WO2019163872A1 - Light control film - Google Patents

Light control film Download PDF

Info

Publication number
WO2019163872A1
WO2019163872A1 PCT/JP2019/006476 JP2019006476W WO2019163872A1 WO 2019163872 A1 WO2019163872 A1 WO 2019163872A1 JP 2019006476 W JP2019006476 W JP 2019006476W WO 2019163872 A1 WO2019163872 A1 WO 2019163872A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid crystal
light control
control film
crystal layer
Prior art date
Application number
PCT/JP2019/006476
Other languages
French (fr)
Japanese (ja)
Inventor
潤一 馬場
雅明 浦野
Original Assignee
株式会社コムラテック
潤一 馬場
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コムラテック, 潤一 馬場 filed Critical 株式会社コムラテック
Publication of WO2019163872A1 publication Critical patent/WO2019163872A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals

Definitions

  • This invention relates to the light control film which sticks to transparent plates, such as a window glass, and adjusts the light quantity which permeate
  • the electric field generated between the opposing transparent electrodes (longitudinal direction) is changed, the orientation of the liquid crystal in the liquid crystal layer is changed, and the dimming is performed.
  • the amount of light passing through the film can be adjusted.
  • the transparent electrodes face each other with the liquid crystal layer interposed therebetween, the transparent electrodes are easily short-circuited. Therefore, a short circuit is prevented by setting the thickness of the liquid crystal layer between the transparent electrodes to a certain value or more.
  • a terminal forming process for exposing a terminal for supplying a voltage to each transparent electrode on the surface of the light control film is necessary. Since the transparent electrodes face each other, both sides of the light control film require terminal forming processing. There is room for improvement in these respects.
  • the present invention has been made in view of such circumstances, and provides a light control film that can improve short-circuit prevention and can simplify a terminal forming process.
  • a light control film of the present invention includes a first substrate having insulating properties and translucency, a pair or a plurality of pairs of linear electrodes formed on one surface of the first substrate,
  • the liquid crystal layer which consists of a composite material of a polymer and a liquid crystal laminated
  • the inventors of the present invention have repeatedly studied the structure of a light control film using a liquid crystal layer composed of a polymer and a liquid crystal composite material in order to improve short circuit prevention and simplify a terminal forming process.
  • the electrodes are formed in a pair or a plurality of pairs of lines, the amount of transmitted light can be adjusted even if the electrodes are formed only on one side of one substrate.
  • the linear electrode is formed on only one surface of one substrate in this way, the short circuit prevention property is improved, and the terminal forming processing work is only required for one substrate.
  • the light control film of the present invention when a voltage is applied to each pair of linear electrodes, an electric field is generated in parallel (lateral direction) to the surface of the substrate, and the liquid crystal in the liquid crystal layer is affected by the electric field. The orientation of is changed. And the light quantity which permeate
  • a pair or a plurality of pairs of linear electrodes are formed on one surface of a first substrate having insulation and translucency, and a polymer and a liquid crystal are formed on the electrode formation surface of the first substrate.
  • a liquid crystal layer made of the composite material is laminated.
  • the second substrate of the liquid crystal layer is in contact.
  • the surface can be protected. Therefore, stable light control can be performed over a long period.
  • the linear electrodes when the electrodes are formed by a printing method, the linear electrodes can be made finer, and the degree of design freedom can be increased.
  • the 1st Embodiment of the light control film of this invention is shown typically, (a) is the top view, (b) is XX sectional drawing of (a). It is sectional drawing which shows typically 2nd Embodiment of the light control film of this invention.
  • FIG. 1 (a) is a plan view showing a first embodiment of the light control film of the present invention
  • FIG. 1 (b) is an XX sectional view of FIG. 1 (a).
  • the light control film of this embodiment includes a first substrate 1 having insulating properties and translucency, a plurality of pairs of linear electrodes 2A and 2B formed on one surface of the first substrate 1, and the first A liquid crystal layer 3 made of a composite material of polymer and liquid crystal is laminated on the surface on which the electrodes 2A and 2B of the substrate 1 are formed, and an insulating and translucent layer laminated on the surface of the liquid crystal layer 3 is provided. 2 substrates 4.
  • the first substrate 1 and the second substrate 4 are formed in a rectangular shape, both of which have the same vertical length, and the horizontal length is the first length.
  • the substrate 1 is slightly longer.
  • substrate 1 is not laminated
  • the first substrate 1 and the second substrate 4 have insulating properties and translucency as described above, and examples of the forming material include glass and synthetic resin.
  • the first substrate 1 and the second substrate 4 may be the same or different from each other, but are preferably the same from the viewpoint of productivity and the like.
  • the thicknesses of the first substrate 1 and the second substrate 4 are usually set in the range of 15 to 250 ⁇ m.
  • insulating means a property in which electricity or heat hardly flows
  • transparency means that a substrate transmits electromagnetic waves such as light.
  • the electrodes 2A and 2B are a plurality of straight lines formed in a comb-like pattern, and the plurality of straight electrodes 2A and 2B are formed from rectangular electrode bases 21A and 21B. It is formed in a branched state. And two electrode bodies 20A, 20B composed of the electrode base portions 21A, 21B and the linear electrodes 2A, 2B are formed, and between the adjacent linear electrodes 2A of one electrode body 20A, The linear electrode 2B of the other electrode body 20B enters the state. In this state, the adjacent linear electrode 2A of one electrode body 20A and the linear electrode 2B of the other electrode body 20B are paired.
  • a plurality of pairs are uniformly formed on a portion corresponding to substantially the entire surface of the liquid crystal layer 3.
  • the one end portions 22A and 22B of the electrode base portions 21A and 21B are in the exposed portion of the first substrate 1 and are exposed, and serve as terminals for supplying a voltage to the electrodes 2A and 2B from the outside. .
  • the width of one linear electrode 2A, 2B is usually set to 15 ⁇ m or less, and in the range of 5 to 10 ⁇ m from the viewpoint of improving the reliability of voltage supply and forming the electrodes 2A, 2B with high definition. It is preferable to set within.
  • the gap width between the pair of linear electrodes 2A and 2B is usually set within a range of 5 to 180 ⁇ m, and within a range of 15 to 130 ⁇ m from the viewpoint of improving the reliability of the generated electric field. It is preferable to set to.
  • Examples of the material for forming the electrode bodies 20A and 20B include metals such as silver, copper, and gold, conductive polymers such as PEDOT: PSS, ITO (indium tin oxide), and the like. Among these, silver and copper are preferable from the viewpoint that the linear electrodes 2A and 2B can be finely formed by printing.
  • the two electrode bodies 20A and 20B are both made of the same forming material and are preferably formed at the same time by printing or the like from the viewpoint of productivity. However, they are made of different forming materials and are separately formed. It may be formed by printing or the like.
  • the liquid crystal layer 3 is in the form of a film made of a composite material of polymer and liquid crystal.
  • the liquid crystal layer 3 has a structure in which the liquid crystal is confined in a void of a skeleton in which a polymer is bonded in a sponge shape.
  • the liquid crystal layer 3 having such a structure include a polymer network type liquid crystal (PNLC), a polymer dispersion type liquid crystal (PDLC: Polymer Dispersed Liquid), and the like.
  • the polymer include polyfunctional acrylates, polyfunctional methacrylates, and photopolymerizable monomers.
  • the thickness of the liquid crystal layer 3 is usually set in the range of 3 to 25 ⁇ m, and is preferably set in the range of 3 to 15 ⁇ m from the viewpoint of easily controlling the change in the alignment of the liquid crystal due to the electric field. .
  • a voltage is applied to the exposed end portions 22A and 22B of the electrode base portions 21A and 21B of the two electrode bodies 20A and 20B, thereby forming a pair of linear shapes.
  • An electric field is generated between the electrodes 2A and 2B, and the alignment of the liquid crystal in the liquid crystal layer 3 changes.
  • transmits a light control film changes. That is, when the applied voltage is increased, the amount of light transmitted through the light control film increases (the light transmittance increases).
  • the said light control film is affixed on the window glass, sunroof, etc. of a house, a motor vehicle, etc., and can change and use the light transmittance
  • the first substrate 1 or the second substrate 4 is attached to a window glass or the like. Further, when no voltage is applied, since the light transmittance is low, it can also be used as a screen for displaying an image.
  • the light control film can be produced, for example, as follows. That is, first, the first substrate 1 is prepared, and the electrode bodies 20A and 20B including the electrode bases 21A and 21B and the linear electrodes 2A and 2B are formed on one surface of the first substrate 1 by printing or the like. To do. Then, the liquid crystal layer 3 and the second substrate 4 are prepared, and the first substrate 1 and the second substrate 4 are arranged so that the electrode bodies 20A and 20B of the first substrate 1 and the second substrate 4 face each other. The liquid crystal layer 3 is sandwiched between the substrate 4 and the substrate 4. Thus, the said light control film can be produced.
  • the electrode bodies 20A and 20B composed of the electrode base portions 21A and 21B and the linear electrodes 2A and 2B are formed only on the first substrate 1, the short circuit prevention property is improved. Furthermore, the terminal forming process for supplying a voltage to the linear electrodes 2A and 2B is to form the one end portions 22A and 22B of the electrode base portions 21A and 21B in the exposed portion of the first substrate 1. The terminal forming process can be simplified.
  • any conventionally known printing method may be used.
  • a printing method by inkjet printing, screen printing, gravure printing, gravure offset printing, flexographic printing, reverse offset printing, or the like may be used. can give.
  • gravure offset printing is preferable from the viewpoint of forming the electrodes 2A and 2B more precisely.
  • the said printing method uses the printing plate produced previously, it is preferable at the point which can form electrode body 20A, 20B easily.
  • the material for forming the electrode bodies 20A and 20B is ITO
  • the electrode bodies 20A and 20B are formed by etching or the like.
  • the electrode bodies 20A and 20B are formed by an appropriate method according to the material for forming the electrode bodies 20A and 20B.
  • FIG. 2 is a cross-sectional view (a cross-sectional view corresponding to FIG. 1 (b)) showing a second embodiment of the light control film of the present invention.
  • the light control film of this embodiment is not provided with the second substrate 4 [see FIG. 1 (b)] in the light control film of the first embodiment shown in FIGS. 1 (a) and 1 (b). Is.
  • the other parts are the same as those in the first embodiment, and the same reference numerals are given to the same parts.
  • the light transmittance can be changed by applying a voltage, and the same operations and effects as in the first embodiment can be obtained.
  • the attachment to the window glass or the like attaches either the first substrate 1 or the liquid crystal layer 3 to the window glass or the like.
  • the electrodes 2A and 2B of the electrode bodies 20A and 20B are linear, but other shapes may be used as long as an electric field can be generated between the pair of electrodes 2A and 2B.
  • a zigzag shape, a wave shape, a spiral shape, or the like may be used. And you may combine those 2 or more types of shapes.
  • the plurality of pairs of electrodes 2A and 2B are uniformly formed on the portion corresponding to substantially the entire surface of the liquid crystal layer 3, but may be formed non-uniformly. That is, a region where the plurality of pairs of electrodes 2A and 2B are formed and a region where the pairs are not formed may be set. Furthermore, the gap width between the paired electrodes 2A and 2B may be changed, and for example, a region having a small gap width and a region having a large gap width may be set. By doing in this way, in the light control film of 1 sheet, the area
  • a plurality of pairs of the electrodes 2A and 2B are formed, but only one pair may be used.
  • Examples 1 to 4 [First substrate on which electrodes are formed]
  • a first substrate thinness 250 ⁇ m
  • PET polyethylene terephthalate
  • an electrode base is formed on one surface of the first substrate.
  • a linear electrode made of a linear electrode were formed by gravure offset printing.
  • four examples (Examples 1 to 4) in which the width of the electrode and the gap width between the pair of electrodes were changed were produced. The widths of the electrodes and the gap width are shown in Table 1 below.
  • Liquid crystal layer As a liquid crystal layer, KN-221W (thickness: 10 ⁇ m, polymer: polyfunctional acrylate) manufactured by Kyushu Nanotech Optical Co., Ltd. was prepared.
  • the light control film of the present invention is attached to a window glass, sunroof or the like of a house or an automobile, and can be used when changing the light transmittance.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Dispersion Chemistry (AREA)
  • Mathematical Physics (AREA)

Abstract

As a light control film that is capable of improving short circuit prevention properties, while being capable of simplifying the terminal formation work, the present invention provides a light control film that is provided with: a first substrate 1 which has insulating properties and light transmitting properties; a plurality of pairs of linear electrodes 2A, 2B which are formed on one surface of the first substrate 1; a liquid crystal layer 3 which is superposed on the electrode 2A, 2B formation surface of the first substrate 1, and which is formed from a composite material of a polymer and a liquid crystal; and a second substrate 4 which is superposed on the surface of the liquid crystal layer 3, and which has insulating properties and light transmitting properties.

Description

調光フィルムLight control film
 本発明は、窓ガラス等の透明板に貼着し、その透明板を透過する光量を調整する調光フィルムに関するものである。 This invention relates to the light control film which sticks to transparent plates, such as a window glass, and adjusts the light quantity which permeate | transmits the transparent plate.
 従来、例えば窓ガラスに貼着し、その窓ガラスを透過する光量を調整する調光フィルムとして、高分子および液晶の複合材料からなる液晶層を用いたものが提案されている(例えば、特許文献1参照)。この調光フィルムは、隙間をあけて対向する一対の透光性基板と、それら透光性基板の対向する内側の各面に形成された平面状の透明電極と、それら透明電極の間に挟持された上記液晶層とを備えたものとなっている。 2. Description of the Related Art Conventionally, as a light control film that is attached to, for example, a window glass and adjusts the amount of light transmitted through the window glass, a film using a liquid crystal layer made of a composite material of a polymer and a liquid crystal has been proposed (for example, Patent Documents). 1). This light control film is sandwiched between a pair of translucent substrates opposed to each other with a gap, planar transparent electrodes formed on the opposed inner surfaces of the translucent substrates, and the transparent electrodes. The liquid crystal layer is provided.
 そして、対向する透明電極に印加する電圧を変化させることにより、その対向する透明電極間(縦方向)に発生する電界を変化させて、上記液晶層内の液晶の配向を変化させ、上記調光フィルムを透過する光量を調整できるようになっている。 Then, by changing the voltage applied to the opposing transparent electrodes, the electric field generated between the opposing transparent electrodes (longitudinal direction) is changed, the orientation of the liquid crystal in the liquid crystal layer is changed, and the dimming is performed. The amount of light passing through the film can be adjusted.
国際公開第2010/100807号International Publication No. 2010/100807
 しかしながら、従来の上記調光フィルムは、液晶層を挟んで透明電極が対向するため、それら透明電極が短絡しやすくなっている。そこで、それら透明電極間の液晶層の厚みをある一定値以上にすることにより、短絡を防止している。また、各透明電極が調光フィルムの内側にあることから、各透明電極に電圧を供給するための端子を調光フィルムの表面に露呈させる端子形成加工が必要であるが、従来の調光フィルムは、透明電極が対向しているため、その調光フィルムの両面とも端子形成加工が必要となる。これらの点で改善の余地がある。 However, in the conventional light control film, since the transparent electrodes face each other with the liquid crystal layer interposed therebetween, the transparent electrodes are easily short-circuited. Therefore, a short circuit is prevented by setting the thickness of the liquid crystal layer between the transparent electrodes to a certain value or more. Moreover, since each transparent electrode is inside the light control film, a terminal forming process for exposing a terminal for supplying a voltage to each transparent electrode on the surface of the light control film is necessary. Since the transparent electrodes face each other, both sides of the light control film require terminal forming processing. There is room for improvement in these respects.
 本発明は、このような事情に鑑みなされたもので、短絡防止性を向上させることができ、しかも、端子形成加工作業を簡易化することができる調光フィルムを提供する。 The present invention has been made in view of such circumstances, and provides a light control film that can improve short-circuit prevention and can simplify a terminal forming process.
 上記の目的を達成するため、本発明の調光フィルムは、絶縁性および透光性を有する第1基板と、この第1基板の片面に形成された一対ないし複数対の線状の電極と、上記第1基板の上記電極形成面に積層された、高分子および液晶の複合材料からなる液晶層とを備えているという構成をとる。 In order to achieve the above object, a light control film of the present invention includes a first substrate having insulating properties and translucency, a pair or a plurality of pairs of linear electrodes formed on one surface of the first substrate, The liquid crystal layer which consists of a composite material of a polymer and a liquid crystal laminated | stacked on the said electrode formation surface of the said 1st board | substrate is taken.
 本発明者らは、短絡防止性の向上および端子形成加工作業の簡易化を図るべく、高分子および液晶の複合材料からなる液晶層を用いた調光フィルムの構造について研究を重ねた。その研究の過程で、電極に着目し、さらに研究を重ねた。その結果、電極を一対ないし複数対の線状に形成すれば、その電極を1枚の基板の片面のみに形成しても、透過する光量を調整できることを突き止めた。しかも、このように線状の電極を1枚の基板の片面のみに形成すると、短絡防止性が向上し、端子形成加工作業が1枚の基板だけで済むことを見出した。 The inventors of the present invention have repeatedly studied the structure of a light control film using a liquid crystal layer composed of a polymer and a liquid crystal composite material in order to improve short circuit prevention and simplify a terminal forming process. In the course of that research, I focused on the electrode and repeated further research. As a result, it was found that if the electrodes are formed in a pair or a plurality of pairs of lines, the amount of transmitted light can be adjusted even if the electrodes are formed only on one side of one substrate. In addition, it has been found that when the linear electrode is formed on only one surface of one substrate in this way, the short circuit prevention property is improved, and the terminal forming processing work is only required for one substrate.
 すなわち、本発明の調光フィルムは、各対の線状の電極に電圧を印加すると、基板の面に平行(横方向)に電界が発生し、その電界の影響により、上記液晶層内の液晶の配向が変化するようになっている。そして、その液晶の配向の変化により、調光フィルムを透過する光量を調整することができるようになっている。 That is, in the light control film of the present invention, when a voltage is applied to each pair of linear electrodes, an electric field is generated in parallel (lateral direction) to the surface of the substrate, and the liquid crystal in the liquid crystal layer is affected by the electric field. The orientation of is changed. And the light quantity which permeate | transmits a light control film can be adjusted now by the change of the orientation of the liquid crystal.
 本発明の調光フィルムは、絶縁性および透光性を有する第1基板の片面に、一対ないし複数対の線状の電極が形成され、この第1基板の電極形成面に、高分子および液晶の複合材料からなる液晶層が積層されている。このように、電極を対向させるのではなく、1枚の基板に形成するため、短絡防止性が向上し、調光フィルムとしての信頼性を向上させることができる。そして、短絡防止のために液晶層を厚くする必要がなく、液晶層の厚み設定の自由度を大きくすることができる。そのため、液晶層を薄くすることができ、調光フィルムの薄型化を図ることができる。さらに、電極を1枚の基板に形成するため、その電極に電圧を供給するための端子を調光フィルムの表面に露呈させる端子形成加工が、調光フィルムの片面だけとなり、その端子形成加工作業を簡易化することができる。 In the light control film of the present invention, a pair or a plurality of pairs of linear electrodes are formed on one surface of a first substrate having insulation and translucency, and a polymer and a liquid crystal are formed on the electrode formation surface of the first substrate. A liquid crystal layer made of the composite material is laminated. As described above, since the electrodes are not opposed to each other but formed on a single substrate, the short circuit prevention property is improved, and the reliability as the light control film can be improved. In addition, it is not necessary to increase the thickness of the liquid crystal layer in order to prevent a short circuit, and the degree of freedom in setting the thickness of the liquid crystal layer can be increased. Therefore, the liquid crystal layer can be thinned, and the light control film can be thinned. Furthermore, since the electrode is formed on one substrate, the terminal forming process for exposing the terminal for supplying voltage to the electrode on the surface of the light control film is only one side of the light control film. Can be simplified.
 特に、上記液晶層の、上記第1基板と反対側の面に、絶縁性および透光性を有する第2基板が積層されている場合には、上記液晶層の、上記第2基板が当接している面を、保護することができる。そのため、長期にわたって安定した調光が可能となる。 In particular, when a second substrate having insulation and translucency is laminated on the surface of the liquid crystal layer opposite to the first substrate, the second substrate of the liquid crystal layer is in contact. The surface can be protected. Therefore, stable light control can be performed over a long period.
 また、上記電極が、印刷方式で形成されている場合には、線状の電極がより精細なものとなり、しかも、設計の自由度が大きいものとすることができる。 In addition, when the electrodes are formed by a printing method, the linear electrodes can be made finer, and the degree of design freedom can be increased.
本発明の調光フィルムの第1の実施の形態を模式的に示し、(a)はその平面図であり、(b)は(a)のX-X断面図である。BRIEF DESCRIPTION OF THE DRAWINGS The 1st Embodiment of the light control film of this invention is shown typically, (a) is the top view, (b) is XX sectional drawing of (a). 本発明の調光フィルムの第2の実施の形態を模式的に示す断面図である。It is sectional drawing which shows typically 2nd Embodiment of the light control film of this invention.
 つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.
 図1(a)は、本発明の調光フィルムの第1の実施の形態を示す平面図であり、図1(b)は、 図1(a)のX-X断面図である。この実施の形態の調光フィルムは、絶縁性および透光性を有する第1基板1と、この第1基板1の片面に形成された複数対の直線状の電極2A,2Bと、上記第1基板1の上記電極2A,2Bの形成面に積層された、高分子および液晶の複合材料からなる液晶層3と、この液晶層3の表面に積層された、絶縁性および透光性を有する第2基板4とを備えている。 FIG. 1 (a) is a plan view showing a first embodiment of the light control film of the present invention, and FIG. 1 (b) is an XX sectional view of FIG. 1 (a). The light control film of this embodiment includes a first substrate 1 having insulating properties and translucency, a plurality of pairs of linear electrodes 2A and 2B formed on one surface of the first substrate 1, and the first A liquid crystal layer 3 made of a composite material of polymer and liquid crystal is laminated on the surface on which the electrodes 2A and 2B of the substrate 1 are formed, and an insulating and translucent layer laminated on the surface of the liquid crystal layer 3 is provided. 2 substrates 4.
 より詳しく説明すると、上記第1基板1および第2基板4は、この実施の形態では、長方形状に形成されており、両者とも縦の長さが同じであり、横の長さは、第1基板1の方が少し長くなっている。そして、第1基板1の横方向の一端部(図示の右側端部)は、液晶層3および第2基板4が積層されておらず、露呈している。また、上記第1基板1および第2基板4は、上記のように、絶縁性および透光性を有するものであり、その形成材料としては、例えば、ガラス,合成樹脂等があげられる。それら第1基板1と第2基板4とは、形成材料が同じであっても異なっていてもよいが、生産性等の観点から、同じであることが好ましい。また、上記第1基板1および第2基板4の厚みは、通常、15~250μmの範囲内に設定される。なお、本明細書において、絶縁性とは電気または熱が極めて流れにくい性質を意味し、透明性とは基板が光などの電磁波を通すことを意味する。 More specifically, in the present embodiment, the first substrate 1 and the second substrate 4 are formed in a rectangular shape, both of which have the same vertical length, and the horizontal length is the first length. The substrate 1 is slightly longer. And the one end part (right side end part of illustration) of the 1st board | substrate 1 is not laminated | stacked but the liquid crystal layer 3 and the 2nd board | substrate 4 are exposed. In addition, the first substrate 1 and the second substrate 4 have insulating properties and translucency as described above, and examples of the forming material include glass and synthetic resin. The first substrate 1 and the second substrate 4 may be the same or different from each other, but are preferably the same from the viewpoint of productivity and the like. The thicknesses of the first substrate 1 and the second substrate 4 are usually set in the range of 15 to 250 μm. Note that in this specification, insulating means a property in which electricity or heat hardly flows, and transparency means that a substrate transmits electromagnetic waves such as light.
 上記電極2A,2Bは、この実施の形態では、櫛歯状のパターンに形成された複数の直線状であり、それら複数の直線状の電極2A,2Bが、長方形状の電極基部21A,21Bから分岐した状態で形成されている。そして、その電極基部21A,21Bと上記直線状の電極2A,2Bとからなる電極体20A,20Bが2個形成されており、一方の電極体20Aの隣り合う直線状の電極2Aの間に、他方の電極体20Bの直線状の電極2Bが入り込んだ状態となっている。この状態において、隣り合う、一方の電極体20Aの直線状の電極2Aと他方の電極体20Bの直線状の電極2Bとが、対となっている。この実施の形態では、その対が複数、液晶層3の略全面に対応する部分に、均一に形成されている。そして、電極基部21A,21Bの一端部22A,22Bは、上記第1基板1の露呈部分にあり、露呈しており、上記電極2A,2Bに外部から電圧を供給するための端子となっている。 In this embodiment, the electrodes 2A and 2B are a plurality of straight lines formed in a comb-like pattern, and the plurality of straight electrodes 2A and 2B are formed from rectangular electrode bases 21A and 21B. It is formed in a branched state. And two electrode bodies 20A, 20B composed of the electrode base portions 21A, 21B and the linear electrodes 2A, 2B are formed, and between the adjacent linear electrodes 2A of one electrode body 20A, The linear electrode 2B of the other electrode body 20B enters the state. In this state, the adjacent linear electrode 2A of one electrode body 20A and the linear electrode 2B of the other electrode body 20B are paired. In this embodiment, a plurality of pairs are uniformly formed on a portion corresponding to substantially the entire surface of the liquid crystal layer 3. The one end portions 22A and 22B of the electrode base portions 21A and 21B are in the exposed portion of the first substrate 1 and are exposed, and serve as terminals for supplying a voltage to the electrodes 2A and 2B from the outside. .
 また、1本の直線状の電極2A,2Bの幅は、通常、15μm以下に設定され、電圧供給の信頼性を高めるとともに高精細に電極2A,2Bを形成する観点から、5~10μmの範囲内に設定されることが好ましい。また、対となっている直線状の電極2A,2Bの間の隙間幅は、通常、5~180μmの範囲内に設定され、発生させる電界の信頼性を高める観点から、15~130μmの範囲内に設定されることが好ましい。 In addition, the width of one linear electrode 2A, 2B is usually set to 15 μm or less, and in the range of 5 to 10 μm from the viewpoint of improving the reliability of voltage supply and forming the electrodes 2A, 2B with high definition. It is preferable to set within. The gap width between the pair of linear electrodes 2A and 2B is usually set within a range of 5 to 180 μm, and within a range of 15 to 130 μm from the viewpoint of improving the reliability of the generated electric field. It is preferable to set to.
 そして、上記電極体20A,20Bの形成材料としては、例えば、銀,銅,金等の金属、PEDOT:PSS等の導電性高分子、ITO(酸化インジウム錫)等があげられる。なかでも、直線状の電極2A,2Bを印刷により精細に形成できる観点から、銀,銅が好ましい。また、2個の電極体20A,20Bは、両者とも同じ形成材料とし、印刷等により両者を一度に形成することが、生産性の観点から好ましいが、両者を異なる形成材料からなるものとし、別々に印刷等により形成してもよい。 Examples of the material for forming the electrode bodies 20A and 20B include metals such as silver, copper, and gold, conductive polymers such as PEDOT: PSS, ITO (indium tin oxide), and the like. Among these, silver and copper are preferable from the viewpoint that the linear electrodes 2A and 2B can be finely formed by printing. The two electrode bodies 20A and 20B are both made of the same forming material and are preferably formed at the same time by printing or the like from the viewpoint of productivity. However, they are made of different forming materials and are separately formed. It may be formed by printing or the like.
 上記液晶層3は、先に述べたように、高分子および液晶の複合材料からなるフィルム状のものである。すなわち、上記液晶層3は、高分子がスポンジ状に結合された骨格の空隙に、液晶が閉じ込められたような構造になっている。そのような構造を有する液晶層3としては、例えば、高分子ネットワーク型液晶(PNLC:Polymer Network Liquid Crystal),高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal)等があげられる。上記高分子としては、例えば、多官能アクリレート,多官能メタクリレート,光重合性モノマー等があげられる。そして、上記液晶層3の厚みは、通常、3~25μmの範囲内に設定され、電界による液晶の配向の変化を制御しやすくする観点から、3~15μmの範囲内に設定されることが好ましい。 As described above, the liquid crystal layer 3 is in the form of a film made of a composite material of polymer and liquid crystal. In other words, the liquid crystal layer 3 has a structure in which the liquid crystal is confined in a void of a skeleton in which a polymer is bonded in a sponge shape. Examples of the liquid crystal layer 3 having such a structure include a polymer network type liquid crystal (PNLC), a polymer dispersion type liquid crystal (PDLC: Polymer Dispersed Liquid), and the like. Examples of the polymer include polyfunctional acrylates, polyfunctional methacrylates, and photopolymerizable monomers. The thickness of the liquid crystal layer 3 is usually set in the range of 3 to 25 μm, and is preferably set in the range of 3 to 15 μm from the viewpoint of easily controlling the change in the alignment of the liquid crystal due to the electric field. .
 このような構成の調光フィルムでは、2個の電極体20A,20Bの電極基部21A,21Bの露呈している一端部22A,22Bに電圧を印加することより、対となっている直線状の電極2A,2Bの間に電界が発生し、液晶層3内の液晶の配向が変化する。これにより、調光フィルムを透過する光量が変化する。すなわち、印加する電圧を大きくすると、調光フィルムを透過する光量が増加する(光の透過率が上昇する)。 In the light control film having such a configuration, a voltage is applied to the exposed end portions 22A and 22B of the electrode base portions 21A and 21B of the two electrode bodies 20A and 20B, thereby forming a pair of linear shapes. An electric field is generated between the electrodes 2A and 2B, and the alignment of the liquid crystal in the liquid crystal layer 3 changes. Thereby, the light quantity which permeate | transmits a light control film changes. That is, when the applied voltage is increased, the amount of light transmitted through the light control film increases (the light transmittance increases).
 そして、上記調光フィルムは、家や自動車等の窓ガラス,サンルーフ等に貼着され、上記のように、電圧の印加により光の透過率を変化させて使用することができる。その貼着は、第1基板1および第2基板4のいずれかを窓ガラス等に貼着する。また、電圧を印加させない場合は、光の透過率が低いため、映像を映すスクリーンとして使用することもできる。 And the said light control film is affixed on the window glass, sunroof, etc. of a house, a motor vehicle, etc., and can change and use the light transmittance | permeability by application of a voltage as mentioned above. For the attachment, either the first substrate 1 or the second substrate 4 is attached to a window glass or the like. Further, when no voltage is applied, since the light transmittance is low, it can also be used as a screen for displaying an image.
 上記調光フィルムは、例えば、つぎのようにして作製することができる。すなわち、まず、上記第1基板1を準備し、その第1基板1の片面に、電極基部21A,21Bと直線状の電極2A,2Bとからなる上記電極体20A,20Bを、印刷等により形成する。そして、上記液晶層3および上記第2基板4を準備し、上記第1基板1の電極体20A,20Bと、上記第2基板4とが対面するようにして、それら第1基板1と第2基板4とで、上記液晶層3を挟持する。このようにして、上記調光フィルムを作製することができる。 The light control film can be produced, for example, as follows. That is, first, the first substrate 1 is prepared, and the electrode bodies 20A and 20B including the electrode bases 21A and 21B and the linear electrodes 2A and 2B are formed on one surface of the first substrate 1 by printing or the like. To do. Then, the liquid crystal layer 3 and the second substrate 4 are prepared, and the first substrate 1 and the second substrate 4 are arranged so that the electrode bodies 20A and 20B of the first substrate 1 and the second substrate 4 face each other. The liquid crystal layer 3 is sandwiched between the substrate 4 and the substrate 4. Thus, the said light control film can be produced.
 このように、第1基板1のみに、電極基部21A,21Bと直線状の電極2A,2Bとからなる電極体20A,20Bを形成するため、短絡防止性が向上する。さらに、直線状の電極2A,2Bに電圧を供給するための端子形成加工は、第1基板1の露呈させる部分に、上記電極基部21A,21Bの一端部22A,22Bを形成することであるため、その端子形成加工作業を簡易化することができる。 Thus, since the electrode bodies 20A and 20B composed of the electrode base portions 21A and 21B and the linear electrodes 2A and 2B are formed only on the first substrate 1, the short circuit prevention property is improved. Furthermore, the terminal forming process for supplying a voltage to the linear electrodes 2A and 2B is to form the one end portions 22A and 22B of the electrode base portions 21A and 21B in the exposed portion of the first substrate 1. The terminal forming process can be simplified.
 なお、上記電極体20A,20Bの印刷方法としては、従来公知の印刷方法であればよく、例えば、インクジェット印刷,スクリーン印刷,グラビア印刷,グラビアオフセット印刷,フレキソ印刷,リバースオフセット印刷等による印刷方法があげられる。なかでも、電極2A,2Bをより精細に形成できる観点から、グラビアオフセット印刷が好ましい。そして、上記印刷方法は、予め作製した印刷版を用いることから、容易に電極体20A,20Bを形成できる点で好ましい。また、上記電極体20A,20Bの形成材料をITOとする場合は、その電極体20A,20Bは、エッチング等により形成される。このように、上記電極体20A,20Bの形成材料に応じた適宜な方法で、その電極体20A,20Bが形成される。 In addition, as a printing method of the electrode bodies 20A and 20B, any conventionally known printing method may be used. For example, a printing method by inkjet printing, screen printing, gravure printing, gravure offset printing, flexographic printing, reverse offset printing, or the like may be used. can give. Among these, gravure offset printing is preferable from the viewpoint of forming the electrodes 2A and 2B more precisely. And since the said printing method uses the printing plate produced previously, it is preferable at the point which can form electrode body 20A, 20B easily. Further, when the material for forming the electrode bodies 20A and 20B is ITO, the electrode bodies 20A and 20B are formed by etching or the like. Thus, the electrode bodies 20A and 20B are formed by an appropriate method according to the material for forming the electrode bodies 20A and 20B.
 図2は、本発明の調光フィルムの第2の実施の形態を示す断面図〔図1(b)に相当する断面図〕である。この実施の形態の調光フィルムは、図1(a),(b)に示す第1の実施の形態の調光フィルムにおいて、第2基板4〔図1(b)参照〕が設けられていないものである。それ以外の部分は上記第1の実施の形態と同様であり、同様の部分には同じ符号を付している。 FIG. 2 is a cross-sectional view (a cross-sectional view corresponding to FIG. 1 (b)) showing a second embodiment of the light control film of the present invention. The light control film of this embodiment is not provided with the second substrate 4 [see FIG. 1 (b)] in the light control film of the first embodiment shown in FIGS. 1 (a) and 1 (b). Is. The other parts are the same as those in the first embodiment, and the same reference numerals are given to the same parts.
 この実施の形態でも、上記第1の実施の形態と同様に、電圧の印加により、光の透過率を変えることができ、上記第1の実施の形態と同様の作用・効果を奏する。この実施の形態では、窓ガラス等への貼着は、第1基板1および液晶層3のいずれかを窓ガラス等に貼着する。 In this embodiment, similarly to the first embodiment, the light transmittance can be changed by applying a voltage, and the same operations and effects as in the first embodiment can be obtained. In this embodiment, the attachment to the window glass or the like attaches either the first substrate 1 or the liquid crystal layer 3 to the window glass or the like.
 なお、上記各実施の形態では、各電極体20A,20Bの電極2A,2Bを直線状としたが、対となる電極2A,2Bの間で電界を発生させることができれば、他の形状でもよく、例えば、ジグザグ状,波形状,渦巻状等でもよい。そして、それら2種類以上の形状を組み合わせてもよい。 In each of the above embodiments, the electrodes 2A and 2B of the electrode bodies 20A and 20B are linear, but other shapes may be used as long as an electric field can be generated between the pair of electrodes 2A and 2B. For example, a zigzag shape, a wave shape, a spiral shape, or the like may be used. And you may combine those 2 or more types of shapes.
 また、上記各実施の形態では、複数対の電極2A,2Bを、液晶層3の略全面に対応する部分に、均一に形成したが、不均一に形成してもよい。すなわち、複数対の電極2A,2Bを、形成する領域と形成しない領域とを設定してもよい。さらに、対となっている電極2A,2Bの間の隙間幅を変え、例えば、その隙間幅が小さい領域と大きい領域とを設定してもよい。このようにすることにより、1枚の調光フィルムにおいて、光の透過率が異なる領域ができ、デザイン性に富む調光フィルムとすることができる。 In each of the above embodiments, the plurality of pairs of electrodes 2A and 2B are uniformly formed on the portion corresponding to substantially the entire surface of the liquid crystal layer 3, but may be formed non-uniformly. That is, a region where the plurality of pairs of electrodes 2A and 2B are formed and a region where the pairs are not formed may be set. Furthermore, the gap width between the paired electrodes 2A and 2B may be changed, and for example, a region having a small gap width and a region having a large gap width may be set. By doing in this way, in the light control film of 1 sheet, the area | region where the transmittance | permeability of light differs can be made, and it can be set as the light control film rich in design property.
 そして、上記各実施の形態では、電極2A,2Bの対を複数対形成したが、1対のみでもよい。 In the above embodiments, a plurality of pairs of the electrodes 2A and 2B are formed, but only one pair may be used.
 つぎに、実施例について説明する。ただし、本発明は、実施例に限定されるものではない。 Next, examples will be described. However, the present invention is not limited to the examples.
[実施例1~4]
〔電極が形成された第1基板〕
 図1(a),(b)に示す第1の実施の形態と同様にして、PET(ポリエチレンテレフタレート)製の第1基板(厚み250μm)を準備し、その第1基板の片面に、電極基部と直線状の電極とからなる銀製の電極体を、グラビアオフセット印刷により形成した。その際、電極の幅と、対となる電極の間の隙間幅とを変えた4例(実施例1~4)を作製した。それら電極の幅と隙間幅とを、後記の表1に示した。
[Examples 1 to 4]
[First substrate on which electrodes are formed]
In the same manner as the first embodiment shown in FIGS. 1A and 1B, a first substrate (thickness 250 μm) made of PET (polyethylene terephthalate) is prepared, and an electrode base is formed on one surface of the first substrate. And a linear electrode made of a linear electrode were formed by gravure offset printing. At that time, four examples (Examples 1 to 4) in which the width of the electrode and the gap width between the pair of electrodes were changed were produced. The widths of the electrodes and the gap width are shown in Table 1 below.
〔電極が形成された第1基板の光の透過率〕
 上記電極が形成された第1基板について、電圧を印加させない状態で、平行光の透過率を測定し、その結果を後記の表1に示した。なお、その測定には、可視光線透過率測定器(佐藤商事社製、ガラス可視光線透過率測定器ティントメーターMJ-TM100)を用いた。
[Light transmittance of the first substrate on which the electrodes are formed]
With respect to the first substrate on which the electrodes were formed, the transmittance of parallel light was measured without applying a voltage, and the results are shown in Table 1 below. For the measurement, a visible light transmittance measuring device (manufactured by Sato Corporation, glass visible light transmittance measuring device Tint Meter MJ-TM100) was used.
〔液晶層〕
 液晶層として、九州ナノテック光学社製のKN-221W(厚み10μm、高分子:多官能アクリレート)を準備した。
[Liquid crystal layer]
As a liquid crystal layer, KN-221W (thickness: 10 μm, polymer: polyfunctional acrylate) manufactured by Kyushu Nanotech Optical Co., Ltd. was prepared.
〔第2基板〕
 第2基板として、PET製のもの(厚み50μm)を準備した。
[Second board]
The thing made from PET (thickness 50 micrometers) was prepared as a 2nd board | substrate.
〔調光フィルムの作製〕
 上記第1基板の電極体と、上記第2基板とが対面するようにして、それら第1基板と第2基板とで、上記液晶層を挟持した。これにより、図1(a),(b)に示す第1の実施の形態と同様の実施例1~4の調光フィルムを作製した。
[Production of light control film]
The liquid crystal layer was sandwiched between the first substrate and the second substrate so that the electrode body of the first substrate faced the second substrate. Thereby, the light control films of Examples 1 to 4 similar to those of the first embodiment shown in FIGS. 1A and 1B were produced.
 この調光フィルムを作製の際、電極体の短絡はなく、しかも、その短絡防止のために特に注意を払う必要はなかった。また、直線状の電極に電圧を供給するための端子形成加工は、第1基板の、露呈させる部分に、上記電極基部の一端部を形成することであったため、その端子形成加工作業は簡易であった。 When producing this light control film, there was no short circuit of the electrode body, and it was not necessary to pay particular attention to prevent the short circuit. Moreover, since the terminal formation process for supplying a voltage to a linear electrode was to form the one end part of the said electrode base part in the part to expose of a 1st board | substrate, the terminal formation process work is easy. there were.
〔調光フィルムの光の透過率〕
 実施例1~4の調光フィルムにおいて、印加する電圧を変化させ、平行光の透過率を測定した。この測定は、上記と同様の可視光線透過率測定器を用いた。そして、その結果を下記の表1に示した。
[Light transmittance of light control film]
In the light control films of Examples 1 to 4, the applied voltage was changed and the transmittance of parallel light was measured. For this measurement, a visible light transmittance measuring device similar to the above was used. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果から、上記実施例1~4の調光フィルムは、印加する電圧を大きくすると、光の透過率が上昇することがわかる。すなわち、上記実施例1~4の調光フィルムは、印加する電圧を変えることにより、透過させる光量を変化させることができる。 From the results in Table 1, it can be seen that the light transmittance of the light control films of Examples 1 to 4 increases as the applied voltage is increased. In other words, the light control films of Examples 1 to 4 can change the amount of light to be transmitted by changing the applied voltage.
 また、上記実施例1~4において、第2基板を設けない調光フィルム(図2参照)を作製した。これら調光フィルムも、上記実施例1~4と同様の傾向を示す結果が得られた。 Also, in Examples 1 to 4 above, a light control film (see FIG. 2) without the second substrate was produced. These light control films also obtained results showing the same tendency as in Examples 1 to 4 above.
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の調光フィルムは、家や自動車等の窓ガラス,サンルーフ等に貼着され、光の透過率を変化させる場合に利用可能である。 The light control film of the present invention is attached to a window glass, sunroof or the like of a house or an automobile, and can be used when changing the light transmittance.
 1 第1基板
 2A,2B 電極
 3 液晶層
 4 第2基板
DESCRIPTION OF SYMBOLS 1 1st board | substrate 2A, 2B electrode 3 Liquid crystal layer 4 2nd board | substrate

Claims (3)

  1.  絶縁性および透光性を有する第1基板と、この第1基板の片面に形成された一対ないし複数対の線状の電極と、上記第1基板の上記電極形成面に積層された、高分子および液晶の複合材料からなる液晶層とを備えていることを特徴とする調光フィルム。 A first substrate having insulation and translucency, a pair or a plurality of pairs of linear electrodes formed on one surface of the first substrate, and a polymer laminated on the electrode formation surface of the first substrate And a liquid crystal layer made of a composite material of liquid crystal.
  2.  上記液晶層の、上記第1基板と反対側の面に、絶縁性および透光性を有する第2基板が積層されている請求項1記載の調光フィルム。 The light control film according to claim 1, wherein a second substrate having insulating properties and translucency is laminated on a surface of the liquid crystal layer opposite to the first substrate.
  3.  上記電極が、印刷方式で形成されている請求項1または2記載の調光フィルム。 The light control film according to claim 1 or 2, wherein the electrode is formed by a printing method.
PCT/JP2019/006476 2018-02-22 2019-02-21 Light control film WO2019163872A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018029777A JP2019144460A (en) 2018-02-22 2018-02-22 Dimmer film
JP2018-029777 2018-02-22

Publications (1)

Publication Number Publication Date
WO2019163872A1 true WO2019163872A1 (en) 2019-08-29

Family

ID=67687239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006476 WO2019163872A1 (en) 2018-02-22 2019-02-21 Light control film

Country Status (3)

Country Link
JP (1) JP2019144460A (en)
TW (1) TW201940947A (en)
WO (1) WO2019163872A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190314A (en) * 2010-03-12 2011-09-29 Mitsubishi Chemicals Corp Liquid crystal composition for light control, photo-cured product thereof, and light control element
JP2017003668A (en) * 2015-06-05 2017-01-05 旭硝子株式会社 Liquid crystal optical element
JP2017032837A (en) * 2015-08-04 2017-02-09 大日本印刷株式会社 Liquid crystal cell, dimming material and laminated glass
JP2017214452A (en) * 2016-05-30 2017-12-07 Dic株式会社 Liquid crystal display element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089259A (en) * 2012-10-29 2014-05-15 Sharp Corp Liquid crystal display device
JP2015215420A (en) * 2014-05-08 2015-12-03 大日本印刷株式会社 Light control film and light control device
JP2017134256A (en) * 2016-01-28 2017-08-03 株式会社ジャパンディスプレイ Optical device and display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190314A (en) * 2010-03-12 2011-09-29 Mitsubishi Chemicals Corp Liquid crystal composition for light control, photo-cured product thereof, and light control element
JP2017003668A (en) * 2015-06-05 2017-01-05 旭硝子株式会社 Liquid crystal optical element
JP2017032837A (en) * 2015-08-04 2017-02-09 大日本印刷株式会社 Liquid crystal cell, dimming material and laminated glass
JP2017214452A (en) * 2016-05-30 2017-12-07 Dic株式会社 Liquid crystal display element

Also Published As

Publication number Publication date
JP2019144460A (en) 2019-08-29
TW201940947A (en) 2019-10-16

Similar Documents

Publication Publication Date Title
US9995981B2 (en) Liquid crystal display device
TWI281076B (en) Fringe field switching mode liquid crystal display
CN102053419B (en) Liquid crystal shutter slit grating
CN103279240B (en) Contact panel
CN105652531B (en) Array substrate and planar conversion liquid crystal display panel
CN106154639B (en) Liquid crystal display panel and liquid crystal display device
JP7119305B2 (en) dimmer
CN106647074A (en) Liquid crystal display device
CN106405927A (en) Liquid crystal display device
WO2021136008A1 (en) Liquid crystal cell and electronic apparatus
CN108803112A (en) Two-sided liquid crystal display panel, display with double faces
JP6128269B1 (en) Light control film
JP2018025786A (en) Lighting control film, lighting control member and power supply method for vehicle and lighting control film
US9904117B2 (en) Display panel manufacturing method and liquid crystal display device
US9946136B2 (en) Display apparatus and manufacturing method thereof
WO2016098268A1 (en) Electrode-equipped color filter substrate, display device including that substrate and method for manufacturing that substrate
JP2008203448A (en) Liquid crystal display device
WO2019163872A1 (en) Light control film
CN103018978B (en) A kind of liquid crystal panel and display device
CN105467695B (en) The manufacturing method of liquid crystal display panel, the liquid crystal display device for having it, liquid crystal display panel
JP2019045669A (en) Lighting control body
CN215833725U (en) Dimming glass and glass assembly
JP2019061253A (en) Light control cell, light control body, and moving body
CN110073319A (en) The manufacturing method of wiring substrate, location input device, the display panel with position input function and wiring substrate
US20070008465A1 (en) Flexible reflective display device and manufacturing method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757483

Country of ref document: EP

Kind code of ref document: A1