WO2019163696A1 - エレクトロスピニング法を用いて製造した生分解性繊維材料を綿状に回収する方法、及びその方法を用いて製造された綿状の骨再生用材料 - Google Patents
エレクトロスピニング法を用いて製造した生分解性繊維材料を綿状に回収する方法、及びその方法を用いて製造された綿状の骨再生用材料 Download PDFInfo
- Publication number
- WO2019163696A1 WO2019163696A1 PCT/JP2019/005781 JP2019005781W WO2019163696A1 WO 2019163696 A1 WO2019163696 A1 WO 2019163696A1 JP 2019005781 W JP2019005781 W JP 2019005781W WO 2019163696 A1 WO2019163696 A1 WO 2019163696A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrospinning
- fibers
- fiber
- biodegradable
- cotton
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/58—Materials at least partially resorbable by the body
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Definitions
- the present invention relates to a method for recovering a biodegradable fiber material produced using an electrospinning method into a cotton form, and a cotton-like bone regeneration material produced using the method.
- biodegradable fiber materials containing bone forming factors such as calcium phosphate particles are manufactured by electrospinning, and used as a bone regeneration material to be implanted in the human body.
- the biodegradable resin preferably has a high hydrolysis rate.
- PLGA is a resin that has been approved by the FDA as a material to be implanted into the human body, and is suitable because of its high hydrolysis rate.
- PDLG containing D-form in PLA is particularly preferable because the hydrolysis rate is extremely high.
- Non-patent Document 1 a method for manufacturing a cotton-shaped tissue-engineering device.
- This method increases the porosity by using ice crystal as a void template.
- the fibers deposited on the drum are inevitably attached to each other in a state of being dissolved by the solvent. Therefore, although the bulk density of the nonwoven fabric can be lowered by ice crystals, the whole material is three-dimensionally solidified. There is a limit to the cotton shape.
- the inventors of the present application have a three-dimensional structure by previously depositing the fiber emitted from the nozzle onto the ethanol surface filled in the collector container and depositing the fiber in a floating state in ethanol.
- a method of recovering as a fiber material having a cotton shape was proposed.
- the fiber emitted from the nozzle is incident on the ethanol solution filled in the collector and the fiber is precipitated in the solution.
- chloroform which is the solvent used to dissolve the resin, has an affinity for chloroform. And it is removed from the fiber by being immersed in an ethanol solution that does not dissolve the resin.
- the fiber material deposited in a suspended state in the ethanol solution is taken out from the collector container and dried, the fibers from which chloroform has been removed by ethanol can be recovered in a cotton form without adhering to each other (Patent Document 1).
- the deposited fiber material floats in the ethanol solution in the process of taking out the fibers deposited in ethanol and drying them. It must maintain the three-dimensional shape when in a state.
- the fiber is made of a soft resin, the fiber does not have sufficient mechanical strength, and as a result, the fiber wet with ethanol cannot withstand its own weight while being taken out from the collector container and dried. As a result, there was a problem that the sheet was not flat and formed into a flat sheet.
- the fiber material taken out from the collector container remains slightly even under a temperature condition where the ambient temperature is equal to or lower than the glass transition point of the resin. I noticed that the resin was melted and softened by chloroform. Therefore, it was discovered that the viscosity and hardness of the fiber can be kept higher than a certain level by removing chloroform remaining in the fiber as early as possible while drying the fiber material taken out from ethanol.
- chloroform can be volatilized quickly even under low temperature conditions by drying the extracted material under reduced pressure conditions.
- An electrospinning spinning solution having a resin concentration of 5 to 30% by weight is prepared by dissolving the biodegradable resin in a biodegradable resin dissolving solvent, and injected into a syringe of an electrospinning device.
- the spinning solution is emitted from the nozzle in a fiber shape and incident on a collector container filled with a fiber material recovery liquid, whereby the incident electrospinning fiber is injected into the collector container.
- the biodegradable resin dissolving solvent is chloroform.
- the fiber material recovery liquid is ethanol.
- the pressure when drying the biodegradable fiber using the vacuum dryer may be basically a pressure lower than the standard atmospheric pressure (101.325 kPa), but is preferably 100 kPa to 0.1 Pa.
- the ambient temperature when drying the biodegradable fiber under reduced pressure is about -20 ° C to 25 ° C, more preferably about -10 ° C to -5 ° C.
- the biodegradable resin is PLGA (PDLG) containing D form.
- the electrospinning spinning solution includes an inorganic filler which is an osteogenic factor.
- the electrospinning spinning solution is prepared by dissolving a composite obtained by mixing 70 to 50% by weight of an inorganic filler with 30 to 50% by weight of a biodegradable resin and heating and kneading with a solvent. Prepare.
- the inventors of the present invention further used a planetary stirring device for spinning a biodegradable fiber containing inorganic particles that are bone-forming factors using an electrospinning method without using a thermal kneading method. It has been discovered that it can be prepared by mixing inorganic particles and resin.
- the inventors of the present invention are methods for preparing a spinning solution for spinning biodegradable fibers containing inorganic particles that are bone-forming factors using an electrospinning method, Prepare a mixed solution by mixing inorganic particles with biodegradable resin dissolved in the first solvent, The composite solution of the inorganic particles and the biodegradable resin is produced by drying the mixed solution after stirring at a predetermined rotational speed for a certain time using a planetary rotary stirring device, Preparing an electrospinning spinning solution by dissolving the composite in a second solvent; The inventors have reached the invention of a method for preparing a spinning solution for spinning using an electrospinning method.
- the first solvent is hexafluoroisopropanol (HFIP).
- the second solvent is chloroform.
- the first solvent and the second solvent are both chloroform. Since chloroform is less expensive than HFIP, the production cost can be reduced by using chloroform for both the first and second solvents.
- the resin concentration of the mixed solution is 3 to 12% by weight.
- the resin concentration of the spinning solution is 5 to 30% by weight, more preferably 8 to 25% by weight.
- the biodegradable resin is PLGA, more preferably PDLG.
- the electrospinning spinning solution is obtained by mixing 70 to 50% by weight of inorganic particles with 30 to 50% by weight of biodegradable resin dissolved in hexafluoroisopropanol and stirring the mixture using a planetary stirrer.
- the complex is prepared by dissolving in chloroform.
- the electrospinning spinning solution is prepared by dissolving a complex obtained by stirring and mixing 70 to 50% by weight of calcium phosphate particles with 30 to 50% by weight of PLGA resin using a planetary stirrer with chloroform. To do.
- biodegradable fibers made of a soft resin such as PDLG can be recovered in the form of cotton.
- the planetary stirring method of the present invention it becomes possible to prepare an electrospinning spinning solution in which inorganic particles are uniformly dispersed and mixed in a biodegradable resin without using a thermal kneading method.
- the molecular chain of the polymer was cut and the molecular weight of the PLGA resin was lowered, so that the production problem that spinning by electrospinning became difficult could be solved.
- the PLGA resin is dissolved in hexafluoroisopropanol and mixed with an inorganic filler, and then stirred with a planetary stirring device to uniformly disperse the inorganic particles in the resin.
- a fiber having a uniform outer diameter could be spun by the electrospinning method.
- FIG. 1 (a) shows an overview photograph of a biodegradable fiber material obtained by using a conventional drying method
- FIG. 1 (b) shows a raw material obtained by using a low temperature drying method which is an embodiment of the present invention.
- An overview photograph of the degradable fiber material is shown.
- FIG. 2A shows the appearance of a freezer used in the low-temperature drying method that is an embodiment of the present invention
- FIG. 2B shows the appearance of a vacuum desiccator used in the low-temperature drying method that is an embodiment of the present invention.
- FIG. 3 shows an embodiment of the precipitation flotation method used in the examples of the present invention.
- FIG. 4 shows an embodiment of the planetary stirring method used in the examples of the present invention.
- the biodegradable fiber used for the bone regeneration material of the present invention is preferably a composite fiber of a biodegradable resin and an osteogenic factor.
- the biodegradable resin does not need to contain an osteogenic factor, and the low-temperature drying method is used as a means for collecting biodegradable fibers made of 100% resin into a cotton-like shape. Can do.
- PLGA is a resin that has been approved for safety by the FDA and can be suitably used because of its high hydrolysis rate.
- PDLG containing D-form is particularly suitable because of its extremely high hydrolysis rate.
- PDLG includes a copolymer of D-lactic acid obtained by polymerizing only the D-isomer that is an isomer, and DL-lactic acid and glycolic acid in which both D and L lactic acids are mixed. Since PDLG is amorphous in addition to low molecular weight compared to PLGA not containing D-form, the PDLG fiber deposited on the collector by the precipitation floating deposition method is soft and attached to the fiber when recovered from the ethanol solution. The tendency to form a flat sheet without being able to withstand the weight of the ethanol solution is remarkable.
- the “precipitation floating deposition method” means that the collector container of the electrospinning apparatus is filled with the fiber material recovery liquid, and the fibers emitted from the nozzle are made incident on the liquid surface of the fiber material recovery liquid to be precipitated in the liquid. In this way, the fiber is deposited in a floating state on the bottom surface of the collector.
- Ethanol has a high affinity with chloroform used for the preparation of an electrospinning spinning solution, and therefore can be suitably used as a fiber material recovery solution.
- FIG. 3 shows an embodiment of the precipitation floating deposition method used in the embodiment of the present invention.
- the PDLG fibers are kept in ethanol in the collector vessel at about ⁇ 10 ° C. for about 30 minutes to 2 hours, thereby removing chloroform while maintaining high PDLG resin viscosity, The three-dimensional structure is maintained in the suspended sediment state of the fiber.
- the “fiber material recovery liquid” refers to a liquid for allowing the fibrous material obtained by electrospinning to float in the liquid without being dissolved. It is possible to remove the solvent in the collector by using a fiber material recovery liquid having a high affinity for the solvent used for preparing the spinning solution for electrospinning.
- ethanol is used as the fiber material recovery solution, and chloroform having an affinity for ethanol is used as the solvent used to prepare the spinning solution.
- the “low temperature drying method” means that the fiber taken out from the ethanol solution of the collector of the electrospinning apparatus using the “precipitation floating deposition method” is left in the fiber for a certain period of time under a reduced pressure condition. A method of volatilizing the solvent used.
- the biodegradable fibers suspended and deposited in the collector using the sedimentation floating deposition method were used for the chloroform used to prepare the spinning solution by dissolving the resin.
- the biodegradable resin is dissolved by the slight chloroform, and the viscosity and mechanical strength of the biodegradable fiber are lowered.
- the ambient temperature should be higher.
- FIG. 2A shows the appearance of a freezer used in the low-temperature drying method that is an embodiment of the present invention
- FIG. 2B shows the appearance of a vacuum desiccator used in the low-temperature drying method that is an embodiment of the present invention.
- the biodegradable resin that constitutes the biodegradable fiber is a resin such as PLLA
- PLLA resin
- the resin is dissolved by a very small amount of residual chloroform present in the fiber taken out from the ethanol solution, and becomes viscous to flow easily. Therefore, it is effective to rapidly volatilize chloroform and remove it from the fiber using a low temperature drying method.
- FIG. 1 (a) shows an overview photograph of a biodegradable fiber material obtained by using a conventional drying method
- FIG. 1 (b) shows a raw material obtained by using a low-temperature drying method according to an embodiment of the present invention. An overview photograph of the degradable fiber material is shown. *
- the “thermal kneading method” refers to the preparation of an electrospinning spinning solution containing an inorganic filler in a biodegradable resin by kneading the resin and inorganic particles in a heated state using a heating kneader. A method of uniformly dispersing and mixing. By using the thermal kneading method, thermal and mechanical energy can be applied to the mixture of the resin and inorganic particles during the kneading process. It becomes possible to disperse between.
- the “planetary stirring method” refers to a method of mixing a resin and inorganic particles using a rotation / revolution mixer (planetary rotation device) in preparing an electrospinning spinning solution containing inorganic particles in a biodegradable resin. .
- a rotation / revolution mixer planetary rotation device
- FIG. 4 shows an embodiment of the planetary stirring method used in the embodiment of the present invention.
- the “biodegradable resin-dissolving solvent” refers to an organic solvent used for preparing an electrospinning spinning solution by dissolving a biodegradable resin.
- the spinning solution is prepared using the thermal kneading method, it is preferable to prepare the spinning solution by dissolving the composite obtained by kneading with chloroform.
- a mixed solution of the biodegradable resin and the inorganic particles can be obtained by dissolving the biodegradable resin using a polar solvent such as chloroform or HFIP.
- a polar solvent such as chloroform or HFIP.
- Chloroform and HFIP are known as suitable solvents for electrospinning, and any solvent can be mixed and dispersed.
- HFIP is a highly polar solvent with strong polarizability, and is highly hydrogen-bonded with polymer molecules to dissolve and has a high effect of smoothly sliding the molecules together. Therefore, it can be suitably used as a solvent capable of smoothing the flow of molecules due to its good affinity with the polymer due to its high polarity and enabling stable fiber formation.
- PLGA has a glass transition temperature of 30 to 35 ° C., and if heated to a higher temperature, the fiber is deformed or melted. Therefore, HFIP must be slowly removed at room temperature. In our experience, HFIP could not be completely removed from the fiber over several tens of days.
- Chloroform is known as a suitable solvent for electrospinning, but is less polarizable than HFIP and easy to remove from the fiber. Therefore, in one embodiment of the present invention, a mixed solution of biodegradable resin and inorganic particles is prepared using HFIP, and the composite obtained by dissolving the prepared mixture solution by planetary stirring is dissolved. Chloroform is preferably used as a solvent for this.
- FIG. 4 is an appearance photograph showing a cotton-like material of an example of the bone defect filling material of the present invention.
- the fibers are intertwined in a three-dimensional direction to form a cotton shape.
- the fibers are not bonded to each other in the longitudinal direction, forming a fluffy three-dimensional three-dimensional cotton structure.
- the flocculent collection of the fiber spun using the low-temperature drying method and the planetary stirring method of the present invention has been described using the PLGA resin as an example, the application of the present invention is not necessarily limited to the PLGA resin. However, the present invention can be used as long as it is a biodegradable fiber that can be spun by electrospinning.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Dermatology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Chemical & Material Sciences (AREA)
- Vascular Medicine (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Artificial Filaments (AREA)
- Nonwoven Fabrics (AREA)
Abstract
エレクトロスピニングのコレクター中のエタノール液中に浮遊堆積した繊維をそこから取り出して乾燥させる過程で、繊維に溶媒が残留していると柔らかくて十分な機械的強度を有しない結果、乾燥させる間にエタノールで濡れた繊維は自重に耐えきれずにつぶれてシート状になってしまい綿形状にはならない。 エレクトロスピニングのエタノール液中から取り出した繊維に残留しているクロロホルムを低温減圧下で乾燥させてクロロホルムを早期に取り除くことによって、繊維の粘性・硬度を一定以上に高く維持することによって、繊維がシート状になるのを防いで綿状に回収する。
Description
本発明は、エレクトロスピニング法を用いて製造した生分解性繊維材料を綿状に回収する方法、及びその方法を用いて製造された綿状の骨再生用材料に関する。
近時、エレクトロスピニング法を用いてリン酸カルシウム粒子等の骨形成因子を含有する生分解性繊維材料を製造し、人体にインプラントする骨再生用材料として用いられている。
骨形成因子を含む生分解性繊維が人体にインプラントされた後、早期に吸収分解されて骨形成因子を徐放するためには、生分解性樹脂は加水分解速度が速いものであることが好ましい。PLGAは、人体にインプラントする材料として安全性がFDAで承認された樹脂であると共に、加水分解の速度が速いので好適である。PLGAの中でもPLA中にD体を含むPDLGは加水分解の速度が極めて早いので特に好適である。
エレクトロスピニング法を用いて繊維材料を製造する方法としては、ノズルから出射された繊維を回転ドラムに堆積させて、堆積した繊維をドラムから剥ぎ取ることによってシート状の不織布として回収するのが一般的である。近時、不織布シートに代えて、綿形状の骨再生用材料が提案されている。綿形状の繊維材料は、如何なる形状の骨欠損部にも容易に詰め込むことができるので、術者にとってハンドリング性に優れた骨再生用インプラント材料である。
綿形状のTissue engineering deviceを製造する方法として、低温エレクトロスピニング法を用いて綿形状の繊維材料を製造する方法が提案されている(非特許文献1)。この方法は、アイスクリスタルをvoid templateとして用いることによって気孔率を上げている。しかし、この方法ではドラムに堆積した繊維は溶媒によって溶かされた状態で互いに付着するのを避けられないので、アイスクリスタルによって不織布の嵩密度を低くすることはできても、材料全体を3次元立体綿形状とするには限界があると考えられる。
本出願の発明者等は以前、ノズルから出射された繊維をコレクター容器に満たしたエタノールの液面に入射沈殿させて、エタノール中で繊維を浮遊状態で堆積させることによって、3次元立体構造を有する綿形状を有する繊維材料として回収する方法(沈殿浮遊堆積法)を提案した。この方法では、ノズルから出射された繊維はコレクターに満たされたエタノール液に入射し繊維が液中に沈殿する過程で、樹脂を溶かすために用いた溶媒であるクロロホルムがクロロホルムと親和性を有しかつ樹脂を溶解しないエタノール液中に浸されることによって繊維から取り除かれる。エタノール液中に浮遊状態で堆積した繊維材料をコレクター容器から取り出して乾燥させると、エタノールによってクロロホルムが取り除かれた繊維は互いに付着せずに綿状に回収することができる(特許文献1)。
Ultraporous 3D Polymer Meshes by Low-Temperature Electrospinning: Use of Ice Crystals as a Removable Void Template. Marc Simonet et al. Polymer Engineering and Science 2007
生分解性繊維からなる骨再生材料を沈殿浮遊堆積法を用いて綿状に回収するためには、エタノール中に堆積した繊維を取り出して乾燥させる過程で、堆積した繊維材料がエタノール液中で浮遊状態でいる時の立体的形状を維持していなければならない。しかし、繊維が柔らかい樹脂からなる場合には繊維が十分な機械的強度を有せず、その結果、コレクター容器から取り出して乾燥させる間にエタノールで濡れた繊維が自らの重量に耐えきれずにつぶれてしまい、平たいシート状になって綿形状にはならないという問題があった。
上記の問題を解決するために本発明の発明者等は鋭意検討した結果、コレクター容器から取り出した繊維材料は、周辺温度が樹脂のガラス転移点以下の温度条件においても、わずかに残留しているクロロホルムによって樹脂が溶かされて柔らかくなっていることに気が付いた。そこで、エタノール中から取り出した繊維材料を乾燥させる間において、繊維に残留しているクロロホルムをできるだけ早期に取り除くことによって、繊維の粘性・硬度を一定以上に高く維持できることを発見した。
クロロホルムを早く揮発させるためには周辺温度は高い方が良い。しかし、周辺温度を高くすると樹脂が柔らかくなってしまい、繊維の粘性・機械的強度が低下してしまう。そこで、取り出した材料を減圧条件下で乾燥させることによって、低温条件下でもクロロホルムを早期に揮発させることができることを発見した。
上記の発見に基づいて、本発明の発明者等は、
生分解性樹脂を生分解性樹脂溶解溶媒に溶かすことによって、樹脂濃度5から30重量%のエレクトロスピニング紡糸溶液を調製して、エレクトロスピニング装置のシリンジに注入し、
前記エレクトロスピニング装置のノズルに電圧をかけることによって、前記ノズルから前記紡糸溶液を繊維状に出射して繊維材回収液を満たしたコレクター容器に入射させることによって、入射したエレクトロスピニング繊維を前記コレクター容器の前記繊維材回収液中に浮遊状態で堆積させ、
前記コレクター容器を、前記繊維材回収液中にエレクトロスピニング繊維が浮遊状態で堆積した状態で繊維材回収液の凍結温度以上尚且つ前記生分解性樹脂のガラス転移温度以下で一定時間保持し、
前記生分解性繊維をコレクター容器の中から取り出して、周辺温度が前記生分解性樹脂のガラス転移点以下尚且つ減圧条件下で一定時間静置して乾燥させる、工程を含む、
エレクトロスピニング法を用いて生分解性繊維を綿状に回収する方法、という発明に想到した。
生分解性樹脂を生分解性樹脂溶解溶媒に溶かすことによって、樹脂濃度5から30重量%のエレクトロスピニング紡糸溶液を調製して、エレクトロスピニング装置のシリンジに注入し、
前記エレクトロスピニング装置のノズルに電圧をかけることによって、前記ノズルから前記紡糸溶液を繊維状に出射して繊維材回収液を満たしたコレクター容器に入射させることによって、入射したエレクトロスピニング繊維を前記コレクター容器の前記繊維材回収液中に浮遊状態で堆積させ、
前記コレクター容器を、前記繊維材回収液中にエレクトロスピニング繊維が浮遊状態で堆積した状態で繊維材回収液の凍結温度以上尚且つ前記生分解性樹脂のガラス転移温度以下で一定時間保持し、
前記生分解性繊維をコレクター容器の中から取り出して、周辺温度が前記生分解性樹脂のガラス転移点以下尚且つ減圧条件下で一定時間静置して乾燥させる、工程を含む、
エレクトロスピニング法を用いて生分解性繊維を綿状に回収する方法、という発明に想到した。
好ましくは、前記生分解性樹脂溶解溶媒はクロロホルムである。
好ましくは、前記繊維材回収液はエタノールである。
前記減圧乾燥器を用いて生分解性繊維を乾燥させる時の圧力は基本的に標準気圧(101.325kPa)を下回る圧力であればよいが、100kPaから0.1Paが好ましい。
好ましくは、生分解性繊維を減圧して乾燥させるときの周辺温度は約-20℃から25℃、さらに好ましくは約-10℃から-5℃である。
好ましくは、前記生分解性樹脂はD体入りのPLGA(PDLG)である。
好ましくは、前記エレクトロスピニングの紡糸溶液は骨形成因子である無機フィラーを含む。
好ましくは、前記エレクトロスピニングの紡糸溶液は、生分解性樹脂30から50重量%に対して無機フィラーを70から50重量%を混合して加熱混練して得られた複合体を溶媒で溶かすことによって調製する。
本発明の発明者等はさらに、骨形成因子である無機粒子を含有する生分解性繊維をエレクトロスピニング法を用いて紡糸するための紡糸溶液を、熱混練法を用いずに遊星撹拌装置を用いて無機粒子と樹脂を混合することによって調製することができることを発見した。
上記発見に基づいて本発明の発明者等は、骨形成因子である無機粒子を含有する生分解性繊維をエレクトロスピニング法を用いて紡糸するための紡糸溶液を調製する方法であって、
第一の溶媒に溶かした生分解性樹脂に無機粒子を混合して混合溶液を調製し、
上記混合溶液を遊星回転撹拌装置を用いて一定時間、所定の回転速度で撹拌した後に乾燥することによって、前記無機粒子と前記生分解性樹脂の複合体を作製し、
前記複合体を第二の溶媒に溶かすことによってエレクトロスピニング紡糸溶液を調製する工程を含む、
エレクトロスピニング法を用いて紡糸するための紡糸溶液を調製する方法、という発明に到達した。
第一の溶媒に溶かした生分解性樹脂に無機粒子を混合して混合溶液を調製し、
上記混合溶液を遊星回転撹拌装置を用いて一定時間、所定の回転速度で撹拌した後に乾燥することによって、前記無機粒子と前記生分解性樹脂の複合体を作製し、
前記複合体を第二の溶媒に溶かすことによってエレクトロスピニング紡糸溶液を調製する工程を含む、
エレクトロスピニング法を用いて紡糸するための紡糸溶液を調製する方法、という発明に到達した。
好ましくは、前記第一の溶媒はヘキサフルオロイソプロパノール(HFIP)である。
好ましくは、前記第二の溶媒はクロロホルムである。
好ましくは、前記第一の溶媒と前記第二の溶媒は共にクロロホルムである。クロロホルムはHFIPと比較して安価であるため、第一と第二の溶媒共にクロロホルムを用いることによって製造コストを抑えることが可能である。
好ましくは、前記混合溶液の樹脂濃度は、3から12重量%である。
好ましくは、前記紡糸溶液の樹脂濃度は、5から30重量%、より好ましくは8から25重量%である。
好ましくは、前記生分解性樹脂はPLGA、さらに好ましくはPDLGである。
好ましくは、前記エレクトロスピニング紡糸溶液は、ヘキサフルオロイソプロパノールで溶解した生分解性樹脂30から50重量%に対して無機粒子70から50重量%を混合し、遊星撹拌装置を用いて撹拌して得られた複合体をクロロホルムで溶かすことによって調製する。
好ましくは、前記エレクトロスピニング紡糸溶液は、PLGA樹脂30から50重量%に対してリン酸カルシウム粒子70から50重量%を遊星撹拌装置を用いて撹拌混合して得られた複合体をクロロホルムで溶かすことによって調製する。
本発明の低温乾燥法を用いることによって、PDLGのような柔らかい樹脂からなる生分解性繊維を綿状に回収することが可能になった。
本発明の遊星撹拌法を用いることによって、熱混練法を用いることなく、無機粒子を生分解性樹脂中に均一に分散混合させたエレクトロスピニング紡糸溶液を調製することが可能になったので、熱混練に伴ってポリマーの分子鎖が切れてPLGA樹脂の分子量が低下することによって、エレクトロスピニングによる紡糸が困難になるという製造上の問題を解決することができた。
本発明の遊星撹拌法を用いて紡糸溶液を調製するにあたって、ヘキサフルオロイソプロパノールでPLGA樹脂を溶解し無機フィラーと混合した上で遊星撹拌装置で撹拌することによって、無機粒子が樹脂中に均一に分散し、エレクトロスピニング法で均一な外径を有する繊維を紡糸することができた。
以下、本発明の実施態様を図面を参照しながら詳細に説明する。
<生分解性繊維>
本発明の骨再生用材料に用いる生分解性繊維は、好ましくは生分解性樹脂と骨形成因子の複合繊維を用いる。もっとも、本発明の低温乾燥法を適用する上では生分解性樹脂に骨形成因子を含む必要はなく、100%樹脂からなる生分解性繊維を綿状に回収する手段として低温乾燥法を用いることができる。生分解性樹脂としては、PLGAはFDAで安全性が承認された樹脂であり、加水分解の速度が速いので、好適に用いることができる。PLGAの中でもD体を含むPDLGは加水分解の速度が極めて早いので特に好適である。
<生分解性繊維>
本発明の骨再生用材料に用いる生分解性繊維は、好ましくは生分解性樹脂と骨形成因子の複合繊維を用いる。もっとも、本発明の低温乾燥法を適用する上では生分解性樹脂に骨形成因子を含む必要はなく、100%樹脂からなる生分解性繊維を綿状に回収する手段として低温乾燥法を用いることができる。生分解性樹脂としては、PLGAはFDAで安全性が承認された樹脂であり、加水分解の速度が速いので、好適に用いることができる。PLGAの中でもD体を含むPDLGは加水分解の速度が極めて早いので特に好適である。
<PDLG>
「PDLG」とは、異性体であるD体のみを重合させたD-乳酸と、D、L両方の乳酸が混在したDL-乳酸とグリコール酸との共重合体を含む。PDLGは、D体を含まないPLGAと比較して分子量が低いことに加えてアモルファスであるので、沈殿浮遊堆積法でコレクターに堆積させたPDLG繊維は柔らかく、エタノール液中から回収すると繊維に付着したエタノール液の重量に耐えきれずに平たいシート状になってしまう傾向が顕著である。
「PDLG」とは、異性体であるD体のみを重合させたD-乳酸と、D、L両方の乳酸が混在したDL-乳酸とグリコール酸との共重合体を含む。PDLGは、D体を含まないPLGAと比較して分子量が低いことに加えてアモルファスであるので、沈殿浮遊堆積法でコレクターに堆積させたPDLG繊維は柔らかく、エタノール液中から回収すると繊維に付着したエタノール液の重量に耐えきれずに平たいシート状になってしまう傾向が顕著である。
<沈殿浮遊堆積法>
本発明において「沈殿浮遊堆積法」とは、エレクトロスピニング装置のコレクター容器に繊維材回収液を満たして、ノズルから出射された繊維を繊維材回収液の液面に入射させて液中に沈殿させることによって、コレクターの底面において繊維を浮遊状態で堆積させる方法をいう。エタノールはエレクトロスピニング紡糸溶液の調製に用いるクロロホルムと親和性が高いので繊維材回収液として好適に用いることができる。紡糸された繊維に残留しているクロロホルムは、コレクター容器中のエタノールによって除去されるので、コレクターから取り出してエタノールを乾燥させることによって、クロロホルムとエタノールを含まない状態で繊維を回収することができる。図3に本発明の実施例で用いられる沈殿浮遊堆積法の実施態様を示す。
本発明において「沈殿浮遊堆積法」とは、エレクトロスピニング装置のコレクター容器に繊維材回収液を満たして、ノズルから出射された繊維を繊維材回収液の液面に入射させて液中に沈殿させることによって、コレクターの底面において繊維を浮遊状態で堆積させる方法をいう。エタノールはエレクトロスピニング紡糸溶液の調製に用いるクロロホルムと親和性が高いので繊維材回収液として好適に用いることができる。紡糸された繊維に残留しているクロロホルムは、コレクター容器中のエタノールによって除去されるので、コレクターから取り出してエタノールを乾燥させることによって、クロロホルムとエタノールを含まない状態で繊維を回収することができる。図3に本発明の実施例で用いられる沈殿浮遊堆積法の実施態様を示す。
本発明の一つの好ましい実施態様において、PDLG繊維をコレクター容器のエタノール中に約-10℃で約30分から2時間保持することによって、PDLG樹脂の粘性を高く維持しながらクロロホルムを除去することによって、繊維の浮遊堆積状態における立体的構造を維持している。
<繊維材回収液>
本発明において「繊維材回収液」とは、エレクトロスピニングによって得られた繊維状材料が溶解されることなく液中に浮遊させるための液体をいう。繊維材回収液としてエレクトロスピニングの紡糸溶液の調製に用いる溶媒と親和性の高いものを用いることで、コレクター中で溶媒を除去することが可能である。本発明の好ましい実施例においては、繊維材回収液としてエタノールを用い、紡糸溶液を調製するために用いる溶媒として、エタノールと親和性を有するクロロホルムを用いる。
本発明において「繊維材回収液」とは、エレクトロスピニングによって得られた繊維状材料が溶解されることなく液中に浮遊させるための液体をいう。繊維材回収液としてエレクトロスピニングの紡糸溶液の調製に用いる溶媒と親和性の高いものを用いることで、コレクター中で溶媒を除去することが可能である。本発明の好ましい実施例においては、繊維材回収液としてエタノールを用い、紡糸溶液を調製するために用いる溶媒として、エタノールと親和性を有するクロロホルムを用いる。
<低温乾燥法>
本発明において「低温乾燥法」とは、「沈殿浮遊堆積法」を用いてエレクトロスピニング装置のコレクターのエタノール液中から取り出された繊維を減圧条件下で一定時間静置することによって、繊維に残留していた溶媒を揮発させる方法をいう。
本発明において「低温乾燥法」とは、「沈殿浮遊堆積法」を用いてエレクトロスピニング装置のコレクターのエタノール液中から取り出された繊維を減圧条件下で一定時間静置することによって、繊維に残留していた溶媒を揮発させる方法をいう。
沈殿浮遊堆積法を用いて、コレクター中に浮遊堆積した生分解性繊維には、樹脂を溶かして紡糸溶液を調製するために用いたクロロホルムが、エタノール液中で繊維を一定時間保持した後も、わずかながら残留しており、そのわずかなクロロホルムによって生分解性樹脂が溶かされて、生分解性繊維の粘性・機械的強度が低下している。コレクターから取り出した生分解性繊維の粘性・機械的強度を高く維持するためには、クロロホルムを揮発させることによって、繊維から取り除くことが必要である。クロロホルム(標準気圧条件下で融点-64℃ 沸点61℃)を早く揮発させるためには周辺温度は高い方が良い。しかし、周辺温度を高くすると樹脂が柔らかくなってしまい(PDLG75:25のガラス転移点は30から35℃)、それによって繊維の粘性・機械的強度が低下してしまう。そこで、取り出した材料を減圧条件下で乾燥させることによって、低温条件下でもクロロホルムを有効に揮発させることができる。図2(a)に本発明の実施例である低温乾燥法に用いる冷凍庫の外観を示し、図2(b)に本発明の実施例である低温乾燥法に用いる真空デシケーターの外観を示す。
生分解性繊維を構成する生分解性樹脂がPLLA等の樹脂である場合は、コレクターから取り出した生分解性繊維にわずかな量のクロロホルムが残っていても、沈殿浮遊堆積法でエタノール中に浮遊状態で堆積した材料の立体的構造を維持することができる。しかし、PLGA、特にPDLG樹脂だと、エタノール液中から取り出された繊維に存在する極めて少量の残留クロロホルムによって樹脂が溶かされて流動しやすい粘性になってしまう。そこで、低温乾燥法を用いてクロロホルムを急速に揮発させて繊維から除去してしまうことが有効である。
コレクターから取り出した繊維材料を乾燥させるときの周辺温度は生分解性繊維を構成する生分解性樹脂のガラス転移点以下であることが必要である。ガラス転移点以下においては、樹脂の粘度はより低温に向かうと徐々にではあるが、粘性が下がるので、繊維の粘性・機械的強度を維持するためには、温度は低い方が好ましい。本発明の発明者等は、できるだけクロロホルムの蒸気圧が高く、しかしポリマー分子鎖の流動性が低い温度を探して実験した結果、-10℃前後あたりが良好であった。図1(a)に従来技術の乾燥法を用いて得られた生分解性繊維材料の概観写真を示し、図(b)に本発明の実施例である低温乾燥法を用いて得られた生分解性繊維材料の概観写真を示す。
<熱混練法>
本発明において「熱混練法」とは、生分解性樹脂に無機フィラーを含むエレクトロスピニング紡糸溶液の調製にあたって、加熱ニーダーを用いて樹脂と無機粒子を加熱状態で混練することによって無機粒子を樹脂中に均一に分散混合させる方法をいう。熱混練法を用いることによって、混練の過程で樹脂と無機粒子の混合物に対して熱的・機械的エネルギーをかけることができるので、無機粒子の凝集を解砕して無機粒子を樹脂の分子枝の間に分散させることが可能になる。
本発明において「熱混練法」とは、生分解性樹脂に無機フィラーを含むエレクトロスピニング紡糸溶液の調製にあたって、加熱ニーダーを用いて樹脂と無機粒子を加熱状態で混練することによって無機粒子を樹脂中に均一に分散混合させる方法をいう。熱混練法を用いることによって、混練の過程で樹脂と無機粒子の混合物に対して熱的・機械的エネルギーをかけることができるので、無機粒子の凝集を解砕して無機粒子を樹脂の分子枝の間に分散させることが可能になる。
<遊星撹拌法>
本発明において「遊星撹拌法」とは、生分解性樹脂に無機粒子を含むエレクトロスピニング紡糸溶液の調製にあたって、自転・公転ミキサー(遊星回転装置)を用いて樹脂と無機粒子を混合する方法をいう。遊星回転装置を用いて樹脂と無機粒子を混合撹拌することによって、無機粒子の凝集を解砕して無機粒子を樹脂の分子鎖の間に分散させることが可能になる。図4に本発明の実施例で用いられる遊星撹拌法の一つの実施態様を示す。
本発明において「遊星撹拌法」とは、生分解性樹脂に無機粒子を含むエレクトロスピニング紡糸溶液の調製にあたって、自転・公転ミキサー(遊星回転装置)を用いて樹脂と無機粒子を混合する方法をいう。遊星回転装置を用いて樹脂と無機粒子を混合撹拌することによって、無機粒子の凝集を解砕して無機粒子を樹脂の分子鎖の間に分散させることが可能になる。図4に本発明の実施例で用いられる遊星撹拌法の一つの実施態様を示す。
<生分解性樹脂溶解溶媒>
本発明において「生分解性樹脂溶解溶媒」とは、生分解性樹脂を溶かしてエレクトロスピニング紡糸溶液を調製するために用いる有機溶媒をいう。熱混練法を用いて紡糸溶液を調製する場合には、混練によって得られた複合体をクロロホルムで溶かすことによって紡糸溶液を調製するのが好ましい。
本発明において「生分解性樹脂溶解溶媒」とは、生分解性樹脂を溶かしてエレクトロスピニング紡糸溶液を調製するために用いる有機溶媒をいう。熱混練法を用いて紡糸溶液を調製する場合には、混練によって得られた複合体をクロロホルムで溶かすことによって紡糸溶液を調製するのが好ましい。
遊星撹拌法を用いて紡糸溶液を調製する場合には、生分解性樹脂をヘキサフルオロイプロパノール(HFIP)で溶かして無機粒子と遊星回転装置で混合し、それで調製された混合溶液を乾燥することによって得られた複合体をクロロホルムで溶かすことによって紡糸溶液を調製するのが好ましい。
生分解性樹脂と無機粒子の混合溶液は、クロロホルムやHFIPなどの極性溶媒を用いて生分解性樹脂を溶解することで得ることができる。クロロホルムやHFIPはエレクトロスピニングに好適な溶媒として知られており、溶媒としてはどちらを用いても混合分散できる。
HFIPは分極性が強い高極性溶媒であり、ポリマー分子と強く水素結合して溶解し、分子同士を円滑に滑らせる効果が高いため、撹拌時に無機フィラーと均質に短時間で分散混合させることができるので、その高極性に起因するポリマーとの親和性の良さ故に分子の流れを円滑にし、安定して繊維化できる溶媒として好適に用いることができる。しかし一方で、それが故に、紡糸後、完全にHFIPを除去するのには長時間を要してしまう。とくに、PLGAはガラス転移温度が30~35℃であるため、それ以上の高温に加熱すると繊維の変形や溶融が起こってしまうため、室温程度でゆっくりとHFIPを除去しなければならない。発明者らの経験では、数十日かけてもHFIPを完全に繊維から除去できなかった。
クロロホルムはエレクトロスピニングに好適な溶媒と知られているが、HFIPより分極性は低く繊維から除去しやすい。そこで、本発明の一つの実施例では、HFIPを用いて生分解性樹脂と無機粒子の混合溶液を調製し、それで調製した混合溶液を遊星撹拌して乾燥することによって得られた複合体を溶解するための溶媒としてクロロホルムを好適に用いる。
β-TCP粒子(太平化学、1から4 μm径)とPDLG(PLA:PGA = 85:15、Purasorb®PDLG8531)を重量比7:3でヘキサフルオロイソプロパノールと混合した。この混合液を遊星回転装置にて撹拌(5 min, 400 rpm)後、乾燥した。得られた混合物をクロロホルムに溶解し、紡糸液(5から10 wt%)とした。エレクトロスピニングはエタノールをコレクターとして行った。エタノール中に繊維が浮遊した状態で-10℃,1 時間程度保持後、試料を取り出して真空デシケーターに移し、-10℃のまま減圧・乾燥した結果、綿状物のサンプルを得た。
図4は本発明の骨欠損部充填材料の実施例の綿状物を示す外観写真である。繊維が3次元方向に絡み合って綿状を形成している。繊維は長手方向に互いに接着されておらず、ふわふわの3次元立体綿構造を形成している。実施例1の綿状物のサンプルの嵩密度、圧縮率、圧縮回復率を、JIS規格に準拠して測定したところ、嵩密度:0.01489g/cm3、圧縮率:52.61%、圧縮回復率:31.10%であった。
PLGA (85:15)とβ-TCPとケイ酸塩ガラスを重量比62:8:30 (wt%)でヘキサフルオロイソプロパノールに溶解し、得られた混合溶液を遊星型撹拌装置にて撹拌(5 min. 400rpm)した後、乾燥した。乾燥によって得られた複合体をクロロホルムに溶解させ、樹脂濃度11重量%の紡糸溶液を作製し、スピニングした(スピニング条件:電圧20kV、コレクター間距離200mm、紡糸溶液の送り出し速度0.25ml/分)。沈殿浮遊堆積法を用いてコレクター容器に満たしたエタノール液中に-10℃で1時間浮遊堆積状態で保持した後、繊維材料を取り出して真空デシケーターに移し換えて、低温乾燥法を用いて-10℃で減圧下の条件で乾燥させて綿状の骨再生用材料を得た。
以上、本発明の低温乾燥法と遊星撹拌法を用いて紡糸した繊維の綿状回収について、実施例としてPLGA樹脂を用いて説明したが、本発明の適用は必ずしもPLGA樹脂に限定されるものではなく、エレクトロスピニングで紡糸可能な生分解性繊維であれば本発明を用いることが可能である。
Claims (9)
- エレクトロスピニング法を用いて生分解性繊維を綿状に回収する方法であって、
生分解性樹脂を生分解性樹脂溶解溶媒に溶かすことによって、樹脂濃度5から30重量%のエレクトロスピニング紡糸溶液を調製して、エレクトロスピニング装置のシリンジに注入し、
前記エレクトロスピニング装置のノズルに電圧をかけることによって、前記ノズルから前記紡糸溶液を繊維状に出射して繊維材回収液を満たしたコレクター容器に入射させることによって、入射した繊維を前記コレクター容器の前記繊維材回収液中に浮遊状態で堆積させ、
前記コレクター容器を、前記繊維材回収液中に繊維が浮遊状態で堆積した状態で繊維材回収液の凍結温度以上尚且つポリマーのガラス転移温度以下で一定時間保持し、
前記生分解性繊維をコレクター容器の中から取り出して、周辺温度が前記生分解性樹脂のガラス転移点以下で減圧条件下において一定時間静置して乾燥させる、工程を含む、
エレクトロスピニング法を用いて生分解性繊維を綿状に回収する方法。
- 前記生分解性樹脂はD体入りのPLGA(PDLG)である、請求項1に記載の方法。
- 前記生分解性樹脂溶解溶媒はクロロホルムである、請求項1又は2に記載の方法。
- 前記繊維材回収液はエタノールである、請求項1~3のいずれか一項に記載の方法。
- 前記エレクトロスピニング紡糸溶液は、無機フィラーを含む、請求項1~4のいずれか一項に記載の方法。
- 前記エレクトロスピニング紡糸溶液は、生分解性樹脂30から50重量%に対して無機フィラー70から50重量%を混合して加熱混練して得られた複合体を溶媒で溶かすことによって調製する、請求項1から5のいずれか一項に記載の方法。
- 前記減圧は真空デシケーターを用いて100kPaから0.1Paで行う、請求項1から6のいずれか一項に記載の方法。
- 前記減圧下における乾燥は周辺温度約-20℃から25℃で行う、請求項1から7のいずれか一項に記載の方法。
- 前記減圧下における乾燥は12時間から24時間静置して行う、請求項1から8のいずれか一項に記載の方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020501743A JP7228848B2 (ja) | 2018-02-22 | 2019-02-18 | エレクトロスピニング法を用いて製造した生分解性繊維材料を綿状に回収する方法、及びその方法を用いて製造された綿状の骨再生用材料 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862633948P | 2018-02-22 | 2018-02-22 | |
US62/633,948 | 2018-02-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019163696A1 true WO2019163696A1 (ja) | 2019-08-29 |
Family
ID=67687745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/005781 WO2019163696A1 (ja) | 2018-02-22 | 2019-02-18 | エレクトロスピニング法を用いて製造した生分解性繊維材料を綿状に回収する方法、及びその方法を用いて製造された綿状の骨再生用材料 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7228848B2 (ja) |
WO (1) | WO2019163696A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010116662A (ja) * | 2004-04-22 | 2010-05-27 | Ngk Spark Plug Co Ltd | 繊維状有機物の製造方法 |
JP2012161363A (ja) * | 2011-02-03 | 2012-08-30 | Yahashi Kogyo Kk | ケイ素及びカルシウム徐放性綿状物及びその製造方法 |
WO2013146788A1 (ja) * | 2012-03-27 | 2013-10-03 | 国立大学法人名古屋大学 | ポリヒドロキシアルカノエートを含む材料から作製された3次元構造体、骨充填材の調製用キット、及び髄内釘 |
WO2016159240A1 (ja) * | 2015-03-31 | 2016-10-06 | Orthorebirth株式会社 | エレクトロスピニングを用いた、薬剤を含有する生分解性繊維素材の製造方法 |
WO2017188435A1 (ja) * | 2016-04-28 | 2017-11-02 | 国立大学法人名古屋工業大学 | エレクトロスピニング法を用いて生分解性繊維からなる骨再生用材料を製造するための方法 |
JP2018019944A (ja) * | 2016-08-04 | 2018-02-08 | 国立大学法人 名古屋工業大学 | 生分解性繊維からなる骨再生用材料、及び骨再生用材料を製造するための方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3020424B1 (en) | 2013-07-09 | 2018-11-14 | National University Corporation Nagoya Institute Of Technology | Bone defect filling material, and production method therefor |
-
2019
- 2019-02-18 WO PCT/JP2019/005781 patent/WO2019163696A1/ja active Application Filing
- 2019-02-18 JP JP2020501743A patent/JP7228848B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010116662A (ja) * | 2004-04-22 | 2010-05-27 | Ngk Spark Plug Co Ltd | 繊維状有機物の製造方法 |
JP2012161363A (ja) * | 2011-02-03 | 2012-08-30 | Yahashi Kogyo Kk | ケイ素及びカルシウム徐放性綿状物及びその製造方法 |
WO2013146788A1 (ja) * | 2012-03-27 | 2013-10-03 | 国立大学法人名古屋大学 | ポリヒドロキシアルカノエートを含む材料から作製された3次元構造体、骨充填材の調製用キット、及び髄内釘 |
WO2016159240A1 (ja) * | 2015-03-31 | 2016-10-06 | Orthorebirth株式会社 | エレクトロスピニングを用いた、薬剤を含有する生分解性繊維素材の製造方法 |
WO2017188435A1 (ja) * | 2016-04-28 | 2017-11-02 | 国立大学法人名古屋工業大学 | エレクトロスピニング法を用いて生分解性繊維からなる骨再生用材料を製造するための方法 |
JP2018019944A (ja) * | 2016-08-04 | 2018-02-08 | 国立大学法人 名古屋工業大学 | 生分解性繊維からなる骨再生用材料、及び骨再生用材料を製造するための方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7228848B2 (ja) | 2023-02-27 |
JPWO2019163696A1 (ja) | 2021-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6670870B2 (ja) | エレクトロスピニングを用いて生分解性繊維からなる骨再生用材料を製造するための方法 | |
Huan et al. | Electrospun poly (lactic acid)-based fibrous nanocomposite reinforced by cellulose nanocrystals: impact of fiber uniaxial alignment on microstructure and mechanical properties | |
Si et al. | Biomimetic composite scaffolds based on mineralization of hydroxyapatite on electrospun poly (ɛ-caprolactone)/nanocellulose fibers | |
US11970790B2 (en) | Poly(lactic acid) membrane and method of making the membrane | |
Zhijiang et al. | Electrospun carboxyl multi-walled carbon nanotubes grafted polyhydroxybutyrate composite nanofibers membrane scaffolds: Preparation, characterization and cytocompatibility | |
CN106075568B (zh) | 一种组织修复用可降解纳米短纤维材料及其制备方法和应用 | |
Xu et al. | Polymer blend nanofibers containing polycaprolactone as biocompatible and biodegradable binding agent to fabricate electrospun three-dimensional scaffolds/structures | |
Singh et al. | A novel electrospinning approach to fabricate high strength aqueous silk fibroin nanofibers | |
CN101856510B (zh) | 丝素蛋白和硅酸钙复合纳米纤维支架材料的制备方法 | |
CN102493021B (zh) | 一种纤维素纳米晶增强phbv纳米纤维的制备方法 | |
Saudi et al. | Assessing physicochemical, mechanical, and in vitro biological properties of polycaprolactone/poly (glycerol sebacate)/hydroxyapatite composite scaffold for nerve tissue engineering | |
Castaño et al. | Electrospinning technology in tissue regeneration | |
WO2019163696A1 (ja) | エレクトロスピニング法を用いて製造した生分解性繊維材料を綿状に回収する方法、及びその方法を用いて製造された綿状の骨再生用材料 | |
Maheshwari et al. | Synthesis and characterization of calcium phosphate ceramic/(poly (vinyl alcohol)–polycaprolactone) bilayer nanocomposites-A bone tissue regeneration scaffold | |
TWI634914B (zh) | 由生物可分解性纖維組成的骨再生用材料,以及用於製造骨再生用材料的方法 | |
Hu et al. | Novel multi-functional microsphere scaffold with shape memory function for bone regeneration | |
Brizuela Guerra et al. | Development of poly (lactic-co-glycolic acid)/bioglass fibers using an electrospinning technique. | |
Thomas et al. | Electrospinning and characterization of novel Opuntia ficus-indica mucilage biomembrane | |
Deng et al. | Fabrication and cell culturing on carbon Nanofibers/Nanoparticles reinforced membranes for bone-tissue regeneration | |
CN107875442B (zh) | 壳/芯结构(丝素蛋白-羟基磷灰石)/聚(消旋乳酸-co-己内酯)纤维膜的制备方法 | |
Liu et al. | Vancomycin Loaded 3D Porous Scaffold of Rana Chensinensis Skin Collagen/Poly (L-lactide) by Improved Wet Electrospinning | |
CN117427211A (zh) | 一种促成骨的载锂皂石纤维膜及其制备方法和应用 | |
Akgul et al. | Centrifugally spun hydroxyapatite/carbon composite nanofiber scaffolds for bone tissue engineering | |
Liuyun et al. | Effect of Different Preparation Conditions On The Properties of Bamboo Fiber-Based Bioactive Composite Membrane | |
Zuo et al. | Structure and Properties of Chitosan/Poly-Lactic Acid Blend Scaffold and Chitosan Powder/Poly-Lactic Acid Blend Scaffold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19757253 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020501743 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19757253 Country of ref document: EP Kind code of ref document: A1 |