conjugate position of the pupil formed by the reflection unit 280 match the focal positions of the reflection surfaces 280A and 280B of the reflection unit 280.
  • the pupil Pp of the eye to be examined is disposed in the vicinity of the focal position of the first reflecting mirror 280A, and the position of the entrance pupil as the combining system of the first lens group 281 and the second lens group 282, that is, the lens unit, is the second reflecting mirror 280B. Near the focal position, that is, at the position of the central opening 280Ah of the first reflecting surface 280A.
  • An image Pp ′ of the pupil Pp relayed to the aperture 280Ah is obtained by a lens unit having a first lens group 281 including a lens having a positive refractive power and a second lens group 282 including a lens having a positive refractive power.
  • the pupil conjugate image Pcj is formed at a position conjugate with the position of the pupil Pp of the eye to be examined in the space opposite to the eye 12 to be examined.
  • FIG. 3 as an example of the working distance between the eye 12 to be examined and the surface of the optical system closest to the eye 12 (working distance), the eye 12 and the rays of light transmitted to the eye 12 to be examined
  • the first concave mirror 280A and the second concave mirror 280B which are a pair of concave mirrors, each have a concave reflecting surface as will be described later.
  • a reflecting mirror having a concave parabolic reflecting surface can be used. In this specification, it may be simply referred to as a reflecting mirror or a reflecting surface.
  • the reflecting surfaces of the first concave mirror 280A and the second concave mirror 280B are not limited to parabolic reflecting surfaces, and may be aspherical surfaces formed rotationally symmetrically about the optical axis.
  • the first lens group 281 in the lens unit includes a lens for receiving a wide-angle light beam from the reflection unit 280.
  • This lens is a lens (hereinafter referred to as an angle conversion lens) that converts the angle of the wide-angle light beam from the eye 12 to be smaller than the angle of the wide-angle light beam. Since the image Pp ′ of the pupil Pp of the eye to be examined formed in the vicinity of the opening 280Ah of the first reflecting mirror 280A is a spatial image, a lens can be disposed in contact with this image. Furthermore, a lens may be provided in the aerial image of the pupil Pp. Therefore, in the first lens group 281, the diameter of the angle conversion lens for receiving a wide-angle light beam can be reduced.
  • the lens arranged on the eye side of the first lens group 281 may be a small-diameter angle conversion lens.
  • the angle of the wide-angle light beam handled by the reflection unit 280 is converted to be small, so that the diameter of the entire first lens group 281 can be reduced. Since the lens diameter of the first lens group 281 is reduced, the diameter of the second lens group 282 can also be reduced. Therefore, the optical system 28 including the reflection unit 280 can correct various aberrations satisfactorily while the lens configuration of the lens unit is simple, and an ultrawide-angle image of the fundus can be acquired with excellent image quality.
  • the scanning light SL irradiated from the reflection unit 280 to the fundus F through the pupil P is reflected by the fundus F and is incident on the reflection unit 280 as reflected light.
  • the reflected light is incident on the lens unit including the first lens group 281 and the second lens group 282 via the reflection unit 280.
  • the reflected light further enters the SLO unit 18 via the third optical scanner 29 and the first optical scanner 22, as shown in FIG.
  • the control device 16 generates a wide-angle image of the fundus F based on the signal detected by the sensor.
  • the position of the fundus conjugate image Fcj conjugated with the fundus F is formed in the first lens group 281 or in the vicinity thereof.
  • the first lens group 281 and the second lens group 282 arranged between the position of the pupil conjugate position image Pcj that is conjugated with the pupil Pp of the eye to be examined include at least the lens group for aberration correction. It is effective to include one surface having negative refractive power.
  • the coma aberration of the pupil between the pupil Pp and the pupil conjugate image Pcj becomes a light flux field angle difference of the fundus image at the image position of the pupil conjugate Pcj, which leads to a change in resolution at the fundus position.
  • a lens group having a positive refractive power as a whole is disposed between the fundus conjugate Fcj position with the fundus of the eye 12 to be examined and the pupil conjugate Pcj position. It is preferable that at least one surface having negative refractive power is formed.
  • the reflecting mirror unit 280 includes a pair of concave mirrors 280A and 280B.
  • the concave mirrors 280A and 280B are each formed as a parabolic mirror, the focal lengths of both are equal, and the axial distance between the two is equal to the focal length.
  • the concave mirrors 280A and 280B are respectively provided with center openings 280Ah and 280Bh including intersections with the optical axis as a reflection unit, and constitute a donut-shaped annular reflector.
  • the two concave mirrors 280A and 280B are opposed to each other so as to face each other.
  • the opening 280Ah of the first concave mirror 280A and the opening 280Bh of the second concave mirror 280B are respectively formed as physical opening spaces (holes) formed at the center of the reflecting surface.
  • it can be formed as a transmission surface formed at the center of the concave mirror.
  • the opening 280Ah of the first reflecting mirror 280A disposed on the opposite side of the eye to be examined has a configuration in which the most advanced lens (angle conversion lens) of the lens unit is fitted, as described above, or an angle conversion lens. Can be formed as a transmission surface to be bonded.
  • the opening formed in the concave mirror should just be formed so that light can pass through, and does not limit an opening shape.
  • the shape of the opening is circular, but it may be formed in an elliptical shape, a polygonal shape, an asymmetrical shape, or the like.
  • the size of the opening is preferably as small as possible because the region on the optical axis by the reflection unit is shielded.
  • the central opening of the concave mirror 280B on the eye side to be examined is small, the face of the eye to be examined comes into contact with the concave mirror, and thus it is necessary to have a size that does not allow contact.
  • the central opening of the concave mirror 280A on the side opposite to the eye to be examined is indispensable for guiding the emitted light from the reflection unit 280 to the subsequent lens unit, and is determined by the balance with the size of the central shielding.
  • the concave mirror 280A has a paraboloid of focal length f as the first reflective surface 280A, as shown in FIG.
  • the concave mirror 280B has a paraboloid having a focal length f as the second reflecting surface 280B.
  • the two concave mirrors 280A and 280B are arranged so that the focal point of the first reflecting surface 280A overlaps the vertex of the second reflecting surface 280B. In this way, the focal points of the concave mirrors coincide with each other and the concave mirrors are opposed to each other with an interval corresponding to the focal length, so that the focal points of each other have a non-aberration equal magnification conjugate relationship.
  • the focal point 280Af of the first reflective surface 280A is superimposed on the apex of the second reflective surface 280B (for example, the center of the second reflective surface 280B), and the focal point 208Bf of the second reflective surface 280B is overlapped with the first reflective surface.
  • the case where it overlaps with the vertex (For example, the center of 1st reflective surface 280A) of 280A is shown.
  • the maximum half angle C that can be reflected by the first reflecting surface 280A and the second reflecting surface 280B is uniquely determined, and about 70. 5 degrees.
  • a straight line passing through the intersection of the first reflecting surface 280A and the second reflecting surface 280B is the x axis
  • a straight line passing through the vertex of the first reflecting surface 280A and the vertex of the second reflecting surface 280B is the y axis
  • the surface 280A is expressed by the following equation (1).
  • the second reflecting surface 280B is represented by the following equation (2).
  • FIG. 5 schematically shows a state where an image of the eye 12 is formed by the reflector unit 280 according to the present embodiment.
  • the reflection unit 280 center openings 280Ah and 280Bh are provided in the first reflection surface 280A and the second reflection surface 280B, respectively.
  • the first reflection surface 280A An image 12Z of the eye 12 to be examined is formed in the vicinity of the opening 280H.
  • the eyelid 12 is also observed as if the eye 12 to be examined is raised.
  • the image 12Z of the eye 12 formed by the reflecting mirror unit 280 can be handled in the same manner as the eye 12 to be examined. That is, since the aerial image of the eye to be examined is formed on the opening 280Ah by the reflecting mirror unit 280, a sufficient optical distance Xw is ensured.
  • FIG. 6 shows an example of a wide-angle image (hereinafter also referred to as a wide-angle SLO image) of the fundus F captured using the optical system 28A.
  • the reflected light reflected from the fundus F is incident on the first lens group 281 and the second group 282 via the reflector unit 280 as shown in FIG. As shown in FIG. 1, the reflected light further enters the SLO unit 18 via the first optical scanner 22 and shows a wide-angle image of the fundus F generated by the control device 16.
  • the fundus image is not drawn in the central portion of the wide-angle image, that is, the central region corresponding to the openings 280Ah and Bh. In the region corresponding to the openings 280Ah and Bh, for example, a blurred image of the anterior segment is formed.
  • the size of the central region where the fundus image is not drawn is a size corresponding to the diameters of the openings 280Ah and 280Bh.
  • the effective diameters of the openings 208Ah and Bh provided on the respective reflecting surfaces of the reflector unit 280 are preferably as small as possible.
  • the effective diameter of the opening 208 to a diameter that matches or includes the pupil size of the eye 12 to be examined, the retinal image at the center of the eye 12 that is difficult to obtain is minimized. Can be defined in the area.
  • Example 1 Next, the optical system 28A according to the first embodiment will be described with reference to FIG.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the optical system 28A includes a reflection unit 280, a first lens group 281 and a second lens group 282 in order from the eye 12 to be examined.
  • the reflecting mirror unit 280 includes a mirror module M01 in which a second reflecting surface 280Br and a first reflecting surface 280Ar are arranged in order from the pupil Pp side of the eye 12 to be examined.
  • the first lens group 281 includes, in order from the pupil Pp side, a positive meniscus lens L01 having a concave surface facing the pupil Pp as an angle conversion lens, a negative meniscus lens L02 having a convex surface facing the pupil Pp, and a biconvex positive lens. L03 and a positive meniscus lens L04 having a concave surface facing the pupil Pp.
  • the positive lens L01 is arranged so that the surface on the pupil Pp side is in contact with the image of the pupil Pp formed near the opening 280Ah of the reflecting surface 280A.
  • the negative meniscus lens L02 and the biconvex positive lens L03 are cemented to form a bonded positive lens component, and have an aspheric surface on the surface opposite to the pupil Pp.
  • the second lens group 282 includes, in order from the pupil Pp side, a positive lens L05, a biconvex positive lens L06, and a biconcave negative lens L07.
  • the biconvex positive lens L06 and the negative lens L07 are cemented to form a meniscus lens component having a convex surface facing the pupil Pp. All these optical elements are arranged along a single optical axis AX.
  • the positive lens L01 arranged closest to the pupil Pp in the first lens group 281 functions as an angle conversion lens.
  • the lens surface on the pupil Pp side is arranged in the vicinity of the condensing position by the reflection unit 280, that is, slightly away from the vicinity of the focus of the second parabolic mirror 280B, and the surface on the pupil Pp side is flat or weak.
  • the positive lens L01 as the angle conversion lens has a very small aperture between the first lens group 281 and the second lens group 282 compared to the aperture of the reflection unit 280. is there.
  • the pupil Pp side surface of the positive lens L01 as an angle conversion lens is a concave surface
  • the central portion of the first concave mirror 280A is used as a transmission surface, and the positive lens L01 is joined to the transmission surface. can do.
  • the parallel light beam emitted from the first lens group 281 becomes slightly divergent light and enters the subsequent second lens group 282.
  • the second lens group 282 converts the weak divergent light from the first lens group 281 into a parallel light beam, and a conjugate image Pcj of the pupil Pp of the eye 12 to be examined with the eye 12 by the configuration with the first lens group 281. Form in the opposite space. That is, a light beam equivalent to a parallel light beam emitted from the position of the pupil P of the eye 12 to be examined is emitted by the reflecting mirror unit 280, and a pupil conjugate point Pcj is formed through the first lens group 281 and the second lens group 282. .
  • the conjugate point of the eye 12 to be examined with respect to the fundus is a position indicated by a point Fcj in FIG. 7, and a primary space image of the fundus between the optical elements (the lens L03 and the lens L04) of the first lens group 281. Fcj is formed.
  • the scanning light SL laser light
  • the optical system 28A has a function of forming an image of the pupil Pp of the eye to be examined into the conjugate image Pcj, and a function as a pupil relay system. The same applies to the embodiments described later.
  • the imaging performance can be improved by making each lens surface of the lens element described above appropriately aspherical.
  • the height in the direction perpendicular to the optical axis is r
  • the distance (sag amount) along the optical axis from the tangent plane at the apex of the aspheric surface to the position on the aspheric surface at the height r is z.
  • the conic coefficient is k
  • the n-th order aspheric coefficient is A, B, C, D, E, F, G, H, J, the following (3) It shall be represented by a formula.
  • Table 1 below shows values of specifications of the optical system 28A in Example 1.
  • Table 1 shows a case where the effective viewing angle (external illumination angle A from the pupil) is 140 degrees (the pupil exit half angle is 70 degrees) and the entrance pupil diameter is 2 mm.
  • FIG. 8 is a transverse aberration diagram of the optical system 28A configured according to the specifications shown in Table 1.
  • This lateral aberration diagram is an aberration diagram for a fundus image when an ideal lens without aberration is conveniently placed at the position of the pupil conjugate Pcj in order to evaluate the optical performance of the present embodiment.
  • aberration calculation is performed in the same manner by inserting an aberration ideal lens.
  • the vertical axis indicates the image height
  • the solid line indicates the center wavelength of 587.5620 nm
  • the broken line indicates 656.2790 nm
  • the alternate long and short dash line indicates 486.1330 nm nm
  • the alternate long and two short dashes line indicates 435.8350 nm. Is shown.
  • the optical system 28A of Example 1 As apparent from the aberration diagram shown in FIG. 8, in the optical system 28A of Example 1, it is understood that the variation in aberration is suppressed with respect to the light in the visible light wavelength range and is corrected well. It can also be seen that the optical system 28A is well corrected even when the effective viewing angle (ie, the external illumination angle A) is in the vicinity of 60 degrees to 140 degrees (pupil exit half angle is 30 degrees to 70 degrees). Although not shown, it has been confirmed that various aberrations such as spherical aberration, astigmatism, and distortion are also corrected well.
  • Example 2 an optical system 28A according to the second embodiment will be described with reference to FIG.
  • the second embodiment is a modification of the first embodiment, and the same configurations as those in the first embodiment and the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the optical system 28A includes a reflecting mirror unit 280, a first lens group 281 and a second lens group 282 from the eye 12 to be examined.
  • the reflecting mirror unit 280 has a mirror M01 in which the second reflecting surface 280B and the first reflecting surface 280A are arranged in order from the pupil P side of the eye 12 to be examined.
  • the first lens group 281 includes, in order from the pupil Pp side, a negative meniscus lens L01 including an aspherical shape with a convex surface facing the pupil P side, a positive meniscus lens L02 with a concave surface facing the pupil Pp, and a pupil Pp side.
  • the negative meniscus lens L03, the lens L03, and the biconvex positive lens L04 constitute a bonded positive lens component.
  • the second lens group 282 includes, in order from the pupil Pp side, a positive lens L06, a negative meniscus lens L07 having a convex surface facing the pupil Pp, and a positive meniscus L08 having a convex surface facing the pupil Pp.
  • the negative meniscus lens L07 and the positive meniscus lens L07 form a bonded meniscus lens component. All these optical elements are arranged along a single optical axis AX.
  • the first lens group 281 includes a negative meniscus lens L01 as an angle conversion lens for receiving a wide-angle light beam from the reflection unit 280 and converting it into a small-angle light beam.
  • the convex surface of the negative meniscus lens L01 is disposed closer to the subject eye 12 than the conjugate position of the pupil Pp, so that the lens diameter of the negative meniscus lens L01 can be reduced. Since the angle of the wide-angle light beam handled by the reflection unit 280 is reduced by the small-diameter angle conversion lens L01, the aperture of the subsequent optical elements constituting the first lens group 281 is also reduced. Since the aperture of the optical element constituting the first lens group 281 is reduced, the aperture of the optical element constituting the second lens group 282 is also reduced.
  • the optical system 28 including the reflection unit 280 a small wide-angle optical system with a small number of lenses is realized.
  • the aperture of the angle conversion lens can be reduced, a wide-angle image of the fundus can be acquired with good aberration performance.
  • aberration correction is easier than in the optical system 28A according to the first embodiment, and as a result, a highly accurate wide-angle image can be acquired.
  • a negative meniscus lens L01 is used as the angle conversion lens provided at the tip of the lens unit closest to the eye to be examined.
  • Table 2 below shows values of specifications of the optical system 28A in Example 2.
  • FIG. 10 is a transverse aberration diagram of the optical system 28A configured according to the specifications shown in Table 2.
  • the vertical axis indicates the image height
  • the solid line indicates the center wavelength of 587.5620 nm
  • the broken line indicates 656.2790 nm
  • the alternate long and short dash line indicates 486.1330 nm nm, as in Example 1.
  • the two-dot chain line indicates 435.8350 nm.
  • the second embodiment has the same configuration as that of the first embodiment except for the reflection unit 280.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the reflection unit 280 includes a first reflection surface 280A and a second reflection surface 280B, which are paraboloids having the same focal length f, and one focus is overlapped with the other vertex so that there is no mutual focus. It was configured so as to have an equal magnification conjugate relationship of aberration.
  • the focal length of the first reflection surface 280A is different from the focal length of 280B.
  • the effective diameter of the opening 280H provided in the reflector unit 280 is preferably as small as possible, and the position of the pupil of the eye 12 to be examined and the position of the pupil by the first lens group 281 and the second lens group 282 are reflected. It is so preferable that it matches the focal position of the reflecting surface of the mirror unit 280.
  • the degree of freedom decreases with respect to the setting of the position of the pupil of the eye 12 to be examined and the position of the pupil by the first lens group 281 and the second lens group 282.
  • the aberration correction in the first lens group 281 and the second lens group 282 is also limited to the angle (radiation angle) of the light beam from the reflecting mirror unit 280.
  • the reflecting mirror unit is disposed so that at least one of the focal point of the first concave mirror and the focal point of the second concave mirror constituting the reflecting mirror unit 280 is positioned at the opening of the other concave mirror.
  • An optical system 28A that is easy to handle while maintaining the basic conjugate relationship of 280 is provided.
  • FIG. 11 shows an example of the reflector unit 280 according to the present embodiment.
  • the focal length fa of the first reflecting surface 280Ar is smaller than the focal length fb of the second reflecting surface 280Br (fa ⁇ fb).
  • the focal point 208Af of the first reflective surface 280Ar coincides with the apex of the second reflective surface 280Br (for example, the center of the second reflective surface 280Br).
  • the focal point 208Bf of the second reflective surface 280Br is located on the first lens group 281 side, away from the apex of the first reflective surface 280Ar (for example, the center of the first reflective surface 281Ar). Since the focal point 280Af and the focal point 280Bf are located on the same optical axis, their conjugate relationship is maintained.
  • the eye 12 to be examined is arranged on the second reflecting surface 280Br side and the observation optical system (the first lens group 281 and the second lens group 282) is arranged on the first reflecting surface 280Ar side
  • the effective viewing angle on the 12th side is greater than 141 degrees.
  • the half angle of the external irradiation angle A is indicated by the pupil exit half angle ⁇ pp, and the pupil exit half angle ⁇ pp is greater than 70.5 degrees.
  • the angle ⁇ oj on the observation optical system side corresponding to the pupil exit half angle ⁇ pp is smaller than 70.5 degrees. Accordingly, aberration correction in the observation optical system is easier than in the case of the reflecting mirror unit 280 in which concave mirrors having the same focal length f are arranged to face each other.
  • the space for passing the light beam toward the observation optical system is larger than that of the reflecting mirror unit 280 in which concave mirrors having the same focal length f are arranged opposite to each other.
  • a space (center shielding) for allowing a light beam to pass toward the observation optical system that is, an angle from the eye 12 side for obtaining the opening 280Ah is indicated by an angle ⁇ x.
  • the pupil exit half angle ⁇ pp is The angle ⁇ x is expressed by the following equation (5).
  • A 4fa
  • B fb ⁇ fa
  • C (fa ⁇ fb) / (fa + fb).
  • a value that optimizes the ease of aberration correction in the observation optical system and the size of the aperture 280Ah may be obtained using the relationship of the above expressions (4) and (5).
  • the reflecting surface on the lens unit side is preferably formed so as to have an aperture that satisfies the conditional expression represented by ⁇ x ⁇ 22.5 degrees. Since this angle corresponds to the radius of the center occlusion of the zonal shape image of the fundus oculi of the eye 12 to be obtained, the smaller the angle, the more advantageous.
  • satisfying this condition is advantageous when combining with a center image by a conventional apparatus capable of obtaining an image of the center of the optical axis as illustrated in FIG.
  • the fact that the focal point 208Bf of the second reflecting surface 280Br is set apart from the first reflecting surface 280Ar means that the reflecting unit and the subsequent lens unit, particularly the tip angle conversion lens, are provided apart from each other. it can. Therefore, when impurities such as dust are mixed in the reflection unit, the operation of removing the impurities becomes easy, which is effective not only in manufacturing but also in maintenance.
  • FIG. 12 shows a modification of the reflection unit 280 according to this embodiment.
  • the focal length fa of the first reflecting surface 280Ar on the side far from the eye 12 to be examined is larger than the focal length fb of the second reflecting surface 280Br (fa> fb).
  • the eye 12 to be examined is set at a position away from the second reflecting surface 280Br, and as a result, a space can be formed between the eye 12 to be examined and the reflector unit 280. Thereby, the distance between the eye to be examined and the back surface (convex surface) of the second parabolic mirror 280B can be secured, and usability is improved.
  • the focal length of the first reflecting mirror of the reflecting unit that is, the concave mirror far from the eye to be examined is fa
  • the second reflecting mirror that is, the eye to be examined.
  • the other focal point is basically located at the position of the central opening of each reflecting mirror.
  • the larger the central shielding becomes the larger the central shielding becomes.
  • it is in a tendency.
  • it is practical to achieve an optimal balance of the entire apparatus within the above range, including downsizing of the apparatus and the distance between the eye to be examined and the apparatus.
  • Even when the focal point of one reflecting surface is located at the central opening of the other reflecting surface a slight shift is allowed for the optimization of the entire apparatus including the aberration balance, assuming the basic shape. Needless to say.
  • the optical system 28A including one reflection unit 280 has been described, but the present invention is not limited to this. It is possible to combine two or more reflecting mirror units and connect the pupils of the reflecting units so as to match each other. Further, as described in the second embodiment, the focal lengths of the first reflecting surface 280A and the second reflecting surface 280B may be different.
  • the periphery of the image of the relayed pupil P can be directly illuminated by a light source, and illumination into the fundus of the eye 12 to be examined can be performed.
  • An illumination adapter 280Lt shown as an example in FIG. 13 is provided around the image of the relayed pupil P to illuminate the periphery of the image of the relayed pupil P.
  • the illumination adapter 280Lt includes an illumination light source 280Fv arranged so as to surround the relayed pupil image Pp ′.
  • a plurality of illumination light sources 280Fv arranged in a ring shape are provided around a circular space having a diameter corresponding to the opening diameter of the opening provided on the reflecting surface 280.
  • This ring-shaped illumination light source is re-imaged around the pupil of the eye to be examined and illuminates the inside of the eye to be examined.
  • the imaging light flux passes through the center including the optical axis, and the illumination light is in a ring shape, so that the imaging optical path and the illumination optical path to the fundus can be separated, thus preventing contamination of the corneal reflected light into the imaging light. Is possible.
  • the reflecting mirror unit 280 has openings 280Ah and 280Bh at the center of the optical axis.
  • the light passing through the apertures 280Ah and 280Bh goes directly to the first lens group 281 and the second lens group 282. Therefore, the image accuracy near the center of the optical axis is improved by additionally arranging lenses on the optical axis of at least one of the first lens group 281 and the second lens group 282, or by changing the mutual lens interval. Can be planned.
  • the optical system 28A includes the reflecting mirror unit 280, the first lens group 281 and the second lens group 282 (see FIG. 7).
  • the third embodiment is configured by functionally classifying optical elements of the optical system 28A.
  • the optical system 28A is classified into a first optical system 28A-1 and a second optical system 28A-2.
  • the second optical system 28A-2 includes lenses L02 to L07, and is configured to function as a fundus photographing optical system with a normal angle of view that enables fundus observation using paraxial rays (that is, narrow field observation).
  • the first optical system 28A-1 includes a reflecting mirror unit 280 and a lens L01.
  • the lens L01 is formed so as to function as an angle conversion lens. That is, the lens L01 converts the angle of the super-wide light beam from the eye 12 via the reflection unit 280 to an angle smaller than the angle of the optical light beam.
  • the first optical system 28A-1 constitutes a part of an optical system that realizes wide field of view observation by being inserted between the eye to be examined and the second optical system 28A-2.
  • the second optical system 28A-2 By arranging 28A-1 and the second optical system 28A-2 on the same optical axis, it functions as an optical system that realizes wide field of view observation.
  • the optical system 28A is configured to be separated into the first optical system 28A-1 and the second optical system 28A-2, and the first optical system 28A-1 is attached to and detached from the optical system 28A-1 so as to observe the field of view at an ultra wide angle. And a device for observation with both narrow field observation can be provided.
  • the second optical system 28A-2 is formed so as to function as an optical system that enables fundus observation using paraxial light rays
  • the second optical system 28A-2 is moved in the optical axis direction toward the eye 12 to be examined.
  • the same optical system (second optical system 28A-2) can be used for observation of both a wide field and a narrow field.
  • the optical module 28A-1 is configured as an integral structure in which the angle conversion lens L01 is attached to the reflector unit 280. Further, the lens L01 may be attached to the reflecting mirror unit 280 via an attachment.
  • the optical unit 28A combining the reflection unit 280 and the lens unit cannot obtain information on the fundus region centered on the optical axis, but the position of the eye 12 to be examined is shifted several times with respect to the optical axis. It is possible to obtain information on a wide fundus by supplementing the information on the central part from the obtained images. That is, by moving the visual axis and the optical axis to different positions and shooting, it is possible to acquire an image of a region that was difficult to acquire when shooting with the visual axis and the optical axis aligned. . A plurality of acquired images can be combined to form a single wide area image.
  • the visual axis of the eye to be examined may be set as appropriate by presenting a fixation target (not shown) to the eye to be examined and visually inspecting the presented fixation target.
  • FIG. 15 shows an image system 100 as an example of an image system capable of providing all images in the imaging range 12A according to the fourth embodiment.
  • the image system 100 includes a first ophthalmologic apparatus 110, a second ophthalmologic apparatus 120, a network 130 such as the Internet and a local area network, an image server 140, and an image display terminal 150.
  • the ophthalmic system 100 includes a first ophthalmic apparatus 110, a second ophthalmic apparatus 120, an image server 140, a computer (hereinafter referred to as a PC) 150, and a network connection therebetween.
  • Network 130 such as the Internet and a local area network.
  • the first ophthalmic apparatus 110 is, for example, a normal ophthalmic apparatus that provides an imaging range of about 45 degrees at the external scanning angle A (hereinafter also referred to as a narrow-angle ophthalmic apparatus 110).
  • a narrow-angle fundus image depicting a fundus region (paraxial region) near the optical axis AX is acquired.
  • the second ophthalmic apparatus 120 is any one of the ophthalmic apparatuses 10 according to the above-described embodiment.
  • the second ophthalmic apparatus 120 is a wide-angle ophthalmic apparatus (hereinafter also referred to as a wide-angle ophthalmic apparatus 120) that provides an imaging range of about 130 degrees at the external scanning angle A. .)
  • a wide-angle fundus image is acquired using the second ophthalmologic apparatus 120.
  • the SLO image of the fundus F is illustrated, the present invention is not limited to this.
  • the ophthalmic image handled by the ophthalmic system 100 may be an OCT image of the fundus F or an anterior eye image.
  • the wide-angle fundus image acquired by the second ophthalmologic apparatus 120 is not drawn in the center of the image, that is, in the vicinity of the optical axis AX, as described with reference to FIG. Therefore, in the present embodiment, a wide-angle fundus image in which the fundus image is depicted as a whole is generated using the narrow-angle fundus image acquired by the first ophthalmologic apparatus 110 and the wide-angle fundus image acquired by the second ophthalmologic apparatus 120. To do.
  • the first ophthalmologic apparatus 110 transmits the narrow-angle fundus image data associated with the patient ID to the image server 140 via the network 130.
  • the second ophthalmic apparatus 120 also transmits the wide-angle fundus image data associated with the patient ID to the image server 140 via the network 130.
  • the image server 140 manages these image data.
  • the image server 140 exchanges various information with the PC 150 via the network 130.
  • the image server 140 transmits fundus image data to the PC 150 in response to an instruction from the PC 150.
  • the PC 150 synthesizes the narrow-angle fundus image acquired by the first ophthalmologic apparatus 110 and the wide-angle fundus image acquired by the second ophthalmologic apparatus 120 to generate a wide-angle fundus image in which the fundus image is depicted as a whole.
  • the image processing program for storing is stored.
  • the ophthalmologic system 100 in which the PC 150 is independent from the first ophthalmic apparatus 110 and the second ophthalmic apparatus 120 will be described.
  • the first ophthalmic apparatus 110 and the second ophthalmic apparatus 120 have the functions of the PC 150. May be.
  • FIG. 17 shows an electronic medical chart screen 200 displayed on the display of the PC 150.
  • the screen 200 displays a display area 201 for displaying patient information, a display area 202 for displaying a narrow-angle fundus image 203G acquired by the first ophthalmic apparatus 110, and a wide-angle fundus image 205G acquired by the second ophthalmic apparatus 120.
  • the display area 202 is provided with a display area 202A for displaying the model name of the first ophthalmic apparatus 110.
  • a display area 204A for displaying the model name of the second ophthalmologic apparatus 120 is provided.
  • the screen 200 includes an instruction button 206 for reading an OCT image, an instruction button 207 for instructing execution of artificial intelligence diagnosis for an ophthalmic image, an instruction button 208 for instructing various settings, and the like.
  • FIG. 16 shows the flow of processing of the image processing program executed on the PC 150.
  • step S ⁇ b> 100 shown in FIG. 16 a patient information acquisition process is executed, and the acquired patient information is displayed on the display 156.
  • the fundus image of the imaged patient is acquired and displayed on the electronic medical chart in the next step S104.
  • step S106 a photographing instruction process for the photographed image of the second fundus image region 12G2, which is the periphery of the fundus central region, is executed, and a negative determination is made in step S108 until the photographing is completed. If an affirmative determination is made in step S108, a photographed image obtained by photographing the fundus around the central portion of the eye 12 to be examined with the patient ID is acquired in step S110.
  • the second ophthalmic apparatus 120 captures the fundus around the central part of the eye 12 to be examined with the patient ID, and outputs the captured image to the image display terminal 150. Note that fundus imaging around the central part of the eye 12 to be examined and output of the captured image may be processed via the image server 140.
  • step S112 image processing for combining the image captured by the first ophthalmic apparatus 110 acquired in step S102 and the image captured by the second ophthalmic apparatus 120 acquired in step S110 is executed.
  • step S114 the image synthesized by the image processing is displayed on the display area 204 as all the two-dimensional images 12G in the imaging range 12A.
  • the synthesis process of the captured image 203G by the first ophthalmologic apparatus 110 and the captured image 205G by the second ophthalmologic apparatus 120 generates, for example, a 3D data or scan data, and generates a retinal stereoscopic image, cross-sectional image, and surface image. And a process for executing a segmentation process. Further, a fundus image may be generated using each data obtained from the SLO unit 18.
  • the synthesized image can be a wide-angle image that is taken by an ophthalmologic apparatus for wide-angle image shooting with a shooting angle of view of 100 degrees or more. It goes without saying that image processing for synthesizing images is not limited to the above-described method, and may be used by a known method.
  • the synthesized image is stored and held in the image server 140.
  • FIG. 17 shows an example of an electronic medical record screen 220 on which a two-dimensional image 12G is displayed in which a photographed image 203G obtained by the first ophthalmic apparatus 110 and a photographed image 205G obtained by the second ophthalmic apparatus 120 are combined in the display area 204. .
  • the image of the eye fundus is obtained by synthesizing the image of the fundus center and the image around the fundus center part to obtain all the two-dimensional images 12G in the imaging range 12A. It is possible to obtain a wide-angle image as if it was taken with an ophthalmic device for taking a wide-angle image at 100 degrees.
  • the image system 100 suitably functions when an ophthalmologist observes and diagnoses the fundus image 12G of the eye 12 to be examined. That is, a diagnosis is performed based on the fundus image synthesized by the image system 100, and a diagnosis result is input using the electronic medical chart function of the image viewer.
  • the button 207 is pressed or clicked through an interface (not shown) to shift to the AI diagnosis mode.
  • the button 206 is pressed or clicked to shift to the OCT mode.
  • An ophthalmologist can accurately diagnose the center of the fundus, such as the optic disc and the macula, using a high-resolution fundus image of the center of view with an imaging angle of 30 degrees, and a synthesized fundus corresponding to an imaging angle of view of 100 degrees or more. It is possible to accurately determine whether there is a lesion around the retina using the image 12G.
  • ophthalmologists often have ophthalmic equipment for performing diagnosis using high-resolution images of the fundus and retina. This high-resolution ophthalmic device has a shooting angle of view in the range of 10 to 30 degrees, and it is difficult to take images of the fundus and the periphery of the retina beyond that range.
  • the ophthalmologist needs to purchase separately a wide-angle and ultra-wide-angle fundus device for the fundus and the periphery of the retina.
  • the fundus and the retina can be effectively used without having to purchase a new wide-angle and super-wide-angle fundus device, without using a high-resolution ophthalmic device.
  • the fundus and the peripheral portion of the retina can be diagnosed by the synthesized fundus image having a wide angle of view exceeding 100 degrees.
  • the fifth embodiment is an ophthalmologic apparatus including a plurality of optical systems.
  • the same components as those in the above embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the optical system 28A includes a first optical system 28A1 and a second optical system 28A2, as shown in FIG.
  • the optical system 28A further includes a switching mechanism 28B for switching an optical system used for imaging between the first optical system 28A1 and the second optical system 28A2 in accordance with an instruction from the control device 16.
  • a switching mechanism 28B for example, a moving device such as a rotary stage or a single axis stage can be used.
  • the SLO image of the fundus F is illustrated, the present invention is not limited to this.
  • the ophthalmic image handled by the ophthalmologic apparatus 10 may be an OCT image of the fundus F or an anterior ocular segment image.
  • the optical system 28A1 is, for example, a narrow-angle optical system that provides an imaging range of about 45 degrees at the external irradiation angle A.
  • a narrow-angle fundus image depicting a fundus region near the optical axis AX is acquired.
  • the optical system 28A2 includes the reflection unit 280.
  • the optical system 28A2 is a wide-angle optical system that provides an imaging range of about 130 degrees at the external illumination angle A.
  • a wide-angle fundus image is acquired using the optical system 28A2.
  • the fundus image is not drawn in the central portion of the wide-angle fundus image, that is, in the vicinity of the optical axis AX.
  • a wide-angle fundus image in which the fundus image is depicted as a whole is generated using the narrow-angle fundus image acquired by the optical system 28A1 and the wide-angle fundus image acquired by the optical system 28A2. Since the image composition of the narrow-angle fundus image and the wide-angle fundus image is as described above, detailed description thereof is omitted.
  • the ophthalmologist can accurately diagnose the center of the fundus, such as the optic disc and the macula, using the narrow-angle fundus image, and can also diagnose the periphery of the retina using the synthesized wide-angle fundus image if necessary. it can.
  • FIG. 19 shows an example of a system using attachment / detachment of the optical module 28A-1.
  • This optical module 28A-1 corresponds to the reflection unit 280. Specifically, it is effective to remove it integrally with the lens L01 for angle conversion at the front end in the first lens group 281 shown in FIGS. It is.
  • the switching mechanism 28B takes charge of the mechanism for attaching and detaching the optical module 28A-1. In this case, the switching mechanism 28B may move the optical module 28A-2 in the optical axis direction so as to fill the space between the eye 12 to be examined and the optical module 28A-2 generated by removing the optical module 28A-1. .
  • the unit exchanged with the optical module 28A-1 is configured such that a separate lens is added to the tip of the optical module 28A-2 corresponding to the lens unit, thereby improving the on-axis image performance. Is also possible. As described above, it is possible to provide a fundus photographing apparatus that realizes both wide field observation and narrow field observation by a mechanism that attaches / detaches the optical module 28A-1.
  • stray light can be prevented by providing a light shielding surface in the central area including the optical axis.
  • stray light can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Eye Examination Apparatus (AREA)
  • Prostheses (AREA)
  • Lenses (AREA)

Abstract

被検眼を有する対象者に対する負担を軽減しつつ被検眼内を広範囲に観察する。 光学システム(28A)は、視軸から離れた周辺視野を観察可能にする第1光学ユニット(281)及び第2光学ユニット(282)の上流側である被検眼(12)側に、2個の凹面鏡を互いに向き合うように対向配置して被検眼(12)の像を形成する反射鏡ユニット(280)を備える。反射鏡ユニット(280)は一方の焦点と他方の焦点とに共役関係を有するので、反射鏡ユニット(280)によって被検眼(12)の像が形成されることで、被検眼(12)と、光学システム(28A)との距離を確保しつつ、被検眼を広範囲に観察できる。

Description

眼科光学系、眼科装置、及び眼科システム
 開示の技術は、眼科光学系、眼科装置、及び眼科システムに関する。
 眼科診断及び眼科外科的処置等を行うための眼科装置が実現されている。近年、対象者の眼(以下、被検眼という。)の眼底を広範囲に観察することができる眼科装置が要望されている。広視野の眼底画像を得るために、広角光学系が利用される。広角光学系をレンズのみで構成した場合、被検眼と対物レンズとの間の作動距離(ワーキングディスタンス)を確保する都合上、レンズの口径が大きくなる。その結果、広角光学系の大型化、重量の増大及び製造コストの増大を招く。さらに、大口径レンズを用いて広視野の高分解能画像を得ようとした場合、収差補正が複雑になる。よって、眼底の広角画像を、簡便な構成、かつ、高分解能で得ることができる、広角光学系を備える眼科装置が求められている。
 特許文献1及び特許文献2は、眼底の広角画像を取得するための光学系を備える眼科装置を開示する。
特開2017-169671号公報 特表2015-534482号公報
 開示の技術の第1の態様に係る眼科光学系は、
 第1凹面鏡及び第2凹面鏡を含む反射ユニットと、前記反射ユニットからの光を受け入れるレンズユニットとを有する眼科光学系であって、
 前記反射ユニットの前記第1凹面鏡及び前記第2凹面鏡はそれぞれ光軸上に開口を有すると共に、前記第1凹面鏡の焦点と前記第2凹面鏡の焦点との少なくとも一方が他方の凹面鏡の前記開口に位置するように対向配置され、前記第1凹面鏡の焦点からの光線が前記第1凹面鏡及び前記第2凹面鏡で反射されて前記第2凹面鏡の焦点に向けて集光され、
 前記レンズユニットは、前記反射ユニットからの集光光を受けるレンズを有し、前記レンズは前記第2凹面鏡による集光光の角度をより小さい角度に変換する。
 開示の技術の第2の態様に係る眼科装置は、
 所定波長の光を射出する光源と、
 前記眼科光学系と、
 前記光源からの光を前記レンズユニット及び前記反射ユニットを介して前記被検眼へ向けて走査し、かつ前記レンズユニットの瞳と共役な位置に配置された走査部材と、
 前記走査部材で走査された光により前記被検眼の眼底を撮影する撮影部と、
 を含む。
 開示の技術の第3の態様に係る眼科システムは、
 前記眼科装置で撮影された前記被検眼の眼底と前記光軸とが交差する近軸領域の第1画像を取得する第1取得部と、
 前記近軸領域の周囲の前記被検眼の眼底の輪帯領域の第2画像を取得する第2取得部と、
 前記第1取得部で取得された前記第1画像と、前記第2取得部で取得された第2画像とを合成して前記被検眼の広域画像を形成する形成部と、
 を含む。
第1実施形態に係る眼科装置の全体構成の一例を示すブロック図である。 第1実施形態に係る眼科装置の被検眼に対する照射角の一例を示すイメージである。 第1実施形態に係る眼科装置に含まれる共通光学系における光学システムの模式図である。 第1実施形態に係る反射鏡ユニットの一例を示す模式図である。 第1実施形態に係る反射鏡ユニットにより被検眼の像が形成された状態を示す模式図である。 第1実施形態に係る光学システムにより撮影された被検眼の観察画像の一例に示すイメージ図である。 実施例1に係る光学システムの構成の一例を示す構成図である。 実施例1に係る光学システムの横収差図である。 実施例2に係る光学システムの構成の一例を示す構成図である。 実施例2に係る光学システムの横収差図である。 第2実施形態に係る反射鏡ユニットの一例を示す模式図である。 第2実施形態に係る反射鏡ユニットの他例を示す模式図である。 照明アダプタの一例を示すイメージ図である。 第3実施形態に係る光学システムの一例を示す模式図である。 第4実施形態に係る画像システムの全体構成の一例を示すブロック図である。 第4実施形態に係る画像表示端末で実行される処理の流れの一例を示すフローチャートである。 第4実施形態に係るディスプレイの表示画面の一例を示すイメージ図である。 第5実施形態に係る光学システムの一例を示す模式図である。 第5実施形態に係る光学モジュールの着脱を用いたシステムの一例を示す模式図である。
 以下、図面を参照して実施形態を説明する。
〔第1実施形態〕
 本実施形態に係る眼科装置10の構成の一例を図1に示す。被検眼12を撮像する撮像装置14と、それを制御する制御装置16とを備える。撮像装置14は、撮像機能として、SLOユニット18と、OCTユニット20とを備える。SLOユニット18は、走査型レーザ検眼鏡(Scanning Laser Ophthalmoscope。以下、「SLO」という。)として機能する。OCTユニット20は、光干渉断層撮影(Optical Coherence Tomography。以下、「OCT」という。)として機能する。制御装置16は、撮像装置14と情報の授受を行うことで、その動作を制御する。制御装置16は、SLOユニット18で検出された信号に基づいてSLO画像を生成する。また、制御装置16は、OCTユニット20で検出された信号に基づいてOCT画像を生成する。制御装置16は、例えば、CPU(Central Processing Unit)、ROM、及びRAM(Random Access Memory)を含むコンピュータによって実現されるが、これに限定されるものでなく、他のハードウェア構成によって実現してもよい。以下、観察対象として後眼部、特に眼底を例示するが、これに限定されるものでなく、前眼部であってもよい。前眼部の例として、角膜が挙げられる。
 以下の説明では、眼科装置10が水平面に設置された場合の水平方向を「X方向」、水平面に対する垂直方向を「Y方向」とし、被検眼12の前眼部から眼球中心Oを介して眼底に向かう方向を「Z方向」とする。
 SLO画像の取得は、光源及びセンサを含むSLOユニット18と、光学スキャナを含む走査装置19と、それらを制御する制御装置16とによって実現される。具体的には、SLOユニット18から出射された光(以下、「SLO光」という。)は、走査装置19および被検眼12の瞳孔Pを経由して眼底Fに照射される。走査装置19は、SLO光を走査する光学スキャナとして、第1スキャナ22(Y方向)および第3スキャナ29(X方向)を備える。そのため、SLOユニット18から出射されたSLO光は、走査装置19によって二次元走査される。眼底Fで反射された反射光は、瞳孔P及び走査装置19を経由してSLOユニット18に入射される。SLOユニット18のセンサは反射光に応じた信号を生成し、制御装置16に出力する。制御装置16は、センサにより検出された信号に基づき、眼底FのSLO画像を生成する。なお、SLOは周知の撮像機能であるため、詳細な説明は省略する。
 OCT画像、例えば、眼底OCT画像の取得は、光源、参照光学系、干渉計、分光器及びセンサを含むOCTユニット20と、光学スキャナを含む走査装置19と、それらを制御する制御装置16とによって実現される。具体的には、光源から出射された光は、OCTユニット20内で分岐されて、参照光として参照光学系に、測定光として走査装置19にそれぞれ入射される。測定光は、走査装置19および瞳孔Pを経由して、眼底Fに照射される。走査装置19は、測定光を走査する光学スキャナとして、第2スキャナ24(Y方向)及び第3スキャナ29(X方向)を備える。そのため、OCTユニット20から出射された測定光は、走査装置19によって二次元走査される。眼底Fで反射された測定光は、瞳孔Pおよび走査装置19を経由してOCTユニット20に入射される。OCTユニット20の干渉計は、測定光と参照光とを干渉させて、干渉光を生成する。分光器により分光された干渉光の各スペクトル成分はセンサで検出される。センサで検出された信号は、制御装置16に入力される。制御装置16は、検出信号に基づき、眼底FのOCT画像を生成する。なお、本実施形態において、OCTユニット20の一例として、SD―OCT(Spectral Domain-OCT)が例示されるが、これに限定されない。SD―OCTに替えて、その他のOCT、例えば、SS―OCT(Swept Source-OCT)を採用しても良い。なお、OCTは周知の撮像機能であるため、詳細な説明は省略する。
 以下の説明では、SLO光とOCT測定光とを区別して説明する必要がない場合、SLO光及びOCT測定光を総称して走査光という。また、共通光学系28を構成する光学システム28Aとは、図1に示したSLOとOCTとの共用の光学系として機能する場合に限らず、SLO用又はOCT用として、SLO装置またはOCT装置用の単独用途の光学系として用いられることも可能であることは言うまでもない。
 次に、被検眼12に対する走査光の走査角と、眼底における撮像範囲との関係を説明する。図2に示すように、瞳孔Pを基準位置とした走査光SLの走査角A(以下、外部走査角Aともいう。)は、観察者の視野角12A(FOV:Field of View)に対応する。走査角Aが大きくなれば、視野角12Aは大きくなる。なお、走査光SLは角膜により屈折を受けるが、図2では模式的に、走査光SLが瞳孔Pの中心で屈折された状態を示している。
 視野角12Aはまた、走査角B(以下、内部走査角Bともいう。)で定義され得る。内部走査角Bは、眼球中心Oを基準位置とした走査光SLの走査角を表している。外部走査角Aと内部走査角Bとは基準位置がそれぞれ異なるが、対応関係にある。以下の説明では、視野角12Aに対応する走査角として、外部走査角Aが用いられる。なお、広角光学系として光学システム28Aを備える眼科装置10で実現される視野角12Aは、例えば、外部照射角Aで約120度、内部照射角Bで約160度である。なお、広角光学系を備えていない従来の眼科装置では、例えば、外部照射角Aは約45度、内部照射角Bは約60度である。
 外部照射角Aは、上述の通り、視野角A、すなわち、撮像可能な眼底の範囲に対応する。よって、以下の説明では、視野角12Aは、撮像範囲12Aとして言及される。ユーザは、走査装置19における走査角度を制御することによって、撮像範囲12A内で、任意に撮像位置や撮像領域を設定し得る。
 次に、SLO光学系及びOCT光学系について説明する。SLO光学系は、図1に示すように、SLOユニット18および走査装置19から構成される。OCT光学系は、OCTユニット20および走査装置19から構成される。走査装置19は、走査光を走査するための光学スキャナとして、第1光学スキャナ22、第2光学スキャナ24および第3光学スキャナ28を備える。走査装置19はさらに、共通光学系28を備える。第3光学スキャナ28は、SLO光学系とOCT光学系との間で共有されるため、共通光学系28に含まれる。共通光学系28はさらに、広角光学系として光学システム28Aを備える。第3光学スキャナ29から出射された走査光は、光学システム28Aを介して被検眼12に入射される。走査装置19はさらに、ダイクロイックミラー26を備えている。ダイクロイックミラー26は、第1光学スキャナと第3光学スキャナとの間に配置される。第1光学スキャナ22から出射されたSLO光は、ダイクロイックミラー26を介して第3光学スキャナ29に導かれる。また、第2光学スキャナ24から出射されたOCT測定光は、ダイクロイックミラー26を介して第3光学スキャナ29に導かれる。第1光学スキャナ22とダイクロイックミラー26との間の光路長は、第2光学スキャナ24とダイクロイックミラー26との間の光路長に一致する。第1光学スキャナ22、第2光学スキャナ24及び第3光学スキャナ29は、瞳孔Pの中心と共役な位置に配置される。ダイクロイックミラー26は、上記のように、SLO光学系とOCT光学系とで共用されるため、共通光学系28に含めてもよい。
 光学スキャナの例として、例えば、ポリゴンミラーや、ガルバノミラーが挙げられる。光学スキャナ22、24、29として、ポリゴンミラーを用いてもよいし、ガルバノミラーを用いてもよいし、あるいは、それらの組み合わせであってもよい。光学スキャナ22、24、29は、ポリゴンミラーや、ガルバノミラーに限定されるものでなく、走査光を所定方向に偏向する偏向光学素子であればよい。
 すなわち、眼科装置10では、被検眼12における眼底の撮像範囲12A内を広範囲に撮像することが要求される。しかし、光学システム28Aをレンズのみを用いて構成した場合、被検眼12における外部照射角Aを超広角にして、より広角の視野を得ることは困難であった。これは、被検眼12と被検眼12に直近の光学系の面との間の作動距離(ワーキングディスタンス)の確保と、高分解画像を得る為の収差性能の向上と、フレア及びゴーストの抑制と、装置本体の大きさ及び重さの軽減と、製造難易度及びコストの軽減という複数の課題を解決することが要求されるためである。これらの課題は、より広角の視野を得ようとするのにしたがって二律相反する場合があった。
 上述の通り、眼底Fを広範囲に観察することができる眼科装置が要求されている。この場合、大きな撮像範囲12Aを得るために、従来の眼科装置に比較して、外部走査角Aを広角にする必要がある。そこで、広角な外部走査角Aを実現するために、眼科装置10は、広角光学系として光学システム28Aを備える。光学システム28Aは共通光学系28に含まれており、SLO光学系とOCT光学系とで共有される。よって、光学システム28Aを備える眼科装置10により、広角SLO画像および広角OCT画像の取得が可能になる。
 光学システム28Aは、図3に示すように、被検眼12側から順に、被検眼12の像をリレーする反射ユニット280と、後続するレンズユニットとして第1レンズ群281と、第2レンズ群282とを備える。反射ユニット280は、一対の凹面鏡を備えており、被検眼12の瞳Ppの像をリレーする。一対の凹面鏡である第1凹面鏡280A及び第2凹面鏡280Bは、後述するように、互いの焦点が無収差の等倍共役関係となるように構成されている。そのため、被検眼側の第2凹面鏡280Bの開口280Bh付近に配置された被検眼12の瞳Ppの共役像は、被検眼と反対側の第1凹面鏡208Aの開口280Ah付近に形成される。第1凹面鏡280Aの開口280Ah付近に形成される瞳Ppの像Pp’は、反射ユニット280によって、開口280Bh付近の瞳Ppがリレーされたものである。よって、被検眼の瞳Ppの位置と、反射ユニット280により形成される瞳の共役位置とは、反射ユニット280の反射面280A,280Bの各焦点位置に適合するほど好ましい。被検眼の瞳Ppは第1反射鏡280Aの焦点位置近傍に配置され、第1レンズ群281および第2レンズ群282の合成系、すなわちレンズユニットとしての入射瞳の位置は、第2反射鏡280Bの焦点位置近傍、すなわち第1反射面280Aの中心開口280Ahの位置に配置される。開口280Ahにリレーされた瞳Ppの像Pp’は、正の屈折力を有するレンズを含む第1レンズ群281と、正の屈折力を有するレンズを含む第2レンズ群282とを有するレンズユニットによって、被検眼12と反対側の空間において被検眼の瞳Ppの位置と共役となる位置で、瞳共役像Pcjを形成する。また、図3の例では、被検眼12と被検眼12に直近の光学系の面との間の作動距離(ワーキングディスタンス)の一例として、被検眼12と、被検眼12へ伝播される光線の最初の光学素子である第1凹面鏡280Aの反射面280Arとの距離Xwを示した。
 なお、一対の凹面鏡である第1凹面鏡280A及び第2凹面鏡280Bは、後述するとおりそれぞれ凹面反射面を持つが、例えば、凹の放物反射面を持つ反射鏡を用いることができる。本明細書においては単に反射鏡或いは反射面という場合もある。
 また、第1凹面鏡280A及び第2凹面鏡280Bの反射面は、放物反射面に限定されず、光軸を中心にして回転対称に形成される非球面であってもよい。
 レンズユニット中の第1レンズ群281は、反射ユニット280から広角の光束を受容するためのレンズを備える。このレンズは、被検眼12からの広角光線の角度を広角光線の角度より小さい角度に変換するレンズ(以下、角度変換レンズという。)である。第1反射鏡280Aの開口280Ah付近に形成された被検眼の瞳Ppの像Pp’は、空間像であることから、この像に接してレンズを配置することができる。さらには、瞳Ppの空間像の中にレンズを設けてもよい。よって、第1レンズ群281において、広角の光束を受け入れるための角度変換レンズの口径を小さくすることができる。その結果、第1レンズ群281の被検眼側に配置されるレンズは、小口径の角度変換レンズでよい。このレンズによって、反射ユニット280で扱われる広角の光束の角度は小さく変換されるため、第1レンズ群281全体の口径をも小さくできる。第1レンズ群281のレンズ口径が小さくなることから、第2レンズ群282の口径も小さくできる。したがって、反射ユニット280を備える光学システム28によって、レンズユニットのレンズ構成が簡単でありながら諸収差を良好に補正することが可能になり、眼底の超広角画像を優れた画質で取得できる。
 反射ユニット280から瞳Pを介して眼底Fに照射された走査光SLは、図3に示すように、眼底Fで反射され、反射光として反射ユニット280へ入射される。反射光は、反射ユニット280を介して、第1レンズ群281および第2レンズ群282からなるレンズユニット入射される。反射光はさらに、図1に示したように、第3光学スキャナ29及び第1光学スキャナ22を経由してSLOユニット18に入射される。制御装置16は、センサで検出された信号に基づいて、眼底Fの広角画像を生成する。
 なお、光学システム28Aにおいて、眼底Fと共役関係にある眼底共役像Fcjの位置は、ほぼ第1レンズ群281の中あるいはその近傍に形成される。そして、被検眼の瞳Ppと共役関係にある瞳共役位置像Pcjの位置との間に配置された第1レンズ群281及び第2レンズ群282は、収差補正のために、そのレンズ群に少なくとも1面の負の屈折力を有する面を含むことが有効である。瞳Ppと瞳共役像Pcjとの間の瞳のコマ収差は、瞳共役Pcjの像位置での眼底像の光束画角差となり、眼底の位置で解像力が変化することに繋がる。この瞳のコマ収差を補正するために、被検眼12の眼底との眼底共役Fcj位置と瞳共役Pcj位置との間に、全体として正の屈折力を有するレンズ群が配置され、レンズ群中には少なくとも1面の負の屈折力をもつ面が構成されることが好ましい。また、眼科装置として被検眼への微妙な焦点調節が必要な場合には、一部の光学素子を光軸に沿って移動させることが好ましい。本実施態様においては、レンズユニット中の被検眼と反対側のレンズ群である第2レンズ群282を光軸に沿って移動させることが可能である。
 次に、反射鏡ユニット280について詳しく説明する。反射鏡ユニット280は、図3に示すように、一対の凹面鏡280A、280Bを備える。凹面鏡280A、280Bはそれぞれ、放物面鏡として形成されており、両者の焦点距離は等しく両者の軸上間隔は、焦点距離に一致している。凹面鏡280A、280Bはそれぞれ、反射ユニットとしての光軸との交点を含む中心開口280Ah、280Bhを備えており、ドーナツ形状の輪帯反射部を構成する。2個の凹面鏡280A、280Bは、互いに向き合うように対向配置される。このような配置によって、一方の反射面280A側の中心開口280Ahから入射する光は、他方の反射面280Bで反射された後に、一方の反射面280Aで反射され、他方の反射面280Bの中心開口280Bhに向う。特に、凹面鏡280A、280Bを放物面としたことにより、焦点からの射出光線は光軸に平行な光線として反射され、光軸に平行な光が焦点に集光される。従って、反射面を放物面とした2つの凹面鏡を互いの焦点距離だけ離間して対向配置させると、一方の反射面の中心開口に位置する物体の像を他方の反射面の中心開口上に形成することができる。すなわち、被検眼12の瞳Ppが開口280Bhに位置されると、開口280Ahの位置に瞳Ppの像Pp’がリレーされる。この状態で、第1反射面280A側から、開口280Ah付近を観察すると、恰も瞳Pが浮き出たかのように観察される。反射鏡ユニット280によりリレーされた瞳Ppの像は、瞳Ppと同様に扱われる。
 ここで、図3に示した光学系の構成において、第1凹面鏡280Aの開口280Ahと第2凹面鏡280Bの開口280Bhとは、それぞれ反射面の中心に形成された物理的開口空間(孔)として形成することが可能であるが、これら一対の凹面鏡の空間内にゴミやホコリの侵入を防止するために、凹面鏡の中央部に形成された透過面として形成することが可能である。特に、被検眼の反対側に配置される第1反射鏡280Aの開口280Ahは、前述したように、レンズユニットの最先端のレンズ(角度変換レンズ)が嵌入する構成とする場合や、角度変換レンズが接合される透過面として形成することが可能である。
 また、凹面鏡に形成された開口は、光を通過させることが可能に形成されればよく、開口形状を限定しない。一般に、開口の形状は円形状であるが、楕円形状、多角形状、又は非対称形状などに形成してもよい。開口の大きさは、反射ユニットによる光軸上の領域が遮蔽されるため小さいほど好ましい。ただし、被検眼側の凹面鏡280Bの中央開口が小さいと被検眼の顔が凹面鏡に接触するため、接触しない程度の大きさが必要である。また、被検眼と反対側の凹面鏡280Aの中央開口は、反射ユニット280からの射出光を後続のレンズユニットに導くために必須であり、中心遮蔽の大きさとのバランスにて決定される。
 反射ユニット280を構成する一対の凹面鏡のうち、凹面鏡280Aは、図4に示すように、第1反射面280Aとして焦点距離fの放物面を有する。また、凹面鏡280Bは、第2反射面280Bとして焦点距離fの放物面を有する。2個の凹面鏡280A、280Bは、第1反射面280Aの焦点が、第2反射面280Bの頂点に重なるように配置される。このように、互いの凹面鏡の焦点が合致して、互いの凹面鏡が焦点距離だけの間隔を隔て対抗配置される構成によって、互いの焦点が無収差の等倍共役関係となる。図4に示す例では、第1反射面280Aの焦点280Afを第2反射面280Bの頂点(例えば、第2反射面280Bの中心)に重ね、第2反射面280Bの焦点208Bfを第1反射面280Aの頂点(例えば、第1反射面280Aの中心)に重ねた場合を示している。
 第1反射面280A及び第2反射面280Bが互いに交差するまで反射面を延長すると、第1反射面280A及び第2反射面280Bで互いに反射可能な最大半角Cは一意に決定し、約70.5度となる。第1反射面280A及び第2反射面280Bの交差点を通る直線をx軸とし、第1反射面280Aの頂点と及び第2反射面280Bの頂点とを通る直線をy軸とすると、第1反射面280Aは、次の(1)式で表される。また、第2反射面280Bは、次の(2)式で表される。このように、放物面を有する2つの凹面鏡280A、280Bを対向配置すると、一方の反射面側に物体を配置することで、他方の反射面側に物体の像が形成される。本実施形態では、反射鏡ユニット280を用いて、被検眼12を観察する。
 y=-x/4f+f/2   ・・・(1)
 y=+x/4f+f/2   ・・・(2)
 図5に、本実施形態に係る反射鏡ユニット280により被検眼12の像が形成された状態を模式的に示す。反射ユニット280において、第1反射面280A及び第2反射面280Bの各々に、中心開口280Ah,280Bhを設け、第2反射面280Bの開口280Bhに被検眼12が位置すると、第1反射面280Aの開口280H付近に被検眼12の像12Zが形成される。図5に示す状態で、反射ユニット280の外側(図中右側)から、第1反射面280Aの開口280Ah付近を観察すると、恰も被検眼12が浮き出たように観察される。この反射鏡ユニット280により形成された被検眼12の像12Zを被検眼12と同様に扱うことが可能となる。すなわち、反射鏡ユニット280により、被検眼の空間像が開口280Ah上に形成されるので、光学的には十分な距離Xwが確保されることになる。
 次に、図6に光学システム28Aを用いて撮像された眼底Fの広角画像(以下、広角SLO画像ともいう。)の一例に示す。眼底Fで反射された反射光は、図3に示すように、反射鏡ユニット280を介して、第1レンズ群281および第2群282へ入射される。反射光はさらに、図1に示したように、第1光学スキャナ22を経由してSLOユニット18に入射され、制御装置16で生成された眼底Fの広角画像を示す。反射鏡ユニット280の開口280Ahを通過した反射光のうち、一部の反射光、すなわち、光軸AXに略沿う方向の近軸光は、反射鏡ユニット280で反射されることなく、第1レンズ群281へ射出される。従って、図6に示すように、広角画像の中央部、すなわち、開口280Ah,Bhに対応する中心領域では、眼底像が描出されない。開口280Ah,Bhに対応する領域には、例えば前眼部のぼけた像が形成される。これらの中心開口を通る被検眼からの光は、反射ユニット280を経ることがなく、レンズユニットに入射するためレンズユニットにより前眼部の像を形成することができる。その像位置は眼底像の位置とは一致はしないが、近軸光線による結像であるため焦点深度がかなり深く、若干ボケてはいても前眼部の映像を得ることができ、被検眼のアライメントに用いることが可能である。
 なお、眼底像が描出されない中央領域の大きさは、開口280Ah、280Bhの直径に応じた大きさである。眼底像が描出されない中心領域を小さくするという観点から、反射鏡ユニット280の各反射面に設ける開口208Ah、Bhの有効径は、小さくなるほど好ましい。例えば、被検眼12の瞳の大きさに適合する径、またはそれを含む程度の径に開口208の有効径を定めることで、取得することが困難な被検眼12の中心部の網膜像を最小の領域に定めることができる。
(実施例1)
 次に、図7を用いて、実施例1に係る光学システム28Aを説明する。第1実施形態と同様の構成については同一符号を付して詳細な説明を省略する。
 図7に示した光線は、光学システム28Aにより、被検眼12と反対側の空間内に瞳共役点Pcjを形成する様子を示している。光学システム28Aは、被検眼12側から順に、反射ユニット280と、第1レンズ群281と、第2レンズ群282とを備える。反射鏡ユニット280は、被検眼12の瞳Pp側から順に、第2反射面280Br及び第1反射面280Arが配置されたミラーモジュールM01を有する。第1レンズ群281は、瞳Pp側から順に、角度変換レンズとしての瞳Pp側に凹面を向けた正メニスカスレンズL01と、瞳Pp側に凸面を向けた負メニスカスレンズL02と、両凸正レンズL03と、瞳Pp側に凹面を向けた正メニスカスレンズL04とを有する。正レンズL01は、その瞳Pp側の面が、反射面280Aの開口280Ah付近に形成された瞳Ppの像に接するように配置される。負メニスカスレンズL02と、両凸正レンズL03とは接合されて貼り合わせの正レンズ成分を構成し、瞳Ppと反対側の面に非球面を有している。また、第2レンズ群282は、瞳Pp側から順に、正レンズL05、両凸正レンズL06と、両凹負レンズL07とを有する。両凸正レンズL06と負レンズL07とは接合されて瞳Pp側に凸面を向けたメニスカスレンズ成分を形成している。なお、これら全ての光学要素は、単一の光軸AXに沿って配置される。
 ここで、第1レンズ群281の最も瞳Pp側に配置された正レンズL01は、角度変換レンズとして機能している。すなわち、その瞳Pp側のレンズ面は反射ユニット280による集光位置の近傍、すなわち、第2放物面鏡280Bの焦点の近傍からやや離れて配置され、その瞳Pp側の面は平面または弱い凹面であり、その瞳Ppと反対側に強い正屈折力を有することにより、反射ユニット280での2つの放物面で反射される極めて広角度の光を射出角度の小さな光に変換している。従って、この角度変換レンズとしての正レンズL01により、第1レンズ群281と、第2レンズ群282との口径が、反射ユニット280の口径に比較して、極めて小さく構成されていることが明らかである。なお、角度変換レンズとしての正レンズL01の瞳Pp側の面を凹面とする場合には、第1凹面鏡280Aの中心部を開口部を透過面としてこの透過面に正レンズL01を接合する構成とすることができる。
 第1レンズ群281から射出する平行光束はやや発散光となって後続の第2レンズ群282に入射する。第2レンズ群282は、第1レンズ群281からの弱い発散光を平行光束に変換し、第1レンズ群281との構成によって、被検眼12の瞳Ppの共役像Pcjを、被検眼12と反対側の空間に形成する。すなわち、被検眼12の瞳Pの位置から射出する平行光束と等価な光束が反射鏡ユニット280により射出され、第1レンズ群281及び第2レンズ群282を介して瞳共役点Pcjが形成される。ここでは、眼底からの光が被検眼12を平行光束となって射出することを前提としている。この場合、被検眼12の眼底との共役点は、図7中の点Fcjで示される位置であり、第1レンズ群281の光学要素(レンズL03とレンズL04)の間に眼底の一次空間像Fcjが形成される。なお、前述したSLOユニット18及びOCTユニット20では、各ユニットからの走査光SL(レーザ光)が瞳Pの位置を中心とする平行光束として種々の角度で被検眼12に入射することは言うまでもない。このように、この光学システム28Aは、図3で述べたとおり、被検眼の瞳Ppの像をその共役像Pcjに結像する機能を有し、瞳のリレー系としての機能を有する。後述する実施例においても同様である。
 上述したレンズ要素の各レンズ面は適宜、非球面形状にすることによって結像性能を向上させることができる。これら非球面は、光軸に垂直な方向の高さをrとし、非球面の頂点における接平面から高さrにおける非球面上の位置までの光軸に沿った距離(サグ量)をzとし、頂点曲率半径の逆数をcとし、円錐係数をkとし、n次の非球面係数をA、B、C、D、E、F、G、H、Jとしたとき、次に示す(3)式で表されるものとする。
 z=(c・r)/〔1+{1-(1+k)・r・c1/2
   +A・r+B・r+C・r+D・r10+E・r12 
   +F・r14+G・r16+H・r18+J・r20  ・・・(3)
 次の表1に、実施例1における光学システム28Aの諸元の値を示す。
 表1では、有効視野角(瞳からの外部照射角A)が140度(瞳射出半角が70度)とし、入射瞳径が2mmである場合を示す。
Figure JPOXMLDOC01-appb-T000001

 
 なお、ミラーM01で、面番号2、3の第1反射面及び第2反射面の円錐係数はk=-1である。
 レンズL03で面番号8では、円錐係数はk=0であり、非球面係数は、
  A:+0.415921E-05
  B:+0.770893E-07
  C:-0.228405E-09
  D:+0.182991E-11
  E:-0.558798E-14
  F:-0.208417E-16
  G:+0.119039E-18
  H:+0.765206E-22
  J:-0.681444E-24
である。
 図8に、表1の諸元により構成された光学システム28Aの横収差図を示す。この横収差図は、本実施例の光学性能を評価するために、瞳共役Pcj位置に無収差理想レンズを便宜的に入れたときの眼底像についての収差図である。後述する各実施例においても同様に無収差理想レンズを入れて収差計算を行っている。
 図8に示す収差図では、縦軸は像高を示し、実線は中心波長587.5620nmを示し、破線は656.2790nmを示し、一点鎖線は486.1330nmnmを示し、二点鎖線は435.8350nmを示している。
 図8に示す収差図から明らかなように、実施例1の光学システム28Aでは、可視光波長域の光に対して収差のばらつきが抑制され、良好に補正されていることがわかる。また、光学システム28Aは、有効視野角(すなわち外部照射角A)が60度から140度(瞳射出半角が30度から70度)近傍においても、良好に補正されていることがわかる。なお、図示を省略したが、球面収差、非点収差、歪曲収差などの諸収差も良好に補正されていることが確認されている。
(実施例2)
 次に、図9を用いて、実施例2に係る光学システム28Aを説明する。実施例2は、実施例1の変形例であり、第1実施形態および実施例1と同様の構成については同一符号を付して詳細な説明を省略する。
 図9に示した光線は、光学システム28Aにより、被検眼12と反対側の空間内に瞳共役点Pcjを形成する様子を示している。光学システム28Aは、被検眼12側から、反射鏡ユニット280と、第1レンズ群281と、第2レンズ群282とを有する。反射鏡ユニット280は、被検眼12の瞳P側から順に、第2反射面280B及び第1反射面280Aが配置されたミラーM01を有する。第1レンズ群281は、瞳Pp側から順に、瞳P側に凸面を向けた非球面形状を含む負メニスカスレンズL01と、瞳Pp側に凹面を向けた正メニスカスレンズL02と、瞳Pp側に凸面を向けた負メニスカスレンズL03と、レンズL03と貼り合わされた両凸正レンズL04と、瞳Pp側に凹面を向けた正メニスカスレンズL05と、を有する。負メニスカスレンズL03と、レンズL03と両凸正レンズL04とは貼り合わせの正レンズ成分を構成している。また、第2レンズ群282は、瞳Pp側から順に、正レンズL06と、瞳Pp側に凸面を向けた負メニスカスレンズL07と、瞳Pp側に凸面を向けた正メニスカスL08とを有する。ここで、負メニスカスレンズL07と、正メニスカスレンズL07とは貼り合わせのメニスカスレンズ成分を形成している。これら全ての光学要素は、単一の光軸AXに沿って配置される。
 本実施例に係る第1レンズ群281は、反射ユニット280から広角度の光束を受容して小さな角度の光束に変換するための角度変換レンズとして、負メニスカスレンズL01を有する。負メニスカスレンズL01の凸面は、瞳Ppの共役位置よりも被検眼12側に配置されることによって、負メニスカスレンズL01のレンズ口径を小さくすることができる。この小口径の角度変換レンズL01によって、反射ユニット280で扱われる広角の光束の角度は小さく変換されるため、第1レンズ群281を構成する後続の光学要素の口径も小さくなる。第1レンズ群281を構成する光学要素の口径が小さくなることから、第2レンズ群282を構成する光学要素の口径も小さくなる。したがって、反射ユニット280を備える光学システム28において、レンズの数が少なく、かつ、小型な広角光学系が実現される。また、角度変換レンズの口径を小さくできることから、眼底の広角画像を良好な収差性能で取得できる。さらに、実施例1に係る光学システム28Aと比較して、収差補正が容易になり、その結果、より高精度の広角画像を取得することができる。
 なお、レンズユニットの最も被検眼側の先端に設けられる角度変換レンズとして、この実施例では負メニスカスレンズL01となるが、これは瞳共役位置、すなわち走査される平行光束の回転中心、すなわち、瞳Ppの共役位置よりもレンズ面が、被検眼側に位置するためである。角度変換レンズが瞳共役位置に接するかこの位置よりも被検眼と反対側に遠ざかる場合には、図7に示した実施例1のように正レンズとすることが有効である。
 次の表2に、実施例2における光学システム28Aの諸元の値を示す。
Figure JPOXMLDOC01-appb-T000002

 
 なお、ミラーM01で、面番号2、3の第1反射面及び第2反射面の円錐係数はk=-1である。
 レンズL01で面番号4では、円錐係数はk=0であり、非球面係数は、
  A:+0.746884E-04
  B:-0.776642E-06
  C:+0.648680E-08
  D:-0.395590E-10
  E:+0.158555E-12
  F:-0.394995E-15
  G:+0.574153E-18
  H:-0.439516E-21
  J:+0.135981E-24
である。
 図10に、表2の諸元により構成された光学システム28Aの横収差図を示す。
 図10に示す収差図では、実施例1と同様に、縦軸は像高を示し、実線は中心波長587.5620nmを示し、破線は656.2790nmを示し、一点鎖線は486.1330nmnmを示し、二点鎖線は435.8350nmを示している。
 図10に示す収差図から明らかなように、実施例1の光学システム28Aと同様に、可視光波長域の光に対して収差のばらつきが抑制され、良好に補正されていることがわかる。
〔第2実施形態〕
 次に、図11及び図12を用いて、第2実施形態を説明する。第2実施形態は、反射ユニット280を除き、第1実施形態と同様の構成である。第1実施形態と同様の構成については同一符号を付して詳細な説明を省略する。
 第1実施形態に係る反射ユニット280は、同じ焦点距離fの放物面である第1反射面280A及び第2反射面280Bを備え、一方の焦点を他方の頂点に重ねて互いの焦点が無収差の等倍共役関係となるように構成した。第2実施形態の係る反射ユニット280は、第1反射面280Aの焦点距離と、280Bの焦点距離とを異ならせたものである。
 上述のように、反射鏡ユニット280に設ける開口280Hの有効径は、小さいほど好ましく、被検眼12の瞳の位置、及び第1レンズ群281と第2レンズ群282とによる瞳の位置は、反射鏡ユニット280の反射面の焦点位置に適合するほど好ましい。ところが、被検眼12の瞳の位置、及び第1レンズ群281と第2レンズ群282とによる瞳の位置の設定に関して、自由度は低下する。また、第1レンズ群281と第2レンズ群282とにおける収差補正に関しても反射鏡ユニット280からの光束の角度(放射角度)に制限される。そこで、本実施形態では、反射鏡ユニット280を構成する第1凹面鏡の焦点と前記第2凹面鏡の焦点との少なくとも一方が他方の凹面鏡の前記開口に位置するように対向配置されるという反射鏡ユニット280の基本的共役関係を維持しつつ、扱いが容易な光学システム28Aを提供する。
 図11に、本実施形態に係る反射鏡ユニット280の一例を示す。第1反射面280Arの焦点距離faは、第2反射面280Brの焦点距離fbよりも小さい(fa<fb)。第1反射面280Arの焦点208Afは、第2反射面280Brの頂点(例えば、第2反射面280Brの中心)に一致する。一方、第2反射面280Brの焦点208Bfは、第1反射面280Arの頂点(例えば、第1反射面281Arの中心)から離れて、第1レンズ群281側に位置する。焦点280Afおよび焦点280Bfは同一の光軸上に位置するため、それらの共役関係は維持されている。
 また、図11に示すように、第2反射面280Br側に被検眼12を、第1反射面280Ar側に観察光学系(第1レンズ群281と第2レンズ群282)を配置すると、被検眼12側の有効視野角(瞳からの外部照射角A)が141度より大きくなる。この例では、外部照射角Aの半角は瞳射出半角θppで示され、その瞳射出半角θppは70.5度より大きくなる。一方、瞳射出半角θppに対応する観察光学系側の角度θojは、70.5度より小さくなる。従って、観察光学系における収差補正は、同じ焦点距離fの凹面鏡を対向配置した反射鏡ユニット280に比べて容易になる。
 ところが、観察光学系へ向けて光束を通過させるための空間(中心遮蔽)は、同じ焦点距離fの凹面鏡を対向配置した反射鏡ユニット280に比べて大きくなる。図11に示す例では、観察光学系へ向けて光束を通過させるための空間(中心遮蔽)、すなわち開口280Ahを得るための被検眼12側からの角度を角度θxで示している。
 この場合、第1反射面280Aの焦点距離faの半値の位置を通る直線をx軸とし、第2反射面280Brの頂点(例えば、中心)を通る直線をy軸とすると、瞳射出半角θppは、次の(4)式で表され、角度θxは次の(5)式で表される。
 θpp=tan-1((A/C)1/2/(A/4-C))      ・・・(4)
 θx=tan-1((B(A/C)1/2/(A/4-B/C)) ・・・(5)
 ただし、A=4fa、B=fb-fa、C=(fa・fb)/(fa+fb)である。
 従って、上記の(4)式及び(5)式の関係を用いて、観察光学系における収差補正の容易性と、開口280Ahの大きさとを最適にする値を求めればよい。
 実用上からは被検眼から第1反射鏡280Aの開口280Ahを見込む角度θxについては、
  θx≦22.5度
 で示される条件式を満たす開口を有するようにレンズユニット側の反射面を形成することが好ましい。この角度は、得られる被検眼12の眼底の輪帯形状像の中心遮蔽の半径に対応するため、小さいほど有利である。しかしながら、この条件を満たすことによって、図6に例示した通り、光軸中心の像を得ることのできる従来の装置による中心部画像との組合せを行う場合に有利となる。
 上述のように、第2反射面280Brの焦点208Bfが第1反射面280Arから離れて設定されることは、反射ユニットと後続のレンズユニット、特に先端の角度変換レンズとを離間して設けることができる。よって、反射ユニット内にごみなどの不純物が混入した場合に不純物を除去する作業が容易になり、製造上のみならずメンテナンスなどの際に有効である。
(変形例)
 図12に、本実施形態に係る反射ユニット280の変形例を示す。この例では被検眼12から遠い位置にある側の第1反射面280Arの焦点距離faは、第2反射面280Brの焦点距離fbよりも大きい(fa>fb)。このようなに構成によれば、被検眼12は、第2反射面280Brから離れた位置に設定され、その結果、被検眼12と反射鏡ユニット280との間に空間を形成できる。これによって、被検眼と第2放物面鏡280Bの裏面(凸面)との距離を確保することができ、ユーザビリティが向上する。
 上述した第2実施態様として、図11及び図12に示した構成において、前記反射ユニットの第1反射鏡、すなわち被検眼から遠い方の凹面鏡の焦点距離をfa、第2反射鏡、すなわち被検眼に近い方の凹面鏡の焦点距離をfbとするとき、両方の焦点距離が共に正であるとして、
 0≦|fa-fb|≦0.1(fa+fb)
 の条件を満たすことが、中心開口の大きさの制限および収差補正の観点から有効である。
 なお、上記の構成においては、各反射鏡の中心開口の位置に他方の焦点が位置することを基本としており、焦点距離の差異については、上述のとおり、大きくなるほど中心遮蔽の大きさが大きくなる傾向にあることは前述のとおりである。しかしながら、装置としての小型化や被検眼と装置との間隔を含めて、上記の範囲で装置全体の最適バランスを図ることが実用的である。そして、一方の反射面の焦点が他方の反射面の中心開口に位置する場合にも、その基本形を前提としつつ、収差バランスを含めて装置全体の最適化のために若干の変移が許容されることは言うまでもない。
 第1実施形態及び第2実施形態では、1個の反射ユニット280を含む光学システム28Aを説明したが、これに限定されるものではない。2つ以上の複数の反射鏡ユニットを組み合わせ、各反射ユニットの瞳と瞳とを一致させて連結することが可能である。また、第2実施形態で説明したように、第1反射面280A及び第2反射面280Bの焦点距離を異ならせてもよい。
 複数の反射ユニット280を用いることで、リレーされた被検眼12の瞳に対する加工を行うことが可能になる。
 例えば、リレーされた瞳Pの像の周辺を光源により直接照明し、被検眼12の眼底内への照明が可能になる。リレーされた瞳Pの像の周辺に、図13に一例を示す照明アダプタ280Ltを設け、リレーされた瞳Pの像の周辺を照明する。照明アダプタ280Ltは、リレーされた瞳像Pp’を囲むように配置された照明光源280Fvを備える。図13には、反射面280に設けられた開口の開口径に相当する径の円形空間の周囲に、リング状に配列された複数の照明光源280Fvが設けられる。このリング状照明光源は被検眼の瞳の周囲に再結像され、被検眼の内部を照明する。角膜上で撮影光束は光軸を含む中心部をとおり、照明光はリング状となるため、撮影光路と眼底への照明光路とが分離できるため、撮影光への角膜反射光の混入を防ぐことが可能となる。
 また、反射鏡ユニット280は、その光軸中心部に開口280Ah、280Bhを有している。この開口280Ah、280Bhを通過する光は、そのまま第1レンズ群281及び第2レンズ群282に向う。そこで、第1レンズ群281及び第2レンズ群282の少なくとも一方のレンズ群の光軸上にのレンズを追加配置、又は相互のレンズ間隔を変化させることで、光軸中心付近の画像精度の向上が図れる。
〔第3実施形態〕
 次に、図14を用いて、第3実施形態を説明する。第3実施形態は、第1実施形態及び第2実施形態と同様の光学構成であり、第1実施形態と同様の構成については同一符号を付して詳細な説明を省略する。
 第1実施形態及び第2実施形態では、光学システム28Aを、反射鏡ユニット280、第1レンズ群281及び第2レンズ群282を含んで構成した(図7参照)。第3実施形態は、光学システム28Aの光学要素を機能的に分類して構成したものである。
 図14に示すように、光学システム28Aを、第1光学システム28A-1、及び第2光学システム28A-2に分類して構成する。
 第2光学システム28A-2は、レンズL02~L07を含み、近軸光線による眼底観察(すなわち、狭い視野観察)を可能とする通常画角の眼底撮影光学系として機能するように構成する。
 一方、第1光学システム28A-1は、反射鏡ユニット280、及びレンズL01を含んで構成される。レンズL01は、角度変換レンズとして機能するように形成する。すなわち、レンズL01は、被検眼12からの反射ユニット280を介する超広角の光線の角度を光学光線の角度より小さい角度に変換する。よって、第1光学システム28A-1は、被検眼と第2光学システム28A-2との間に挿入されることによって、広い視野観察を実現する光学系の一部を構成し、第1光学システム28A-1と第2光学システム28A-2とを同じ光軸上に配置することで、広い視野観察を実現する光学系として機能する。
 したがって、光学システム28Aを、第1光学システム28A-1、及び第2光学システム28A-2に分離して構成することとし、第1光学システム28A-1を着脱することにより、超広角の視野観察用の装置と、狭い視野観察との双方の観察用の装置とを提供できる。第2光学システム28A-2を、近軸光線による眼底観察を可能とする光学系として機能するように形成する場合、被検眼12へ向けて第2光学システム28A-2を、光軸方向に移動可能に構成することで、第1光学システム28A-1を取り外した場合に、簡単に、広い視野観察から狭い視野観察へ切り替えることが可能になる。このような構成により、同一の光学系(第2光学システム28A-2)を広い視野と狭い視野との両方の観察に利用可能になる。
 なお、光学モジュール28A-1を提供する場合、反射鏡ユニット280に角度変換用のレンズL01を取り付けた一体構造として構成することが好ましい。また、反射鏡ユニット280にレンズL01をアタッチメントを介して取り付けてもよい。
 なお、上記では、反射ユニット280とレンズユニットとを組合せた光学ユニット28Aは、光軸を中心とする眼底領域の情報を得ることができないが、光軸に対する被検眼12の位置をずらして複数回の撮影を行い、得られる複数の画像から中心部の情報を補って、広い眼底の情報を得ることが可能である。すなわち、視軸と光軸とを複数回異なる位置に移動して撮影することで、視軸と光軸とを一致させて撮影した場合に取得が困難であった領域の画像を取得可能である。そして、取得した複数の画像を合成して1枚の広域画像を形成することも可能である。その場合、被検眼の視軸は、図示しない固視標を被検眼に提示し、提示した固視標を目視させることで適宜設定すればよい。
〔第4実施形態〕
 次に、開示の技術に係る第4実施形態を説明する。第4実施形態は、第1実施形態乃至第3実施形態と同様の構成であり、第1実施形態乃至第3実施形態と同様の構成については同一符号を付して詳細な説明を省略する。
 図15に、第4実施形態に係る撮像範囲12Aの全ての画像を提供することが可能な画像システムの一例として画像システム100を示す。画像システム100は、第1眼科装置110と、第2眼科装置120と、インターネット及びローカルエリアネットワーク等のネットワーク130と、画像サーバ140と、画像表示端末150とを備えている。
 眼科システム100は、図15に示されるように、第1眼科装置110と、第2眼科装置120と、画像サーバ140と、コンピュータ(以下、PCという。)150と、これらをネットワーク接続するためのインターネット及びローカルエリアネットワーク等のネットワーク130と、を備える。第1眼科装置110は、例えば、外部走査角Aで45度程度の撮像範囲を提供する通常の眼科装置(以下、挟角眼科装置110ともいう。)である。第1眼科装置110を用いて、光軸AX近傍の眼底領域(近軸領域)を描写した挟角眼底画像が取得される。第2眼科装置120は、上記実施形態に係るいずれかの眼科装置10であって、例えば、外部走査角Aで130度程度の撮像範囲を提供する広角眼科装置(以下、広角眼科装置120ともいう。)である。第2眼科装置120を用いて、広角眼底画像が取得される。以下、眼底FのSLO画像を例示するが、これに限定されない。眼科システム100で扱われる眼科画像は、上述したように、眼底FのOCT画像であってもよいし、前眼部の画像であってもよい。
 第2眼科装置120で取得された広角眼底画像は、図6で説明したように、画像の中央部、すなわち、光軸AX近傍では、眼底像が描出されない。そこで、本実施形態では、第1眼科装置110で取得した挟角眼底画像と、第2眼科装置120で取得した広角眼底画像とを用いて、眼底像が全体に描出された広角眼底画像を生成する。
 第1眼科装置110は、ネットワーク130を介して、患者IDと関連付けられた挟角眼底画像データを画像サーバ140に送信する。第2眼科装置120もまた、ネットワーク130を介して、患者IDと関連付けられた広角眼底画像データを画像サーバ140に送信する。画像サーバ140は、これらの画像データを管理する。画像サーバ140は、ネットワーク130を経由して、PC150と種々の情報のやり取りを行う。画像サーバ140は、PC150からの指示に応じて、眼底画像データをPC150へ送信する。PC150は、第1眼科装置110で取得された挟角眼底画像と、第2眼科装置120で取得された広角眼底画像とを合成して、眼底像が全体に描出された広角眼底画像を生成するための画像処理プログラムを格納する。
 なお、本実施形態では、PC150が、第1眼科装置110及び第2眼科装置120から独立した眼科システム100を説明するが、第1眼科装置110及び第2眼科装置120が、PC150の機能を有してもよい。
 次に、画像処理プログラムについて説明する。ユーザは、PC150のディスプレイに表示される電子カルテ画面を利用して、PC150に画像処理プログラムの実行を指示する。図17に、PC150のディスプレイに表示される電子カルテ画面200を示す。画面200は、患者情報を表示する表示領域201と、第1眼科装置110により取得された挟角眼底画像203Gを表示する表示領域202と、第2眼科装置120により取得された広角眼底画像205Gを表示する表示領域204と、を備えている。表示領域202には、第1眼科装置110の型式名を表示する表示領域202Aが設けられる。また、表示領域204内には、第2眼科装置120の型式名を表示する表示領域204Aが設けられる。なお、画面200は、OCT画像を読み込むための指示ボタン206、眼科画像に対して人工知能診断を実行を指示するための指示ボタン207及び各種設定を指示する指示ボタン208などを含む。
 図16は、PC150で実行される画像処理プログラムの処理の流れを示す。
 まず、図16に示すステップS100では、患者情報の取得処理が実行され、取得された患者情報がディスプレイ156に表示される。
 次のステップS102では、撮影済みの患者の眼底画像が取得され、次のステップS104で電子カルテ上に表示される。
 次に、図16に示すステップS106では、眼底中心部位の周辺である第2眼底画像領域12G2の撮影画像の撮影指示処理が実行され、撮影が完了するまで、ステップS108で否定判断される。ステップS108で肯定判断されると、ステップS110で、患者IDの被検眼12の中央部位周辺の眼底を撮影した撮影画像が取得される。第2眼科装置120は、画像表示端末150からの指示を受けて患者IDの被検眼12の中央部位周辺の眼底を撮影し、撮影画像を画像表示端末150へ出力する。なお、被検眼12の中央部位周辺の眼底撮影及び撮影画像の出力は、画像サーバ140を介して処理してもよい。
 次に、ステップS112では、ステップS102で取得した第1眼科装置110による撮影画像と、ステップS110で取得した第2眼科装置120による撮影画像とを合成する画像処理が実行される。次のステップS114では、画像処理により合成された画像が、撮像範囲12Aの全ての2次元画像12Gとして、表示領域204へ表示する。
 第1眼科装置110による撮影画像203Gと、第2眼科装置120による撮影画像205Gとの合成処理は、例えば、3Dデータ又はスキャンデータを用いて網膜の立体画像、断面画像、表面画像を生成すると共に、セグメンテーション処理を実行する処理が挙げられる。また、SLOユニット18から得られたデータ各々を用いて眼底画像を生成してもよい。
 例えば、これらの画像を合成する場合、各画像の血管パターンが重なるように画像を回転又は拡大縮小などの画像処理を実行すればよい。合成された画像は、恰も撮影画角が100度以上である広角画像撮影用の眼科機器で撮影したような、広角画像を得ることができる。画像を合成する画像処理は、上述の手法に限定されるものではなく、既知の手法で用いてもよいことは言うまでもない。そして、合成された画像は画像サーバ140に記憶保持される。
 図17に、表示領域204に第1眼科装置110による撮影画像203Gと、第2眼科装置120による撮影画像205Gとを合成した、2次元画像12Gが表示された電子カルテの画面220の一例を示す。
 以上説明したように、第4実施形態では、眼底中心の画像及び眼底中心部位の周辺の画像各々を合成し、撮像範囲12Aの全ての2次元画像12Gを得ることで、恰も撮影画角が例えば100度である広角画像撮影用の眼科機器で撮影したような、広角画像を得ることができる。
 第4実施形態に係る画像システム100は、眼科医が被検眼12の眼底画像12Gを観察して診断する場合に、好適に機能する。すなわち、画像システム100で合成された眼底画像に基づき診断を行い、画像ビューワの電子カルテ機能を用いて診断結果を入力する。また、眼底画像CをAI診断する場合はボタン207を図示せぬインターフェースにより押下又はクリックし、AI診断モードに移行する。また、OCT画像が診断に必要な場合は、ボタン206を押下又はクリックしOCTモードに移行する。
 眼科医は、撮影画角30度の高解像度の中心部の眼底画像を用いて視神経乳頭及び黄斑など眼底中心部の診断を的確に行えるとともに、撮影画角100度以上に相当する合成された眼底画像12Gを用いて網膜周辺部の病変があるか否かを的確に行うことができる。
 一方、眼科医は、眼底及び網膜の高解像度の画像を用いて診断を行うための眼科機器を保有している場合が多い。この高解像度の眼科機器は撮影画角が10~30度の範囲であり、その範囲を超えた眼底及び網膜の周辺部を撮影することが困難である。よって眼科医は、眼底及び網膜の周辺部用に広角及び超広角の眼底機器を別途購入する必要がある。これに対して第4実施形態に係る画像システム100を用いることにより、新規に広角及び超広角の眼底機器を購入することなく、保有している高解像度の眼科機器を有効活用し、眼底及び網膜の中心部を高解像度の画像を用いて診断することができる。また、合成された100度を超える広画角の眼底画像により眼底及び網膜の周辺部を診断することができる。
〔第5実施形態〕
 次に、第5実施形態を説明する。第5実施形態は、複数の光学システムを備える眼科装置である。上記実施形態と同様の構成については同一符号を付して詳細な説明を省略する。
 本実施形態に係る光学システム28Aは、図18に示されるように、第1光学システム28A1および第2光学システム28A2を備える。光学システム28Aはさらに、制御装置16からの指示に応じて、第1光学システム28A1と第2光学システム28A2との間で撮像に使用する光学システムを切り替えるための切替機構28Bを備える。切替機構28Bとして、例えば、回転ステージや、1軸ステージ等の移動装置が使用され得る。以下、眼底FのSLO画像を例示するが、これに限定されない。眼科装置10で扱われる眼科画像は、上述したように、眼底FのOCT画像であってもよいし、前眼部の画像であってもよい。
 光学システム28A1は、例えば、外部照射角Aで約45度の撮像範囲を提供する挟角光学系である。光学システム28A1を用いて、光軸AX近傍の眼底領域を描写した挟角眼底画像が取得される。光学システム28A2は反射ユニット280を備えており、上記実施形態で説明したように、例えば、外部照射角Aで約130度の撮像範囲を提供する広角光学系である。光学システム28A2を用いて、広角眼底画像が取得される。ここで、図6で説明したように、この広角眼底画像の中央部、すなわち、光軸AX近傍では、眼底像が描出されない。そこで、本実施形態では、光学システム28A1で取得した挟角眼底画像と、光学システム28A2で取得した広角眼底画像とを用いて、眼底像が全体に描出された広角眼底画像を生成する。なお、挟角眼底画像と広角眼底画像との画像合成については、上述した通りなので、詳細な説明を省略する。
 本実施形態によれば、挟角光学システム28A1および広角光学システム28A2を用いて、挟角眼底画像および広角眼底画像を取得できる。眼科医は、挟角眼底画像を用いて視神経乳頭及び黄斑など眼底中心部の診断を的確に行えるとともに、必要に応じて、合成された広角眼底画像を用いて網膜周辺部の診断も行うことができる。
 図19に、光学モジュール28A-1の着脱を用いたシステムの一例を示す。この光学モジュール28A-1は、反射ユニット280に相当し、具体的には図7及び図9に示した第1レンズ群281中の先端部の角度変換用のレンズL01と一体に取り外すことが有効である。
 図19に示すように、光学モジュール28A-1を着脱する機構を切替機構28Bが担当する。この場合、光学モジュール28A-1を取り外したことによって発生する被検眼12と光学モジュール28A-2との空間を埋めるべく、切替機構28Bが光学モジュール28A-2を光軸方向に移動させてもよい。また、光学モジュール28A-1と交換されるユニットには、レンズユニットに対応する光学モジュール28A-2の先端に別途のレンズを加えるように構成することによって、軸上の画像の性能改善を行うことも可能である。このように、光学モジュール28A-1を着脱する機構によっても、広い視野観察と狭い視野観察の双方の視野観察を実現する眼底撮影装置を提供することができる。
 さらに、周辺領域の超広角での撮影の可能とする光学系においては、光軸を含む中心領域での遮光面を設けることによって、迷光を防止することができる。SLOユニット18やOCTユニット20による走査光の照射領域を、撮影視野の輪帯領域に制限することによって、迷光を低減することが可能となる。
 以上、本開示の技術を実施形態を用いて例示したが、本開示の技術の技術的範囲は上記実施形態に限定されない。本開示の技術の要旨を逸脱しない範囲で上記実施形態に多様な変更または改良を加えることができる。当該変更または改良を加えた形態も本開示の技術の技術的範囲に含まれる。また、本明細書で参照された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
10   眼科装置
12   被検眼
12A  撮像範囲
16   制御装置
19   走査装置
28   共通光学系
28A  光学システム
100  画像システム
110  第1眼科装置
120  第2眼科装置
130  ネットワーク
140  画像サーバ
150  コンピュータ
A    外部照射角

Claims (17)

  1.  第1凹面鏡及び第2凹面鏡を含む反射ユニットと、前記反射ユニットからの光を受け入れるレンズユニットとを有する眼科光学系であって、
     前記反射ユニットの前記第1凹面鏡及び前記第2凹面鏡はそれぞれ光軸上に開口を有すると共に、前記第1凹面鏡の焦点と前記第2凹面鏡の焦点との少なくとも一方が他方の凹面鏡の前記開口に位置するように対向配置され、前記第1凹面鏡の焦点からの光線が前記第1凹面鏡及び前記第2凹面鏡で反射されて前記第2凹面鏡の焦点に向けて集光され、
     前記レンズユニットは、前記反射ユニットからの集光光を受けるレンズを有し、前記レンズは前記第2凹面鏡による集光光の角度をより小さい角度に変換する
     眼科光学系。
  2.  前記第1凹面鏡の焦点距離は、前記第2凹面鏡の焦点距離と同じである
     請求項1に記載の眼科光学系。
  3.  前記第1凹面鏡の焦点距離は、前記第2凹面鏡の焦点距離より長い
     請求項1に記載の眼科光学系。
  4.  前記第1凹面鏡及び前記第2凹面鏡の各々は、放物面鏡である
     請求項1から請求項3の何れか1項に記載の眼科光学系。
  5.  前記第1凹面鏡及び前記第2凹面鏡は、曲率が異なる凹面鏡である
     請求項1に記載の眼科光学系。
  6.  前記第1凹面鏡及び前記第2凹面鏡の一方の焦点距離をfa、他方の焦点距離をfb、とし、一方の前記開口の中心から他方の開口に対する放射角度θxを、
      θx=tan-1((B(A/C)1/2/(A/4-B/C))
     ただし、A=4fa、B=fb-fa、C=fa・fb/(fa-fb)、
     とするとき、
      θx≦22.5度
     で示される条件式を満たす開口を有するように前記レンズユニット側の反射面が形成される
     請求項1から請求項5の何れか1項に記載の眼科光学系。
  7.  前記第1凹面鏡及び前記第2凹面鏡の一方の焦点距離をfa、他方の焦点距離をfb、とするとき、
     fa≦fb≦1.1fa
     で示される条件式を満たすように前記第1凹面鏡及び前記第2凹面鏡が形成される
     請求項1から請求項6の何れか1項に記載の眼科光学系。
  8.  前記レンズは、配置された前記開口と対向する前記第1凹面鏡又は前記第2凹面鏡の焦点位置より内側に配置された場合、負レンズとして機能するように形成される
     請求項1から請求項7の何れか1項に記載の眼科光学系。
  9.  前記レンズは、配置された前記開口と対向する前記第1凹面鏡又は前記第2凹面鏡の焦点位置より外側に配置された場合、正レンズとして機能するように形成される
     請求項1から請求項7の何れか1項に記載の眼科光学系。
  10.  前記レンズユニットは、前記レンズからの光を受ける2つの正レンズ群を含み、
     前記反射ユニットによる被検眼の瞳の共役位置に、前記レンズユニットの瞳が位置するように構成され、前記被検眼からの光により、前記正レンズ群の前記反射ユニット側のレンズ群中に、前記被検眼の眼底像が形成される
     請求項1から請求項9の何れか1項に記載の眼科光学系。
  11.  前記レンズユニットは、他のレンズに対して光軸に沿って移動可能なレンズを有する
     請求項10に記載の眼科光学系。
  12.  前記第2凹面鏡による集光光の角度は、被検眼の瞳からの外部照射角が100度以上の角度である
     請求項1から請求項11の何れか1項に記載の眼科光学系。
  13.  所定波長の光を射出する光源と、
     請求項1から請求項12の何れか1項に記載の眼科光学系と、
     前記光源からの光を前記レンズユニット及び前記反射ユニットを介して被検眼へ向けて走査し、かつ前記レンズユニットの瞳と共役な位置に配置された走査部材と、
     前記走査部材で走査された光により前記被検眼の眼底を撮影する撮影部と、
     を含む眼科装置。
  14.  前記反射ユニットにより、前記被検眼の瞳からの外部照射角が100度以上の角度の光を検出可能に構成され、100度以上の画角での眼底撮影を可能とする
     請求項13に記載の眼科装置。
  15.  少なくとも前記反射ユニット及び前記レンズユニットに含まれる前記レンズを光軸上に挿抜する挿抜部を含み、
     前記撮影部は、
     前記挿抜部によって、少なくとも前記反射ユニットと前記レンズユニットに含まれる前記レンズとが前記光軸上に配置された状態で、前記被検眼の眼底と前記光軸とが交差する近軸領域を囲む輪帯領域を撮影する
     請求項13又は請求項14に記載の眼科装置。
  16.  前記レンズを除く前記レンズユニットを光軸に沿う方向に移動する移動部を含み、
     前記撮影部は、
     前記挿抜部によって、少なくとも前記反射ユニット及び前記レンズユニットに含まれる前記レンズが離脱され、かつ前記移動部によって、前記レンズを除く前記レンズユニットを前記被検眼に向けて移動させた状態で前記被検眼の眼底の近軸領域を撮影する
     請求項15に記載の眼科装置。
  17.  請求項13から請求項16の何れか1項に記載の眼科装置で撮影された前記被検眼の眼底と光軸とが交差する近軸領域の第1画像を取得する第1取得部と、
     前記近軸領域の周囲の前記被検眼の眼底の輪帯領域の第2画像を取得する第2取得部と、
     前記第1取得部で取得された前記第1画像と、前記第2取得部で取得された第2画像とを合成して前記被検眼の広域画像を形成する形成部と、
     を含む眼科システム。
PCT/JP2019/006608 2018-02-23 2019-02-21 眼科光学系、眼科装置、及び眼科システム WO2019163911A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020501043A JP7230902B2 (ja) 2018-02-23 2019-02-21 眼科光学系、眼科装置、及び眼科システム
US16/999,770 US20200387007A1 (en) 2018-02-23 2020-08-21 Ophthalmic optical system, ophthalmic device, and ophthalmic system
JP2023021922A JP2023062076A (ja) 2018-02-23 2023-02-15 眼科光学系、眼科装置、及び眼科システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018031110 2018-02-23
JP2018-031110 2018-02-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/999,770 Continuation US20200387007A1 (en) 2018-02-23 2020-08-21 Ophthalmic optical system, ophthalmic device, and ophthalmic system

Publications (1)

Publication Number Publication Date
WO2019163911A1 true WO2019163911A1 (ja) 2019-08-29

Family

ID=67688091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006608 WO2019163911A1 (ja) 2018-02-23 2019-02-21 眼科光学系、眼科装置、及び眼科システム

Country Status (4)

Country Link
US (1) US20200387007A1 (ja)
JP (2) JP7230902B2 (ja)
TW (1) TWI813631B (ja)
WO (1) WO2019163911A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021074963A1 (ja) * 2019-10-15 2021-04-22 株式会社ニコン 画像処理方法、画像処理装置、プログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018105845A1 (de) * 2018-03-14 2019-09-19 Olympus Winter & Ibe Gmbh Halterung für ein optisches System eines Endoskops und Verfahren zum Herstellen einer Halterung für ein optisches System eines Endoskops

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000504251A (ja) * 1996-10-24 2000-04-11 フォルク オプティカル インコーポレイテッド 検眼鏡観察装置
JP2014502552A (ja) * 2011-01-13 2014-02-03 オプトス ピーエルシー 眼科における改良または眼科に関する改良
US20150042958A1 (en) * 2013-08-06 2015-02-12 Wavien, Inc. Aerial projection display with dual reflectors
US9256060B2 (en) * 2012-06-27 2016-02-09 Hitachi Maxell, Ltd. Pinhole array and display device using same
US20160357025A1 (en) * 2015-06-04 2016-12-08 Valeo North America, Inc. Automotive lighting device that projects a virtual 3d image or light, while providing a function
JP2017169671A (ja) * 2016-03-22 2017-09-28 株式会社トプコン 眼科撮影装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142387A (en) * 1990-04-11 1992-08-25 Mitsubishi Denki Kabushiki Kaisha Projection-type display device having light source means including a first and second concave mirrors
JP3635867B2 (ja) * 1997-06-03 2005-04-06 株式会社日立製作所 投射型液晶表示装置
KR20010041257A (ko) * 1998-12-25 2001-05-15 오노 시게오 반사굴절 결상 광학계 및 그 광학계를 구비한 투영 노광장치
KR20020033112A (ko) * 1999-07-01 2002-05-04 추후제출 광을 수집 및 집속시키기 위한 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000504251A (ja) * 1996-10-24 2000-04-11 フォルク オプティカル インコーポレイテッド 検眼鏡観察装置
JP2014502552A (ja) * 2011-01-13 2014-02-03 オプトス ピーエルシー 眼科における改良または眼科に関する改良
US9256060B2 (en) * 2012-06-27 2016-02-09 Hitachi Maxell, Ltd. Pinhole array and display device using same
US20150042958A1 (en) * 2013-08-06 2015-02-12 Wavien, Inc. Aerial projection display with dual reflectors
US20160357025A1 (en) * 2015-06-04 2016-12-08 Valeo North America, Inc. Automotive lighting device that projects a virtual 3d image or light, while providing a function
JP2017169671A (ja) * 2016-03-22 2017-09-28 株式会社トプコン 眼科撮影装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021074963A1 (ja) * 2019-10-15 2021-04-22 株式会社ニコン 画像処理方法、画像処理装置、プログラム
JPWO2021074963A1 (ja) * 2019-10-15 2021-04-22
JP7248142B2 (ja) 2019-10-15 2023-03-29 株式会社ニコン 画像処理方法、画像処理装置、プログラム

Also Published As

Publication number Publication date
JPWO2019163911A1 (ja) 2021-02-04
US20200387007A1 (en) 2020-12-10
TWI813631B (zh) 2023-09-01
JP7230902B2 (ja) 2023-03-01
JP2023062076A (ja) 2023-05-02
TW201936112A (zh) 2019-09-16

Similar Documents

Publication Publication Date Title
US7140730B2 (en) Optical apparatus and method for comprehensive eye diagnosis
US11717161B2 (en) Wide-angle pupil relay for cellphone-based fundus camera
JP2017121464A (ja) 広視野の網膜撮像システム
JP2023062076A (ja) 眼科光学系、眼科装置、及び眼科システム
JP2016123467A (ja) 眼底撮影装置および広角レンズアタッチメント
JP2023144062A (ja) 眼科装置
JP2016150032A (ja) 眼科手術用顕微鏡および眼科手術用アタッチメント
JP6756498B2 (ja) 眼科撮影装置
EP2164383A2 (en) Method and apparatus for imaging an eye of a small animal
WO2021065582A1 (ja) 眼科装置及び眼科用光学系
JP2023122620A (ja) 眼底観察装置
JP2024063110A (ja) 眼科用光学系及び眼科装置
JP6729800B2 (ja) 眼科装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19758108

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501043

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19758108

Country of ref document: EP

Kind code of ref document: A1