WO2009101885A1 - Polyimide - Google Patents

Polyimide Download PDF

Info

Publication number
WO2009101885A1
WO2009101885A1 PCT/JP2009/051880 JP2009051880W WO2009101885A1 WO 2009101885 A1 WO2009101885 A1 WO 2009101885A1 JP 2009051880 W JP2009051880 W JP 2009051880W WO 2009101885 A1 WO2009101885 A1 WO 2009101885A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
substituted
unsubstituted
same
Prior art date
Application number
PCT/JP2009/051880
Other languages
French (fr)
Japanese (ja)
Inventor
Masatoshi Hasegawa
Yukihiro Isogai
Suguru Ohara
Original Assignee
Kyowa Hakko Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Chemical Co., Ltd. filed Critical Kyowa Hakko Chemical Co., Ltd.
Publication of WO2009101885A1 publication Critical patent/WO2009101885A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/1053Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/87Benzo [c] furans; Hydrogenated benzo [c] furans
    • C07D307/89Benzo [c] furans; Hydrogenated benzo [c] furans with two oxygen atoms directly attached in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrical insulating film in various electronic devices, a substrate for liquid crystal display (LCD), a substrate for organic electroluminescence display (ELD), a substrate for electronic paper, a substrate for solar cell, an interlayer insulating film and a protective film for semiconductor elements,
  • the present invention relates to polyimide useful for liquid crystal alignment films, optical waveguide materials, and the like.
  • polyimide for example, general formula (VIII)
  • a polyimide obtained by reacting a tetracarboxylic dianhydride represented by (wherein Y represents a divalent aromatic group or the like) and a diamine (Patent Document 1) is known, but is high. It does not satisfy the required performance such as heat resistance.
  • the present invention provides polyimide having high heat resistance and the like.
  • P 1 , P 2 and P 3 are the same or different and each represents a hydrogen atom, a halogen atom, a cyano group, a formyl group, a hydroxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group
  • X and A are the same Or differently, a substituted or unsubstituted alkylene group, a divalent group formed by removing two hydrogen atoms on a carbon atom from a substituted or unsubstituted polycyclic unsaturated hydrocarbon, a substituted or unsubsti
  • m represents an integer of 0 to 3
  • R 1 and R 2 are the same or different and each represents a halogen atom, a cyano group, a formyl group, a hydroxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted group.
  • Alkenyl group, substituted or unsubstituted aryl group, substituted or unsubstituted alkanoyloxy group or substituted or unsubstituted alkoxyl group, q and r are the same or different and represent an integer of 0 to 4, q Each of R 1 may be the same or different when R is an integer of 2 to 4, and each of R 2 may be the same or different when r is an integer of 2 to 4, and Z 1 is a single bond, an oxygen atom, A sulfur atom, SO 2 , a C 1-4 alkylene group which may be substituted by a fluorine atom, or the formula (III)
  • R 5 and R 6 are the same or different and each represents a halogen atom, a cyano group, a formyl group, a hydroxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted group, Represents an alkenyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted alkanoyloxy group or a substituted or unsubstituted alkoxyl group, and e and f are the same or different and represent 0 to Each of R 5 may be the same or different when e is an integer of 2 to 4, and each of R 6 may be the same or different when f is an integer of 2 to 4.
  • Each of R 1 , q and Z 1 may be the same or different when m is 2 or 3]
  • n represents an integer of 0 to 3
  • R 3 and R 4 are the same or different and are each a halogen atom, a cyano group, a formyl group, a hydroxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted group, A cycloalkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkanoyloxy group or a substituted or unsubstituted alkoxyl group, sa and ua are the same or different and represent an integer of 0 to 4; When sa is an integer from 2 to 4, each R 3 may be the same or different, and when ua is an integer from 2 to 4 , each R 4 may be the same or different, and sb and ub are the same or different.
  • Te 0 represents an integer 2
  • Z 2 is a single bond, an oxygen atom, a sulfur atom, alkyl of SO 2 or a fluorine atom and 1 carbon atoms and optionally substituted 4
  • sa, polyimide having a repeating unit each of sb and Z 2 is represented by representing the same or may be different).
  • R a and R b represents a hydroxyl group and the other is —NH—A— (wherein A is as defined above]
  • R c and R d represents a hydroxyl group and the other represents a divalent group represented by —NH—.
  • Formula (I) characterized by imidizing a polyimide precursor
  • polyimide having high heat resistance and the like can be provided.
  • compound (VI) the compound represented by formula (VI) is referred to as compound (VI).
  • the polyimide which has a repeating unit represented by Formula (I) is called polyimide (I)
  • the polyimide precursor which has a repeating unit represented by Formula (V) is called polyimide precursor (V).
  • examples of the alkyl group, the alkyl part of the alkanoyloxy group and the alkyl part of the alkoxyl group include linear or branched alkyl groups having 1 to 10 carbon atoms, specifically Are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, 2-ethylhexyl, nonyl, A decyl group etc. are mentioned.
  • Examples of the cycloalkyl group include cycloalkyl groups having 5 to 7 carbon atoms, and specific examples include a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
  • Examples of the alkenyl group include linear or branched alkenyl groups having 2 to 10 carbon atoms, such as ethenyl group, 1-propenyl group, allyl group, butenyl group, pentenyl group, hexenyl group, A heptenyl group, an octenyl group, a nonenyl group, a decenyl group, etc. are mentioned.
  • Examples of the aryl group include aryl groups having 6 to 10 carbon atoms, and specific examples include a phenyl group and a naphthyl group.
  • Examples of the aralkyl group include aralkyl groups having 7 to 10 carbon atoms, and specific examples include a benzyl group, a phenylethyl group, and a phenylpropyl group.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the alkylene group include groups generated by removing one hydrogen atom from the alkyl groups exemplified above.
  • alkylene group having 1 to 4 carbon atoms examples include a methylene group, an ethylene group, a trimethylene group, a propylene group, a dimethylmethylene group, a tetramethylene group, and an ethylethylene group.
  • polycyclic unsaturated hydrocarbon examples include, for example, a condensed polycyclic hydrocarbon in which a 3- to 8-membered ring is condensed, or a non-adjacent double bond having the largest number of non-adjacent double bonds (indene, naphthalene, anthracene, azulene). , Fluorene, etc.), partially hydrogenated compounds thereof (indane, tetrahydronaphthalene, tetrahydroanthracene, etc.) and the like.
  • polycyclic saturated hydrocarbon examples include bicyclic or tricyclic saturated hydrocarbons in which a 3- to 8-membered ring is condensed. Specific examples thereof include perhydroindene, perhydronaphthalene, perhydro Anthracene, bicyclo [3.2.1] octane, bicyclo [2.2.1] heptane, tricyclo [3.3.1.13,7] decane and the like can be mentioned.
  • Examples of the substituent of the alkyl group, alkenyl group, alkanoyloxy group, alkoxyl group and alkylene group include, for example, the same or different 1 to 3 substituents, specifically, a halogen atom, cyano group, formyl group, hydroxyl group Groups and the like.
  • the halogen atom has the same meaning as described above.
  • Examples of the substituent of the cycloalkyl group, aryl group, aralkyl group, polycyclic unsaturated hydrocarbon and polycyclic saturated hydrocarbon include, for example, the same or different 1 to 5 substituents, specifically, halogen Atom, cyano group, formyl group, hydroxyl group, alkyl group, alkanoyloxy group, alkoxyl group and the like can be mentioned.
  • a halogen atom, an alkyl group, an alkanoyloxy group and an alkoxyl group have the same meanings as described above.
  • the number of substitution of fluorine atoms in the alkylene group having 1 to 4 carbon atoms which may be substituted with fluorine atoms is from 0 to a substitutable number.
  • P 1 , P 2 and P 3 are preferably hydrogen atoms.
  • X and A are the same or different and are preferably the formula (II) or the formula (IV), more preferably the formula (II).
  • R 1 and R 2 are the same or different and are a methyl group or a trifluoromethyl group
  • q and r are the same or different and are 0 or 1
  • Z 1 Is an oxygen atom, a sulfur atom, SO 2 , a C 1-4 alkylene group which may be substituted by a fluorine atom or formula (III), and when Z 1 is formula (III), e and f are 0 Preferably there is.
  • a preferred group when A is the formula (II) has the same meaning as a preferred group when the X is the formula (II).
  • R 3 and R 4 are the same or different and are a methyl group or a trifluoromethyl group, sa and ua are the same or different and are 0 or 1, sb and It is preferable that ub is 1.
  • a preferred group when A is the formula (IV) has the same meaning as a preferred group when X is the formula (IV).
  • P 1 , P 2 and P 3 are preferably hydrogen atoms.
  • X is preferably of formula (II) or formula (IV).
  • the preferred group when X is the formula (II) in the formula (VI) has the same meaning as the preferred group when X is the formula (II) in the formula (I) and the formula (V).
  • the preferred group when X is the formula (IV) in the formula (VI) has the same meaning as the preferred group when X is the formula (IV) in the formula (I) and the formula (V).
  • each of P 1 , P 2 , P 3 , X and A may be the same or different.
  • each of P 1 , P 2 , P 3 , X, R a , R b , R c and R d is the same. Or it may be different.
  • Compound (VII) which is a raw material of compound (VI) can be produced, for example, according to reaction formula (1).
  • Compound (a) can be obtained by a known method, for example, “Experimental Chemistry Course (Vol. 19) Organic Synthesis I Hydrocarbon / Halogen Compound”, 4th edition, Maruzen Co., 1992, p. It can be obtained by manufacturing according to the method described in 173-194.
  • the compound (b) is obtained by mixing the compound (a) with a mixed gas of carbon monoxide and hydrogen in a solvent such as acetonitrile in the presence of a catalyst at 40 to 160 ° C. and 1 to 20 MPa for 0.2 to 50 hours. It can be manufactured by processing.
  • the catalyst examples include known noble metal catalysts (for example, cobalt-based catalysts, rhodium-based catalysts, platinum-based catalysts, etc.) used for hydroformylation. Specifically, for example, Co 2 (CO) 8 , Co 4 (CO ) 12 , Co 6 (CO) 16 , HCo (CO) 4 , [Co (CO) 3 (C 5 H 6 )] 2 , Rh 4 (CO) 12 , Rh 6 (CO) 16 , RhCl (PPh 3 ) 3 , [RhCl (CO) 2 ] 2 , HRh (CO) (PPh 3 ) 3 , Rh (CO) 2 (acac), Rh (CO) (PPh 3 ) (acac), and the like.
  • noble metal catalysts for example, cobalt-based catalysts, rhodium-based catalysts, platinum-based catalysts, etc.
  • C 5 H 6 represents cyclopentadiene
  • Ph represents a phenyl group
  • acac represents an acetylacetonate group.
  • the amount of the catalyst used is preferably 5 to 5000 ppm (as a metal), more preferably 10 to 2000 ppm (as a metal) with respect to the compound (a).
  • the catalyst is preferably used in combination with a phosphorus compound such as triphenylphosphine.
  • the amount of the phosphorus compound used when the catalyst and the phosphorus compound are used in combination is preferably 1 to 500 times mol of the catalyst.
  • the molar ratio of carbon monoxide to hydrogen in the mixed gas of carbon monoxide and hydrogen is preferably 0.2 to 5 (carbon monoxide / hydrogen).
  • Compound (b) is a known oxidizing agent such as oxone (registered trademark; manufactured by DuPont, containing 43% by weight of potassium hydrogen persulfate), hydrogen peroxide solution, etc. in a solvent at 0 to 100 ° C. and 0.2%.
  • Compound (c) can be produced by treating for ⁇ 50 hours.
  • the solvent include acetonitrile, methanol, a mixed solvent thereof and the like.
  • Compound (c) is treated with an acid anhydride such as acetic anhydride, propionic anhydride, maleic anhydride, phthalic anhydride in a solvent such as 1,4-dioxane at 0 to 200 ° C. for 0.2 to 50 hours.
  • an acid anhydride such as acetic anhydride, propionic anhydride, maleic anhydride, phthalic anhydride in a solvent such as 1,4-dioxane at 0 to 200 ° C. for 0.2 to 50 hours.
  • Compound (VII) can also be obtained by, for example, producing according to the method described in US Pat. No. 3,413,317. ⁇ Method for Producing Compound (VI)> Compound (VI) can be produced, for example, according to reaction formulas (2) and (3).
  • compound (VI) is obtained by reacting compound (VII) with a halogenating agent to obtain an acid halide represented by formula (d) [hereinafter referred to as compound (d)],
  • compound (d) can be produced by reacting a diol represented by HO—X—OH (wherein X is as defined above).
  • Reaction formula (2) Compound (d) can be produced, for example, by reacting a halogenating agent with compound (VI) at 0 to 120 ° C. for 1 to 24 hours.
  • the amount of the halogenating agent to be used is preferably 1 to 100 moles compared to Compound (VII).
  • a solvent such as hexane, toluene, ethyl acetate, ⁇ -butyrolactone, N-methyl-2-pyrrolidone or tetrahydrofuran may be used.
  • a catalyst such as N, N-dimethylformamide or pyridine may be used.
  • halogenating agent examples include known halogenating agents such as SOW 2 (wherein W is as defined above), phosphorus trichloride, oxalyl chloride, benzoic acid chloride, among which SOW 2 is preferable, Thionyl chloride is more preferred.
  • SOW 2 is used as the halogenating agent
  • unreacted SOW 2 is preferably distilled off from the resulting reaction mixture after the reaction.
  • the method of distilling off include a method of adding an azeotropic agent such as benzene and toluene and distilling off SOW 2 and the azeotropic agent from the reaction mixture.
  • the compound (d) may be purified by methods usually used in organic synthetic chemistry (various chromatographic methods, recrystallization methods, distillation methods, etc.).
  • Compound (VI) is, for example, a compound (d) and a diol represented by HO—X—OH (wherein X is as defined above), preferably -10 in a solvent in the presence of a base. It can be produced by reacting at -50 ° C for 1-100 hours.
  • a diol represented by HO—X—OH may be simply referred to as a diol.
  • Specific examples of the diol include, for example, hydroquinone, 2-methylhydroquinone, resorcinol, catechol, 2-phenylhydroquinone, 4,4′-biphenol, 3,4′-biphenol, 2,2′-biphenol, 4,4 ′.
  • the amount of the compound (d) used is preferably 2.1 to 10 moles relative to the diol.
  • the base include amines such as pyridine, triethylamine and N, N-dimethylaniline, and inorganic bases such as potassium carbonate and sodium hydroxide.
  • the amount of the base used is preferably 1 to 10 moles compared to the compound (d).
  • An epoxy compound such as propylene oxide may be used in place of the base.
  • the solvent examples include ether solvents such as tetrahydrofuran and 1,4-dioxane, ketone solvents such as acetone and methyl ethyl ketone, aromatic hydrocarbon solvents such as toluene and xylene, dichloromethane, chloroform, 1,2-dichloroethane, and the like. And amide solvents such as N-methyl-2-pyrrolidone, dimethylacetamide and N, N-dimethylformamide, ester solvents such as ⁇ -butyrolactone, ethyl acetate and butyl acetate, and dimethyl sulfoxide. These solvents may be used alone or in combination of two or more.
  • ether solvents such as tetrahydrofuran and 1,4-dioxane
  • ketone solvents such as acetone and methyl ethyl ketone
  • aromatic hydrocarbon solvents such as toluene and xylene
  • the compound (VI) may be purified by methods usually used in organic synthetic chemistry (various chromatographic methods, recrystallization methods, distillation methods, etc.).
  • the isolated compound (VI) is preferably heated at 100 to 250 ° C. under reduced pressure for 1 to 50 hours.
  • the hydrolyzate of compound (VI) is contained as an impurity in compound (VI)
  • the hydrolyzate can be converted to compound (VI) by the heating.
  • the polyimide precursor (V) is represented by, for example, one or more kinds of tetracarboxylic dianhydrides including the compound (VI) and H 2 NA—NH 2 (wherein A is as defined above). It can be produced by reacting with diamine in a solvent at 0 to 100 ° C. for 1 to 300 hours.
  • the diamine represented by H 2 N—A—NH 2 may be simply referred to as diamine.
  • diamines include, for example, 4,4′-methylenedicyclohexylamine, 3,3′-dimethyl-4,4′-methylenedicyclohexylamine, 3,3′-diethyl-4,4′-methylenedicyclohexylamine, 3,3 ′, 5,5′-tetramethyl-4,4′-methylenedicyclohexylamine, 3,3 ′, 5,5′-tetraethyl-4,4′-methylenedicyclohexylamine, isophoronediamine, trans-1, 4-cyclohexanediamine, cis-1,4-cyclohexanediamine, 1,4-cyclohexanebis (methylamine), 2,5-bis (aminomethyl) bicyclo [2.2.1] heptane, 2,6-bis ( Aminomethyl) bicyclo [2.2.1] heptane, 3,8-bis (aminomethyl) tricyclo [5.2 .1.0] decane, tricyclo [
  • tetracarboxylic dianhydrides containing compound (VI) When two or more kinds of tetracarboxylic dianhydrides containing compound (VI) are used, two or more kinds of compounds (VI) may be used, and one or more kinds of compounds (VI) and one or more kinds of compounds ( A tetracarboxylic dianhydride other than VI) may be used in combination.
  • tetracarboxylic dianhydrides other than compound (VI) include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4.
  • the amount of one or more types of compound (VI) used is the amount of tetracarboxylic acid dihydrate used. It is preferably 20 mol% or more, more preferably 50 mol% or more, based on the total amount of anhydride.
  • the amount of diamine used is preferably 0.8 to 1.2 moles, more preferably 0.95 to 1.05 moles, based on the total amount of tetracarboxylic dianhydride used. Further, it is preferably 0.99 to 1.01 times mole.
  • the solvent examples include amide solvents such as N, N-dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ - Cyclic ester solvents such as methyl- ⁇ -butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, m-cresol, p-cresol, 3-chlorophenol, 4-chlorophenol, etc. Phenolic solvents, acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like.
  • amide solvents such as N, N-dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇
  • the sum of the weight of the diamine used and the weight of the tetracarboxylic acid anhydride used is preferably 5 to 40% based on the weight of the reaction solution.
  • the sum of the weight of the diamine used and the weight of the tetracarboxylic anhydride used is preferably 5 to 30% with respect to the weight of the reaction solution.
  • the intrinsic viscosity at 30 ° C. of a 0.5 wt% dimethylacetamide solution of the polyimide precursor (V) is preferably 0.1 dL / g or more.
  • the polyimide precursor (V) having an intrinsic viscosity of 0.1 dL / g has excellent film forming properties.
  • the intrinsic viscosity is 0.1 dL.
  • the film obtained by using the polyimide precursor (V) which is / g has effects such as being hard to crack.
  • the number average molecular weight of the polyimide precursor (V) is preferably 2,000 to 1,000,000.
  • the obtained solution of the polyimide precursor (V) may be used as it is for the production of the later-described polyimide (for example, Journal of Applied Polymer Science, 1986, Vol. 32, p. 3133, Polymer, 1993). 34, p. 849, etc.).
  • the polyimide precursor (V) may be purified by a method usually used in polymer chemistry (such as reprecipitation) as necessary.
  • the polyimide (I) can be produced, for example, by imidizing the polyimide precursor (V).
  • imidizing the polyimide precursor (V) the amic acid unit contained in the polyimide precursor (V) is converted into an imide unit.
  • the method for imidizing the polyimide precursor (V) include thermal imidization and chemical imidization.
  • a method for producing polyimide (I) by thermal imidization for example, a method for producing polyimide (I) by heating polyimide precursor (V) in a solvent at 150 to 400 ° C. for 0.5 to 200 hours. Etc.
  • the solvent examples include amide solvents such as N, N-dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ - Cyclic ester solvents such as methyl- ⁇ -butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, m-cresol, p-cresol, 3-chlorophenol, 4-chlorophenol, etc. Phenolic solvents, acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like.
  • amide solvents such as N, N-dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇
  • polyimide (I) may be purified by a method usually used in polymer chemistry (such as reprecipitation).
  • the obtained polyimide (I) is dissolved in, for example, dimethylacetamide to form a solution, which is applied onto a substrate such as glass, copper, aluminum, stainless steel, or silicon, and then the substrate is heated at 40 to 180 ° C. for 1 to
  • a polyimide (I) film can be produced by drying for 5 hours, and preferably heating at 150 to 400 ° C. for 0.5 to 5 hours.
  • a solution of the polyimide precursor (V) is applied on a substrate such as glass, copper, aluminum, stainless steel, or silicon, and then the substrate is heated at 40 to 180 ° C. for 5 minutes.
  • a method of producing a polyimide (I) film by drying for 5 hours to obtain a polyimide precursor (V) film, and then heating the film at 150 to 400 ° C. for 5 minutes to 5 hours. It is done.
  • the solvent in the solution of the polyimide precursor (V) include those mentioned above as the solvent used for thermal imidization.
  • a method for producing polyimide (I) by chemical imidization for example, a polyimide precursor (V) in a solvent in the presence of an amine such as pyridine or triethylamine is heated at 0 to 50 ° C. with a chemical imidizing agent such as acetic anhydride. And a method of treating for 1 to 48 hours.
  • the amount of the chemical imidizing agent used is preferably 1 to 100 times mol for the amic acid unit contained in the polyimide precursor (V).
  • the amount of amine used is preferably 0.1 to 50 times the mole of the chemical imidizing agent.
  • the solvent include those listed above as solvents used for thermal imidization.
  • polyimide (I) may be purified by a method commonly used in polymer chemistry (reprecipitation or the like).
  • the obtained polyimide (I) is dissolved in, for example, dimethylacetamide to form a solution, which is applied onto a substrate such as glass, copper, aluminum, stainless steel, or silicon.
  • a polyimide (I) film can be produced by drying for 1 to 5 hours.
  • the polyimide (I) film is preferably further heated at 150 to 400 ° C. for 0.5 to 5 hours.
  • the polyimide precursor (V) film is immersed in a solution containing an amine such as pyridine or triethylamine and a chemical imidizing agent such as acetic anhydride. And a method for producing a polyimide (I) film.
  • the polyimide (I) film is preferably further heated at 150 to 400 ° C. for 0.5 to 5 hours.
  • the polyimide (I) is obtained by treating the polyimide precursor (V) with N, N-dicyclohexylcarbodiimide, trifluoroacetic anhydride or the like to obtain a polymer having an isoimide unit, and then heating the polymer having the isoimide unit.
  • N, N-dicyclohexylcarbodiimide, trifluoroacetic anhydride or the like for example, the method described in Polymer Journal, 1994, Vol. 26, p. 315, etc.
  • the amic acid unit contained in the polyimide precursor (V) is converted into an isoimide unit, and then the isoimide unit is converted into an imide unit.
  • the polyimide (I) of the present invention Since the polyimide (I) of the present invention has high heat resistance, it is useful for liquid crystal display (LCD) substrates, organic electroluminescence display (ELD) substrates, and the like.
  • the polyimide (I) of the present invention has transparency, low dielectric constant, light transmittance, birefringence, deflection temperature under load, various hardness, water absorption, strength against tension and bending, elastic modulus, Young's modulus, flexibility Excellent in electrical properties, electrical insulation, arc resistance, chemical resistance, hot water resistance, solubility in various solvents, etc.
  • ⁇ FT-IR spectrum> A Fourier transform infrared spectrophotometer (FT-IR5300 or FT-IR350) manufactured by JASCO Corporation was used. ⁇ 1 H-NMR spectrum> An NMR spectrophotometer (ECP400) manufactured by JEOL Ltd. was used. ⁇ Melting point> Using a differential scanning calorimeter (DSC3100) manufactured by Bruker Ax, measurement was performed in a nitrogen atmosphere at a heating rate of 2 ° C./min (DSC analysis). ⁇ Intrinsic viscosity> Using an Ostwald viscometer, the intrinsic viscosity of a 0.5 wt% polyimide precursor solution (solvent: dimethylacetamide) was measured at 30 ° C.
  • TMA4000 Bruker AXS thermomechanical analyzer
  • Example 1 Synthesis of Compound (VI-1) 1.8 g of 5-chlorocarbonyl-2,3-bicyclo [2.2.1] heptanedicarboxylic anhydride obtained by the same procedure as in Synthesis Example 4 (8.0 mmol) and 8.2 mL of anhydrous tetrahydrofuran were charged to the reactor, the reactor was sealed with a septum cap, and cooled to 0 ° C. in an ice bath. A solution obtained by mixing 0.4 g (4.0 mmol) of hydroquinone, 1.3 mL (16.0 mmol) of pyridine and 2.0 mL of anhydrous tetrahydrofuran was slowly added dropwise to the reactor using a syringe in an ice bath.
  • the crude product was recrystallized from a mixed solvent of acetic anhydride and toluene (volume ratio 1: 1) to obtain 0.1 g of Compound (VI-2).
  • the obtained compound (VI-2) was subjected to DSC analysis. A sharp endothermic peak (melting point) was observed at 260.8 ° C. in the DSC curve, which showed that the obtained compound (VI-2) was of high purity.
  • Example 3 Synthesis of Compound (VI-3) 2.6 g (13.1 mmol) of 4,4′-bicyclohexanol (trans-trans type), 6.4 mL (78.9 mmol) of pyridine and 55.7 mL of anhydrous tetrahydrofuran was charged to the reactor, the reactor was sealed with a septum cap, and cooled to 0 ° C. in an ice bath. 6.0 g (26.3 mmol) of 5-chlorocarbonyl-2,3-bicyclo [2.2.1] heptanedicarboxylic acid anhydride obtained by operating in the same manner as in Synthesis Example 4 and 20.3 mL of anhydrous tetrahydrofuran were mixed.
  • the crude product was recrystallized from acetic anhydride to obtain 0.5 g of Compound (VI-5).
  • DSC analysis of the obtained compound (VI-5) was performed. In the DSC curve, a sharp endothermic peak (melting point) was observed at 316.8 ° C., indicating that the obtained compound (VI-5) was of high purity.
  • Example 6 Synthesis of Compound (VI-6) 3.3 g of 5-chlorocarbonyl-2,3-bicyclo [2.2.1] heptanedicarboxylic anhydride obtained by the same procedure as in Synthesis Example 4 14.4 mmol) and 5.6 mL of anhydrous tetrahydrofuran were charged to the reactor, and the reactor was sealed with a septum cap and cooled to 0 ° C. in an ice bath.
  • the crude product was recrystallized from a mixed solvent of acetic anhydride and acetic acid (volume ratio 1: 2) to obtain 0.2 g of Compound (VI-6).
  • DSC analysis of the obtained compound (VI-6) was performed. In the DSC curve, a sharp endothermic peak (melting point) was observed at 235.3 ° C., indicating that the obtained compound (VI-6) was of high purity.
  • Examples 7 to 30 Production of polyimide precursors (V-1) to (V-24) Using the combination of diamine and tetracarboxylic dianhydride shown in Table 1 as raw materials, the following operations are performed. As a result, solutions of polyimide precursors (V-1) to (V-24) were obtained. A well-dried sealed reactor equipped with a stirrer was charged with 5 mmol of diamine and dimethylacetamide, then 5 mmol of tetracarboxylic dianhydride was gradually added at room temperature, and then stirred for the time shown in Table 1 to obtain a clear and viscous solution. A solution of a polyimide precursor was obtained.
  • Examples 31 to 54 Production of polyimides (I-1) to (I-24) Using the polyimide precursors shown in Table 2 as raw materials, the following operations were performed to obtain polyimides (I-1) to (I -24) was obtained.
  • Each of the polyimide precursor solutions obtained in Examples 7 to 30 was charged into a reactor, and then a chemical imidization reagent (acetic anhydride / pyridine mixed solution, volume ratio 7/3) was dropped into the reactor at room temperature. Subsequently, it stirred at room temperature for 24 hours.
  • the amount of acetic anhydride in the chemical imidizing reagent used at this time is a 5-fold molar amount with respect to the amic acid unit contained in the polyimide precursor (V).
  • polyimides (I-1) to (I-24) 1 g of each of the polyimides (I-1) to (I-24) was dissolved in 3 g of dimethylacetamide, the resulting solution was applied to a glass substrate by bar coating, and the glass substrate was dried at 60 ° C. for 2 hours.
  • the glass substrate is heated under the heat treatment conditions shown in Table 2, and the polyimide film formed on the glass substrate is peeled off from the substrate, whereby transparent polyimides (I-1) to (I- 24) was obtained.
  • a polyimide precursor (X-1) is obtained by performing the same operation as in Example 7 except that the tetracarboxylic dianhydride represented by the formula (VIII-1) is used in place of the compound (VI-1). It was.
  • polyimide (XI-1) was obtained by performing the same operation as in Example 31 except that the polyimide precursor (X-1) was used instead of the polyimide precursor (V-1).
  • a film of polyimide (XI-1) was obtained by performing the same operation as in Example 31 except that polyimide (XI-1) was used instead of polyimide (I-1).
  • Table 3 shows the physical properties of the polyimide (XI-1) film.
  • a polyimide precursor (X-2) is obtained by performing the same operation as in Example 9 except that the tetracarboxylic dianhydride represented by the formula (VIII-1) is used in place of the compound (VI-1). It was.
  • a polyimide (XI-2) was obtained by performing the same operation as in Example 31 except that the polyimide precursor (X-2) was used instead of the polyimide precursor (V-1).
  • a polyimide (XI-2) film was obtained by performing the same operation as in Example 31 except that polyimide (XI-2) was used instead of polyimide (I-1).
  • Table 3 shows the physical properties of the polyimide (XI-2) film.
  • Polyimide (I-1) had lower CTE and higher Tg compared to polyimide (XI-1).
  • polyimide having high heat resistance and the like can be provided.

Abstract

Disclosed is a polyimide having a repeating unit represented by formula (I), or the like. [In the formula (I), P1, P2 and P3 each represents a hydrogen atom or the like; and X and A may be the same or different and each represents a group represented by formula (II) or the like.] [In the formula (II), m represents an integer of 0-3; R1 and R2 may be the same or different and each represents an alkyl group or the like; q and r may be the same or different and each represents an integer of 0-4; and Z1 represents a single bond, an oxygen atom, SO2 or the like.]

Description

ポリイミドPolyimide
 本発明は、各種電子デバイスにおける電気絶縁膜、液晶ディスプレー(LCD)用基板、有機エレクトロルミネッセンスディスプレー(ELD)用基板、電子ペーパー用基板、太陽電池用基板、半導体素子の層間絶縁膜および保護膜、液晶配向膜、光導波路材料等に有用なポリイミド等に関する。 The present invention relates to an electrical insulating film in various electronic devices, a substrate for liquid crystal display (LCD), a substrate for organic electroluminescence display (ELD), a substrate for electronic paper, a substrate for solar cell, an interlayer insulating film and a protective film for semiconductor elements, The present invention relates to polyimide useful for liquid crystal alignment films, optical waveguide materials, and the like.
 現在、LCDまたはELDにはガラス基板が用いられているが、近年の大画面化の動向に伴い、基板の軽量化および生産性向上が求められている。その解決方法としてガラス基板の替わりに、より軽量で成型加工が容易なポリイミド等のプラスチック基板の採用が期待されている。 Currently, glass substrates are used for LCDs or ELDs, but with the trend of larger screens in recent years, there is a demand for lighter substrates and improved productivity. As a solution to this problem, it is expected to use a plastic substrate such as polyimide that is lighter and easier to mold instead of the glass substrate.
 ポリイミドとしては、例えば、一般式(VIII) As polyimide, for example, general formula (VIII)
Figure JPOXMLDOC01-appb-C000017
(式中、Yは2価の芳香族基等を表す)で表されるテトラカルボン酸二無水物とジアミンとを反応させて得られるポリイミド(特許文献1)等が知られているが、高い耐熱性等の要求性能を満足するものではない。
Figure JPOXMLDOC01-appb-C000017
A polyimide obtained by reacting a tetracarboxylic dianhydride represented by (wherein Y represents a divalent aromatic group or the like) and a diamine (Patent Document 1) is known, but is high. It does not satisfy the required performance such as heat resistance.
国際公開第2006/129771号パンフレットInternational Publication No. 2006/129771 Pamphlet
 本発明は、高い耐熱性等を有するポリイミド等を提供する。 The present invention provides polyimide having high heat resistance and the like.
 より具体的には、以下の発明が提供される。 More specifically, the following inventions are provided.
(1) 式(I) (1) Formula (I)
Figure JPOXMLDOC01-appb-C000018
[式中、P、PおよびPは、同一または異なって、水素原子、ハロゲン原子、シアノ基、ホルミル基、ヒドロキシル基、置換もしくは非置換のアルキル基、置換もしくは非置換のシクロアルキル基、置換もしくは非置換のアルケニル基、置換もしくは非置換のアリール基、置換もしくは非置換のアラルキル基、置換もしくは非置換のアルカノイルオキシ基または置換もしくは非置換のアルコキシル基を表し、XおよびAは、同一または異なって、置換もしくは非置換のアルキレン基、置換もしくは非置換の多環式不飽和炭化水素から炭素原子上の水素原子を2つ除くことにより生じる2価の基、置換もしくは非置換の多環式飽和炭化水素から炭素原子上の水素原子を2つ除くことにより生じる2価の基、式(II)
Figure JPOXMLDOC01-appb-C000018
[Wherein P 1 , P 2 and P 3 are the same or different and each represents a hydrogen atom, a halogen atom, a cyano group, a formyl group, a hydroxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group Represents a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted alkanoyloxy group or a substituted or unsubstituted alkoxyl group, and X and A are the same Or differently, a substituted or unsubstituted alkylene group, a divalent group formed by removing two hydrogen atoms on a carbon atom from a substituted or unsubstituted polycyclic unsaturated hydrocarbon, a substituted or unsubstituted polycycle A divalent group formed by removing two hydrogen atoms on a carbon atom from a saturated hydrocarbon of formula (II)
Figure JPOXMLDOC01-appb-C000019
[式中、mは0~3の整数を表し、RおよびRは、同一または異なって、ハロゲン原子、シアノ基、ホルミル基、ヒドロキシル基、置換もしくは非置換のアルキル基、置換もしくは非置換のアルケニル基、置換もしくは非置換のアリール基、置換もしくは非置換のアルカノイルオキシ基または置換もしくは非置換のアルコキシル基を表し、qおよびrは、同一または異なって、0~4の整数を表し、qが2~4の整数であるときRのそれぞれは同一または異なってよく、rが2~4の整数であるときRのそれぞれは同一または異なってよく、Zは単結合、酸素原子、硫黄原子、SO、フッ素原子が置換していてもよい炭素数1~4のアルキレン基、または式(III)
Figure JPOXMLDOC01-appb-C000019
[Wherein, m represents an integer of 0 to 3, and R 1 and R 2 are the same or different and each represents a halogen atom, a cyano group, a formyl group, a hydroxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted group. Alkenyl group, substituted or unsubstituted aryl group, substituted or unsubstituted alkanoyloxy group or substituted or unsubstituted alkoxyl group, q and r are the same or different and represent an integer of 0 to 4, q Each of R 1 may be the same or different when R is an integer of 2 to 4, and each of R 2 may be the same or different when r is an integer of 2 to 4, and Z 1 is a single bond, an oxygen atom, A sulfur atom, SO 2 , a C 1-4 alkylene group which may be substituted by a fluorine atom, or the formula (III)
Figure JPOXMLDOC01-appb-C000020
(式中、RおよびRは、同一または異なって、ハロゲン原子、シアノ基、ホルミル基、ヒドロキシル基、置換もしくは非置換のアルキル基、置換もしくは非置換のシクロアルキル基、置換もしくは非置換のアルケニル基、置換もしくは非置換のアリール基、置換もしくは非置換のアラルキル基、置換もしくは非置換のアルカノイルオキシ基または置換もしくは非置換のアルコキシル基を表し、eおよびfは、同一または異なって、0~4の整数を表し、eが2~4の整数であるときRのそれぞれは同一または異なってよく、fが2~4の整数であるときRのそれぞれは同一または異なってよい)を表し、mが2または3であるときR、qおよびZのそれぞれは同一または異なってよい]または式(IV)
Figure JPOXMLDOC01-appb-C000020
(Wherein R 5 and R 6 are the same or different and each represents a halogen atom, a cyano group, a formyl group, a hydroxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted group, Represents an alkenyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted alkanoyloxy group or a substituted or unsubstituted alkoxyl group, and e and f are the same or different and represent 0 to Each of R 5 may be the same or different when e is an integer of 2 to 4, and each of R 6 may be the same or different when f is an integer of 2 to 4. Each of R 1 , q and Z 1 may be the same or different when m is 2 or 3] or formula (IV)
Figure JPOXMLDOC01-appb-C000021
(式中、nは0~3の整数を表し、RおよびRは、同一または異なって、ハロゲン原子、シアノ基、ホルミル基、ヒドロキシル基、置換もしくは非置換のアルキル基、置換もしくは非置換のシクロアルキル基、置換もしくは非置換のアルケニル基、置換もしくは非置換のアルカノイルオキシ基または置換もしくは非置換のアルコキシル基を表し、saおよびuaは、同一または異なって、0~4の整数を表し、saが2~4の整数であるときRのそれぞれは同一または異なってよく、uaが2~4の整数であるときRのそれぞれは同一または異なってよく、sbおよびubは、同一または異なって、0~2の整数を表し、Zは単結合、酸素原子、硫黄原子、SOまたはフッ素原子が置換していてもよい炭素数1~4のアルキレン基を表し、nが2または3であるときR、sa、sbおよびZのそれぞれは同一または異なっていてもよい)を表す]で表される繰り返し単位を有するポリイミド。
Figure JPOXMLDOC01-appb-C000021
(Wherein n represents an integer of 0 to 3, and R 3 and R 4 are the same or different and are each a halogen atom, a cyano group, a formyl group, a hydroxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted group, A cycloalkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkanoyloxy group or a substituted or unsubstituted alkoxyl group, sa and ua are the same or different and represent an integer of 0 to 4; When sa is an integer from 2 to 4, each R 3 may be the same or different, and when ua is an integer from 2 to 4 , each R 4 may be the same or different, and sb and ub are the same or different. Te, 0 represents an integer 2, Z 2 is a single bond, an oxygen atom, a sulfur atom, alkyl of SO 2 or a fluorine atom and 1 carbon atoms and optionally substituted 4 Represents an emission radical, n when it is 2 or 3 R 3, sa, polyimide having a repeating unit each of sb and Z 2 is represented by representing the same or may be different).
(2) 式(V) (2) Formula (V)
Figure JPOXMLDOC01-appb-C000022
[式中、P、P、PおよびXはそれぞれ前記と同義であり、RおよびRの一方はヒドロキシル基を表し他方は-NH-A-(式中、Aは前記と同義である)で表される2価の基を表し、RおよびRの一方はヒドロキシル基を表し他方は-NH-で表される2価の基を表す]で表される繰り返し単位を有するポリイミド前駆体をイミド化することを特徴とする式(I)
Figure JPOXMLDOC01-appb-C000022
[Wherein P 1 , P 2 , P 3 and X are as defined above, one of R a and R b represents a hydroxyl group and the other is —NH—A— (wherein A is as defined above] In which one of R c and R d represents a hydroxyl group and the other represents a divalent group represented by —NH—. Formula (I) characterized by imidizing a polyimide precursor
Figure JPOXMLDOC01-appb-C000023
(式中、P、P、P、XおよびAはそれぞれ前記と同義である)で表される繰り返し単位を有するポリイミドの製造方法。
Figure JPOXMLDOC01-appb-C000023
(Wherein P 1 , P 2 , P 3 , X and A are as defined above), a method for producing a polyimide having a repeating unit.
(3) 式(V) (3) Formula (V)
Figure JPOXMLDOC01-appb-C000024
(式中、P、P、P、X、R、R、RおよびRはそれぞれ前記と同義である)で表される繰り返し単位を有するポリイミド前駆体。
Figure JPOXMLDOC01-appb-C000024
(Wherein P 1 , P 2 , P 3 , X, R a , R b , R c and R d are as defined above), and a polyimide precursor having a repeating unit.
(4) 式(VI) (4) Formula (VI)
Figure JPOXMLDOC01-appb-C000025
(式中、P、P、PおよびXはそれぞれ前記と同義である)で表されるテトラカルボン酸二無水物を含む1種類以上のテトラカルボン酸二無水物とHN-A-NH(式中、Aは前記と同義である)で表されるジアミンとを反応させることを特徴とする式(V)
Figure JPOXMLDOC01-appb-C000025
(Wherein P 1 , P 2 , P 3 and X are as defined above) and one or more types of tetracarboxylic dianhydrides including H 2 NA Formula (V), characterized by reacting with a diamine represented by —NH 2 (wherein A is as defined above)
Figure JPOXMLDOC01-appb-C000026
(式中、P、P、P、X、R、R、RおよびRはそれぞれ前記と同義である)で表される繰り返し単位を有するポリイミド前駆体の製造方法。
Figure JPOXMLDOC01-appb-C000026
(Wherein P 1 , P 2 , P 3 , X, R a , R b , R c and R d are as defined above), a method for producing a polyimide precursor having a repeating unit.
(5) 式(VI) (5) Formula (VI)
Figure JPOXMLDOC01-appb-C000027
(式中、P、P、PおよびXはそれぞれ前記と同義である)で表されるテトラカルボン酸二無水物。
Figure JPOXMLDOC01-appb-C000027
(Wherein P 1 , P 2 , P 3 and X are as defined above), tetracarboxylic dianhydride.
(6) 式(VII) (6) Formula (VII)
Figure JPOXMLDOC01-appb-C000028
(式中、P、PおよびPはそれぞれ前記と同義である)で表される酸無水物とハロゲン化剤とを反応させることにより酸ハライドを得、次いで、該酸ハライドとHO-X-OH(式中、Xは前記と同義である)で表されるジオールとを反応させることを特徴とする式(VI)
Figure JPOXMLDOC01-appb-C000028
(Wherein P 1 , P 2 and P 3 are as defined above), an acid halide and a halogenating agent are reacted to obtain an acid halide, and then the acid halide and HO— Reacting with a diol represented by X—OH (wherein X is as defined above),
Figure JPOXMLDOC01-appb-C000029
(式中、P、P、PおよびXおよびAはそれぞれ前記と同義である)で表されるテトラカルボン酸二無水物の製造方法。
Figure JPOXMLDOC01-appb-C000029
(Wherein P 1 , P 2 , P 3 and X and A are as defined above), a method for producing a tetracarboxylic dianhydride.
(7) 式(VII) (7) Formula (VII)
Figure JPOXMLDOC01-appb-C000030
(式中、P、PおよびPはそれぞれ前記と同義である)で表される酸無水物とハロゲン化剤とを反応させることにより酸ハライドを得、次いで、該酸ハライドとHO-X-OH(式中、Xは前記と同義である)で表されるジオールとを反応させることにより式(VI)
Figure JPOXMLDOC01-appb-C000030
(Wherein P 1 , P 2 and P 3 are as defined above), an acid halide and a halogenating agent are reacted to obtain an acid halide, and then the acid halide and HO— By reacting with a diol represented by X—OH (wherein X is as defined above), the compound of formula (VI)
Figure JPOXMLDOC01-appb-C000031
(式中、P、P、PおよびXはそれぞれ前記と同義である)で表されるテトラカルボン酸二無水物を得、次いで、該テトラカルボン酸二無水物を含む1種類以上のテトラカルボン酸二無水物とHN-A-NH(式中、Aは前記と同義である)で表されるジアミンとを反応させることにより式(V)
Figure JPOXMLDOC01-appb-C000031
(Wherein P 1 , P 2 , P 3 and X are as defined above), and then one or more kinds of tetracarboxylic dianhydrides containing the tetracarboxylic dianhydride By reacting tetracarboxylic dianhydride with a diamine represented by H 2 N—A—NH 2 (wherein A is as defined above), the compound represented by the formula (V)
Figure JPOXMLDOC01-appb-C000032
(式中、P、P、P、X、R、R、RおよびRはそれぞれ前記と同義である)で表される繰り返し単位を有するポリイミド前駆体を得、次いで、該ポリイミド前駆体をイミド化することを特徴とする式(I)
Figure JPOXMLDOC01-appb-C000032
(Wherein P 1 , P 2 , P 3 , X, R a , R b , R c and R d are as defined above), a polyimide precursor having a repeating unit represented by Formula (I) characterized by imidizing the polyimide precursor
Figure JPOXMLDOC01-appb-C000033
(式中、P、P、P、XおよびAはそれぞれ前記と同義である)で表される繰り返し単位を有するポリイミドの製造方法。
Figure JPOXMLDOC01-appb-C000033
(Wherein P 1 , P 2 , P 3 , X and A are as defined above), a method for producing a polyimide having a repeating unit.
(8) XおよびAが、同一または異なって、式(II)または式(IV)である上記(1)記載のポリイミド。 (8) The polyimide according to the above (1), wherein X and A are the same or different and are represented by formula (II) or formula (IV).
(9) XおよびAが、同一または異なって、式(II)である上記(1)記載のポリイミド。
(10) P、PおよびPが水素原子である上記(1)、(8)または(9)記載のポリイミド。
(9) The polyimide according to the above (1), wherein X and A are the same or different and are represented by the formula (II).
(10) The polyimide according to the above (1), (8) or (9), wherein P 1 , P 2 and P 3 are hydrogen atoms.
(11) XおよびAが、同一または異なって、式(II)または式(IV)である上記(3)記載のポリイミド前駆体。 (11) The polyimide precursor according to the above (3), wherein X and A are the same or different and are represented by formula (II) or formula (IV).
(12) XおよびAが、同一または異なって、式(II)である上記(3)記載のポリイミド前駆体。 (12) The polyimide precursor according to the above (3), wherein X and A are the same or different and are represented by the formula (II).
(13) P、PおよびPが水素原子である上記(3)、(11)または(12)記載のポリイミド前駆体。 (13) The polyimide precursor according to the above (3), (11) or (12), wherein P 1 , P 2 and P 3 are hydrogen atoms.
(14) Xが式(II)または式(IV)である上記(5)記載のテトラカルボン酸二無水物。 (14) The tetracarboxylic dianhydride according to the above (5), wherein X is formula (II) or formula (IV).
(15) Xが式(II)である上記(5)記載のテトラカルボン酸二無水物。 (15) The tetracarboxylic dianhydride according to the above (5), wherein X is the formula (II).
(16) P、PおよびPが水素原子である上記(5)、(14)または(15)記載のテトラカルボン酸二無水物。 (16) The tetracarboxylic dianhydride according to the above (5), (14) or (15), wherein P 1 , P 2 and P 3 are hydrogen atoms.
 本発明により、高い耐熱性等を有するポリイミド等を提供できる。 According to the present invention, polyimide having high heat resistance and the like can be provided.
 以下、式(VI)で表される化合物を化合物(VI)という。他の式番号で表される低分子化合物についても同様である。
 また、式(I)で表される繰り返し単位を有するポリイミドをポリイミド(I)といい、式(V)で表される繰り返し単位を有するポリイミド前駆体をポリイミド前駆体(V)という。
Hereinafter, the compound represented by formula (VI) is referred to as compound (VI). The same applies to the low molecular weight compounds represented by other formula numbers.
Moreover, the polyimide which has a repeating unit represented by Formula (I) is called polyimide (I), and the polyimide precursor which has a repeating unit represented by Formula (V) is called polyimide precursor (V).
 式中の各基の定義において、アルキル基、アルカノイルオキシ基のアルキル部分およびアルコキシル基のアルキル部分としては、例えば、直鎖または分岐状の炭素数1~10のアルキル基が挙げられ、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基等が挙げられる。 In the definition of each group in the formula, examples of the alkyl group, the alkyl part of the alkanoyloxy group and the alkyl part of the alkoxyl group include linear or branched alkyl groups having 1 to 10 carbon atoms, specifically Are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, 2-ethylhexyl, nonyl, A decyl group etc. are mentioned.
 シクロアルキル基としては、例えば、炭素数5~7のシクロアルキル基が挙げられ、具体的には、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等が挙げられる。
 アルケニル基としては、例えば、直鎖または分岐状の炭素数2~10のアルケニル基が挙げられ、具体的には、エテニル基、1-プロペニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基等が挙げられる。
 アリール基としては、例えば、炭素数6~10のアリール基が挙げられ、具体的には、フェニル基、ナフチル基等が挙げられる。
 アラルキル基としては、例えば、炭素数7~10のアラルキル基が挙げられ、具体的には、ベンジル基、フェニルエチル基、フェニルプロピル基等が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 アルキレン基としては、例えば、前記に例示したアルキル基から水素原子を1つ除くことにより生じる基が挙げられる。
 炭素数1~4のアルキレン基の具体例としては、例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基、ジメチルメチレン基、テトラメチレン基、エチルエチレン基等が挙げられる。
Examples of the cycloalkyl group include cycloalkyl groups having 5 to 7 carbon atoms, and specific examples include a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
Examples of the alkenyl group include linear or branched alkenyl groups having 2 to 10 carbon atoms, such as ethenyl group, 1-propenyl group, allyl group, butenyl group, pentenyl group, hexenyl group, A heptenyl group, an octenyl group, a nonenyl group, a decenyl group, etc. are mentioned.
Examples of the aryl group include aryl groups having 6 to 10 carbon atoms, and specific examples include a phenyl group and a naphthyl group.
Examples of the aralkyl group include aralkyl groups having 7 to 10 carbon atoms, and specific examples include a benzyl group, a phenylethyl group, and a phenylpropyl group.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Examples of the alkylene group include groups generated by removing one hydrogen atom from the alkyl groups exemplified above.
Specific examples of the alkylene group having 1 to 4 carbon atoms include a methylene group, an ethylene group, a trimethylene group, a propylene group, a dimethylmethylene group, a tetramethylene group, and an ethylethylene group.
 多環式不飽和炭化水素としては、例えば、3~8員の環が縮合した二環または三環性で非隣接2重結合が最多の縮合多環式炭化水素(インデン、ナフタレン、アントラセン、アズレン、フルオレン等)、これらの部分水素化化合物(インダン、テトラヒドロナフタレン、テトラヒドロアントラセン等)等が挙げられる。 Examples of the polycyclic unsaturated hydrocarbon include, for example, a condensed polycyclic hydrocarbon in which a 3- to 8-membered ring is condensed, or a non-adjacent double bond having the largest number of non-adjacent double bonds (indene, naphthalene, anthracene, azulene). , Fluorene, etc.), partially hydrogenated compounds thereof (indane, tetrahydronaphthalene, tetrahydroanthracene, etc.) and the like.
 多環式飽和炭化水素としては、例えば、3~8員の環が縮合した二環または三環性の飽和炭化水素等が挙げられ、具体的には、ペルヒドロインデン、ペルヒドロナフタレン、ペルヒドロアントラセン、ビシクロ[3.2.1]オクタン、ビシクロ[2.2.1]ヘプタン、トリシクロ[3.3.1.13,7]デカン等が挙げられる。 Examples of the polycyclic saturated hydrocarbon include bicyclic or tricyclic saturated hydrocarbons in which a 3- to 8-membered ring is condensed. Specific examples thereof include perhydroindene, perhydronaphthalene, perhydro Anthracene, bicyclo [3.2.1] octane, bicyclo [2.2.1] heptane, tricyclo [3.3.1.13,7] decane and the like can be mentioned.
 アルキル基、アルケニル基、アルカノイルオキシ基、アルコキシル基およびアルキレン基の置換基としては、例えば、同一または異なって1~3個の置換基、具体的には、ハロゲン原子、シアノ基、ホルミル基、ヒドロキシル基等が挙げられる。ここで、ハロゲン原子は前記と同義である。
 シクロアルキル基、アリール基、アラルキル基、多環式不飽和炭化水素および多環式飽和炭化水素の置換基としては、例えば、同一または異なって1~5個の置換基、具体的には、ハロゲン原子、シアノ基、ホルミル基、ヒドロキシル基、アルキル基、アルカノイルオキシ基、アルコキシル基等が挙げられる。ここで、ハロゲン原子、アルキル基、アルカノイルオキシ基およびアルコキシル基はそれぞれ前記と同義である。
 フッ素原子が置換していてもよい炭素数1~4のアルキレン基におけるフッ素原子の置換数は、0~置換可能な数である。
Examples of the substituent of the alkyl group, alkenyl group, alkanoyloxy group, alkoxyl group and alkylene group include, for example, the same or different 1 to 3 substituents, specifically, a halogen atom, cyano group, formyl group, hydroxyl group Groups and the like. Here, the halogen atom has the same meaning as described above.
Examples of the substituent of the cycloalkyl group, aryl group, aralkyl group, polycyclic unsaturated hydrocarbon and polycyclic saturated hydrocarbon include, for example, the same or different 1 to 5 substituents, specifically, halogen Atom, cyano group, formyl group, hydroxyl group, alkyl group, alkanoyloxy group, alkoxyl group and the like can be mentioned. Here, a halogen atom, an alkyl group, an alkanoyloxy group and an alkoxyl group have the same meanings as described above.
The number of substitution of fluorine atoms in the alkylene group having 1 to 4 carbon atoms which may be substituted with fluorine atoms is from 0 to a substitutable number.
 式(I)および式(V)の各基において、
  P、PおよびPが水素原子であるのが好ましい。
  XおよびAが、同一または異なって、式(II)または式(IV)であるのが好ましく、式(II)であるのがより好ましい。
 Xが式(II)であるとき、RおよびRが、同一または異なって、メチル基またはトリフルオロメチル基であり、qおよびrが、同一または異なって、0または1であり、Zが酸素原子、硫黄原子、SO、フッ素原子が置換してもよい炭素数1~4のアルキレン基または式(III)であり、Zが式(III)であるときeおよびfが0であるのが好ましい。
 Aが式(II)であるときの好ましい基は、前記Xが式(II)であるときの好ましい基と同義である。
 Xが式(IV)であるとき、RおよびRが、同一または異なって、メチル基またはトリフルオロメチル基であり、saおよびuaが、同一または異なって、0または1であり、sbおよびubが1であるのが好ましい。
 Aが式(IV)であるときの好ましい基は、前記Xが式(IV)であるときの好ましい基と同義である。
In each group of formula (I) and formula (V):
P 1 , P 2 and P 3 are preferably hydrogen atoms.
X and A are the same or different and are preferably the formula (II) or the formula (IV), more preferably the formula (II).
When X is the formula (II), R 1 and R 2 are the same or different and are a methyl group or a trifluoromethyl group, q and r are the same or different and are 0 or 1, and Z 1 Is an oxygen atom, a sulfur atom, SO 2 , a C 1-4 alkylene group which may be substituted by a fluorine atom or formula (III), and when Z 1 is formula (III), e and f are 0 Preferably there is.
A preferred group when A is the formula (II) has the same meaning as a preferred group when the X is the formula (II).
When X is formula (IV), R 3 and R 4 are the same or different and are a methyl group or a trifluoromethyl group, sa and ua are the same or different and are 0 or 1, sb and It is preferable that ub is 1.
A preferred group when A is the formula (IV) has the same meaning as a preferred group when X is the formula (IV).
 式(VI)の各基において、
  P、PおよびPが水素原子であるのが好ましい。
  Xが、式(II)または式(IV)であるのが好ましい。
 式(VI)においてXが式(II)であるときの好ましい基は、前記式(I)および式(V)においてXが式(II)であるときの好ましい基と同義である。
 式(VI)においてXが式(IV)であるときの好ましい基は、前記式(I)および式(V)においてXが式(IV)であるときの好ましい基と同義である。
ポリイミド(I)に含まれる式(I)で表される繰り返し単位のそれぞれにおいて、P、P、P、XおよびAのそれぞれは、同一または異なってよい。
 ポリイミド前駆体(V)に含まれる式(V)で表される繰り返し単位のそれぞれにおいて、P、P、P、X、R、R、RおよびRのそれぞれは、同一または異なってよい。
In each group of formula (VI):
P 1 , P 2 and P 3 are preferably hydrogen atoms.
X is preferably of formula (II) or formula (IV).
The preferred group when X is the formula (II) in the formula (VI) has the same meaning as the preferred group when X is the formula (II) in the formula (I) and the formula (V).
The preferred group when X is the formula (IV) in the formula (VI) has the same meaning as the preferred group when X is the formula (IV) in the formula (I) and the formula (V).
In each of the repeating units represented by the formula (I) contained in the polyimide (I), each of P 1 , P 2 , P 3 , X and A may be the same or different.
In each of the repeating units represented by the formula (V) contained in the polyimide precursor (V), each of P 1 , P 2 , P 3 , X, R a , R b , R c and R d is the same. Or it may be different.
次に、本発明の化合物(VI)、ポリイミド前駆体(V)およびポリイミド(I)の製造方法について説明する。 Next, the manufacturing method of the compound (VI) of this invention, a polyimide precursor (V), and a polyimide (I) is demonstrated.
 化合物(VI)の原料である化合物(VII)は、例えば、反応式(1)に従って製造することができる。 Compound (VII) which is a raw material of compound (VI) can be produced, for example, according to reaction formula (1).
Figure JPOXMLDOC01-appb-C000034
(式中、P、PおよびPは、それぞれ前記と同義である)
Figure JPOXMLDOC01-appb-C000034
(Wherein P 1 , P 2 and P 3 are as defined above)
反応式(1)
 化合物(a)は公知の方法、例えば、「実験化学講座(第19巻)有機合成I 炭化水素・ハロゲン化合物」,第4版,丸善株式会社,1992年,p.173-194に記載の方法等に準じて製造することにより得ることができる。
Reaction formula (1)
Compound (a) can be obtained by a known method, for example, “Experimental Chemistry Course (Vol. 19) Organic Synthesis I Hydrocarbon / Halogen Compound”, 4th edition, Maruzen Co., 1992, p. It can be obtained by manufacturing according to the method described in 173-194.
 化合物(b)は、例えば、触媒の存在下、アセトニトリル等の溶媒中、一酸化炭素と水素の混合気体で化合物(a)を40~160℃で、1~20MPaで、0.2~50時間処理することにより製造することができる。 For example, the compound (b) is obtained by mixing the compound (a) with a mixed gas of carbon monoxide and hydrogen in a solvent such as acetonitrile in the presence of a catalyst at 40 to 160 ° C. and 1 to 20 MPa for 0.2 to 50 hours. It can be manufactured by processing.
 触媒としてはヒドロホルミル化に用いられる公知の貴金属触媒(例えば、コバルト系触媒、ロジウム系触媒、白金系触媒等)が挙げられ、具体的には、例えば、Co(CO)、Co(CO)12、Co(CO)16、HCo(CO)、[Co(CO)(C)]、Rh(CO)12、Rh(CO)16、RhCl(PPh、[RhCl(CO)、HRh(CO)(PPh、Rh(CO)(acac)、Rh(CO)(PPh)(acac)等が挙げられる。ここで、Cはシクロペンタジエンを表し、Phはフェニル基を表し、acacはアセチルアセトナート基を表す。触媒の使用量は、化合物(a)に対して5~5000ppm(金属として)であるのが好ましく、10~2000ppm(金属として)であるのがより好ましい。触媒はトリフェニルフォスフィン等のリン化合物と併用することが好ましい。触媒とリン化合物とを併用するときのリン化合物の使用量は、触媒に対して1~500倍モルであるのが好ましい。
 一酸化炭素と水素の混合気体における一酸化炭素と水素のモル比は0.2~5(一酸化炭素/水素)であるのが好ましい。
Examples of the catalyst include known noble metal catalysts (for example, cobalt-based catalysts, rhodium-based catalysts, platinum-based catalysts, etc.) used for hydroformylation. Specifically, for example, Co 2 (CO) 8 , Co 4 (CO ) 12 , Co 6 (CO) 16 , HCo (CO) 4 , [Co (CO) 3 (C 5 H 6 )] 2 , Rh 4 (CO) 12 , Rh 6 (CO) 16 , RhCl (PPh 3 ) 3 , [RhCl (CO) 2 ] 2 , HRh (CO) (PPh 3 ) 3 , Rh (CO) 2 (acac), Rh (CO) (PPh 3 ) (acac), and the like. Here, C 5 H 6 represents cyclopentadiene, Ph represents a phenyl group, and acac represents an acetylacetonate group. The amount of the catalyst used is preferably 5 to 5000 ppm (as a metal), more preferably 10 to 2000 ppm (as a metal) with respect to the compound (a). The catalyst is preferably used in combination with a phosphorus compound such as triphenylphosphine. The amount of the phosphorus compound used when the catalyst and the phosphorus compound are used in combination is preferably 1 to 500 times mol of the catalyst.
The molar ratio of carbon monoxide to hydrogen in the mixed gas of carbon monoxide and hydrogen is preferably 0.2 to 5 (carbon monoxide / hydrogen).
 化合物(b)を、例えば、溶媒中、オキソン(登録商標;デュポン社製、過硫酸水素カリウム43重量%含有)、過酸化水素水等の公知の酸化剤で、0~100℃で0.2~50時間処理することにより化合物(c)を製造することができる。溶媒としては、例えば、アセトニトリル、メタノール、これらの混合溶媒等が挙げられる。 Compound (b) is a known oxidizing agent such as oxone (registered trademark; manufactured by DuPont, containing 43% by weight of potassium hydrogen persulfate), hydrogen peroxide solution, etc. in a solvent at 0 to 100 ° C. and 0.2%. Compound (c) can be produced by treating for ˜50 hours. Examples of the solvent include acetonitrile, methanol, a mixed solvent thereof and the like.
 化合物(c)を、例えば、1,4-ジオキサン等の溶媒中、無水酢酸、無水プロピオン酸、無水マレイン酸、無水フタル酸等の酸無水物で0~200℃で0.2~50時間処理することにより化合物(VII)を製造することができる。 Compound (c) is treated with an acid anhydride such as acetic anhydride, propionic anhydride, maleic anhydride, phthalic anhydride in a solvent such as 1,4-dioxane at 0 to 200 ° C. for 0.2 to 50 hours. Thus, compound (VII) can be produced.
 化合物(VII)は、例えば、米国特許第3,413,317号明細書に記載の方法等に準じて製造することにより得ることもできる。
<化合物(VI)の製造方法>
 化合物(VI)は、例えば、反応式(2)および(3)に従って製造することができる。
Compound (VII) can also be obtained by, for example, producing according to the method described in US Pat. No. 3,413,317.
<Method for Producing Compound (VI)>
Compound (VI) can be produced, for example, according to reaction formulas (2) and (3).
Figure JPOXMLDOC01-appb-C000035
(式中、P、P、PおよびXは、それぞれ前記と同義であり、Wはハロゲン原子を表す)
Figure JPOXMLDOC01-appb-C000035
(Wherein P 1 , P 2 , P 3 and X are as defined above, and W represents a halogen atom)
 ここで、ハロゲン原子は前記と同義であり、以下も同様である。
 具体的には、例えば、化合物(VI)は、化合物(VII)とハロゲン化剤とを反応させることにより式(d)で表される酸ハライド[以下、化合物(d)という]を得、次いで、化合物(d)とHO-X-OH(式中、Xは前記と同義である)で表されるジオールとを反応させることにより製造することができる。
Here, the halogen atom has the same meaning as described above, and the same applies to the following.
Specifically, for example, compound (VI) is obtained by reacting compound (VII) with a halogenating agent to obtain an acid halide represented by formula (d) [hereinafter referred to as compound (d)], The compound (d) can be produced by reacting a diol represented by HO—X—OH (wherein X is as defined above).
反応式(2)
 化合物(d)は、例えば、ハロゲン化剤と化合物(VI)とを0~120℃で1~24時間反応させることにより製造することができる。ハロゲン化剤の使用量は、化合物(VII)に対して1~100倍モルであるのが好ましい。反応の際に、例えば、ヘキサン、トルエン、酢酸エチル、γ-ブチロラクトン、N-メチル-2-ピロリドン、テトラヒドロフラン等の溶媒を用いてもよい。また、反応の際にN,N-ジメチルホルムアミドやピリジン等の触媒を用いてもよい。
Reaction formula (2)
Compound (d) can be produced, for example, by reacting a halogenating agent with compound (VI) at 0 to 120 ° C. for 1 to 24 hours. The amount of the halogenating agent to be used is preferably 1 to 100 moles compared to Compound (VII). In the reaction, for example, a solvent such as hexane, toluene, ethyl acetate, γ-butyrolactone, N-methyl-2-pyrrolidone or tetrahydrofuran may be used. In the reaction, a catalyst such as N, N-dimethylformamide or pyridine may be used.
 ハロゲン化剤としては、SOW(式中、Wは前記と同義である)、三塩化リン、オキザリルクロリド、安息香酸クロリド等の公知のハロゲン化剤が挙げられ、中でも、SOWが好ましく、塩化チオニルがより好ましい。
 ハロゲン化剤としてSOWを用いたとき、反応後、得られた反応混合物から未反応のSOWを留去するのが好ましい。留去する方法としては、例えば、ベンゼン、トルエン等の共沸剤を添加し、SOWと共沸剤とを反応混合物から留去する方法等が挙げられる。
Examples of the halogenating agent include known halogenating agents such as SOW 2 (wherein W is as defined above), phosphorus trichloride, oxalyl chloride, benzoic acid chloride, among which SOW 2 is preferable, Thionyl chloride is more preferred.
When SOW 2 is used as the halogenating agent, unreacted SOW 2 is preferably distilled off from the resulting reaction mixture after the reaction. Examples of the method of distilling off include a method of adding an azeotropic agent such as benzene and toluene and distilling off SOW 2 and the azeotropic agent from the reaction mixture.
反応後、必要に応じて、化合物(d)を有機合成化学で通常用いられる方法(各種クロマトグラフィー法、再結晶法、蒸留法等)で精製してもよい。 After the reaction, if necessary, the compound (d) may be purified by methods usually used in organic synthetic chemistry (various chromatographic methods, recrystallization methods, distillation methods, etc.).
反応式(3)
 化合物(VI)は、例えば、化合物(d)とHO-X-OH(式中、Xは前記と同義である)で表されるジオールとを、好ましくは塩基の存在下、溶媒中、-10~50℃で1~100時間反応させることにより製造することができる。以下、HO-X-OH(式中、Xは前記と同義である)で表されるジオールを、単にジオールということもある。
ジオールの具体例としては、例えば、ヒドロキノン、2-メチルヒドロキノン、レゾルシノール、カテコール、2-フェニルヒドロキノン、4,4’-ビフェノール、3,4’-ビフェノール、2,2’-ビフェノール、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルホン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、2,6-ナフタレンジオール、1,4-ナフタレンジオール、1,5-ナフタレンジオール、1,8-ナフタレンジオール等の芳香族ジオール、1,4-ジヒドロキシシクロヘキサン、1,3-ジヒドロキシシクロヘキサン、1,2-ジヒドロキシシクロヘキサン、4,4’-ビシクロヘキサノール、トリシクロ[3.3.1.13,7]デカン-1,3-ジオール等の脂環式ジオール等が挙げられる。
Reaction formula (3)
Compound (VI) is, for example, a compound (d) and a diol represented by HO—X—OH (wherein X is as defined above), preferably -10 in a solvent in the presence of a base. It can be produced by reacting at -50 ° C for 1-100 hours. Hereinafter, a diol represented by HO—X—OH (wherein X is as defined above) may be simply referred to as a diol.
Specific examples of the diol include, for example, hydroquinone, 2-methylhydroquinone, resorcinol, catechol, 2-phenylhydroquinone, 4,4′-biphenol, 3,4′-biphenol, 2,2′-biphenol, 4,4 ′. -Dihydroxydiphenyl ether, 4,4'-dihydroxydiphenylsulfone, 9,9-bis (4-hydroxyphenyl) fluorene, 2,6-naphthalenediol, 1,4-naphthalenediol, 1,5-naphthalenediol, 1,8 -Aromatic diols such as naphthalenediol, 1,4-dihydroxycyclohexane, 1,3-dihydroxycyclohexane, 1,2-dihydroxycyclohexane, 4,4′-bicyclohexanol, tricyclo [3.3.1.13,7] Alicyclic geo such as decane-1,3-diol Le, and the like.
 化合物(d)の使用量は、ジオールに対して2.1~10倍モルであるのが好ましい。
 塩基としては、例えば、ピリジン、トリエチルアミン、N,N-ジメチルアニリン等のアミン、炭酸カリウム、水酸化ナトリウム等の無機塩基等が挙げられる。塩基の使用量は、化合物(d)に対して1~10倍モルであるのが好ましい。塩基の代わりにプロピレンオキシド等のエポキシ化合物を用いてもよい。
 溶媒としては、例えば、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、ジクロロメタン、クロロホルム、1,2-ジクロロエタン等の含ハロゲン溶媒、N-メチル-2-ピロリドン、ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド系溶媒、γ-ブチロラクトン、酢酸エチル、酢酸ブチル等のエステル系溶媒、ジメチルスルホキシド等が挙げられる。これらの溶媒は単独で、または2種類以上混合して用いてもよい。
The amount of the compound (d) used is preferably 2.1 to 10 moles relative to the diol.
Examples of the base include amines such as pyridine, triethylamine and N, N-dimethylaniline, and inorganic bases such as potassium carbonate and sodium hydroxide. The amount of the base used is preferably 1 to 10 moles compared to the compound (d). An epoxy compound such as propylene oxide may be used in place of the base.
Examples of the solvent include ether solvents such as tetrahydrofuran and 1,4-dioxane, ketone solvents such as acetone and methyl ethyl ketone, aromatic hydrocarbon solvents such as toluene and xylene, dichloromethane, chloroform, 1,2-dichloroethane, and the like. And amide solvents such as N-methyl-2-pyrrolidone, dimethylacetamide and N, N-dimethylformamide, ester solvents such as γ-butyrolactone, ethyl acetate and butyl acetate, and dimethyl sulfoxide. These solvents may be used alone or in combination of two or more.
 反応後、必要に応じて、化合物(VI)を有機合成化学で通常用いられる方法(各種クロマトグラフィー法、再結晶法、蒸留法等)で精製してもよい。
 単離した化合物(VI)を、減圧下、100~250℃で1~50時間加熱することが好ましい。化合物(VI)中に不純物として化合物(VI)の加水分解物が含まれる場合、前記加熱により該加水分解物を化合物(VI)に変換することができる。
After the reaction, if necessary, the compound (VI) may be purified by methods usually used in organic synthetic chemistry (various chromatographic methods, recrystallization methods, distillation methods, etc.).
The isolated compound (VI) is preferably heated at 100 to 250 ° C. under reduced pressure for 1 to 50 hours. When the hydrolyzate of compound (VI) is contained as an impurity in compound (VI), the hydrolyzate can be converted to compound (VI) by the heating.
 本発明によって得られる化合物(VI)の具体例を以下の式に示す。 Specific examples of the compound (VI) obtained by the present invention are shown in the following formula.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
<ポリイミド前駆体(V)の製造方法>
 ポリイミド前駆体(V)は、例えば、化合物(VI)を含む1種類以上のテトラカルボン酸二無水物とHN-A-NH(式中、Aは前記と同義である)で表されるジアミンとを溶媒中、0~100℃で1~300時間反応させることにより製造することができる。以下、HN-A-NH(式中、Aは前記と同義である)で表されるジアミンを、単にジアミンということもある。
<Method for producing polyimide precursor (V)>
The polyimide precursor (V) is represented by, for example, one or more kinds of tetracarboxylic dianhydrides including the compound (VI) and H 2 NA—NH 2 (wherein A is as defined above). It can be produced by reacting with diamine in a solvent at 0 to 100 ° C. for 1 to 300 hours. Hereinafter, the diamine represented by H 2 N—A—NH 2 (wherein A is as defined above) may be simply referred to as diamine.
 ジアミンの具体例としては、例えば、4,4’-メチレンジシクロヘキシルアミン、3,3’-ジメチル-4,4’-メチレンジシクロヘキシルアミン、3,3’-ジエチル-4,4’-メチレンジシクロヘキシルアミン、3,3’ ,5,5’-テトラメチル-4,4’-メチレンジシクロヘキシルアミン、3,3’ ,5,5’-テトラエチル-4,4’-メチレンジシクロヘキシルアミン、イソホロンジアミン、トランス-1,4-シクロヘキサンジアミン、シス-1,4-シクロヘキサンジアミン、1,4-シクロヘキサンビス(メチルアミン)、2,5-ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、2,6-ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、3,8-ビス(アミノメチル)トリシクロ[5.2.1.0]デカン、トリシクロ[3.3.1.13,7]デカン-1,3-ジアミン、2,2-ビス(4-アミノシクロヘキシル)プロパン、2,2-ビス(4-アミノシクロヘキシル)ヘキサフルオロプロパン、1,3-プロパンジアミン、1,4-テトラメチレンジアミン、1,5-ペンタメチレンジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミン等の脂肪族ジアミン、p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、2,4-ジアミノキシレン、2,4-ジアミノジュレン、4,4’-メチレンジアニリン、3,3’-ジメチル-4,4’-メチレンジアニリン、3,3’-ジエチル-4,4’-メチレンジアニリン、2,2’-ジメチル-4,4’-メチレンジアニリン、2,2’-ジエチル-4,4’-メチレンジアニリン、3,3’ , 5,5’-テトラメチル-4,4’-メチレンジアニリン、3,3’ , 5,5’-テトラエチル-4,4’-メチレンジアニリン、2,2’ , 6,6’-テトラメチル-4,4’-メチレンジアニリン、2,2’ , 6,6’-テトラエチル-4,4’-メチレンジアニリン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、2,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンズアニリド、ベンジジン、3,3’-ジヒドロキシベンジジン、3,3’-ジメトキシベンジジン、o-トリジン、m-トリジン、2,2’-ビス(トリフルオロメチル)ベンジジン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[3-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、p-ターフェニレンジアミン等の芳香族ジアミン等が挙げられる。これらのジアミンは単独で、または2種類以上混合して用いてもよい。 Specific examples of diamines include, for example, 4,4′-methylenedicyclohexylamine, 3,3′-dimethyl-4,4′-methylenedicyclohexylamine, 3,3′-diethyl-4,4′-methylenedicyclohexylamine, 3,3 ′, 5,5′-tetramethyl-4,4′-methylenedicyclohexylamine, 3,3 ′, 5,5′-tetraethyl-4,4′-methylenedicyclohexylamine, isophoronediamine, trans-1, 4-cyclohexanediamine, cis-1,4-cyclohexanediamine, 1,4-cyclohexanebis (methylamine), 2,5-bis (aminomethyl) bicyclo [2.2.1] heptane, 2,6-bis ( Aminomethyl) bicyclo [2.2.1] heptane, 3,8-bis (aminomethyl) tricyclo [5.2 .1.0] decane, tricyclo [3.3.1.13,7] decane-1,3-diamine, 2,2-bis (4-aminocyclohexyl) propane, 2,2-bis (4-aminocyclohexyl) ) Hexafluoropropane, 1,3-propanediamine, 1,4-tetramethylenediamine, 1,5-pentamethylenediamine, 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylene Diamine, aliphatic diamine such as 1,9-nonamethylenediamine, p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,4-diaminoxylene, 2,4- Diaminodurene, 4,4'-methylenedianiline, 3,3'-dimethyl-4,4'-methylenedianiline, 3,3 ' Diethyl-4,4′-methylenedianiline, 2,2′-dimethyl-4,4′-methylenedianiline, 2,2′-diethyl-4,4′-methylenedianiline, 3,3 ′, 5 5′-tetramethyl-4,4′-methylenedianiline, 3,3 ′, 5,5′-tetraethyl-4,4′-methylenedianiline, 2,2 ′, 6,6′-tetramethyl-4 , 4′-methylenedianiline, 2,2 ′, 6,6′-tetraethyl-4,4′-methylenedianiline, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′- Diaminodiphenyl ether, 2,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyls Hong, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 4,4'-diaminobenzanilide, benzidine, 3,3'-dihydroxybenzidine, 3,3'-dimethoxybenzidine, o-tolidine, m -Tolidine, 2,2'-bis (trifluoromethyl) benzidine, 1,4-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,3-bis (4- Aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, bis [3- (3-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, 2,2 Bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, p -Aromatic diamines such as terphenylenediamine. These diamines may be used alone or in combination of two or more.
 化合物(VI)を含む2種類以上のテトラカルボン酸二無水物を使用するとき、2種類以上の化合物(VI)を用いてもよく、1種類以上の化合物(VI)と1種類以上の化合物(VI)以外のテトラカルボン酸二無水物とを併用してもよい。
 化合物(VI)以外のテトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、2,2’-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン酸二無水物、2,2’-ビス(3,4-ジカルボキシフェニル)プロパン酸二無水物、ハイドロキノンビス(トリメリテートアンハイドライド)、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物等の芳香族テトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタンテトラカルボン酸二無水物、テトラヒドロフラン-2,3,4,5-テトラカルボン酸二無水物、ジシクロヘキシル-3,3’ ,4,4’-テトラカルボン酸二無水物、シス、シス、シス-1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物等の脂環式テトラカルボン酸二無水物等が挙げられる。
 1種類以上の化合物(VI)と1種類以上の化合物(VI)以外のテトラカルボン酸二無水物とを併用するときの1種類以上の化合物(VI)の使用量は、使用するテトラカルボン酸二無水物の全量に対して20モル%以上であるのが好ましく、50モル%以上であるのがより好ましい。
When two or more kinds of tetracarboxylic dianhydrides containing compound (VI) are used, two or more kinds of compounds (VI) may be used, and one or more kinds of compounds (VI) and one or more kinds of compounds ( A tetracarboxylic dianhydride other than VI) may be used in combination.
Examples of tetracarboxylic dianhydrides other than compound (VI) include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4. '-Benzophenone tetracarboxylic dianhydride, 3,3', 4,4'-biphenyl ether tetracarboxylic dianhydride, 3,3 ', 4,4'-biphenylsulfone tetracarboxylic dianhydride, 2, 2'-bis (3,4-dicarboxyphenyl) hexafluoropropanoic dianhydride, 2,2'-bis (3,4-dicarboxyphenyl) propanoic dianhydride, hydroquinone bis (trimellitic anhydride) ), 1,4,5,8-naphthalenetetracarboxylic dianhydride, aromatic tetracarboxylic dianhydrides such as 2,3,6,7-naphthalenetetracarboxylic dianhydride, bicyclo [2 2.2.2] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo [2.2.1] heptanetetracarboxylic dianhydride, tetrahydrofuran-2,3,4, 5-tetracarboxylic dianhydride, dicyclohexyl-3,3 ′, 4,4′-tetracarboxylic dianhydride, cis, cis, cis-1,2,4,5-cyclohexanetetracarboxylic dianhydride, And alicyclic tetracarboxylic dianhydrides such as 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 1,2,3,4-cyclopentanetetracarboxylic dianhydride.
When one or more types of compound (VI) and one or more types of tetracarboxylic dianhydride other than compound (VI) are used in combination, the amount of one or more types of compound (VI) used is the amount of tetracarboxylic acid dihydrate used. It is preferably 20 mol% or more, more preferably 50 mol% or more, based on the total amount of anhydride.
 ジアミンの使用量は、使用するテトラカルボン酸二無水物の全量に対して0.8~1.2倍モルであるのが好ましく、0.95~1.05倍モルであるのがより好ましく、さらには0.99~1.01倍モルであるのが好ましい。
 溶媒としては、例えば、N,N-ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等の環状エステル系溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒、トリエチレングリコール等のグリコール系溶媒、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシド等が挙げられる。
The amount of diamine used is preferably 0.8 to 1.2 moles, more preferably 0.95 to 1.05 moles, based on the total amount of tetracarboxylic dianhydride used. Further, it is preferably 0.99 to 1.01 times mole.
Examples of the solvent include amide solvents such as N, N-dimethylformamide, dimethylacetamide, N-methylpyrrolidone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, α- Cyclic ester solvents such as methyl-γ-butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, m-cresol, p-cresol, 3-chlorophenol, 4-chlorophenol, etc. Phenolic solvents, acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like.
 ジアミンとして芳香族ジアミンを使用するとき、使用するジアミンの重量と使用するテトラカルボン酸無水物の重量との和は、反応液の重量に対して5~40%であるのが好ましい。また、ジアミンとして脂肪族ジアミンのみを使用するとき、使用するジアミンの重量と使用するテトラカルボン酸無水物の重量との和は、反応液の重量に対して5~30%であるのが好ましい。 When an aromatic diamine is used as the diamine, the sum of the weight of the diamine used and the weight of the tetracarboxylic acid anhydride used is preferably 5 to 40% based on the weight of the reaction solution. When only an aliphatic diamine is used as the diamine, the sum of the weight of the diamine used and the weight of the tetracarboxylic anhydride used is preferably 5 to 30% with respect to the weight of the reaction solution.
 ポリイミド前駆体(V)の0.5重量%ジメチルアセトアミド溶液の30℃における固有粘度は0.1dL/g以上であるのが好ましい。該固有粘度が0.1dL/gであるポリイミド前駆体(V)は優れた製膜性を有する。例えば、ポリイミド前駆体(V)の溶液をガラス等の基板上に塗布し、次いで、該基板を乾燥する等の方法によりポリイミド前駆体(V)の膜を得るとき、該固有粘度が0.1dL/gであるポリイミド前駆体(V)を使用して得た膜はひび割れにくい等の効果を有する。ポリイミド前駆体(V)の数平均分子量は、2000~1000000であるのが好ましい。 The intrinsic viscosity at 30 ° C. of a 0.5 wt% dimethylacetamide solution of the polyimide precursor (V) is preferably 0.1 dL / g or more. The polyimide precursor (V) having an intrinsic viscosity of 0.1 dL / g has excellent film forming properties. For example, when a polyimide precursor (V) film is obtained by applying a solution of the polyimide precursor (V) onto a substrate such as glass and then drying the substrate, the intrinsic viscosity is 0.1 dL. The film obtained by using the polyimide precursor (V) which is / g has effects such as being hard to crack. The number average molecular weight of the polyimide precursor (V) is preferably 2,000 to 1,000,000.
 反応後、得られたポリイミド前駆体(V)の溶液をそのまま後述のポリイミドの製造に用いてもよい(例えば、Journal of Applied Polymer Science,1986年,第32巻,p.3133、Polymer,1993年,第34巻,p.849記載の方法等)。また、反応後、必要に応じて、ポリイミド前駆体(V)を高分子化学で通常用いられる方法(再沈殿等)で精製してもよい。 After the reaction, the obtained solution of the polyimide precursor (V) may be used as it is for the production of the later-described polyimide (for example, Journal of Applied Polymer Science, 1986, Vol. 32, p. 3133, Polymer, 1993). 34, p. 849, etc.). In addition, after the reaction, the polyimide precursor (V) may be purified by a method usually used in polymer chemistry (such as reprecipitation) as necessary.
<ポリイミド(I)の製造方法>
 ポリイミド(I)は、例えば、ポリイミド前駆体(V)をイミド化することにより製造することができる。ポリイミド前駆体(V)をイミド化する際には、ポリイミド前駆体(V)に含まれるアミド酸単位がイミド単位に変換される。ポリイミド前駆体(V)をイミド化する方法としては、例えば、熱イミド化、化学イミド化等が挙げられる。
 熱イミド化によりポリイミド(I)を製造する方法としては、例えば、ポリイミド前駆体(V)を溶媒中、150~400℃で0.5~200時間加熱することによりポリイミド(I)を製造する方法等が挙げられる。
<Production method of polyimide (I)>
The polyimide (I) can be produced, for example, by imidizing the polyimide precursor (V). When imidizing the polyimide precursor (V), the amic acid unit contained in the polyimide precursor (V) is converted into an imide unit. Examples of the method for imidizing the polyimide precursor (V) include thermal imidization and chemical imidization.
As a method for producing polyimide (I) by thermal imidization, for example, a method for producing polyimide (I) by heating polyimide precursor (V) in a solvent at 150 to 400 ° C. for 0.5 to 200 hours. Etc.
 溶媒としては、例えば、N,N-ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等の環状エステル系溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒、トリエチレングリコール等のグリコール系溶媒、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシド等が挙げられる。 Examples of the solvent include amide solvents such as N, N-dimethylformamide, dimethylacetamide, N-methylpyrrolidone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, α- Cyclic ester solvents such as methyl-γ-butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, m-cresol, p-cresol, 3-chlorophenol, 4-chlorophenol, etc. Phenolic solvents, acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like.
 熱イミド化後、必要に応じて、ポリイミド(I)を高分子化学で通常用いられる方法(再沈殿等)で精製してもよい。得られたポリイミド(I)を、例えば、ジメチルアセトアミド等に溶解して溶液とし、ガラス、銅、アルミニウム、ステンレス、シリコン等の基板上に塗布し、次いで、該基板を40~180℃で1~5時間乾燥し、好ましくは、次いで150~400℃で0.5~5時間加熱することによりポリイミド(I)の膜を製造することができる。
 熱イミド化によりポリイミド(I)を製造するその他の方法としては、例えば、ポリイミド前駆体(V)の膜を150~400℃で5分間~5時間加熱することによりポリイミド(I)を製造する方法等が挙げられ、具体的には、例えば、ポリイミド前駆体(V)の溶液をガラス、銅、アルミニウム、ステンレス、シリコン等の基板上に塗布し、次いで、該基板を40~180℃で5分間~5時間乾燥することによりポリイミド前駆体(V)の膜を得、次いで、該膜を150~400℃で5分間~5時間加熱することによりポリイミド(I)の膜を製造する方法等が挙げられる。ポリイミド前駆体(V)の溶液における溶媒としては、熱イミド化に用いる溶媒として前記に挙げたものが例示される。
After thermal imidization, if necessary, polyimide (I) may be purified by a method usually used in polymer chemistry (such as reprecipitation). The obtained polyimide (I) is dissolved in, for example, dimethylacetamide to form a solution, which is applied onto a substrate such as glass, copper, aluminum, stainless steel, or silicon, and then the substrate is heated at 40 to 180 ° C. for 1 to A polyimide (I) film can be produced by drying for 5 hours, and preferably heating at 150 to 400 ° C. for 0.5 to 5 hours.
As another method of producing polyimide (I) by thermal imidization, for example, a method of producing polyimide (I) by heating a film of polyimide precursor (V) at 150 to 400 ° C. for 5 minutes to 5 hours Specifically, for example, a solution of the polyimide precursor (V) is applied on a substrate such as glass, copper, aluminum, stainless steel, or silicon, and then the substrate is heated at 40 to 180 ° C. for 5 minutes. And a method of producing a polyimide (I) film by drying for 5 hours to obtain a polyimide precursor (V) film, and then heating the film at 150 to 400 ° C. for 5 minutes to 5 hours. It is done. Examples of the solvent in the solution of the polyimide precursor (V) include those mentioned above as the solvent used for thermal imidization.
 化学イミド化によりポリイミド(I)を製造する方法としては、例えば、ポリイミド前駆体(V)を溶媒中、ピリジン、トリエチルアミン等のアミンの存在下、無水酢酸等の化学イミド化剤で0~50℃で1~48時間処理する方法等が挙げられる。化学イミド化剤の使用量は、ポリイミド前駆体(V)に含まれるアミド酸単位に対して1~100倍モルであるのが好ましい。アミンの使用量は、化学イミド化剤に対して0.1~50倍モルであるのが好ましい。溶媒としては、熱イミド化に用いる溶媒として前記に挙げたものが例示される。
 化学イミド化後、必要に応じて、ポリイミド(I)を高分子化学で通常用いられる方法(再沈殿等)で精製してもよい。得られたポリイミド(I)を、例えば、ジメチルアセトアミド等に溶解して溶液とし、ガラス、銅、アルミニウム、ステンレス、シリコン等の基板上に塗布し、次いで、該基板を40~180℃で0.1~5時間乾燥することによりポリイミド(I)の膜を製造することができる。該ポリイミド(I)の膜を、さらに150~400℃で0.5~5時間加熱するのが好ましい。
 化学イミド化によりポリイミド(I)を製造するその他の方法としては、例えば、前記ポリイミド前駆体(V)の膜をピリジン、トリエチルアミン等のアミンと無水酢酸等の化学イミド化剤とを含む溶液に浸漬することによりポリイミド(I)の膜を製造する方法等が挙げられる。該ポリイミド(I)の膜を、さらに150~400℃で0.5~5時間加熱するのが好ましい。
As a method for producing polyimide (I) by chemical imidization, for example, a polyimide precursor (V) in a solvent in the presence of an amine such as pyridine or triethylamine is heated at 0 to 50 ° C. with a chemical imidizing agent such as acetic anhydride. And a method of treating for 1 to 48 hours. The amount of the chemical imidizing agent used is preferably 1 to 100 times mol for the amic acid unit contained in the polyimide precursor (V). The amount of amine used is preferably 0.1 to 50 times the mole of the chemical imidizing agent. Examples of the solvent include those listed above as solvents used for thermal imidization.
After chemical imidization, if necessary, polyimide (I) may be purified by a method commonly used in polymer chemistry (reprecipitation or the like). The obtained polyimide (I) is dissolved in, for example, dimethylacetamide to form a solution, which is applied onto a substrate such as glass, copper, aluminum, stainless steel, or silicon. A polyimide (I) film can be produced by drying for 1 to 5 hours. The polyimide (I) film is preferably further heated at 150 to 400 ° C. for 0.5 to 5 hours.
As another method for producing polyimide (I) by chemical imidization, for example, the polyimide precursor (V) film is immersed in a solution containing an amine such as pyridine or triethylamine and a chemical imidizing agent such as acetic anhydride. And a method for producing a polyimide (I) film. The polyimide (I) film is preferably further heated at 150 to 400 ° C. for 0.5 to 5 hours.
 ポリイミド(I)は、例えば、ポリイミド前駆体(V)をN,N-ジシクロヘキシルカルボジイミド、トリフルオロ無水酢酸等で処理することによりイソイミド単位を有するポリマーを得、次いで、該イソイミド単位を有するポリマーを加熱することにより製造することもできる(例えば、Polymer Journal,1994年,第26巻,p.315記載の方法等)。このポリイミド(I)の製造方法では、ポリイミド前駆体(V)に含まれるアミド酸単位がイソイミド単位に変換され、次いで、該イソイミド単位がイミド単位に変換される。 For example, the polyimide (I) is obtained by treating the polyimide precursor (V) with N, N-dicyclohexylcarbodiimide, trifluoroacetic anhydride or the like to obtain a polymer having an isoimide unit, and then heating the polymer having the isoimide unit. (For example, the method described in Polymer Journal, 1994, Vol. 26, p. 315, etc.). In this method for producing polyimide (I), the amic acid unit contained in the polyimide precursor (V) is converted into an isoimide unit, and then the isoimide unit is converted into an imide unit.
 本発明のポリイミド(I)は高い耐熱性を有するため、液晶ディスプレー(LCD)用基板、有機エレクトロルミネッセンスディスプレー(ELD)用基板等に有用である。また、本発明のポリイミド(I)は、透明性、低誘電率、光線透過率、複屈折率、荷重たわみ温度、各種硬度、吸水率、引っ張りおよび曲げに対する強度、弾性率、ヤング率、可撓性、電気絶縁性、耐アーク性、耐薬品性、耐熱水性、各種溶媒への溶解性等に優れる。 Since the polyimide (I) of the present invention has high heat resistance, it is useful for liquid crystal display (LCD) substrates, organic electroluminescence display (ELD) substrates, and the like. In addition, the polyimide (I) of the present invention has transparency, low dielectric constant, light transmittance, birefringence, deflection temperature under load, various hardness, water absorption, strength against tension and bending, elastic modulus, Young's modulus, flexibility Excellent in electrical properties, electrical insulation, arc resistance, chemical resistance, hot water resistance, solubility in various solvents, etc.
 以下、本発明を合成例および実施例により具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to synthesis examples and examples.
<FT-IRスペクトル>
 日本分光社製フーリエ変換赤外分光光度計(FT-IR5300またはFT-IR350)を用いた。
H-NMRスペクトル>
 日本電子社製NMR分光光度計(ECP400)を用いた。
<融点>
 ブルカーエイエックス社製示差走査熱量分析装置(DSC3100)を用いて、窒素雰囲気中、昇温速度2℃/分で測定した(DSC分析)。
<固有粘度>
 オストワルド粘度計を用いて、0.5重量%ポリイミド前駆体溶液(溶媒:ジメチルアセトアミド)の固有粘度を30℃で測定した。
<ガラス転移温度(Tg)>
 動的粘弾性測定によりポリイミド膜のガラス転移温度を求めた。ポリイミド膜は、長さ20mm、幅5mm、膜厚約20μmのものを用いた。ブルカーエイエックスエス社製熱機械分析装置(TMA4000)を用いて、周波数0.1Hz、昇温速度5℃/分にてポリイミド膜のガラス転移温度を測定した。
<線熱膨張係数(CTE)>
 ブルカーエイエックスエス社製熱機械分析装置(TMA4000)を用いて、100℃から200℃まで5℃/分でポリイミド膜を昇温させたときのポリイミド膜の伸び率ΔL/L0(ΔL;ポリイミド膜の伸び、L0;ポリイミド膜の測定前の長さ)を測定した(ポリイミド膜:長さ20mm×幅5mm、チャック間長15mm、膜厚1μm当たり荷重0.5g)。該伸び率を測定時の温度幅[100(K)]で割り算することによりポリイミド膜の線膨張係数を求めた。
<カットオフ波長>
 日本分光社製紫外可視分光光度計(V-530)を用いて、200nmから900nmの光の透過率を測定した。200nmから900nmの範囲で透過率が0.5%以下となる最短波長をカットオフ波長とした。カットオフ波長が短い程、ポリイミド膜の透明性が良好であることを意味する。
<誘電率(εcal)>
 アタゴ社製アッベ屈折計(4Tまたは1T)を用いて、ポリイミド膜の面と平行な方向における屈折率(nin)とポリイミド膜の面と垂直な方向における屈折率(nout)を測定し、下記式により1MHzにおけるポリイミド膜の誘電率(εcal)を求めた。
ポリイミド膜の平均屈折率;nav=(2nin+nout)/3
ポリイミド膜の誘電率;εcal=1.1×nav
<FT-IR spectrum>
A Fourier transform infrared spectrophotometer (FT-IR5300 or FT-IR350) manufactured by JASCO Corporation was used.
< 1 H-NMR spectrum>
An NMR spectrophotometer (ECP400) manufactured by JEOL Ltd. was used.
<Melting point>
Using a differential scanning calorimeter (DSC3100) manufactured by Bruker Ax, measurement was performed in a nitrogen atmosphere at a heating rate of 2 ° C./min (DSC analysis).
<Intrinsic viscosity>
Using an Ostwald viscometer, the intrinsic viscosity of a 0.5 wt% polyimide precursor solution (solvent: dimethylacetamide) was measured at 30 ° C.
<Glass transition temperature (Tg)>
The glass transition temperature of the polyimide film was determined by dynamic viscoelasticity measurement. A polyimide film having a length of 20 mm, a width of 5 mm, and a film thickness of about 20 μm was used. The glass transition temperature of the polyimide film was measured at a frequency of 0.1 Hz and a heating rate of 5 ° C./min using a Bruker AXS thermomechanical analyzer (TMA4000).
<Linear thermal expansion coefficient (CTE)>
Elongation rate ΔL / L0 (ΔL: polyimide film) of polyimide film when the temperature of the polyimide film is increased from 100 ° C. to 200 ° C. at 5 ° C./min using a Bruker AXS thermomechanical analyzer (TMA4000) (L0; length before measurement of polyimide film) was measured (polyimide film: length 20 mm × width 5 mm, length between chucks 15 mm, load 0.5 g per film thickness of 1 μm). The linear expansion coefficient of the polyimide film was determined by dividing the elongation by the temperature range [100 (K)] at the time of measurement.
<Cutoff wavelength>
Using a UV-visible spectrophotometer (V-530) manufactured by JASCO Corporation, the transmittance of light from 200 nm to 900 nm was measured. The shortest wavelength at which the transmittance was 0.5% or less in the range of 200 nm to 900 nm was defined as the cutoff wavelength. The shorter the cutoff wavelength, the better the transparency of the polyimide film.
<Dielectric constant (ε cal )>
Using an Abbe refractometer (4T or 1T) manufactured by Atago Co., Ltd., the refractive index (n in ) in the direction parallel to the surface of the polyimide film and the refractive index (n out ) in the direction perpendicular to the surface of the polyimide film are measured, The dielectric constant (ε cal ) of the polyimide film at 1 MHz was determined by the following formula.
Average refractive index of polyimide film; n av = (2n in + n out ) / 3
Dielectric constant of polyimide film; ε cal = 1.1 × n av 2
[合成例1]5-ホルミル-2,3-ビシクロ[2.2.1]ヘプタンジカルボン酸無水物の合成
 2,3-(ビシクロ[2.2.1]ヘプト-5-エン)ジカルボン酸無水物は、シクロペンタジエンと無水マレイン酸とを「実験化学講座(第19巻)有機合成I 炭化水素・ハロゲン化合物」,第4版,丸善株式会社,1992年,p.173に記載の方法に準じて反応させることにより製造して得た。
 内容1リットルのステンレス製の電磁攪拌機付きオートクレーブに、2,3-(ビシクロ[2.2.1]ヘプト-5-エン)ジカルボン酸無水物118g(0.72mol)、アセトニトリル200mL、Rh(CO)(PPh)(acac)7mgおよびトリフェニルフォスフィン376mgを仕込み、オートクレーブの内圧を5MPaに保ちながら約30分でオートクレーブの内温を120℃まで昇温し、次いで、120℃、5MPaで4時間攪拌した。昇温および反応の際に、圧力調節弁を通して一酸化炭素と水素との1/1混合ガス(モル比)をオートクレーブに供給することにより、オートクレーブの内圧を常に5MPaに保持した。
[Synthesis Example 1] Synthesis of 5-formyl-2,3-bicyclo [2.2.1] heptanedicarboxylic anhydride 2,3- (bicyclo [2.2.1] hept-5-ene) dicarboxylic anhydride The product is cyclopentadiene and maleic anhydride, “Experimental Chemistry Course (Vol. 19) Organic Synthesis I Hydrocarbon / Halogen Compounds”, 4th edition, Maruzen Co., Ltd., 1992, p. It was obtained by reacting according to the method described in 173.
Contents In a 1 liter stainless steel autoclave with a magnetic stirrer, 118 g (0.72 mol) of 2,3- (bicyclo [2.2.1] hept-5-ene) dicarboxylic acid anhydride, 200 mL of acetonitrile, Rh (CO) (PPh 3 ) (acac) 7 mg and triphenylphosphine 376 mg were charged, and the internal temperature of the autoclave was raised to 120 ° C. in about 30 minutes while maintaining the internal pressure of the autoclave at 5 MPa. Stir. During the temperature increase and the reaction, a 1/1 mixed gas (molar ratio) of carbon monoxide and hydrogen was supplied to the autoclave through the pressure control valve, so that the internal pressure of the autoclave was always maintained at 5 MPa.
 反応後、反応液を120℃から10℃まで1時間で冷却し、次いで、10℃で3時間反応液を攪拌した。析出した沈殿を濾取し、該沈殿を乾燥して5-ホルミル-2,3-ビシクロ[2.2.1]ヘプタンジカルボン酸無水物134gを得た(収率96%)。
H-NMR(アセトン-d,δppm);1.40-1.53(m,1H),1.65-1.73(m,1H),2.09-2.18(m,1H),2.48-2.57(m,1H),2.81-2.88(br,1H),3.12-3.21(d,2H),3.60-3.68(m,1H),3.70-3.78(m,1H),9.66(s,1H)
After the reaction, the reaction solution was cooled from 120 ° C. to 10 ° C. over 1 hour, and then the reaction solution was stirred at 10 ° C. for 3 hours. The deposited precipitate was collected by filtration and dried to obtain 134 g of 5-formyl-2,3-bicyclo [2.2.1] heptanedicarboxylic acid anhydride (yield 96%).
1 H-NMR (acetone-d 6 , δ ppm); 1.40-1.53 (m, 1H), 1.65-1.73 (m, 1H), 2.09-2.18 (m, 1H) ), 2.48-2.57 (m, 1H), 2.81-2.88 (br, 1H), 3.12-3.21 (d, 2H), 3.60-3.68 (m) , 1H), 3.70-3.78 (m, 1H), 9.66 (s, 1H)
[合成例2]2,3,5-ビシクロ[2.2.1]ヘプタントリカルボン酸の合成
 5-ホルミル-2,3-ビシクロ[2.2.1]ヘプタンジカルボン酸無水物134g、アセトニトリル1380mLおよびメタノール1380mLを四つ口フラスコに仕込み、次いで、276gのオキソン(登録商標;デュポン社製、過硫酸水素カリウム43重量%含有)を加え、6時間攪拌した。反応液を濾過し、濾液に1モル/Lの塩酸水溶液690mLを加えた。得られた溶液をメチルイソブチルケトン990mLで3回抽出し、さらに、メチルイソブチルケトン590mLで2回抽出し、得られた有機層をあわせて飽和食塩水で洗浄し、有機層を無水硫酸マグネシウムで乾燥し、溶媒を留去して2,3,5-ビシクロ[2.2.1]ヘプタントリカルボン酸124gを得た(収率79%)。
H-NMR(DO,δppm);1.42-1.63(m,2H),1.69-1.82(m,1H),1.85-1.98(m,1H),2.65-2.71(br,1H),2.79-2.86(br,1H),3.00-3.19(m,2H),3.20-3.30(m,1H),9.50-15.25(m,3H)
Synthesis Example 2 Synthesis of 2,3,5-bicyclo [2.2.1] heptanetricarboxylic acid 134 g of 5-formyl-2,3-bicyclo [2.2.1] heptanedicarboxylic acid anhydride, 1380 mL of acetonitrile and 1380 mL of methanol was charged into a four-necked flask, and then 276 g of oxone (registered trademark; manufactured by DuPont, containing 43% by weight of potassium hydrogen persulfate) was added and stirred for 6 hours. The reaction solution was filtered, and 690 mL of a 1 mol / L hydrochloric acid aqueous solution was added to the filtrate. The resulting solution was extracted three times with 990 mL of methyl isobutyl ketone, and further extracted twice with 590 mL of methyl isobutyl ketone. The resulting organic layers were combined and washed with saturated brine, and the organic layer was dried over anhydrous magnesium sulfate. The solvent was distilled off to obtain 124 g of 2,3,5-bicyclo [2.2.1] heptanetricarboxylic acid (yield 79%).
1 H-NMR (D 2 O, δ ppm); 1.42-1.63 (m, 2H), 1.69-1.82 (m, 1H), 1.85-1.98 (m, 1H) , 2.65-2.71 (br, 1H), 2.79-2.86 (br, 1H), 3.00-3.19 (m, 2H), 3.20-3.30 (m, 1H), 9.50-15.25 (m, 3H)
[合成例3]2,3,5-ビシクロ[2.2.1]ヘプタントリカルボン酸2,3-無水物の合成
 2,3,5-ビシクロ[2.2.1]ヘプタントリカルボン酸2.05g(9mmol)、無水1,4-ジオキサン18mLおよび無水酢酸0.93mL(9.9mmol)の混合物を窒素雰囲気下、120℃で4時間還流した。得られた反応液の溶媒を留去した後、残渣にトルエンを加えた。析出した結晶を濾取し、該結晶を60℃で12時間真空乾燥して2,3,5-ビシクロ[2.2.1]ヘプタントリカルボン酸2,3-無水物1.78gを得た。
FT-IR;1851cm-1,1782cm-1
融点;166℃
Synthesis Example 3 Synthesis of 2,3,5-bicyclo [2.2.1] heptanetricarboxylic acid 2,3-anhydride 2,3,5-bicyclo [2.2.1] heptanetricarboxylic acid 2.05 g (9 mmol), 18 mL of anhydrous 1,4-dioxane and 0.93 mL (9.9 mmol) of acetic anhydride were refluxed at 120 ° C. for 4 hours under a nitrogen atmosphere. After the solvent of the obtained reaction liquid was distilled off, toluene was added to the residue. The precipitated crystals were collected by filtration, and the crystals were vacuum-dried at 60 ° C. for 12 hours to obtain 1.78 g of 2,3,5-bicyclo [2.2.1] heptanetricarboxylic acid 2,3-anhydride.
FT-IR; 1851 cm −1 , 1782 cm −1
Melting point: 166 ° C
[合成例4]5-クロロカルボニル-2,3-ビシクロ[2.2.1]ヘプタンジカルボン酸無水物の合成
 合成例3と同様に操作して得た2,3,5-ビシクロ[2.2.1]ヘプタントリカルボン酸2,3-無水物2.1g(10mmol)に塩化チオニル50mLを加え、80℃で2時間還流した。反応液にトルエンを加えて塩化チオニルを共沸留去した。析出した結晶を濾取し、該結晶を室温で12時間真空乾燥して5-クロロカルボニル-2,3-ビシクロ[2.2.1]ヘプタンジカルボン酸無水物2.29gを得た。
融点;166℃
[Synthesis Example 4] Synthesis of 5-chlorocarbonyl-2,3-bicyclo [2.2.1] heptanedicarboxylic anhydride 2,3,5-bicyclo [2. 2.1] 50 mL of thionyl chloride was added to 2.1 g (10 mmol) of heptanetricarboxylic acid 2,3-anhydride, and the mixture was refluxed at 80 ° C. for 2 hours. Toluene was added to the reaction solution, and thionyl chloride was distilled off azeotropically. The precipitated crystals were collected by filtration, and the crystals were vacuum-dried at room temperature for 12 hours to obtain 2.29 g of 5-chlorocarbonyl-2,3-bicyclo [2.2.1] heptanedicarboxylic anhydride.
Melting point: 166 ° C
[実施例1]化合物(VI-1)の合成
 合成例4と同様に操作して得た5-クロロカルボニル-2,3-ビシクロ[2.2.1]ヘプタンジカルボン酸無水物1.8g(8.0mmol)および無水テトラヒドロフラン8.2mLを反応器に仕込み、反応器をセプタムキャップでシールし、氷浴中で0℃に冷却した。ヒドロキノン0.4g(4.0mmol)、ピリジン1.3mL(16.0mmol)および無水テトラヒドロフラン2.0mLを混合して得た溶液をシリンジを用いて前記の反応器に氷浴下、ゆっくりと滴下し、次いで、0℃で数時間攪拌し、次いで、室温で24時間撹拌した。析出した白色の沈殿を濾取し、該沈殿を水で洗浄し、160℃で12時間真空乾燥して、化合物(VI-1)の粗生成物1.2gを得た(収率64.3%)。該粗生成物を無水酢酸とγ-ブチロラクトンの混合溶媒(体積比1:1)より再結晶して化合物(VI-1)0.4gを得た。
 得られた化合物(VI-1)のDSC分析を行った。DSC曲線において324.5℃にシャープな吸熱ピーク(融点)が観測されたことから、得られた化合物(VI-1)は高純度であることがわかった。
H-NMR(DMSO-d,δppm);1.54-1.63(m,2H),1.63-1.74(m,4H),2.03-2.15(m,2H),2.62-2.71(m,2H),2.75-2.84(m,2H),3.07-3.16(m,2H),3.52-3.60(m,2H),3.61-3.70(m,2H),7.20(s,4H)
Example 1 Synthesis of Compound (VI-1) 1.8 g of 5-chlorocarbonyl-2,3-bicyclo [2.2.1] heptanedicarboxylic anhydride obtained by the same procedure as in Synthesis Example 4 (8.0 mmol) and 8.2 mL of anhydrous tetrahydrofuran were charged to the reactor, the reactor was sealed with a septum cap, and cooled to 0 ° C. in an ice bath. A solution obtained by mixing 0.4 g (4.0 mmol) of hydroquinone, 1.3 mL (16.0 mmol) of pyridine and 2.0 mL of anhydrous tetrahydrofuran was slowly added dropwise to the reactor using a syringe in an ice bath. Then, it was stirred at 0 ° C. for several hours and then at room temperature for 24 hours. The precipitated white precipitate was collected by filtration, washed with water, and vacuum-dried at 160 ° C. for 12 hours to obtain 1.2 g of a crude product of compound (VI-1) (yield 64.3). %). The crude product was recrystallized from a mixed solvent of acetic anhydride and γ-butyrolactone (volume ratio 1: 1) to obtain 0.4 g of Compound (VI-1).
The obtained compound (VI-1) was subjected to DSC analysis. A sharp endothermic peak (melting point) was observed at 324.5 ° C. in the DSC curve, which showed that the obtained compound (VI-1) was of high purity.
1 H-NMR (DMSO-d 6 , δ ppm); 1.54-1.63 (m, 2H), 1.63-1.74 (m, 4H), 2.03-2.15 (m, 2H) ), 2.62-2.71 (m, 2H), 2.75-2.84 (m, 2H), 3.07-3.16 (m, 2H), 3.52-3.60 (m) , 2H), 3.61-3.70 (m, 2H), 7.20 (s, 4H)
[実施例2]化合物(VI-2)の合成
 合成例4と同様に操作して得た5-クロロカルボニル-2,3-ビシクロ[2.2.1]ヘプタンジカルボン酸無水物4.3g(18.7mmol)および無水テトラヒドロフラン19.2mLを反応器に仕込み、反応器をセプタムキャップでシールし、氷浴中で0℃に冷却した。4,4’-ビフェノール1.7g(9.3mmol)、ピリジン3.0mL(37.3mmol)および無水テトラヒドロフラン7.8mLを混合して得た溶液をシリンジを用いて前記の反応器に氷浴下、ゆっくりと滴下し、次いで、0℃で数時間攪拌し、次いで、室温で24時間撹拌した。析出した橙白色の沈殿を濾取し、該沈殿を水で洗浄し、160℃で12時間真空乾燥して、化合物(VI-2)の粗生成物3.2gを得た(収率61.0%)。該粗生成物を無水酢酸とトルエンの混合溶媒(体積比1:1)より再結晶して化合物(VI-2)0.1gを得た。
 得られた化合物(VI-2)のDSC分析を行った。DSC曲線において260.8℃にシャープな吸熱ピーク(融点)が観測されたことから、得られた化合物(VI-2)は高純度であることがわかった。
H-NMR(DMSO-d,δppm);1.55-1.66(m,2H),1.65-1.77(m,4H),2.05-2.18(m,2H),2.63-2.73(m,2H),2.75-2.84(m,2H),3.08-3.18(m,2H),3.52-3.61(m,2H),3.62-3.72(m,2H),7.28(d,4H),7.70(d,4H)
[Example 2] Synthesis of compound (VI-2) 4.3 g of 5-chlorocarbonyl-2,3-bicyclo [2.2.1] heptanedicarboxylic anhydride obtained by the same procedure as in Synthesis Example 4 18.7 mmol) and 19.2 mL of anhydrous tetrahydrofuran were charged to the reactor, which was sealed with a septum cap and cooled to 0 ° C. in an ice bath. A solution obtained by mixing 1.7 g (9.3 mmol) of 4,4′-biphenol, 3.0 mL (37.3 mmol) of pyridine and 7.8 mL of anhydrous tetrahydrofuran was added to the above reactor in an ice bath using a syringe. , Slowly added dropwise, then stirred at 0 ° C. for several hours and then at room temperature for 24 hours. The precipitated orange-white precipitate was collected by filtration, washed with water, and vacuum dried at 160 ° C. for 12 hours to obtain 3.2 g of a crude product of compound (VI-2) (yield 61. 0%). The crude product was recrystallized from a mixed solvent of acetic anhydride and toluene (volume ratio 1: 1) to obtain 0.1 g of Compound (VI-2).
The obtained compound (VI-2) was subjected to DSC analysis. A sharp endothermic peak (melting point) was observed at 260.8 ° C. in the DSC curve, which showed that the obtained compound (VI-2) was of high purity.
1 H-NMR (DMSO-d 6 , δ ppm); 1.55-1.66 (m, 2H), 1.65-1.77 (m, 4H), 2.05-2.18 (m, 2H) ), 2.63-2.73 (m, 2H), 2.75-2.84 (m, 2H), 3.08-3.18 (m, 2H), 3.52-3.61 (m) , 2H), 3.62-3.72 (m, 2H), 7.28 (d, 4H), 7.70 (d, 4H)
[実施例3]化合物(VI-3)の合成
 4,4’-ビシクロヘキサノール(トランス-トランス型)2.6g(13.1mmol)、ピリジン6.4mL(78.9mmol)および無水テトラヒドロフラン55.7mLを反応器に仕込み、反応器をセプタムキャップでシールし、氷浴中で0℃に冷却した。合成例4と同様に操作して得た5-クロロカルボニル-2,3-ビシクロ[2.2.1]ヘプタンジカルボン酸無水物6.0g(26.3mmol)および無水テトラヒドロフラン20.3mLを混合して得た溶液をシリンジを用いて前記の反応器に氷浴下、ゆっくりと滴下し、次いで、0℃で数時間攪拌し、次いで、室温で24時間撹拌した。析出した橙白色の沈殿を濾取し、該沈殿を水で洗浄し、160℃で12時間真空乾燥して、化合物(VI-3)の粗生成物4.1gを得た(収率53.0%)。該粗生成物をジオキサンより再結晶して化合物(VI-3)3.0gを得た。
H-NMR(DMSO-d,δppm);1.05-1.15(m,4H),1.15-1.34(m,4H),1.36-1.49(m,2H),1.50-1.63(m,4H),1.64-1.78(m,4H),1.82-1.99(m,6H),2.21-2.35(m,2H),2.65-2.78(m,2H),2.79-2.89(m,2H),3.28-3.43(m,2H),3.45-3.54(m,2H),3.54-3.64(m,2H),4.45-4.59(m,2H)
Example 3 Synthesis of Compound (VI-3) 2.6 g (13.1 mmol) of 4,4′-bicyclohexanol (trans-trans type), 6.4 mL (78.9 mmol) of pyridine and 55.7 mL of anhydrous tetrahydrofuran Was charged to the reactor, the reactor was sealed with a septum cap, and cooled to 0 ° C. in an ice bath. 6.0 g (26.3 mmol) of 5-chlorocarbonyl-2,3-bicyclo [2.2.1] heptanedicarboxylic acid anhydride obtained by operating in the same manner as in Synthesis Example 4 and 20.3 mL of anhydrous tetrahydrofuran were mixed. The solution obtained in this manner was slowly dropped into the reactor using a syringe in an ice bath, then stirred at 0 ° C. for several hours, and then stirred at room temperature for 24 hours. The precipitated orange-white precipitate was collected by filtration, washed with water, and vacuum-dried at 160 ° C. for 12 hours to obtain 4.1 g of a crude product of compound (VI-3) (yield 53. 0%). The crude product was recrystallized from dioxane to obtain 3.0 g of compound (VI-3).
1 H-NMR (DMSO-d 6 , δ ppm); 1.05-1.15 (m, 4H), 1.15-1.34 (m, 4H), 1.36-1.49 (m, 2H) ), 1.50-1.63 (m, 4H), 1.64-1.78 (m, 4H), 1.82-1.99 (m, 6H), 2.21-2.35 (m , 2H), 2.65-2.78 (m, 2H), 2.79-2.89 (m, 2H), 3.28-3.43 (m, 2H), 3.45-3.54 (M, 2H), 3.54-3.64 (m, 2H), 4.45-4.59 (m, 2H)
[実施例4] 化合物(VI-4)の合成
 合成例4と同様に操作して得た5-クロロカルボニル-2,3-ビシクロ[2.2.1]ヘプタンジカルボン酸無水物7.5g(32.7mmol)および無水テトラヒドロフラン25.2mLを反応器に仕込み、反応器をセプタムキャップでシールし、氷浴中で0℃に冷却した。9,9-ビス(4-ヒドロキシフェニル)フルオレン5.2g(14.9mmol)、ピリジン5.3mL(65.4mmol)および無水テトラヒドロフラン17.6mLを混合して得た溶液をシリンジを用いて前記の反応器に氷浴下、ゆっくりと滴下し、次いで、0℃で数時間攪拌し、次いで、室温で24時間撹拌した。反応液を濾過し、濾液をエバポレーターで濃縮し、残渣を水に注いだ。析出した沈殿を濾取し、該沈殿を150℃で12時間真空乾燥して、化合物(VI-4)の粗生成物9.4gを得た(収率86.5%)。該粗生成物を無水酢酸と酢酸の混合溶媒(体積比2:1)より再結晶して化合物(VI-4)2.9gを得た。
 得られた化合物(VI-4)のDSC分析を行った。DSC曲線において284.2℃にシャープな吸熱ピーク(融点)が観測されたことから、得られた化合物(VI-4)は高純度であることがわかった。
H-NMR(DMSO-d,δppm);1.50-1.74(m,6H),1.98-2.11(m,2H),2.56-2.70(m,2H),2.72-2.82(m,2H),3.01-3.12(m,2H),3.48-3.58(m,2H),3.59-3.68(m,2H),6.90-7.25(m,8H),7.29-7.57(m,6H),7.95(d,2H)
[Example 4] Synthesis of compound (VI-4) 7.5 g of 5-chlorocarbonyl-2,3-bicyclo [2.2.1] heptanedicarboxylic anhydride obtained by operating in the same manner as in Synthesis Example 4 ( 32.7 mmol) and 25.2 mL of anhydrous tetrahydrofuran were charged to the reactor, which was sealed with a septum cap and cooled to 0 ° C. in an ice bath. A solution obtained by mixing 5.2 g (14.9 mmol) of 9,9-bis (4-hydroxyphenyl) fluorene, 5.3 mL (65.4 mmol) of pyridine and 17.6 mL of anhydrous tetrahydrofuran was mixed with the above solution using a syringe. The reaction vessel was slowly added dropwise in an ice bath and then stirred at 0 ° C. for several hours and then at room temperature for 24 hours. The reaction solution was filtered, the filtrate was concentrated with an evaporator, and the residue was poured into water. The deposited precipitate was collected by filtration and dried in vacuo at 150 ° C. for 12 hours to obtain 9.4 g of a crude product of compound (VI-4) (yield: 86.5%). The crude product was recrystallized from a mixed solvent of acetic anhydride and acetic acid (volume ratio 2: 1) to obtain 2.9 g of compound (VI-4).
The obtained compound (VI-4) was subjected to DSC analysis. A sharp endothermic peak (melting point) was observed at 284.2 ° C. in the DSC curve, which showed that the obtained compound (VI-4) was of high purity.
1 H-NMR (DMSO-d 6 , δ ppm); 1.50-1.74 (m, 6H), 1.98-2.11 (m, 2H), 2.56-2.70 (m, 2H) ), 2.72-2.82 (m, 2H), 3.01-3.12 (m, 2H), 3.48-3.58 (m, 2H), 3.59-3.68 (m) , 2H), 6.90-7.25 (m, 8H), 7.29-7.57 (m, 6H), 7.95 (d, 2H)
[実施例5]化合物(VI-5)の合成
 合成例4と同様に操作して得た5-クロロカルボニル-2,3-ビシクロ[2.2.1]ヘプタンジカルボン酸無水物9.1g(39.8mmol)および無水テトラヒドロフラン30.7mLを反応器に仕込み、反応器をセプタムキャップでシールし、氷浴中で0℃に冷却した。2-メチルヒドロキノン2.5g(19.9mmol)、ピリジン6.4mL(79.6mmol)および無水テトラヒドロフラン8.3mLを混合して得た溶液をシリンジを用いて前記の反応器に氷浴下、ゆっくりと滴下し、次いで、0℃で数時間攪拌し、次いで、室温で24時間撹拌した。析出した橙白色の沈殿を濾取し、該沈殿を水で洗浄し、160℃で12時間真空乾燥して、化合物(VI-5)の粗生成物6.9gを得た(収率68.6%)。該粗生成物を無水酢酸より再結晶して化合物(VI-5)0.5gを得た。
 得られた化合物(VI-5)のDSC分析を行った。DSC曲線において316.8℃にシャープな吸熱ピーク(融点)が観測されたことから、得られた化合物(VI-5)は高純度であることがわかった。
H-NMR(DMSO-d,δppm);1.53-1.76(m,6H),2.00-2.16(m、5H),2.60-2.68(m,1H),2.68-2.75(m,1H),2.75-2.85(m,2H),3.06-3.17(m,2H),3.51-3.61(m,2H),3.61-3.72(m,2H),6.99-7.06(m,1H),7.07-7.22(m,2H)
[Example 5] Synthesis of compound (VI-5) 9.1 g of 5-chlorocarbonyl-2,3-bicyclo [2.2.1] heptanedicarboxylic anhydride obtained by operating in the same manner as in Synthesis Example 4. 39.8 mmol) and 30.7 mL of anhydrous tetrahydrofuran were charged to the reactor, the reactor was sealed with a septum cap and cooled to 0 ° C. in an ice bath. A solution obtained by mixing 2.5 g (19.9 mmol) of 2-methylhydroquinone, 6.4 mL (79.6 mmol) of pyridine and 8.3 mL of anhydrous tetrahydrofuran was slowly added to the above reactor in an ice bath using a syringe. And then stirred at 0 ° C. for several hours and then at room temperature for 24 hours. The precipitated orange-white precipitate was collected by filtration, washed with water, and vacuum-dried at 160 ° C. for 12 hours to obtain 6.9 g of a crude product of compound (VI-5) (yield: 68. 6%). The crude product was recrystallized from acetic anhydride to obtain 0.5 g of Compound (VI-5).
DSC analysis of the obtained compound (VI-5) was performed. In the DSC curve, a sharp endothermic peak (melting point) was observed at 316.8 ° C., indicating that the obtained compound (VI-5) was of high purity.
1 H-NMR (DMSO-d 6 , δ ppm); 1.53-1.76 (m, 6H), 2.00-2.16 (m, 5H), 2.60-2.68 (m, 1H) ), 2.68-2.75 (m, 1H), 2.75-2.85 (m, 2H), 3.06-3.17 (m, 2H), 3.51-3.61 (m) , 2H), 3.61-3.72 (m, 2H), 6.99-7.06 (m, 1H), 7.07-7.22 (m, 2H)
[実施例6]化合物(VI-6)の合成
 合成例4と同様に操作して得た5-クロロカルボニル-2,3-ビシクロ[2.2.1]ヘプタンジカルボン酸無水物3.3g(14.4mmol)および無水テトラヒドロフラン5.6mLを反応器に仕込み、反応器をセプタムキャップでシールし、氷浴中で0℃に冷却した。4,4’-ジヒドロキシジフェニルエーテル1.5g(7.2mmol)、ピリジン1.8mL(21.6mmol)および無水テトラヒドロフラン2.5mLを混合して得た溶液をシリンジを用いて前記の反応器に氷浴下、ゆっくりと滴下し、次いで、0℃で数時間攪拌し、次いで、室温で24時間撹拌した。析出した白色の沈殿を濾取し、該沈殿を水で洗浄し、120℃で12時間真空乾燥して、化合物(VI-6)の粗生成物2.0gを得た(収率47.6%)。該粗生成物を無水酢酸と酢酸の混合溶媒(体積比1:2)より再結晶して化合物(VI-6)0.2gを得た。
 得られた化合物(VI-6)のDSC分析を行った。DSC曲線において235.3℃にシャープな吸熱ピーク(融点)が観測されたことから、得られた化合物(VI-6)は高純度であることがわかった。
H-NMR(DMSO-d,δppm);1.53-1.63(m,2H),1.63-1.73(m,4H),2.02-2.14(m,2H),2.58-2.69(m,2H),2.73-2.83(m,2H),3.05-3.15(m,2H),3.50-3.60(m,2H),3.61-3.70(m,2H),7.04(d,4H),7.18(d,4H)
Example 6 Synthesis of Compound (VI-6) 3.3 g of 5-chlorocarbonyl-2,3-bicyclo [2.2.1] heptanedicarboxylic anhydride obtained by the same procedure as in Synthesis Example 4 14.4 mmol) and 5.6 mL of anhydrous tetrahydrofuran were charged to the reactor, and the reactor was sealed with a septum cap and cooled to 0 ° C. in an ice bath. A solution obtained by mixing 1.5 g (7.2 mmol) of 4,4′-dihydroxydiphenyl ether, 1.8 mL (21.6 mmol) of pyridine and 2.5 mL of anhydrous tetrahydrofuran was added to the reactor with an ice bath using a syringe. The solution was slowly added dropwise, followed by stirring at 0 ° C. for several hours and then at room temperature for 24 hours. The precipitated white precipitate was collected by filtration, washed with water, and vacuum-dried at 120 ° C. for 12 hours to obtain 2.0 g of a crude product of compound (VI-6) (yield 47.6). %). The crude product was recrystallized from a mixed solvent of acetic anhydride and acetic acid (volume ratio 1: 2) to obtain 0.2 g of Compound (VI-6).
DSC analysis of the obtained compound (VI-6) was performed. In the DSC curve, a sharp endothermic peak (melting point) was observed at 235.3 ° C., indicating that the obtained compound (VI-6) was of high purity.
1 H-NMR (DMSO-d 6 , δ ppm); 1.53-1.63 (m, 2H), 1.63-1.73 (m, 4H), 2.02-2.14 (m, 2H) ), 2.58-2.69 (m, 2H), 2.73-2.83 (m, 2H), 3.05-3.15 (m, 2H), 3.50-3.60 (m , 2H), 3.61-3.70 (m, 2H), 7.04 (d, 4H), 7.18 (d, 4H)
<ポリイミド前駆体の製造、ポリイミドの製造およびポリイミド膜の評価>
 実施例7~30のポリイミド前駆体の製造に用いたジアミンを下記に示す。
<Manufacture of polyimide precursor, manufacture of polyimide and evaluation of polyimide film>
The diamines used in the production of the polyimide precursors of Examples 7 to 30 are shown below.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
[実施例7~30]ポリイミド前駆体(V-1)~(V-24)の製造
 表1に記載のジアミンとテトラカルボン酸二無水物との組み合わせを原料として用い、以下の操作を行うことによりポリイミド前駆体(V-1)~(V-24)の溶液を得た。
 よく乾燥した攪拌機付密閉反応器中にジアミン5mmolおよびジメチルアセトアミドを仕込み、次いで、テトラカルボン酸二無水物5mmolを室温で徐々に加え、次いで、表1に記載の時間攪拌して、透明で粘稠なポリイミド前駆体の溶液を得た。表1中、濃度は以下の式:
   濃度(重量%)=(w1+w2)/(w1+w2+w3)x100
(式中、w1は使用したジアミンの重量を表し、w2は使用したテトラカルボン酸二無水物の重量を表し、w3は使用したジメチルアセトアミドの重量を表す)で計算した値を表す。
[Examples 7 to 30] Production of polyimide precursors (V-1) to (V-24) Using the combination of diamine and tetracarboxylic dianhydride shown in Table 1 as raw materials, the following operations are performed. As a result, solutions of polyimide precursors (V-1) to (V-24) were obtained.
A well-dried sealed reactor equipped with a stirrer was charged with 5 mmol of diamine and dimethylacetamide, then 5 mmol of tetracarboxylic dianhydride was gradually added at room temperature, and then stirred for the time shown in Table 1 to obtain a clear and viscous solution. A solution of a polyimide precursor was obtained. In Table 1, the concentration is the following formula:
Concentration (% by weight) = (w1 + w2) / (w1 + w2 + w3) × 100
(Wherein w1 represents the weight of the diamine used, w2 represents the weight of the tetracarboxylic dianhydride used, and w3 represents the weight of the dimethylacetamide used).
 ポリイミド前駆体(V-1)の溶液を室温で1ヶ月間、または-20℃で1ヶ月間放置したとき沈澱の生成およびゲル化は全く起こらず、ポリイミド前駆体(V-1)の溶液は極めて高い溶液貯蔵安定性を示した。表1にポリイミド前駆体(V-1)~(V-24)の固有粘度を示す。 When the polyimide precursor (V-1) solution was allowed to stand at room temperature for 1 month or at -20 ° C. for 1 month, no precipitation and gelation occurred, and the polyimide precursor (V-1) solution was It showed very high solution storage stability. Table 1 shows the intrinsic viscosities of polyimide precursors (V-1) to (V-24).
[実施例31~54]ポリイミド(I-1)~(I-24)の製造
 表2に記載のポリイミド前駆体を原料として用い、以下の操作を行うことによりポリイミド(I-1)~(I-24)を得た。
 実施例7~30で得たポリイミド前駆体の溶液のそれぞれを反応器に仕込み、次いで、化学イミド化試薬(無水酢酸/ピリジン混合溶液、体積比7/3)を室温で反応器に滴下し、次いで、室温で24時間攪拌した。このとき用いた化学イミド化試薬中の無水酢酸量は、ポリイミド前駆体(V)に含まれるアミド酸単位に対して5倍モル量である。反応器の内容物を大量のメタノール中に注ぎ、析出した固体を濾取し、乾燥して、ポリイミド(I-1)~(I-24)を得た。
 ポリイミド(I-1)~(I-24)のそれぞれ1gをジメチルアセトアミド3gに溶解し、得られた溶液をバーコーティングによりガラス基板に塗付し、該ガラス基板を60℃で2時間乾燥し、該ガラス基板を表2に記載の熱処理条件で加熱し、該ガラス基板上に生成したポリイミド膜を該基板から剥離することにより、膜厚約20μmの透明なポリイミド(I-1)~(I-24)の膜を得た。該ポリイミド(I-1)~(I-24)の膜を指で180°折り曲げたときこれらの膜は破断しなかったことから、ポリイミド(I-1)~(I-24)は優れた可撓性を有することがわかった。
 表3にポリイミド膜の物性を示す。
[Examples 31 to 54] Production of polyimides (I-1) to (I-24) Using the polyimide precursors shown in Table 2 as raw materials, the following operations were performed to obtain polyimides (I-1) to (I -24) was obtained.
Each of the polyimide precursor solutions obtained in Examples 7 to 30 was charged into a reactor, and then a chemical imidization reagent (acetic anhydride / pyridine mixed solution, volume ratio 7/3) was dropped into the reactor at room temperature. Subsequently, it stirred at room temperature for 24 hours. The amount of acetic anhydride in the chemical imidizing reagent used at this time is a 5-fold molar amount with respect to the amic acid unit contained in the polyimide precursor (V). The contents of the reactor were poured into a large amount of methanol, and the precipitated solid was collected by filtration and dried to obtain polyimides (I-1) to (I-24).
1 g of each of the polyimides (I-1) to (I-24) was dissolved in 3 g of dimethylacetamide, the resulting solution was applied to a glass substrate by bar coating, and the glass substrate was dried at 60 ° C. for 2 hours. The glass substrate is heated under the heat treatment conditions shown in Table 2, and the polyimide film formed on the glass substrate is peeled off from the substrate, whereby transparent polyimides (I-1) to (I- 24) was obtained. Since the films of the polyimides (I-1) to (I-24) were not broken when they were bent 180 ° with a finger, the polyimides (I-1) to (I-24) were excellent. It was found to have flexibility.
Table 3 shows the physical properties of the polyimide film.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
[比較例1]
 式(VIII-1)
[Comparative Example 1]
Formula (VIII-1)
Figure JPOXMLDOC01-appb-C000041
で表されるテトラカルボン酸二無水物を国際公開第2006/129771号パンフレットに記載の方法に準じて製造することにより得た。
Figure JPOXMLDOC01-appb-C000041
It was obtained by producing a tetracarboxylic dianhydride represented by the method described in International Publication No. 2006/129771 pamphlet.
 化合物(VI-1)の代わりに式(VIII-1)で表されるテトラカルボン酸二無水物を用いる以外は実施例7と同様な操作を行うことによりポリイミド前駆体(X-1)を得た。次いで、ポリイミド前駆体(V-1)の代わりにポリイミド前駆体(X-1)を用いる以外は実施例31と同様な操作を行うことによりポリイミド(XI-1)を得た。次いで、ポリイミド(I-1)の代わりにポリイミド(XI-1)を用いる以外は実施例31と同様な操作を行うことによりポリイミド(XI-1)の膜を得た。表3にポリイミド(XI-1)の膜の物性を示す。 A polyimide precursor (X-1) is obtained by performing the same operation as in Example 7 except that the tetracarboxylic dianhydride represented by the formula (VIII-1) is used in place of the compound (VI-1). It was. Next, polyimide (XI-1) was obtained by performing the same operation as in Example 31 except that the polyimide precursor (X-1) was used instead of the polyimide precursor (V-1). Next, a film of polyimide (XI-1) was obtained by performing the same operation as in Example 31 except that polyimide (XI-1) was used instead of polyimide (I-1). Table 3 shows the physical properties of the polyimide (XI-1) film.
[比較例2]
 化合物(VI-1)の代わりに式(VIII-1)で表されるテトラカルボン酸二無水物を用いる以外は実施例9と同様な操作を行うことによりポリイミド前駆体(X-2)を得た。次いで、ポリイミド前駆体(V-1)の代わりにポリイミド前駆体(X-2)を用いる以外は実施例31と同様な操作を行うことによりポリイミド(XI-2)を得た。次いで、ポリイミド(I-1)の代わりにポリイミド(XI-2)を用いる以外は実施例31と同様な操作を行うことによりポリイミド(XI-2)の膜を得た。表3にポリイミド(XI-2)の膜の物性を示す。
 ポリイミド(I-1)はポリイミド(XI-1)に比べ低いCTEおよび高いTgを有した。またポリイミド(I-3)はポリイミド(XI-2)に比べ低いCTEおよび高いTgを有した。以上のことより、実施例で得られたポリイミドは高い耐熱性を有することがわかる。
[Comparative Example 2]
A polyimide precursor (X-2) is obtained by performing the same operation as in Example 9 except that the tetracarboxylic dianhydride represented by the formula (VIII-1) is used in place of the compound (VI-1). It was. Next, a polyimide (XI-2) was obtained by performing the same operation as in Example 31 except that the polyimide precursor (X-2) was used instead of the polyimide precursor (V-1). Next, a polyimide (XI-2) film was obtained by performing the same operation as in Example 31 except that polyimide (XI-2) was used instead of polyimide (I-1). Table 3 shows the physical properties of the polyimide (XI-2) film.
Polyimide (I-1) had lower CTE and higher Tg compared to polyimide (XI-1). Polyimide (I-3) had a lower CTE and a higher Tg than polyimide (XI-2). From the above, it can be seen that the polyimides obtained in the examples have high heat resistance.
 本発明により、高い耐熱性等を有するポリイミド等を提供できる。 According to the present invention, polyimide having high heat resistance and the like can be provided.

Claims (16)

  1.  式(I)
    Figure JPOXMLDOC01-appb-C000001
    [式中、P、PおよびPは、同一または異なって、水素原子、ハロゲン原子、シアノ基、ホルミル基、ヒドロキシル基、置換もしくは非置換のアルキル基、置換もしくは非置換のシクロアルキル基、置換もしくは非置換のアルケニル基、置換もしくは非置換のアリール基、置換もしくは非置換のアラルキル基、置換もしくは非置換のアルカノイルオキシ基または置換もしくは非置換のアルコキシル基を表し、XおよびAは、同一または異なって、置換もしくは非置換のアルキレン基、置換もしくは非置換の多環式不飽和炭化水素から炭素原子上の水素原子を2つ除くことにより生じる2価の基、置換もしくは非置換の多環式飽和炭化水素から炭素原子上の水素原子を2つ除くことにより生じる2価の基、式(II)
    Figure JPOXMLDOC01-appb-C000002
    [式中、mは0~3の整数を表し、RおよびRは、同一または異なって、ハロゲン原子、シアノ基、ホルミル基、ヒドロキシル基、置換もしくは非置換のアルキル基、置換もしくは非置換のアルケニル基、置換もしくは非置換のアリール基、置換もしくは非置換のアルカノイルオキシ基または置換もしくは非置換のアルコキシル基を表し、qおよびrは、同一または異なって、0~4の整数を表し、qが2~4の整数であるときRのそれぞれは同一または異なってよく、rが2~4の整数であるときRのそれぞれは同一または異なってよく、Zは単結合、酸素原子、硫黄原子、SO、フッ素原子が置換していてもよい炭素数1~4のアルキレン基、または式(III)
    Figure JPOXMLDOC01-appb-C000003
    (式中、RおよびRは、同一または異なって、ハロゲン原子、シアノ基、ホルミル基、ヒドロキシル基、置換もしくは非置換のアルキル基、置換もしくは非置換のシクロアルキル基、置換もしくは非置換のアルケニル基、置換もしくは非置換のアリール基、置換もしくは非置換のアラルキル基、置換もしくは非置換のアルカノイルオキシ基または置換もしくは非置換のアルコキシル基を表し、eおよびfは、同一または異なって、0~4の整数を表し、eが2~4の整数であるときRのそれぞれは同一または異なってよく、fが2~4の整数であるときRのそれぞれは同一または異なってよい)を表し、mが2または3であるときR、qおよびZのそれぞれは同一または異なってよい]または式(IV)
    Figure JPOXMLDOC01-appb-C000004
    (式中、nは0~3の整数を表し、RおよびRは、同一または異なって、ハロゲン原子、シアノ基、ホルミル基、ヒドロキシル基、置換もしくは非置換のアルキル基、置換もしくは非置換のシクロアルキル基、置換もしくは非置換のアルケニル基、置換もしくは非置換のアルカノイルオキシ基または置換もしくは非置換のアルコキシル基を表し、saおよびuaは、同一または異なって、0~4の整数を表し、saが2~4の整数であるときRのそれぞれは同一または異なってよく、uaが2~4の整数であるときRのそれぞれは同一または異なってよく、sbおよびubは、同一または異なって、0~2の整数を表し、Zは単結合、酸素原子、硫黄原子、SOまたはフッ素原子が置換していてもよい炭素数1~4のアルキレン基を表し、nが2または3であるときR、sa、sbおよびZのそれぞれは同一または異なっていてもよい)を表す]で表される繰り返し単位を有するポリイミド。
    Formula (I)
    Figure JPOXMLDOC01-appb-C000001
    [Wherein P 1 , P 2 and P 3 are the same or different and each represents a hydrogen atom, a halogen atom, a cyano group, a formyl group, a hydroxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group Represents a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted alkanoyloxy group or a substituted or unsubstituted alkoxyl group, and X and A are the same Or differently, a substituted or unsubstituted alkylene group, a divalent group formed by removing two hydrogen atoms on a carbon atom from a substituted or unsubstituted polycyclic unsaturated hydrocarbon, a substituted or unsubstituted polycycle A divalent group formed by removing two hydrogen atoms on a carbon atom from a saturated hydrocarbon of formula (II)
    Figure JPOXMLDOC01-appb-C000002
    [Wherein, m represents an integer of 0 to 3, and R 1 and R 2 are the same or different and each represents a halogen atom, a cyano group, a formyl group, a hydroxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted group. Alkenyl group, substituted or unsubstituted aryl group, substituted or unsubstituted alkanoyloxy group or substituted or unsubstituted alkoxyl group, q and r are the same or different and represent an integer of 0 to 4, q Each of R 1 may be the same or different when R is an integer of 2 to 4, and each of R 2 may be the same or different when r is an integer of 2 to 4, and Z 1 is a single bond, an oxygen atom, A sulfur atom, SO 2 , a C 1-4 alkylene group which may be substituted by a fluorine atom, or the formula (III)
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R 5 and R 6 are the same or different and each represents a halogen atom, a cyano group, a formyl group, a hydroxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted group, Represents an alkenyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted alkanoyloxy group or a substituted or unsubstituted alkoxyl group, and e and f are the same or different and represent 0 to Each of R 5 may be the same or different when e is an integer of 2 to 4, and each of R 6 may be the same or different when f is an integer of 2 to 4. Each of R 1 , q and Z 1 may be the same or different when m is 2 or 3] or formula (IV)
    Figure JPOXMLDOC01-appb-C000004
    (Wherein n represents an integer of 0 to 3, and R 3 and R 4 are the same or different and are each a halogen atom, a cyano group, a formyl group, a hydroxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted group, A cycloalkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkanoyloxy group or a substituted or unsubstituted alkoxyl group, sa and ua are the same or different and represent an integer of 0 to 4; When sa is an integer from 2 to 4, each R 3 may be the same or different, and when ua is an integer from 2 to 4 , each R 4 may be the same or different, and sb and ub are the same or different. Te, 0 represents an integer 2, Z 2 is a single bond, an oxygen atom, a sulfur atom, alkyl of SO 2 or a fluorine atom and 1 carbon atoms and optionally substituted 4 Represents an emission radical, n when it is 2 or 3 R 3, sa, polyimide having a repeating unit each of sb and Z 2 is represented by representing the same or may be different).
  2.  式(V)
    Figure JPOXMLDOC01-appb-C000005
    [式中、P、P、PおよびXはそれぞれ前記と同義であり、RおよびRの一方はヒドロキシル基を表し他方は-NH-A-(式中、Aは前記と同義である)で表される2価の基を表し、RおよびRの一方はヒドロキシル基を表し他方は-NH-で表される2価の基を表す]で表される繰り返し単位を有するポリイミド前駆体をイミド化することを特徴とする式(I)
    Figure JPOXMLDOC01-appb-C000006
    (式中、P、P、P、XおよびAはそれぞれ前記と同義である)で表される繰り返し単位を有するポリイミドの製造方法。
    Formula (V)
    Figure JPOXMLDOC01-appb-C000005
    [Wherein P 1 , P 2 , P 3 and X are as defined above, one of R a and R b represents a hydroxyl group and the other is —NH—A— (wherein A is as defined above] In which one of R c and R d represents a hydroxyl group and the other represents a divalent group represented by —NH—. Formula (I) characterized by imidizing a polyimide precursor
    Figure JPOXMLDOC01-appb-C000006
    (Wherein P 1 , P 2 , P 3 , X and A are as defined above), a method for producing a polyimide having a repeating unit.
  3.  式(V)
    Figure JPOXMLDOC01-appb-C000007
    (式中、P、P、P、X、R、R、RおよびRはそれぞれ前記と同義である)で表される繰り返し単位を有するポリイミド前駆体。
    Formula (V)
    Figure JPOXMLDOC01-appb-C000007
    (Wherein P 1 , P 2 , P 3 , X, R a , R b , R c and R d are as defined above), and a polyimide precursor having a repeating unit.
  4.  式(VI)
    Figure JPOXMLDOC01-appb-C000008
    (式中、P、P、PおよびXはそれぞれ前記と同義である)で表されるテトラカルボン酸二無水物を含む1種類以上のテトラカルボン酸二無水物とHN-A-NH(式中、Aは前記と同義である)で表されるジアミンとを反応させることを特徴とする式(V)
    Figure JPOXMLDOC01-appb-C000009
    (式中、P、P、P、X、R、R、RおよびRはそれぞれ前記と同義である)で表される繰り返し単位を有するポリイミド前駆体の製造方法。
    Formula (VI)
    Figure JPOXMLDOC01-appb-C000008
    (Wherein P 1 , P 2 , P 3 and X are as defined above) and one or more types of tetracarboxylic dianhydrides including H 2 NA Formula (V), characterized by reacting with a diamine represented by —NH 2 (wherein A is as defined above)
    Figure JPOXMLDOC01-appb-C000009
    (Wherein P 1 , P 2 , P 3 , X, R a , R b , R c and R d are as defined above), a method for producing a polyimide precursor having a repeating unit.
  5.  式(VI)
    Figure JPOXMLDOC01-appb-C000010
    (式中、P、P、PおよびXはそれぞれ前記と同義である)で表されるテトラカルボン酸二無水物。
    Formula (VI)
    Figure JPOXMLDOC01-appb-C000010
    (Wherein P 1 , P 2 , P 3 and X are as defined above), tetracarboxylic dianhydride.
  6.  式(VII)
    Figure JPOXMLDOC01-appb-C000011
    (式中、P、PおよびPはそれぞれ前記と同義である)で表される酸無水物とハロゲン化剤とを反応させることにより酸ハライドを得、次いで、該酸ハライドとHO-X-OH(式中、Xは前記と同義である)で表されるジオールとを反応させることを特徴とする式(VI)
    Figure JPOXMLDOC01-appb-C000012
    (式中、P、P、PおよびXおよびAはそれぞれ前記と同義である)で表されるテトラカルボン酸二無水物の製造方法。
    Formula (VII)
    Figure JPOXMLDOC01-appb-C000011
    (Wherein P 1 , P 2 and P 3 are as defined above), an acid halide and a halogenating agent are reacted to obtain an acid halide, and then the acid halide and HO— Reacting with a diol represented by X—OH (wherein X is as defined above),
    Figure JPOXMLDOC01-appb-C000012
    (Wherein P 1 , P 2 , P 3 and X and A are as defined above), a method for producing a tetracarboxylic dianhydride.
  7.  式(VII)
    Figure JPOXMLDOC01-appb-C000013
    (式中、P、PおよびPはそれぞれ前記と同義である)で表される酸無水物とハロゲン化剤とを反応させることにより酸ハライドを得、次いで、該酸ハライドとHO-X-OH(式中、Xは前記と同義である)で表されるジオールとを反応させることにより式(VI)
    Figure JPOXMLDOC01-appb-C000014
    (式中、P、P、PおよびXはそれぞれ前記と同義である)で表されるテトラカルボン酸二無水物を得、次いで、該テトラカルボン酸二無水物を含む1種類以上のテトラカルボン酸二無水物とHN-A-NH(式中、Aは前記と同義である)で表されるジアミンとを反応させることにより式(V)
    Figure JPOXMLDOC01-appb-C000015
    (式中、P、P、P、X、R、R、RおよびRはそれぞれ前記と同義である)で表される繰り返し単位を有するポリイミド前駆体を得、次いで、該ポリイミド前駆体をイミド化することを特徴とする式(I)
    Figure JPOXMLDOC01-appb-C000016
    (式中、P、P、P、XおよびAはそれぞれ前記と同義である)で表される繰り返し単位を有するポリイミドの製造方法。
    Formula (VII)
    Figure JPOXMLDOC01-appb-C000013
    (Wherein P 1 , P 2 and P 3 are as defined above), an acid halide and a halogenating agent are reacted to obtain an acid halide, and then the acid halide and HO— By reacting with a diol represented by X—OH (wherein X is as defined above), the compound of formula (VI)
    Figure JPOXMLDOC01-appb-C000014
    (Wherein P 1 , P 2 , P 3 and X are as defined above), and then one or more kinds of tetracarboxylic dianhydrides containing the tetracarboxylic dianhydride By reacting tetracarboxylic dianhydride with a diamine represented by H 2 N—A—NH 2 (wherein A is as defined above), the compound represented by the formula (V)
    Figure JPOXMLDOC01-appb-C000015
    (Wherein P 1 , P 2 , P 3 , X, R a , R b , R c and R d are as defined above), a polyimide precursor having a repeating unit represented by Formula (I) characterized by imidizing the polyimide precursor
    Figure JPOXMLDOC01-appb-C000016
    (Wherein P 1 , P 2 , P 3 , X and A are as defined above), a method for producing a polyimide having a repeating unit.
  8.  XおよびAが、同一または異なって、式(II)または式(IV)である請求項1記載のポリイミド。 The polyimide according to claim 1, wherein X and A are the same or different and are represented by formula (II) or formula (IV).
  9.  XおよびAが、同一または異なって、式(II)である請求項1記載のポリイミド。 The polyimide according to claim 1, wherein X and A are the same or different and are represented by formula (II).
  10.  P、PおよびPが水素原子である請求項1、8または9記載のポリイミド。 The polyimide according to claim 1, 8 or 9, wherein P 1 , P 2 and P 3 are hydrogen atoms.
  11.  XおよびAが、同一または異なって、式(II)または式(IV)である請求項3記載のポリイミド前駆体。 The polyimide precursor according to claim 3, wherein X and A are the same or different and are represented by formula (II) or formula (IV).
  12.  XおよびAが、同一または異なって、式(II)である請求項3記載のポリイミド前駆体。 The polyimide precursor according to claim 3, wherein X and A are the same or different and have the formula (II).
  13.  P、PおよびPが水素原子である請求項3、11または12記載のポリイミド前駆体。 The polyimide precursor according to claim 3, 11 or 12, wherein P 1 , P 2 and P 3 are hydrogen atoms.
  14.  Xが式(II)または式(IV)である請求項5記載のテトラカルボン酸二無水物。 The tetracarboxylic dianhydride according to claim 5, wherein X is formula (II) or formula (IV).
  15.  Xが式(II)である請求項5記載のテトラカルボン酸二無水物。 X is a formula (II), The tetracarboxylic dianhydride of Claim 5.
  16.  P、PおよびPが水素原子である請求項5、14または15記載のテトラカルボン酸二無水物。 The tetracarboxylic dianhydride according to claim 5, 14 or 15, wherein P 1 , P 2 and P 3 are hydrogen atoms.
PCT/JP2009/051880 2008-02-14 2009-02-04 Polyimide WO2009101885A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008033100 2008-02-14
JP2008-033100 2008-02-14
JP2008-228359 2008-09-05
JP2008228359 2008-09-05

Publications (1)

Publication Number Publication Date
WO2009101885A1 true WO2009101885A1 (en) 2009-08-20

Family

ID=40956915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051880 WO2009101885A1 (en) 2008-02-14 2009-02-04 Polyimide

Country Status (1)

Country Link
WO (1) WO2009101885A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131566A1 (en) * 2009-05-11 2010-11-18 富士フイルム株式会社 Tetracarboxylic acid dianhydride and polymer
WO2011121848A1 (en) * 2010-03-29 2011-10-06 日立化成工業株式会社 Polyamideimide having norbornane skeleton and production method for same
WO2011121847A1 (en) * 2010-03-29 2011-10-06 日立化成工業株式会社 Production method for polyamideimide having nadimide skeleton
WO2011121850A1 (en) * 2010-03-29 2011-10-06 日立化成工業株式会社 Polyamideimide having nadimide skeleton and production method for same
JPWO2012029734A1 (en) * 2010-09-02 2013-10-28 東レ株式会社 Photosensitive composition, cured film formed therefrom, and device having cured film
WO2019163703A1 (en) * 2018-02-21 2019-08-29 Jxtgエネルギー株式会社 Polyimide precursor resin composition
JP2021031452A (en) * 2019-08-27 2021-03-01 Jnc株式会社 Dialdehyde compound having norbornane skeleton and cyclohexadione skeleton and method for producing the same
TWI735667B (en) * 2016-09-28 2021-08-11 日商日產化學工業股份有限公司 Acid dianhydride and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129771A1 (en) * 2005-06-01 2006-12-07 Mitsubishi Chemical Corporation Tetracarboxylic acid or polyesterimide thereof, and process for production of the same
JP2007002023A (en) * 2005-06-21 2007-01-11 Fujifilm Holdings Corp Film and image display
WO2007058156A1 (en) * 2005-11-15 2007-05-24 Mitsubishi Chemical Corporation Tetracarboxylic acid compound, polyimide thereof, and production method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129771A1 (en) * 2005-06-01 2006-12-07 Mitsubishi Chemical Corporation Tetracarboxylic acid or polyesterimide thereof, and process for production of the same
JP2007002023A (en) * 2005-06-21 2007-01-11 Fujifilm Holdings Corp Film and image display
WO2007058156A1 (en) * 2005-11-15 2007-05-24 Mitsubishi Chemical Corporation Tetracarboxylic acid compound, polyimide thereof, and production method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131566A1 (en) * 2009-05-11 2010-11-18 富士フイルム株式会社 Tetracarboxylic acid dianhydride and polymer
WO2011121848A1 (en) * 2010-03-29 2011-10-06 日立化成工業株式会社 Polyamideimide having norbornane skeleton and production method for same
WO2011121847A1 (en) * 2010-03-29 2011-10-06 日立化成工業株式会社 Production method for polyamideimide having nadimide skeleton
WO2011121850A1 (en) * 2010-03-29 2011-10-06 日立化成工業株式会社 Polyamideimide having nadimide skeleton and production method for same
CN102791770A (en) * 2010-03-29 2012-11-21 日立化成工业株式会社 Polyamideimide having norbornane skeleton and production method for same
CN102791770B (en) * 2010-03-29 2014-05-07 日立化成株式会社 Polyamideimide having norbornane skeleton and production method for same
JPWO2012029734A1 (en) * 2010-09-02 2013-10-28 東レ株式会社 Photosensitive composition, cured film formed therefrom, and device having cured film
JP5765235B2 (en) * 2010-09-02 2015-08-19 東レ株式会社 Photosensitive composition, cured film formed therefrom, and device having cured film
TWI735667B (en) * 2016-09-28 2021-08-11 日商日產化學工業股份有限公司 Acid dianhydride and use thereof
WO2019163703A1 (en) * 2018-02-21 2019-08-29 Jxtgエネルギー株式会社 Polyimide precursor resin composition
KR20200123172A (en) * 2018-02-21 2020-10-28 에네오스 가부시키가이샤 Polyimide precursor resin composition
JPWO2019163703A1 (en) * 2018-02-21 2021-02-04 Eneos株式会社 Polyimide precursor resin composition
CN111742012A (en) * 2018-02-21 2020-10-02 引能仕株式会社 Polyimide precursor resin composition
KR102429867B1 (en) 2018-02-21 2022-08-05 에네오스 가부시키가이샤 Polyimide precursor resin composition
JP7203082B2 (en) 2018-02-21 2023-01-12 Eneos株式会社 Polyimide precursor resin composition
JP2021031452A (en) * 2019-08-27 2021-03-01 Jnc株式会社 Dialdehyde compound having norbornane skeleton and cyclohexadione skeleton and method for producing the same
JP7247817B2 (en) 2019-08-27 2023-03-29 Jnc株式会社 Dialdehyde compound having norbornane skeleton and cyclohexadione skeleton and method for producing the same

Similar Documents

Publication Publication Date Title
WO2009101885A1 (en) Polyimide
JP5878710B2 (en) Amide group-containing alicyclic tetracarboxylic dianhydride and resin using the same
JP2008231327A (en) Polyimide having high transparency and its manufacturing method
US20110257360A1 (en) Tetracarboxylic acid or polyesterimide thereof and process for producing the same
KR100510760B1 (en) Acid anhydride, liquid crystal alignment layer and liquid crystal display device
KR20050001408A (en) Process for producing solvent-soluble polyimide
JP2008297362A (en) Ester group-containing tetracarboxylic acid dianhydride, polyimide having high toughness, and its precursor
JP2007091701A (en) Tetracarboxylic acid containing fluorenyl group and ester group, polyester imide precursor containing fluorenyl group, polyester imide containing fluorenyl group and method for producing the same
JP5666076B2 (en) Bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic dianhydride, its production method, said bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic Polyimide obtained from acid dianhydride and use thereof
JP6287852B2 (en) Electronic device substrate comprising polyimide resin film and polyimide resin film
JP6635506B2 (en) Diamine having fluorene skeleton, polyamic acid, and polyimide
JP5154453B2 (en) Alignment material for vertical alignment mode liquid crystal display element and manufacturing method thereof
JP2017504701A (en) Polyimide and film using the same
JP4829913B2 (en) Polyimide and method for producing the same
JP2012236788A (en) Amide group-containing alicyclic tetracarboxylic dianhydride, and resin obtained by using the same
JP2017202981A (en) Polyimide and polyimide film
JP2021185165A (en) Polyimide having fluorene skeleton
JP2008163088A (en) Ester group-containing alicyclic tetracarboxylic acid anhydride and method for producing the same
JP4140252B2 (en) Phenylenediamine having a siloxane moiety, a liquid crystal alignment material including a polymer using the same, and a liquid crystal display element including the liquid crystal alignment material
JP4957077B2 (en) Tetracarboxylic acids or polyesterimides derived therefrom and method for producing the same
JP2008163090A (en) Tetracarboxylic acid dianhydride, method for producing the same and polymer
JP2008163087A (en) Method for producing ester group-containing alicyclic tetracarboxylic acid dianhydride
JP5315994B2 (en) Polyamic acid and polyimide
WO2019172460A2 (en) Tetracarboxylic dianhydride, carbonyl compound, polyimide precursor resin, and polyimide
JP4992893B2 (en) Acid anhydride having asymmetric structure, liquid crystal alignment film, and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09711346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP