WO2019163703A1 - Polyimide precursor resin composition - Google Patents

Polyimide precursor resin composition Download PDF

Info

Publication number
WO2019163703A1
WO2019163703A1 PCT/JP2019/005814 JP2019005814W WO2019163703A1 WO 2019163703 A1 WO2019163703 A1 WO 2019163703A1 JP 2019005814 W JP2019005814 W JP 2019005814W WO 2019163703 A1 WO2019163703 A1 WO 2019163703A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
polyimide precursor
formula
general formula
Prior art date
Application number
PCT/JP2019/005814
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 渡部
亜紗子 京武
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Priority to CN201980014590.4A priority Critical patent/CN111742012A/en
Priority to KR1020207026687A priority patent/KR102429867B1/en
Priority to JP2020501748A priority patent/JP7203082B2/en
Publication of WO2019163703A1 publication Critical patent/WO2019163703A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/50Phosphorus bound to carbon only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide precursor resin composition.
  • Patent Document 1 discloses a reaction solution containing a polyamic acid having a repeating unit described by a specific general formula and a solvent.
  • Polyimide obtained by using such a reaction liquid (composition) as described in Patent Document 1 has high light transmittance and sufficiently high heat resistance, and can be applied to various fields. It was something.
  • the reaction liquid (composition) described in Patent Document 1 is a polyimide having higher toughness while maintaining characteristics such as a linear expansion coefficient, a glass transition temperature, and a total light transmittance at a sufficiently high level. Is not always sufficient from the viewpoint of efficiently and reliably producing the material.
  • the present invention has been made in view of the problems of the prior art, and is a polyimide having higher toughness while maintaining characteristics such as linear expansion coefficient, glass transition temperature and total light transmittance at a sufficiently high level. It aims at providing the polyimide precursor resin composition which can manufacture efficiently and reliably.
  • the present inventors have selected a polyimide precursor resin composition from the group consisting of tetracarboxylic dianhydrides having two norbornane skeletons in the molecule and derivatives thereof.
  • a polyimide precursor resin which is a polymer of at least one selected from diamine and a diamine; a tertiary phosphorus compound containing a structure represented by the formula: CP in which a phosphorus atom and a carbon atom are directly bonded in the molecule; A compound in which a phosphorus atom and a carbon atom are directly bonded to each other: at least one additive compound selected from the group consisting of a quaternary phosphorus compound containing a structure represented by CP and a quaternary amine compound; a solvent;
  • a polyimid having higher toughness can be used while maintaining properties such as the linear expansion coefficient, glass transition temperature and total light transmittance at a sufficiently high level. It found that it is possible to manufacture efficiently and reliably, and completed the present invention.
  • the polyimide precursor resin composition of the present invention is A polyimide precursor resin which is a polymer of at least one selected from the group consisting of tetracarboxylic dianhydrides having two norbornane skeletons in the molecule and derivatives thereof; Formula in which phosphorus atom and carbon atom are directly bonded in the molecule: tertiary phosphorus compound including structure represented by CP, Formula in which phosphorus atom and carbon atom are directly bonded in molecule: Represented by CP At least one additive compound selected from the group consisting of a quaternary phosphorus compound containing a structure and a quaternary amine compound; With a solvent; It contains.
  • At least one selected from the group consisting of tetracarboxylic dianhydrides having two norbornane skeletons in the molecule and derivatives thereof is represented by the following general formula (1): :
  • R 1 , R 2 and R 3 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom, and n represents 0 to 12 Indicates an integer.
  • A represents one kind selected from the group consisting of a divalent aromatic group which may have a substituent and has 6 to 30 carbon atoms to form an aromatic ring.
  • Each of R 4 independently represents one selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms
  • each R 5 independently represents a hydrogen atom and an alkyl group having 1 to 10 carbon atoms.
  • R 6 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group and a nitro group, or bonded to the same carbon atom.
  • Two R 6 groups together may form a methylidene group
  • each R 7 independently represents one selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms. .
  • the polyimide precursor resin is represented by the following general formula (I):
  • X 1 represents the following general formula (I-1):
  • R 1 , R 2 and R 3 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom, and n is 0 Represents an integer of ⁇ 12, and the symbols * 1 to * 4 are each one of the four bonds that are bonded to X1 in the formula (I). Indicates.
  • A is 1 selected from the group consisting of a divalent aromatic group which may have a substituent and has 6 to 30 carbon atoms to form an aromatic ring.
  • R 4 represents one type independently selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms
  • R 5 represents each independently a hydrogen atom and an alkyl group having 1 to 10 carbon atoms.
  • bonds selected from the group consisting of four bonds, each of which is bonded to X 1 in the formula (I). Indicates either.
  • each R 6 independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group and a nitro group, or the same carbon atom. And two R 6 bonded to each other may form a methylidene group, and each R 7 is independently selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms.
  • Symbols * 1 to * 4 indicate that each of the bonds to which the symbols are attached is any one of four bonds that are bonded to X 1 in the formula (I).
  • R 10 represents an arylene group having 6 to 50 carbon atoms
  • Y 1 and Y 2 each independently represent one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, and an alkylsilyl group having 3 to 9 carbon atoms.
  • R 10 represents an arylene group having 6 to 50 carbon atoms
  • Y 1 and Y 2 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, and a carbon number 3 1 type selected from the group consisting of ⁇ 9 alkylsilyl groups.
  • the additive compound is preferably triphenylphosphine.
  • a polyimide capable of efficiently and reliably producing a polyimide having higher toughness while maintaining characteristics such as a linear expansion coefficient, a glass transition temperature and a total light transmittance at a sufficiently high level. It becomes possible to provide a precursor resin composition.
  • the polyimide precursor resin composition of the present invention is A polyimide precursor resin (first component) which is a polymer of at least one selected from the group consisting of tetracarboxylic dianhydrides having two norbornane skeletons in the molecule and derivatives thereof; Formula in which phosphorus atom and carbon atom are directly bonded in the molecule: tertiary phosphorus compound including structure represented by CP, Formula in which phosphorus atom and carbon atom are directly bonded in molecule: Represented by CP At least one additive compound (second component) selected from the group consisting of a quaternary phosphorus compound containing a structure and a quaternary amine compound; A solvent (third component); It contains.
  • first component is a polymer of at least one selected from the group consisting of tetracarboxylic dianhydrides having two norbornane skeletons in the molecule and derivatives thereof; Formula in which phosphorus atom and carbon atom are directly bonded in the
  • the polyimide precursor resin composition (first component) is a compound comprising at least one selected from the group consisting of tetracarboxylic dianhydrides having two norbornane skeletons in the molecule and derivatives thereof and a diamine. It is a coalescence.
  • the tetracarboxylic dianhydride and its derivative used as a monomer component of the polymer, and the diamine will be described separately.
  • the tetracarboxylic dianhydride used as the monomer component of the polymer has two norbornane skeletons in the molecule.
  • the norbornane skeleton means the following general formula (i):
  • the tetracarboxylic dianhydride according to the present invention may have two structural parts (skeletons) represented by the general formula (i) in the molecule, and the structure is not particularly limited. .
  • the tetracarboxylic dianhydride derivative is not particularly limited as long as it is obtained using the tetracarboxylic dianhydride.
  • the tetracarboxylic dianhydride may be modified by modifying the tetracarboxylic dianhydride. And diester dicarboxylic acid and diester dicarboxylic acid dichloride obtained.
  • Such tetracarboxylic dianhydrides and derivatives thereof are represented by the above general formulas (1) to (4) from the viewpoints of transparency and heat resistance of polyimides obtained using the components. And the compounds represented by the general formulas (1) to (3) and the derivatives thereof are more preferable.
  • the compounds represented by the above general formulas (1) to (4) that can be suitably used as the tetracarboxylic dianhydride according to the present invention and their derivatives will be described separately.
  • R 1 , R 2 and R 3 in the general formula (1) are each independently a group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom.
  • n represents an integer of 0 to 12.
  • the alkyl group that can be selected as R 1 , R 2 , or R 3 in the general formula (1) is an alkyl group having 1 to 10 carbon atoms. When the number of carbon atoms exceeds 10, the glass transition temperature is lowered and a sufficiently high heat resistance cannot be achieved. Further, the number of carbon atoms of the alkyl group that can be selected as R 1 , R 2 , or R 3 is preferably 1 to 6 and is preferably 1 to 5 from the viewpoint of easier purification. Is more preferably 1 to 4, particularly preferably 1 to 3. Further, such an alkyl group that can be selected as R 1 , R 2 , or R 3 may be linear or branched. Further, such an alkyl group is more preferably a methyl group or an ethyl group from the viewpoint of ease of purification.
  • R 1 , R 2 , and R 3 in the general formula (1) are each independently a hydrogen atom or a carbon number of 1 to 10 from the viewpoint that higher heat resistance can be obtained when a polyimide is produced.
  • each independently represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, or an isopropyl group. It is more preferably a group, and particularly preferably a hydrogen atom or a methyl group.
  • it is especially preferable that several R ⁇ 1 >, R ⁇ 2 >, R ⁇ 3 > in such a formula is the same from viewpoints, such as the ease of refinement
  • n represents an integer of 0 to 12.
  • the upper limit value of the numerical value range of n in the general formula (1) is more preferably 5 and particularly preferably 3 from the viewpoint of easier purification.
  • the lower limit of the numerical range of n in the general formula (1) is more preferably 1 and particularly preferably 2 from the viewpoint of the stability of the raw material compound.
  • n in the general formula (1) is particularly preferably an integer of 2 to 3.
  • the method for producing the tetracarboxylic dianhydride represented by the general formula (1) is not particularly limited, and a known method can be appropriately employed.
  • A is a divalent group which may have a substituent and has 6 to 30 carbon atoms to form an aromatic ring.
  • R 4 represents one selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms
  • R 5 represents each independently selected from the group consisting of the following aromatic groups: Represents one selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms.
  • a in the general formula (2) is a divalent aromatic group which may have a substituent, and is a carbon that forms an aromatic ring contained in the aromatic group.
  • the number of carbons forming the aromatic ring herein means that when the aromatic group has a substituent containing carbon (such as a hydrocarbon group), the carbon in the substituent is The number of carbon atoms in the aromatic ring in the aromatic group is not included, and for example, in the case of a 2-ethyl-1,4-phenylene group, the number of carbon atoms forming the aromatic ring is 6. ) Is from 6 to 30.
  • a in the general formula (1) is a divalent group (divalent aromatic group) which may have a substituent and has an aromatic ring having 6 to 30 carbon atoms. is there.
  • the number of carbons forming such an aromatic ring exceeds the above upper limit, it is difficult to sufficiently suppress coloring of the polyimide when a polyimide is prepared using a polyimide precursor resin having such a repeating unit. It tends to be.
  • the number of carbon atoms forming the aromatic ring of the divalent aromatic group is more preferably 6-18, and further preferably 6-12. preferable.
  • Such a divalent aromatic group is not particularly limited as long as it satisfies the above condition of the number of carbons.
  • examples thereof include 1,4-phenylene group, 2,6-naphthylene group, 2,7-naphthylene group, 4,4′-biphenylene group, 9,10-anthracenylene group, and the like.
  • Groups in which at least one hydrogen atom in the residue is substituted with a substituent for example, 2,5-dimethyl-1,4-phenylene group, 2,3,5 6-tetramethyl-1,4-phenylene group
  • the position of the leaving hydrogen atom is not particularly limited.
  • the residue is a phenylene group, any of the ortho, meta, and para positions is used. It may be the position.
  • Such a divalent aromatic group has a substituent from the viewpoint that when a polyimide is prepared, the solubility of the polyimide in a solvent becomes better and higher workability is obtained.
  • An optional terphenylene group is preferred. That is, such a divalent aromatic group is preferably a phenylene group, a biphenylene group, a naphthylene group, an anthracenylene group, or a terphenylene group, each of which may have a substituent.
  • a phenylene group, a biphenylene group, and a naphthylene group, each of which may have a substituent are more preferable.
  • a phenylene group and a biphenylene group which may have a substituent are more preferable, and a phenylene group which may have a substituent is most preferable.
  • the substituent that the divalent aromatic group may have is not particularly limited, and examples thereof include an alkyl group, an alkoxy group, and a halogen atom. .
  • the substituents that such a divalent aromatic group may have, from the viewpoint that when a polyimide is produced, the solubility of the polyimide in the solvent becomes better and higher workability can be obtained.
  • An alkyl group having 1 to 10 carbon atoms and an alkoxy group having 1 to 10 carbon atoms are more preferable. When the number of carbon atoms of the alkyl group and alkoxy group suitable as such a substituent exceeds 10, when used as a polyimide monomer, the heat resistance of the resulting polyimide tends to decrease.
  • the number of carbon atoms of an alkyl group and an alkoxy group suitable as such a substituent is preferably 1 to 6 from the viewpoint of obtaining higher heat resistance when a polyimide is produced. 5 is more preferable, 1 to 4 is further preferable, and 1 to 3 is particularly preferable.
  • the alkyl group and alkoxy group which can be selected as such a substituent may be linear or branched, respectively.
  • the substituents are each A phenylene group, a biphenylene group, a naphthylene group, an anthracenylene group, and a terphenylene group, each of which may have a substituent, a phenylene group, a biphenylene group, or a naphthylene group. More preferred are a phenylene group and a biphenylene group, each of which may have a substituent, and most preferred is a phenylene group which may have a substituent.
  • a phenylene group, a biphenylene group, a naphthylene group, an anthracenylene group which may each have a substituent
  • a phenylene group, a biphenylene group, and a naphthylene group are more preferable, and a phenylene group that may have a substituent is most preferable.
  • the substituent that the divalent aromatic group may have is not particularly limited, and examples thereof include an alkyl group, an alkoxy group, and a halogen atom.
  • substituents that the divalent aromatic group may have when a polyimide is prepared, the solubility of the polyimide in a solvent becomes more excellent, and higher processability is obtained.
  • an alkyl group having 1 to 10 carbon atoms and an alkoxy group having 1 to 10 carbon atoms are more preferable.
  • the number of carbon atoms of the alkyl group and alkoxy group suitable as such a substituent exceeds 10, when the polyimide is prepared, the heat resistance of the polyimide tends to decrease.
  • the number of carbon atoms of the alkyl group and alkoxy group suitable as such a substituent is preferably 1 to 6, more preferably 1 to 5, from the viewpoint of obtaining higher heat resistance. 1 to 4 is more preferable, and 1 to 3 is particularly preferable.
  • each of the alkyl group and alkoxy group that can be selected as such a substituent may be linear or branched.
  • each R 4 is independently one selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms.
  • the alkyl group that can be selected as R 4 is preferably 1 to 6, more preferably 1 to 5, and more preferably 1 to 4 from the viewpoint of obtaining higher heat resistance. Is more preferable, and 1 to 3 is particularly preferable.
  • Such an alkyl group that can be selected as R 4 may be linear or branched.
  • R 4 in the general formula (2) is independently from the viewpoints that higher heat resistance is obtained, that raw materials are easily obtained, that purification is easier, and the like.
  • a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, and an isopropyl group are more preferable, and a hydrogen atom and a methyl group are particularly preferable.
  • R 4 in the formula (2) may be the same or different from each other, but they are the same from the viewpoint of ease of purification. Is preferred.
  • it is particularly preferable that a plurality of R 4 in the general formula (2) are all hydrogen atoms. Thus, when all the substituents represented by R 4 in the repeating unit represented by the general formula (2) are hydrogen atoms, higher heat resistance tends to be obtained.
  • the alkyl group that can be selected as R 5 in the general formula (2) is an alkyl group having 1 to 10 carbon atoms. When the number of carbon atoms exceeds 10, sufficiently high heat resistance cannot be achieved.
  • the number of carbon atoms of the alkyl group that can be selected as R 5 is preferably 1 to 6, more preferably 1 to 5, more preferably 1 to 5, from the viewpoint of easier purification. 4 is more preferable, and 1 to 3 is particularly preferable.
  • Such an alkyl group that can be selected as R 5 may be linear or branched. Further, such an alkyl group is more preferably a methyl group or an ethyl group from the viewpoint of ease of purification.
  • R 5 in the general formula (2) is a viewpoint that, when a polyimide is produced, higher heat resistance is obtained, raw materials are easily obtained, purification is easier, and the like. Therefore, each independently is preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group, and particularly preferably a hydrogen atom or a methyl group.
  • a plurality of R 5 in such a formula may be the same or different from each other, but may be the same from the viewpoint of ease of purification and the like. preferable.
  • the method for producing such a compound represented by the general formula (2) is not particularly limited, and a known method can be appropriately employed. For example, as described in International Publication No. 2015/163314 A method or the like may be adopted.
  • each R 6 is independently selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group, and a nitro group.
  • One R or two R 6 bonded to the same carbon atom may form a methylidene group
  • each R 7 independently represents a hydrogen atom and a carbon number of 1 to 10 1 type selected from the group consisting of the following alkyl groups.
  • R 6 in the general formula (3) is independently selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group and a nitro group, or the same carbon. Two R 6 bonded to an atom together form a methylidene group.
  • the alkyl group that can be selected as R 6 in the general formula (3) is an alkyl group having 1 to 10 carbon atoms. When the number of carbon atoms exceeds 10, sufficiently high heat resistance cannot be achieved.
  • the number of carbon atoms of the alkyl group that can be selected as R 6 is preferably 1 to 6, more preferably 1 to 5, more preferably 1 to 5, from the viewpoint of easier purification. 4 is more preferable, and 1 to 3 is particularly preferable.
  • Such an alkyl group that can be selected as R 6 may be linear or branched. Further, such an alkyl group is more preferably a methyl group or an ethyl group from the viewpoint of ease of purification.
  • the plurality of R 6 in the general formula (3) it is possible to obtain higher heat resistance, easier acquisition (preparation) of raw materials, easier purification, and the like.
  • a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group is more preferable, and a hydrogen atom or a methyl group is particularly preferable.
  • the plurality of R 6 in such a formula may be the same or different from each other, but may be the same from the viewpoint of ease of purification and the like. preferable.
  • R 7 is each independently one selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms.
  • the alkyl group that can be selected as R 7 is preferably 1 to 6, more preferably 1 to 5, more preferably 1 to 4 from the viewpoint of obtaining higher heat resistance. Is more preferable, and 1 to 3 is particularly preferable. Further, such an alkyl group that can be selected as R 7 may be linear or branched.
  • R 7 in the general formula (3) is a viewpoint that a higher degree of heat resistance can be obtained when the polymer is produced, that raw materials are easily obtained, and that purification is easier. Therefore, independently of each other, a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, and an isopropyl group are more preferable, and a hydrogen atom and a methyl group are particularly preferable.
  • R 7 in the formula (3) may be the same or different from each other, but they are the same from the viewpoint of ease of purification and the like. Is preferred.
  • all of the plurality of R 6 and R 7 in the general formula (3) are hydrogen atoms.
  • the repeating unit represented by the general formula (3) when both the substituents represented by R 6 and R 7 are hydrogen atoms, the yield of the compound is improved, and more High heat resistance tends to be obtained.
  • a method for producing such a compound represented by the general formula (3) is not particularly limited, and a known method can be appropriately employed. For example, as described in International Publication No. 2017/030019 A method or the like may be adopted.
  • the compound represented by the general formula (4) is not particularly limited, and a commercially available product may be appropriately used. Moreover, it does not restrict
  • the derivatives of the compounds represented by the general formulas (1) to (4) are not particularly limited, but a diester dicarboxylic acid that is a modified product of the compounds represented by the general formulas (1) to (4), and Diester dicarboxylic acid dichloride is more preferable. That is, when the derivatives of the compounds represented by the general formulas (1) to (4) are used, the compounds represented by the general formulas (1) to (4) are converted into the corresponding diester dicarboxylic acid or diester. It is preferably used after being modified to dicarboxylic acid dichloride.
  • the method for preparing such a derivative is not particularly limited, and a known method can be appropriately employed.
  • a method for preparing a diester dicarboxylic acid suitable as a derivative of the compounds represented by the general formulas (1) to (4) the compounds represented by the general formulas (1) to (4) may be arbitrarily selected.
  • a method of obtaining the corresponding diester dicarboxylic acid by reacting with alcohol can be employed.
  • a polyimide precursor can be obtained by solution-polymerizing the diester dicarboxylic acid thus obtained with a diamine in the presence of a condensing agent.
  • Examples of a method for preparing a diester dicarboxylic acid dichloride suitable as a derivative of the compounds represented by the general formulas (1) to (4) include, for example, the compounds represented by the general formulas (1) to (4).
  • a polyimide precursor can be obtained by stirring such a diester dicarboxylic acid dichloride and diamine in the range of ⁇ 20 ° C. to 100 ° C. (more preferably 5 to 80 ° C.) for 1 to 72 hours.
  • the polyimide precursor thus obtained tends to have better storage stability than when the compounds represented by the general formulas (1) to (4) are used as they are.
  • Such a diamine is not particularly limited as long as it can be used for the production of polyimide, and may be an aliphatic diamine or an aromatic diamine.
  • an aromatic diamine is preferable from the viewpoint of heat resistance and simplicity of the polymerization method, and among them, the following general formula (ii): HY 1 N—R 10 —NY 2 H (ii) [In the formula (ii), R 10 represents an arylene group having 6 to 50 carbon atoms, and Y 1 and Y 2 are each independently selected from the group consisting of a hydrogen atom and an alkylsilyl group having 3 to 9 carbon atoms. One type is shown. ] The aromatic diamine represented by these is more preferable.
  • the arylene group that can be selected as R 10 in the general formula (ii) has 6 to 50 carbon atoms, and the aryl group preferably has 6 to 40 carbon atoms, It is more preferably 6 to 30, and further preferably 12 to 20. If the number of carbon atoms is less than the lower limit, the heat resistance tends to decrease when the resulting polyimide is prepared.On the other hand, if the upper limit is exceeded, the polyimide has a solubility in a solvent when prepared. It tends to decrease.
  • R 10 in the general formula (ii) is represented by the following general formulas (a) to (d): from the viewpoint that higher heat resistance and mechanical strength can be obtained when a polyimide is prepared.
  • R 11 represents one selected from the group consisting of a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, a hydroxyl group, and a trifluoromethyl group
  • Q is , 9,9-fluorenylidene group; formula: —O—, —S—, —CO—, —CONH—, —SO 2 —, —C (CF 3 ) 2 —, —O—C 6 H 4 —O— , —C (CH 3 ) 2 —, —CH 2 —, —O—C 6 H 4 —C (CH 3 ) 2 —C 6 H 4 —O—, —O—C 6 H 4 —C (CF 3 ) 2 -C 6 H 4 -O-, -O-C 6 H 4 -SO 2 -C 6 H 4 -O-, -C (CH 3 ) 2 -C 6 H 4 -C 6 H 4 -SO 2 -
  • each R a independently represents any one of an alkyl group having 1 to 10 carbon atoms, a phenyl group and a tolyl group, and y represents an integer of 1 to 18) 1 group selected from the group consisting of: ] It is preferable that it is at least 1 sort (s) of group represented by these.
  • R 11 in the general formula (c) is more preferably a hydrogen atom, a fluorine atom, a methyl group or an ethyl group, and particularly preferably a hydrogen atom, from the viewpoint of heat resistance. Furthermore, R 11 in the general formula (c) is more preferably a methyl group, a hydroxyl group, or a trifluoromethyl group from the viewpoint of the linear expansion coefficient.
  • each R a is independently an alkyl group having 1 to 10 carbon atoms, a phenyl group, or a tolyl group. Any one of these.
  • the carbon number of such an alkyl group exceeds the upper limit, when a polyimide is prepared, the heat resistance and transparency of the polyimide tend to decrease.
  • Such Ra is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a phenyl group, or a tolyl group, more preferably a methyl group or an ethyl group, and even more preferably a methyl group.
  • y represents an integer of 1 to 15, more preferably 3 to 12, and still more preferably 5 to 10.
  • y is less than the lower limit, the mechanical strength tends to decrease.
  • the upper limit is exceeded, when polyimide is prepared, the heat resistance and transparency of the polyimide tend to decrease.
  • Q in the general formula (d) is 9, 9- from the viewpoint that a cured product having a sufficient balance of heat resistance, transparency, and mechanical strength can be obtained.
  • Q in the general formula (d) is preferably a group represented by the general formula (e) from the viewpoints of adhesiveness and laser peelability, and has a linear expansion coefficient and heat resistance. Is preferably a group represented by the formula: —OCO—, —COO— or —CONH—.
  • R 10 4,4′-diaminobenzanilide (from the viewpoint that it is possible to obtain a polyimide having a sufficient balance of heat resistance, transparency and mechanical strength at a sufficient level.
  • DABAN 4,4′-diaminodiphenyl ether
  • TFMB 2,2′-bis (trifluoromethyl) benzidine
  • FDA 9,9′-bis (4-aminophenyl) fluorene
  • PPD p-diamino Benzene
  • PPD p-diamino Benzene
  • DDM 4,4′-diphenyldiaminomethane
  • BAAB 4,4′-bis (4-aminobenzamide) -3,3′-dihydroxybiphenyl
  • BABB 4,3′-diaminodiphenyl 2 obtained by removing
  • the alkylsilyl group that can be selected as Y 1 and Y 2 in the general formula (ii) is one having 3 to 9 carbon atoms.
  • Examples of the alkylsilyl group that can be selected as Y 1 and Y 2 include A trimethylsilyl group or a t-butyldimethylsilyl group is more preferable.
  • Y 1 and Y 2 in the formula (ii) are more preferably hydrogen atoms from the viewpoint of simplicity of polyimide synthesis. That is, the aromatic diamine represented by the formula (ii) is more preferably an aromatic diamine represented by the formula: H 2 N—R 10 —NH 2 .
  • aromatic diamine represented by the formula: H 2 N—R 10 —NH 2 is not particularly limited, and known ones can be used as appropriate, and commercially available ones may be used as appropriate.
  • aromatic diamines include 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane, 4,4′-diaminodiphenylethane, 3,3′-diaminodiphenylethane, and 4,4′-.
  • DABAN 4,4′-diaminobenzanilide
  • DDE 4,4′-diaminodiphenyl ether
  • TFMB 2,2′-bis (trifluoromethyl)
  • FDA 9,9′-bis (4-aminophenyl) fluorene
  • PPD p-diaminobenzene
  • PPD 2,2′-dimethyl-4,4′-diaminobiphenyl
  • DDM 4,4′-diphenyldiaminomethane
  • BAAB 4,4′-bis (4-aminobenzamide) -3,3′-dihydroxybiphenyl
  • BABB 3,3′-diaminodiphenyl sulfone (3,3′-DDS) and 4,4′-diaminodiphenyl sulfone
  • BAAB 4,4′-bis (4-aminobenzamide) -3,3′-dihydroxybiphenyl
  • BABB 3,3′-dia
  • DABAN 4,4′-diaminobenzanilide
  • DDE 4,4′-diaminodiphenyl ether
  • TFMB 2,2′-bis (trifluoromethyl) benzidine
  • DABAN 4,4′-diaminobenzanilide
  • PPD p-diaminobenzene
  • BAAB 4,4′-diaminodiphenylsulfone
  • TFMB 2,2′-bis (tri Combination of fluoromethyl) benzidine
  • examples include diamines.
  • silylated diamines include bis (4-trimethylsilylaminophenyl) ether and 1,4-bis (trimethylsilylamino) benzene.
  • silylating agent examples include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, hexamethyldisilazane, and the like.
  • the method for producing such a diamine is not particularly limited, and a known method can be appropriately employed. Moreover, you may utilize a commercial item suitably as such diamine.
  • the polyimide precursor resin according to the present invention is a polymer of the diamine and at least one selected from the group consisting of tetracarboxylic dianhydrides having two norbornane skeletons in the molecule and derivatives thereof.
  • tetracarboxylic dianhydrides having two norbornane skeletons in the molecule and derivatives thereof.
  • those having at least one repeating unit selected from the group consisting of repeating units represented by the above general formulas (I) to (III) are more preferable.
  • X 1 in the general formula (I) is a tetravalent group represented by the above general formulas (I-1) to (I-3). is there.
  • the general formula (I-1) R 1 in, R 2, R 3, n has the same meaning as R 1, R 2, R 3, n in the general formula (1) (as its preferred Are the same as R 1 , R 2 , R 3 and n in the general formula (1)), and A, R 4 and R 5 in the general formula (I-2) are the same as those in the general formula (2).
  • R in the general formula (I-3) R 6, R 7 in has the same meaning as R 6, R 7 in the general formula (3) (the preferred ones also Formula (3) 6, R 7 as synonymous).
  • X 1 in the general formula (I) is a tetravalent group (organic group) represented by the general formulas (I-1) to (I-3) as described above.
  • Symbols * 1 to * 4 in the general formulas (I-1) to (I-3) are four bonds in which the bonds to which the symbols are attached are each bonded to X 1 in the formula (1). It is one of these.
  • a tetravalent organic group represented by the general formulas (I-1) to (I-3) as the X 1 site, transparency, heat resistance and dimensional stability are improved. It becomes possible.
  • any of the bonds having the symbols * 1 to * 2 is represented by the general formula (I).
  • Formula: -COOY 1 is a bond that bonds to one of the bonds marked with symbols * 3 to * 4, and the bond in formula (I) is represented by the formula: -COOY 2 It is a bond that bonds, or any one of the bonds marked with symbols * 1 to * 2 is a bond that bonds to the formula: -COOY 2 in the general formula (I)
  • any of the bonds to which symbols * 3 to * 4 are attached is preferably a bond that bonds to the formula: —COOY 1 in the general formula (I).
  • R 10 represents an arylene group having 6 to 50 carbon atoms.
  • R 10 such in the general formula (I) are the same as the R 10 in the general formula (ii), is the same as R 4 in the general formula (ii) as its preferred.
  • Y 1 and Y 2 in the general formula (I) are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms (preferably 1 to 3 carbon atoms), or alkylsilyl having 3 to 9 carbon atoms.
  • Such Y 1 and Y 2 can change the kind of the substituent and the introduction rate of the substituent by appropriately changing the production conditions (type of diamine used, etc.).
  • the production tends to be easier. is there.
  • the polyimide precursor resin has more excellent storage stability. Tend to be.
  • Y 1 and Y 2 are alkyl groups having 1 to 6 carbon atoms (preferably 1 to 3 carbon atoms)
  • Y 1 and Y 2 are more preferably methyl groups or ethyl groups.
  • Y 1 and Y 2 in the general formula (I) are alkylsilyl groups having 3 to 9 carbon atoms, the solubility of the polyimide precursor resin tends to be more excellent.
  • Y 1 and Y 2 are alkylsilyl groups having 3 to 9 carbon atoms, Y 1 and Y 2 are more preferably trimethylsilyl groups or t-butyldimethylsilyl groups.
  • the introduction rate of a group other than a hydrogen atom is not particularly limited, but Y 1 In the case where at least a part of Y 2 is an alkyl group and / or an alkylsilyl group, 25% or more (more preferably 50% or more, still more preferably 75%) of the total amount of Y 1 and Y 2 in all repeating units.
  • % Or more is preferably an alkyl group and / or an alkylsilyl group (in this case, Y 1 and Y 2 other than the alkyl group and / or the alkylsilyl group are hydrogen atoms). Moreover, about each of Y ⁇ 1 >, Y ⁇ 2 > in the repeating unit represented by the said general formula (I), 25% or more of total amount is made into an alkyl group and / or an alkylsilyl group, The preservation stability of a polyimide precursor Tend to be more excellent.
  • Such a repeating unit represented by the general formula (I) includes a diester dicarboxylic acid which is a compound (tetracarboxylic dianhydride) represented by the above general formulas (1) to (3) or a derivative of those compounds. And at least one of diester dicarboxylic acid dichloride and the aromatic diamine (HY 1 N—R 10 —NY 2 H) represented by the above general formula (ii) can be easily formed. Can do.
  • the polymer which has a repeating unit represented by general formula (I) can be formed by selecting a monomer component suitably according to target design.
  • the polymer (polyimide precursor resin) having a repeating unit represented by the above general formula (I) is a compound represented by the above general formula (1) to (3) (tetracarboxylic acid dicarboxylic acid).
  • Anhydride) and at least one of diester dicarboxylic acid and diester dicarboxylic acid dichloride which are derivatives of these compounds, and aromatic diamines (HY 1 N—R 10 —NY 2 H) represented by the above general formula (ii) It can be said that it is a polymer.
  • R 10 in these formulas (II) to (III) is an arylene having 6 to 50 carbon atoms.
  • Y 1 and Y 2 each independently represent one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, and an alkylsilyl group having 3 to 9 carbon atoms.
  • R 10 in the general formula (II) Y 1, Y 2 is the formula R 10, Y 1 in (I), the same meaning as Y 2 (also Formula those its preferred (I And R 10 , Y 1 and Y 2 in the same meaning).
  • Such repeating units represented by the general formulas (II) to (III) include the compound represented by the above general formula (4) (tetracarboxylic dianhydride) and a diester dicarboxylic acid which is a derivative of the compound, and It can be easily formed by reacting at least one of diester dicarboxylic acid dichlorides with an aromatic diamine (Y 2 N—R 10 —NY 2 ) represented by the above general formula (ii). .
  • a polymer having repeating units represented by the general formulas (II) to (III) can be formed by appropriately selecting the monomer components in accordance with the target design.
  • the polymer (polyimide precursor resin) having the repeating units represented by the above general formulas (II) to (III) is a compound represented by the above general formula (4) and a derivative of the compound. It can be said that the polymer is a polymer of at least one of diester dicarboxylic acid and diester dicarboxylic acid dichloride which is the aromatic diamine (HY 1 N—R 10 —NY 2 H) represented by the general formula (ii). .
  • the polyimide precursor resin (polymer) according to the present invention is selected from the group consisting of repeating units represented by the above general formulas (I) to (III). Polymers containing at least one repeating unit are preferred.
  • X 1 in the formula (I) is represented by the general formula (I-1) from the viewpoint of dimensional stability of the obtained polyimide.
  • X 1 in the formula (I) is preferably a tetravalent group represented by the above general formula (I-2).
  • a repeating unit that is a group is preferably a repeating unit in which X 1 in the formula (I) is a tetravalent group represented by the general formula (I-3).
  • X 1 in the formula (I) is represented by the general formula (I-1).
  • a repeating unit which is a tetravalent group is particularly preferred.
  • Y 1 and Y 2 are repeating units each a hydrogen atom (repeating unit of polyamic acid) Is more preferable.
  • polyimide precursor resin contains the repeating units represented by the above general formulas (I) to (III), for example, it is selected from the group consisting of these repeating units. It may contain 1 type, or may contain 2 or more types of repeating units selected from the group consisting of these repeating units.
  • such a polyimide precursor resin (polymer) contains a repeating unit represented by the above general formulas (I) to (III), it is represented by these general formulas (I) to (III).
  • the total amount of repeating units (the total content) is 20 to 100 mol% (more preferably 30 to 100 mol%, more preferably 40 to 100 mol%, still more preferably 50 to 100 mol%) based on all repeating units. And particularly preferably 60 to 100 mol%).
  • the lower limit value of the numerical range is more preferably 70 mol%, and 80 mol%. More preferably, it is most preferable that it is 90 mol%. When the total amount (total amount) of such repeating units is less than the lower limit, it tends to be difficult to make the heat resistance based on the glass transition temperature (Tg) a higher level.
  • the polyimide precursor resin containing any one of the repeating units represented by the above general formulas (I) to (III), which is suitable as the polyimide precursor resin according to the present invention may be used depending on the application to be used.
  • the repeating unit may be further included.
  • Such other repeating units are not particularly limited, and include known repeating units that can be used as the repeating units of the polyimide precursor resin.
  • other repeating units for example, other tetracarboxylic dianhydrides other than the compounds represented by the general formulas (1) to (4) are used, and these are represented by the above formula: HY 1 N— It may be a repeating unit formed by reacting with an aromatic diamine represented by R 4 —NY 2 H.
  • Such other tetracarboxylic dianhydrides are not limited to tetracarboxylic dianhydrides having two norbornane skeletons in the molecule, but are known tetracarboxylic acid dianhydrides that can be used for the preparation of polyamic acid and polyimide.
  • Carboxylic dianhydrides can be used as appropriate, for example, butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic acid Anhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 3,5,6-tricarboxynorbornane-2-acetic acid dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro- , 5-Dioxo-3-furanyl) -naphtho [1,2-c] -furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-5-methyl-5- (tetrahydro- 2,5-d
  • the intrinsic viscosity [ ⁇ ] is preferably 0.05 to 3.0 dL / g, and preferably 0.1 to 2.0 dL / g. Is more preferable.
  • the intrinsic viscosity [ ⁇ ] of such a polyamic acid is less than 0.05 dL / g, when a film-like polyimide is produced using the polyamic acid, the resulting film tends to become brittle, while 3.0 dL When it exceeds / g, the viscosity is too high and the processability is lowered. For example, when a film is produced, it is difficult to obtain a uniform film.
  • the intrinsic viscosity [ ⁇ ] of such polyamic acid can be measured as follows. That is, first, N, N-dimethylacetamide is used as a solvent, and the polyamic acid is dissolved in the N, N-dimethylacetamide so as to have a concentration of 0.5 g / dL, and a measurement sample (solution) is obtained. obtain. Next, using the measurement sample, the viscosity of the measurement sample is measured using a kinematic viscometer under a temperature condition of 30 ° C., and the obtained value is adopted as the intrinsic viscosity [ ⁇ ]. In addition, as such a kinematic viscometer, an automatic viscosity measuring device (trade name “VMC-252”) manufactured by Kouaisha is used.
  • VMC-252 automatic viscosity measuring device manufactured by Kouaisha
  • a method for producing such a polyimide precursor resin (polymer) is obtained by using tetracarboxylic dianhydride and diamine as described above. What is necessary is just to utilize, The preparation method (polymerization method) of a well-known polyimide precursor resin (polymer) can be utilized suitably.
  • a method for producing a polyamic acid described in International Publication No. 2011/099518 is used.
  • a polyamic acid described in International Publication No. 2015/163314 is produced.
  • the method for the above may be adopted as appropriate.
  • a polyimide precursor resin (polymer) is prepared by appropriately using the polymerization conditions described in known literature depending on the types of monomers (tetracarboxylic dianhydride and diamine) used. May be.
  • the additive compound (second component) includes a tertiary phosphorus compound having a structure represented by the formula: CP in which a phosphorus atom and a carbon atom are directly bonded in the molecule, and a phosphorus atom and a carbon atom in the molecule. Is at least one compound selected from the group consisting of a quaternary phosphorus compound containing a structure represented by the formula: CP and a quaternary amine compound.
  • tertiary phosphorus compounds include triphenylphosphine, triparatolylphosphine, tritertiarybutylphosphine, tricyclohexylphosphine, diphenylcyclohexylphosphine, 1,4-bisdiphenylphosphinobutane, and the like.
  • triphenylphosphine As such a tertiary phosphorus compound, from the viewpoint of mechanical properties of the resulting polyimide, triphenylphosphine, tripalatolylphosphine, and tricyclohexylphosphine are more preferable, triphenylphosphine, and triparatolylphosphine are more preferable, and triphenylphosphine Is particularly preferred.
  • quaternary phosphorus compounds include benzyltriphenylphosphonium chloride, ethyltriphenylphosphonium bromide, normal butyltriphenylphosphonium chloride, normal butyltriphenylphosphonium dicyanamide phenacetyltriphenylphosphonium chloride, hexyltriphenyl.
  • Phosphonium bromide octyltriphenylphosphonium bromide, tetraphenylphosphonium bromide, tetraphenylphosphonium thiocyanate, tetraphenylphosphonium dicyanamide, benzyltriphenylphosphonium bromide, 2-methylbenzyltriphenylphosphonium bromide, methyltriphenylphosphonium iodide, phenacetiltri Phenylphosphoni Mukuroraido, allyl triphenylphosphonium bromide, quaternary phosphorus salts such as tetraphenylphosphonium tetraphenyl borate, and the like.
  • quaternary phosphorus compounds include benzyltriphenylphosphonium chloride, benzyltriphenylphosphonium bromide, n-butyltriphenylphosphonium chloride, tetraphenylphosphonium from the viewpoint of the mechanical properties of the resulting polyimide and solubility in solvents.
  • Bromide and tetraphenylphosphonium tetraphenylborate are more preferred, benzyltriphenylphosphonium chloride, benzyltriphenylphosphonium bromide and tetraphenylphosphonium tetraphenylborate are more preferred, and benzyltriphenylphosphonium chloride and benzyltriphenylphosphonium bromide are particularly preferred.
  • quaternary amine compound for example, an organic acid salt of 1,8-diazabicyclo [5,4,0] -7-undecene (DBU) (for example, octylate of DBU, p-toluenesulfone of DBU) Acid salt, DBU formate, DBU orthophthalate, etc.), phenol resin salt of DBU, phenol resin salt of 1,5-diazabicyclo [4.3.0] none-5-ene (DBN), manufactured by San Apro Quaternary amine salts such as U-CAT 5002, tetramethylammonium bromide, tetraethylammonium bromide, tetramethylammonium hydrochloride, tetraethylammonium hydrochloride, tetramethylammonium tetraphenylborate; and the like.
  • DBU 1,8-diazabicyclo [5,4,0] -7-undecene
  • DBN 1,5-d
  • an organic acid salt of DBU is preferable from the viewpoint of obtaining higher heat resistance and mechanical strength, and a phenol salt of DBU and an octylate salt of DBU are preferable. More preferred.
  • additive compounds when polyimide is prepared, it is possible to impart flame retardancy to the polyimide, and it does not affect the storage stability of the polyimide precursor solution.
  • the tertiary phosphorus compound is particularly preferable, and triphenylphosphine is most preferable.
  • a compound (second component) one kind may be used alone, or two or more kinds may be used in combination.
  • a solvent (3rd component) concerning this invention
  • solvents include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -modified prolactone, ⁇ Valerolactone, ⁇ -Prolactone, ⁇ -Prolactone, ⁇ -methyl- ⁇ -butyrolactone, ethylene carbonate, propylene carbonate, triethylene glycol, tetramethylurea, 1,3-dimethyl-2-imidazolidinone, Aprotic polar solvents such as hexamethylphosphoric triamide and pyridine; phenolic solvents such as m-cresol, p-cresol, xylenol, phenol and hal
  • Examples of such a solvent include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, ⁇ from the viewpoints of solubility, film formability, productivity, industrial availability, presence / absence of existing equipment, and price.
  • -Butyrolactone, propylene carbonate, tetramethylurea, 1,3-dimethyl-2-imidazolidinone are preferred
  • N-methyl-2-pyrrolidone, N, N-dimethylacetamide, ⁇ -butyrolactone, tetramethylurea are more preferred
  • N, N-dimethylacetamide, N-methyl-2-pyrrolidone and tetramethylurea are particularly preferred.
  • the polyimide precursor resin composition of the present invention contains other components in addition to the polyimide precursor resin (first component), the additive compound (second component), and the solvent (third component). Also good.
  • Such other components are not particularly limited.
  • antioxidants phenolic, phosphite, thioether, etc.
  • ultraviolet absorbers hindered amine light stabilizers, nucleating agents, resin additives (fillers) , Talc, glass fiber, etc.
  • limit especially as these other components (antioxidant etc.) A well-known thing can be utilized suitably and a commercially available thing may be utilized.
  • the polyimide precursor resin composition of the present invention includes the polyimide precursor resin (first component), the additive compound (second component), and the solvent (third component).
  • the content of the polyimide (first component) and the content of the additive compound (second component) are not particularly limited, but the second component relative to 100 parts by mass of the first component
  • the content is preferably 0.1 to 25 parts by mass, more preferably 0.5 to 15 parts by mass.
  • the content of such a solvent is not particularly limited, but is preferably 50 to 99% by mass, more preferably 50 to 90% by mass, still more preferably 60 to 90% by mass, It is particularly preferably 70 to 90% by mass.
  • the content of the solvent is less than the lower limit, it is difficult to make the polyimide precursor resin sufficiently dissolved in the solvent, and it tends to be difficult to obtain a uniform varnish composition.
  • the polyimide precursor resin tends to be imidized and cured to produce a polyimide, whereby the mechanical strength of the polyimide tends to decrease.
  • the method for producing such a polyimide precursor resin composition of the present invention is not particularly limited, and the polyimide precursor resin (first component), the additive compound (second component), and the solvent (first component). There is no particular limitation as long as it is a method capable of producing a polyimide precursor resin composition containing three components). For example, in the presence of a solvent, a tetracarboxylic acid dicarboxylate having two norbornane skeletons in the molecule is used.
  • anhydrides which may contain other tetracarboxylic dianhydrides other than tetracarboxylic dianhydrides having two norbornane skeletons in the molecule as necessary
  • derivatives thereof At least one; and the above diamine (preferably the compound represented by the above formula (ii) (HY 1 N—R 10 —NY 2 H), more preferably the formula: H 2 N—R 10 —N A compound represented by H 2 ); and a polymer of the diamine and at least one selected from the group consisting of the tetracarboxylic dianhydride and derivatives thereof.
  • the term “during reaction” here refers to the use of a reaction solution obtained after once reacting at least one selected from the group consisting of the tetracarboxylic dianhydride and derivatives thereof with the diamine.
  • a method including a step of adding a compound hereinafter, this method is simply referred to as “method (I)” for convenience
  • method (I) is simply referred to as “method (I)” for convenience
  • the tetracarboxylic dianhydride and its derivative, diamine, solvent, and additive compound used in such method (I) are the same as those already described (
  • the tetracarboxylic dianhydride in the presence of a solvent, the tetracarboxylic dianhydride (if necessary, other tetracarboxylic acid other than tetracarboxylic dianhydride having two norbornane skeletons in the molecule)
  • Specific conditions for reacting the diamine with at least one selected from the group consisting of dianhydrides (which may contain dianhydrides) and derivatives thereof are not particularly limited, depending on the types of components used The conditions may be set as appropriate so that the polymerization reaction proceeds.
  • At least one selected from the group consisting of the tetracarboxylic dianhydride and its derivative is used as a compound represented by the general formulas (1) to (4) ( Other tetracarboxylic dianhydrides may be included if necessary) and at least one selected from the group consisting of derivatives thereof, and the diamine represented by the above general formula (ii).
  • a method (I-1) comprising a polyimide precursor resin having at least one repeating unit selected from the above, a second step of obtaining a polyimide precursor resin composition containing the additive compound and the solvent. It is preferable to do.
  • the additive compound is added in the second step, so that the varnish is applied to the substrate to form a film.
  • the molecular weight of the polyimide can be further improved using the additive compound.
  • a polyimide film is obtained by using the additive compound in the film forming stage, it is composed of the compounds represented by the general formulas (1) to (4) and derivatives thereof in the presence of the solvent.
  • the first step in the presence of a solvent, at least one selected from the group consisting of the tetracarboxylic dianhydride and its derivative and the aromatic diamine are reacted to prepare a reaction solution containing a polyimide precursor resin. It is a process to obtain.
  • the “at least one selected from the group consisting of tetracarboxylic dianhydrides and derivatives thereof” used in the first step is the compounds represented by the general formulas (1) to (4) and those And at least one selected from the group consisting of other tetracarboxylic dianhydrides and derivatives thereof, as long as it contains at least one selected from the group consisting of these derivatives. You may go out.
  • the above-mentioned solvents can be used as appropriate.
  • the solvent can dissolve both the tetracarboxylic dianhydride and the aromatic diamine. preferable.
  • Such solvents may be used alone or in combination of two or more.
  • the amount of at least one selected from the group consisting of the tetracarboxylic dianhydride and its derivative (a component to be reacted with the aromatic diamine represented by the general formula (ii)) is used.
  • the total amount of the compounds represented by the general formulas (1) to (4), other tetracarboxylic dianhydrides and their derivatives), and the aromatic diamine represented by the general formula (ii) usage: the ratio of the (expression amount of HY 1 N-R 4 -NY compounds represented by, 2 H) is not particularly limited, when using the derivatives, before induction derivatives thereof either tetracarboxylic Assuming that it is an acid dianhydride (converted), the tetracarboxylic dianhydride used in the reaction is equivalent to 1 equivalent of the amino group of the aromatic diamine.
  • the amount of all acid anhydride groups in the body is assumed to be 0.5 to 2 equivalents of the tetracarboxylic dianhydride before induction (before modification). Preferably, it is 0.8 to 1.2 equivalent.
  • at least one selected from the group consisting of such tetracarboxylic dianhydrides and derivatives thereof and a suitable use ratio of the aromatic diamine is less than the lower limit, the polymerization reaction does not proceed efficiently and the high molecular weight polyamic acid.
  • the upper limit is exceeded, a high molecular weight polyamic acid tends to be not obtained as described above.
  • the amount of the solvent used in the first step is at least one amount selected from the group consisting of tetracarboxylic dianhydride and derivatives thereof used in the reaction (the above general formulas (1) to (4)).
  • the amount of the solvent used is less than the lower limit, it tends to be difficult to obtain polyamic acid efficiently.
  • the amount exceeds the upper limit stirring tends to be difficult due to the increase in viscosity, and a high molecular weight product tends not to be obtained. It is in.
  • the reaction temperature at the time of reacting the aromatic diamine with at least one selected from the group consisting of the tetracarboxylic dianhydride and derivatives thereof is to react these compounds.
  • the temperature can be adjusted to a temperature that can be adjusted appropriately, and is not particularly limited, but is preferably ⁇ 20 to 100 ° C. (more preferably 5 to 80 ° C.).
  • the aromatic diamine may be reacted with at least one selected from the group consisting of the tetracarboxylic dianhydride and its derivative from tetracarboxylic dianhydride and its derivative.
  • a method capable of performing a polymerization reaction of at least one selected from the group consisting of aromatic diamines can be used as appropriate, and is not particularly limited.
  • the method it is preferable to employ a method in which the tetracarboxylic dianhydride and the aromatic diamine are added to the solvent at the reaction temperature and then reacted for about 1 to 72 hours.
  • the reaction temperature or reaction time is less than the lower limit, the molecular weight of the polyimide precursor tends not to be sufficiently improved.
  • the upper limit is exceeded, depolymerization of the polyimide precursor proceeds and the molecular weight tends to decrease. It is in.
  • the said reaction liquid can be obtained by making the said tetracarboxylic dianhydride and the said aromatic diamine react in a 1st process.
  • the additive compound in the second step, is added to the reaction solution obtained in the first step.
  • the second step at least one selected from the group consisting of the tetracarboxylic dianhydride and derivatives thereof by adding the additive compound (second component) to the reaction solution (
  • a polymer with a group diamine at least one selected from the group consisting of compounds represented by the above formula: HY 1 N—R 4 —NY 2 H. It is possible to obtain a polyimide precursor resin composition comprising a polyimide precursor resin having at least one type of repeating unit selected from the group consisting of repeating units represented by formula (II), the additive compound, and the solvent. It made.
  • the polyimide precursor resin composition thus obtained When the polyimide precursor resin composition thus obtained is heated, the polyimide precursor resin can be heated in the presence of the additive compound (second component) and a solvent, and the heating step Since the additive compound (second component) serves as a catalyst for promoting the reaction, the molecular weight of the finally obtained polyimide can be improved.
  • the amount of the additive compound (second component) used is at least one amount selected from the group consisting of the tetracarboxylic dianhydride and derivatives thereof used in Method (I-1) ( The compound represented by the above general formulas (1) to (4) and other tetracarboxylic dianhydrides and their derivatives added as necessary, and the method (I-1).
  • the amount of the aromatic diamine represented by the general formula (ii) (the total amount of the compound represented by the formula: Y 2 N—R 4 —NY 2 ) and the additive compound used in the method (I-1)
  • the amount of the additive compound (addition amount) is preferably 0.1 to 30% by mass, and preferably 0.5 to 10% by mass with respect to the total amount of the second component).
  • the content of such an additive compound (second component) is less than the lower limit, it is difficult to improve the molecular weight of the polyimide when forming the polyimide using the resulting polyimide precursor resin composition, Even if a polyimide is produced using such a composition, the heat resistance and mechanical strength of the polyimide tend to be reduced.
  • the upper limit is exceeded, the polyimide precursor resin composition obtained is used to obtain a polyimide. The side reaction proceeds during the production of the product, a uniform polyimide cannot be obtained, and the physical properties of the resulting polyimide tend to be reduced.
  • the solvent may be added again when the additive compound is added.
  • a polyimide precursor resin having at least one repeating unit selected from the group consisting of the repeating units represented by the general formulas (I) to (III), the additive compound, the solvent, The polyimide precursor resin composition containing can be obtained.
  • the tetracarboxylic dianhydride was used, and the compound represented by the above formula: H 2 N—R 4 —NH 2 was used as the aromatic diamine.
  • it has at least one repeating unit selected from the group consisting of repeating units represented by the above general formulas (I) to (III), and Y 1 in the general formula of the repeating unit and
  • a polyimide precursor resin composition comprising a polyimide precursor resin composed of a polyamic acid in which all Y 2 are hydrogen atoms, the additive compound, and the solvent can be obtained.
  • the method for producing the polyimide precursor resin composition of the present invention has been described based on the preferred methods (I) and (I-1).
  • the polyimide precursor resin composition of the present invention has been described above.
  • the method for producing the product is not limited to the above-described method, and is a mixture of at least one selected from the group consisting of tetracarboxylic dianhydrides having two norbornane skeletons in the molecule and derivatives thereof and a diamine.
  • a polyimide precursor resin that is a polymer; a formula in which a phosphorus atom and a carbon atom are directly bonded in a molecule: a tertiary phosphorus compound including a structure represented by CP; a phosphorus atom and a carbon atom are directly bonded in a molecule
  • the polyimide precursor resin composition of the present invention obtained in this way is used as a varnish (resin solution) for polyimide preparation, and the polyimide precursor resin composition is imidized to obtain a polyimide resin.
  • a composition (a composition containing polyimide and the additive compound) can be obtained.
  • the method for obtaining such a polyimide resin composition is not particularly limited, and a known method capable of imidizing the polyimide precursor resin in the polyimide resin composition to form a polyimide can be appropriately adopted. it can.
  • the imidization method is not particularly limited, and a known method capable of imidizing the polyimide precursor resin can be appropriately employed.
  • the polyimide precursor resin is a polyamic acid. , Imidation method described in International Publication No. 2011/099518, imidization method described in International Publication No. 2015/163314, imidation described in International Publication No. 2017/030019 These methods can be employed as appropriate.
  • a so-called chemical imidization method (a polyimide precursor resin (preferably a polyamic acid) in the polyimide precursor resin composition of the present invention described above is converted into an imide using a known imidizing agent). And the polyimide precursor resin composition of the present invention is heated at a temperature of 60 to 450 ° C. (more preferably 80 to 400 ° C.) to give a polyimide precursor in the polyimide precursor resin composition. It is preferable to employ a method of imidizing a body resin (preferably polyamic acid).
  • X 1 represents at least one selected from the group consisting of tetravalent groups represented by the above general formulas (I-1) to (I-3), and R 10 has 6 to 50 carbon atoms.
  • An arylene group of The polyimide which has a repeating unit represented by this can be obtained.
  • X 1 and R 10 in the general formula (I ') has the same meaning as X 1 and R 10 in the formula (I), is the same as the preferable examples.
  • R 10 represents an arylene group having 6 to 50 carbon atoms.
  • the polyimide which has a repeating unit represented by this can be obtained.
  • R ⁇ 10 > in the said general formula (II ') is synonymous with R ⁇ 10 > in the said general formula (II), The suitable thing is also the same.
  • a polyimide resin composition is prepared using such a polyimide precursor resin composition of the present invention as a varnish (resin solution) for polyimide preparation (an imidized product of the polyimide precursor resin composition of the present invention).
  • a varnish (resin solution) for polyimide preparation an imidized product of the polyimide precursor resin composition of the present invention.
  • the polyimide obtained by using the polyimide precursor resin composition of the present invention in this way has, for example, a film for a flexible wiring board, a heat-resistant insulating tape, a wire enamel, a semiconductor protective coating agent, and a semiconductor protective coating.
  • Insulating film for rewiring liquid crystal alignment film, transparent conductive film for organic EL, flexible substrate film, flexible transparent conductive film, transparent conductive film for organic thin film solar cell, transparent conductive film for dye-sensitized solar cell , Flexible gas barrier film, film for touch panel, TFT substrate film for flat panel detector, seamless polyimide belt for copying machine (so-called transfer belt), transparent electrode substrate (transparent electrode substrate for organic EL, transparent electrode substrate for solar cell, electronic paper Transparent electrode substrate), interlayer insulation film, Sensor substrate, image sensor substrate, light emitting diode (LED) reflector (LED illumination reflector: LED reflector), LED illumination cover, LED reflector illumination cover, coverlay film, high ductility composite substrate It is particularly useful as a material for producing resists for semiconductors, lithium ion batteries, organic memory substrates, organic transistor substrates, organic semiconductor substrates, color filter base materials and the like.
  • LED light emitting diode
  • the polyimide obtained by using such a polyimide precursor resin composition of the present invention can have a shape other than the above-described uses, such as a powdered body, various molded bodies, etc. It can also be used as appropriate for automobile parts, aerospace parts, bearing parts, seal materials, bearing parts, gear wheels, valve parts, and the like.
  • the tetracarboxylic dianhydride represented by the general formula (A) is hereinafter referred to as “CpODA”).
  • BNBDA tetracarboxylic dianhydride represented by (hereinafter referred to as “BNBDA”) was synthesized.
  • BzDA tetracarboxylic dianhydride represented by (hereinafter referred to as “BzDA”) was prepared.
  • DNDA tetracarboxylic dianhydride represented by the formula
  • Tetracarboxylic dianhydride CpODA tetracarboxylic dianhydride represented by the above general formula (A) (Synthesis Example 1)
  • BNBDA tetracarboxylic dianhydride represented by the above general formula (B)
  • 6FDA 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • BzDA tetracarboxylic dianhydride represented by the above general formula (C) (Synthesis Example 3)
  • DNDA tetracarboxylic dianhydride represented by the above general formula (D) (Synthesis Example 4)
  • Aromatic diamine DABAN 4,4'-diaminobenzanilide (manufactured by Nippon Pure Chemicals Co., Ltd.)
  • PPD 1,4-paraphenylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • Example 1 Under a nitrogen atmosphere, DABAN 4.54 g (20.00 mmol) was introduced as an aromatic diamine into a 100 mL screw tube, and CpODA 7.69 g (20.00 mmol) was introduced as a tetracarboxylic dianhydride. Next, 48.9 g of dimethylacetamide (N, N-dimethylacetamide) as a solvent was added into the screw tube to obtain a mixed solution. Next, the obtained mixed liquid was stirred for 6 hours under a nitrogen atmosphere at room temperature to obtain a reaction liquid.
  • ⁇ Second step> After separating 5.92 g of the reaction solution prepared in the first step and introducing it into a 10 mL screw tube, 1.99 g of dimethylacetamide (N, N-dimethylacetamide) as a solvent and the additive compound were added to the reaction solution. After adding 0.118 g of triphenylphosphine (tertiary phosphorus compound (A)) and stirring at room temperature for 6 hours, polyamic acid which is a polymer of CpODA and DABAN and tertiary phosphorus compound A polyimide precursor resin composition containing (A) and a solvent (dimethylacetamide) was obtained.
  • triphenylphosphine tertiary phosphorus compound (A)
  • Example 2 Using the reaction solution obtained in the first step of Example 1, 3.07 g of the reaction solution was separated and introduced into a 10 mL screw tube, and then dimethylacetamide (N, N-dimethyl) as a solvent was added to the reaction solution. After adding 1.01 g of acetamide) and 0.029 g of triparatolylphosphine (tertiary phosphorus compound (B)), the mixture is stirred at room temperature for 6 hours, thereby polyamic acid which is a polymer of CpODA and DABAN Then, a polyimide precursor resin composition containing a tertiary phosphorus compound (B) and a solvent (dimethylacetamide) was obtained.
  • Example 3 Under a nitrogen atmosphere, 1.70 g (7.50 mmol) of DABAN and 0.27 g (2.50 mmol) of PPD as aromatic diamine were introduced into a 50 mL screw tube, and 3.84 g (10.10 of CpODA as tetracarboxylic dianhydride). 00 mmol) was introduced. Next, 23.3 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, the obtained mixed liquid was stirred for 6 hours under a nitrogen atmosphere at room temperature to obtain a reaction liquid.
  • dimethylacetamide N, N-dimethylacetamide
  • ⁇ Second step> After separating 3.91 g of the reaction solution prepared in the first step and introducing it into a 10 mL screw tube, 1.30 g of dimethylacetamide (N, N-dimethylacetamide) as a solvent and the additive compound were added to the reaction solution. After adding 0.077 g of triphenylphosphine (tertiary phosphorus compound (A)) and stirring for 6 hours at room temperature, polyamic acid which is a polymer of CpODA, DABAN and PPD, and tertiary A polyimide precursor resin composition containing a phosphorus compound (A) and a solvent (dimethylacetamide) was obtained.
  • triphenylphosphine tertiary phosphorus compound (A)
  • Example 4 Under a nitrogen atmosphere, DABAN 1.14 g (5.00 mmol) and PPD 0.541 g (5.00 mmol) are introduced as aromatic diamines into a 50 mL screw tube, and CpODA 3.84 g (10. 0 mmol) was introduced. Next, 22.1 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, the obtained mixed liquid was stirred for 6 hours under a nitrogen atmosphere at room temperature to obtain a reaction liquid.
  • ⁇ Second step> After 4.41 g of the reaction solution prepared in the first step was introduced into a 10 mL screw tube, 1.48 g of dimethylacetamide (N, N-dimethylacetamide) as a solvent and the additive compound were added to the reaction solution. After adding 0.086 g of triphenylphosphine (tertiary phosphorus compound (A)) and stirring for 6 hours at room temperature, polyamic acid which is a polymer of CpODA, DABAN and PPD, and tertiary A polyimide precursor resin composition containing a phosphorus compound (A) and a solvent (dimethylacetamide) was obtained.
  • triphenylphosphine tertiary phosphorus compound (A)
  • Example 5 ⁇ First step> Under a nitrogen atmosphere, DABAN 1.14 g (5.00 mmol) and TFMB 1.60 g (5.00 mmol) were introduced as aromatic diamines into a 50 mL screw tube, and CpODA 3.84 g (10. 0 mmol) was introduced. Next, 26.3 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, the obtained mixed liquid was stirred for 6 hours under a nitrogen atmosphere at room temperature to obtain a reaction liquid.
  • DABAN 1.14 g (5.00 mmol) and TFMB 1.60 g (5.00 mmol) were introduced as aromatic diamines into a 50 mL screw tube, and CpODA 3.84 g (10. 0 mmol) was introduced. Next, 26.3 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, the obtained mixed liquid was stirred for
  • ⁇ Second step> After separating 3.52 g of the reaction solution prepared in the first step and introducing it into a 10 mL screw tube, 1.28 g of dimethylacetamide (N, N-dimethylacetamide) as a solvent and the additive compound were added to the reaction solution. After adding 0.073 g of triphenylphosphine (tertiary phosphorus compound (A)) and stirring for 6 hours at room temperature, polyamic acid which is a polymer of CpODA, DABAN and TFMB, and tertiary A polyimide precursor resin composition containing a phosphorus compound (A) and a solvent (dimethylacetamide) was obtained.
  • triphenylphosphine tertiary phosphorus compound (A)
  • Example 6 Under a nitrogen atmosphere, DABAN 0.909 g (4.00 mmol) and DDE 0.200 g (1.00 mmol) were introduced as aromatic diamines into a 50 mL screw tube, and BNBDA 1.65 g (5. 00 mmol) was introduced. Next, 11.0 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, the obtained mixed liquid was stirred for 6 hours under a nitrogen atmosphere at room temperature to obtain a reaction liquid.
  • DABAN 0.909 g (4.00 mmol) and DDE 0.200 g (1.00 mmol) were introduced as aromatic diamines into a 50 mL screw tube, and BNBDA 1.65 g (5. 00 mmol) was introduced. Next, 11.0 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, the obtained mixed liquid was stirred for 6 hours under a nitrogen atmosphere
  • ⁇ Second step> After 4.65 g of the reaction liquid prepared in the first step was separated and introduced into a 10 mL screw tube, 1.69 g of dimethylacetamide (N, N-dimethylacetamide) as a solvent and the additive compound were added to the reaction liquid. After adding 0.093 g of triphenylphosphine (tertiary phosphorus compound (A)) and stirring for 6 hours at room temperature, polyamic acid, which is a polymer of BNBDA, DABAN and DDE, and tertiary A polyimide precursor resin composition containing a phosphorus compound (A) and a solvent (dimethylacetamide) was obtained.
  • triphenylphosphine tertiary phosphorus compound (A)
  • Example 7 ⁇ First step> Under a nitrogen atmosphere, DABAN 0.909 g (4.00 mmol) and TFMB 0.320 g (1.00 mmol) were introduced as aromatic diamines into a 50 mL screw tube, and BNBDA 1.65 g (5. 00 mmol) was introduced. Next, 11.5 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, the obtained mixed liquid was stirred for 6 hours under a nitrogen atmosphere at room temperature to obtain a reaction liquid.
  • DABAN 0.909 g (4.00 mmol) and TFMB 0.320 g (1.00 mmol) were introduced as aromatic diamines into a 50 mL screw tube, and BNBDA 1.65 g (5. 00 mmol) was introduced. Next, 11.5 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, the obtained mixed liquid was stirred for
  • ⁇ Second step> 4.65 g of the reaction solution prepared in the first step was separated and introduced into a 10 mL screw tube, and then 1.50 g of dimethylacetamide (N, N-dimethylacetamide) as a solvent and the additive compound were added to the reaction solution. After adding 0.099 g of triphenylphosphine (tertiary phosphorus compound (A)) and stirring for 6 hours at room temperature, polyamic acid which is a polymer of BNBDA, DABAN and TFMB, and tertiary A polyimide precursor resin composition containing a phosphorus compound (A) and a solvent (dimethylacetamide) was obtained.
  • triphenylphosphine tertiary phosphorus compound (A)
  • Example 1 The reaction solution obtained in the first step of Example 1 was used as it was as a polyimide precursor resin composition for comparison.
  • the glass plate on which the coating film has been formed is put into an oven, the temperature condition is set to 70 ° C., and the mixture is allowed to stand for 2 hours in a nitrogen atmosphere. Furthermore, the temperature conditions were changed to the final heating temperatures shown in Table 1 (Example 1 and Comparative Example 1: 370 ° C., Examples 2 to 7 and Comparative Example 2: 350 ° C.) for each type of polyimide precursor resin composition.
  • Table 1 Example 1 and Comparative Example 1: 370 ° C., Examples 2 to 7 and Comparative Example 2: 350 ° C.
  • the polyimide-coated glass thus obtained is taken out of the oven, and the polyimide-coated glass is immersed in hot water at 90 ° C. for 0.5 hours, and the film is peeled off and collected from the glass substrate.
  • a film consisting of As for the film which consists of obtained polyimide, when the color was confirmed visually, it was confirmed that it is colorless and transparent.
  • Table 1 shows the thickness of the obtained film made of polyimide.
  • ⁇ Measurement of linear expansion coefficient (CTE)> A film made of polyimide obtained by using each of the polyimide precursor resin compositions obtained in Examples 1 to 7 and Comparative Examples 1 and 2 as described above (an imidized polyimide precursor resin composition) was obtained. Using each, the linear expansion coefficient of the obtained polyimide was measured as follows. That is, first, a film for measurement having a size of 20 mm in length and 5 mm in width was formed from the polyimide film (in the case of the thickness range shown in Table 1, the thickness is a measured value. The film thickness of each example was used as it was. Next, the obtained film for measurement was vacuum-dried (120 ° C., 1 hour), and then heat-treated at 200 ° C.
  • thermomechanical analyzer (trade name “TMA8311” manufactured by Rigaku) as a measuring device, in a nitrogen atmosphere, in a tensile mode (49 mN), a rate of temperature increase Using the condition of 5 ° C./min, measuring the change in length of the sample from 50 ° C. to 200 ° C., and calculating the average value of the change in length per 1 ° C. in the temperature range of 100 ° C. to 200 ° C. Measured by seeking.
  • Tg glass transition temperature
  • a film made of polyimide obtained by using each of the polyimide precursor resin compositions obtained in Examples 1 to 7 and Comparative Examples 1 and 2 as described above (an imidized polyimide precursor resin composition) was obtained.
  • the value (unit: ° C) of the glass transition temperature (Tg) of the obtained polyimide was measured as follows. That is, a sample having a length of 20 mm and a width of 5 mm cut out from the polyimide film as a measurement sample (the thickness of the sample does not affect the measured value, so the thickness of the film obtained in the example remains the same.
  • thermomechanical analyzer (trade name “TMA8311” manufactured by Rigaku) as a measuring device, under a nitrogen atmosphere, in a tensile mode (49 mN), at a temperature rising rate of 5 ° C./min.
  • the TMA curve is obtained by measurement and the glass transition temperature of the polyimide constituting the film obtained in each example is obtained by extrapolating the curve before and after the inflection point of the TMA curve resulting from the glass transition.
  • the value (unit: ° C.) of (Tg) was determined. The obtained results are shown in Table 1.
  • the 5% weight loss temperature of polyimide was determined by the films made of polyimide obtained by using the polyimide precursor resin compositions obtained in Examples 1 to 4, Example 6 and Comparative Examples 1 and 2, respectively (polyimide precursor).
  • a sample of about 10 mg was prepared using each of the imidized resin compositions), put in an aluminum sample pan, and a thermogravimetric analyzer (trade name “TG” manufactured by SII Nano Technology Co., Ltd.) as a measuring device. / DTA7200 ”), the scanning temperature is set from 40 ° C. to 550 ° C. in a nitrogen gas atmosphere, and heating is performed at a temperature rising rate of 10 ° C./min, and the weight of the sample used is reduced by 5%. It was determined by measuring the temperature.
  • the total light transmittance (unit:%) and yellowness (YI) of the polyimide resin composition constituting the film obtained in each example and the like were respectively determined by performing measurement using “total SD6000”. In this measurement, the total light transmittance was measured with a trade name “Haze Meter NDH-5000” manufactured by Nippon Denshoku Industries Co., Ltd. Yellowness was measured. Further, the total light transmittance is obtained by measuring in accordance with JIS K7361-1 (issued in 1997), and the yellowness (YI) is measured in accordance with ASTM E313-05 (issued in 2005). Was determined by The obtained results are shown in Table 1.
  • Table 1 also shows the types of acid dianhydride, diamine, and additive compound used in each example.
  • the numerical values in parentheses indicate the molar ratio of the two types of components with respect to those in which two types of components are described in one frame.
  • Example 8 ⁇ First step> Under a nitrogen atmosphere, m-Tol 2.12 g (10.0 mmol) was introduced as an aromatic diamine and CpODA 3.84 g (10.0 mmol) was introduced as a tetracarboxylic dianhydride into a 50 mL screw tube. Next, 24.9 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, the obtained mixed liquid was stirred for 6 hours under a nitrogen atmosphere at room temperature to obtain a reaction liquid.
  • dimethylacetamide N, N-dimethylacetamide
  • ⁇ Second step> 5.67 g of the reaction solution prepared in the first step was separated and introduced into a 10 mL screw tube, and then 0.083 g of triphenylphosphine (tertiary phosphorus compound (A)) as the additive compound was added to the reaction solution. After that, the polyimide precursor containing polyamic acid, which is a polymer of CpODA and m-Tol, tertiary phosphorus compound (A), and solvent (dimethylacetamide) is stirred for 6 hours at room temperature. A body resin composition was obtained.
  • triphenylphosphine tertiary phosphorus compound (A)
  • the final heating temperature was set to 350 ° C., and the above-mentioned “Examples 1 to 7 and Comparative Examples 1 to 3” were obtained.
  • a film made of polyimide film thickness: 14 ⁇ m
  • glass transition temperature glass transition temperature
  • total light transmittance total light transmittance
  • YI toughness
  • a polyimide having higher toughness can be efficiently obtained while maintaining various physical properties such as glass transition temperature, total light transmittance and YI at a sufficiently high level. It was also found that it can be reliably manufactured.
  • Example 9 First step> Under a nitrogen atmosphere, 3.20 g (10.0 mmol) of TFMB as an aromatic diamine was introduced into a 50 mL screw tube, and 1.92 g (5.00 mmol) of CpODA and 2.22 g of 6FDA as a tetracarboxylic dianhydride (5. 00 mmol) was introduced. Next, 29.5 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, the obtained mixed liquid was stirred for 6 hours under a nitrogen atmosphere at room temperature to obtain a reaction liquid.
  • dimethylacetamide N, N-dimethylacetamide
  • Example 9 using the polyimide precursor resin composition obtained in Example 9, the final heating temperature was set to 350 ° C., and the above-mentioned “Examples 1 to 7 and Comparative Examples 1 to 3” were obtained.
  • a film (film thickness: 7 ⁇ m) made of polyimide was prepared by adopting the same method as that adopted for the “evaluation of characteristics of the polyimide precursor resin composition”, a glass transition temperature, a 5% weight reduction temperature. The total light transmittance, YI and toughness were measured. As a result of such measurement, the polyimide obtained using the polyimide precursor resin composition obtained in Example 9 has a glass transition temperature of 360 ° C.
  • the polyimide precursor resin composition of the present invention a polyimide having higher toughness can be efficiently obtained while maintaining various physical properties such as glass transition temperature, total light transmittance and YI at a sufficiently high level. It was also found that it can be reliably manufactured.
  • ⁇ Second step> After separating 4.7316 g of the reaction solution prepared in the first step and introducing it into a 10 mL screw tube, 0.0941 g of tetramethylammonium bromide (quaternary amine compound (A)) was added to the reaction solution and added.
  • the polyimide precursor resin composition containing polyamic acid which is a polymer of CpODA and TFMB, a quaternary amine compound (A), and a solvent (dimethylacetamide) by stirring for 6 hours at room temperature.
  • the polyimide obtained in Examples 1 to 9 and Comparative Example 1 was used except that the final heating temperature was 350 ° C.
  • a film made of polyimide (film thickness: 10 ⁇ m) is prepared, and glass transition temperature, total light transmittance, YI and Toughness was measured.
  • the polyimide obtained using the polyimide precursor resin composition obtained in Example 10 has a glass transition temperature of 355 ° C., a total light transmittance of 90%, and YI.
  • the toughness evaluation result was A.
  • a polyimide having higher toughness can be efficiently obtained while maintaining various physical properties such as glass transition temperature, total light transmittance and YI at a sufficiently high level. It was also found that it can be reliably manufactured.
  • Example 11 First, a reaction solution was obtained by adopting the same process as the first process employed in Example 1. Next, 5.21 g of the obtained reaction liquid was separated and introduced into a 10 mL screw tube, and then 1.76 g of dimethylacetamide (N, N-dimethylacetamide) as a solvent and benzyltrimethyl as an additive compound were added to the reaction liquid. After adding 104 mg of phenylphosphonium bromide (quaternary phosphorus compound (A)) and stirring for 6 hours at room temperature, polyamic acid which is a polymer of CpODA and DABAN and quaternary phosphorus compound (A ) And a solvent (dimethylacetamide), a polyimide precursor resin composition was obtained.
  • N N-dimethylacetamide
  • benzyltrimethyl as an additive compound
  • the final heating temperature was set to 370 ° C., except that “obtained in the above-mentioned“ Examples 1 to 7 and Comparative Examples 1 to 3 ”.
  • a film made of polyimide (film thickness: 27 ⁇ m) was prepared, and the linear expansion coefficient, total light transmittance, YI and toughness were measured.
  • the polyimide obtained using the polyimide precursor resin composition obtained in Example 11 has a linear expansion coefficient of 7 ppm / K, a total light transmittance of 87%, YI was 3.1, and the evaluation result of toughness was A.
  • a polyimide having higher toughness can be efficiently obtained while maintaining various physical properties such as linear expansion coefficient, total light transmittance, and YI to a sufficiently high level. It was also found that it can be reliably manufactured.
  • Example 12 ⁇ First step> Under a nitrogen atmosphere, 9.8 g of dimethylacetamide (N, N-dimethylacetamide) and 1.00 g (5.00 mmol) of DDE as an aromatic diamine were introduced into a 50 mL screw tube and heated to 80 ° C. Next, 2.0 g (5.00 mmol) of BzDA as tetracarboxylic dianhydride was added into the screw tube, and 3.5 g of dimethylacetamide (N, N-dimethylacetamide) was then applied to the wall surface of the screw tube. BzDA was added while washing and pouring to obtain a mixed solution. Then, when the mixed solution was stirred at 80 ° C. for 3.5 hours under a nitrogen atmosphere, a uniform solution was obtained. Next, the resulting solution was cooled to room temperature, and further stirred for 1 day to obtain a reaction solution.
  • BzDA tetracarboxylic dianhydride
  • ⁇ Second step> After 2.75 g of the reaction solution prepared in the first step was separated and introduced into a 10 mL screw tube, 55.0 mg of triphenylphosphine (tertiary phosphorus compound (A)) as the additive compound was added, 55.0 mg of triphenylphosphine (tertiary phosphorus compound (A)) as the additive compound was added, The polyimide precursor resin composition containing the polyamic acid which is a polymer of BzDA and DDE, a tertiary phosphorus compound (A), and a solvent (dimethylacetamide) is obtained by stirring for 6 hours under the temperature conditions of It was.
  • triphenylphosphine tertiary phosphorus compound (A)
  • the atmosphere when heating in the oven was changed to a reduced pressure atmosphere instead of a nitrogen atmosphere (a glass plate with a coating film formed thereon). After being put in the oven, it is heated in a reduced pressure atmosphere from the stage of standing at 70 ° C. for 2 hours to the stage of standing at the final heating temperature for 30 minutes), and the final heating temperature is 350 ° C.
  • a film made of polyimide by adopting the same method as that adopted for the above-mentioned “evaluation of characteristics of polyimide precursor resin compositions obtained in Examples 1 to 7 and Comparative Examples 1 to 3” ( Film thickness: 18 ⁇ m) was prepared, and the glass transition temperature, 5% weight loss temperature, total light transmittance, YI and toughness were measured.
  • the polyimide obtained using the polyimide precursor resin composition obtained in Example 12 has a glass transition temperature of 317 ° C. and a 5% weight loss temperature of 462 ° C., The total light transmittance was 89%, YI was 3.5, and the toughness evaluation result was A.
  • the toughness is increased while maintaining various physical properties such as glass transition temperature, 5% weight loss temperature, total light transmittance and YI to a sufficiently high level. It has been found that it is possible to efficiently and reliably produce a polyimide having
  • Example 13 ⁇ First step> Under a nitrogen atmosphere, 1.00 g (5.00 mmol) of DDE as an aromatic diamine was introduced into a 50 mL screw tube, and 1.51 g (5.00 mmol) of DNDA was introduced as a tetracarboxylic dianhydride. Next, 10.0 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, the obtained mixed solution was stirred for 1 day under a nitrogen atmosphere at room temperature to obtain a reaction solution.
  • dimethylacetamide N, N-dimethylacetamide
  • the atmosphere during heating in the oven was changed to a reduced pressure atmosphere instead of a nitrogen atmosphere (a glass plate on which a coating film was formed). After being put in the oven, it is heated in a reduced pressure atmosphere from the stage of standing at 70 ° C. for 2 hours to the stage of standing at the final heating temperature for 30 minutes), and the final heating temperature is 350 ° C.
  • a film made of polyimide by adopting the same method as that adopted for the above-mentioned “evaluation of characteristics of polyimide precursor resin compositions obtained in Examples 1 to 7 and Comparative Examples 1 to 3” ( Film thickness: 17 ⁇ m) was prepared, and the glass transition temperature, 5% weight loss temperature, total light transmittance, YI and toughness were measured.
  • the polyimide obtained using the polyimide precursor resin composition obtained in Example 13 has a glass transition temperature of 367 ° C. and a 5% weight loss temperature of 435 ° C., The total light transmittance was 89%, YI was 1.2, and the toughness evaluation result was A.
  • the toughness is increased while maintaining various physical properties such as glass transition temperature, 5% weight loss temperature, total light transmittance and YI to a sufficiently high level. It has been found that it is possible to efficiently and reliably produce a polyimide having
  • a reduced pressure atmosphere (a glass plate on which a coating film was formed) After being put in the oven, it is heated in a reduced pressure atmosphere from the stage of standing at 70 ° C. for 2 hours to the stage of standing at the final heating temperature for 30 minutes), and the final heating temperature is 350 ° C.
  • a film made of polyimide by adopting the same method as that adopted for the above-mentioned “evaluation of characteristics of polyimide precursor resin compositions obtained in Examples 1 to 7 and Comparative Examples 1 to 3” ( Film thickness: 15 ⁇ m) was prepared, and the linear expansion coefficient, glass transition temperature, 5% weight loss temperature, total light transmittance, YI and toughness were measured.
  • the polyimide obtained using the polyimide precursor resin composition obtained in Example 14 has a linear expansion coefficient of 27 ppm / K, a glass transition temperature of 278 ° C., 5 % Weight reduction temperature was 415 ° C., total light transmittance was 91%, YI was 1.0, and the toughness evaluation result was A.
  • polyimide precursor resin composition of the present invention various physical properties such as a linear expansion coefficient, a glass transition temperature, a 5% weight loss temperature, a total light transmittance, and a YI are sufficiently advanced. It has been found that a polyimide having higher toughness can be produced efficiently and reliably.
  • a polyimide having higher toughness is efficiently and reliably produced while maintaining characteristics such as a linear expansion coefficient, a glass transition temperature, and a total light transmittance at a sufficiently high level. It is possible to provide a polyimide precursor resin composition that can be used.
  • the polyimide precursor resin composition of the present invention produces products made of various polyimides such as various films, automotive parts, aerospace parts, bearing parts, seal materials, bearing parts, gear wheels and valve parts. It is particularly useful as a material for the purpose.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A polyimide precursor resin composition which contains: a polyimide precursor resin which is a polymer of a diamine and at least one substance that is selected from the group consisting of tetracarboxylic acid dianhydrides having two norbornane skeletons in each molecule and derivatives of the tetracarboxylic acid dianhydrides; at least one additive compound that is selected from the group consisting of tertiary phosphorus compounds containing a structure which is represented by formula C-P, wherein a phosphorus atom and a carbon atom are directly bonded to each other, in each molecule, quaternary phosphorus compounds containing a structure which is represented by formula C-P, wherein a phosphorus atom and a carbon atom are directly bonded to each other, in each molecule, and quaternary amine compounds; and a solvent.

Description

ポリイミド前駆体樹脂組成物Polyimide precursor resin composition
 本発明は、ポリイミド前駆体樹脂組成物に関する。 The present invention relates to a polyimide precursor resin composition.
 有機エレクトロルミネッセンス素子を用いたディスプレイや液晶ディスプレイ等のディスプレイ機器の分野等においては、基板等に用いる材料として、ガラスのように光透過性が高くかつ十分に高度な耐熱性を有する材料の出現が求められてきた。そして、近年では、ガラス代替用途等に用いる材料としてポリイミドが着目され、そのようなポリイミドを製造するために様々なポリイミド前駆体樹脂組成物が開示されている。 In the field of display devices such as displays using organic electroluminescence elements and liquid crystal displays, materials such as glass that have high light transmission and sufficiently high heat resistance have emerged as materials used for substrates and the like. It has been sought. In recent years, polyimide has attracted attention as a material used for glass substitute applications and the like, and various polyimide precursor resin compositions have been disclosed for producing such polyimide.
 例えば、国際公開第2011/099518号(特許文献1)においては、特定の一般式で記載される繰り返し単位を有するポリアミド酸及び溶媒を含む反応液が開示されている。このような特許文献1に記載のような反応液(組成物)を利用して得られるポリイミドは、光透過性が高くかつ十分に高度な耐熱性を有するものであり、様々な分野に応用可能なものであった。 For example, International Publication No. 2011/099518 (Patent Document 1) discloses a reaction solution containing a polyamic acid having a repeating unit described by a specific general formula and a solvent. Polyimide obtained by using such a reaction liquid (composition) as described in Patent Document 1 has high light transmittance and sufficiently high heat resistance, and can be applied to various fields. It was something.
国際公開第2011/099518号公報International Publication No. 2011/099518
 しかしながら、上記特許文献1に記載のような反応液(組成物)は、線膨張係数、ガラス転移温度及び全光線透過率といった特性を十分に高度な水準に維持しつつ、より高い靭性を有するポリイミドを効率よくかつ確実に製造するといった観点では必ずしも十分なものではなかった。 However, the reaction liquid (composition) described in Patent Document 1 is a polyimide having higher toughness while maintaining characteristics such as a linear expansion coefficient, a glass transition temperature, and a total light transmittance at a sufficiently high level. Is not always sufficient from the viewpoint of efficiently and reliably producing the material.
 本発明は、前記従来技術の有する課題に鑑みてなされたものであり、線膨張係数、ガラス転移温度及び全光線透過率といった特性を十分に高度な水準に維持しつつ、より高い靭性を有するポリイミドを効率よくかつ確実に製造することが可能なポリイミド前駆体樹脂組成物を提供することを目的とする。 The present invention has been made in view of the problems of the prior art, and is a polyimide having higher toughness while maintaining characteristics such as linear expansion coefficient, glass transition temperature and total light transmittance at a sufficiently high level. It aims at providing the polyimide precursor resin composition which can manufacture efficiently and reliably.
 本発明者らは、前記目的を達成すべく鋭意研究を重ねた結果、ポリイミド前駆体樹脂組成物を、分子内に2つのノルボルナン骨格を有するテトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種とジアミンとの重合体であるポリイミド前駆体樹脂と;分子内にリン原子と炭素原子が直接結合する式:C-Pで表される構造を含む3級リン化合物、分子内にリン原子と炭素原子が直接結合する式:C-Pで表される構造を含む4級リン化合物、及び4級アミン化合物からなる群から選択される少なくとも1種の添加化合物と;溶媒と;を含有するものとすることにより、これを用いて、線膨張係数、ガラス転移温度及び全光線透過率といった特性を十分に高度な水準に維持しつつ、より高い靭性を有するポリイミドを効率よくかつ確実に製造することが可能となることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have selected a polyimide precursor resin composition from the group consisting of tetracarboxylic dianhydrides having two norbornane skeletons in the molecule and derivatives thereof. A polyimide precursor resin which is a polymer of at least one selected from diamine and a diamine; a tertiary phosphorus compound containing a structure represented by the formula: CP in which a phosphorus atom and a carbon atom are directly bonded in the molecule; A compound in which a phosphorus atom and a carbon atom are directly bonded to each other: at least one additive compound selected from the group consisting of a quaternary phosphorus compound containing a structure represented by CP and a quaternary amine compound; a solvent; By using this, a polyimid having higher toughness can be used while maintaining properties such as the linear expansion coefficient, glass transition temperature and total light transmittance at a sufficiently high level. It found that it is possible to manufacture efficiently and reliably, and completed the present invention.
 すなわち、本発明のポリイミド前駆体樹脂組成物は、
 分子内に2つのノルボルナン骨格を有するテトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種とジアミンとの重合体であるポリイミド前駆体樹脂と;
 分子内にリン原子と炭素原子が直接結合する式:C-Pで表される構造を含む3級リン化合物、分子内にリン原子と炭素原子が直接結合する式:C-Pで表される構造を含む4級リン化合物、及び4級アミン化合物からなる群から選択される少なくとも1種の添加化合物と;
 溶媒と;
を含有するものである。
That is, the polyimide precursor resin composition of the present invention is
A polyimide precursor resin which is a polymer of at least one selected from the group consisting of tetracarboxylic dianhydrides having two norbornane skeletons in the molecule and derivatives thereof;
Formula in which phosphorus atom and carbon atom are directly bonded in the molecule: tertiary phosphorus compound including structure represented by CP, Formula in which phosphorus atom and carbon atom are directly bonded in molecule: Represented by CP At least one additive compound selected from the group consisting of a quaternary phosphorus compound containing a structure and a quaternary amine compound;
With a solvent;
It contains.
 上記本発明のポリイミド前駆体樹脂組成物においては、前記分子内に2つのノルボルナン骨格を有するテトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種が、下記一般式(1): In the polyimide precursor resin composition of the present invention, at least one selected from the group consisting of tetracarboxylic dianhydrides having two norbornane skeletons in the molecule and derivatives thereof is represented by the following general formula (1): :
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[式(1)中、R、R、Rはそれぞれ独立に水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは0~12の整数を示す。]
で表される化合物;下記一般式(2):
[In the formula (1), R 1 , R 2 and R 3 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom, and n represents 0 to 12 Indicates an integer. ]
A compound represented by the following general formula (2):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式(2)中、Aは置換基を有していてもよくかつ芳香環を形成する炭素原子の数が6~30である2価の芳香族基よりなる群から選択される1種を示し、Rはそれぞれ独立に水素原子及び炭素数1~10のアルキル基よりなる群から選択される1種を示し、Rはそれぞれ独立に水素原子及び炭素数1~10のアルキル基よりなる群から選択される1種を示す。]
で表される化合物;下記一般式(3):
[In the formula (2), A represents one kind selected from the group consisting of a divalent aromatic group which may have a substituent and has 6 to 30 carbon atoms to form an aromatic ring. Each of R 4 independently represents one selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms, and each R 5 independently represents a hydrogen atom and an alkyl group having 1 to 10 carbon atoms. One species selected from the group is shown. ]
A compound represented by the following general formula (3):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[式(3)中、Rはそれぞれ独立に水素原子、炭素数1~10のアルキル基、水酸基及びニトロ基よりなる群から選択される1種を示すか、又は、同一の炭素原子に結合している2つのRが一緒になってメチリデン基を形成していてもよく、Rはそれぞれ独立に水素原子及び炭素数1~10のアルキル基よりなる群から選択される1種を示す。]
で表される化合物;下記一般式(4):
[In formula (3), R 6 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group and a nitro group, or bonded to the same carbon atom. Two R 6 groups together may form a methylidene group, and each R 7 independently represents one selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms. . ]
A compound represented by the following general formula (4):
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
で表される化合物;及びそれらの化合物(一般式(1)~(4)で表される化合物)の誘導体;からなる群から選択される少なくとも1種であることが好ましい。 And at least one selected from the group consisting of these compounds (derivatives of the compounds represented by the general formulas (1) to (4)).
 また、上記本発明のポリイミド前駆体樹脂組成物においては、前記ポリイミド前駆体樹脂が、下記一般式(I): In the polyimide precursor resin composition of the present invention, the polyimide precursor resin is represented by the following general formula (I):
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[式(I)中、Xは、下記一般式(I-1): [In the formula (I), X 1 represents the following general formula (I-1):
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[式(I-1)中、R、R、Rはそれぞれ独立に水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは0~12の整数を示し、記号*1~*4は該記号の付された結合手がそれぞれ式(I)中のXに結合している4本の結合手のうちのいずれかであることを示す。]
で表される4価の基;下記一般式(I-2):
[In Formula (I-1), R 1 , R 2 and R 3 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom, and n is 0 Represents an integer of ~ 12, and the symbols * 1 to * 4 are each one of the four bonds that are bonded to X1 in the formula (I). Indicates. ]
A tetravalent group represented by the following general formula (I-2):
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[式(I-2)中、Aは置換基を有していてもよくかつ芳香環を形成する炭素原子の数が6~30である2価の芳香族基よりなる群から選択される1種を示し、Rはそれぞれ独立に水素原子及び炭素数1~10のアルキル基よりなる群から選択される1種を示し、Rはそれぞれ独立に水素原子及び炭素数1~10のアルキル基よりなる群から選択される1種を示し、記号*1~*4は該記号の付された結合手がそれぞれ式(I)中のXに結合している4本の結合手のうちのいずれかであることを示す。]
で表される4価の基;下記一般式(I-3):
[In Formula (I-2), A is 1 selected from the group consisting of a divalent aromatic group which may have a substituent and has 6 to 30 carbon atoms to form an aromatic ring. R 4 represents one type independently selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms, and R 5 represents each independently a hydrogen atom and an alkyl group having 1 to 10 carbon atoms. Each of the bonds selected from the group consisting of four bonds, each of which is bonded to X 1 in the formula (I). Indicates either. ]
A tetravalent group represented by the following general formula (I-3):
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
[式(I-3)中、Rはそれぞれ独立に水素原子、炭素数1~10のアルキル基、水酸基及びニトロ基よりなる群から選択される1種を示すか、又は、同一の炭素原子に結合している2つのRが一緒になってメチリデン基を形成していてもよく、Rはそれぞれ独立に水素原子及び炭素数1~10のアルキル基よりなる群から選択される1種を示し、記号*1~*4は該記号の付された結合手がそれぞれ式(I)中のXに結合している4本の結合手のうちのいずれかであることを示す。]
で表される4価の基からなる群から選択される少なくとも1種を示し、
 R10は炭素数6~50のアリーレン基を示し、
 Y及びYは、それぞれ独立に、水素原子、炭素数1~6のアルキル基及び炭素数3~9のアルキルシリル基よりなる群から選択される1種を示す。]
で表される繰り返し単位;及び下記一般式(II)~(III):
[In the formula (I-3), each R 6 independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group and a nitro group, or the same carbon atom. And two R 6 bonded to each other may form a methylidene group, and each R 7 is independently selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms. Symbols * 1 to * 4 indicate that each of the bonds to which the symbols are attached is any one of four bonds that are bonded to X 1 in the formula (I). ]
At least one selected from the group consisting of tetravalent groups represented by:
R 10 represents an arylene group having 6 to 50 carbon atoms,
Y 1 and Y 2 each independently represent one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, and an alkylsilyl group having 3 to 9 carbon atoms. ]
And the following general formulas (II) to (III):
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[式(II)~(III)中、R10は炭素数6~50のアリーレン基を示し、Y及びYはそれぞれ独立に、水素原子、炭素数1~6のアルキル基及び炭素数3~9のアルキルシリル基よりなる群から選択される1種を示す。]
で表される繰り返し単位;からなる群から選択される少なくとも1種の繰り返し単位を有することが好ましい。
[In the formulas (II) to (III), R 10 represents an arylene group having 6 to 50 carbon atoms, and Y 1 and Y 2 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, and a carbon number 3 1 type selected from the group consisting of ˜9 alkylsilyl groups. ]
It is preferable to have at least one repeating unit selected from the group consisting of:
 さらに、上記本発明のポリイミド前駆体樹脂組成物においては、前記添加化合物がトリフェニルホスフィンであることが好ましい。 Furthermore, in the polyimide precursor resin composition of the present invention, the additive compound is preferably triphenylphosphine.
 本発明によれば、線膨張係数、ガラス転移温度及び全光線透過率といった特性を十分に高度な水準に維持しつつ、より高い靭性を有するポリイミドを効率よくかつ確実に製造することが可能なポリイミド前駆体樹脂組成物を提供することが可能となる。 According to the present invention, a polyimide capable of efficiently and reliably producing a polyimide having higher toughness while maintaining characteristics such as a linear expansion coefficient, a glass transition temperature and a total light transmittance at a sufficiently high level. It becomes possible to provide a precursor resin composition.
 以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail on the basis of preferred embodiments thereof.
 [ポリイミド前駆体樹脂組成物]
 本発明のポリイミド前駆体樹脂組成物は、
 分子内に2つのノルボルナン骨格を有するテトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種とジアミンとの重合体であるポリイミド前駆体樹脂(第一成分)と;
 分子内にリン原子と炭素原子が直接結合する式:C-Pで表される構造を含む3級リン化合物、分子内にリン原子と炭素原子が直接結合する式:C-Pで表される構造を含む4級リン化合物、及び4級アミン化合物からなる群から選択される少なくとも1種の添加化合物(第二成分)と;
 溶媒(第三成分)と;
を含有するものである。以下、各成分を分けて説明する。
[Polyimide precursor resin composition]
The polyimide precursor resin composition of the present invention is
A polyimide precursor resin (first component) which is a polymer of at least one selected from the group consisting of tetracarboxylic dianhydrides having two norbornane skeletons in the molecule and derivatives thereof;
Formula in which phosphorus atom and carbon atom are directly bonded in the molecule: tertiary phosphorus compound including structure represented by CP, Formula in which phosphorus atom and carbon atom are directly bonded in molecule: Represented by CP At least one additive compound (second component) selected from the group consisting of a quaternary phosphorus compound containing a structure and a quaternary amine compound;
A solvent (third component);
It contains. Hereinafter, each component will be described separately.
 <ポリイミド前駆体樹脂組成物(第一成分)>
 本発明にかかるポリイミド前駆体樹脂組成物(第一成分)は、分子内に2つのノルボルナン骨格を有するテトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種とジアミンとの重合体である。ここで、重合体のモノマー成分として利用されるテトラカルボン酸二無水物及びその誘導体、並びに、ジアミンについて分けて説明する。
<Polyimide precursor resin composition (first component)>
The polyimide precursor resin composition (first component) according to the present invention is a compound comprising at least one selected from the group consisting of tetracarboxylic dianhydrides having two norbornane skeletons in the molecule and derivatives thereof and a diamine. It is a coalescence. Here, the tetracarboxylic dianhydride and its derivative used as a monomer component of the polymer, and the diamine will be described separately.
 〈テトラカルボン酸二無水物及びその誘導体〉
 前記重合体のモノマー成分として利用するテトラカルボン酸二無水物は、分子内に2つのノルボルナン骨格を有するものである。ここで、ノルボルナン骨格とは、下記一般式(i):
<Tetracarboxylic dianhydride and its derivatives>
The tetracarboxylic dianhydride used as the monomer component of the polymer has two norbornane skeletons in the molecule. Here, the norbornane skeleton means the following general formula (i):
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
で表される構造を有していればよく、かかる骨格を形成する各炭素原子には水素原子、水素原子以外の原子、水素原子以外の置換基等が結合していてもよい。このように、本発明にかかるテトラカルボン酸二無水物は、上記一般式(i)で表される構造部分(骨格)を分子内に2つ有するものであればよく、その構造は特に制限されない。また、テトラカルボン酸二無水物の誘導体としては、前記テトラカルボン酸二無水物を用いて得られるものであればよく、特に制限されるものではなく、例えば、テトラカルボン酸二無水物を変性して得られるジエステルジカルボン酸やジエステルジカルボン酸ジクロライドなどを挙げることができる。 And a carbon atom that forms such a skeleton may be bonded to a hydrogen atom, an atom other than a hydrogen atom, a substituent other than a hydrogen atom, and the like. As described above, the tetracarboxylic dianhydride according to the present invention may have two structural parts (skeletons) represented by the general formula (i) in the molecule, and the structure is not particularly limited. . The tetracarboxylic dianhydride derivative is not particularly limited as long as it is obtained using the tetracarboxylic dianhydride. For example, the tetracarboxylic dianhydride may be modified by modifying the tetracarboxylic dianhydride. And diester dicarboxylic acid and diester dicarboxylic acid dichloride obtained.
 このようなテトラカルボン酸二無水物及びその誘導体としては、当該成分を利用して得られるポリイミドの透明性、及び、耐熱性の観点から、中でも、上記一般式(1)~(4)で表される化合物及びそれらの誘導体が好ましく、上記一般式(1)~(3)で表される化合物及びそれらの誘導体がより好ましい。以下、本発明にかかるテトラカルボン酸二無水物として好適に利用可能な上記一般式(1)~(4)で表される化合物及びそれらの誘導体を分けて説明する。 Such tetracarboxylic dianhydrides and derivatives thereof are represented by the above general formulas (1) to (4) from the viewpoints of transparency and heat resistance of polyimides obtained using the components. And the compounds represented by the general formulas (1) to (3) and the derivatives thereof are more preferable. Hereinafter, the compounds represented by the above general formulas (1) to (4) that can be suitably used as the tetracarboxylic dianhydride according to the present invention and their derivatives will be described separately.
  (一般式(1)で表される化合物)
 上記一般式(1)で表される化合物に関して、上記一般式(1)中のR、R、Rはそれぞれ独立に水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは0~12の整数を示す。
(Compound represented by the general formula (1))
Regarding the compound represented by the general formula (1), R 1 , R 2 and R 3 in the general formula (1) are each independently a group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom. And n represents an integer of 0 to 12.
 このような一般式(1)中のR、R、Rとして選択され得るアルキル基は、炭素数が1~10のアルキル基である。このような炭素数が10を超えるとガラス転移温度が低下し十分に高度な耐熱性が達成できなくなる。また、このようなR、R、Rとして選択され得るアルキル基の炭素数としては、精製がより容易となるという観点から、1~6であることが好ましく、1~5であることがより好ましく、1~4であることが更に好ましく、1~3であることが特に好ましい。また、このようなR、R、Rとして選択され得るアルキル基は直鎖状であっても分岐鎖状であってもよい。更に、このようなアルキル基としては精製の容易さの観点から、メチル基、エチル基がより好ましい。 The alkyl group that can be selected as R 1 , R 2 , or R 3 in the general formula (1) is an alkyl group having 1 to 10 carbon atoms. When the number of carbon atoms exceeds 10, the glass transition temperature is lowered and a sufficiently high heat resistance cannot be achieved. Further, the number of carbon atoms of the alkyl group that can be selected as R 1 , R 2 , or R 3 is preferably 1 to 6 and is preferably 1 to 5 from the viewpoint of easier purification. Is more preferably 1 to 4, particularly preferably 1 to 3. Further, such an alkyl group that can be selected as R 1 , R 2 , or R 3 may be linear or branched. Further, such an alkyl group is more preferably a methyl group or an ethyl group from the viewpoint of ease of purification.
 また、前記一般式(1)中のR、R、Rとしては、ポリイミドを製造した際により高度な耐熱性が得られるという観点から、それぞれ独立に、水素原子又は炭素数1~10のアルキル基であることがより好ましく、中でも、原料の入手が容易であることや精製がより容易であるという観点から、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であることがより好ましく、水素原子又はメチル基であることが特に好ましい。また、このような式中の複数のR、R、Rは精製の容易さ等の観点から、同一のものであることが特に好ましい。 In addition, R 1 , R 2 , and R 3 in the general formula (1) are each independently a hydrogen atom or a carbon number of 1 to 10 from the viewpoint that higher heat resistance can be obtained when a polyimide is produced. In particular, from the viewpoints of easy availability of raw materials and easier purification, each independently represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, or an isopropyl group. It is more preferably a group, and particularly preferably a hydrogen atom or a methyl group. Moreover, it is especially preferable that several R < 1 >, R < 2 >, R < 3 > in such a formula is the same from viewpoints, such as the ease of refinement | purification.
 また、前記一般式(1)中のnは0~12の整数を示す。このようなnの値が前記上限を超えると、精製が困難になる。また、このような一般式(1)中のnの数値範囲の上限値は、より精製が容易となるといった観点から、5であることがより好ましく、3であることが特に好ましい。また、このような一般式(1)中のnの数値範囲の下限値は、原料化合物の安定性の観点から、1であることがより好ましく、2であることが特に好ましい。このように、一般式(1)中のnとしては、2~3の整数であることが特に好ましい。 In the general formula (1), n represents an integer of 0 to 12. When such a value of n exceeds the upper limit, purification becomes difficult. Further, the upper limit value of the numerical value range of n in the general formula (1) is more preferably 5 and particularly preferably 3 from the viewpoint of easier purification. Further, the lower limit of the numerical range of n in the general formula (1) is more preferably 1 and particularly preferably 2 from the viewpoint of the stability of the raw material compound. Thus, n in the general formula (1) is particularly preferably an integer of 2 to 3.
 なお、このような一般式(1)で表されるテトラカルボン酸二無水物を製造するための方法としては、特に制限されず、公知の方法を適宜採用することができ、例えば、国際公開第2011/099517号に記載の方法や国際公開第2011/099518号に記載の方法等を採用してもよい。 The method for producing the tetracarboxylic dianhydride represented by the general formula (1) is not particularly limited, and a known method can be appropriately employed. For example, International Publication No. You may employ | adopt the method as described in 2011/099517, the method as described in international publication 2011/099518, etc.
  (一般式(2)で表される化合物)
 上記一般式(2)で表される化合物に関して、上記一般式(2)中、Aは置換基を有していてもよくかつ芳香環を形成する炭素原子の数が6~30である2価の芳香族基よりなる群から選択される1種を示し、Rはそれぞれ独立に水素原子及び炭素数1~10のアルキル基よりなる群から選択される1種を示し、Rはそれぞれ独立に水素原子及び炭素数1~10のアルキル基よりなる群から選択される1種を示す。
(Compound represented by the general formula (2))
Regarding the compound represented by the general formula (2), in the general formula (2), A is a divalent group which may have a substituent and has 6 to 30 carbon atoms to form an aromatic ring. R 4 represents one selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms, and R 5 represents each independently selected from the group consisting of the following aromatic groups: Represents one selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms.
 このような一般式(2)中のAは、前述のように、置換基を有していてもよい2価の芳香族基であり、該芳香族基中に含まれる芳香環を形成する炭素の数(なお、ここにいう「芳香環を形成する炭素の数」とは、その芳香族基が炭素を含む置換基(炭化水素基など)を有している場合、その置換基中の炭素の数は含まず、芳香族基中の芳香環が有する炭素の数のみをいう。例えば、2-エチル-1,4-フェニレン基の場合、芳香環を形成する炭素の数は6となる。)が6~30のものである。このように、一般式(1)中のAは、置換基を有していてもよく、かつ、炭素数が6~30の芳香環を有する2価の基(2価の芳香族基)である。このような芳香環を形成する炭素の数が前記上限を超えると、かかる繰り返し単位を有するポリイミド前駆体樹脂を利用してポリイミドを調製した場合に、そのポリイミドの着色を十分に抑制することが困難となる傾向にある。また、透明性及び精製の容易さの観点からは、前記2価の芳香族基の芳香環を形成する炭素の数は、6~18であることがより好ましく、6~12であることが更に好ましい。 As described above, A in the general formula (2) is a divalent aromatic group which may have a substituent, and is a carbon that forms an aromatic ring contained in the aromatic group. (“The number of carbons forming the aromatic ring” herein means that when the aromatic group has a substituent containing carbon (such as a hydrocarbon group), the carbon in the substituent is The number of carbon atoms in the aromatic ring in the aromatic group is not included, and for example, in the case of a 2-ethyl-1,4-phenylene group, the number of carbon atoms forming the aromatic ring is 6. ) Is from 6 to 30. Thus, A in the general formula (1) is a divalent group (divalent aromatic group) which may have a substituent and has an aromatic ring having 6 to 30 carbon atoms. is there. When the number of carbons forming such an aromatic ring exceeds the above upper limit, it is difficult to sufficiently suppress coloring of the polyimide when a polyimide is prepared using a polyimide precursor resin having such a repeating unit. It tends to be. From the viewpoint of transparency and ease of purification, the number of carbon atoms forming the aromatic ring of the divalent aromatic group is more preferably 6-18, and further preferably 6-12. preferable.
 また、このような2価の芳香族基としては、上記炭素の数の条件を満たすものであればよく、特に制限されないが、例えば、ベンゼン、ナフタレン、ターフェニル、アントラセン、フェナントレン、トリフェニレン、ピレン、クリセン、ビフェニル、ターフェニル、クオターフェニル、キンクフェニル等の芳香族系の化合物から2つの水素原子が脱離した残基(なお、このような残基としては、脱離する水素原子の位置は特に制限されないが、例えば、1,4-フェニレン基、2,6-ナフチレン基、2,7-ナフチレン基、4,4’-ビフェニレン基、9,10-アントラセニレン基等が挙げられる。);及び該残基中の少なくとも1つの水素原子が置換基と置換した基(例えば、2,5-ジメチル-1,4-フェニレン基、2,3,5,6-テトラメチル-1,4-フェニレン基)等を適宜利用することができる。なお、このような残基において、前述のように、脱離する水素原子の位置は特に制限されず、例えば、前記残基がフェニレン基である場合においてはオルト位、メタ位、パラ位のいずれの位置であってもよい。 Such a divalent aromatic group is not particularly limited as long as it satisfies the above condition of the number of carbons. For example, benzene, naphthalene, terphenyl, anthracene, phenanthrene, triphenylene, pyrene, Residues from which two hydrogen atoms are eliminated from an aromatic compound such as chrysene, biphenyl, terphenyl, quaterphenyl, kinkphenyl, etc. Although not particularly limited, examples thereof include 1,4-phenylene group, 2,6-naphthylene group, 2,7-naphthylene group, 4,4′-biphenylene group, 9,10-anthracenylene group, and the like. Groups in which at least one hydrogen atom in the residue is substituted with a substituent (for example, 2,5-dimethyl-1,4-phenylene group, 2,3,5 6-tetramethyl-1,4-phenylene group) and the like can be used as appropriate. In such a residue, as described above, the position of the leaving hydrogen atom is not particularly limited. For example, when the residue is a phenylene group, any of the ortho, meta, and para positions is used. It may be the position.
 このような2価の芳香族基としては、ポリイミドを調製した場合に、そのポリイミドの溶媒への溶解性がより優れたものとなり、より高度な加工性が得られるといった観点から、置換基を有していてもよいフェニレン基、置換基を有していてもよいビフェニレン基、置換基を有していてもよいナフチレン基、置換基を有していてもよいアントラセニレン基、置換基を有していてもよいターフェニレン基が好ましい。すなわち、このような2価の芳香族基としては、それぞれ置換基を有していてもよい、フェニレン基、ビフェニレン基、ナフチレン基、アントラセニレン基、ターフェニレン基が好ましい。また、このような2価の芳香族基の中でも、上記観点でより高い効果が得られることから、それぞれ置換基を有していてもよい、フェニレン基、ビフェニレン基、ナフチレン基がより好ましく、それぞれ置換基を有していてもよい、フェニレン基、ビフェニレン基が更に好ましく、置換基を有していてもよいフェニレン基が最も好ましい。 Such a divalent aromatic group has a substituent from the viewpoint that when a polyimide is prepared, the solubility of the polyimide in a solvent becomes better and higher workability is obtained. A phenylene group which may have a substituent, a biphenylene group which may have a substituent, a naphthylene group which may have a substituent, an anthracenylene group which may have a substituent, and a substituent. An optional terphenylene group is preferred. That is, such a divalent aromatic group is preferably a phenylene group, a biphenylene group, a naphthylene group, an anthracenylene group, or a terphenylene group, each of which may have a substituent. Further, among such divalent aromatic groups, a higher effect can be obtained from the above viewpoint, and thus a phenylene group, a biphenylene group, and a naphthylene group, each of which may have a substituent, are more preferable. A phenylene group and a biphenylene group which may have a substituent are more preferable, and a phenylene group which may have a substituent is most preferable.
 また、一般式(2)中のAにおいて、前記2価の芳香族基が有していてもよい置換基としては、特に制限されず、例えば、アルキル基、アルコキシ基、ハロゲン原子等が挙げられる。このような2価の芳香族基が有してよい置換基の中でも、ポリイミドを製造した際にポリイミドの溶媒への溶解性がより優れたものとなり、より高度な加工性が得られるといった観点から、炭素数が1~10のアルキル基、炭素数が1~10のアルコキシ基がより好ましい。このような置換基として好適なアルキル基及びアルコキシ基の炭素数が10を超えると、ポリイミドのモノマーとして用いた場合に、得られるポリイミドの耐熱性が低下する傾向にある。また、このような置換基として好適なアルキル基及びアルコキシ基の炭素数は、ポリイミドを製造した際に、より高度な耐熱性が得られるという観点から、1~6であることが好ましく、1~5であることがより好ましく、1~4であることが更に好ましく、1~3であることが特に好ましい。また、このような置換基として選択され得るアルキル基及びアルコキシ基はそれぞれ直鎖状であっても分岐鎖状であってもよい。 In A in general formula (2), the substituent that the divalent aromatic group may have is not particularly limited, and examples thereof include an alkyl group, an alkoxy group, and a halogen atom. . Among the substituents that such a divalent aromatic group may have, from the viewpoint that when a polyimide is produced, the solubility of the polyimide in the solvent becomes better and higher workability can be obtained. An alkyl group having 1 to 10 carbon atoms and an alkoxy group having 1 to 10 carbon atoms are more preferable. When the number of carbon atoms of the alkyl group and alkoxy group suitable as such a substituent exceeds 10, when used as a polyimide monomer, the heat resistance of the resulting polyimide tends to decrease. In addition, the number of carbon atoms of an alkyl group and an alkoxy group suitable as such a substituent is preferably 1 to 6 from the viewpoint of obtaining higher heat resistance when a polyimide is produced. 5 is more preferable, 1 to 4 is further preferable, and 1 to 3 is particularly preferable. Moreover, the alkyl group and alkoxy group which can be selected as such a substituent may be linear or branched, respectively.
 また、このような2価の芳香族基の中でも、ポリイミドを製造した際にポリイミドの溶媒への溶解性がより優れたものとなり、より高度な加工性が得られるといった観点からは、それぞれ置換基を有していてもよい、フェニレン基、ビフェニレン基、ナフチレン基、アントラセニレン基、ターフェニレン基であることが好ましく、それぞれ置換基を有していてもよい、フェニレン基、ビフェニレン基、ナフチレン基であることがより好ましく、それぞれ置換基を有していてもよい、フェニレン基、ビフェニレン基であることが更に好ましく、最も好ましいのは、置換基を有していてもよいフェニレン基である。 Further, among these divalent aromatic groups, when a polyimide is produced, the solubility of the polyimide in the solvent becomes better, and from the viewpoint that a higher degree of workability can be obtained, the substituents are each A phenylene group, a biphenylene group, a naphthylene group, an anthracenylene group, and a terphenylene group, each of which may have a substituent, a phenylene group, a biphenylene group, or a naphthylene group. More preferred are a phenylene group and a biphenylene group, each of which may have a substituent, and most preferred is a phenylene group which may have a substituent.
 さらに、このような2価の芳香族基の中でも、より高度な耐熱性が得られるといった観点からは、それぞれ置換基を有していてもよい、フェニレン基、ビフェニレン基、ナフチレン基、アントラセニレン基、ターフェニレン基であることが好ましく、それぞれ置換基を有していてもよい、フェニレン基、ビフェニレン基、ナフチレン基、ターフェニレン基であることがより好ましく、それぞれ置換基を有していてもよい、フェニレン基、ビフェニレン基、ナフチレン基であることが更に好ましく、最も好ましいのは、置換基を有していてもよいフェニレン基である。 Furthermore, among such divalent aromatic groups, from the viewpoint of obtaining higher heat resistance, a phenylene group, a biphenylene group, a naphthylene group, an anthracenylene group, which may each have a substituent, It is preferably a terphenylene group, each of which may have a substituent, more preferably a phenylene group, a biphenylene group, a naphthylene group or a terphenylene group, each of which may have a substituent, A phenylene group, a biphenylene group, and a naphthylene group are more preferable, and a phenylene group that may have a substituent is most preferable.
 また、一般式(2)中のAにおいて、前記2価の芳香族基が有してよい置換基としては、特に制限されず、例えば、アルキル基、アルコキシ基、ハロゲン原子等が挙げられる。このような2価の芳香族基が有してよい置換基の中でも、ポリイミドを調製した場合に、そのポリイミドの溶媒への溶解性がより優れたものとなり、より高度な加工性が得られるといった観点から、炭素数が1~10のアルキル基、炭素数が1~10のアルコキシ基がより好ましい。このような置換基として好適なアルキル基及びアルコキシ基の炭素数が10を超えると、ポリイミドを調製した場合に、そのポリイミドの耐熱性が低下する傾向にある。また、このような置換基として好適なアルキル基及びアルコキシ基の炭素数は、より高度な耐熱性が得られるという観点から、1~6であることが好ましく、1~5であることがより好ましく、1~4であることが更に好ましく、1~3であることが特に好ましい。また、このような置換基として選択され得るアルキル基及びアルコキシ基はそれぞれ、直鎖状であっても分岐鎖状であってもよい。 In A in general formula (2), the substituent that the divalent aromatic group may have is not particularly limited, and examples thereof include an alkyl group, an alkoxy group, and a halogen atom. Among such substituents that the divalent aromatic group may have, when a polyimide is prepared, the solubility of the polyimide in a solvent becomes more excellent, and higher processability is obtained. From the viewpoint, an alkyl group having 1 to 10 carbon atoms and an alkoxy group having 1 to 10 carbon atoms are more preferable. When the number of carbon atoms of the alkyl group and alkoxy group suitable as such a substituent exceeds 10, when the polyimide is prepared, the heat resistance of the polyimide tends to decrease. In addition, the number of carbon atoms of the alkyl group and alkoxy group suitable as such a substituent is preferably 1 to 6, more preferably 1 to 5, from the viewpoint of obtaining higher heat resistance. 1 to 4 is more preferable, and 1 to 3 is particularly preferable. In addition, each of the alkyl group and alkoxy group that can be selected as such a substituent may be linear or branched.
 また、前記一般式(2)中のRはそれぞれ独立に水素原子及び炭素数1~10のアルキル基よりなる群から選択される1種である。このようなRとして選択され得るアルキル基の炭素数が10を超えると、十分に高度な耐熱性が達成できなくなる。また、このようなRとして選択され得るアルキル基としては、より高度な耐熱性が得られるという観点から、1~6であることが好ましく、1~5であることがより好ましく、1~4であることが更に好ましく、1~3であることが特に好ましい。また、このようなRとして選択され得るアルキル基は直鎖状であっても分岐鎖状であってもよい。 In the general formula (2), each R 4 is independently one selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms. When the number of carbon atoms of the alkyl group that can be selected as R 4 exceeds 10, sufficiently high heat resistance cannot be achieved. In addition, the alkyl group that can be selected as R 4 is preferably 1 to 6, more preferably 1 to 5, and more preferably 1 to 4 from the viewpoint of obtaining higher heat resistance. Is more preferable, and 1 to 3 is particularly preferable. Such an alkyl group that can be selected as R 4 may be linear or branched.
 また、前記一般式(2)中のRは、より高度な耐熱性が得られること、原料の入手が容易であること、精製がより容易であること、等といった観点から、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基であることがより好ましく、水素原子、メチル基であることが特に好ましい。また、このような式(2)中のRは、それぞれ、同一のものであってもあるいは異なるものであってもよいが、精製の容易さ等の観点からは、同一のものであることが好ましい。また、前記一般式(2)中の複数のRは、いずれも水素原子であることが特に好ましい。このように、前記一般式(2)で表される繰り返し単位においてRで表される置換基がいずれも水素原子である場合には、より高度な耐熱性が得られる傾向にある。 In addition, R 4 in the general formula (2) is independently from the viewpoints that higher heat resistance is obtained, that raw materials are easily obtained, that purification is easier, and the like. A hydrogen atom, a methyl group, an ethyl group, an n-propyl group, and an isopropyl group are more preferable, and a hydrogen atom and a methyl group are particularly preferable. In addition, R 4 in the formula (2) may be the same or different from each other, but they are the same from the viewpoint of ease of purification. Is preferred. In addition, it is particularly preferable that a plurality of R 4 in the general formula (2) are all hydrogen atoms. Thus, when all the substituents represented by R 4 in the repeating unit represented by the general formula (2) are hydrogen atoms, higher heat resistance tends to be obtained.
 また、前記一般式(2)中のRとして選択され得るアルキル基は、炭素数が1~10のアルキル基である。このような炭素数が10を超えると十分に高度な耐熱性が達成できなくなる。また、このようなRとして選択され得るアルキル基の炭素数としては、精製がより容易となるという観点から、1~6であることが好ましく、1~5であることがより好ましく、1~4であることが更に好ましく、1~3であることが特に好ましい。また、このようなRとして選択され得るアルキル基は直鎖状であっても分岐鎖状であってもよい。更に、このようなアルキル基としては精製の容易さの観点から、メチル基、エチル基がより好ましい。 The alkyl group that can be selected as R 5 in the general formula (2) is an alkyl group having 1 to 10 carbon atoms. When the number of carbon atoms exceeds 10, sufficiently high heat resistance cannot be achieved. In addition, the number of carbon atoms of the alkyl group that can be selected as R 5 is preferably 1 to 6, more preferably 1 to 5, more preferably 1 to 5, from the viewpoint of easier purification. 4 is more preferable, and 1 to 3 is particularly preferable. Such an alkyl group that can be selected as R 5 may be linear or branched. Further, such an alkyl group is more preferably a methyl group or an ethyl group from the viewpoint of ease of purification.
 前記一般式(2)中のRとしては、ポリイミドを製造した際に、より高度な耐熱性が得られること、原料の入手が容易であること、精製がより容易であること、等といった観点から、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であることがより好ましく、水素原子又はメチル基であることが特に好ましい。また、このような式中の複数のRは、それぞれ、同一のものであってもあるいは異なるものであってもよいが、精製の容易さ等の観点からは、同一のものであることが好ましい。 R 5 in the general formula (2) is a viewpoint that, when a polyimide is produced, higher heat resistance is obtained, raw materials are easily obtained, purification is easier, and the like. Therefore, each independently is preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group, and particularly preferably a hydrogen atom or a methyl group. In addition, a plurality of R 5 in such a formula may be the same or different from each other, but may be the same from the viewpoint of ease of purification and the like. preferable.
 このような一般式(2)で表される化合物を製造するための方法としては、特に制限されず、公知の方法を適宜採用することができ、例えば、国際公開第2015/163314号に記載の方法等を採用してもよい。 The method for producing such a compound represented by the general formula (2) is not particularly limited, and a known method can be appropriately employed. For example, as described in International Publication No. 2015/163314 A method or the like may be adopted.
  (一般式(3)で表される化合物)
 上記一般式(3)で表される化合物に関して、上記一般式(3)中、Rはそれぞれ独立に水素原子、炭素数1~10のアルキル基、水酸基及びニトロ基よりなる群から選択される1種を示すか、又は、同一の炭素原子に結合している2つのRが一緒になってメチリデン基を形成していてもよく、Rはそれぞれ独立に水素原子及び炭素数1~10のアルキル基よりなる群から選択される1種を示す。
(Compound represented by the general formula (3))
Regarding the compound represented by the general formula (3), in the general formula (3), each R 6 is independently selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group, and a nitro group. One R or two R 6 bonded to the same carbon atom may form a methylidene group, and each R 7 independently represents a hydrogen atom and a carbon number of 1 to 10 1 type selected from the group consisting of the following alkyl groups.
 このような一般式(3)中のRはそれぞれ独立に水素原子、炭素数1~10のアルキル基、水酸基及びニトロ基よりなる群から選択される1種を示すか、又は、同一の炭素原子に結合している2つのRが一緒になってメチリデン基を形成する。 R 6 in the general formula (3) is independently selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group and a nitro group, or the same carbon. Two R 6 bonded to an atom together form a methylidene group.
 このような一般式(3)中のRとして選択され得るアルキル基は、炭素数が1~10のアルキル基である。このような炭素数が10を超えると十分に高度な耐熱性が達成できなくなる。また、このようなRとして選択され得るアルキル基の炭素数としては、精製がより容易となるという観点から、1~6であることが好ましく、1~5であることがより好ましく、1~4であることが更に好ましく、1~3であることが特に好ましい。また、このようなRとして選択され得るアルキル基は直鎖状であっても分岐鎖状であってもよい。更に、このようなアルキル基としては精製の容易さの観点から、メチル基、エチル基がより好ましい。 The alkyl group that can be selected as R 6 in the general formula (3) is an alkyl group having 1 to 10 carbon atoms. When the number of carbon atoms exceeds 10, sufficiently high heat resistance cannot be achieved. In addition, the number of carbon atoms of the alkyl group that can be selected as R 6 is preferably 1 to 6, more preferably 1 to 5, more preferably 1 to 5, from the viewpoint of easier purification. 4 is more preferable, and 1 to 3 is particularly preferable. Such an alkyl group that can be selected as R 6 may be linear or branched. Further, such an alkyl group is more preferably a methyl group or an ethyl group from the viewpoint of ease of purification.
 また、このような一般式(3)中の複数のRのうち、同一の炭素原子に結合している2つのRは、それらが一緒になってメチリデン基(=CH)を形成していてもよい。すなわち、上記一般式(3)中の同一の炭素原子に結合している2つのRが一緒になって、該炭素原子(ノルボルナン環構造を形成する炭素原子のうち、Rが2つ結合している炭素原子)に二重結合によりメチリデン基(メチレン基)として結合していてもよい。 Moreover, the general formula (3) a plurality of R 6 in the two R 6 are attached to the same carbon atom may form them together methylidene group (= CH 2) It may be. That is, two R 6 bonded to the same carbon atom in the general formula (3) are combined to form the carbon atom (of the carbon atoms forming the norbornane ring structure, R 6 is bonded to two May be bonded as a methylidene group (methylene group) by a double bond.
 前記一般式(3)中の複数のRとしては、より高度な耐熱性が得られること、原料の入手(調製)がより容易であること、精製がより容易であること、等といった観点から、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であることがより好ましく、水素原子又はメチル基であることが特に好ましい。また、このような式中の複数のRは、それぞれ、同一のものであってもあるいは異なるものであってもよいが、精製の容易さ等の観点からは、同一のものであることが好ましい。 As the plurality of R 6 in the general formula (3), it is possible to obtain higher heat resistance, easier acquisition (preparation) of raw materials, easier purification, and the like. Independently, a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group is more preferable, and a hydrogen atom or a methyl group is particularly preferable. In addition, the plurality of R 6 in such a formula may be the same or different from each other, but may be the same from the viewpoint of ease of purification and the like. preferable.
 また、前記一般式(3)中のRはそれぞれ独立に水素原子及び炭素数1~10のアルキル基よりなる群から選択される1種である。このようなRとして選択され得るアルキル基の炭素数が10を超えると、重合体の耐熱性が低下する。また、このようなRとして選択され得るアルキル基としては、より高度な耐熱性が得られるという観点から、1~6であることが好ましく、1~5であることがより好ましく、1~4であることが更に好ましく、1~3であることが特に好ましい。また、このようなRとして選択され得るアルキル基は直鎖状であっても分岐鎖状であってもよい。 In the general formula (3), R 7 is each independently one selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms. When the number of carbon atoms of the alkyl group that can be selected as R 7 exceeds 10, the heat resistance of the polymer decreases. The alkyl group that can be selected as R 7 is preferably 1 to 6, more preferably 1 to 5, more preferably 1 to 4 from the viewpoint of obtaining higher heat resistance. Is more preferable, and 1 to 3 is particularly preferable. Further, such an alkyl group that can be selected as R 7 may be linear or branched.
 また、前記一般式(3)中のRは、重合体を製造した際により高度な耐熱性が得られること、原料の入手が容易であること、精製がより容易であること、等といった観点から、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基であることがより好ましく、水素原子、メチル基であることが特に好ましい。また、このような式(3)中のRは、それぞれ、同一のものであってもあるいは異なるものであってもよいが、精製の容易さ等の観点からは、同一のものであることが好ましい。 Further, R 7 in the general formula (3) is a viewpoint that a higher degree of heat resistance can be obtained when the polymer is produced, that raw materials are easily obtained, and that purification is easier. Therefore, independently of each other, a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, and an isopropyl group are more preferable, and a hydrogen atom and a methyl group are particularly preferable. In addition, R 7 in the formula (3) may be the same or different from each other, but they are the same from the viewpoint of ease of purification and the like. Is preferred.
 また、前記一般式(3)中の複数のR及びRは、いずれも水素原子であることが特に好ましい。このように、前記一般式(3)で表される繰り返し単位において、R及びRで表される置換基がいずれも水素原子である場合には、当該化合物の収率が向上し、より高度な耐熱性が得られる傾向にある。 Moreover, it is particularly preferable that all of the plurality of R 6 and R 7 in the general formula (3) are hydrogen atoms. Thus, in the repeating unit represented by the general formula (3), when both the substituents represented by R 6 and R 7 are hydrogen atoms, the yield of the compound is improved, and more High heat resistance tends to be obtained.
 このような一般式(3)で表される化合物を製造するための方法としては、特に制限されず、公知の方法を適宜採用することができ、例えば、国際公開第2017/030019号に記載の方法等を採用してもよい。 A method for producing such a compound represented by the general formula (3) is not particularly limited, and a known method can be appropriately employed. For example, as described in International Publication No. 2017/030019 A method or the like may be adopted.
  (一般式(4)で表される化合物)
 このような一般式(4)で表される化合物としては、特に制限されず、市販品を適宜利用してもよい。また、このような一般式(4)で表される化合物を製造するための方法としては、特に制限されず、公知の方法を適宜採用することができる。
(Compound represented by the general formula (4))
The compound represented by the general formula (4) is not particularly limited, and a commercially available product may be appropriately used. Moreover, it does not restrict | limit especially as a method for manufacturing the compound represented by such General formula (4), A well-known method is employable suitably.
 (上記一般式(1)~(4)で表される化合物の誘導体)
 上記一般式(1)~(4)で表される化合物の誘導体としては、特に制限されないが、上記一般式(1)~(4)で表される化合物の変性物であるジエステルジカルボン酸、及び、ジエステルジカルボン酸ジクロライドがより好ましい。すなわち、上記一般式(1)~(4)で表される化合物の誘導体を利用する場合、上記一般式(1)~(4)で表される化合物を、対応するジエステルジカルボン酸、または、ジエステルジカルボン酸ジクロライドに変性してから使用することが好ましい。
(Derivatives of compounds represented by the above general formulas (1) to (4))
The derivatives of the compounds represented by the general formulas (1) to (4) are not particularly limited, but a diester dicarboxylic acid that is a modified product of the compounds represented by the general formulas (1) to (4), and Diester dicarboxylic acid dichloride is more preferable. That is, when the derivatives of the compounds represented by the general formulas (1) to (4) are used, the compounds represented by the general formulas (1) to (4) are converted into the corresponding diester dicarboxylic acid or diester. It is preferably used after being modified to dicarboxylic acid dichloride.
 このような誘導体の調製方法としては、特に制限されず、公知の方法を適宜採用することができる。例えば、上記一般式(1)~(4)で表される化合物の誘導体として好適なジエステルジカルボン酸を調製する方法としては、上記一般式(1)~(4)で表される化合物を任意のアルコールと反応させることで、対応するジエステルジカルボン酸を得る方法等を採用することができる。なお、このようにして得られたジエステルジカルボン酸を、縮合剤存在下でジアミンと溶液重合させることにより、ポリイミド前駆体を得ることができる。また、上記一般式(1)~(4)で表される化合物の誘導体として好適なジエステルジカルボン酸ジクロライドを調製する方法としては、例えば、上記一般式(1)~(4)で表される化合物を任意のアルコールと反応させることで、ジエステルジカルボン酸を得た後に、塩素化試薬(チオニルクロライド、オキサリルクロライドなど)と反応させることで、対応するジエステルジカルボン酸ジクロライドを得る方法等を採用することができる。なお、このようなジエステルジカルボン酸ジクロライドとジアミンとを-20℃~100℃(より好ましくは5~80℃)の範囲で1~72時間撹拌することで、ポリイミド前駆体を得ることができる。このようにして得られたポリイミド前駆体は、上記一般式(1)~(4)で表される化合物をそのまま用いる場合よりも、より保存安定性が優れた傾向にある。 The method for preparing such a derivative is not particularly limited, and a known method can be appropriately employed. For example, as a method for preparing a diester dicarboxylic acid suitable as a derivative of the compounds represented by the general formulas (1) to (4), the compounds represented by the general formulas (1) to (4) may be arbitrarily selected. A method of obtaining the corresponding diester dicarboxylic acid by reacting with alcohol can be employed. In addition, a polyimide precursor can be obtained by solution-polymerizing the diester dicarboxylic acid thus obtained with a diamine in the presence of a condensing agent. Examples of a method for preparing a diester dicarboxylic acid dichloride suitable as a derivative of the compounds represented by the general formulas (1) to (4) include, for example, the compounds represented by the general formulas (1) to (4). A method of obtaining a corresponding diester dicarboxylic acid dichloride by reacting with an arbitrary alcohol to obtain a diester dicarboxylic acid and then reacting with a chlorinating reagent (thionyl chloride, oxalyl chloride, etc.), etc. it can. A polyimide precursor can be obtained by stirring such a diester dicarboxylic acid dichloride and diamine in the range of −20 ° C. to 100 ° C. (more preferably 5 to 80 ° C.) for 1 to 72 hours. The polyimide precursor thus obtained tends to have better storage stability than when the compounds represented by the general formulas (1) to (4) are used as they are.
 〈ジアミンについて〉
 このようなジアミンとしては、ポリイミドの製造に利用することが可能なものであればよく、特に制限されず、脂肪族ジアミンであってもあるいは芳香族ジアミンであってもよい。このようなジアミンとしては、耐熱性、及び、重合方法の簡便さの観点から、芳香族ジアミンが好ましく、中でも、下記一般式(ii):
   HYN-R10-NYH    (ii)
[式(ii)中、R10は炭素数6~50のアリーレン基を示し、Y及びYはそれぞれ独立に、水素原子及び炭素数3~9のアルキルシリル基よりなる群から選択される1種を示す。]
で表される芳香族ジアミンがより好ましい。
<About diamine>
Such a diamine is not particularly limited as long as it can be used for the production of polyimide, and may be an aliphatic diamine or an aromatic diamine. As such a diamine, an aromatic diamine is preferable from the viewpoint of heat resistance and simplicity of the polymerization method, and among them, the following general formula (ii):
HY 1 N—R 10 —NY 2 H (ii)
[In the formula (ii), R 10 represents an arylene group having 6 to 50 carbon atoms, and Y 1 and Y 2 are each independently selected from the group consisting of a hydrogen atom and an alkylsilyl group having 3 to 9 carbon atoms. One type is shown. ]
The aromatic diamine represented by these is more preferable.
 このような一般式(ii)中のR10として選択され得るアリーレン基は、炭素数が6~50のものであるが、このようなアリール基の炭素数は6~40であることが好ましく、6~30であることがより好ましく、12~20であることが更に好ましい。このような炭素数が前記下限未満では得られるポリイミドを調製した場合に耐熱性が低下する傾向にあり、他方、前記上限を超えると、ポリイミドを調製した場合に、そのポリイミドの溶媒に対する溶解性が低下する傾向にある。 The arylene group that can be selected as R 10 in the general formula (ii) has 6 to 50 carbon atoms, and the aryl group preferably has 6 to 40 carbon atoms, It is more preferably 6 to 30, and further preferably 12 to 20. If the number of carbon atoms is less than the lower limit, the heat resistance tends to decrease when the resulting polyimide is prepared.On the other hand, if the upper limit is exceeded, the polyimide has a solubility in a solvent when prepared. It tends to decrease.
 このような一般式(ii)中のR10としては、ポリイミドを調製した場合により高度な耐熱性と機械的強度が得られるといった観点から、下記一般式(a)~(d): R 10 in the general formula (ii) is represented by the following general formulas (a) to (d): from the viewpoint that higher heat resistance and mechanical strength can be obtained when a polyimide is prepared.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
[式(c)中、R11は、水素原子、フッ素原子、メチル基、エチル基、水酸基、及びトリフルオロメチル基よりなる群から選択される1種を示し、式(d)中、Qは、9,9-フルオレニリデン基;式:-O-、-S-、-CO-、-CONH-、-SO-、-C(CF-、-O-C-O-、-C(CH-、-CH-、-O-C-C(CH-C-O-、-O-C-C(CF-C-O-、-O-C-SO-C-O-、-C(CH-C-C(CH-、-O-C-C-O-、-CONH-C-NHCO-、-NHCO-C-CONH-、-C-及び、-O-C-O-、-COO-、-OCO-で表される基;並びに、下記一般式(e): [In the formula (c), R 11 represents one selected from the group consisting of a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, a hydroxyl group, and a trifluoromethyl group, and in the formula (d), Q is , 9,9-fluorenylidene group; formula: —O—, —S—, —CO—, —CONH—, —SO 2 —, —C (CF 3 ) 2 —, —O—C 6 H 4 —O— , —C (CH 3 ) 2 —, —CH 2 —, —O—C 6 H 4 —C (CH 3 ) 2 —C 6 H 4 —O—, —O—C 6 H 4 —C (CF 3 ) 2 -C 6 H 4 -O-, -O-C 6 H 4 -SO 2 -C 6 H 4 -O-, -C (CH 3 ) 2 -C 6 H 4 -C (CH 3 ) 2- , -O-C 6 H 4 -C 6 H 4 -O -, - CONH-C 6 H 4 -NHCO -, - NHCO-C 6 H 4 -CONH -, - C 6 H 4 - and, -O- C Groups represented by 6 H 4 —O—, —COO—, —OCO—; and the following general formula (e):
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(式(e)中、Raはそれぞれ独立に炭素数1~10のアルキル基、フェニル基及びトリル基のうちのいずれか1種を示し、yは1~18の整数を示す。)
で表される基;からなる群から選択される1種を示す。]
で表される基のうちの少なくとも1種であることが好ましい。
(In the formula (e), each R a independently represents any one of an alkyl group having 1 to 10 carbon atoms, a phenyl group and a tolyl group, and y represents an integer of 1 to 18)
1 group selected from the group consisting of: ]
It is preferable that it is at least 1 sort (s) of group represented by these.
 このような一般式(c)中のR11としては、耐熱性の観点から、水素原子、フッ素原子、メチル基又はエチル基がより好ましく、水素原子が特に好ましい。さらに、一般式(c)中のR11としては、線膨張係数の観点からは、メチル基、水酸基、又、トリフルオロメチル基であることがより好ましい。 R 11 in the general formula (c) is more preferably a hydrogen atom, a fluorine atom, a methyl group or an ethyl group, and particularly preferably a hydrogen atom, from the viewpoint of heat resistance. Furthermore, R 11 in the general formula (c) is more preferably a methyl group, a hydroxyl group, or a trifluoromethyl group from the viewpoint of the linear expansion coefficient.
 また、上記一般式(d)中のQとして選択され得る上記一般式(e)で表される基において、Raはそれぞれ独立に炭素数1~10のアルキル基、フェニル基及びトリル基のうちのいずれか1種である。このようなアルキル基の炭素数が前記上限を超えると、ポリイミドを調製した場合に、そのポリイミドの耐熱性や透明性が低下する傾向にある。このようなRaとしては、メチル基、エチル基、プロピル基、イソプロピル基、フェニル基、トリル基であることが好ましく、メチル基、エチル基であることがより好ましく、メチル基が更に好ましい。また、上記一般式(e)中のyは1~15の整数を示し、3~12であることがより好ましく、5~10であることが更に好ましい。なお、yが前記下限未満では機械的強度が低下する傾向にあり、他方、前記上限を超えるとポリイミドを調製した場合に、そのポリイミドの耐熱性や透明性が低下する傾向にある。 In the group represented by the general formula (e) that can be selected as Q in the general formula (d), each R a is independently an alkyl group having 1 to 10 carbon atoms, a phenyl group, or a tolyl group. Any one of these. When the carbon number of such an alkyl group exceeds the upper limit, when a polyimide is prepared, the heat resistance and transparency of the polyimide tend to decrease. Such Ra is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a phenyl group, or a tolyl group, more preferably a methyl group or an ethyl group, and even more preferably a methyl group. In the general formula (e), y represents an integer of 1 to 15, more preferably 3 to 12, and still more preferably 5 to 10. When y is less than the lower limit, the mechanical strength tends to decrease. On the other hand, when the upper limit is exceeded, when polyimide is prepared, the heat resistance and transparency of the polyimide tend to decrease.
 また、上記一般式(d)中のQとしては、耐熱性と透明性と機械的強度とを十分な水準でよりバランスよく有する硬化物を得ることが可能となるといった観点から、9,9-フルオレニリデン基、又は、式:-CONH-、-O-C-O-、-O-、-C(CH-、-O-C-SO-C-O-、-CH-、-O-C-C-O-、-O-C-C(CH-C-O-、-SO-、-OCO-、又は、-COO-で表される基が好ましく、9,9-フルオレニリデン基、又は、式:-CONH-、-CH-、-O-C-O-、-O-C-C-O-、-SO-、-OCO-,-COO-、若しくは-O-で表される基が特に好ましく、9,9-フルオレニリデン基、又は、式:-CONH-、-SO-、-OCO-、-COO-、-CH-又は-O-で表される基が最も好ましい。さらに、上記一般式(d)中のQとしては、接着性やレーザ剥離性の観点からは、上記一般式(e)で表される基であることが好ましく、線膨張係数と耐熱性の観点からは、式:-OCO-、-COO-、-CONH-で表される基が好ましい。 Further, Q in the general formula (d) is 9, 9- from the viewpoint that a cured product having a sufficient balance of heat resistance, transparency, and mechanical strength can be obtained. Fluorenylidene group or formula: —CONH—, —O—C 6 H 4 —O—, —O—, —C (CH 3 ) 2 —, —O—C 6 H 4 —SO 2 —C 6 H 4 —O—, —CH 2 —, —O—C 6 H 4 —C 6 H 4 —O—, —O—C 6 H 4 —C (CH 3 ) 2 —C 6 H 4 —O—, —SO A group represented by 2 —, —OCO—, or —COO— is preferable, and a 9,9-fluorenylidene group or a formula: —CONH—, —CH 2 —, —O—C 6 H 4 —O— A group represented by —O—C 6 H 4 —C 6 H 4 —O—, —SO 2 —, —OCO—, —COO—, or —O— A 9,9-fluorenylidene group or a group represented by the formula: —CONH—, —SO 2 —, —OCO—, —COO—, —CH 2 — or —O— is most preferred. Furthermore, Q in the general formula (d) is preferably a group represented by the general formula (e) from the viewpoints of adhesiveness and laser peelability, and has a linear expansion coefficient and heat resistance. Is preferably a group represented by the formula: —OCO—, —COO— or —CONH—.
 また、このようなR10としては、耐熱性と透明性と機械的強度とを十分な水準でよりバランスよく有するポリイミドを得ることが可能となるといった観点から、4,4’-ジアミノベンズアニリド(DABAN)、4,4’-ジアミノジフェニルエーテル(DDE)、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、9,9’-ビス(4-アミノフェニル)フルオレン(FDA)、p-ジアミノベンゼン(PPD)、2,2’-ジメチル-4,4’-ジアミノビフェニル(別名:m-トリジン)、4,4’-ジフェニルジアミノメタン(DDM)、4-アミノフェニル―4-アミノ安息香酸(BAAB)、4,4’-ビス(4-アミノベンズアミド)-3,3’-ジヒドロキシビフェニル(BABB)、3,3’-ジアミノジフェニルスルホン(3,3’-DDS)及び、4,4’-ジアミノジフェニルスルホン(4,4’-DDS)からなる群から選択される少なくとも1種の芳香族ジアミンから2つのアミノ基を除いた2価の基(アリーレン基)が好ましく、4,4’-ジアミノベンズアニリド(DABAN)、4,4’-ジアミノジフェニルエーテル(DDE)、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、9,9’-ビス(4-アミノフェニル)フルオレン(FDA)、p-ジアミノベンゼン(PPD)及び4-アミノフェニル―4-アミノ安息香酸(BAAB)からなる群から選択される少なくとも1種の芳香族ジアミンから2つのアミノ基を除いた2価の基(アリーレン基)であることがより好ましく、4,4’-ジアミノベンズアニリド(DABAN)、4,4’-ジアミノジフェニルエーテル(DDE)、及び、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)からなる群から選択される少なくとも1種の芳香族ジアミンから2つのアミノ基を除いた2価の基(アリーレン基)であることが更に好ましい。 Moreover, as such R 10 , 4,4′-diaminobenzanilide (from the viewpoint that it is possible to obtain a polyimide having a sufficient balance of heat resistance, transparency and mechanical strength at a sufficient level. DABAN), 4,4′-diaminodiphenyl ether (DDE), 2,2′-bis (trifluoromethyl) benzidine (TFMB), 9,9′-bis (4-aminophenyl) fluorene (FDA), p-diamino Benzene (PPD), 2,2′-dimethyl-4,4′-diaminobiphenyl (also known as m-tolidine), 4,4′-diphenyldiaminomethane (DDM), 4-aminophenyl-4-aminobenzoic acid ( BAAB), 4,4′-bis (4-aminobenzamide) -3,3′-dihydroxybiphenyl (BABB), 3,3′-diaminodiphenyl 2 obtained by removing two amino groups from at least one aromatic diamine selected from the group consisting of luphone (3,3′-DDS) and 4,4′-diaminodiphenylsulfone (4,4′-DDS) Valent group (arylene group) is preferable, 4,4′-diaminobenzanilide (DABAN), 4,4′-diaminodiphenyl ether (DDE), 2,2′-bis (trifluoromethyl) benzidine (TFMB), 9 , 9'-bis (4-aminophenyl) fluorene (FDA), p-diaminobenzene (PPD) and 4-aminophenyl-4-aminobenzoic acid (BAAB) It is more preferably a divalent group (arylene group) obtained by removing two amino groups from diamine, and 4,4′-diaminobenzanilide (DABAN) Two amino groups are removed from at least one aromatic diamine selected from the group consisting of 4,4′-diaminodiphenyl ether (DDE) and 2,2′-bis (trifluoromethyl) benzidine (TFMB) More preferably, it is a divalent group (arylene group).
 このような一般式(ii)中のY、Yとして選択され得るアルキルシリル基は炭素数3~9のものである、このようなY、Yとして選択され得るアルキルシリル基としてはトリメチルシリル基又はt-ブチルジメチルシリル基であることがより好ましい。 The alkylsilyl group that can be selected as Y 1 and Y 2 in the general formula (ii) is one having 3 to 9 carbon atoms. Examples of the alkylsilyl group that can be selected as Y 1 and Y 2 include A trimethylsilyl group or a t-butyldimethylsilyl group is more preferable.
 また、このような式(ii)中のY及びYは、ポリイミド合成の簡便さの観点から、いずれも水素原子であることがより好ましい。すなわち、上記式(ii)で表される芳香族ジアミンとしては、式:HN-R10-NHで表される芳香族ジアミンがより好ましい。 In addition, Y 1 and Y 2 in the formula (ii) are more preferably hydrogen atoms from the viewpoint of simplicity of polyimide synthesis. That is, the aromatic diamine represented by the formula (ii) is more preferably an aromatic diamine represented by the formula: H 2 N—R 10 —NH 2 .
 このような式:HN-R10-NHで表される芳香族ジアミンとしては、特に制限されず、公知のものを適宜利用でき、市販のものを適宜用いてもよい。このような芳香族ジアミンとしては、例えば、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエタン、3,3’-ジアミノジフェニルエタン、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2-ビス(4-アミノフェノキシフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、9,9-ビス(4-アミノフェニル)フルオレン、p-ジアミノベンゼン、m-ジアミノベンゼン、o-ジアミノベンゼン、4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ジメチルビフェニル、4,4’-ジアミノ-3,3’-ジメチルビフェニル,3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、3,4’-ジアミノビフェニル、2,6-ジアミノナフタレン、1,4-ジアミノナフタレン、1,5-ジアミノナフタレン、4,4’-[1,3-フェニレンビス(1-メチル-エチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチル-エチリデン)]ビスアニリン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノベンズアニリド、3,4’-ジアミノベンズアニリド、9,9’-ビス(4-アミノフェニル)フルオレン、o-トリジンスルホン、2,3,5,6-テトラメチル-1,4-フェニレンジアミン、3,3’,5,5’-テトラメチルベンジジン、1,5-ビス(4-アミノフェノキシ)ペンタン、2,2-ビス(4-アミノフェノキシフェニル)ヘキサフルオロプロパン、2,2’-ビス(トリフルオロメチル)ベンジジン、4-アミノフェニル―4-アミノ安息香酸、4,4’-ビス(4-アミノベンズアミド)-3,3’-ジヒドロキシビフェニル等が挙げられる。また、このような芳香族ジアミンは1種を単独であるいは2種以上を組み合わせて利用してもよい。 The aromatic diamine represented by the formula: H 2 N—R 10 —NH 2 is not particularly limited, and known ones can be used as appropriate, and commercially available ones may be used as appropriate. Examples of such aromatic diamines include 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane, 4,4′-diaminodiphenylethane, 3,3′-diaminodiphenylethane, and 4,4′-. Diaminobiphenyl, 3,3′-diaminobiphenyl, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 2,2-bis (4-aminophenoxyphenyl) propane, 1 , 3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl Sulfone, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 9,9-bis (4-aminophenyl) fluorene, p-diaminobenzene, m-diaminobenzene, o-diaminobenzene, 4,4'-diamino Biphenyl, 4,4′-diamino-2,2′-dimethylbiphenyl, 4,4′-diamino-3,3′-dimethylbiphenyl, 3,3′-diaminobiphenyl, 2,2′-diaminobiphenyl, 3, 4′-diaminobiphenyl, 2,6-diaminonaphthalene, 1,4-diaminonaphthalene, 1,5-diaminonaphthalene, 4,4 ′-[1,3-phenylenebis (1-methyl-ethylidene)] bisaniline, 4 , 4 '-[1,4-phenylenebis (1-methyl-ethylidene)] bisaniline, 2,2'-dimethyl-4,4'-diaminobiphenyl 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-diaminodiphenyl sulfone, 4,4′-diaminodiphenyl sulfone, 4,4′-diaminodiphenyl sulfide, 1,4-bis (4- Aminophenoxy) benzene, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-diaminobenzanilide, 3,4'-diaminobenzanilide, 9,9'-bis (4-aminophenyl) fluorene , O-tolidine sulfone, 2,3,5,6-tetramethyl-1,4-phenylenediamine, 3,3 ′, 5,5′-tetramethylbenzidine, 1,5-bis (4-aminophenoxy) pentane 2,2-bis (4-aminophenoxyphenyl) hexafluoropropane, 2,2′-bis (trifluoromethyl) benzidine, 4-aminopheny 4-aminobenzoic acid, 4,4'-bis (4-aminobenzamide) -3,3'-dihydroxybiphenyl, and the like. Such aromatic diamines may be used singly or in combination of two or more.
 また、芳香族ジアミンを2種類以上組み合わせて利用する場合には、4,4’-ジアミノベンズアニリド(DABAN)、4,4’-ジアミノジフェニルエーテル(DDE)、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、9,9’-ビス(4-アミノフェニル)フルオレン(FDA)、p-ジアミノベンゼン(PPD)、2,2’-ジメチル-4,4’-ジアミノビフェニル(別名:m-トリジン)、4,4’-ジフェニルジアミノメタン(DDM)、4-アミノフェニル―4-アミノ安息香酸(BAAB)、4,4’-ビス(4-アミノベンズアミド)-3,3’-ジヒドロキシビフェニル(BABB)、3,3’-ジアミノジフェニルスルホン(3,3’-DDS)及び4,4’-ジアミノジフェニルスルホン(4,4’-DDS)の中から選択される少なくとも2種を利用することが好ましく、4,4’-ジアミノベンズアニリド(DABAN)、4,4’-ジアミノジフェニルエーテル(DDE)、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、9,9’-ビス(4-アミノフェニル)フルオレン(FDA)、p-ジアミノベンゼン(PPD)、4-アミノフェニル―4-アミノ安息香酸(BAAB)、3,3’-ジアミノジフェニルスルホン(3,3’-DDS)及び4,4’-ジアミノジフェニルスルホン(4,4’-DDS)の中から選択される少なくとも2種を利用することが好ましい。また、芳香族ジアミンを2種類以上組み合わせて利用する場合、4,4’-ジアミノベンズアニリド(DABAN)と4,4’-ジアミノジフェニルエーテル(DDE)の組み合わせ、4,4’-ジアミノベンズアニリド(DABAN)と2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)の組み合わせ、4,4’-ジアミノベンズアニリド(DABAN)とp-ジアミノベンゼン(PPD)の組み合わせ、3,3’-ジアミノジフェニルスルホン(3,3’-DDS)と4,4’-ジアミノジフェニルスルホン(4,4’-DDS)の組み合わせ、4-アミノフェニル―4-アミノ安息香酸(BAAB)と2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)の組み合わせ、及び、4-アミノフェニル―4-アミノ安息香酸(BAAB)とp-ジアミノベンゼン(PPD)の組み合わせの中から選択される少なくとも1つの組み合わせを含むことがより好ましい。 When two or more aromatic diamines are used in combination, 4,4′-diaminobenzanilide (DABAN), 4,4′-diaminodiphenyl ether (DDE), 2,2′-bis (trifluoromethyl) ) Benzidine (TFMB), 9,9′-bis (4-aminophenyl) fluorene (FDA), p-diaminobenzene (PPD), 2,2′-dimethyl-4,4′-diaminobiphenyl (also known as m-) Trisine), 4,4′-diphenyldiaminomethane (DDM), 4-aminophenyl-4-aminobenzoic acid (BAAB), 4,4′-bis (4-aminobenzamide) -3,3′-dihydroxybiphenyl ( BABB), 3,3′-diaminodiphenyl sulfone (3,3′-DDS) and 4,4′-diaminodiphenyl sulfone ( , 4′-DDS) is preferably used, and 4,4′-diaminobenzanilide (DABAN), 4,4′-diaminodiphenyl ether (DDE), 2,2′- Bis (trifluoromethyl) benzidine (TFMB), 9,9′-bis (4-aminophenyl) fluorene (FDA), p-diaminobenzene (PPD), 4-aminophenyl-4-aminobenzoic acid (BAAB), It is preferable to use at least two selected from 3,3′-diaminodiphenylsulfone (3,3′-DDS) and 4,4′-diaminodiphenylsulfone (4,4′-DDS). When two or more aromatic diamines are used in combination, 4,4′-diaminobenzanilide (DABAN) and 4,4′-diaminodiphenyl ether (DDE) are combined, and 4,4′-diaminobenzanilide (DABAN). ) And 2,2′-bis (trifluoromethyl) benzidine (TFMB), 4,4′-diaminobenzanilide (DABAN) and p-diaminobenzene (PPD), 3,3′-diaminodiphenylsulfone (3,3′-DDS) and 4,4′-diaminodiphenylsulfone (4,4′-DDS), 4-aminophenyl-4-aminobenzoic acid (BAAB) and 2,2′-bis (tri Combination of fluoromethyl) benzidine (TFMB) and 4-aminophenyl-4-amino Ikikosan more preferably contains at least one combination selected from the combinations of (BAAB) and p- diaminobenzene (PPD).
 また、式:HN-R10-NHで表される芳香族ジアミン以外の上記一般式(ii)で表される芳香族ジアミン(HYN-R10-NYH:Y及びYのうちの少なくとも一方が水素原子以外の場合)としては、式:HN-R10-NHで表される芳香族ジアミンとシリル化剤とを反応させて得られるシリル化されたジアミン等が挙げられる。このようなシリル化されたジアミンとしては、例えば、ビス(4-トリメチルシリルアミノフェニル)エーテル、1,4-ビス(トリメチルシリルアミノ)ベンゼン等が挙げられる。このようなシリル化剤としては、例えば、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンなどが挙げられる。 In addition, aromatic diamines represented by the general formula (ii) other than the aromatic diamine represented by the formula: H 2 N—R 10 —NH 2 (HY 1 N—R 10 —NY 2 H: Y 1 and (When at least one of Y 2 is other than a hydrogen atom) is a silylated product obtained by reacting an aromatic diamine represented by the formula: H 2 N—R 10 —NH 2 with a silylating agent Examples include diamines. Examples of such silylated diamines include bis (4-trimethylsilylaminophenyl) ether and 1,4-bis (trimethylsilylamino) benzene. Examples of such a silylating agent include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, hexamethyldisilazane, and the like.
 なお、このようなジアミンを製造するための方法も特に制限されず、公知の方法を適宜採用することができる。また、このようなジアミンとしては市販品を適宜利用してもよい。 In addition, the method for producing such a diamine is not particularly limited, and a known method can be appropriately employed. Moreover, you may utilize a commercial item suitably as such diamine.
 〈重合体について〉
 本発明にかかるポリイミド前駆体樹脂は、前記分子内に2つのノルボルナン骨格を有するテトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種と前記ジアミンとの重合体である。このような重合体としては、上記一般式(I)~(III)で表される繰り返し単位からなる群から選択される少なくとも1種の繰り返し単位を有するものがより好ましい。
<About polymer>
The polyimide precursor resin according to the present invention is a polymer of the diamine and at least one selected from the group consisting of tetracarboxylic dianhydrides having two norbornane skeletons in the molecule and derivatives thereof. As such a polymer, those having at least one repeating unit selected from the group consisting of repeating units represented by the above general formulas (I) to (III) are more preferable.
  (一般式(I)で表される繰り返し単位について)
 このような一般式(I)で表される繰り返し単位に関して、前記一般式(I)中のXは上記一般式(I-1)~(I-3)で表される4価の基である。このような一般式(I-1)中のR、R、R、nは前記一般式(1)中のR、R、R、nと同義であり(その好適なものも前記一般式(1)中のR、R、R、nと同義である)、また、前記一般式(I-2)中のA、R、Rは前記一般式(2)中のA、R、Rと同義である(その好適なものも前記一般式(2)中のA、R、Rと同義である)。更に、前記一般式(I-3)中のR、Rは前記一般式(3)中のR、Rと同義である(その好適なものも前記一般式(3)中のR、Rと同義である)。
(Repeating unit represented by general formula (I))
Regarding the repeating unit represented by the general formula (I), X 1 in the general formula (I) is a tetravalent group represented by the above general formulas (I-1) to (I-3). is there. The general formula (I-1) R 1 in, R 2, R 3, n has the same meaning as R 1, R 2, R 3, n in the general formula (1) (as its preferred Are the same as R 1 , R 2 , R 3 and n in the general formula (1)), and A, R 4 and R 5 in the general formula (I-2) are the same as those in the general formula (2). ) Are the same as A, R 4 and R 5 in the general formula (2), and the preferred ones are also the same as A, R 4 and R 5 in the general formula (2). In addition, R in the general formula (I-3) R 6, R 7 in has the same meaning as R 6, R 7 in the general formula (3) (the preferred ones also Formula (3) 6, R 7 as synonymous).
 また、このような一般式(I)中のXは、前述のように上記一般式(I-1)~(I-3)で表される4価の基(有機基)であり、かかる一般式(I-1)~(I-3)中の記号*1~*4が該記号の付された結合手がそれぞれ式(1)中のXに結合している4本の結合手のうちのいずれかであることを示す。このような一般式(I-1)~(I-3)で表される4価の有機基をXの部位に利用することにより、透明性、耐熱性及び寸法安定性をより高度なものとすることが可能となる。また、このような記号*1~*4が該記号の付された結合手のうち、記号*1~*2が付された結合手のうちのいずれかの結合手が一般式(I)中の式:-COOYと結合する結合手であり、かつ、記号*3~*4が付された結合手のうちのいずれかの結合手が一般式(I)中の式:-COOYと結合する結合手であること、又は、記号*1~*2が付された結合手のうちのいずれかの結合手が一般式(I)中の式:-COOYと結合する結合手であり、かつ、記号*3~*4が付された結合手のうちのいずれかの結合手が一般式(I)中の式:-COOYと結合する結合手であることが好ましい。 In addition, X 1 in the general formula (I) is a tetravalent group (organic group) represented by the general formulas (I-1) to (I-3) as described above. Symbols * 1 to * 4 in the general formulas (I-1) to (I-3) are four bonds in which the bonds to which the symbols are attached are each bonded to X 1 in the formula (1). It is one of these. By utilizing such a tetravalent organic group represented by the general formulas (I-1) to (I-3) as the X 1 site, transparency, heat resistance and dimensional stability are improved. It becomes possible. Further, among the bonds having the symbols * 1 to * 4 attached thereto, any of the bonds having the symbols * 1 to * 2 is represented by the general formula (I). Formula: -COOY 1 is a bond that bonds to one of the bonds marked with symbols * 3 to * 4, and the bond in formula (I) is represented by the formula: -COOY 2 It is a bond that bonds, or any one of the bonds marked with symbols * 1 to * 2 is a bond that bonds to the formula: -COOY 2 in the general formula (I) In addition, any of the bonds to which symbols * 3 to * 4 are attached is preferably a bond that bonds to the formula: —COOY 1 in the general formula (I).
 また、前記一般式(I)中のR10は炭素数6~50のアリーレン基を示す。このような一般式(I)中のR10は上記一般式(ii)中のR10と同様のものであり、その好適なものも上記一般式(ii)中のRと同様である。 In the general formula (I), R 10 represents an arylene group having 6 to 50 carbon atoms. R 10 such in the general formula (I) are the same as the R 10 in the general formula (ii), is the same as R 4 in the general formula (ii) as its preferred.
 このような一般式(I)中のY、Yはそれぞれ独立に水素原子、炭素数1~6(好ましくは炭素数1~3)のアルキル基、又は、炭素数3~9のアルキルシリル基のいずれかである。このようなY、Yは、その置換基の種類、及び、置換基の導入率を、その製造条件(用いるジアミンの種類等)を適宜変更することで変化させることができる。このようなY、Yは、いずれも水素原子である場合(いわゆるポリアミド酸の繰り返し単位となる場合)には、これを用いてポリイミドを製造する場合にその製造がより容易となる傾向がある。 Y 1 and Y 2 in the general formula (I) are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms (preferably 1 to 3 carbon atoms), or alkylsilyl having 3 to 9 carbon atoms. One of the groups. Such Y 1 and Y 2 can change the kind of the substituent and the introduction rate of the substituent by appropriately changing the production conditions (type of diamine used, etc.). When such Y 1 and Y 2 are both hydrogen atoms (when they become so-called polyamic acid repeating units), when they are used to produce polyimide, the production tends to be easier. is there.
 また、一般式(I)中のY、Yが炭素数1~6(好ましくは炭素数1~3)のアルキル基である場合、ポリイミド前駆体樹脂の保存安定性がより優れたものとなる傾向にある。また、Y、Yが炭素数1~6(好ましくは炭素数1~3)のアルキル基である場合、Y、Yはメチル基又はエチル基であることがより好ましい。 Further, when Y 1 and Y 2 in the general formula (I) are an alkyl group having 1 to 6 carbon atoms (preferably 1 to 3 carbon atoms), the polyimide precursor resin has more excellent storage stability. Tend to be. When Y 1 and Y 2 are alkyl groups having 1 to 6 carbon atoms (preferably 1 to 3 carbon atoms), Y 1 and Y 2 are more preferably methyl groups or ethyl groups.
 また、一般式(I)中のY、Yが炭素数3~9のアルキルシリル基である場合、ポリイミド前駆体樹脂の溶解性がより優れたものとなる傾向にある。このようにY、Yが炭素数3~9のアルキルシリル基である場合、Y、Yはトリメチルシリル基又はt-ブチルジメチルシリル基であることがより好ましい。 Further, when Y 1 and Y 2 in the general formula (I) are alkylsilyl groups having 3 to 9 carbon atoms, the solubility of the polyimide precursor resin tends to be more excellent. Thus, when Y 1 and Y 2 are alkylsilyl groups having 3 to 9 carbon atoms, Y 1 and Y 2 are more preferably trimethylsilyl groups or t-butyldimethylsilyl groups.
 また、前記一般式(I)で表される繰り返し単位中のY、Yに関して、水素原子以外の基(アルキル基及び/又はアルキルシリル基)の導入率は、特に限定されないが、Y、Yのうちの少なくとも一部をアルキル基及び/又はアルキルシリル基とする場合、全繰り返し単位中のY、Yの総量の25%以上(より好ましくは50%以上、更に好ましくは75%以上)をアルキル基及び/又はアルキルシリル基とすることが好ましい(なお、この場合、アルキル基及び/又はアルキルシリル基以外のY、Yは水素原子となる)。また、前記一般式(I)で表される繰り返し単位中のY、Yのそれぞれについて、総量の25%以上をアルキル基及び/又はアルキルシリル基にすることで、ポリイミド前駆体の保存安定性がより優れたものとなる傾向にある。 Moreover, regarding Y 1 and Y 2 in the repeating unit represented by the general formula (I), the introduction rate of a group other than a hydrogen atom (an alkyl group and / or an alkylsilyl group) is not particularly limited, but Y 1 In the case where at least a part of Y 2 is an alkyl group and / or an alkylsilyl group, 25% or more (more preferably 50% or more, still more preferably 75%) of the total amount of Y 1 and Y 2 in all repeating units. % Or more) is preferably an alkyl group and / or an alkylsilyl group (in this case, Y 1 and Y 2 other than the alkyl group and / or the alkylsilyl group are hydrogen atoms). Moreover, about each of Y < 1 >, Y < 2 > in the repeating unit represented by the said general formula (I), 25% or more of total amount is made into an alkyl group and / or an alkylsilyl group, The preservation stability of a polyimide precursor Tend to be more excellent.
 このような一般式(I)で表される繰り返し単位は、上記一般式(1)~(3)で表される化合物(テトラカルボン酸二無水物)並びにそれらの化合物の誘導体であるジエステルジカルボン酸及びジエステルジカルボン酸ジクロライドのうちの少なくとも1種と、上記一般式(ii)で表される芳香族ジアミン(HYN-R10-NYH)とを反応させることにより、容易に形成することができる。このように、モノマー成分を目的設計に併せて適宜選択することで、一般式(I)で表される繰り返し単位を有する重合体を形成できる。このような観点から、上記一般式(I)で表される繰り返し単位を有する重合体(ポリイミド前駆体樹脂)は、上記一般式(1)~(3)で表される化合物(テトラカルボン酸二無水物)並びにそれらの化合物の誘導体であるジエステルジカルボン酸及びジエステルジカルボン酸ジクロライドのうちの少なくとも1種と上記一般式(ii)で表される芳香族ジアミン(HYN-R10-NYH)との重合体であるといえる。 Such a repeating unit represented by the general formula (I) includes a diester dicarboxylic acid which is a compound (tetracarboxylic dianhydride) represented by the above general formulas (1) to (3) or a derivative of those compounds. And at least one of diester dicarboxylic acid dichloride and the aromatic diamine (HY 1 N—R 10 —NY 2 H) represented by the above general formula (ii) can be easily formed. Can do. Thus, the polymer which has a repeating unit represented by general formula (I) can be formed by selecting a monomer component suitably according to target design. From such a viewpoint, the polymer (polyimide precursor resin) having a repeating unit represented by the above general formula (I) is a compound represented by the above general formula (1) to (3) (tetracarboxylic acid dicarboxylic acid). Anhydride) and at least one of diester dicarboxylic acid and diester dicarboxylic acid dichloride which are derivatives of these compounds, and aromatic diamines (HY 1 N—R 10 —NY 2 H) represented by the above general formula (ii) It can be said that it is a polymer.
  (一般式(II)~(III)で表される繰り返し単位について)
 このような一般式(II)で表される繰り返し単位及び一般式(III)で表される繰り返し単位に関して、これらの式(II)~(III)中のR10は炭素数6~50のアリーレン基を示し、Y及びYはそれぞれ独立に、水素原子、炭素数1~6のアルキル基及び炭素数3~9のアルキルシリル基よりなる群から選択される1種を示す。このような一般式(II)中のR10、Y、Yは前記一般式(I)中のR10、Y、Yと同義である(その好適なものも前記一般式(I)中のR10、Y、Yと同義である)。
(Repeating units represented by general formulas (II) to (III))
Regarding the repeating unit represented by the general formula (II) and the repeating unit represented by the general formula (III), R 10 in these formulas (II) to (III) is an arylene having 6 to 50 carbon atoms. Y 1 and Y 2 each independently represent one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, and an alkylsilyl group having 3 to 9 carbon atoms. R 10 in the general formula (II), Y 1, Y 2 is the formula R 10, Y 1 in (I), the same meaning as Y 2 (also Formula those its preferred (I And R 10 , Y 1 and Y 2 in the same meaning).
 このような一般式(II)~(III)で表される繰り返し単位は、上記一般式(4)で表される化合物(テトラカルボン酸二無水物)並びにその化合物の誘導体であるジエステルジカルボン酸及びジエステルジカルボン酸ジクロライドのうちの少なくとも1種と、上記一般式(ii)で表される芳香族ジアミン(YN-R10-NY)とを反応させることにより、容易に形成することができる。このように、モノマー成分を目的設計に併せて適宜選択することで、一般式(II)~(III)で表される繰り返し単位を有する重合体を形成できる。このような観点から、上記一般式(II)~(III)で表される繰り返し単位を有する重合体(ポリイミド前駆体樹脂)は、上記一般式(4)で表される化合物並びにその化合物の誘導体であるジエステルジカルボン酸及びジエステルジカルボン酸ジクロライドのうちの少なくとも1種と上記一般式(ii)で表される芳香族ジアミン(HYN-R10-NYH)との重合体であるといえる。 Such repeating units represented by the general formulas (II) to (III) include the compound represented by the above general formula (4) (tetracarboxylic dianhydride) and a diester dicarboxylic acid which is a derivative of the compound, and It can be easily formed by reacting at least one of diester dicarboxylic acid dichlorides with an aromatic diamine (Y 2 N—R 10 —NY 2 ) represented by the above general formula (ii). . Thus, a polymer having repeating units represented by the general formulas (II) to (III) can be formed by appropriately selecting the monomer components in accordance with the target design. From such a viewpoint, the polymer (polyimide precursor resin) having the repeating units represented by the above general formulas (II) to (III) is a compound represented by the above general formula (4) and a derivative of the compound. It can be said that the polymer is a polymer of at least one of diester dicarboxylic acid and diester dicarboxylic acid dichloride which is the aromatic diamine (HY 1 N—R 10 —NY 2 H) represented by the general formula (ii). .
 また、このような本発明にかかるポリイミド前駆体樹脂(重合体)としては、前述のように、上記一般式(I)~(III)で表される繰り返し単位からなる群の中から選択される少なくとも1種の繰り返し単位を含有する重合体が好ましい。また、上記一般式(I)~(III)で表される繰り返し単位の中でも、得られるポリイミドの寸法安定性の観点からは、式(I)中のXが上記一般式(I-1)で表される4価の基である繰り返し単位が好ましく、得られるポリイミドの溶剤可溶性の観点からは、式(I)中のXが上記一般式(I-2)で表される4価の基である繰り返し単位が好ましく、得られるポリイミドの低誘電特性の観点からは、式(I)中のXが上記一般式(I-3)で表される4価の基である繰り返し単位が好ましい。また、得られるポリイミドの機械的特性の観点からは、上記一般式(I)で表される繰り返し単位のうち、式(I)中のXが上記一般式(I-1)で表される4価の基である繰り返し単位が特に好ましい。 In addition, as described above, the polyimide precursor resin (polymer) according to the present invention is selected from the group consisting of repeating units represented by the above general formulas (I) to (III). Polymers containing at least one repeating unit are preferred. Among the repeating units represented by the general formulas (I) to (III), X 1 in the formula (I) is represented by the general formula (I-1) from the viewpoint of dimensional stability of the obtained polyimide. In view of solvent solubility of the resulting polyimide, X 1 in the formula (I) is preferably a tetravalent group represented by the above general formula (I-2). From the viewpoint of the low dielectric properties of the resulting polyimide, a repeating unit that is a group is preferably a repeating unit in which X 1 in the formula (I) is a tetravalent group represented by the general formula (I-3). preferable. From the viewpoint of the mechanical properties of the resulting polyimide, among the repeating units represented by the general formula (I), X 1 in the formula (I) is represented by the general formula (I-1). A repeating unit which is a tetravalent group is particularly preferred.
 また、上記一般式(I)で表される繰り返し単位としては、イミド化の簡便さの観点から、Y及びYがいずれも水素原子である繰り返し単位(ポリアミド酸の繰り返し単位)であることがより好ましい。 As the repeating unit represented by the general formula (I), from the viewpoint of ease of imidization, it Y 1 and Y 2 are repeating units each a hydrogen atom (repeating unit of polyamic acid) Is more preferable.
 さらに、このようなポリイミド前駆体樹脂(重合体)が上記一般式(I)~(III)で表される繰り返し単位を含有する場合、例えば、これらの繰り返し単位からなる群の中から選択される1種を含有するものであってもよく、あるいは、これらの繰り返し単位からなる群の中から選択される2種以上の繰り返し単位を含有するものであってもよい。 Further, when such a polyimide precursor resin (polymer) contains the repeating units represented by the above general formulas (I) to (III), for example, it is selected from the group consisting of these repeating units. It may contain 1 type, or may contain 2 or more types of repeating units selected from the group consisting of these repeating units.
 また、このようなポリイミド前駆体樹脂(重合体)が上記一般式(I)~(III)で表される繰り返し単位を含有する場合、これらの一般式(I)~(III)で表される繰り返し単位の総量(含有量の合計)は、全繰り返し単位に対して20~100モル%(更に好ましくは30~100モル%、より好ましくは40~100モル%、更に好ましくは50~100モル%、特に好ましくは60~100モル%)であることが好ましい。また、このような一般式(I)~(III)で表される繰り返し単位の総量(合計量)に関して、前記数値範囲の下限値は70モル%であることがより好ましく、80モル%であることが更に好ましく、90モル%であることが最も好ましい。このような繰り返し単位の総量(合計量)が前記下限未満では、ガラス転移温度(Tg)を基準とした耐熱性をより高度な水準のものとすることが困難となる傾向にある。 Further, when such a polyimide precursor resin (polymer) contains a repeating unit represented by the above general formulas (I) to (III), it is represented by these general formulas (I) to (III). The total amount of repeating units (the total content) is 20 to 100 mol% (more preferably 30 to 100 mol%, more preferably 40 to 100 mol%, still more preferably 50 to 100 mol%) based on all repeating units. And particularly preferably 60 to 100 mol%). Further, regarding the total amount (total amount) of the repeating units represented by the general formulas (I) to (III), the lower limit value of the numerical range is more preferably 70 mol%, and 80 mol%. More preferably, it is most preferable that it is 90 mol%. When the total amount (total amount) of such repeating units is less than the lower limit, it tends to be difficult to make the heat resistance based on the glass transition temperature (Tg) a higher level.
 また、本発明にかかるポリイミド前駆体樹脂として好適な、上記一般式(I)~(III)で表される繰り返し単位のうちのいずれかを含むポリイミド前駆体樹脂は、用いる用途などに応じて他の繰り返し単位を更に含んでいてもよい。このような他の繰り返し単位としては、特に制限されず、ポリイミド前駆体樹脂の繰り返し単位として利用できる公知の繰り返し単位等が挙げられる。このような他の繰り返し単位としては、例えば、前記一般式(1)~(4)で表される化合物以外の他のテトラカルボン酸二無水物を用いて、これらを上記式:HYN-R-NYHで表される芳香族ジアミンと反応させることで形成される繰り返し単位等としてもよい。 In addition, the polyimide precursor resin containing any one of the repeating units represented by the above general formulas (I) to (III), which is suitable as the polyimide precursor resin according to the present invention, may be used depending on the application to be used. The repeating unit may be further included. Such other repeating units are not particularly limited, and include known repeating units that can be used as the repeating units of the polyimide precursor resin. As such other repeating units, for example, other tetracarboxylic dianhydrides other than the compounds represented by the general formulas (1) to (4) are used, and these are represented by the above formula: HY 1 N— It may be a repeating unit formed by reacting with an aromatic diamine represented by R 4 —NY 2 H.
 このような他のテトラカルボン酸二無水物としては、分子内に2つのノルボルナン骨格を有するテトラカルボン酸二無水物に限定されるものではなく、ポリアミド酸やポリイミドの調製に利用可能な公知のテトラカルボン酸二無水物を適宜利用でき、例えば、ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、3,5,6-トリカルボキシノルボルナン-2-酢酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]-フラン-1,3-ジオン、1,3,3a,4,5,9b-ヘキサヒドロ-5-メチル-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]-フラン-1,3-ジオン、1,3,3a,4,5,9b-ヘキサヒドロ-8-メチル-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]-フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、ビシクロ[2,2,2]-オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、などの脂肪族または脂環式テトラカルボン酸二無水物;ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’-テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4-フランテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p-フェニレン-ビス(トリフェニルフタル酸)二無水物、m-フェニレン-ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルエーテル二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルメタン二無水物などの芳香族テトラカルボン酸二無水物等を挙げることができる。 Such other tetracarboxylic dianhydrides are not limited to tetracarboxylic dianhydrides having two norbornane skeletons in the molecule, but are known tetracarboxylic acid dianhydrides that can be used for the preparation of polyamic acid and polyimide. Carboxylic dianhydrides can be used as appropriate, for example, butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic acid Anhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 3,5,6-tricarboxynorbornane-2-acetic acid dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro- , 5-Dioxo-3-furanyl) -naphtho [1,2-c] -furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-5-methyl-5- (tetrahydro- 2,5-dioxo-3-furanyl) -naphtho [1,2-c] -furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-8-methyl-5- (tetrahydro -2,5-dioxo-3-furanyl) -naphtho [1,2-c] -furan-1,3-dione, 5- (2,5-dioxotetrahydrofural) -3-methyl-3-cyclohexene- Aliphatic or cycloaliphatic tetracarboxylic such as 1,2-dicarboxylic dianhydride, bicyclo [2,2,2] -oct-7-ene-2,3,5,6-tetracarboxylic dianhydride Acid dianhydride; pyromellitic dianhydride, 3,3 ', 4 '-Benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-biphenylsulfonetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6 , 7-Naphthalenetetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-dimethyldiphenylsilanetetracarboxylic dianhydride, 3,3 ′, 4,4 '-Tetraphenylsilanetetracarboxylic dianhydride, 1,2,3,4-furantetracarboxylic dianhydride, 4,4'-bis (3,4-dicarboxyphenoxy) diphenyl sulfide dianhydride, 4 , 4′-bis (3,4-dicarboxyphenoxy) diphenylsulfone dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenylpropane dianhydride, 3, 3 ', 4,4'-perfluoroisopropylidenediphthalic dianhydride, 4,4'-(2,2-hexafluoroisopropylidene) diphthalic dianhydride, 3,3 ', 4,4'- Biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, bis (phthalic acid) phenyl Phosphine oxide dianhydride, p-phenylene-bis (triphenylphthalic acid) dianhydride, m-phenylene-bis (triphenylphthalic acid) dianhydride, bis (triphenylphthalic acid) -4,4'-diphenyl ether Examples thereof include dianhydrides and aromatic tetracarboxylic dianhydrides such as bis (triphenylphthalic acid) -4,4′-diphenylmethane dianhydride.
 このような他の繰り返し単位としては、最終的にポリイミドを形成した場合に、耐熱性、透明性、機械的強度及び溶剤可溶性といった特性を十分な水準でよりバランスよく有する硬化物を得ることが可能となるといった観点から、中でも、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、及び、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物からなる群から選択される少なくとも1種のテトラカルボン酸二無水物と、上記式:HN-R-NHで表される芳香族ジアミンと反応させることで形成される繰り返し単位であることが好ましく、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、及び、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物からなる群から選択される少なくとも1種のテトラカルボン酸二無水物と、上記式:HN-R-NHで表される芳香族ジアミンと反応させることで形成される繰り返し単位であることがより好ましい。 As such other repeating units, when a polyimide is finally formed, it is possible to obtain a cured product having a sufficient balance of characteristics such as heat resistance, transparency, mechanical strength and solvent solubility. In particular, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, pyromellitic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,3,3', 4'-biphenyltetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, and 4,4 ' - (2,2-hexafluoroisopropylidene) at least one tetracarboxylic dianhydride selected from diphthalic dianhydride group consisting anhydride and, the formula: with H 2 N-R 4 -NH 2 It is preferably a repeating unit formed by reacting with an aromatic diamine, and 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 3,3 ′, 4,4′-biphenyl Formed by reacting at least one tetracarboxylic dianhydride selected from the group consisting of tetracarboxylic dianhydrides with an aromatic diamine represented by the above formula: H 2 N—R 4 —NH 2 More preferred is a repeating unit.
 また、このようなポリイミド前駆体樹脂がポリアミド酸である場合、その固有粘度[η]が0.05~3.0dL/gであることが好ましく、0.1~2.0dL/gであることがより好ましい。このようなポリアミド酸の固有粘度[η]が0.05dL/gより小さいと、これを用いてフィルム状のポリイミドを製造した際に、得られるフィルムが脆くなる傾向にあり、他方、3.0dL/gを超えると、粘度が高すぎて加工性が低下し、例えばフィルムを製造した場合に均一なフィルムを得ることが困難となる。また、このようなポリアミド酸の固有粘度[η]は、以下のようにして測定することができる。すなわち、先ず、溶媒としてN,N-ジメチルアセトアミドを用い、そのN,N-ジメチルアセトアミド中に前記ポリアミド酸を濃度が0.5g/dLとなるようにして溶解させて、測定試料(溶液)を得る。次に、前記測定試料を用いて、30℃の温度条件下において動粘度計を用いて、前記測定試料の粘度を測定し、求められた値を固有粘度[η]として採用する。なお、このような動粘度計としては、離合社製の自動粘度測定装置(商品名「VMC-252」)を用いる。 When such a polyimide precursor resin is a polyamic acid, the intrinsic viscosity [η] is preferably 0.05 to 3.0 dL / g, and preferably 0.1 to 2.0 dL / g. Is more preferable. When the intrinsic viscosity [η] of such a polyamic acid is less than 0.05 dL / g, when a film-like polyimide is produced using the polyamic acid, the resulting film tends to become brittle, while 3.0 dL When it exceeds / g, the viscosity is too high and the processability is lowered. For example, when a film is produced, it is difficult to obtain a uniform film. The intrinsic viscosity [η] of such polyamic acid can be measured as follows. That is, first, N, N-dimethylacetamide is used as a solvent, and the polyamic acid is dissolved in the N, N-dimethylacetamide so as to have a concentration of 0.5 g / dL, and a measurement sample (solution) is obtained. obtain. Next, using the measurement sample, the viscosity of the measurement sample is measured using a kinematic viscometer under a temperature condition of 30 ° C., and the obtained value is adopted as the intrinsic viscosity [η]. In addition, as such a kinematic viscometer, an automatic viscosity measuring device (trade name “VMC-252”) manufactured by Kouaisha is used.
 このようなポリイミド前駆体樹脂(重合体)の製造方法は、前述のようなテトラカルボン酸二無水物及びジアミンの重合体を形成するために、前述のようなテトラカルボン酸二無水物及びジアミンを利用すればよく、公知のポリイミド前駆体樹脂(重合体)の調製方法(重合方法)を適宜利用することができる。例えば、上記テトラカルボン酸二無水物として上記一般式(1)で表される化合物を利用する場合には、国際公開第2011/099518号に記載されているポリアミド酸を製造するための方法等を適宜採用してもよく、上記テトラカルボン酸二無水物として上記一般式(2)で表される化合物を利用する場合には、国際公開第2015/163314号に記載されているポリアミド酸を製造するための方法等を適宜採用してもよい。このように、用いるモノマー(上記テトラカルボン酸二無水物及び上記ジアミン)の種類に応じて、公知の文献に記載されている重合条件等を適宜利用してポリイミド前駆体樹脂(重合体)を調製してもよい。 In order to form a polymer of tetracarboxylic dianhydride and diamine as described above, a method for producing such a polyimide precursor resin (polymer) is obtained by using tetracarboxylic dianhydride and diamine as described above. What is necessary is just to utilize, The preparation method (polymerization method) of a well-known polyimide precursor resin (polymer) can be utilized suitably. For example, when the compound represented by the general formula (1) is used as the tetracarboxylic dianhydride, a method for producing a polyamic acid described in International Publication No. 2011/099518 is used. When the compound represented by the general formula (2) is used as the tetracarboxylic dianhydride, a polyamic acid described in International Publication No. 2015/163314 is produced. The method for the above may be adopted as appropriate. In this way, a polyimide precursor resin (polymer) is prepared by appropriately using the polymerization conditions described in known literature depending on the types of monomers (tetracarboxylic dianhydride and diamine) used. May be.
 <添加化合物(第二成分)>
 本発明にかかる添加化合物(第二成分)は、分子内にリン原子と炭素原子が直接結合する式:C-Pで表される構造を含む3級リン化合物、分子内にリン原子と炭素原子が直接結合する式:C-Pで表される構造を含む4級リン化合物、及び、4級アミン化合物からなる群から選択される少なくとも1種の化合物である。
<Additive compound (second component)>
The additive compound (second component) according to the present invention includes a tertiary phosphorus compound having a structure represented by the formula: CP in which a phosphorus atom and a carbon atom are directly bonded in the molecule, and a phosphorus atom and a carbon atom in the molecule. Is at least one compound selected from the group consisting of a quaternary phosphorus compound containing a structure represented by the formula: CP and a quaternary amine compound.
 このような3級リン化合物としては、例えば、トリフェニルホスフィン、トリパラトリルホスフィン、トリターシャリーブチルホスフィン、トリシクロヘキシルホスフィン、ジフェニルシクロヘキシルホスフィン、1,4-ビスジフェニルホスフィノブタン等が挙げられる。このような3級リン化合物としては、得られるポリイミドの機械的特性の観点から、トリフェニルホスフィン、トリパラトリルホスフィン、トリシクロヘキシルホスフィンがより好ましく、トリフェニルホスフィン、トリパラトリルホスフィンが更に好ましく、トリフェニルホスフィンが特に好ましい。 Examples of such tertiary phosphorus compounds include triphenylphosphine, triparatolylphosphine, tritertiarybutylphosphine, tricyclohexylphosphine, diphenylcyclohexylphosphine, 1,4-bisdiphenylphosphinobutane, and the like. As such a tertiary phosphorus compound, from the viewpoint of mechanical properties of the resulting polyimide, triphenylphosphine, tripalatolylphosphine, and tricyclohexylphosphine are more preferable, triphenylphosphine, and triparatolylphosphine are more preferable, and triphenylphosphine Is particularly preferred.
 また、このような4級リン化合物としては、例えば、ベンジルトリフェニルホスホニウムクロライド、エチルトリフェニルホスホニウムブロマイド、ノルマルブチルトリフェニルホスホニウムクロライド、ノルマルブチルトリフェニルホスホニウムジシアナミドフェナセチルトリフェニルホスホニウムクロライド、ヘキシルトリフェニルホスホニウムブロマイド、オクチルトリフェニルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムジシアナミド、ベンジルトリフェニルホスホニウムブロマイド、2-メチルベンジルトリフェニルホスホニウムブロマイド、メチルトリフェニルホスホニウムアイオダイド、フェナセチルトリフェニルホスホニウムクロライド、アリルトリフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等の4級リン塩等が挙げられる。このような4級リン化合物としては、得られるポリイミドの機械的特性と溶媒への溶解性の観点から、ベンジルトリフェニルホスホニウムクロライド、ベンジルトリフェニルホスホニウムブロマイド、n-ブチルトリフェニルホスホニウムクロライド、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレートがより好ましく、ベンジルトリフェニルホスホニウムクロライド、ベンジルトリフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレートが更に好ましく、ベンジルトリフェニルホスホニウムクロライド、ベンジルトリフェニルホスホニウムブロマイドが特に好ましい。 Examples of such quaternary phosphorus compounds include benzyltriphenylphosphonium chloride, ethyltriphenylphosphonium bromide, normal butyltriphenylphosphonium chloride, normal butyltriphenylphosphonium dicyanamide phenacetyltriphenylphosphonium chloride, hexyltriphenyl. Phosphonium bromide, octyltriphenylphosphonium bromide, tetraphenylphosphonium bromide, tetraphenylphosphonium thiocyanate, tetraphenylphosphonium dicyanamide, benzyltriphenylphosphonium bromide, 2-methylbenzyltriphenylphosphonium bromide, methyltriphenylphosphonium iodide, phenacetiltri Phenylphosphoni Mukuroraido, allyl triphenylphosphonium bromide, quaternary phosphorus salts such as tetraphenylphosphonium tetraphenyl borate, and the like. Examples of such quaternary phosphorus compounds include benzyltriphenylphosphonium chloride, benzyltriphenylphosphonium bromide, n-butyltriphenylphosphonium chloride, tetraphenylphosphonium from the viewpoint of the mechanical properties of the resulting polyimide and solubility in solvents. Bromide and tetraphenylphosphonium tetraphenylborate are more preferred, benzyltriphenylphosphonium chloride, benzyltriphenylphosphonium bromide and tetraphenylphosphonium tetraphenylborate are more preferred, and benzyltriphenylphosphonium chloride and benzyltriphenylphosphonium bromide are particularly preferred.
 さらに、前記4級アミン化合物としては、例えば、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(DBU)の有機酸塩(例えば、DBUのオクチル酸塩、DBUのp-トルエンスルホン酸塩、DBUのギ酸塩、DBUのオルソフタル酸塩等)、DBUのフェノール樹脂塩、1,5-ジアザビシクロ[4.3.0]ノネ-5-エン(DBN)のフェノール樹脂塩、サンアプロ製のU-CAT 5002、テトラメチルアンモニウムブロミド、テトラエチルアンモニウムブロミド、テトラメチルアンモニウム塩酸塩、テトラエチルアンモニウム塩酸塩、テトラメチルアンモニウムテトラフェニルボレート等の4級アミン塩;等が挙げられる。このような4級アミン化合物の中でも、ポリイミドを製造した場合により高度な耐熱性と機械的強度が得られるといった観点から、DBUの有機酸塩が好ましく、DBUのフェノール塩、DBUのオクチル酸塩がより好ましい。 Further, as the quaternary amine compound, for example, an organic acid salt of 1,8-diazabicyclo [5,4,0] -7-undecene (DBU) (for example, octylate of DBU, p-toluenesulfone of DBU) Acid salt, DBU formate, DBU orthophthalate, etc.), phenol resin salt of DBU, phenol resin salt of 1,5-diazabicyclo [4.3.0] none-5-ene (DBN), manufactured by San Apro Quaternary amine salts such as U-CAT 5002, tetramethylammonium bromide, tetraethylammonium bromide, tetramethylammonium hydrochloride, tetraethylammonium hydrochloride, tetramethylammonium tetraphenylborate; and the like. Among such quaternary amine compounds, when a polyimide is produced, an organic acid salt of DBU is preferable from the viewpoint of obtaining higher heat resistance and mechanical strength, and a phenol salt of DBU and an octylate salt of DBU are preferable. More preferred.
 また、このような添加化合物(第二成分)の中でも、ポリイミドを調製した場合にポリイミドに難燃性を付与することが可能であること、ポリイミド前駆体溶液の保存安定性に影響を与えないことが可能であること、等から、前記3級リン化合物が特に好ましく、トリフェニルホスフィンが最も好ましい。なお、このような化合物(第二成分)としては、1種を単独で利用してもよく、或いは、2種以上を組み合わせて利用してもよい。 In addition, among these additive compounds (second component), when polyimide is prepared, it is possible to impart flame retardancy to the polyimide, and it does not affect the storage stability of the polyimide precursor solution. The tertiary phosphorus compound is particularly preferable, and triphenylphosphine is most preferable. In addition, as such a compound (second component), one kind may be used alone, or two or more kinds may be used in combination.
 <溶媒(第三成分)>
 本発明にかかる溶媒(第三成分)としては特に制限されず、例えば、ポリアミド酸の樹脂溶液に利用することが可能なものを好適に利用することができる。このような溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、γ-バレロラクトン、γ-化プロラクトン、δ―バレロラクトン、γ-化プロラクトン、ε―化プロラクトン、α―メチル-γ-ブチロラクトン、エチレンカーボネート、プロピレンカーボネート、トリエチレングリコール、テトラメチル尿素、1,3-ジメチル-2-イミダゾリジノン、ヘキサメチルホスホリックトリアミド、ピリジンなどの非プロトン系極性溶媒;m-クレゾール、p-クレゾール、キシレノール、フェノール、ハロゲン化フェノールなどのフェノール系溶媒;テトラハイドロフラン、ジオキサン、セロソルブ、グライムなどのエーテル系溶媒;ベンゼン、トルエン、キシレンなどの芳香族系溶媒;シクロペンタノンやシクロヘキサノン等のケトン系溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒、酢酸エチル、酢酸ブチル、酢酸イソブチル、プロピレングリコールメチルアセテート等の酢酸エステル系溶媒、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルエチルケトン、アセトン等のケトン系溶媒などが挙げられる。
<Solvent (third component)>
It does not restrict | limit especially as a solvent (3rd component) concerning this invention, For example, what can be utilized for the resin solution of a polyamic acid can be utilized suitably. Examples of such solvents include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, γ-butyrolactone, γ-valerolactone, γ-modified prolactone, δ Valerolactone, γ-Prolactone, ε-Prolactone, α-methyl-γ-butyrolactone, ethylene carbonate, propylene carbonate, triethylene glycol, tetramethylurea, 1,3-dimethyl-2-imidazolidinone, Aprotic polar solvents such as hexamethylphosphoric triamide and pyridine; phenolic solvents such as m-cresol, p-cresol, xylenol, phenol and halogenated phenol; ethers such as tetrahydrofuran, dioxane, cellosolve and glyme solvent; Aromatic solvents such as benzene, toluene and xylene; Ketone solvents such as cyclopentanone and cyclohexanone; Nitrile solvents such as acetonitrile and benzonitrile; Acetic esters such as ethyl acetate, butyl acetate, isobutyl acetate and propylene glycol methyl acetate Examples thereof include ketone solvents such as system solvents, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methyl ethyl ketone, and acetone.
 また、このような溶媒としては、溶解性、成膜性、生産性、工業的入手性、既存設備の有無、価格といった観点から、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、γ-ブチロラクトン、プロピレンカーボネート、テトラメチル尿素、1,3-ジメチル-2-イミダゾリジノンが好ましく、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、γ-ブチロラクトン、テトラメチル尿素がより好ましく、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、テトラメチル尿素が特に好ましい。なお、このような溶媒は1種を単独で、あるいは2種以上を組み合わせて利用してもよい。 Examples of such a solvent include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, γ from the viewpoints of solubility, film formability, productivity, industrial availability, presence / absence of existing equipment, and price. -Butyrolactone, propylene carbonate, tetramethylurea, 1,3-dimethyl-2-imidazolidinone are preferred, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, γ-butyrolactone, tetramethylurea are more preferred, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and tetramethylurea are particularly preferred. In addition, you may utilize such a solvent individually by 1 type or in combination of 2 or more types.
 また、本発明のポリイミド前駆体樹脂組成物は、前記ポリイミド前駆体樹脂(第一成分)、前記添加化合物(第二成分)及び前記溶媒(第三成分)以外に、他の成分を含んでいてもよい。このような他の成分としては、特に制限されないが、例えば、酸化防止剤(フェノール系、ホスファイト系、チオエーテル系など)、紫外線吸収剤、ヒンダードアミン系光安定剤、核剤、樹脂添加剤(フィラー、タルク、ガラス繊維など)、難燃剤、加工性改良剤・滑材等が挙られる。また、これらの他の成分(酸化防止剤等)としては、特に制限されず、公知のものを適宜利用することができ、市販のものを利用してもよい。 The polyimide precursor resin composition of the present invention contains other components in addition to the polyimide precursor resin (first component), the additive compound (second component), and the solvent (third component). Also good. Such other components are not particularly limited. For example, antioxidants (phenolic, phosphite, thioether, etc.), ultraviolet absorbers, hindered amine light stabilizers, nucleating agents, resin additives (fillers) , Talc, glass fiber, etc.), flame retardants, processability improvers and lubricants. Moreover, it does not restrict | limit especially as these other components (antioxidant etc.), A well-known thing can be utilized suitably and a commercially available thing may be utilized.
  〈組成物の組成等について〉
 本発明のポリイミド前駆体樹脂組成物は、前記ポリイミド前駆体樹脂(第一成分)と、前記添加化合物(第二成分)と、前記溶媒(第三成分)とを含むものである。
<Composition of composition>
The polyimide precursor resin composition of the present invention includes the polyimide precursor resin (first component), the additive compound (second component), and the solvent (third component).
 このようなポリイミド前駆体樹脂組成物において、前記ポリイミド(第一成分)の含有量と前記添加化合物(第二成分)の含有量は特に制限されないが、第一成分100質量部に対する第二成分の含有量が0.1~25質量部であることが好ましく、0.5~15質量部であることがより好ましい。このような添加化合物(第二成分)の含有量が前記下限未満では、ポリイミドを製造した場合にポリイミドの機械的強度が低下する傾向にあり、他方、前記上限を超えると、ポリイミドを製造した場合にポリイミドの耐熱性が低下する傾向にある。 In such a polyimide precursor resin composition, the content of the polyimide (first component) and the content of the additive compound (second component) are not particularly limited, but the second component relative to 100 parts by mass of the first component The content is preferably 0.1 to 25 parts by mass, more preferably 0.5 to 15 parts by mass. When the content of such an additive compound (second component) is less than the lower limit, when the polyimide is produced, the mechanical strength of the polyimide tends to decrease. On the other hand, when the upper limit is exceeded, the polyimide is produced. In addition, the heat resistance of polyimide tends to decrease.
 また、このような溶媒の含有量は特に制限されないが、50~99質量%であることが好ましく、50~90質量%であることがより好ましく、60~90質量%であることが更に好ましく、70~90質量%であることが特に好ましい。このような溶媒の含有量が前記下限未満では、ポリイミド前駆体樹脂を溶媒に十分に溶解させた状態とすることが困難となり、均一なワニス組成物とすることが困難となる傾向にあり、他方、前記上限を超えると、ポリイミド前駆体樹脂をイミド化し、硬化させてポリイミドを製造した際にポリイミドの機械的強度が低下する傾向にある。 Further, the content of such a solvent is not particularly limited, but is preferably 50 to 99% by mass, more preferably 50 to 90% by mass, still more preferably 60 to 90% by mass, It is particularly preferably 70 to 90% by mass. When the content of the solvent is less than the lower limit, it is difficult to make the polyimide precursor resin sufficiently dissolved in the solvent, and it tends to be difficult to obtain a uniform varnish composition. When the above upper limit is exceeded, the polyimide precursor resin tends to be imidized and cured to produce a polyimide, whereby the mechanical strength of the polyimide tends to decrease.
  〈組成物を製造するための方法について〉
 このような本発明のポリイミド前駆体樹脂組成物を製造するための方法は特に制限されず、上記ポリイミド前駆体樹脂(第一成分)と、上記添加化合物(第二成分)と、上記溶媒(第三成分)とを含むポリイミド前駆体樹脂組成物を製造することが可能な方法であればよく特に制限されず、例えば、溶媒の存在下、上記分子内に2つのノルボルナン骨格を有するテトラカルボン酸二無水物(必要に応じて上記分子内に2つのノルボルナン骨格を有するテトラカルボン酸二無水物以外の他のテトラカルボン酸二無水物を含んでいてもよい)及びその誘導体からなる群から選択される少なくとも1種と;上記ジアミン(好ましくは上記式(ii)で表される化合物(HYN-R10-NYH)、更に好ましくは式:HN-R10-NHで表される化合物)と;を反応(重合反応を進行)させて、上記テトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種と上記ジアミンとの重合体を形成せしめる工程を含み、かつ、前記工程において、上記テトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種と上記ジアミンとを反応させる際のいずれかの段階[反応前、反応中(なお、ここにいう反応中とは、上記テトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種と上記ジアミンとを一度反応せしめた後に得られた反応液を利用して重合反応を更に進行せしめる場合においてその反応液を利用した重合反応の前又はその途中の段階も含む)、反応後のいずれかの段階]において、上記添加化合物を添加する工程を含む方法(以下、かかる方法を、便宜上、単に「方法(I)」と称する)を好適に採用することができる。なお、このような方法(I)に用いるテトラカルボン酸二無水物及びその誘導体、ジアミン、溶媒、及び、添加化合物は既に説明したものと同様のものである(その好適なものも同様のものである)。
<About the method for manufacturing a composition>
The method for producing such a polyimide precursor resin composition of the present invention is not particularly limited, and the polyimide precursor resin (first component), the additive compound (second component), and the solvent (first component). There is no particular limitation as long as it is a method capable of producing a polyimide precursor resin composition containing three components). For example, in the presence of a solvent, a tetracarboxylic acid dicarboxylate having two norbornane skeletons in the molecule is used. It is selected from the group consisting of anhydrides (which may contain other tetracarboxylic dianhydrides other than tetracarboxylic dianhydrides having two norbornane skeletons in the molecule as necessary) and derivatives thereof At least one; and the above diamine (preferably the compound represented by the above formula (ii) (HY 1 N—R 10 —NY 2 H), more preferably the formula: H 2 N—R 10 —N A compound represented by H 2 ); and a polymer of the diamine and at least one selected from the group consisting of the tetracarboxylic dianhydride and derivatives thereof. Any step of reacting at least one selected from the group consisting of the tetracarboxylic dianhydride and its derivative with the diamine in the step [before reaction, during reaction (Note that the term “during reaction” here refers to the use of a reaction solution obtained after once reacting at least one selected from the group consisting of the tetracarboxylic dianhydride and derivatives thereof with the diamine. In the case of further proceeding the polymerization reaction, including any stage before or during the polymerization reaction using the reaction solution), any stage after the reaction] A method including a step of adding a compound (hereinafter, this method is simply referred to as “method (I)” for convenience) can be suitably employed. The tetracarboxylic dianhydride and its derivative, diamine, solvent, and additive compound used in such method (I) are the same as those already described (the preferred ones are also the same). is there).
 このような方法(I)において、溶媒の存在下において、前記テトラカルボン酸二無水物(必要に応じて上記分子内に2つのノルボルナン骨格を有するテトラカルボン酸二無水物以外の他のテトラカルボン酸二無水物を含んでいてもよい)及びその誘導体からなる群から選択される少なくとも1種と前記ジアミンとを反応させるための具体的な条件等は特に制限されず、用いる成分の種類に応じて重合反応が進行するように、その条件を適宜設定すればよい。また、このような方法(I)としては、前記テトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種として、前記一般式(1)~(4)で表される化合物(必要に応じて他のテトラカルボン酸二無水物を含んでいてもよい)及びそれらの誘導体からなる群から選択される少なくとも1種を利用し、さらに、前記ジアミンとして上記一般式(ii)で表される芳香族ジアミンを利用して、前記溶媒の存在下、前記一般式(1)~(4)で表される化合物及びそれらの誘導体からなる群から選択される少なくとも1種と、上記一般式(ii)で表される芳香族ジアミンとを反応させて反応液を得る第一工程と、該反応液に前記添加化合物を添加して、上記一般式(I)~(III)で表される繰り返し単位からなる群から選択される少なくとも1種の繰り返し単位を有するポリイミド前駆体樹脂と、前記添加化合物と、前記溶媒とを含むポリイミド前駆体樹脂組成物を得る第二工程とを含む方法(I-1)を採用することが好ましい。 In such a method (I), in the presence of a solvent, the tetracarboxylic dianhydride (if necessary, other tetracarboxylic acid other than tetracarboxylic dianhydride having two norbornane skeletons in the molecule) Specific conditions for reacting the diamine with at least one selected from the group consisting of dianhydrides (which may contain dianhydrides) and derivatives thereof are not particularly limited, depending on the types of components used The conditions may be set as appropriate so that the polymerization reaction proceeds. In addition, as such a method (I), at least one selected from the group consisting of the tetracarboxylic dianhydride and its derivative is used as a compound represented by the general formulas (1) to (4) ( Other tetracarboxylic dianhydrides may be included if necessary) and at least one selected from the group consisting of derivatives thereof, and the diamine represented by the above general formula (ii). At least one selected from the group consisting of the compounds represented by the general formulas (1) to (4) and derivatives thereof in the presence of the solvent, and the above general formula A first step of obtaining a reaction liquid by reacting with the aromatic diamine represented by (ii), and adding the additive compound to the reaction liquid to represent the above general formulas (I) to (III) Group of repeating units A method (I-1) comprising a polyimide precursor resin having at least one repeating unit selected from the above, a second step of obtaining a polyimide precursor resin composition containing the additive compound and the solvent. It is preferable to do.
 なお、このような方法(I-1)のように、第一工程において重合反応を一度進行させた後、第二工程において前記添加化合物を添加することで、ワニスを基板に塗布して製膜する段階で、前記添加化合物を利用してポリイミドの分子量をさらに向上させることが可能となる。このように、製膜段階において前記添加化合物を利用してポリイミドフィルムを得る場合には、前記溶媒の存在下、前記一般式(1)~(4)で表される化合物及びそれらの誘導体からなる群から選択される少なくとも1種と、上記一般式(ii)で表される芳香族ジアミンとを反応させて、前記添加化合物を利用しないでポリイミドフィルムを得る場合(ポリイミドを調製するいずれの段階においても前記添加化合物を利用しない場合)と比較して、得られるポリイミドフィルムの機械的物性が優れたものとなる点で有利である。以下、このような方法(I)として好適な方法(I-1)について説明する。 As in the method (I-1), after the polymerization reaction is once advanced in the first step, the additive compound is added in the second step, so that the varnish is applied to the substrate to form a film. In this stage, the molecular weight of the polyimide can be further improved using the additive compound. As described above, when a polyimide film is obtained by using the additive compound in the film forming stage, it is composed of the compounds represented by the general formulas (1) to (4) and derivatives thereof in the presence of the solvent. When at least one selected from the group is reacted with the aromatic diamine represented by the general formula (ii) to obtain a polyimide film without using the additive compound (in any stage of preparing the polyimide) Is advantageous in that the mechanical properties of the resulting polyimide film are superior to those in the case where the additive compound is not used. Hereinafter, the method (I-1) suitable as the method (I) will be described.
 先ず、第一工程について説明する。第一工程は、溶媒の存在下、前記テトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種と、前記芳香族ジアミンとを反応させてポリイミド前駆体樹脂を含む反応液を得る工程である。なお、このような第一工程に用いる「テトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種」は、前記一般式(1)~(4)で表される化合物及びそれらの誘導体からなる群から選択される少なくとも1種を含んでいればよく、必要に応じて、それ以外の他のテトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種を含んでいてもよい。 First, the first step will be described. In the first step, in the presence of a solvent, at least one selected from the group consisting of the tetracarboxylic dianhydride and its derivative and the aromatic diamine are reacted to prepare a reaction solution containing a polyimide precursor resin. It is a process to obtain. The “at least one selected from the group consisting of tetracarboxylic dianhydrides and derivatives thereof” used in the first step is the compounds represented by the general formulas (1) to (4) and those And at least one selected from the group consisting of other tetracarboxylic dianhydrides and derivatives thereof, as long as it contains at least one selected from the group consisting of these derivatives. You may go out.
 このような第一工程に用いる溶媒としては、前述の溶媒を適宜利用できるが、中でも、前記テトラカルボン酸二無水物と前記芳香族ジアミンとの両者を溶解することが可能な溶媒であることが好ましい。このような溶媒は1種を単独であるいは2種以上を混合して使用してもよい。 As the solvent used in the first step, the above-mentioned solvents can be used as appropriate. Among them, the solvent can dissolve both the tetracarboxylic dianhydride and the aromatic diamine. preferable. Such solvents may be used alone or in combination of two or more.
 また、このような方法において、前記テトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種(上記一般式(ii)で表される芳香族ジアミンと反応させる成分)の使用量(前記一般式(1)~(4)で表される化合物、それ以外の他のテトラカルボン酸二無水物及びそれらの誘導体の総量)と、上記一般式(ii)で表される芳香族ジアミンの使用量(式:HYN-R-NYHで表される化合物の総量)との割合は、特に制限されないが、前記誘導体を用いる場合、その誘導体がいずれも誘導前のテトラカルボン酸二無水物であるものと仮定(換算)した場合に、前記芳香族ジアミンが有するアミノ基1当量に対して、反応に用いられるテトラカルボン酸二無水物(前記誘導体を用いる場合、その誘導体がいずれも誘導前(変性前)のテトラカルボン酸二無水物であるものと仮定する)中の全ての酸無水物基の量が0.5~2当量となるような量とすることが好ましく、0.8~1.2当量とすることがより好ましい。このようなテトラカルボン酸二無水物びその誘導体からなる群から選択される少なくとも1種と、上記芳香族ジアミンの好適な使用割合が前記下限未満では重合反応が効率よく進行せず高分子量のポリアミド酸が得られない傾向にあり、他方、前記上限を超えると前記と同様に高分子量のポリアミド酸が得られない傾向にある。 In such a method, the amount of at least one selected from the group consisting of the tetracarboxylic dianhydride and its derivative (a component to be reacted with the aromatic diamine represented by the general formula (ii)) is used. (The total amount of the compounds represented by the general formulas (1) to (4), other tetracarboxylic dianhydrides and their derivatives), and the aromatic diamine represented by the general formula (ii) usage: the ratio of the (expression amount of HY 1 N-R 4 -NY compounds represented by, 2 H) is not particularly limited, when using the derivatives, before induction derivatives thereof either tetracarboxylic Assuming that it is an acid dianhydride (converted), the tetracarboxylic dianhydride used in the reaction is equivalent to 1 equivalent of the amino group of the aromatic diamine. The amount of all acid anhydride groups in the body is assumed to be 0.5 to 2 equivalents of the tetracarboxylic dianhydride before induction (before modification). Preferably, it is 0.8 to 1.2 equivalent. When at least one selected from the group consisting of such tetracarboxylic dianhydrides and derivatives thereof and a suitable use ratio of the aromatic diamine is less than the lower limit, the polymerization reaction does not proceed efficiently and the high molecular weight polyamic acid. On the other hand, if the upper limit is exceeded, a high molecular weight polyamic acid tends to be not obtained as described above.
 さらに、前記第一工程に用いる溶媒の使用量は、反応に用いられるテトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種の量(前記一般式(1)~(4)で表される化合物、それ以外の他のテトラカルボン酸二無水物及びそれらの誘導体の総量)と前記芳香族ジアミンの量(式:HYN-R-NYHで表される化合物の総量)との合計量(反応物[基質]の総量)がテトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種と芳香族ジアミンと溶媒の総量に対して1~80質量%(より好ましくは5~50質量%)になるような量であることが好ましい。このような溶媒の使用量が前記下限未満では効率よくポリアミド酸を得ることができなくなる傾向にあり、他方、前記上限を超えると高粘度化により攪拌が困難となり、高分子量体が得られない傾向にある。 Further, the amount of the solvent used in the first step is at least one amount selected from the group consisting of tetracarboxylic dianhydride and derivatives thereof used in the reaction (the above general formulas (1) to (4)). And the amount of the aromatic diamine (formula: HY 1 N—R 4 —NY 2 H) and the other tetracarboxylic dianhydrides and their derivatives) 1 to 80 mass based on the total amount of the aromatic diamine and the solvent, wherein the total amount (total amount of the reactant [substrate]) is at least one selected from the group consisting of tetracarboxylic dianhydride and derivatives thereof % (More preferably 5 to 50% by mass). If the amount of the solvent used is less than the lower limit, it tends to be difficult to obtain polyamic acid efficiently. On the other hand, if the amount exceeds the upper limit, stirring tends to be difficult due to the increase in viscosity, and a high molecular weight product tends not to be obtained. It is in.
 また、第一工程において、前記テトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種と、前記芳香族ジアミンとを反応させる際の反応温度は、これらの化合物を反応させることが可能な温度に適宜調整すればよく、特に制限されないが、-20~100℃(より好ましくは5~80℃)とすることが好ましい。 In the first step, the reaction temperature at the time of reacting the aromatic diamine with at least one selected from the group consisting of the tetracarboxylic dianhydride and derivatives thereof is to react these compounds. The temperature can be adjusted to a temperature that can be adjusted appropriately, and is not particularly limited, but is preferably −20 to 100 ° C. (more preferably 5 to 80 ° C.).
 また、第一工程において、前記テトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種と前記芳香族ジアミンとを反応させる方法としては、テトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種と芳香族ジアミンの重合反応を行うことが可能な方法を適宜利用でき、特に制限されないが、例えば、大気圧中、窒素、ヘリウム、アルゴン等の不活性雰囲気下において、前記反応温度において、前記溶媒中に前記テトラカルボン酸二無水物及び前記芳香族ジアミンを添加し、その後、1~72時間程度反応させる方法を採用することが好ましい。このような反応温度や反応時間が前記下限未満では、ポリイミド前駆体の分子量が十分に向上しない傾向にあり、他方、前記上限を超えるとポリイミド前駆体の解重合が進行し、分子量が低下する傾向にある。このようにして、第一工程において前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させることで、前記反応液を得ることができる。 In the first step, the aromatic diamine may be reacted with at least one selected from the group consisting of the tetracarboxylic dianhydride and its derivative from tetracarboxylic dianhydride and its derivative. A method capable of performing a polymerization reaction of at least one selected from the group consisting of aromatic diamines can be used as appropriate, and is not particularly limited. For example, in an atmospheric pressure, under an inert atmosphere such as nitrogen, helium, or argon In the method, it is preferable to employ a method in which the tetracarboxylic dianhydride and the aromatic diamine are added to the solvent at the reaction temperature and then reacted for about 1 to 72 hours. If the reaction temperature or reaction time is less than the lower limit, the molecular weight of the polyimide precursor tends not to be sufficiently improved. On the other hand, if the upper limit is exceeded, depolymerization of the polyimide precursor proceeds and the molecular weight tends to decrease. It is in. Thus, the said reaction liquid can be obtained by making the said tetracarboxylic dianhydride and the said aromatic diamine react in a 1st process.
 また、方法(I-1)においては、前記第二工程において、前記第一工程により得られた反応液に前記添加化合物を添加する。 In the method (I-1), in the second step, the additive compound is added to the reaction solution obtained in the first step.
 このようにして、第二工程において、前記反応液中に前記添加化合物(第二成分)を添加することで、前記テトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種(前記前記一般式(1)~(4)で表される化合物及び必要に応じて添加される他のテトラカルボン酸二無水物並びにそれらの誘導体)と、上記一般式(ii)で表される芳香族ジアミン(上記式:HYN-R-NYHで表される化合物からなる群の中から選択される少なくとも1種)との重合体である、上記一般式(I)~(III)で表される繰り返し単位からなる群から選択される少なくとも1種の繰り返し単位を有するポリイミド前駆体樹脂と、前記添加化合物と、前記溶媒とを含むポリイミド前駆体樹脂組成物を得ることが可能となる。 In this way, in the second step, at least one selected from the group consisting of the tetracarboxylic dianhydride and derivatives thereof by adding the additive compound (second component) to the reaction solution ( The compounds represented by the general formulas (1) to (4) and other tetracarboxylic dianhydrides and derivatives thereof added as necessary, and the fragrance represented by the general formula (ii). A polymer with a group diamine (at least one selected from the group consisting of compounds represented by the above formula: HY 1 N—R 4 —NY 2 H). It is possible to obtain a polyimide precursor resin composition comprising a polyimide precursor resin having at least one type of repeating unit selected from the group consisting of repeating units represented by formula (II), the additive compound, and the solvent. It made.
 なお、このようにして得られるポリイミド前駆体樹脂組成物を加熱すると、前記添加化合物(前記第二成分)と溶媒との存在下において、ポリイミド前駆体樹脂を加熱することが可能となり、その加熱工程において前記添加化合物(前記第二成分)が反応を促進させる触媒として働くことから、最終的に得られるポリイミドの分子量を向上させることも可能となる。 When the polyimide precursor resin composition thus obtained is heated, the polyimide precursor resin can be heated in the presence of the additive compound (second component) and a solvent, and the heating step Since the additive compound (second component) serves as a catalyst for promoting the reaction, the molecular weight of the finally obtained polyimide can be improved.
 また、このような添加化合物(前記第二成分)の使用量は、方法(I-1)に用いられる前記テトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種の量(前記前記一般式(1)~(4)で表される化合物及び必要に応じて添加される他のテトラカルボン酸二無水物並びにそれらの誘導体の総量)と、方法(I-1)に用いられる前記一般式(ii)で表される芳香族ジアミンの量(式:YN-R-NYで表される化合物の総量)と、方法(I-1)に用いられる前記添加化合物(前記第二成分)の量との合計量に対して、前記添加化合物の割合(添加量)が0.1~30質量%となる量であることが好ましく、0.5~10質量%となる量であることがより好ましい。このような添加化合物(前記第二成分)の含有量が前記下限未満では、得られるポリイミド前駆体樹脂組成物を用いてポリイミドを形成する場合に、ポリイミドの分子量の向上を図ることが困難となり、そのような組成物を用いてポリイミドを製造しても、ポリイミドの耐熱性、機械的強度が低下する傾向にあり、他方、前記上限を超えると、得られるポリイミド前駆体樹脂組成物を用いてポリイミドを製造する際に副反応が進行し、均一なポリイミドが得られなくなり、得られるポリイミドの諸物性が低下してしまう傾向にある。なお、前記添加化合物の割合(添加量)を調製するために、添加化合物を加える際に併せて溶媒を再度添加してもよい。 In addition, the amount of the additive compound (second component) used is at least one amount selected from the group consisting of the tetracarboxylic dianhydride and derivatives thereof used in Method (I-1) ( The compound represented by the above general formulas (1) to (4) and other tetracarboxylic dianhydrides and their derivatives added as necessary, and the method (I-1). The amount of the aromatic diamine represented by the general formula (ii) (the total amount of the compound represented by the formula: Y 2 N—R 4 —NY 2 ) and the additive compound used in the method (I-1) ( The amount of the additive compound (addition amount) is preferably 0.1 to 30% by mass, and preferably 0.5 to 10% by mass with respect to the total amount of the second component). More preferably, it is an amount. If the content of such an additive compound (second component) is less than the lower limit, it is difficult to improve the molecular weight of the polyimide when forming the polyimide using the resulting polyimide precursor resin composition, Even if a polyimide is produced using such a composition, the heat resistance and mechanical strength of the polyimide tend to be reduced. On the other hand, if the upper limit is exceeded, the polyimide precursor resin composition obtained is used to obtain a polyimide. The side reaction proceeds during the production of the product, a uniform polyimide cannot be obtained, and the physical properties of the resulting polyimide tend to be reduced. In addition, in order to adjust the ratio (addition amount) of the additive compound, the solvent may be added again when the additive compound is added.
 このようにして、上記一般式(I)~(III)で表される繰り返し単位からなる群から選択される少なくとも1種の繰り返し単位を有するポリイミド前駆体樹脂と、前記添加化合物と、前記溶媒とを含むポリイミド前駆体樹脂組成物を得ることができる。 Thus, a polyimide precursor resin having at least one repeating unit selected from the group consisting of the repeating units represented by the general formulas (I) to (III), the additive compound, the solvent, The polyimide precursor resin composition containing can be obtained.
 なお、このような方法(I-1)において、前記テトラカルボン酸二無水物を用い、かつ、前記芳香族ジアミンとして上記式:HN-R-NHで表される化合物を用いた場合には、上記一般式(I)~(III)で表される繰り返し単位からなる群から選択される少なくとも1種の繰り返し単位を有し、かつ、該繰り返し単位の一般式中のY及びYがいずれも水素原子であるポリアミド酸からなるポリイミド前駆体樹脂と、前記添加化合物と、前記溶媒とを含むポリイミド前駆体樹脂組成物を得ることができる。 In such a method (I-1), the tetracarboxylic dianhydride was used, and the compound represented by the above formula: H 2 N—R 4 —NH 2 was used as the aromatic diamine. In this case, it has at least one repeating unit selected from the group consisting of repeating units represented by the above general formulas (I) to (III), and Y 1 in the general formula of the repeating unit and A polyimide precursor resin composition comprising a polyimide precursor resin composed of a polyamic acid in which all Y 2 are hydrogen atoms, the additive compound, and the solvent can be obtained.
 以上、本発明のポリイミド前駆体樹脂組成物を製造するための方法を、その好適な方法である方法(I)及び(I-1)に基づいて説明したが、本発明のポリイミド前駆体樹脂組成物を製造するための方法は上記方法に限定されるものではなく、分子内に2つのノルボルナン骨格を有するテトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種とジアミンとの重合体であるポリイミド前駆体樹脂と;分子内にリン原子と炭素原子が直接結合する式:C-Pで表される構造を含む3級リン化合物、分子内にリン原子と炭素原子が直接結合する式:C-Pで表される構造を含む4級リン化合物、及び4級アミン化合物からなる群から選択される少なくとも1種の添加化合物と;溶媒と;を含有するポリイミド前駆体樹脂組成物を得ることが可能な方法であれば、適宜採用することができる。 The method for producing the polyimide precursor resin composition of the present invention has been described based on the preferred methods (I) and (I-1). The polyimide precursor resin composition of the present invention has been described above. The method for producing the product is not limited to the above-described method, and is a mixture of at least one selected from the group consisting of tetracarboxylic dianhydrides having two norbornane skeletons in the molecule and derivatives thereof and a diamine. A polyimide precursor resin that is a polymer; a formula in which a phosphorus atom and a carbon atom are directly bonded in a molecule: a tertiary phosphorus compound including a structure represented by CP; a phosphorus atom and a carbon atom are directly bonded in a molecule A polyimide precursor containing: a quaternary phosphorus compound having a structure represented by C—P; and at least one additive compound selected from the group consisting of quaternary amine compounds; a solvent; As long as the method capable of obtaining a fat composition, it may be employed as appropriate.
 また、このようにして得られる本発明のポリイミド前駆体樹脂組成物は、これをポリイミド調製用のワニス(樹脂溶液)として利用し、該ポリイミド前駆体樹脂組成物をイミド化することで、ポリイミド樹脂組成物(ポリイミドと前記添加化合物とを含有する組成物)を得ることができる。 Moreover, the polyimide precursor resin composition of the present invention obtained in this way is used as a varnish (resin solution) for polyimide preparation, and the polyimide precursor resin composition is imidized to obtain a polyimide resin. A composition (a composition containing polyimide and the additive compound) can be obtained.
 このようなポリイミド樹脂組成物を得るための方法は、特に制限されず、前記ポリイミド樹脂組成物中のポリイミド前駆体樹脂をイミド化してポリイミドとすることが可能な公知の方法を適宜採用することができる。このようなイミド化の方法としては特に制限されず、前記ポリイミド前駆体樹脂をイミド化することが可能な公知の方法を適宜採用することができ、例えば、ポリイミド前駆体樹脂がポリアミド酸である場合、国際公開第2011/099518号に記載されているイミド化の方法や、国際公開第2015/163314号に記載されているイミド化の方法、国際公開第2017/030019号に記載されているイミド化の方法、等を適宜採用できる。また、このようなイミド化の方法としてはいわゆる化学イミド化法(上記本発明のポリイミド前駆体樹脂組成物中のポリイミド前駆体樹脂(好ましくはポリアミド酸)を、公知のイミド化剤を用いてイミド化する方法)、上記本発明のポリイミド前駆体樹脂組成物を60~450℃(より好ましくは80~400℃)の温度条件で加熱する処理を施すことによりポリイミド前駆体樹脂組成物中のポリイミド前駆体樹脂(好ましくはポリアミド酸)をイミド化する方法等を採用することが好ましい。 The method for obtaining such a polyimide resin composition is not particularly limited, and a known method capable of imidizing the polyimide precursor resin in the polyimide resin composition to form a polyimide can be appropriately adopted. it can. The imidization method is not particularly limited, and a known method capable of imidizing the polyimide precursor resin can be appropriately employed. For example, when the polyimide precursor resin is a polyamic acid. , Imidation method described in International Publication No. 2011/099518, imidization method described in International Publication No. 2015/163314, imidation described in International Publication No. 2017/030019 These methods can be employed as appropriate. Further, as such an imidization method, a so-called chemical imidization method (a polyimide precursor resin (preferably a polyamic acid) in the polyimide precursor resin composition of the present invention described above is converted into an imide using a known imidizing agent). And the polyimide precursor resin composition of the present invention is heated at a temperature of 60 to 450 ° C. (more preferably 80 to 400 ° C.) to give a polyimide precursor in the polyimide precursor resin composition. It is preferable to employ a method of imidizing a body resin (preferably polyamic acid).
 なお、上記一般式(I)で表される繰り返し単位を有するポリイミド前駆体樹脂をイミド化してポリイミドを調製した場合、下記一般式(I’): When a polyimide is prepared by imidizing a polyimide precursor resin having a repeating unit represented by the above general formula (I), the following general formula (I ′):
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
[式中、Xは上記一般式(I-1)~(I-3)で表される4価の基からなる群から選択される少なくとも1種を示し、R10は炭素数6~50のアリーレン基を示す。]
で表される繰り返し単位を有するポリイミドを得ることができる。なお、上記一般式(I’)中のX及びR10は、上記一般式(I)中のX及びR10と同義であり、その好適なものも同様である。
[Wherein, X 1 represents at least one selected from the group consisting of tetravalent groups represented by the above general formulas (I-1) to (I-3), and R 10 has 6 to 50 carbon atoms. An arylene group of ]
The polyimide which has a repeating unit represented by this can be obtained. Incidentally, X 1 and R 10 in the general formula (I ') has the same meaning as X 1 and R 10 in the formula (I), is the same as the preferable examples.
 また、上記一般式(II)~(III)で表される繰り返し単位のうちの少なくとも1種を有するポリイミド前駆体樹脂をイミド化してポリイミドを調製した場合、下記一般式(II’): Further, when a polyimide is prepared by imidizing a polyimide precursor resin having at least one of the repeating units represented by the general formulas (II) to (III), the following general formula (II ′):
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
[式中、R10は炭素数6~50のアリーレン基を示す。]
で表される繰り返し単位を有するポリイミドを得ることができる。なお、上記一般式(II’)中のR10は、上記一般式(II)中のR10と同義であり、その好適なものも同様である。
[Wherein R 10 represents an arylene group having 6 to 50 carbon atoms. ]
The polyimide which has a repeating unit represented by this can be obtained. In addition, R < 10 > in the said general formula (II ') is synonymous with R < 10 > in the said general formula (II), The suitable thing is also the same.
 また、このような本発明のポリイミド前駆体樹脂組成物をポリイミド調製用のワニス(樹脂溶液)として利用してポリイミド樹脂組成物を調製した場合(本発明のポリイミド前駆体樹脂組成物のイミド化物を調製した場合)には、線膨張係数、ガラス転移温度及び全光線透過率といった特性を十分に高度な水準に維持しつつ、より高い靭性を有するポリイミドを効率よくかつ確実に製造することが可能となる。なお、このようにして本発明のポリイミド前駆体樹脂組成物を用いて得られるポリイミドは、その特性から、例えば、フレキシブル配線基板用フィルム、耐熱絶縁テープ、電線エナメル、半導体の保護コーティング剤、半導体の再配線用絶縁膜、液晶配向膜、有機EL用透明導電性フィルム、フレキシブル基板フィルム、フレキシブル透明導電性フィルム、有機薄膜型太陽電池用透明導電性フィルム、色素増感型太陽電池用透明導電性フィルム、フレキシブルガスバリアフィルム、タッチパネル用フィルム、フラットパネルディテクタ用TFT基板フィルム、複写機用シームレスポリイミドベルト(いわゆる転写ベルト)、透明電極基板(有機EL用透明電極基板、太陽電池用透明電極基板、電子ペーパーの透明電極基板等)、層間絶縁膜、センサー基板、イメージセンサーの基板、発光ダイオード(LED)の反射板(LED照明の反射板:LED反射板)、LED照明用のカバー、LED反射板照明用カバー、カバーレイフィルム、高延性複合体基板、半導体向けレジスト、リチウムイオンバッテリー、有機メモリ用基板、有機トランジスタ用基板、有機半導体用基板、カラーフィルタ基材等を製造するための材料として特に有用である。また、このような本発明のポリイミド前駆体樹脂組成物を用いて得られるポリイミドは、上述のような用途以外にも、その形状を粉状体としたり、各種成形体とすること等により、例えば、自動車用部品、航空宇宙用部品、軸受部品、シール材、ベアリング部品、ギアホイールおよびバルブ部品などに適宜利用することも可能である。 In addition, when a polyimide resin composition is prepared using such a polyimide precursor resin composition of the present invention as a varnish (resin solution) for polyimide preparation (an imidized product of the polyimide precursor resin composition of the present invention). When prepared, it is possible to efficiently and reliably produce polyimide having higher toughness while maintaining characteristics such as linear expansion coefficient, glass transition temperature and total light transmittance at a sufficiently high level. Become. In addition, the polyimide obtained by using the polyimide precursor resin composition of the present invention in this way has, for example, a film for a flexible wiring board, a heat-resistant insulating tape, a wire enamel, a semiconductor protective coating agent, and a semiconductor protective coating. Insulating film for rewiring, liquid crystal alignment film, transparent conductive film for organic EL, flexible substrate film, flexible transparent conductive film, transparent conductive film for organic thin film solar cell, transparent conductive film for dye-sensitized solar cell , Flexible gas barrier film, film for touch panel, TFT substrate film for flat panel detector, seamless polyimide belt for copying machine (so-called transfer belt), transparent electrode substrate (transparent electrode substrate for organic EL, transparent electrode substrate for solar cell, electronic paper Transparent electrode substrate), interlayer insulation film, Sensor substrate, image sensor substrate, light emitting diode (LED) reflector (LED illumination reflector: LED reflector), LED illumination cover, LED reflector illumination cover, coverlay film, high ductility composite substrate It is particularly useful as a material for producing resists for semiconductors, lithium ion batteries, organic memory substrates, organic transistor substrates, organic semiconductor substrates, color filter base materials and the like. Moreover, the polyimide obtained by using such a polyimide precursor resin composition of the present invention can have a shape other than the above-described uses, such as a powdered body, various molded bodies, etc. It can also be used as appropriate for automobile parts, aerospace parts, bearing parts, seal materials, bearing parts, gear wheels, valve parts, and the like.
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to the following examples.
 (合成例1:CpODAの合成)
 国際公開第2011/099518号の合成例1、実施例1及び実施例2に記載された方法に準拠して、下記一般式(A):
(Synthesis Example 1: Synthesis of CpODA)
In accordance with the method described in Synthesis Example 1, Example 1 and Example 2 of International Publication No. 2011/099518, the following general formula (A):
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
で表されるテトラカルボン酸二無水物(ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物:以下、上記一般式(A)で表されるテトラカルボン酸二無水物を「CpODA」と称する)を合成した。 A tetracarboxylic dianhydride represented by the formula (norbornane-2-spiro-α-cyclopentanone-α′-spiro-2 ″ -norbornane-5,5 ″, 6,6 ″ -tetracarboxylic acid Anhydride: The tetracarboxylic dianhydride represented by the general formula (A) is hereinafter referred to as “CpODA”).
 (合成例2:BNBDAの合成)
 国際公開第2017/030019号の実施例1~2に記載された方法に準拠して、下記一般式(B):
(Synthesis Example 2: Synthesis of BNBDA)
In accordance with the method described in Examples 1-2 of WO2017 / 030019, the following general formula (B):
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
で表されるテトラカルボン酸二無水物(以下、「BNBDA」と称する)を合成した。 A tetracarboxylic dianhydride represented by (hereinafter referred to as “BNBDA”) was synthesized.
 (合成例3:BzDAの合成)
 国際公開第2015/163314号の実施例1に記載された方法に準拠して、下記一般式(C):
(Synthesis Example 3: Synthesis of BzDA)
In accordance with the method described in Example 1 of WO2015 / 163314, the following general formula (C):
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
で表されるテトラカルボン酸二無水物(以下、「BzDA」と称する)を調製した。 A tetracarboxylic dianhydride represented by (hereinafter referred to as “BzDA”) was prepared.
 (合成例4:DNDAの合成)
 1994年に発行されたMacromolecules誌(第27巻)の1117頁~1123頁に記載された方法に準拠して、下記一般式(D):
(Synthesis Example 4: Synthesis of DNDA)
In accordance with the method described on pages 1117 to 1123 of Macromolecules (Vol. 27) published in 1994, the following general formula (D):
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
で表されるテトラカルボン酸二無水物(以下、「DNDA」と称する)を調製した。 A tetracarboxylic dianhydride represented by the formula (hereinafter referred to as “DNDA”) was prepared.
 <モノマー等の略称について>
 以下の実施例等において用いたテトラカルボン酸二無水物、芳香族ジアミン、及び、添加化合物について、略称等を以下に記載する。なお、実施例中の記載には、場合により下記略称等を利用する。
<About abbreviations of monomers, etc.>
Abbreviations and the like are described below for the tetracarboxylic dianhydrides, aromatic diamines, and additive compounds used in the following Examples and the like. In addition, the following abbreviations etc. are utilized for the description in an Example depending on the case.
 (1)テトラカルボン酸二無水物
 CpODA :上記一般式(A)で表されるテトラカルボン酸二無水物(合成例1)
 BNBDA :上記一般式(B)で表されるテトラカルボン酸二無水物(合成例2)
 6FDA  :4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(東京化成工業株式会社製)
 BzDA  :上記一般式(C)で表されるテトラカルボン酸二無水物(合成例3)
 DNDA  :上記一般式(D)で表されるテトラカルボン酸二無水物(合成例4)
 (2)芳香族ジアミン
 DABAN :4,4’-ジアミノベンズアニリド(日本純良薬品株式会社製)
 PPD   :1,4-パラフェニレンジアミン(東京化成工業株式会社製)
 TFMB  :2,2’-ビス(トリフルオロメチル)ベンジジン(セイカ工業株式会社製)
 DDE   :4,4’-ジアミノジフェニルエーテル(東京化成工業株式会社製)
 m-Tol :m-トリジン(別名;2,2’-ジメチルベンジジン、東京化成工業株式会社製)
 (3)添加化合物
 3級リン化合物(A)  :トリフェニルホスフィン(商品名「TPP」:北興化学工業製)
 3級リン化合物(B)  :トリパラトリルホスフィン(商品名「TPTP」:北興化学工業製)
 4級アミン化合物(A) :テトラメチルアンモニウムブロミド(東京化成工業株式会社製)
 4級リン化合物(A):ベンジルトリフェニルホスホニウムブロマイド(商品名「U-cat 5003」:サンアプロ株式会社製)。
(1) Tetracarboxylic dianhydride CpODA: tetracarboxylic dianhydride represented by the above general formula (A) (Synthesis Example 1)
BNBDA: tetracarboxylic dianhydride represented by the above general formula (B) (Synthesis Example 2)
6FDA: 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.)
BzDA: tetracarboxylic dianhydride represented by the above general formula (C) (Synthesis Example 3)
DNDA: tetracarboxylic dianhydride represented by the above general formula (D) (Synthesis Example 4)
(2) Aromatic diamine DABAN: 4,4'-diaminobenzanilide (manufactured by Nippon Pure Chemicals Co., Ltd.)
PPD: 1,4-paraphenylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
TFMB: 2,2′-bis (trifluoromethyl) benzidine (manufactured by Seika Industry Co., Ltd.)
DDE: 4,4′-diaminodiphenyl ether (manufactured by Tokyo Chemical Industry Co., Ltd.)
m-Tol: m-tolidine (also known as 2,2′-dimethylbenzidine, manufactured by Tokyo Chemical Industry Co., Ltd.)
(3) Additive Compound Tertiary Phosphorus Compound (A): Triphenylphosphine (trade name “TPP”: manufactured by Hokuko Chemical Industries)
Tertiary phosphorus compound (B): Triparatolylphosphine (trade name “TPTP”: manufactured by Hokuko Chemical Industries)
Quaternary amine compound (A): Tetramethylammonium bromide (manufactured by Tokyo Chemical Industry Co., Ltd.)
Quaternary phosphorus compound (A): benzyltriphenylphosphonium bromide (trade name “U-cat 5003”: San Apro Co., Ltd.).
 (実施例1)
 〈第一工程〉
 窒素雰囲気下において、100mLのスクリュー管内に、芳香族ジアミンとしてDABAN4.54g(20.00mmol)を導入するとともに、テトラカルボン酸二無水物としてCpODA7.69g(20.00mmol)を導入した。次いで、前記スクリュー管内に、溶媒であるジメチルアセトアミド(N,N-ジメチルアセトアミド)を48.9g添加して混合液を得た。次に、得られた混合液を、窒素雰囲気下、室温の温度条件下で6時間撹拌して反応液を得た。
Example 1
<First step>
Under a nitrogen atmosphere, DABAN 4.54 g (20.00 mmol) was introduced as an aromatic diamine into a 100 mL screw tube, and CpODA 7.69 g (20.00 mmol) was introduced as a tetracarboxylic dianhydride. Next, 48.9 g of dimethylacetamide (N, N-dimethylacetamide) as a solvent was added into the screw tube to obtain a mixed solution. Next, the obtained mixed liquid was stirred for 6 hours under a nitrogen atmosphere at room temperature to obtain a reaction liquid.
 〈第二工程〉
 上記第一工程で調製した反応液を5.92g取り分けて10mLのスクリュー管に導入した後、前記反応液に溶媒であるジメチルアセトアミド(N,N-ジメチルアセトアミド)1.99g及び前記添加化合物であるトリフェニルホスフィン(3級リン化合物(A))0.118gを添加した後、室温の温度条件下で6時間撹拌することにより、CpODAとDABANとの重合体であるポリアミド酸と、3級リン化合物(A)と、溶媒(ジメチルアセトアミド)とを含むポリイミド前駆体樹脂組成物を得た。
<Second step>
After separating 5.92 g of the reaction solution prepared in the first step and introducing it into a 10 mL screw tube, 1.99 g of dimethylacetamide (N, N-dimethylacetamide) as a solvent and the additive compound were added to the reaction solution. After adding 0.118 g of triphenylphosphine (tertiary phosphorus compound (A)) and stirring at room temperature for 6 hours, polyamic acid which is a polymer of CpODA and DABAN and tertiary phosphorus compound A polyimide precursor resin composition containing (A) and a solvent (dimethylacetamide) was obtained.
 (実施例2)
 実施例1の第一工程で得られた反応液を用いて、該反応液を3.07g取り分けて10mLのスクリュー管に導入した後、該反応液に溶媒であるジメチルアセトアミド(N,N-ジメチルアセトアミド)1.01g及びトリパラトリルホスフィン(3級リン化合物(B))0.029gを添加した後、室温の温度条件下で6時間撹拌することにより、CpODAとDABANとの重合体であるポリアミド酸と、3級リン化合物(B)と、溶媒(ジメチルアセトアミド)とを含むポリイミド前駆体樹脂組成物を得た。
(Example 2)
Using the reaction solution obtained in the first step of Example 1, 3.07 g of the reaction solution was separated and introduced into a 10 mL screw tube, and then dimethylacetamide (N, N-dimethyl) as a solvent was added to the reaction solution. After adding 1.01 g of acetamide) and 0.029 g of triparatolylphosphine (tertiary phosphorus compound (B)), the mixture is stirred at room temperature for 6 hours, thereby polyamic acid which is a polymer of CpODA and DABAN Then, a polyimide precursor resin composition containing a tertiary phosphorus compound (B) and a solvent (dimethylacetamide) was obtained.
 (実施例3)
 〈第一工程〉
 窒素雰囲気下において、50mLのスクリュー管内に、芳香族ジアミンとしてDABAN1.70g(7.50mmol)及びPPD0.27g(2.50mmol)を導入するとともに、テトラカルボン酸二無水物としてCpODA3.84g(10.00mmol)を導入した。次いで、前記スクリュー管内に、ジメチルアセトアミド(N,N-ジメチルアセトアミド)を23.3g添加して混合液を得た。次に、得られた混合液を、窒素雰囲気下、室温の温度条件下で6時間撹拌して反応液を得た。
(Example 3)
<First step>
Under a nitrogen atmosphere, 1.70 g (7.50 mmol) of DABAN and 0.27 g (2.50 mmol) of PPD as aromatic diamine were introduced into a 50 mL screw tube, and 3.84 g (10.10 of CpODA as tetracarboxylic dianhydride). 00 mmol) was introduced. Next, 23.3 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, the obtained mixed liquid was stirred for 6 hours under a nitrogen atmosphere at room temperature to obtain a reaction liquid.
 〈第二工程〉
 上記第一工程で調製した反応液を3.91g取り分けて10mLのスクリュー管に導入した後、該反応液に溶媒であるジメチルアセトアミド(N,N-ジメチルアセトアミド)1.30g及び前記添加化合物であるトリフェニルホスフィン(3級リン化合物(A))0.077gを添加した後、室温の温度条件下で6時間撹拌することにより、CpODAとDABAN及びPPDとの重合体であるポリアミド酸と、3級リン化合物(A)と、溶媒(ジメチルアセトアミド)とを含むポリイミド前駆体樹脂組成物を得た。
<Second step>
After separating 3.91 g of the reaction solution prepared in the first step and introducing it into a 10 mL screw tube, 1.30 g of dimethylacetamide (N, N-dimethylacetamide) as a solvent and the additive compound were added to the reaction solution. After adding 0.077 g of triphenylphosphine (tertiary phosphorus compound (A)) and stirring for 6 hours at room temperature, polyamic acid which is a polymer of CpODA, DABAN and PPD, and tertiary A polyimide precursor resin composition containing a phosphorus compound (A) and a solvent (dimethylacetamide) was obtained.
 (実施例4)
 〈第一工程〉
 窒素雰囲気下において、50mLのスクリュー管内に、芳香族ジアミンとしてDABAN1.14g(5.00mmol)及びPPD0.541g(5.00mmol)を導入するとともに、テトラカルボン酸二無水物としてCpODA3.84g(10.0mmol)を導入した。次いで、前記スクリュー管内に、ジメチルアセトアミド(N,N-ジメチルアセトアミド)を22.1g添加して混合液を得た。次に、得られた混合液を、窒素雰囲気下、室温の温度条件下で6時間撹拌して反応液を得た。
Example 4
<First step>
Under a nitrogen atmosphere, DABAN 1.14 g (5.00 mmol) and PPD 0.541 g (5.00 mmol) are introduced as aromatic diamines into a 50 mL screw tube, and CpODA 3.84 g (10. 0 mmol) was introduced. Next, 22.1 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, the obtained mixed liquid was stirred for 6 hours under a nitrogen atmosphere at room temperature to obtain a reaction liquid.
 〈第二工程〉
 上記第一工程で調製した反応液を4.41g取り分けて10mLのスクリュー管に導入した後、該反応液に溶媒であるジメチルアセトアミド(N,N-ジメチルアセトアミド)1.48g及び前記添加化合物であるトリフェニルホスフィン(3級リン化合物(A))0.086gを添加した後、室温の温度条件下で6時間撹拌することにより、CpODAとDABAN及びPPDとの重合体であるポリアミド酸と、3級リン化合物(A)と、溶媒(ジメチルアセトアミド)とを含むポリイミド前駆体樹脂組成物を得た。
<Second step>
After 4.41 g of the reaction solution prepared in the first step was introduced into a 10 mL screw tube, 1.48 g of dimethylacetamide (N, N-dimethylacetamide) as a solvent and the additive compound were added to the reaction solution. After adding 0.086 g of triphenylphosphine (tertiary phosphorus compound (A)) and stirring for 6 hours at room temperature, polyamic acid which is a polymer of CpODA, DABAN and PPD, and tertiary A polyimide precursor resin composition containing a phosphorus compound (A) and a solvent (dimethylacetamide) was obtained.
 (実施例5)
 〈第一工程〉
 窒素雰囲気下において、50mLのスクリュー管内に、芳香族ジアミンとしてDABAN1.14g(5.00mmol)及びTFMB1.60g(5.00mmol)を導入するとともに、テトラカルボン酸二無水物としてCpODA3.84g(10.0mmol)を導入した。次いで、前記スクリュー管内に、ジメチルアセトアミド(N,N-ジメチルアセトアミド)を26.3g添加して混合液を得た。次に、得られた混合液を、窒素雰囲気下、室温の温度条件下で6時間撹拌して反応液を得た。
(Example 5)
<First step>
Under a nitrogen atmosphere, DABAN 1.14 g (5.00 mmol) and TFMB 1.60 g (5.00 mmol) were introduced as aromatic diamines into a 50 mL screw tube, and CpODA 3.84 g (10. 0 mmol) was introduced. Next, 26.3 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, the obtained mixed liquid was stirred for 6 hours under a nitrogen atmosphere at room temperature to obtain a reaction liquid.
 〈第二工程〉
 上記第一工程で調製した反応液を3.52g取り分けて10mLのスクリュー管に導入した後、該反応液に溶媒であるジメチルアセトアミド(N,N-ジメチルアセトアミド)1.28g及び前記添加化合物であるトリフェニルホスフィン(3級リン化合物(A))0.073gを添加した後、室温の温度条件下で6時間撹拌することにより、CpODAとDABAN及びTFMBとの重合体であるポリアミド酸と、3級リン化合物(A)と、溶媒(ジメチルアセトアミド)とを含むポリイミド前駆体樹脂組成物を得た。
<Second step>
After separating 3.52 g of the reaction solution prepared in the first step and introducing it into a 10 mL screw tube, 1.28 g of dimethylacetamide (N, N-dimethylacetamide) as a solvent and the additive compound were added to the reaction solution. After adding 0.073 g of triphenylphosphine (tertiary phosphorus compound (A)) and stirring for 6 hours at room temperature, polyamic acid which is a polymer of CpODA, DABAN and TFMB, and tertiary A polyimide precursor resin composition containing a phosphorus compound (A) and a solvent (dimethylacetamide) was obtained.
 (実施例6)
 〈第一工程〉
 窒素雰囲気下において、50mLのスクリュー管内に、芳香族ジアミンとしてDABAN0.909g(4.00mmol)及びDDE0.200g(1.00mmol)を導入するとともに、テトラカルボン酸二無水物としてBNBDA1.65g(5.00mmol)を導入した。次いで、前記スクリュー管内に、ジメチルアセトアミド(N,N-ジメチルアセトアミド)を11.0g添加して混合液を得た。次に、得られた混合液を、窒素雰囲気下、室温の温度条件下で6時間撹拌して反応液を得た。
(Example 6)
<First step>
Under a nitrogen atmosphere, DABAN 0.909 g (4.00 mmol) and DDE 0.200 g (1.00 mmol) were introduced as aromatic diamines into a 50 mL screw tube, and BNBDA 1.65 g (5. 00 mmol) was introduced. Next, 11.0 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, the obtained mixed liquid was stirred for 6 hours under a nitrogen atmosphere at room temperature to obtain a reaction liquid.
 〈第二工程〉
 上記第一工程で調製した反応液を4.65g取り分けて10mLのスクリュー管に導入した後、該反応液に溶媒であるジメチルアセトアミド(N,N-ジメチルアセトアミド)1.69g及び前記添加化合物であるトリフェニルホスフィン(3級リン化合物(A))0.093gを添加した後、室温の温度条件下で6時間撹拌することにより、BNBDAとDABAN及びDDEとの重合体であるポリアミド酸と、3級リン化合物(A)と、溶媒(ジメチルアセトアミド)とを含むポリイミド前駆体樹脂組成物を得た。
<Second step>
After 4.65 g of the reaction liquid prepared in the first step was separated and introduced into a 10 mL screw tube, 1.69 g of dimethylacetamide (N, N-dimethylacetamide) as a solvent and the additive compound were added to the reaction liquid. After adding 0.093 g of triphenylphosphine (tertiary phosphorus compound (A)) and stirring for 6 hours at room temperature, polyamic acid, which is a polymer of BNBDA, DABAN and DDE, and tertiary A polyimide precursor resin composition containing a phosphorus compound (A) and a solvent (dimethylacetamide) was obtained.
 (実施例7)
 〈第一工程〉
 窒素雰囲気下において、50mLのスクリュー管内に、芳香族ジアミンとしてDABAN0.909g(4.00mmol)及びTFMB0.320g(1.00mmol)を導入するとともに、テトラカルボン酸二無水物としてBNBDA1.65g(5.00mmol)を導入した。次いで、前記スクリュー管内に、ジメチルアセトアミド(N,N-ジメチルアセトアミド)を11.5g添加して混合液を得た。次に、得られた混合液を、窒素雰囲気下、室温の温度条件下で6時間撹拌して反応液を得た。
(Example 7)
<First step>
Under a nitrogen atmosphere, DABAN 0.909 g (4.00 mmol) and TFMB 0.320 g (1.00 mmol) were introduced as aromatic diamines into a 50 mL screw tube, and BNBDA 1.65 g (5. 00 mmol) was introduced. Next, 11.5 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, the obtained mixed liquid was stirred for 6 hours under a nitrogen atmosphere at room temperature to obtain a reaction liquid.
 〈第二工程〉
 上記第一工程で調製した反応液を4.65g取り分けて10mLのスクリュー管に導入した後、該反応液に溶媒であるジメチルアセトアミド(N,N-ジメチルアセトアミド)1.50g及び前記添加化合物であるトリフェニルホスフィン(3級リン化合物(A))0.099gを添加した後、室温の温度条件下で6時間撹拌することにより、BNBDAとDABAN及びTFMBとの重合体であるポリアミド酸と、3級リン化合物(A)と、溶媒(ジメチルアセトアミド)とを含むポリイミド前駆体樹脂組成物を得た。
<Second step>
4.65 g of the reaction solution prepared in the first step was separated and introduced into a 10 mL screw tube, and then 1.50 g of dimethylacetamide (N, N-dimethylacetamide) as a solvent and the additive compound were added to the reaction solution. After adding 0.099 g of triphenylphosphine (tertiary phosphorus compound (A)) and stirring for 6 hours at room temperature, polyamic acid which is a polymer of BNBDA, DABAN and TFMB, and tertiary A polyimide precursor resin composition containing a phosphorus compound (A) and a solvent (dimethylacetamide) was obtained.
 (比較例1)
 実施例1の第一工程で得られた反応液をそのまま、比較のためのポリイミド前駆体樹脂組成物として利用した。
(Comparative Example 1)
The reaction solution obtained in the first step of Example 1 was used as it was as a polyimide precursor resin composition for comparison.
 (比較例2)
 実施例1の第一工程で得られた反応液を用いて、該反応液を4.53g取り分けて10mLのスクリュー管に導入した後、該反応液に溶媒であるジメチルアセトアミド(N,N-ジメチルアセトアミド)1.65g及び亜リン酸トリメチル0.091gを添加した後、室温の温度条件下で6時間撹拌することにより、CpODAとDABANとの重合体であるポリアミド酸と、亜リン酸トリメチルと、溶媒(ジメチルアセトアミド)とを含むポリイミド前駆体樹脂組成物を得た。
(Comparative Example 2)
Using the reaction liquid obtained in the first step of Example 1, 4.53 g of the reaction liquid was separated and introduced into a 10 mL screw tube, and then dimethylacetamide (N, N-dimethyl) as a solvent was added to the reaction liquid. Acetamide) 1.65 g and trimethyl phosphite 0.091 g were added, and the mixture was stirred at room temperature for 6 hours, so that polyamic acid, which is a polymer of CpODA and DABAN, trimethyl phosphite, A polyimide precursor resin composition containing a solvent (dimethylacetamide) was obtained.
 [実施例1~7及び比較例1~2で得られたポリイミド前駆体樹脂組成物の特性の評価]
 <ポリイミドの調製>
 実施例1~7及び比較例1~2で得られたポリイミド前駆体樹脂組成物をそれぞれポリイミド製造用のポリアミド酸ワニスとして利用して、以下のようにしてポリイミドからなるフィルムを調製した。すなわち、先ず、前記ポリイミド前駆体樹脂組成物を大型スライドグラス(松浪硝子工業株式会社製の商品名「S9213」、縦:76mm、横52mm、厚み1.3mm)上にスピンコートし、ガラス板上に前記ポリイミド前駆体樹脂組成物の塗膜を形成した。その後、前記塗膜の形成されたガラス板をオーブンに投入し、温度条件を70℃として、窒素雰囲気下において2時間静置し、次いで、温度条件を135℃に変更して30分間静置し、更に、温度条件をポリイミド前駆体樹脂組成物の種類ごとに、表1に示す最終加熱温度(実施例1及び比較例1:370℃、実施例2~7及び比較例2:350℃)に変更して、該最終加熱温度の温度条件下において30分間静置することにより、前記塗膜を硬化せしめ、前記ガラス基板上にポリイミドからなる薄膜(ポリイミドからなるフィルム)がコートされたポリイミドコートガラスを得た。次いで、このようにして得られたポリイミドコートガラスをオーブンから取り出し、該ポリイミドコートガラスを90℃のお湯の中に0.5時間浸け、前記ガラス基板からフィルムを剥離して回収することにより、ポリイミドからなるフィルムを得た。なお、得られたポリイミドからなるフィルムはいずれも、その色を目視にて確認したところ、無色透明であることが確認された。また、得られたポリイミドからなるフィルムの厚みを表1に示す。
[Evaluation of characteristics of polyimide precursor resin compositions obtained in Examples 1 to 7 and Comparative Examples 1 and 2]
<Preparation of polyimide>
Using the polyimide precursor resin compositions obtained in Examples 1 to 7 and Comparative Examples 1 and 2 as polyamic acid varnishes for producing polyimide, films made of polyimide were prepared as follows. That is, first, the polyimide precursor resin composition was spin-coated on a large slide glass (trade name “S9213” manufactured by Matsunami Glass Industrial Co., Ltd., length: 76 mm, width 52 mm, thickness 1.3 mm), and then on a glass plate. A coating film of the polyimide precursor resin composition was formed. Thereafter, the glass plate on which the coating film has been formed is put into an oven, the temperature condition is set to 70 ° C., and the mixture is allowed to stand for 2 hours in a nitrogen atmosphere. Furthermore, the temperature conditions were changed to the final heating temperatures shown in Table 1 (Example 1 and Comparative Example 1: 370 ° C., Examples 2 to 7 and Comparative Example 2: 350 ° C.) for each type of polyimide precursor resin composition. A polyimide-coated glass in which the coating film is cured by being changed and allowed to stand for 30 minutes under the temperature condition of the final heating temperature, and a thin film made of polyimide (a film made of polyimide) is coated on the glass substrate Got. Next, the polyimide-coated glass thus obtained is taken out of the oven, and the polyimide-coated glass is immersed in hot water at 90 ° C. for 0.5 hours, and the film is peeled off and collected from the glass substrate. A film consisting of In addition, as for the film which consists of obtained polyimide, when the color was confirmed visually, it was confirmed that it is colorless and transparent. In addition, Table 1 shows the thickness of the obtained film made of polyimide.
 <線膨張係数(CTE)の測定>
 上述のようにして実施例1~7及び比較例1~2で得られたポリイミド前駆体樹脂組成物をそれぞれ利用して得られたポリイミドからなるフィルム(ポリイミド前駆体樹脂組成物のイミド化物)をそれぞれ用いて、得られたポリイミドの線膨張係数を以下のようにして測定した。すなわち、先ず、前記ポリイミドからなるフィルムから、縦:20mm、横:5mmの大きさの測定用のフィルムを形成した(なお、表1に示すような厚みの範囲であれば、厚みは、測定値に特に影響するものではないため各実施例のフィルムの厚みをそのまま採用した)。次に、得られた測定用のフィルムを真空乾燥(120℃、1時間)した後、窒素雰囲気下で200℃で1時間熱処理することにより、測定試料(乾燥フィルム)を調製した。次いで、得られた測定試料(乾燥フィルム)を用い、測定装置として熱機械的分析装置(リガク製の商品名「TMA8311」)を利用して、窒素雰囲気下、引張りモード(49mN)、昇温速度5℃/分の条件を採用して、50℃~200℃における前記試料の長さの変化を測定して、100℃~200℃の温度範囲における1℃あたりの長さの変化の平均値を求めることにより測定した。
<Measurement of linear expansion coefficient (CTE)>
A film made of polyimide obtained by using each of the polyimide precursor resin compositions obtained in Examples 1 to 7 and Comparative Examples 1 and 2 as described above (an imidized polyimide precursor resin composition) was obtained. Using each, the linear expansion coefficient of the obtained polyimide was measured as follows. That is, first, a film for measurement having a size of 20 mm in length and 5 mm in width was formed from the polyimide film (in the case of the thickness range shown in Table 1, the thickness is a measured value. The film thickness of each example was used as it was. Next, the obtained film for measurement was vacuum-dried (120 ° C., 1 hour), and then heat-treated at 200 ° C. for 1 hour in a nitrogen atmosphere to prepare a measurement sample (dry film). Next, using the obtained measurement sample (dry film), using a thermomechanical analyzer (trade name “TMA8311” manufactured by Rigaku) as a measuring device, in a nitrogen atmosphere, in a tensile mode (49 mN), a rate of temperature increase Using the condition of 5 ° C./min, measuring the change in length of the sample from 50 ° C. to 200 ° C., and calculating the average value of the change in length per 1 ° C. in the temperature range of 100 ° C. to 200 ° C. Measured by seeking.
 <ガラス転移温度(Tg)の測定>
 上述のようにして実施例1~7及び比較例1~2で得られたポリイミド前駆体樹脂組成物をそれぞれ利用して得られたポリイミドからなるフィルム(ポリイミド前駆体樹脂組成物のイミド化物)をそれぞれ用いて、得られたポリイミドのガラス転移温度(Tg)の値(単位:℃)を以下のようにして測定した。すなわち、測定試料として前記ポリイミドからなるフィルムから切り出した縦20mm、横5mmの大きさの試料(かかる試料の厚みは測定値に影響するものではないため、実施例で得られたフィルムの厚みのままとした)を用い、かつ、測定装置として熱機械的分析装置(リガク製の商品名「TMA8311」)を用いて、窒素雰囲気下、引張りモード(49mN)、昇温速度5℃/分の条件で測定を行ってTMA曲線を求め、ガラス転移に起因するTMA曲線の変曲点に対し、その前後の曲線を外挿することにより、各実施例で得られたフィルムを構成するポリイミドのガラス転移温度(Tg)の値(単位:℃)を求めた。得られた結果を表1に示す。
<Measurement of glass transition temperature (Tg)>
A film made of polyimide obtained by using each of the polyimide precursor resin compositions obtained in Examples 1 to 7 and Comparative Examples 1 and 2 as described above (an imidized polyimide precursor resin composition) was obtained. Using each, the value (unit: ° C) of the glass transition temperature (Tg) of the obtained polyimide was measured as follows. That is, a sample having a length of 20 mm and a width of 5 mm cut out from the polyimide film as a measurement sample (the thickness of the sample does not affect the measured value, so the thickness of the film obtained in the example remains the same. And using a thermomechanical analyzer (trade name “TMA8311” manufactured by Rigaku) as a measuring device, under a nitrogen atmosphere, in a tensile mode (49 mN), at a temperature rising rate of 5 ° C./min. The TMA curve is obtained by measurement and the glass transition temperature of the polyimide constituting the film obtained in each example is obtained by extrapolating the curve before and after the inflection point of the TMA curve resulting from the glass transition. The value (unit: ° C.) of (Tg) was determined. The obtained results are shown in Table 1.
 <5%重量減少温度(Td5%)の測定>
 ポリイミドの5%重量減少温度は、実施例1~4、実施例6並びに比較例1~2で得られたポリイミド前駆体樹脂組成物をそれぞれ利用して得られたポリイミドからなるフィルム(ポリイミド前駆体樹脂組成物のイミド化物)をそれぞれ用いて、10mg前後の試料を準備し、これをアルミ製サンプルパンに入れ、測定装置として熱重量分析装置(エスアイアイ・ナノテクノロジー株式会社製の商品名「TG/DTA7200」)を使用して、窒素ガス雰囲気下、走査温度を40℃から550℃に設定し、昇温速度10℃/分の条件で加熱して、用いた試料の重量が5%減少する温度を測定することにより求めた。
<Measurement of 5% weight loss temperature (Td 5%)>
The 5% weight loss temperature of polyimide was determined by the films made of polyimide obtained by using the polyimide precursor resin compositions obtained in Examples 1 to 4, Example 6 and Comparative Examples 1 and 2, respectively (polyimide precursor). A sample of about 10 mg was prepared using each of the imidized resin compositions), put in an aluminum sample pan, and a thermogravimetric analyzer (trade name “TG” manufactured by SII Nano Technology Co., Ltd.) as a measuring device. / DTA7200 ”), the scanning temperature is set from 40 ° C. to 550 ° C. in a nitrogen gas atmosphere, and heating is performed at a temperature rising rate of 10 ° C./min, and the weight of the sample used is reduced by 5%. It was determined by measuring the temperature.
 <全光線透過率及び黄色度(YI)の測定>
 上述のようにして実施例1~7及び比較例1~2で得られたポリイミド前駆体樹脂組成物をそれぞれ利用して得られたポリイミドからなるフィルム(ポリイミド前駆体樹脂組成物のイミド化物)をそれぞれ用いて、得られたポリイミドの全光線透過率(単位:%)及び黄色度(YI)を、以下のようにして測定した。すなわち、前記ポリイミドからなるフィルムをそのまま測定用の試料として用い、測定装置として日本電色工業株式会社製の商品名「ヘーズメーターNDH-5000」、日本電色工業株式会社製の商品名「分光色彩計SD6000」をそれぞれ用いて測定を行うことにより、各実施例等で得られたフィルムを構成するポリイミド樹脂組成物の全光線透過率(単位:%)及び黄色度(YI)をそれぞれ求めた。なお、かかる測定に際しては、日本電色工業株式会社製の商品名「ヘーズメーターNDH-5000」で全光線透過率を測定し、日本電色工業株式会社製の商品名「分光色彩計SD6000」で黄色度を測定した。また、全光線透過率は、JIS K7361-1(1997年発行)に準拠した測定を行うことにより求め、また、黄色度(YI)はASTM E313-05(2005年発行)に準拠した測定を行うことにより求めた。得られた結果を表1に示す。
<Measurement of total light transmittance and yellowness (YI)>
A film made of polyimide obtained by using each of the polyimide precursor resin compositions obtained in Examples 1 to 7 and Comparative Examples 1 and 2 as described above (an imidized polyimide precursor resin composition) was obtained. Using each, the total light transmittance (unit:%) and yellowness (YI) of the obtained polyimide were measured as follows. That is, the film made of the polyimide is used as it is as a sample for measurement, and as a measuring device, a trade name “Haze Meter NDH-5000” manufactured by Nippon Denshoku Industries Co., Ltd. The total light transmittance (unit:%) and yellowness (YI) of the polyimide resin composition constituting the film obtained in each example and the like were respectively determined by performing measurement using “total SD6000”. In this measurement, the total light transmittance was measured with a trade name “Haze Meter NDH-5000” manufactured by Nippon Denshoku Industries Co., Ltd. Yellowness was measured. Further, the total light transmittance is obtained by measuring in accordance with JIS K7361-1 (issued in 1997), and the yellowness (YI) is measured in accordance with ASTM E313-05 (issued in 2005). Was determined by The obtained results are shown in Table 1.
 <靱性の測定>
 上述のようにして実施例1~7及び比較例1~2で得られたポリイミド前駆体樹脂組成物をそれぞれ利用して得られたポリイミドからなるフィルム(ポリイミド前駆体樹脂組成物のイミド化物)をそれぞれ用いて、触感により強靭性の判定を行った。判定の指標を以下に示す。また、判定結果を表1に示す。
(靭性の評価)
A:触感からフィルムが非常に強靭なものであると判断でき、靱性が非常に高いものであると認められる。
B:触感からフィルムがそれなりに丈夫であると判断でき、靱性が中程度であると認められる。
<Measurement of toughness>
A film made of polyimide obtained by using each of the polyimide precursor resin compositions obtained in Examples 1 to 7 and Comparative Examples 1 and 2 as described above (an imidized polyimide precursor resin composition) was obtained. Using each, the toughness was determined by tactile sensation. The index of determination is shown below. The determination results are shown in Table 1.
(Toughness evaluation)
A: From the tactile sensation, it can be judged that the film is very tough, and it is recognized that the toughness is very high.
B: It can be judged from the touch that the film is reasonably strong, and the toughness is moderate.
 なお、表1には、各実施例で用いた酸二無水物、ジアミン、添加化合物の種類を併せて示す。なお、表1中の酸二無水物及びジアミンの記載において、一つの枠内に2種の成分が記載されているものに関し、括弧内の数値は該2種の成分のモル比を示す。 Table 1 also shows the types of acid dianhydride, diamine, and additive compound used in each example. In addition, in the description of the acid dianhydride and diamine in Table 1, the numerical values in parentheses indicate the molar ratio of the two types of components with respect to those in which two types of components are described in one frame.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表1に示す結果からも明らかなように、実施例1~7及び比較例1~2で得られたポリイミド前駆体樹脂組成物をそれぞれ利用して得られたポリイミドからなるフィルムはいずれも、線膨張係数が23ppm/K以下と十分に低い値を示し、ガラス転移温度が333℃以上と十分に高い温度となっており、また、全光線透過率が87%以上となっていることから、線膨張係数、ガラス転移温度及び全光線透過率といった特性がいずれも十分に高度な水準にあることが確認された。 As is clear from the results shown in Table 1, all of the films made of polyimide obtained by using the polyimide precursor resin compositions obtained in Examples 1 to 7 and Comparative Examples 1 and 2, respectively, were linear. Since the expansion coefficient is a sufficiently low value of 23 ppm / K or less, the glass transition temperature is a sufficiently high temperature of 333 ° C. or more, and the total light transmittance is 87% or more, the line It was confirmed that the properties such as the expansion coefficient, glass transition temperature, and total light transmittance are all at sufficiently high levels.
 また、実施例1~7で得られたポリイミド前駆体樹脂組成物をそれぞれ利用して得られたポリイミドからなるフィルムは、比較例1~2で得られたポリイミド前駆体樹脂組成物を利用して得られたポリイミドからなるフィルムと比較して、靭性がより高度なものとなっていることが分かった。 In addition, films made of polyimide obtained by using the polyimide precursor resin compositions obtained in Examples 1 to 7, respectively, use the polyimide precursor resin compositions obtained in Comparative Examples 1 and 2. It was found that the toughness was higher than that of the obtained polyimide film.
 このような結果から、本発明のポリイミド前駆体樹脂組成物(実施例1~7)によれば、線膨張係数、ガラス転移温度及び全光線透過率といった特性を十分に高度な水準に維持しつつ、より高い靭性を有するポリイミドを効率よくかつ確実に製造することが可能であることが確認された。 From these results, according to the polyimide precursor resin compositions of the present invention (Examples 1 to 7), the characteristics such as the linear expansion coefficient, the glass transition temperature, and the total light transmittance are maintained at a sufficiently high level. It was confirmed that polyimide having higher toughness can be produced efficiently and reliably.
 (実施例8)
 〈第一工程〉
 窒素雰囲気下において、50mLのスクリュー管内に、芳香族ジアミンとしてm-Tol2.12g(10.0mmol)を導入するとともに、テトラカルボン酸二無水物としてCpODA3.84g(10.0mmol)を導入した。次いで、前記スクリュー管内に、ジメチルアセトアミド(N,N-ジメチルアセトアミド)を24.9g添加して混合液を得た。次に、得られた混合液を、窒素雰囲気下、室温の温度条件下で6時間撹拌して反応液を得た。
(Example 8)
<First step>
Under a nitrogen atmosphere, m-Tol 2.12 g (10.0 mmol) was introduced as an aromatic diamine and CpODA 3.84 g (10.0 mmol) was introduced as a tetracarboxylic dianhydride into a 50 mL screw tube. Next, 24.9 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, the obtained mixed liquid was stirred for 6 hours under a nitrogen atmosphere at room temperature to obtain a reaction liquid.
 〈第二工程〉
 上記第一工程で調製した反応液を5.67g取り分けて10mLのスクリュー管に導入した後、該反応液に前記添加化合物であるトリフェニルホスフィン(3級リン化合物(A))0.083gを添加した後、室温の温度条件下で6時間撹拌することにより、CpODAとm-Tolとの重合体であるポリアミド酸と、3級リン化合物(A)と、溶媒(ジメチルアセトアミド)とを含むポリイミド前駆体樹脂組成物を得た。
<Second step>
5.67 g of the reaction solution prepared in the first step was separated and introduced into a 10 mL screw tube, and then 0.083 g of triphenylphosphine (tertiary phosphorus compound (A)) as the additive compound was added to the reaction solution. After that, the polyimide precursor containing polyamic acid, which is a polymer of CpODA and m-Tol, tertiary phosphorus compound (A), and solvent (dimethylacetamide) is stirred for 6 hours at room temperature. A body resin composition was obtained.
 このようにして実施例8で得られたポリイミド前駆体樹脂組成物を利用して、最終加熱温度を350℃とする以外は、前述の「実施例1~7及び比較例1~3で得られたポリイミド前駆体樹脂組成物の特性の評価」のために採用した方法と同様の方法を採用して、ポリイミドからなるフィルム(膜厚:14μm)を調製し、ガラス転移温度、全光線透過率、YI及び靭性を測定した。このような測定の結果、実施例8で得られたポリイミド前駆体樹脂組成物を利用して得られたポリイミドは、ガラス転移温度が334℃であり、全光線透過率が88%であり、YIが4.0であり、靭性の評価結果はAであった。このように、本発明のポリイミド前駆体樹脂組成物によれば、ガラス転移温度、全光線透過率及びYIといった諸物性を十分に高度な水準に維持しつつ、より高い靭性を有するポリイミドを効率よくかつ確実に製造することが可能であることが分かった。 Thus, using the polyimide precursor resin composition obtained in Example 8, the final heating temperature was set to 350 ° C., and the above-mentioned “Examples 1 to 7 and Comparative Examples 1 to 3” were obtained. By adopting a method similar to the method adopted for “evaluation of properties of the polyimide precursor resin composition”, a film made of polyimide (film thickness: 14 μm) is prepared, glass transition temperature, total light transmittance, YI and toughness were measured. As a result of such measurement, the polyimide obtained using the polyimide precursor resin composition obtained in Example 8 has a glass transition temperature of 334 ° C., a total light transmittance of 88%, and YI. The toughness evaluation result was A. Thus, according to the polyimide precursor resin composition of the present invention, a polyimide having higher toughness can be efficiently obtained while maintaining various physical properties such as glass transition temperature, total light transmittance and YI at a sufficiently high level. It was also found that it can be reliably manufactured.
 (実施例9)
 〈第一工程〉
 窒素雰囲気下において、50mLのスクリュー管内に、芳香族ジアミンとしてTFMB3.20g(10.0mmol)を導入するとともに、テトラカルボン酸二無水物としてCpODA1.92g(5.00mmol)及び6FDA2.22g(5.00mmol)を導入した。次いで、前記スクリュー管内に、ジメチルアセトアミド(N,N-ジメチルアセトアミド)を29.5g添加して混合液を得た。次に、得られた混合液を、窒素雰囲気下、室温の温度条件下で6時間撹拌して反応液を得た。
Example 9
<First step>
Under a nitrogen atmosphere, 3.20 g (10.0 mmol) of TFMB as an aromatic diamine was introduced into a 50 mL screw tube, and 1.92 g (5.00 mmol) of CpODA and 2.22 g of 6FDA as a tetracarboxylic dianhydride (5. 00 mmol) was introduced. Next, 29.5 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, the obtained mixed liquid was stirred for 6 hours under a nitrogen atmosphere at room temperature to obtain a reaction liquid.
 〈第二工程〉
 上記第一工程で調製した反応液を7.20g取り分けて10mLのスクリュー管に導入した後、該反応液に前記添加化合物であるトリフェニルホスフィン(3級リン化合物(A))0.143gを添加した後、室温の温度条件下で6時間撹拌することにより、CpODA及び6FDAとTFMBとの重合体であるポリアミド酸と、3級リン化合物(A)と、溶媒(ジメチルアセトアミド)とを含むポリイミド前駆体樹脂組成物を得た。
<Second step>
7.20 g of the reaction solution prepared in the first step was separated and introduced into a 10 mL screw tube, and then 0.143 g of triphenylphosphine (tertiary phosphorus compound (A)) as the additive compound was added to the reaction solution. Then, the polyimide precursor containing polyamic acid which is a polymer of CpODA, 6FDA and TFMB, tertiary phosphorus compound (A) and solvent (dimethylacetamide) is stirred for 6 hours at room temperature. A body resin composition was obtained.
 このようにして実施例9で得られたポリイミド前駆体樹脂組成物を利用して、最終加熱温度を350℃とする以外は、前述の「実施例1~7及び比較例1~3で得られたポリイミド前駆体樹脂組成物の特性の評価」のために採用した方法と同様の方法を採用して、ポリイミドからなるフィルム(膜厚:7μm)を調製し、ガラス転移温度、5%重量減少温度、全光線透過率、YI及び靭性を測定した。このような測定の結果、実施例9で得られたポリイミド前駆体樹脂組成物を利用して得られたポリイミドは、ガラス転移温度が360℃であり、5%重量減少温度が480℃であり、全光線透過率が91%であり、YIが1.9であり、靭性の評価結果はAであった。このように、本発明のポリイミド前駆体樹脂組成物によれば、ガラス転移温度、全光線透過率及びYIといった諸物性を十分に高度な水準に維持しつつ、より高い靭性を有するポリイミドを効率よくかつ確実に製造することが可能であることが分かった。 Thus, using the polyimide precursor resin composition obtained in Example 9, the final heating temperature was set to 350 ° C., and the above-mentioned “Examples 1 to 7 and Comparative Examples 1 to 3” were obtained. A film (film thickness: 7 μm) made of polyimide was prepared by adopting the same method as that adopted for the “evaluation of characteristics of the polyimide precursor resin composition”, a glass transition temperature, a 5% weight reduction temperature. The total light transmittance, YI and toughness were measured. As a result of such measurement, the polyimide obtained using the polyimide precursor resin composition obtained in Example 9 has a glass transition temperature of 360 ° C. and a 5% weight loss temperature of 480 ° C., The total light transmittance was 91%, YI was 1.9, and the toughness evaluation result was A. Thus, according to the polyimide precursor resin composition of the present invention, a polyimide having higher toughness can be efficiently obtained while maintaining various physical properties such as glass transition temperature, total light transmittance and YI at a sufficiently high level. It was also found that it can be reliably manufactured.
 (実施例10)
 〈第一工程〉
 窒素雰囲気下において、50mLのスクリュー管内に、芳香族ジアミンとしてTFMB3.2023g(10.00mmol)を導入するとともに、CpODA3.8438g(10.00mmol)を導入した。次いで、前記スクリュー管内に、ジメチルアセトアミド(N,N-ジメチルアセトアミド)を28.18g添加して混合液を得た。次に、得られた混合液を、窒素雰囲気下、室温の温度条件下で6時間撹拌して反応液を得た。
(Example 10)
<First step>
Under a nitrogen atmosphere, TFMB 3.2023 g (10.00 mmol) was introduced as an aromatic diamine and CpODA 3.8438 g (10.00 mmol) was introduced into a 50 mL screw tube. Next, 28.18 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, the obtained mixed liquid was stirred for 6 hours under a nitrogen atmosphere at room temperature to obtain a reaction liquid.
 〈第二工程〉
 上記第一工程で調製した反応液を4.7316g取り分けて10mLのスクリュー管に導入した後、該反応液にテトラメチルアンモニウムブロミド(4級アミン化合物(A))0.0941gを添加した添加した後、室温の温度条件下で6時間撹拌することにより、CpODAとTFMBとの重合体であるポリアミド酸と、4級アミン化合物(A)と、溶媒(ジメチルアセトアミド)とを含むポリイミド前駆体樹脂組成物を得た。
<Second step>
After separating 4.7316 g of the reaction solution prepared in the first step and introducing it into a 10 mL screw tube, 0.0941 g of tetramethylammonium bromide (quaternary amine compound (A)) was added to the reaction solution and added. The polyimide precursor resin composition containing polyamic acid which is a polymer of CpODA and TFMB, a quaternary amine compound (A), and a solvent (dimethylacetamide) by stirring for 6 hours at room temperature. Got.
 このようにして実施例10で得られたポリイミド前駆体樹脂組成物を利用して、最終加熱温度を350℃とする以外は、前述の「実施例1~9及び比較例1で得られたポリイミド前駆体樹脂組成物の特性の評価」のために採用した方法と同様の方法を採用して、ポリイミドからなるフィルム(膜厚:10μm)を調製し、ガラス転移温度、全光線透過率、YI及び靭性を測定した。このような測定の結果、実施例10で得られたポリイミド前駆体樹脂組成物を利用して得られたポリイミドは、ガラス転移温度が355℃であり、全光線透過率が90%であり、YIが1.2であり、靭性の評価結果はAであった。このように、本発明のポリイミド前駆体樹脂組成物によれば、ガラス転移温度、全光線透過率及びYIといった諸物性を十分に高度な水準に維持しつつ、より高い靭性を有するポリイミドを効率よくかつ確実に製造することが可能であることが分かった。 Thus, using the polyimide precursor resin composition obtained in Example 10, the polyimide obtained in Examples 1 to 9 and Comparative Example 1 was used except that the final heating temperature was 350 ° C. By adopting a method similar to the method employed for “evaluation of properties of precursor resin composition”, a film made of polyimide (film thickness: 10 μm) is prepared, and glass transition temperature, total light transmittance, YI and Toughness was measured. As a result of such measurement, the polyimide obtained using the polyimide precursor resin composition obtained in Example 10 has a glass transition temperature of 355 ° C., a total light transmittance of 90%, and YI. The toughness evaluation result was A. Thus, according to the polyimide precursor resin composition of the present invention, a polyimide having higher toughness can be efficiently obtained while maintaining various physical properties such as glass transition temperature, total light transmittance and YI at a sufficiently high level. It was also found that it can be reliably manufactured.
 (実施例11)
 先ず、実施例1で採用している第一工程と同様の工程を採用して反応液を得た。次いで、得られた反応液を5.21g取り分けて10mLのスクリュー管に導入した後、前記反応液に溶媒であるジメチルアセトアミド(N,N-ジメチルアセトアミド)1.76g及び前記添加化合物であるベンジルトリフェニルホスホニウムブロマイド(4級リン化合物(A))104mgを添加した後、室温の温度条件下で6時間撹拌することにより、CpODAとDABANとの重合体であるポリアミド酸と、4級リン化合物(A)と、溶媒(ジメチルアセトアミド)とを含むポリイミド前駆体樹脂組成物を得た。
(Example 11)
First, a reaction solution was obtained by adopting the same process as the first process employed in Example 1. Next, 5.21 g of the obtained reaction liquid was separated and introduced into a 10 mL screw tube, and then 1.76 g of dimethylacetamide (N, N-dimethylacetamide) as a solvent and benzyltrimethyl as an additive compound were added to the reaction liquid. After adding 104 mg of phenylphosphonium bromide (quaternary phosphorus compound (A)) and stirring for 6 hours at room temperature, polyamic acid which is a polymer of CpODA and DABAN and quaternary phosphorus compound (A ) And a solvent (dimethylacetamide), a polyimide precursor resin composition was obtained.
 このようにして実施例11で得られたポリイミド前駆体樹脂組成物を利用して、最終加熱温度を370℃とする以外は、前述の「実施例1~7及び比較例1~3で得られたポリイミド前駆体樹脂組成物の特性の評価」のために採用した方法と同様の方法を採用して、ポリイミドからなるフィルム(膜厚:27μm)を調製し、線膨張係数、全光線透過率、YI及び靭性を測定した。このような測定の結果、実施例11で得られたポリイミド前駆体樹脂組成物を利用して得られたポリイミドは、線膨張係数が7ppm/Kであり、全光線透過率が87%であり、YIが3.1であり、靭性の評価結果はAであった。このように、本発明のポリイミド前駆体樹脂組成物によれば、線膨張係数、全光線透過率及びYIといった諸物性を十分に高度な水準のものとしつつ、より高い靭性を有するポリイミドを効率よくかつ確実に製造することが可能であることが分かった。 Thus, using the polyimide precursor resin composition obtained in Example 11, the final heating temperature was set to 370 ° C., except that “obtained in the above-mentioned“ Examples 1 to 7 and Comparative Examples 1 to 3 ”. By adopting the same method as that adopted for “evaluation of properties of the polyimide precursor resin composition”, a film made of polyimide (film thickness: 27 μm) was prepared, and the linear expansion coefficient, total light transmittance, YI and toughness were measured. As a result of such measurement, the polyimide obtained using the polyimide precursor resin composition obtained in Example 11 has a linear expansion coefficient of 7 ppm / K, a total light transmittance of 87%, YI was 3.1, and the evaluation result of toughness was A. As described above, according to the polyimide precursor resin composition of the present invention, a polyimide having higher toughness can be efficiently obtained while maintaining various physical properties such as linear expansion coefficient, total light transmittance, and YI to a sufficiently high level. It was also found that it can be reliably manufactured.
 (実施例12)
 〈第一工程〉
 窒素雰囲気下において、50mLのスクリュー管内に、ジメチルアセトアミド(N,N-ジメチルアセトアミド)を9.8g、芳香族ジアミンとしてDDE1.00g(5.00mmol)を導入して80℃に加熱した。次に、前記スクリュー管内に、テトラカルボン酸二無水物としてBzDA2.03g(5.00mmol)を添加した後、3.5gのジメチルアセトアミド(N,N-ジメチルアセトアミド)を、スクリュー管の壁面に着いたBzDAを洗って流し込むようにしながら添加し、混合液を得た。その後、前記混合液を、窒素雰囲気下、80℃で3.5時間撹拌したところ、均一な溶液となった。次いで、得られた溶液を室温に冷却し、更に1日撹拌を継続して反応液を得た。
(Example 12)
<First step>
Under a nitrogen atmosphere, 9.8 g of dimethylacetamide (N, N-dimethylacetamide) and 1.00 g (5.00 mmol) of DDE as an aromatic diamine were introduced into a 50 mL screw tube and heated to 80 ° C. Next, 2.0 g (5.00 mmol) of BzDA as tetracarboxylic dianhydride was added into the screw tube, and 3.5 g of dimethylacetamide (N, N-dimethylacetamide) was then applied to the wall surface of the screw tube. BzDA was added while washing and pouring to obtain a mixed solution. Then, when the mixed solution was stirred at 80 ° C. for 3.5 hours under a nitrogen atmosphere, a uniform solution was obtained. Next, the resulting solution was cooled to room temperature, and further stirred for 1 day to obtain a reaction solution.
 〈第二工程〉
 上記第一工程で調製した反応液を2.75g取り分けて10mLのスクリュー管に導入した後、前記添加化合物であるトリフェニルホスフィン(3級リン化合物(A))55.0mgを添加した後、室温の温度条件下で6時間撹拌することにより、BzDAとDDEとの重合体であるポリアミド酸と、3級リン化合物(A)と、溶媒(ジメチルアセトアミド)とを含むポリイミド前駆体樹脂組成物を得た。
<Second step>
After 2.75 g of the reaction solution prepared in the first step was separated and introduced into a 10 mL screw tube, 55.0 mg of triphenylphosphine (tertiary phosphorus compound (A)) as the additive compound was added, The polyimide precursor resin composition containing the polyamic acid which is a polymer of BzDA and DDE, a tertiary phosphorus compound (A), and a solvent (dimethylacetamide) is obtained by stirring for 6 hours under the temperature conditions of It was.
 このようにして実施例12で得られたポリイミド前駆体樹脂組成物を利用して、オーブン内で加熱する際の雰囲気を窒素雰囲気とする代わりに減圧雰囲気とし(塗膜の形成されたガラス板をオーブンに投入後、70℃の温度条件で2時間静置する段階から最終加熱温度で30分間静置する段階まで、減圧雰囲気下で加熱し)、かつ、最終加熱温度を350℃とする以外は、前述の「実施例1~7及び比較例1~3で得られたポリイミド前駆体樹脂組成物の特性の評価」のために採用した方法と同様の方法を採用して、ポリイミドからなるフィルム(膜厚:18μm)を調製し、ガラス転移温度、5%重量減少温度、全光線透過率、YI及び靭性を測定した。このような測定の結果、実施例12で得られたポリイミド前駆体樹脂組成物を利用して得られたポリイミドは、ガラス転移温度が317℃であり、5%重量減少温度が462℃であり、全光線透過率が89%であり、YIが3.5であり、靭性の評価結果はAであった。このように、本発明のポリイミド前駆体樹脂組成物によれば、ガラス転移温度、5%重量減少温度、全光線透過率及びYIといった諸物性を十分に高度な水準のものとしつつ、より高い靭性を有するポリイミドを効率よくかつ確実に製造することが可能であることが分かった。 In this way, using the polyimide precursor resin composition obtained in Example 12, the atmosphere when heating in the oven was changed to a reduced pressure atmosphere instead of a nitrogen atmosphere (a glass plate with a coating film formed thereon). After being put in the oven, it is heated in a reduced pressure atmosphere from the stage of standing at 70 ° C. for 2 hours to the stage of standing at the final heating temperature for 30 minutes), and the final heating temperature is 350 ° C. A film made of polyimide by adopting the same method as that adopted for the above-mentioned “evaluation of characteristics of polyimide precursor resin compositions obtained in Examples 1 to 7 and Comparative Examples 1 to 3” ( Film thickness: 18 μm) was prepared, and the glass transition temperature, 5% weight loss temperature, total light transmittance, YI and toughness were measured. As a result of such measurement, the polyimide obtained using the polyimide precursor resin composition obtained in Example 12 has a glass transition temperature of 317 ° C. and a 5% weight loss temperature of 462 ° C., The total light transmittance was 89%, YI was 3.5, and the toughness evaluation result was A. As described above, according to the polyimide precursor resin composition of the present invention, the toughness is increased while maintaining various physical properties such as glass transition temperature, 5% weight loss temperature, total light transmittance and YI to a sufficiently high level. It has been found that it is possible to efficiently and reliably produce a polyimide having
 (実施例13)
 〈第一工程〉
 窒素雰囲気下において、50mLのスクリュー管内に、芳香族ジアミンとしてDDE1.00g(5.00mmol)を導入するとともに、テトラカルボン酸二無水物としてDNDA1.51g(5.00mmol)を導入した。次いで、前記スクリュー管内に、ジメチルアセトアミド(N,N-ジメチルアセトアミド)を10.0g添加して混合液を得た。次に、得られた混合液を、窒素雰囲気下、室温の温度条件下で1日撹拌して反応液を得た。
(Example 13)
<First step>
Under a nitrogen atmosphere, 1.00 g (5.00 mmol) of DDE as an aromatic diamine was introduced into a 50 mL screw tube, and 1.51 g (5.00 mmol) of DNDA was introduced as a tetracarboxylic dianhydride. Next, 10.0 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, the obtained mixed solution was stirred for 1 day under a nitrogen atmosphere at room temperature to obtain a reaction solution.
 〈第二工程〉
 上記第一工程で調製した反応液を2.21g取り分けて10mLのスクリュー管に導入した後、前記添加化合物であるトリフェニルホスフィン(3級リン化合物(A))44.1mgを添加した後、室温の温度条件下で6時間撹拌することにより、DNDAとDDEとの重合体であるポリアミド酸と、3級リン化合物(A)と、溶媒(ジメチルアセトアミド)とを含むポリイミド前駆体樹脂組成物を得た。
<Second step>
After 2.21 g of the reaction solution prepared in the first step was separated and introduced into a 10 mL screw tube, 44.1 mg of triphenylphosphine (tertiary phosphorus compound (A)) as the additive compound was added, The polyimide precursor resin composition containing the polyamic acid which is a polymer of DNDA and DDE, a tertiary phosphorus compound (A), and a solvent (dimethylacetamide) is obtained by stirring for 6 hours under the temperature conditions of It was.
 このようにして実施例13で得られたポリイミド前駆体樹脂組成物を利用して、オーブン内で加熱する際の雰囲気を窒素雰囲気とする代わりに減圧雰囲気とし(塗膜の形成されたガラス板をオーブンに投入後、70℃の温度条件で2時間静置する段階から最終加熱温度で30分間静置する段階まで、減圧雰囲気下で加熱し)、かつ、最終加熱温度を350℃とする以外は、前述の「実施例1~7及び比較例1~3で得られたポリイミド前駆体樹脂組成物の特性の評価」のために採用した方法と同様の方法を採用して、ポリイミドからなるフィルム(膜厚:17μm)を調製し、ガラス転移温度、5%重量減少温度、全光線透過率、YI及び靭性を測定した。このような測定の結果、実施例13で得られたポリイミド前駆体樹脂組成物を利用して得られたポリイミドは、ガラス転移温度が367℃であり、5%重量減少温度が435℃であり、全光線透過率が89%であり、YIが1.2であり、靭性の評価結果はAであった。このように、本発明のポリイミド前駆体樹脂組成物によれば、ガラス転移温度、5%重量減少温度、全光線透過率及びYIといった諸物性を十分に高度な水準のものとしつつ、より高い靭性を有するポリイミドを効率よくかつ確実に製造することが可能であることが分かった。 Thus, using the polyimide precursor resin composition obtained in Example 13, the atmosphere during heating in the oven was changed to a reduced pressure atmosphere instead of a nitrogen atmosphere (a glass plate on which a coating film was formed). After being put in the oven, it is heated in a reduced pressure atmosphere from the stage of standing at 70 ° C. for 2 hours to the stage of standing at the final heating temperature for 30 minutes), and the final heating temperature is 350 ° C. A film made of polyimide by adopting the same method as that adopted for the above-mentioned “evaluation of characteristics of polyimide precursor resin compositions obtained in Examples 1 to 7 and Comparative Examples 1 to 3” ( Film thickness: 17 μm) was prepared, and the glass transition temperature, 5% weight loss temperature, total light transmittance, YI and toughness were measured. As a result of such measurement, the polyimide obtained using the polyimide precursor resin composition obtained in Example 13 has a glass transition temperature of 367 ° C. and a 5% weight loss temperature of 435 ° C., The total light transmittance was 89%, YI was 1.2, and the toughness evaluation result was A. As described above, according to the polyimide precursor resin composition of the present invention, the toughness is increased while maintaining various physical properties such as glass transition temperature, 5% weight loss temperature, total light transmittance and YI to a sufficiently high level. It has been found that it is possible to efficiently and reliably produce a polyimide having
 (実施例14)
 〈第一工程〉
 窒素雰囲気下において、50mLのスクリュー管内に、芳香族ジアミンとしてTFMB1.60g(5.00mmol)を導入するとともに、テトラカルボン酸二無水物としてDNDA1.51g(5.00mmol)を導入した。次いで、前記スクリュー管内に、ジメチルアセトアミド(N,N-ジメチルアセトアミド)を12.5g添加して混合液を得た。次に、得られた混合液を、窒素雰囲気下、60℃の温度条件で30分撹拌したところ、均一な溶液となった。次いで、得られた溶液を室温に冷却し、1日撹拌して反応液を得た。
(Example 14)
<First step>
Under a nitrogen atmosphere, 1.60 g (5.00 mmol) of TFMB as an aromatic diamine was introduced into a 50 mL screw tube, and 1.51 g (5.00 mmol) of DNDA was introduced as a tetracarboxylic dianhydride. Next, 12.5 g of dimethylacetamide (N, N-dimethylacetamide) was added into the screw tube to obtain a mixed solution. Next, when the obtained mixed liquid was stirred for 30 minutes under a nitrogen atmosphere at a temperature of 60 ° C., a uniform solution was obtained. Next, the obtained solution was cooled to room temperature and stirred for 1 day to obtain a reaction solution.
 〈第二工程〉
 上記第一工程で調製した反応液を2.43g取り分けて10mLのスクリュー管に導入した後、前記添加化合物であるトリフェニルホスフィン(3級リン化合物(A))48.7mgを添加した後、室温の温度条件下で6時間撹拌することにより、DNDAとDDEとの重合体であるポリアミド酸と、3級リン化合物(A)と、溶媒(ジメチルアセトアミド)とを含むポリイミド前駆体樹脂組成物を得た。
<Second step>
After 2.43 g of the reaction solution prepared in the first step was separated and introduced into a 10 mL screw tube, 48.7 mg of triphenylphosphine (tertiary phosphorus compound (A)) as the additive compound was added, The polyimide precursor resin composition containing the polyamic acid which is a polymer of DNDA and DDE, a tertiary phosphorus compound (A), and a solvent (dimethylacetamide) is obtained by stirring for 6 hours under the temperature conditions of It was.
 このようにして実施例14で得られたポリイミド前駆体樹脂組成物を利用して、オーブン内で加熱する際の雰囲気を窒素雰囲気とする代わりに減圧雰囲気とし(塗膜の形成されたガラス板をオーブンに投入後、70℃の温度条件で2時間静置する段階から最終加熱温度で30分間静置する段階まで、減圧雰囲気下で加熱し)、かつ、最終加熱温度を350℃とする以外は、前述の「実施例1~7及び比較例1~3で得られたポリイミド前駆体樹脂組成物の特性の評価」のために採用した方法と同様の方法を採用して、ポリイミドからなるフィルム(膜厚:15μm)を調製し、線膨張係数、ガラス転移温度、5%重量減少温度、全光線透過率、YI及び靭性を測定した。このような測定の結果、実施例14で得られたポリイミド前駆体樹脂組成物を利用して得られたポリイミドは、線膨張係数が27ppm/Kであり、ガラス転移温度が278℃であり、5%重量減少温度が415℃であり、全光線透過率が91%であり、YIが1.0であり、靭性の評価結果はAであった。このように、本発明のポリイミド前駆体樹脂組成物によれば、線膨張係数、ガラス転移温度、5%重量減少温度、全光線透過率及びYIといった諸物性を十分に高度な水準のものとしつつ、より高い靭性を有するポリイミドを効率よくかつ確実に製造することが可能であることが分かった。 Thus, using the polyimide precursor resin composition obtained in Example 14, instead of changing the atmosphere when heating in the oven to a nitrogen atmosphere, a reduced pressure atmosphere (a glass plate on which a coating film was formed) After being put in the oven, it is heated in a reduced pressure atmosphere from the stage of standing at 70 ° C. for 2 hours to the stage of standing at the final heating temperature for 30 minutes), and the final heating temperature is 350 ° C. A film made of polyimide by adopting the same method as that adopted for the above-mentioned “evaluation of characteristics of polyimide precursor resin compositions obtained in Examples 1 to 7 and Comparative Examples 1 to 3” ( Film thickness: 15 μm) was prepared, and the linear expansion coefficient, glass transition temperature, 5% weight loss temperature, total light transmittance, YI and toughness were measured. As a result of such measurement, the polyimide obtained using the polyimide precursor resin composition obtained in Example 14 has a linear expansion coefficient of 27 ppm / K, a glass transition temperature of 278 ° C., 5 % Weight reduction temperature was 415 ° C., total light transmittance was 91%, YI was 1.0, and the toughness evaluation result was A. Thus, according to the polyimide precursor resin composition of the present invention, various physical properties such as a linear expansion coefficient, a glass transition temperature, a 5% weight loss temperature, a total light transmittance, and a YI are sufficiently advanced. It has been found that a polyimide having higher toughness can be produced efficiently and reliably.
 以上説明したように、本発明によれば、線膨張係数、ガラス転移温度及び全光線透過率といった特性を十分に高度な水準に維持しつつ、より高い靭性を有するポリイミドを効率よくかつ確実に製造することが可能なポリイミド前駆体樹脂組成物を提供することが可能となる。 As described above, according to the present invention, a polyimide having higher toughness is efficiently and reliably produced while maintaining characteristics such as a linear expansion coefficient, a glass transition temperature, and a total light transmittance at a sufficiently high level. It is possible to provide a polyimide precursor resin composition that can be used.
 したがって、本発明のポリイミド前駆体樹脂組成物は、各種フィルム、自動車用部品、航空宇宙用部品、軸受部品、シール材、ベアリング部品、ギアホイールおよびバルブ部品等といった各種のポリイミドからなる製品を製造するための材料等として特に有用である。 Therefore, the polyimide precursor resin composition of the present invention produces products made of various polyimides such as various films, automotive parts, aerospace parts, bearing parts, seal materials, bearing parts, gear wheels and valve parts. It is particularly useful as a material for the purpose.

Claims (4)

  1.  分子内に2つのノルボルナン骨格を有するテトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種とジアミンとの重合体であるポリイミド前駆体樹脂と;
     分子内にリン原子と炭素原子が直接結合する式:C-Pで表される構造を含む3級リン化合物、分子内にリン原子と炭素原子が直接結合する式:C-Pで表される構造を含む4級リン化合物、及び4級アミン化合物からなる群から選択される少なくとも1種の添加化合物と;
     溶媒と;
    を含有する、ポリイミド前駆体樹脂組成物。
    A polyimide precursor resin which is a polymer of at least one selected from the group consisting of tetracarboxylic dianhydrides having two norbornane skeletons in the molecule and derivatives thereof;
    Formula in which phosphorus atom and carbon atom are directly bonded in the molecule: tertiary phosphorus compound including structure represented by CP, Formula in which phosphorus atom and carbon atom are directly bonded in molecule: Represented by CP At least one additive compound selected from the group consisting of a quaternary phosphorus compound containing a structure and a quaternary amine compound;
    With a solvent;
    Containing a polyimide precursor resin composition.
  2.  前記分子内に2つのノルボルナン骨格を有するテトラカルボン酸二無水物及びその誘導体からなる群から選択される少なくとも1種が、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R、R、Rはそれぞれ独立に水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは0~12の整数を示す。]
    で表される化合物;下記一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、Aは置換基を有していてもよくかつ芳香環を形成する炭素原子の数が6~30である2価の芳香族基よりなる群から選択される1種を示し、Rはそれぞれ独立に水素原子及び炭素数1~10のアルキル基よりなる群から選択される1種を示し、Rはそれぞれ独立に水素原子及び炭素数1~10のアルキル基よりなる群から選択される1種を示す。]
    で表される化合物;下記一般式(3):
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、Rはそれぞれ独立に水素原子、炭素数1~10のアルキル基、水酸基及びニトロ基よりなる群から選択される1種を示すか、又は、同一の炭素原子に結合している2つのRが一緒になってメチリデン基を形成していてもよく、Rはそれぞれ独立に水素原子及び炭素数1~10のアルキル基よりなる群から選択される1種を示す。]
    で表される化合物;下記一般式(4):
    Figure JPOXMLDOC01-appb-C000004
    で表される化合物;及びそれらの化合物の誘導体;からなる群から選択される少なくとも1種である、請求項1に記載のポリイミド前駆体樹脂組成物。
    At least one selected from the group consisting of tetracarboxylic dianhydrides having two norbornane skeletons in the molecule and derivatives thereof has the following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), R 1 , R 2 and R 3 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom, and n represents 0 to 12 Indicates an integer. ]
    A compound represented by the following general formula (2):
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (2), A represents one kind selected from the group consisting of a divalent aromatic group which may have a substituent and has 6 to 30 carbon atoms to form an aromatic ring. Each of R 4 independently represents one selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms, and each R 5 independently represents a hydrogen atom and an alkyl group having 1 to 10 carbon atoms. One species selected from the group is shown. ]
    A compound represented by the following general formula (3):
    Figure JPOXMLDOC01-appb-C000003
    [In formula (3), R 6 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group and a nitro group, or bonded to the same carbon atom. Two R 6 groups together may form a methylidene group, and each R 7 independently represents one selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms. . ]
    A compound represented by the following general formula (4):
    Figure JPOXMLDOC01-appb-C000004
    The polyimide precursor resin composition according to claim 1, wherein the polyimide precursor resin composition is at least one selected from the group consisting of:
  3.  前記ポリイミド前駆体樹脂が、下記一般式(I):
    Figure JPOXMLDOC01-appb-C000005
    [式(I)中、Xは、下記一般式(I-1):
    Figure JPOXMLDOC01-appb-C000006
    [式(I-1)中、R、R、Rはそれぞれ独立に水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは0~12の整数を示し、記号*1~*4は該記号の付された結合手がそれぞれ式(I)中のXに結合している4本の結合手のうちのいずれかであることを示す。]
    で表される4価の基;下記一般式(I-2):
    Figure JPOXMLDOC01-appb-C000007
    [式(I-2)中、Aは置換基を有していてもよくかつ芳香環を形成する炭素原子の数が6~30である2価の芳香族基よりなる群から選択される1種を示し、Rはそれぞれ独立に水素原子及び炭素数1~10のアルキル基よりなる群から選択される1種を示し、Rはそれぞれ独立に水素原子及び炭素数1~10のアルキル基よりなる群から選択される1種を示し、記号*1~*4は該記号の付された結合手がそれぞれ式(I)中のXに結合している4本の結合手のうちのいずれかであることを示す。]
    で表される4価の基;下記一般式(I-3):
    Figure JPOXMLDOC01-appb-C000008
    [式(I-3)中、Rはそれぞれ独立に水素原子、炭素数1~10のアルキル基、水酸基及びニトロ基よりなる群から選択される1種を示すか、又は、同一の炭素原子に結合している2つのRが一緒になってメチリデン基を形成していてもよく、Rはそれぞれ独立に水素原子及び炭素数1~10のアルキル基よりなる群から選択される1種を示し、記号*1~*4は該記号の付された結合手がそれぞれ式(I)中のXに結合している4本の結合手のうちのいずれかであることを示す。]
    で表される4価の基からなる群から選択される少なくとも1種を示し、
     R10は炭素数6~50のアリーレン基を示し、
     Y及びYは、それぞれ独立に、水素原子、炭素数1~6のアルキル基及び炭素数3~9のアルキルシリル基よりなる群から選択される1種を示す。]
    で表される繰り返し単位;及び下記一般式(II)~(III):
    Figure JPOXMLDOC01-appb-C000009
    [式(II)~(III)中、R10は炭素数6~50のアリーレン基を示し、Y及びYはそれぞれ独立に、水素原子、炭素数1~6のアルキル基及び炭素数3~9のアルキルシリル基よりなる群から選択される1種を示す。]
    で表される繰り返し単位;からなる群から選択される少なくとも1種の繰り返し単位を有する、請求項1又は2に記載のポリイミド前駆体樹脂組成物。
    The polyimide precursor resin has the following general formula (I):
    Figure JPOXMLDOC01-appb-C000005
    [In the formula (I), X 1 represents the following general formula (I-1):
    Figure JPOXMLDOC01-appb-C000006
    [In Formula (I-1), R 1 , R 2 and R 3 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom, and n is 0 Represents an integer of ~ 12, and the symbols * 1 to * 4 are each one of the four bonds that are bonded to X1 in the formula (I). Indicates. ]
    A tetravalent group represented by the following general formula (I-2):
    Figure JPOXMLDOC01-appb-C000007
    [In Formula (I-2), A is 1 selected from the group consisting of a divalent aromatic group which may have a substituent and has 6 to 30 carbon atoms to form an aromatic ring. R 4 represents one type independently selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms, and R 5 represents each independently a hydrogen atom and an alkyl group having 1 to 10 carbon atoms. Each of the bonds selected from the group consisting of four bonds, each of which is bonded to X 1 in the formula (I). Indicates either. ]
    A tetravalent group represented by the following general formula (I-3):
    Figure JPOXMLDOC01-appb-C000008
    [In the formula (I-3), each R 6 independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group and a nitro group, or the same carbon atom. And two R 6 bonded to each other may form a methylidene group, and each R 7 is independently selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 10 carbon atoms. Symbols * 1 to * 4 indicate that each of the bonds to which the symbols are attached is any one of four bonds that are bonded to X 1 in the formula (I). ]
    At least one selected from the group consisting of tetravalent groups represented by:
    R 10 represents an arylene group having 6 to 50 carbon atoms,
    Y 1 and Y 2 each independently represent one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, and an alkylsilyl group having 3 to 9 carbon atoms. ]
    And the following general formulas (II) to (III):
    Figure JPOXMLDOC01-appb-C000009
    [In the formulas (II) to (III), R 10 represents an arylene group having 6 to 50 carbon atoms, and Y 1 and Y 2 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, and a carbon number 3 1 type selected from the group consisting of ˜9 alkylsilyl groups. ]
    The polyimide precursor resin composition according to claim 1 or 2, which has at least one repeating unit selected from the group consisting of:
  4.  前記添加化合物がトリフェニルホスフィンである、請求項1~3のうちのいずれか一項に記載のポリイミド前駆体樹脂組成物。 The polyimide precursor resin composition according to any one of claims 1 to 3, wherein the additive compound is triphenylphosphine.
PCT/JP2019/005814 2018-02-21 2019-02-18 Polyimide precursor resin composition WO2019163703A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980014590.4A CN111742012A (en) 2018-02-21 2019-02-18 Polyimide precursor resin composition
KR1020207026687A KR102429867B1 (en) 2018-02-21 2019-02-18 Polyimide precursor resin composition
JP2020501748A JP7203082B2 (en) 2018-02-21 2019-02-18 Polyimide precursor resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018028882 2018-02-21
JP2018-028882 2018-02-21

Publications (1)

Publication Number Publication Date
WO2019163703A1 true WO2019163703A1 (en) 2019-08-29

Family

ID=67687103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005814 WO2019163703A1 (en) 2018-02-21 2019-02-18 Polyimide precursor resin composition

Country Status (5)

Country Link
JP (1) JP7203082B2 (en)
KR (1) KR102429867B1 (en)
CN (1) CN111742012A (en)
TW (1) TW201936720A (en)
WO (1) WO2019163703A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110511229A (en) * 2019-09-02 2019-11-29 北京八亿时空液晶科技股份有限公司 A kind of anhydride compounds and the preparation method and application thereof
WO2022045207A1 (en) * 2020-08-26 2022-03-03 株式会社カネカ Polyamic acid composition, polyimide, polyimide film, laminate, method for producing laminate, and electronic device
WO2022114136A1 (en) * 2020-11-27 2022-06-02 宇部興産株式会社 Polyimide precursor composition, polyimide film, and polyimide film/substrate laminate
WO2022255174A1 (en) * 2021-05-31 2022-12-08 株式会社カネカ Polyamic acid composition, polyimide, laminate thereof, flexible device, and method for producing laminate
KR20240070585A (en) 2021-09-21 2024-05-21 유비이 가부시키가이샤 Polyimide precursor composition and polyimide film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096070A (en) * 2001-06-12 2003-04-03 Nissan Chem Ind Ltd Alicyclic tetracarboxylic acid dianhydride and method for producing the same and polyimide
WO2009101885A1 (en) * 2008-02-14 2009-08-20 Kyowa Hakko Chemical Co., Ltd. Polyimide
JP2017066354A (en) * 2015-10-02 2017-04-06 Jxエネルギー株式会社 Polyamic acid, polyamic acid solution, polyimide, polyimide solution, film using polyimide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058156A1 (en) * 2005-11-15 2007-05-24 Mitsubishi Chemical Corporation Tetracarboxylic acid compound, polyimide thereof, and production method thereof
EP2535341B1 (en) 2010-02-09 2015-08-26 JX Nippon Oil & Energy Corporation Norbornane-2-spiro- a-cycloalkanone-a '-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic dianhydride, norbornane-2-spiro- a-cycloalkanone-a '-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid and ester thereof, method for producing norbornane-2-spiro- a-cycloalkanone-a '-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic dianhydride, polyimide obtained using same, and method for producing polyimide
JP6705583B2 (en) * 2016-08-08 2020-06-03 Jxtgエネルギー株式会社 Polyimide, polyamic acid, polyamic acid solution, and polyimide film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096070A (en) * 2001-06-12 2003-04-03 Nissan Chem Ind Ltd Alicyclic tetracarboxylic acid dianhydride and method for producing the same and polyimide
WO2009101885A1 (en) * 2008-02-14 2009-08-20 Kyowa Hakko Chemical Co., Ltd. Polyimide
JP2017066354A (en) * 2015-10-02 2017-04-06 Jxエネルギー株式会社 Polyamic acid, polyamic acid solution, polyimide, polyimide solution, film using polyimide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110511229A (en) * 2019-09-02 2019-11-29 北京八亿时空液晶科技股份有限公司 A kind of anhydride compounds and the preparation method and application thereof
WO2022045207A1 (en) * 2020-08-26 2022-03-03 株式会社カネカ Polyamic acid composition, polyimide, polyimide film, laminate, method for producing laminate, and electronic device
CN115989265A (en) * 2020-08-26 2023-04-18 株式会社钟化 Polyamic acid composition, polyimide film, laminate, method for producing laminate, and electronic device
WO2022114136A1 (en) * 2020-11-27 2022-06-02 宇部興産株式会社 Polyimide precursor composition, polyimide film, and polyimide film/substrate laminate
WO2022255174A1 (en) * 2021-05-31 2022-12-08 株式会社カネカ Polyamic acid composition, polyimide, laminate thereof, flexible device, and method for producing laminate
KR20240070585A (en) 2021-09-21 2024-05-21 유비이 가부시키가이샤 Polyimide precursor composition and polyimide film

Also Published As

Publication number Publication date
KR102429867B1 (en) 2022-08-05
CN111742012A (en) 2020-10-02
KR20200123172A (en) 2020-10-28
TW201936720A (en) 2019-09-16
JPWO2019163703A1 (en) 2021-02-04
JP7203082B2 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
JP7203082B2 (en) Polyimide precursor resin composition
JP6669074B2 (en) Polyimide film, polyimide precursor, and polyimide
JP5978288B2 (en) Polyimide precursor, polyimide, polyimide film, varnish, and substrate
JP6506260B2 (en) Tetracarboxylic acid dianhydride, polyamic acid, polyimide, method for producing them, and polyamic acid solution
JP6607193B2 (en) Polyimide precursor, polyimide, and polyimide film
JP2018044180A (en) Polyimide resin composition and polyimide varnish
JP2019108552A (en) Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate
JP2018172685A (en) Polyimide precursor and polyimide
WO2015053312A1 (en) Polyimide precursor, polyimide, polyimide film, varnish, and substrate
KR20200006626A (en) Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
WO2018066522A1 (en) Polyimide, polyimide precursor resin, solution of same, method for manufacturing polyimide, and film using polyimide
JP2018172669A (en) Polyamide imide, resin solution and film
JP2017133027A (en) Polyimide, method for producing polyimide, polyimide solution and polyimide film
JP5842429B2 (en) Polyimide precursor and polyimide
JP2017066354A (en) Polyamic acid, polyamic acid solution, polyimide, polyimide solution, film using polyimide
JP6916189B2 (en) Polyimide, polyamic acid, their solutions and films using polyimide
JP6461470B2 (en) Polyimide precursor composition, polyimide production method, polyimide, polyimide film, and substrate
KR20230066346A (en) Polymer composition, varnish, and polyimide film
JP2015134842A (en) solvent-soluble polyimide resin
WO2021210641A1 (en) Imide-amic acid copolymer and method for producing same, varnish, and polyimide film
WO2021210640A1 (en) Imide-amic acid copolymer and method for producing same, varnish, and polyimide film
JP6638744B2 (en) Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate
WO2019181699A1 (en) Resin, resin precursor and resin precursor solution
JP2015134843A (en) highly transparent polyimide resin
JP2013227499A (en) Highly transparent polyimide resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501748

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207026687

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19757606

Country of ref document: EP

Kind code of ref document: A1