WO2019163670A1 - Transmission device - Google Patents

Transmission device Download PDF

Info

Publication number
WO2019163670A1
WO2019163670A1 PCT/JP2019/005582 JP2019005582W WO2019163670A1 WO 2019163670 A1 WO2019163670 A1 WO 2019163670A1 JP 2019005582 W JP2019005582 W JP 2019005582W WO 2019163670 A1 WO2019163670 A1 WO 2019163670A1
Authority
WO
WIPO (PCT)
Prior art keywords
crown gear
gear
transmission
crown
teeth
Prior art date
Application number
PCT/JP2019/005582
Other languages
French (fr)
Japanese (ja)
Inventor
貴光 冨山
禎実 廣橋
潤一 井口
貴之 川上
敬史 押田
雄一 水谷
奨悟 佐藤
将大 青山
秀生 斉藤
孝太郎 櫛田
Original Assignee
Thk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社 filed Critical Thk株式会社
Priority to JP2020501731A priority Critical patent/JPWO2019163670A1/en
Publication of WO2019163670A1 publication Critical patent/WO2019163670A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear

Definitions

  • the present invention relates to a transmission.
  • This application claims priority based on Japanese Patent Application No. 2018-027758 filed in Japan on February 20, 2018, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a reduction gear including a first crown gear, a second crown gear, and a third crown gear.
  • the third crown gear is inclined between the first crown gear and the second crown gear so that the third crown gear meshes with the first crown gear and the third crown gear meshes with the second crown gear. Be placed.
  • the third crown gear is rotatably supported by an input shaft having a bent portion. The input shaft causes the third crown gear to make a wave motion so that the meshing position of the first crown gear and the third crown gear and the meshing position of the third crown gear and the second crown gear move in the circumferential direction.
  • the first crown gear is fixed to the housing, and the second crown gear is connected to the output shaft.
  • the third crown gear rotates relative to the first crown gear by the difference in the number of teeth of the third crown gear due to the wave motion of the third crown gear.
  • the second crown gear rotates relative to the third crown gear by the difference in the number of teeth.
  • the rotational speed of the second crown gear is the sum of the relative rotational speed of the third crown gear with respect to the first crown gear and the relative rotational speed of the second crown gear with respect to the third crown gear.
  • the two sets of gears (the first crown gear and the third crown gear, the third crown gear and the second crown gear) are rotated in directions that cancel each other, a large reduction ratio can be obtained, and in a direction that promotes each other. If it is rotated, a small reduction ratio can be obtained.
  • the speed reducer has a compact device configuration in the radial direction as compared with a normal speed reducer such as a spur gear, and is expected to be introduced into a joint portion of an industrial robot.
  • Various movements are required for industrial robots. For example, when lifting a transported object, it is preferable to move it at a low speed and with a large torque. Also, after placing the transported object, the next transported object is picked up. When going, it is preferable to move at high speed with a small torque.
  • the reduction gear ratio switching technology that meets such a demand has not been established in the above reduction gear, it has been one of the problems in practical use.
  • the present invention provides a transmission that is compact and capable of switching the reduction ratio.
  • the transmission includes a first crown gear, a second crown gear, an opposing tooth facing the first crown gear, and an opposing tooth facing the second crown gear.
  • the third crown gear has the first crown, and the third crown gear meshes with the first crown gear, and the third crown gear meshes with the second crown gear.
  • a cam portion that wave-moves the third crown gear so that the meshing portion is inclined with respect to the gear and the second crown gear and moves in a circumferential direction, and the first crown gear and the second crown gear
  • One of the crown gears has a plurality of transmission gears with different numbers of teeth divided in the radial direction, and has a switching mechanism that switches among the plurality of transmission gears to be fixed.
  • the reduction gear ratio can be switched in a compact manner.
  • FIG. 1 is a perspective view of a transmission 1 according to a first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of the transmission 1 according to the first embodiment of the present invention.
  • the transmission 1 includes a bottomed cylindrical housing 10, and a motor 2 is attached to the bottom of the housing 10.
  • the center axis of the bottomed cylindrical housing 10 coincides with the axis L of the rotating shaft 2 a of the motor 2.
  • a direction in which the axis L extends is referred to as an axial direction
  • a direction orthogonal to the axis L is referred to as a radial direction
  • a direction around the axis L is referred to as a circumferential direction.
  • a first crown gear 21, a second crown gear 22, a third crown gear 23, a cam portion 30, and a switching mechanism 40 described later are housed inside the housing 10.
  • the rotating shaft 2a of the motor 2 is connected to the cam portion 30 via a shaft joint 39, and the cam portion 30 supports the third crown gear 23 in an inclined manner.
  • the third crown gear 23 that meshes with the first crown gear 21 performs a wave motion (this wave motion is also referred to as precession motion), and the rotational speed of the rotating shaft 2a is decelerated to reduce the second crown.
  • the gear 22 (output gear) rotates.
  • the reduction ratio is determined by the number of teeth of the first crown gear 21, the second crown gear 22, and the third crown gear 23 (described later).
  • the housing 10 includes a mounting plate 11, a first cylindrical portion 12, a second cylindrical portion 13, and a presser plate 14.
  • the motor 2 is attached to the attachment plate 11 via bolts 3.
  • the mounting plate 11 is a disk member that forms the bottom of the housing 10, and the rotation shaft 2 a of the motor 2 is inserted through the center of the mounting plate 11.
  • the first cylindrical portion 12 is connected to the surface of the mounting plate 11 opposite to the mounting surface of the motor 2 via a bolt (not shown).
  • a switching mechanism 40 described later is accommodated inside the first cylindrical portion 12.
  • the second cylindrical portion 13 is connected to the first cylindrical portion 12 via a bolt 17 in the axial direction.
  • a step is formed on the inner peripheral side of the connecting portion between the first cylindrical portion 12 and the second cylindrical portion 13 to support the bearing 15.
  • the bearing 15 supports a second transmission gear 21B (described later) of the first crown gear 21 so as to be rotatable around the axis L.
  • a first crown gear 21, a second crown gear 22, a third crown gear 23, and a cam portion 30 are accommodated inside the second cylindrical portion 13.
  • the pressing plate 14 is an annular plate and is connected to the upper end surface of the second cylindrical portion 13 via a bolt 18.
  • a step is formed on the inner peripheral side of the connecting portion between the second cylindrical portion 13 and the presser plate 14 to support the bearing 16.
  • the bearing 16 supports the second crown gear 22 so as to be rotatable around the axis L.
  • the upper end surface of the second crown gear 22 protrudes outward in the axial direction from the presser plate 14, and an attachment hole 22b for attaching an object to be rotated is formed on the upper end surface.
  • FIG. 3 is an enlarged view of a main part including the first crown gear 21, the second crown gear 22, and the third crown gear 23 in the first embodiment of the present invention.
  • FIG. 4 is a perspective view of the first crown gear 21 in the first embodiment of the present invention.
  • FIG. 5 is a front view of the first crown gear 21, the second crown gear 22, and the third crown gear 23 in the first embodiment of the present invention.
  • an annular first crown gear 21 and an annular second crown gear 22 are disposed coaxially with the axis L inside the housing 10.
  • a third crown gear 23 is arranged between the first crown gear 21 and the second crown gear 22.
  • the first crown gear 21 has opposing teeth 21 a and 21 b on the side facing the third crown gear 23.
  • the second crown gear 22 has opposing teeth 22 a on the side facing the third crown gear 23.
  • the third crown gear 23 has opposing teeth 23a facing the first crown gear 21 and opposing teeth 23b facing the second crown gear 22 in back-to-back alignment.
  • the third crown gear 23 is inclined by an angle ⁇ with respect to a plane orthogonal to the axis L.
  • the cam portion 30 includes a first cam 31 that extends to the first crown gear 21 side relative to the third crown gear 23, and a second cam 32 that extends to the second crown gear 22 side relative to the third crown gear 23.
  • a bearing 35 that supports a first transmission gear 21 ⁇ / b> A (described later) of the first crown gear 21 is disposed on the outer peripheral side of the first cam 31.
  • a bearing 36 that supports the second crown gear 22 is disposed on the outer peripheral side of the second cam 32.
  • the first cam 31 and the second cam 32 are connected in the axial direction via a bolt 34.
  • the third crown gear 23 is disposed at the connection portion between the first cam 31 and the second cam 32. Specifically, a first inclined surface 31 a and a second inclined surface 32 a that are parallel to each other and inclined with respect to the axis L are formed on the outer peripheral side of the connecting portion between the first cam 31 and the second cam 32. . Similar to the third crown gear 23, the first inclined surface 31 a and the second inclined surface 32 a are inclined by an angle ⁇ with respect to a plane orthogonal to the axis L.
  • a rolling element 33 (ball or the like) is interposed between the first cam 31 and the third crown gear 23, a rolling element 33 (ball or the like) is interposed.
  • a rolling element rolling groove 31b having a substantially circular cross-sectional view in which the rolling element 33 rolls is formed.
  • a rolling element rolling groove 23c having a substantially circular cross-sectional view is formed at a location facing the rolling element rolling groove 31b.
  • the rolling element rolling grooves 23c and 31b are formed in an annular shape around the axis L, and a plurality of rolling elements 33 are arranged so as to be capable of infinite circulation.
  • a rolling element 33 (ball or the like) is interposed between the second cam 32 and the third crown gear 23.
  • a rolling element rolling groove 32b having a substantially circular cross-sectional view in which the rolling element 33 rolls is formed.
  • the third crown gear 23 is also formed with a rolling element rolling groove 23d having a substantially circular cross-sectional view at a location facing the rolling element rolling groove 32b.
  • the rolling element rolling grooves 23d and 32b are formed in an annular shape around the axis L, and a plurality of rolling elements 33 are arranged so as to be capable of infinite circulation.
  • the rolling element 33 may be held by a retainer for preventing dropout (not shown). Further, it is preferable to apply a preload to the rolling elements 33 so that backlash does not occur in the third crown gear 23 sandwiched between the first cam 31 and the second cam 32.
  • the first cam 31 and the second cam 32 are tightened in the axial direction by the bolt 34, whereby the rolling element 33 is pressurized between the rolling element rolling grooves 23c and 31b and between the rolling element rolling grooves 23d and 32b. Can be given.
  • a shaft coupling portion 37 is connected to the second cam 32 via a bolt 38 on the side opposite to the first cam 31.
  • the connecting portion between the second cam 32 and the shaft coupling portion 37 is formed with a step on the outer peripheral side, and supports the bearing 35 described above.
  • the shaft connecting portion 37 has a connecting shaft 37 a extending along the axis L, and the connecting shaft 37 a is connected to the rotating shaft 2 a of the motor 2 through a shaft joint 39.
  • the first crown gear 21 has a first transmission gear 21A and a second transmission gear 21B that are divided in the radial direction.
  • the first transmission gear 21A and the second transmission gear 21B are each formed in an annular shape and are arranged coaxially with the axis L.
  • the first transmission gear 21A is disposed on the radially inner side of the second transmission gear 21B.
  • the first transmission gear 21 ⁇ / b> A has opposing teeth 21 a on the side facing the third crown gear 23.
  • the second transmission gear 21B has opposed teeth 21b having a different number of teeth from the opposed teeth 21a on the side facing the third crown gear 23.
  • the switching mechanism 40 fixes one of the first transmission gear 21 ⁇ / b> A and the second transmission gear 21 ⁇ / b> B to the housing 10 according to the rotation direction.
  • the switching mechanism 40 includes a first one-way clutch 41 that rotates the first transmission gear 21A only in one direction (for example, clockwise around the axis L), and a second transmission gear 21B that is the first transmission gear 21A.
  • a second one-way clutch 42 that rotates only in one direction (for example, counterclockwise about the axis L).
  • the first transmission gear 21A when rotating clockwise about the axis L, the first transmission gear 21A can be freely rotated in that direction by the first one-way clutch 41, while the second transmission gear 21B is The rotation in that direction is restricted by the two one-way clutch 42 and is fixed (stopped) with respect to the housing 10.
  • the second transmission gear 21B when rotating counterclockwise around the axis L, can be freely rotated in that direction by the second one-way clutch 42, while the first transmission gear 21A.
  • the first one-way clutch 41 restricts rotation in that direction and is fixed (stopped) to the housing 10.
  • the first one-way clutch 41 and the second one-way clutch 42 are supported by sandwiching a spacer 44 on the outer peripheral surface of a cylindrical support member 43 connected to the mounting plate 11 via a bolt (not shown).
  • the cylindrical support member 43 is formed with a through hole 43a in which the rotating shaft 2a, the connecting shaft 37a, and the shaft coupling 39 are disposed. Further, a flange portion 43 b that supports the second one-way clutch 42 extends radially outward on the mounting plate 11 side of the cylindrical support member 43.
  • a presser plate 45 that sandwiches the first one-way clutch 41, the spacer 44, and the second one-way clutch 42 in the axial direction is connected to the upper end surface of the cylindrical support member 43 through bolts 46. Yes.
  • the first one-way clutch 41 is connected to the first transmission gear 21 ⁇ / b> A via the first connection member 47.
  • the first connecting member 47 is a stepped cylindrical member whose upper end is reduced in diameter, and the reduced upper end is connected to the bottom of the first transmission gear 21 ⁇ / b> A via a bolt 48.
  • a step is formed on the inner peripheral side of the connecting portion between the first transmission gear 21 ⁇ / b> A and the first connecting member 47, and supports the bearing 35 described above.
  • the second one-way clutch 42 is connected to the second transmission gear 21 ⁇ / b> B via the second connection member 49.
  • the second connecting member 49 includes a bottomed cylindrical first member 49A having an inner diameter larger than the outer diameter of the first connecting member 47, and a second member connected to the upper end of the first member 49A via a bolt 50. 49B.
  • the second member 49B is a stepped cylindrical member whose upper end portion is reduced in diameter.
  • the inner diameter of the reduced upper end portion is larger than the outer diameter of the reduced upper end portion of the first connection member 47, and It is smaller than the outer diameter of the lower end portion of the one connecting member 47 that is not reduced in diameter.
  • the upper end portion of the second member 49B is connected to the bottom portion of the second transmission gear 21B via a bolt 51.
  • a step is formed on the outer peripheral side of the connecting portion between the second transmission gear 21B and the second connecting member 49 (second member 49B), and supports the bearing 15 described above.
  • the third crown gear 23 sandwiched between the first cam 31 and the second cam 32 performs a wave motion (that is, the third crown gear 23). Will precess).
  • the meshing position of the first crown gear 21 and the third crown gear 23 and the meshing position of the third crown gear 23 and the second crown gear 22 move in the circumferential direction.
  • the meshing location of the first crown gear 21 and the third crown gear 23 and the meshing location of the third crown gear 23 and the second crown gear 22 are point-symmetrical positional relations about the axis L as viewed from the axial direction.
  • Z 1 is the number of teeth of the opposing teeth 21 a to 21 b of the first crown gear
  • Z 2 is the number of teeth of the opposing teeth 23 a of the third crown gear 23 that meshes with the first crown gear 21, and meshes with the second crown gear 22. If the number of teeth of the counter teeth 23b of the third crown gear 23 is Z 3 and the number of teeth of the counter teeth 22a of the second crown gear 22 is Z 4 , the reduction ratio GR is given by the following equation (1).
  • the reduction ratio GR is -1/42.
  • the reduction ratio GR is 1/560.
  • the first crown gear 21 serves only to stop the rotation of the third crown gear 23, and the reduction ratio is left to the second crown gear 22. Such movement is called coarse movement.
  • the first crown gear 21 also has a role of reduction, and the reduction ratio is left to the first crown gear 21 and the second crown gear 22 to obtain a large reduction ratio. Such movement is called fine movement.
  • FIG. 6 is an explanatory diagram for explaining coarse movement of the transmission 1 according to the first embodiment of the present invention.
  • the first transmission gear 21A is rotatable clockwise around the axis L by the first one-way clutch 41 (see FIG. 2)
  • the transmission gear 21B is fixed (does not rotate) by the second one-way clutch 42 (see FIG. 2).
  • the first transmission gear 21 ⁇ / b> A only rotates with the third crown gear 23 and has no special role. Therefore, in FIG. 6, it is expressed in white.
  • FIG. 7 is an explanatory diagram illustrating fine movement of the transmission 1 according to the first embodiment of the present invention.
  • the second transmission gear 21B can be rotated counterclockwise about the axis L by the second one-way clutch 42 (see FIG. 2).
  • the transmission gear 21A is fixed (does not rotate) by the first one-way clutch 41 (see FIG. 2).
  • the second transmission gear 21 ⁇ / b> B only rotates with the third crown gear 23 and has no special role. Therefore, in FIG. 7, it is expressed in white.
  • the fixed first transmission gear 21 ⁇ / b> A meshes with the third crown gear 23, thereby contributing to the wave motion of the third crown gear 23. Therefore, in FIG. 7, it is expressed with dots.
  • the first transmission gear 21 ⁇ / b > A has opposed teeth 21 a having a different number of teeth (Z 1 ⁇ Z 2 ) from the opposed teeth 23 a of the third crown gear 23.
  • the third crown gear 23 rotates around the axis L by the difference in the number of teeth with respect to the second transmission gear 21B along with the wave motion, so that the third crown gear 23 rotates while rotating. To do.
  • the first transmission gear 21A has the role of stopping and reducing the rotation of the third crown gear 23, and the reduction ratio is entrusted to the first transmission gear 21A and the second crown gear 22, so the reduction ratio becomes large.
  • the second crown gear 22 rotates finely at a low speed and with a high torque.
  • the third crown gear 23 mesh with the first crown gear 21, and the third crown gear 23 meshes with the second crown gear 22.
  • a cam portion 30 that is inclined with respect to the first crown gear 21 and the second crown gear 22 and that causes the third crown gear 23 to perform a wave motion so that the meshing portion moves in the circumferential direction.
  • the second crown gear 22 has a plurality of transmission gears 21A and 21B with different numbers of teeth divided in the radial direction, and a switch for switching a transmission gear to be fixed among the plurality of transmission gears 21A and 21B. Adopting a structure having a mechanism 40 Therefore, it is possible to switch the reduction ratio while maintaining a compact device configuration in the radial direction.
  • the switching mechanism 40 of the present embodiment switches the transmission gears 21A and 21B to be fixed according to the rotation direction, for example, the reduction ratio is determined between the direction of the operation of the industrial robot and the return (forward and reverse rotation of the motor 2).
  • the switching mechanism 40 includes the first one-way clutch 41 that rotates the first transmission gear 21A in only one direction, and the second transmission gear 21B in only one direction opposite to the first transmission gear 21A. Since the second one-way clutch 42 is rotated, the reduction ratio can be switched without a power source without using an electric actuator or the like.
  • the second transmission gear 21B includes the counter teeth 21b having the same number of teeth as the counter teeth 23a of the third crown gear 23, the rotation of the third crown gear 23 can be fixed and the speed reduction can be achieved. Since the ratio can be left to the second crown gear 22, a small reduction ratio can be easily obtained.
  • FIG. 8 is a longitudinal sectional view of the transmission 1A according to the second embodiment of the present invention.
  • the transmission 1A according to the second embodiment includes a wedge portion 41A inserted in a gap between the first transmission gear 21A and the second transmission gear 21B, and the wedge portion 41A that fixes the first transmission gear 21A.
  • a switching mechanism 40A having a movable portion 42A movable between a position and a second fixed position for fixing the second transmission gear 21B is provided.
  • the wedge portion 41A is a cylindrical member that is inserted into an annular gap between the first transmission gear 21A and the second transmission gear 21B, and an inclined portion 43A having an enlarged diameter is formed at the insertion end.
  • An inclined surface 21a1 (tapered surface) that is inclined with respect to the axis L is formed on the outer peripheral surface of the first transmission gear 21A of the second embodiment, similarly to the inclined portion 43A.
  • an inclined surface 21b1 (tapered surface) inclined with respect to the axis L is formed on the inner peripheral surface of the second transmission gear 21B as well as the inclined portion 43A.
  • the wedge part 41A is movable in the axial direction by the movable part 42A.
  • the movable part 42A is, for example, an actuator fixed to the housing 10 (not shown in FIG. 8), and can move the output shaft connected to the wedge part 41A in the axial direction.
  • the movable portion 42A includes a wedge portion 41A, a first fixed position P1 (indicated by a two-dot chain line in FIG. 8) for fixing the first transmission gear 21A, and a second fixed position P2 (see FIG. 8) for fixing the second transmission gear 21B. 8 (shown by a solid line).
  • FIG. 9 is an explanatory diagram for explaining coarse movement of the transmission 1 according to the second embodiment of the present invention.
  • the movable portion 42A moves the wedge portion 41A to the second fixed position P2.
  • the inclined portion 43A and the inclined surface 21b1 of the second transmission gear 21B come into contact with each other, and the second transmission gear 21B is fixed, while the first transmission gear 21A is rotatable. It becomes.
  • the fixed second transmission gear 21B meshes with the third crown gear 23 and contributes to the wave motion of the third crown gear 23.
  • the reduction ratio is small as described above.
  • the double crown gear 22 rotates roughly at high speed and low torque.
  • FIG. 10 is an explanatory diagram for explaining fine movement of the transmission 1 according to the second embodiment of the present invention.
  • the movable portion 42A moves the wedge portion 41A to the first fixed position P1.
  • the inclined portion 43A and the inclined surface 21a1 of the first transmission gear 21A come into contact with each other, the first transmission gear 21A is fixed, while the second transmission gear 21B is rotatable. It becomes.
  • the fixed first transmission gear 21A meshes with the third crown gear 23, thereby contributing to the wave motion and rotation of the third crown gear 23.
  • the reduction ratio is large, and the second crown gear 22 is slow. And it rotates finely with high torque.
  • the reduction ratio can be switched without switching the rotation direction. Further, since the wedge portion 41A inserted in the gap between the first transmission gear 21A and the second transmission gear 21B can be moved and the transmission gears 21A and 21B to be fixed can be switched, the first transmission gear 21A and the second transmission gear 21A can be switched. The number of parts can be reduced and the apparatus configuration can be made more compact than providing a fixing / unlocking mechanism for each 21B.
  • the wedge portion 41A has the inclined portion 43A that can be brought into contact with the first transmission gear 21A and the second transmission gear 21B by moving in the axial direction, and is fixed only by movement in one axial direction.
  • the transmission gears 21A and 21B to be switched can be easily switched.
  • FIG. 11 is a longitudinal sectional view of the transmission 1B according to the third embodiment of the present invention.
  • the transmission 1 ⁇ / b> B according to the third embodiment includes a motor 2 ⁇ / b> B that rotates the cam portion 30 inside the cam portion 30 in the radial direction.
  • the motor 2B is an outer rotor type motor.
  • the motor 2B includes a stator 100 provided with a plurality of coils 102, and an outer rotor 110 provided with a plurality of permanent magnets 111.
  • the coil 102 can be provided on the outer rotor 110 and the permanent magnet 111 can be provided on the stator 100.
  • the stator 100 has a stator core 101 and a coil 102 supported by the stator core 101.
  • the stator core 101 is formed in a cylindrical shape extending along the axis L.
  • a plurality of teeth 101a (saliency poles) extending outward in the radial direction are formed.
  • a coil 102 is wound around the teeth 101a.
  • the lower end portion 101 b of the stator core 101 is fixed to the top portion of the columnar support member 43 ⁇ / b> B integrated with the mounting plate 11 of the housing 10.
  • the columnar support member 43 ⁇ / b> B extends upward along the axis L from the center portion of the upper surface of the mounting plate 11.
  • the columnar support member 43B is the solid cylindrical support member 43 (see FIG. 2) described above, and the other configuration is the same as that of the cylindrical support member 43.
  • the outer rotor 110 has a permanent magnet 111 and a rotor core 112 that supports the permanent magnet 111.
  • the permanent magnet 111 is opposed to the teeth 101a of the stator core 101 with a gap in the radial direction.
  • the permanent magnet 111 is fixed to the inner peripheral surface of a through hole 112a that penetrates the center of the rotor core 112 in the axial direction.
  • the rotor core 112 is integrated with the cam portion 30 described above. In other words, it can be said that the rotor core 112 forms the cam portion 30.
  • the rotor core 112 is supported so as to be rotatable around the axis L via the bearing 35 and the bearing 36 in the same manner as the cam portion 30 described above.
  • the rotor core 112 supports the third crown gear 23 obliquely with respect to a plane orthogonal to the axis L via the rolling elements 33.
  • the rotor core 112 may be configured to be divided into the first cam 31 and the second cam 32 in the same manner as the cam portion 30 described above.
  • the third crown gear 23 supported by the rotor core 112 performs a wave motion (that is, the third crown gear 23 is moved). Precession exercise). Along with the wave motion of the third crown gear 23, the meshing position of the first crown gear 21 and the third crown gear 23 and the meshing position of the third crown gear 23 and the second crown gear 22 move in the circumferential direction. To do. With such wave motion of the third crown gear 23, the third crown gear 23 rotates around the axis L relative to the first crown gear 21 by the difference in the number of teeth of both. Further, the second crown gear 22 rotates about the axis L relative to the third crown gear 23 by the difference in the number of teeth of both. That is, a reduction ratio similar to that in the above-described embodiment can be obtained.
  • the motor 2B that rotates the cam portion 30 is provided on the inner side in the radial direction of the cam portion 30 in addition to the same effects as the above-described embodiment, for example, FIG. Compared with the transmission 1 shown in FIG. 2, the axial dimension of the transmission 1B is compact.
  • the motor 2B is further arranged on the inner side in the radial direction of at least one of the first crown gear 21, the second crown gear 22, and the third crown gear 23 (all in the example shown in FIG. 11).
  • the motor 2B is disposed at an axial position overlapping with the first crown gear 21, the second crown gear 22, and the third crown gear 23, which can contribute to a reduction in the size of the transmission 1B in the axial direction.
  • the motor 2B since the motor 2B includes the outer rotor 110 integrated with the cam portion 30, it is not necessary to configure the cam portion 30 and the outer rotor 110 as separate parts divided in the radial direction, and the diameter of the transmission 1B. It can contribute to the compactness of the dimension in the direction.
  • FIG. 12 is a longitudinal sectional view of a transmission 1C according to the fourth embodiment of the present invention.
  • a transmission device 1 ⁇ / b> C according to the fourth embodiment includes a motor 2 ⁇ / b> C that rotates the cam portion 30 inside the cam portion 30 in the radial direction.
  • the transmission 1 ⁇ / b> C of the fourth embodiment includes a third crown gear 23 ⁇ / b> C supported by the cam portion 30 on the side opposite to the first crown gear 21.
  • the transmission 1C of the fourth embodiment includes a second crown gear 22C that meshes with the third crown gear 23C on the same side as the first crown gear 21. That is, the third crown gear 23C of the fourth embodiment has the opposing teeth 23a facing the first crown gear 21 and the opposing teeth 23b facing the second crown gear 22C on the same side in the axial direction.
  • the third crown gear 23C has opposing teeth 23b on the outer side in the radial direction of the opposing teeth 23a.
  • An annular groove 23f is formed between the opposing tooth 23a and the opposing tooth 23b.
  • the second crown gear 22 ⁇ / b> C that meshes with the opposing teeth 23 b of the third crown gear 23 ⁇ / b> C is disposed on the outer side in the radial direction of the first crown gear 21.
  • the first crown gear 21 is disposed inside the radial direction of the third crown gear 23C.
  • the third crown gear 23C is supported so as to be rotatable around the axis L via the bearing 15 described above.
  • the opposite side of the third crown gear 23C from the surface where the opposing teeth 23a and 23b are formed is an inclined surface 23e inclined with respect to a plane orthogonal to the axis L.
  • the rolling element rolling groove 23c mentioned above is formed in the peripheral part of the inclined surface 23e.
  • the rolling element rolling groove 23c is opposed to the rolling element rolling groove 32c formed in the cam portion 30 in the axial direction.
  • the rolling element rolling groove 32c is formed in the peripheral part of the inclined surface 212b formed in parallel with the inclined surface 23e.
  • a plurality of rolling elements 33 are arranged around the axis L so as to be capable of infinite circulation.
  • the cam portion 30 is disposed on the inclined surface 23e side of the third crown gear 23C (on the side opposite to the formation surface of the opposing teeth 23a and the opposing teeth 23b). Further, the cam portion 30 is formed in a disk shape having substantially the same diameter as the third crown gear 23C. That is, the cam portion 30 is not arranged on the inner side in the radial direction of the third crown gear 23C, and further, is not arranged on the inner side in the radial direction of the first crown gear 21 and the second crown gear 22C.
  • the cam portion 30 is supported so as to be rotatable around the axis L via a bearing 16 (see FIG. 2) supported by the housing 10 (not shown in FIG. 12).
  • the motor 2C for rotating the cam portion 30 is disposed inside the cam portion 30 in the radial direction.
  • the motor 2C is an outer rotor type motor similar to the motor 3B of the third embodiment described above.
  • the motor 2 ⁇ / b> C includes a stator 200 provided with a plurality of coils 202 and an outer rotor 210 provided with a plurality of permanent magnets 211.
  • the coil 202 can be provided on the outer rotor 210 and the permanent magnet 211 can be provided on the stator 200.
  • the stator 200 has a stator core 201 and a coil 202 supported by the stator core 201.
  • the stator core 201 is formed in an annular shape coaxial with the axis L.
  • On the circumferential surface of the stator core 201 a plurality of teeth 201a (saliency poles) extending outward in the radial direction are formed.
  • a coil 202 is wound around the teeth 201a.
  • the flange 221 extends radially outward from the upper end of the cylindrical support member 43 and is in contact with the bearing 35 in the axial direction.
  • the bearing 35 is supported by a cylindrical sleeve 230 that is extrapolated to the cylindrical support member 43.
  • a step 231 that supports the bearing 35 in the axial direction is formed on the outer peripheral surface of the sleeve 230. Further, the lower end portion of the sleeve 230 is in contact with the first one-way clutch 41 in the axial direction.
  • the flange 221 sandwiches the bearing 35 in the axial direction together with the sleeve 230 and has the same function as the press plate 45 described above, and the first one-way clutch 41, the spacer 44, and the second one-way are interposed via the sleeve 230.
  • the clutch 42 is sandwiched in the axial direction.
  • the rotor core 212 is integrated with the cam portion 30 described above. In other words, it can be said that the rotor core 212 forms the cam portion 30. Since the structure of the rotor core 212 is the same as the structure of the cam part 30 mentioned above, the description is omitted.
  • the third crown gear 23C supported by the rotor core 212 performs a wave motion (that is, the third crown gear 23 is moved). Precession exercise).
  • the meshing location of the first crown gear 21 and the third crown gear 23C and the meshing location of the third crown gear 23 and the second crown gear 22C move in the circumferential direction.
  • the third crown gear 23C rotates about the axis L relative to the first crown gear 21 by the difference in the number of teeth of both.
  • the second crown gear 22C rotates about the axis L relative to the third crown gear 23C by the difference in the number of teeth of both. That is, a reduction ratio similar to that in the above-described embodiment can be obtained.
  • the motor 2B includes the outer rotor 210 that is integrated with the cam portion 30. Therefore, it is not necessary to configure the cam portion 30 and the outer rotor 210 as separate parts divided in the radial direction. This can contribute to a reduction in the size of the transmission 1C in the radial direction.
  • the configuration in which the first crown gear 21 has the two transmission gears 21A and 21B has been described, but the first crown gear 21 may have three or more transmission gears having different numbers of teeth.
  • the plurality of transmission gears may be on the second crown gear 22 side instead of the first crown gear 21 side (a configuration in which the reduction ratio is switched on the output side may be employed).
  • the configuration using the non-powered one-way clutch as the switching mechanism 40 has been described.
  • an electric one-way clutch may be used.
  • the electric one-way clutch is arranged, for example, in a gap between the first transmission gear 21A and the second transmission gear 21B, and rotates one of the transmission gears to fix the other transmission gear. Also good.
  • the reduction gear ratio can be switched in a compact manner.

Abstract

A transmission device (1) is provided with: a first crown gear (21); a second crown gear (22); a third crown gear (23) having opposing teeth that oppose the first crown gear (21) and opposing teeth that oppose the second crown gear (22); and a cam unit (30) that tilts the third crown gear (23) relative to the first crown gear (21) and the second crown gear (22) such that the third crown gear (23) meshes with the first crown gear (21) and the third crown gear (23) meshes with the second crown gear (22), and that causes the third crown gear (23) to undergo a wave motion such that a meshing location moves in the circumferential direction. One of the first crown gear (21) and the second crown gear (22) has a plurality of speed-change gears (21A, 21B) that are partitioned in the radial direction and that have different tooth counts, and has a switching mechanism (40) that switches the speed-change gear to be fixed, from among the plurality of speed-change gears (21A, 21B).

Description

変速装置Transmission
 本発明は、変速装置に関するものである。
本願は、2018年2月20日に、日本に出願された特願2018-027758号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a transmission.
This application claims priority based on Japanese Patent Application No. 2018-027758 filed in Japan on February 20, 2018, the contents of which are incorporated herein by reference.
 特許文献1には、第一冠ギヤ、第二冠ギヤ及び第三冠ギヤを備える減速装置が開示されている。第一冠ギヤと第二冠ギヤとの間には、第三冠ギヤが第一冠ギヤに噛み合い、かつ第三冠ギヤが第二冠ギヤに噛み合うように、第三冠ギヤが傾斜して配置される。第三冠ギヤは、屈曲部を備える入力軸に回転可能に支持される。入力軸は、第一冠ギヤと第三冠ギヤとの噛み合い箇所、及び第三冠ギヤと第二冠ギヤとの噛み合い箇所が円周方向に移動するように第三冠ギヤを波動運動させる。 Patent Document 1 discloses a reduction gear including a first crown gear, a second crown gear, and a third crown gear. The third crown gear is inclined between the first crown gear and the second crown gear so that the third crown gear meshes with the first crown gear and the third crown gear meshes with the second crown gear. Be placed. The third crown gear is rotatably supported by an input shaft having a bent portion. The input shaft causes the third crown gear to make a wave motion so that the meshing position of the first crown gear and the third crown gear and the meshing position of the third crown gear and the second crown gear move in the circumferential direction.
 第一冠ギヤはハウジングに固定され、第二冠ギヤは出力軸に連結される。入力軸を回転させると、第三冠ギヤの波動運動によって、第三冠ギヤが第一冠ギヤに対して両者の歯数差の分だけ相対的に回転する。また、第三冠ギヤの波動運動によって、第二冠ギヤが第三冠ギヤに対して両者の歯数差の分だけ相対的に回転する。第二冠ギヤの回転数は、第一冠ギヤに対する第三冠ギヤの相対的な回転数と、第三冠ギヤに対する第二冠ギヤの相対的な回転数とを合算したものである。二組のギヤ(第一冠ギヤと第三冠ギヤ、第三冠ギヤと第二冠ギヤ)を、互いに打ち消し合う方向に回転させれば、大きな減速比が得られるし、互いに助長する方向に回転させれば、小さな減速比が得られる。 ¡The first crown gear is fixed to the housing, and the second crown gear is connected to the output shaft. When the input shaft is rotated, the third crown gear rotates relative to the first crown gear by the difference in the number of teeth of the third crown gear due to the wave motion of the third crown gear. Further, due to the wave motion of the third crown gear, the second crown gear rotates relative to the third crown gear by the difference in the number of teeth. The rotational speed of the second crown gear is the sum of the relative rotational speed of the third crown gear with respect to the first crown gear and the relative rotational speed of the second crown gear with respect to the third crown gear. If the two sets of gears (the first crown gear and the third crown gear, the third crown gear and the second crown gear) are rotated in directions that cancel each other, a large reduction ratio can be obtained, and in a direction that promotes each other. If it is rotated, a small reduction ratio can be obtained.
特開昭60-4647号公報JP 60-4647 A
 ところで、上記減速装置は、通常の平歯車などの減速装置に比べて径方向における装置構成がコンパクトであり、産業用ロボットの関節部分などに導入されることが期待されている。産業用ロボットには、様々な動きが要求されており、例えば、搬送物を持ち上げる場合は低速かつ大トルクで可動することが好ましく、また、搬送物を載置後、次の搬送物を取りに行く場合は高速かつ小トルクで可動することが好ましい。しかしながら、上記減速装置においては、このような要求に応える減速比の切替技術が確立されていなかったため、実用化する上での課題の一つとなっていた。 By the way, the speed reducer has a compact device configuration in the radial direction as compared with a normal speed reducer such as a spur gear, and is expected to be introduced into a joint portion of an industrial robot. Various movements are required for industrial robots. For example, when lifting a transported object, it is preferable to move it at a low speed and with a large torque. Also, after placing the transported object, the next transported object is picked up. When going, it is preferable to move at high speed with a small torque. However, since the reduction gear ratio switching technology that meets such a demand has not been established in the above reduction gear, it has been one of the problems in practical use.
 本発明は、コンパクトで減速比を切り替えることができる変速装置を提供する。 The present invention provides a transmission that is compact and capable of switching the reduction ratio.
 本発明の第一の態様によれば、変速装置は、第一冠ギヤと、第二冠ギヤと、前記第一冠ギヤに対向する対向歯と前記第二冠ギヤに対向する対向歯とを背面合わせで持つ第三冠ギヤと、前記第三冠ギヤが前記第一冠ギヤに噛み合い、前記第三冠ギヤが前記第二冠ギヤに噛み合うように、前記第三冠ギヤを前記第一冠ギヤ及び前記第二冠ギヤに対して傾斜させ、かつ噛み合う箇所が円周方向に移動するように前記第三冠ギヤを波動運動させるカム部と、を備え、前記第一冠ギヤ及び前記第二冠ギヤのいずれか一方は、径方向に分割された歯数の異なる複数の変速ギヤを有し、前記複数の変速ギヤの中から固定する変速ギヤを切り替える切替機構を有する。 According to the first aspect of the present invention, the transmission includes a first crown gear, a second crown gear, an opposing tooth facing the first crown gear, and an opposing tooth facing the second crown gear. The third crown gear has the first crown, and the third crown gear meshes with the first crown gear, and the third crown gear meshes with the second crown gear. A cam portion that wave-moves the third crown gear so that the meshing portion is inclined with respect to the gear and the second crown gear and moves in a circumferential direction, and the first crown gear and the second crown gear One of the crown gears has a plurality of transmission gears with different numbers of teeth divided in the radial direction, and has a switching mechanism that switches among the plurality of transmission gears to be fixed.
 上記した変速装置によれば、コンパクトで減速比を切り替えることができる。 ¡According to the transmission described above, the reduction gear ratio can be switched in a compact manner.
本発明の第一実施形態における変速装置の斜視図である。It is a perspective view of the transmission in the first embodiment of the present invention. 本発明の第一実施形態における変速装置の縦断面図である。It is a longitudinal cross-sectional view of the transmission in 1st embodiment of this invention. 本発明の第一実施形態における第一冠ギヤ、第二冠ギヤ、及び第三冠ギヤを含む要部の拡大図である。It is an enlarged view of the principal part containing the 1st crown gear, the 2nd crown gear, and the 3rd crown gear in a first embodiment of the present invention. 本発明の第一実施形態における第一冠ギヤの斜視図である。It is a perspective view of the 1st crown gear in a first embodiment of the present invention. 本発明の第一実施形態における第一冠ギヤ、第二冠ギヤ、及び第三冠ギヤの正面図である。It is a front view of the 1st crown gear, the 2nd crown gear, and the 3rd crown gear in a first embodiment of the present invention. 本発明の第一実施形態における変速装置の粗動を説明する説明図である。It is explanatory drawing explaining the coarse movement of the transmission in 1st embodiment of this invention. 本発明の第一実施形態における変速装置の微動を説明する説明図である。It is explanatory drawing explaining the fine movement of the transmission in 1st embodiment of this invention. 本発明の第二実施形態における変速装置の縦断面図である。It is a longitudinal cross-sectional view of the transmission in 2nd embodiment of this invention. 本発明の第二実施形態における変速装置の粗動を説明する説明図である。It is explanatory drawing explaining the coarse movement of the transmission in 2nd embodiment of this invention. 本発明の第二実施形態における変速装置の微動を説明する説明図である。It is explanatory drawing explaining the fine movement of the transmission in 2nd embodiment of this invention. 本発明の第三実施形態における変速装置の縦断面図である。It is a longitudinal cross-sectional view of the transmission in 3rd embodiment of this invention. 本発明の第四実施形態における変速装置の縦断面図である。It is a longitudinal cross-sectional view of the transmission in 4th embodiment of this invention.
 以下、本発明の実施形態の変速装置について図面を参照して説明する。 Hereinafter, a transmission according to an embodiment of the present invention will be described with reference to the drawings.
 (第一実施形態)
 図1は、本発明の第一実施形態における変速装置1の斜視図である。図2は、本発明の第一実施形態における変速装置1の縦断面図である。
 変速装置1は、図1に示すように、有底円筒状のハウジング10を備え、当該ハウジング10の底部にモータ2が取り付けられている。図2に示すように、有底円筒状のハウジング10の中心軸は、モータ2の回転軸2aの軸線Lと一致している。以下、軸線Lが延びる方向を軸方向といい、軸線Lと直交する方向を径方向といい、軸線L周りに周回する方向を円周方向という。
(First embodiment)
FIG. 1 is a perspective view of a transmission 1 according to a first embodiment of the present invention. FIG. 2 is a longitudinal sectional view of the transmission 1 according to the first embodiment of the present invention.
As shown in FIG. 1, the transmission 1 includes a bottomed cylindrical housing 10, and a motor 2 is attached to the bottom of the housing 10. As shown in FIG. 2, the center axis of the bottomed cylindrical housing 10 coincides with the axis L of the rotating shaft 2 a of the motor 2. Hereinafter, a direction in which the axis L extends is referred to as an axial direction, a direction orthogonal to the axis L is referred to as a radial direction, and a direction around the axis L is referred to as a circumferential direction.
 ハウジング10の内部には、図2に示すように、第一冠ギヤ21、第二冠ギヤ22、第三冠ギヤ23、カム部30、及び後述する切替機構40が収容されている。モータ2の回転軸2aは、軸継手39を介してカム部30と接続され、カム部30は、第三冠ギヤ23を傾斜支持している。カム部30が回転すると、第一冠ギヤ21に噛み合う第三冠ギヤ23が波動運動し(なお、この波動運動は歳差運動ともいう)、回転軸2aの回転数が減速されて第二冠ギヤ22(出力ギヤ)が回転する。なお、減速比は、第一冠ギヤ21、第二冠ギヤ22、及び第三冠ギヤ23の歯数によって決定される(後述)。 As shown in FIG. 2, a first crown gear 21, a second crown gear 22, a third crown gear 23, a cam portion 30, and a switching mechanism 40 described later are housed inside the housing 10. The rotating shaft 2a of the motor 2 is connected to the cam portion 30 via a shaft joint 39, and the cam portion 30 supports the third crown gear 23 in an inclined manner. When the cam portion 30 rotates, the third crown gear 23 that meshes with the first crown gear 21 performs a wave motion (this wave motion is also referred to as precession motion), and the rotational speed of the rotating shaft 2a is decelerated to reduce the second crown. The gear 22 (output gear) rotates. The reduction ratio is determined by the number of teeth of the first crown gear 21, the second crown gear 22, and the third crown gear 23 (described later).
 ハウジング10は、取付板11と、第一円筒部12と、第二円筒部13と、押え板14と、を備える。取付板11には、ボルト3を介してモータ2が取り付けられている。取付板11は、ハウジング10の底部を形成する円板部材であり、その中心部にはモータ2の回転軸2aが挿通されている。第一円筒部12は、取付板11のモータ2の取付面と反対側の面に、図示しないボルトを介して接続されている。この第一円筒部12の内側には、後述する切替機構40が収容されている。 The housing 10 includes a mounting plate 11, a first cylindrical portion 12, a second cylindrical portion 13, and a presser plate 14. The motor 2 is attached to the attachment plate 11 via bolts 3. The mounting plate 11 is a disk member that forms the bottom of the housing 10, and the rotation shaft 2 a of the motor 2 is inserted through the center of the mounting plate 11. The first cylindrical portion 12 is connected to the surface of the mounting plate 11 opposite to the mounting surface of the motor 2 via a bolt (not shown). A switching mechanism 40 described later is accommodated inside the first cylindrical portion 12.
 第二円筒部13は、第一円筒部12にボルト17を介して軸方向に接続されている。第一円筒部12と第二円筒部13の接続部には、内周側に段差が形成され、軸受15を支持している。軸受15は、第一冠ギヤ21の後述する第二変速ギヤ21Bを軸線L回りに回転可能に支持している。第二円筒部13の内側には、第一冠ギヤ21、第二冠ギヤ22、第三冠ギヤ23、及びカム部30が収容されている。 The second cylindrical portion 13 is connected to the first cylindrical portion 12 via a bolt 17 in the axial direction. A step is formed on the inner peripheral side of the connecting portion between the first cylindrical portion 12 and the second cylindrical portion 13 to support the bearing 15. The bearing 15 supports a second transmission gear 21B (described later) of the first crown gear 21 so as to be rotatable around the axis L. A first crown gear 21, a second crown gear 22, a third crown gear 23, and a cam portion 30 are accommodated inside the second cylindrical portion 13.
 押え板14は、円環状の板体であり、第二円筒部13の上端面にボルト18を介して接続されている。第二円筒部13と押え板14の接続部には、内周側に段差が形成され、軸受16を支持している。軸受16は、第二冠ギヤ22を軸線L回りに回転可能に支持している。第二冠ギヤ22の上端面は、押え板14よりも軸方向外側に突出しており、その上端面には、回転対象物を取り付けるための取付孔22bが形成されている。 The pressing plate 14 is an annular plate and is connected to the upper end surface of the second cylindrical portion 13 via a bolt 18. A step is formed on the inner peripheral side of the connecting portion between the second cylindrical portion 13 and the presser plate 14 to support the bearing 16. The bearing 16 supports the second crown gear 22 so as to be rotatable around the axis L. The upper end surface of the second crown gear 22 protrudes outward in the axial direction from the presser plate 14, and an attachment hole 22b for attaching an object to be rotated is formed on the upper end surface.
 図3は、本発明の第一実施形態における第一冠ギヤ21、第二冠ギヤ22、及び第三冠ギヤ23を含む要部の拡大図である。図4は、本発明の第一実施形態における第一冠ギヤ21の斜視図である。図5は、本発明の第一実施形態における第一冠ギヤ21、第二冠ギヤ22、及び第三冠ギヤ23の正面図である。
 ハウジング10の内側には、図3に示すように、円環状の第一冠ギヤ21及び円環状の第二冠ギヤ22が、軸線Lと同軸に配置されている。第一冠ギヤ21と第二冠ギヤ22との間には、第三冠ギヤ23が配置されている。
FIG. 3 is an enlarged view of a main part including the first crown gear 21, the second crown gear 22, and the third crown gear 23 in the first embodiment of the present invention. FIG. 4 is a perspective view of the first crown gear 21 in the first embodiment of the present invention. FIG. 5 is a front view of the first crown gear 21, the second crown gear 22, and the third crown gear 23 in the first embodiment of the present invention.
As shown in FIG. 3, an annular first crown gear 21 and an annular second crown gear 22 are disposed coaxially with the axis L inside the housing 10. A third crown gear 23 is arranged between the first crown gear 21 and the second crown gear 22.
 第一冠ギヤ21は、第三冠ギヤ23に対向する側に対向歯21a,21bを有する。第二冠ギヤ22は、第三冠ギヤ23に対向する側に対向歯22aを有する。第三冠ギヤ23は、第一冠ギヤ21に対向する対向歯23aと、第二冠ギヤ22に対向する対向歯23bと、を背面合わせで有する。第三冠ギヤ23は、軸線Lに直交する平面に対して角度αだけ傾いている。第三冠ギヤ23が傾くことで、図5に示すように、第三冠ギヤ23は、その対向歯23aが第一冠ギヤ21に円周方向の一箇所で噛み合い、かつその対向歯23bが第二冠ギヤ22に円周方向の一箇所で噛み合う。 The first crown gear 21 has opposing teeth 21 a and 21 b on the side facing the third crown gear 23. The second crown gear 22 has opposing teeth 22 a on the side facing the third crown gear 23. The third crown gear 23 has opposing teeth 23a facing the first crown gear 21 and opposing teeth 23b facing the second crown gear 22 in back-to-back alignment. The third crown gear 23 is inclined by an angle α with respect to a plane orthogonal to the axis L. By tilting the third crown gear 23, as shown in FIG. 5, the counter tooth 23a of the third crown gear 23 meshes with the first crown gear 21 at one place in the circumferential direction, and the counter tooth 23b is The second crown gear 22 meshes at one place in the circumferential direction.
 第三冠ギヤ23は、図3に示すように、カム部30に支持されている。カム部30は、第三冠ギヤ23よりも第一冠ギヤ21側に延在する第一カム31と、第三冠ギヤ23よりも第二冠ギヤ22側に延在する第二カム32と、を備える。第一カム31の外周側には、第一冠ギヤ21の後述する第一変速ギヤ21Aを支持する軸受35が配置されている。また、第二カム32の外周側には、第二冠ギヤ22を支持する軸受36が配置されている。
これら第一カム31と第二カム32は、ボルト34を介して軸方向で接続されている。
As shown in FIG. 3, the third crown gear 23 is supported by the cam portion 30. The cam portion 30 includes a first cam 31 that extends to the first crown gear 21 side relative to the third crown gear 23, and a second cam 32 that extends to the second crown gear 22 side relative to the third crown gear 23. . A bearing 35 that supports a first transmission gear 21 </ b> A (described later) of the first crown gear 21 is disposed on the outer peripheral side of the first cam 31. A bearing 36 that supports the second crown gear 22 is disposed on the outer peripheral side of the second cam 32.
The first cam 31 and the second cam 32 are connected in the axial direction via a bolt 34.
 第三冠ギヤ23は、第一カム31と第二カム32の接続部に配置されている。具体的に、第一カム31と第二カム32の接続部には、その外周側に、互いに平行で軸線Lに対して傾斜する第一傾斜面31a及び第二傾斜面32aが形成されている。第一傾斜面31a及び第二傾斜面32aは、第三冠ギヤ23と同様に、軸線Lに直交する平面に対して角度αだけ傾斜している。 The third crown gear 23 is disposed at the connection portion between the first cam 31 and the second cam 32. Specifically, a first inclined surface 31 a and a second inclined surface 32 a that are parallel to each other and inclined with respect to the axis L are formed on the outer peripheral side of the connecting portion between the first cam 31 and the second cam 32. . Similar to the third crown gear 23, the first inclined surface 31 a and the second inclined surface 32 a are inclined by an angle α with respect to a plane orthogonal to the axis L.
 第一カム31と第三冠ギヤ23との間には、転動体33(ボールなど)が介在している。第一傾斜面31aには、転動体33が転動する断面視略円形の転動体転走溝31bが形成されている。第三冠ギヤ23にも、転動体転走溝31bと対向する箇所に、断面視略円形の転動体転走溝23cが形成されている。転動体転走溝23c,31bは、軸線L回りに環状に形成されており、複数の転動体33が無限循環可能に配列されている。 Between the first cam 31 and the third crown gear 23, a rolling element 33 (ball or the like) is interposed. In the first inclined surface 31a, a rolling element rolling groove 31b having a substantially circular cross-sectional view in which the rolling element 33 rolls is formed. Also in the third crown gear 23, a rolling element rolling groove 23c having a substantially circular cross-sectional view is formed at a location facing the rolling element rolling groove 31b. The rolling element rolling grooves 23c and 31b are formed in an annular shape around the axis L, and a plurality of rolling elements 33 are arranged so as to be capable of infinite circulation.
 また、第二カム32と第三冠ギヤ23との間にも、転動体33(ボールなど)が介在している。第二傾斜面32aには、転動体33が転動する断面視略円形の転動体転走溝32bが形成されている。第三冠ギヤ23にも、転動体転走溝32bと対向する箇所に、断面視略円形の転動体転走溝23dが形成されている。転動体転走溝23d,32bは、軸線L回りに環状に形成されており、複数の転動体33が無限循環可能に配列されている。 Also, a rolling element 33 (ball or the like) is interposed between the second cam 32 and the third crown gear 23. In the second inclined surface 32a, a rolling element rolling groove 32b having a substantially circular cross-sectional view in which the rolling element 33 rolls is formed. The third crown gear 23 is also formed with a rolling element rolling groove 23d having a substantially circular cross-sectional view at a location facing the rolling element rolling groove 32b. The rolling element rolling grooves 23d and 32b are formed in an annular shape around the axis L, and a plurality of rolling elements 33 are arranged so as to be capable of infinite circulation.
 なお、転動体33は、図示しない脱落防止用の保持器に保持されていてもよい。また、第一カム31及び第二カム32で挟まれる第三冠ギヤ23にバックラッシが生じないように、転動体33に予圧を与えることが好ましい。例えば、ボルト34によって第一カム31及び第二カム32を軸方向で締め付けることによって、転動体転走溝23c,31bの間及び転動体転走溝23d,32bの間において転動体33に与圧を与えることができる。 Note that the rolling element 33 may be held by a retainer for preventing dropout (not shown). Further, it is preferable to apply a preload to the rolling elements 33 so that backlash does not occur in the third crown gear 23 sandwiched between the first cam 31 and the second cam 32. For example, the first cam 31 and the second cam 32 are tightened in the axial direction by the bolt 34, whereby the rolling element 33 is pressurized between the rolling element rolling grooves 23c and 31b and between the rolling element rolling grooves 23d and 32b. Can be given.
 図2に戻り、第二カム32には、第一カム31と反対側に、ボルト38を介して軸連結部37が接続されている。第二カム32と軸連結部37の接続部には、外周側に段差が形成され、上述した軸受35を支持している。軸連結部37は、軸線Lに沿って延びる連結軸37aを有し、連結軸37aは、軸継手39を介してモータ2の回転軸2aと接続されている。 2, a shaft coupling portion 37 is connected to the second cam 32 via a bolt 38 on the side opposite to the first cam 31. The connecting portion between the second cam 32 and the shaft coupling portion 37 is formed with a step on the outer peripheral side, and supports the bearing 35 described above. The shaft connecting portion 37 has a connecting shaft 37 a extending along the axis L, and the connecting shaft 37 a is connected to the rotating shaft 2 a of the motor 2 through a shaft joint 39.
 図3及び図4に示すように、第一冠ギヤ21は、径方向に分割された第一変速ギヤ21Aと、第二変速ギヤ21Bと、を有する。第一変速ギヤ21Aと第二変速ギヤ21Bは、それぞれ円環状に形成され、軸線Lと同軸に配置されている。本実施形態では、第一変速ギヤ21Aが、第二変速ギヤ21Bの径方向内側に配置されている。第一変速ギヤ21Aは、第三冠ギヤ23に対向する側に対向歯21aを有する。また、第二変速ギヤ21Bは、第三冠ギヤ23に対向する側に、対向歯21aと歯数の異なる対向歯21bを有する。 3 and 4, the first crown gear 21 has a first transmission gear 21A and a second transmission gear 21B that are divided in the radial direction. The first transmission gear 21A and the second transmission gear 21B are each formed in an annular shape and are arranged coaxially with the axis L. In the present embodiment, the first transmission gear 21A is disposed on the radially inner side of the second transmission gear 21B. The first transmission gear 21 </ b> A has opposing teeth 21 a on the side facing the third crown gear 23. Further, the second transmission gear 21B has opposed teeth 21b having a different number of teeth from the opposed teeth 21a on the side facing the third crown gear 23.
 図2に戻り、第一変速ギヤ21Aと第二変速ギヤ21Bは、切替機構40に支持されている。切替機構40は、回転方向に応じて、第一変速ギヤ21Aと第二変速ギヤ21Bのいずれか一方をハウジング10に対して固定するものである。具体的に、切替機構40は、第一変速ギヤ21Aを一方向(例えば軸線Lを中心とする時計回り)のみに回転させる第一ワンウェイクラッチ41と、第二変速ギヤ21Bを第一変速ギヤ21Aと逆向きの一方向(例えば軸線Lを中心とする反時計回り)のみに回転させる第二ワンウェイクラッチ42と、を有する。 2, the first transmission gear 21A and the second transmission gear 21B are supported by the switching mechanism 40. The switching mechanism 40 fixes one of the first transmission gear 21 </ b> A and the second transmission gear 21 </ b> B to the housing 10 according to the rotation direction. Specifically, the switching mechanism 40 includes a first one-way clutch 41 that rotates the first transmission gear 21A only in one direction (for example, clockwise around the axis L), and a second transmission gear 21B that is the first transmission gear 21A. And a second one-way clutch 42 that rotates only in one direction (for example, counterclockwise about the axis L).
 例えば、軸線Lを中心とする時計回りに回転させる場合は、第一変速ギヤ21Aは、第一ワンウェイクラッチ41によってその方向に自在に回転することができる一方で、第二変速ギヤ21Bは、第二ワンウェイクラッチ42によってその方向の回転が規制され、ハウジング10に対して固定される(停止する)。また、例えば、軸線Lを中心とする反時計回りに回転させる場合は、第二変速ギヤ21Bは、第二ワンウェイクラッチ42によってその方向に自在に回転することができる一方で、第一変速ギヤ21Aは、第一ワンウェイクラッチ41によってその方向の回転が規制され、ハウジング10に対して固定される(停止する)。 For example, when rotating clockwise about the axis L, the first transmission gear 21A can be freely rotated in that direction by the first one-way clutch 41, while the second transmission gear 21B is The rotation in that direction is restricted by the two one-way clutch 42 and is fixed (stopped) with respect to the housing 10. For example, when rotating counterclockwise around the axis L, the second transmission gear 21B can be freely rotated in that direction by the second one-way clutch 42, while the first transmission gear 21A. The first one-way clutch 41 restricts rotation in that direction and is fixed (stopped) to the housing 10.
 第一ワンウェイクラッチ41及び第二ワンウェイクラッチ42は、取付板11に図示しないボルトを介して接続された円筒支持部材43の外周面に間座44を挟んで支持されている。円筒支持部材43には、回転軸2a、連結軸37a、及び軸継手39が配置される貫通孔43aが形成されている。また、円筒支持部材43の取付板11側には、第二ワンウェイクラッチ42を支持するフランジ部43bが径方向外側に延設されている。円筒支持部材43の上端面には、フランジ部43bとの間で第一ワンウェイクラッチ41、間座44、及び第二ワンウェイクラッチ42を軸方向で挟み込む押え板45がボルト46を介して接続されている。 The first one-way clutch 41 and the second one-way clutch 42 are supported by sandwiching a spacer 44 on the outer peripheral surface of a cylindrical support member 43 connected to the mounting plate 11 via a bolt (not shown). The cylindrical support member 43 is formed with a through hole 43a in which the rotating shaft 2a, the connecting shaft 37a, and the shaft coupling 39 are disposed. Further, a flange portion 43 b that supports the second one-way clutch 42 extends radially outward on the mounting plate 11 side of the cylindrical support member 43. A presser plate 45 that sandwiches the first one-way clutch 41, the spacer 44, and the second one-way clutch 42 in the axial direction is connected to the upper end surface of the cylindrical support member 43 through bolts 46. Yes.
 第一ワンウェイクラッチ41は、第一接続部材47を介して第一変速ギヤ21Aと接続されている。第一接続部材47は、上端部が縮径した段差付き円筒部材であり、その縮径した上端部が第一変速ギヤ21Aの底部にボルト48を介して接続されている。第一変速ギヤ21Aと第一接続部材47の接続部には、内周側に段差が形成され、上述した軸受35を支持している。 The first one-way clutch 41 is connected to the first transmission gear 21 </ b> A via the first connection member 47. The first connecting member 47 is a stepped cylindrical member whose upper end is reduced in diameter, and the reduced upper end is connected to the bottom of the first transmission gear 21 </ b> A via a bolt 48. A step is formed on the inner peripheral side of the connecting portion between the first transmission gear 21 </ b> A and the first connecting member 47, and supports the bearing 35 described above.
 第二ワンウェイクラッチ42は、第二接続部材49を介して第二変速ギヤ21Bと接続されている。第二接続部材49は、内径が第一接続部材47の外径よりも大きい有底筒状の第一部材49Aと、第一部材49Aの上端部にボルト50を介して接続された第二部材49Bと、を有する。 The second one-way clutch 42 is connected to the second transmission gear 21 </ b> B via the second connection member 49. The second connecting member 49 includes a bottomed cylindrical first member 49A having an inner diameter larger than the outer diameter of the first connecting member 47, and a second member connected to the upper end of the first member 49A via a bolt 50. 49B.
 第二部材49Bは、上端部が縮径した段差付き円筒部材であり、その縮径した上端部の内径は、第一接続部材47の縮径した上端部の外径よりも大きく、かつ、第一接続部材47の縮径していない下端部の外径よりも小さい。第二部材49Bの上端部は、第二変速ギヤ21Bの底部にボルト51を介して接続されている。第二変速ギヤ21Bと第二接続部材49(第二部材49B)の接続部には、外周側に段差が形成され、上述した軸受15を支持している。 The second member 49B is a stepped cylindrical member whose upper end portion is reduced in diameter. The inner diameter of the reduced upper end portion is larger than the outer diameter of the reduced upper end portion of the first connection member 47, and It is smaller than the outer diameter of the lower end portion of the one connecting member 47 that is not reduced in diameter. The upper end portion of the second member 49B is connected to the bottom portion of the second transmission gear 21B via a bolt 51. A step is formed on the outer peripheral side of the connecting portion between the second transmission gear 21B and the second connecting member 49 (second member 49B), and supports the bearing 15 described above.
 上記構成の変速装置1によれば、モータ2の回転軸2aを回転させると、第一カム31及び第二カム32に挟まれる第三冠ギヤ23が波動運動する(すなわち、第三冠ギヤ23が歳差運動する)。この第三冠ギヤ23の波動運動に伴い、第一冠ギヤ21と第三冠ギヤ23との噛み合い箇所、及び第三冠ギヤ23と第二冠ギヤ22との噛み合い箇所が円周方向に移動する。第一冠ギヤ21と第三冠ギヤ23との噛み合い箇所、及び第三冠ギヤ23と第二冠ギヤ22との噛み合い箇所は、軸方向から視て軸線Lを中心とする点対称の位置関係を有しており、その噛み合い個所が円周方向に移動すると、第三冠ギヤ23は、図3に示す断面視において、あたかもシーソーのように左右に揺れ動く。 According to the transmission 1 having the above configuration, when the rotation shaft 2a of the motor 2 is rotated, the third crown gear 23 sandwiched between the first cam 31 and the second cam 32 performs a wave motion (that is, the third crown gear 23). Will precess). Along with the wave motion of the third crown gear 23, the meshing position of the first crown gear 21 and the third crown gear 23 and the meshing position of the third crown gear 23 and the second crown gear 22 move in the circumferential direction. To do. The meshing location of the first crown gear 21 and the third crown gear 23 and the meshing location of the third crown gear 23 and the second crown gear 22 are point-symmetrical positional relations about the axis L as viewed from the axial direction. When the meshing portion moves in the circumferential direction, the third crown gear 23 swings left and right like a seesaw in the cross-sectional view shown in FIG.
 このような第三冠ギヤ23の波動運動に伴い、第三冠ギヤ23が第一冠ギヤ21に対して両者の歯数差の分だけ相対的に軸線Lの回りを回転する。また、第二冠ギヤ22が第三冠ギヤ23に対して両者の歯数差の分だけ相対的に軸線Lの回りを回転する。第二冠ギヤ22の回転数は、第一冠ギヤ21に対する第三冠ギヤ23の相対的な回転数と、第三冠ギヤ23に対する第二冠ギヤ22の相対的な回転数とを合算したものになる。二組のギヤ(第一冠ギヤ21と第三冠ギヤ23、第三冠ギヤ23と第二冠ギヤ22)を、互いに打ち消し合う方向に回転させれば、大きな減速比が得られるし、互いに助長する方向に回転させれば、小さな減速比が得られる。 With such wave motion of the third crown gear 23, the third crown gear 23 rotates around the axis L relative to the first crown gear 21 by the difference in the number of teeth of both. Further, the second crown gear 22 rotates about the axis L relative to the third crown gear 23 by the difference in the number of teeth of both. The rotational speed of the second crown gear 22 is the sum of the relative rotational speed of the third crown gear 23 with respect to the first crown gear 21 and the relative rotational speed of the second crown gear 22 with respect to the third crown gear 23. Become a thing. If the two sets of gears (the first crown gear 21 and the third crown gear 23, the third crown gear 23 and the second crown gear 22) are rotated in a direction that cancels each other, a large reduction ratio can be obtained. A small reduction ratio can be obtained by rotating in the promoting direction.
 第一冠ギヤ21の対向歯21aないし対向歯21bの歯数をZ,第一冠ギヤ21と噛み合う第三冠ギヤ23の対向歯23aの歯数をZ、第二冠ギヤ22に噛み合う第三冠ギヤ23の対向歯23bの歯数をZ、第二冠ギヤ22の対向歯22aの歯数をZとすると、減速比GRは以下の式(1)で与えられる。 Z 1 is the number of teeth of the opposing teeth 21 a to 21 b of the first crown gear 21, Z 2 is the number of teeth of the opposing teeth 23 a of the third crown gear 23 that meshes with the first crown gear 21, and meshes with the second crown gear 22. If the number of teeth of the counter teeth 23b of the third crown gear 23 is Z 3 and the number of teeth of the counter teeth 22a of the second crown gear 22 is Z 4 , the reduction ratio GR is given by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 例えば、Z=40、Z=40、Z=43、Z=42とすると、減速比GRは-1/42である。一方、Zの歯数を一つ減らし、Z=39、Z=40、Z=43、Z=42とすると、減速比GRは1/560である。このように、Z=Zとすると、第一冠ギヤ21は第三冠ギヤ23の回転止めのみの役割を持ち、減速比は第二冠ギヤ22に委ねられる。このような動きを粗動と称する。また、Z≠Zとすると、第一冠ギヤ21も減速の役割を持ち、減速比は第一冠ギヤ21及び第二冠ギヤ22に委ねられ大きな減速比が得られる。このような動きを微動と称する。本実施形態では、上記例におけるZ=39の歯数を第一変速ギヤ21Aが有し、Z=40の歯数を第二変速ギヤ21Bが有しているものとする。 For example, if Z 1 = 40, Z 2 = 40, Z 3 = 43, and Z 4 = 42, the reduction ratio GR is -1/42. On the other hand, if the number of teeth of Z 1 is reduced by one and Z 1 = 39, Z 2 = 40, Z 3 = 43, and Z 4 = 42, the reduction ratio GR is 1/560. As described above, when Z 1 = Z 2 , the first crown gear 21 serves only to stop the rotation of the third crown gear 23, and the reduction ratio is left to the second crown gear 22. Such movement is called coarse movement. If Z 1 ≠ Z 2 , the first crown gear 21 also has a role of reduction, and the reduction ratio is left to the first crown gear 21 and the second crown gear 22 to obtain a large reduction ratio. Such movement is called fine movement. In the present embodiment, the first transmission gear 21A has the number of teeth of Z 1 = 39 in the above example, and the second transmission gear 21B has the number of teeth of Z 1 = 40.
 図6は、本発明の第一実施形態における変速装置1の粗動を説明する説明図である。
 図6に示すように、変速装置1が粗動するとき、第一変速ギヤ21Aは第一ワンウェイクラッチ41(図2参照)によって軸線Lを中心とする時計回りに回転自在な一方で、第二変速ギヤ21Bは第二ワンウェイクラッチ42(図2参照)によって固定される(回転しない)。このとき、第一変速ギヤ21Aは、第三冠ギヤ23と共に連れ回るだけで、特別な役割はない。よって、図6では、白抜きで表現している。
FIG. 6 is an explanatory diagram for explaining coarse movement of the transmission 1 according to the first embodiment of the present invention.
As shown in FIG. 6, when the transmission 1 coarsely moves, the first transmission gear 21A is rotatable clockwise around the axis L by the first one-way clutch 41 (see FIG. 2), The transmission gear 21B is fixed (does not rotate) by the second one-way clutch 42 (see FIG. 2). At this time, the first transmission gear 21 </ b> A only rotates with the third crown gear 23 and has no special role. Therefore, in FIG. 6, it is expressed in white.
 一方、固定された第二変速ギヤ21Bは、第三冠ギヤ23と噛み合うことで、第三冠ギヤ23の波動運動に寄与する。よって、図6では、ドットを付して表現している。第二変速ギヤ21Bは、第三冠ギヤ23の対向歯23aと同じ歯数(Z=Z)の対向歯21bを有する。第三冠ギヤ23は、波動運動に伴い、第二変速ギヤ21Bに対して歯数差の分だけ相対的に軸線Lの回りを回転するため、歯数差が無いと、第三冠ギヤ23は、波動運動はするが回転はしない。このように、第二変速ギヤ21Bは、第三冠ギヤ23の回転止めのみの役割を持ち、減速比は第二冠ギヤ22に委ねられるため、減速比が小さくなり、第二冠ギヤ22が高速かつ低トルクで粗動回転する。 On the other hand, the fixed second transmission gear 21B meshes with the third crown gear 23, thereby contributing to the wave motion of the third crown gear 23. Therefore, in FIG. 6, it is expressed with dots. The second transmission gear 21 </ b> B has opposing teeth 21 b having the same number of teeth (Z 1 = Z 2 ) as the opposing teeth 23 a of the third crown gear 23. The third crown gear 23 rotates around the axis L relative to the second transmission gear 21B by the difference in the number of teeth with the wave motion. Does wave motion but does not rotate. In this way, the second transmission gear 21B serves only to stop the rotation of the third crown gear 23, and the reduction ratio is left to the second crown gear 22, so the reduction ratio becomes small and the second crown gear 22 Coarse rotation at high speed and low torque.
 図7は、本発明の第一実施形態における変速装置1の微動を説明する説明図である。
 図7に示すように、変速装置1が微動するとき、第二変速ギヤ21Bは第二ワンウェイクラッチ42(図2参照)によって軸線Lを中心とする反時計回りに回転自在な一方で、第一変速ギヤ21Aは第一ワンウェイクラッチ41(図2参照)によって固定される(回転しない)。このとき、第二変速ギヤ21Bは、第三冠ギヤ23と共に連れ回るだけで、特別な役割はない。よって、図7では、白抜きで表現している。
FIG. 7 is an explanatory diagram illustrating fine movement of the transmission 1 according to the first embodiment of the present invention.
As shown in FIG. 7, when the transmission 1 is finely moved, the second transmission gear 21B can be rotated counterclockwise about the axis L by the second one-way clutch 42 (see FIG. 2). The transmission gear 21A is fixed (does not rotate) by the first one-way clutch 41 (see FIG. 2). At this time, the second transmission gear 21 </ b> B only rotates with the third crown gear 23 and has no special role. Therefore, in FIG. 7, it is expressed in white.
 一方、固定された第一変速ギヤ21Aは、第三冠ギヤ23と噛み合うことで、第三冠ギヤ23の波動運動に寄与する。よって、図7では、ドットを付して表現している。第一変速ギヤ21Aは、第三冠ギヤ23の対向歯23aと異なる歯数(Z≠Z)の対向歯21aを有する。第三冠ギヤ23は、波動運動に伴い、第二変速ギヤ21Bに対して歯数差の分だけ相対的に軸線Lの回りを回転するため、第三冠ギヤ23は、波動運動すると共に回転する。このように、第一変速ギヤ21Aは、第三冠ギヤ23の回転止め及び減速の役割を持ち、減速比は第一変速ギヤ21A及び第二冠ギヤ22に委ねられるため、減速比が大きくなり、第二冠ギヤ22が低速かつ高トルクで微動回転する。 On the other hand, the fixed first transmission gear 21 </ b> A meshes with the third crown gear 23, thereby contributing to the wave motion of the third crown gear 23. Therefore, in FIG. 7, it is expressed with dots. The first transmission gear 21 </ b > A has opposed teeth 21 a having a different number of teeth (Z 1 ≠ Z 2 ) from the opposed teeth 23 a of the third crown gear 23. The third crown gear 23 rotates around the axis L by the difference in the number of teeth with respect to the second transmission gear 21B along with the wave motion, so that the third crown gear 23 rotates while rotating. To do. Thus, the first transmission gear 21A has the role of stopping and reducing the rotation of the third crown gear 23, and the reduction ratio is entrusted to the first transmission gear 21A and the second crown gear 22, so the reduction ratio becomes large. The second crown gear 22 rotates finely at a low speed and with a high torque.
 このように、上述した本実施形態によれば、第一冠ギヤ21と、第二冠ギヤ22と、第一冠ギヤ21に対向する対向歯23aと第二冠ギヤ22に対向する対向歯23bとを背面合わせで持つ第三冠ギヤ23と、第三冠ギヤ23が第一冠ギヤ21に噛み合い、第三冠ギヤ23が第二冠ギヤ22に噛み合うように、第三冠ギヤ23を第一冠ギヤ21及び第二冠ギヤ22に対して傾斜させ、かつ噛み合う箇所が円周方向に移動するように第三冠ギヤ23を波動運動させるカム部30と、を備え、第一冠ギヤ21及び第二冠ギヤ22のいずれか一方は、径方向に分割された歯数の異なる複数の変速ギヤ21A,21Bを有し、複数の変速ギヤ21A,21Bの中から固定する変速ギヤを切り替える切替機構40を有する、という構成を採用することによって、径方向におけるコンパクトな装置構成を維持しつつ減速比を切り替えることができる。 Thus, according to this embodiment mentioned above, the 1st crown gear 21, the 2nd crown gear 22, the opposing tooth 23a which opposes the 1st crown gear 21, and the opposing tooth 23b which opposes the 2nd crown gear 22 And the third crown gear 23 mesh with the first crown gear 21, and the third crown gear 23 meshes with the second crown gear 22. A cam portion 30 that is inclined with respect to the first crown gear 21 and the second crown gear 22 and that causes the third crown gear 23 to perform a wave motion so that the meshing portion moves in the circumferential direction. And the second crown gear 22 has a plurality of transmission gears 21A and 21B with different numbers of teeth divided in the radial direction, and a switch for switching a transmission gear to be fixed among the plurality of transmission gears 21A and 21B. Adopting a structure having a mechanism 40 Therefore, it is possible to switch the reduction ratio while maintaining a compact device configuration in the radial direction.
 また、本実施形態の切替機構40は、回転方向に応じて固定する変速ギヤ21A,21Bを切り替えるため、例えば、産業用ロボットの動作の行きと帰り(モータ2の正転と逆転)で減速比を変えることができる。例えば、産業用ロボットが変速装置1を介してロープを巻き上げて搬送物を持ち上げる場合には低速かつ高トルクで微動することができ、また、搬送物を持ち上げた後、ロープを巻き戻し、次の搬送物を取りに行く場合には、高速かつ低トルクで粗動することができるため、産業用ロボットによる仕事効率を高め、生産性を向上させることができる。 Further, since the switching mechanism 40 of the present embodiment switches the transmission gears 21A and 21B to be fixed according to the rotation direction, for example, the reduction ratio is determined between the direction of the operation of the industrial robot and the return (forward and reverse rotation of the motor 2). Can be changed. For example, when an industrial robot winds up a rope via the transmission 1 to lift a conveyed product, it can be finely moved at a low speed and with a high torque. When picking up a conveyed product, it can be coarsely moved at a high speed and with a low torque, so that the work efficiency of the industrial robot can be increased and the productivity can be improved.
 また、本実施形態では、切替機構40は、第一変速ギヤ21Aを一方向のみに回転させる第一ワンウェイクラッチ41と、第二変速ギヤ21Bを第一変速ギヤ21Aと逆向きの一方向のみに回転させる第二ワンウェイクラッチ42と、を有するため、電動アクチュエータなどを用いることなく、無電源で減速比を切り替えることができる。 In the present embodiment, the switching mechanism 40 includes the first one-way clutch 41 that rotates the first transmission gear 21A in only one direction, and the second transmission gear 21B in only one direction opposite to the first transmission gear 21A. Since the second one-way clutch 42 is rotated, the reduction ratio can be switched without a power source without using an electric actuator or the like.
 また、本実施形態のように、第二変速ギヤ21Bが、第三冠ギヤ23の対向歯23aと同じ歯数の対向歯21bを備えれば、第三冠ギヤ23の回転を固定でき、減速比を第二冠ギヤ22に委ねることができるため、小さい減速比が容易に得られる。 Further, as in the present embodiment, if the second transmission gear 21B includes the counter teeth 21b having the same number of teeth as the counter teeth 23a of the third crown gear 23, the rotation of the third crown gear 23 can be fixed and the speed reduction can be achieved. Since the ratio can be left to the second crown gear 22, a small reduction ratio can be easily obtained.
 (第二実施形態)
 次に、本発明の第二実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成については同一の符号を付し、その説明を簡略若しくは省略する。
(Second embodiment)
Next, a second embodiment of the present invention will be described. In the following description, the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
 図8は、本発明の第二実施形態における変速装置1Aの縦断面図である。
 第二実施形態の変速装置1Aは、第一変速ギヤ21Aと第二変速ギヤ21Bとの隙間に挿入された楔部41Aと、この楔部41Aを、第一変速ギヤ21Aを固定する第一固定位置と、第二変速ギヤ21Bを固定する第二固定位置との間で可動させる可動部42Aと、を有する切替機構40Aを備える。
FIG. 8 is a longitudinal sectional view of the transmission 1A according to the second embodiment of the present invention.
The transmission 1A according to the second embodiment includes a wedge portion 41A inserted in a gap between the first transmission gear 21A and the second transmission gear 21B, and the wedge portion 41A that fixes the first transmission gear 21A. A switching mechanism 40A having a movable portion 42A movable between a position and a second fixed position for fixing the second transmission gear 21B is provided.
 楔部41Aは、第一変速ギヤ21Aと第二変速ギヤ21Bとの環状の隙間に挿入される筒状部材であり、その挿入端には拡径した傾斜部43Aが形成されている。第二実施形態の第一変速ギヤ21Aの外周面には、傾斜部43Aと同様に軸線Lに対して傾斜した傾斜面21a1(テーパー面)が形成されている。また、第二変速ギヤ21Bの内周面にも、傾斜部43Aと同様に軸線Lに対して傾斜した傾斜面21b1(テーパー面)が形成されている。 The wedge portion 41A is a cylindrical member that is inserted into an annular gap between the first transmission gear 21A and the second transmission gear 21B, and an inclined portion 43A having an enlarged diameter is formed at the insertion end. An inclined surface 21a1 (tapered surface) that is inclined with respect to the axis L is formed on the outer peripheral surface of the first transmission gear 21A of the second embodiment, similarly to the inclined portion 43A. In addition, an inclined surface 21b1 (tapered surface) inclined with respect to the axis L is formed on the inner peripheral surface of the second transmission gear 21B as well as the inclined portion 43A.
 楔部41Aは、可動部42Aによって軸方向に可動する。可動部42Aは、例えば、図8において図示しないハウジング10に対して固定されたアクチュエータなどであり、楔部41Aに接続された出力軸を軸方向に移動させることができる。可動部42Aは、楔部41Aを、第一変速ギヤ21Aを固定する第一固定位置P1(図8において二点鎖線で示す)と、第二変速ギヤ21Bを固定する第二固定位置P2(図8において実線で示す)との間で可動させる。 The wedge part 41A is movable in the axial direction by the movable part 42A. The movable part 42A is, for example, an actuator fixed to the housing 10 (not shown in FIG. 8), and can move the output shaft connected to the wedge part 41A in the axial direction. The movable portion 42A includes a wedge portion 41A, a first fixed position P1 (indicated by a two-dot chain line in FIG. 8) for fixing the first transmission gear 21A, and a second fixed position P2 (see FIG. 8) for fixing the second transmission gear 21B. 8 (shown by a solid line).
 図9は、本発明の第二実施形態における変速装置1の粗動を説明する説明図である。
 図9に示すように、変速装置1を粗動させるとき、可動部42Aは楔部41Aを第二固定位置P2に移動させる。楔部41Aが第二固定位置P2に移動すると、傾斜部43Aと第二変速ギヤ21Bの傾斜面21b1が接触し、第二変速ギヤ21Bが固定される一方で、第一変速ギヤ21Aは回転自在となる。固定された第二変速ギヤ21Bは、第三冠ギヤ23と噛み合うことで、第三冠ギヤ23の波動運動に寄与するが、歯数差が無いため、上述したように減速比は小さく、第二冠ギヤ22が高速かつ低トルクで粗動回転する。
FIG. 9 is an explanatory diagram for explaining coarse movement of the transmission 1 according to the second embodiment of the present invention.
As shown in FIG. 9, when the transmission 1 is coarsely moved, the movable portion 42A moves the wedge portion 41A to the second fixed position P2. When the wedge portion 41A moves to the second fixed position P2, the inclined portion 43A and the inclined surface 21b1 of the second transmission gear 21B come into contact with each other, and the second transmission gear 21B is fixed, while the first transmission gear 21A is rotatable. It becomes. The fixed second transmission gear 21B meshes with the third crown gear 23 and contributes to the wave motion of the third crown gear 23. However, since there is no difference in the number of teeth, the reduction ratio is small as described above. The double crown gear 22 rotates roughly at high speed and low torque.
 図10は、本発明の第二実施形態における変速装置1の微動を説明する説明図である。
 図10に示すように、変速装置1を微動させるとき、可動部42Aは楔部41Aを第一固定位置P1に移動させる。楔部41Aが第一固定位置P1に移動すると、傾斜部43Aと第一変速ギヤ21Aの傾斜面21a1が接触し、第一変速ギヤ21Aが固定される一方で、第二変速ギヤ21Bは回転自在となる。固定された第一変速ギヤ21Aは、第三冠ギヤ23と噛み合うことで、第三冠ギヤ23の波動運動と回転に寄与し、上述したように減速比は大きく、第二冠ギヤ22が低速かつ高トルクで微動回転する。
FIG. 10 is an explanatory diagram for explaining fine movement of the transmission 1 according to the second embodiment of the present invention.
As shown in FIG. 10, when the transmission 1 is finely moved, the movable portion 42A moves the wedge portion 41A to the first fixed position P1. When the wedge portion 41A moves to the first fixed position P1, the inclined portion 43A and the inclined surface 21a1 of the first transmission gear 21A come into contact with each other, the first transmission gear 21A is fixed, while the second transmission gear 21B is rotatable. It becomes. The fixed first transmission gear 21A meshes with the third crown gear 23, thereby contributing to the wave motion and rotation of the third crown gear 23. As described above, the reduction ratio is large, and the second crown gear 22 is slow. And it rotates finely with high torque.
 上述した第二実施形態によれば、第一実施形態と同様の作用効果に加えて、回転方向を切り替えなくても、減速比を切り替えることができる。また、第一変速ギヤ21Aと第二変速ギヤ21Bとの隙間に挿入された楔部41Aを可動させて、固定する変速ギヤ21A,21Bを切り替えられるため、第一変速ギヤ21Aと第二変速ギヤ21Bのそれぞれに固定・固定解除機構を設けるよりも、部品点数が減り、装置構成もコンパクトになる。 According to the second embodiment described above, in addition to the same effects as the first embodiment, the reduction ratio can be switched without switching the rotation direction. Further, since the wedge portion 41A inserted in the gap between the first transmission gear 21A and the second transmission gear 21B can be moved and the transmission gears 21A and 21B to be fixed can be switched, the first transmission gear 21A and the second transmission gear 21A can be switched. The number of parts can be reduced and the apparatus configuration can be made more compact than providing a fixing / unlocking mechanism for each 21B.
 また、本実施形態では、楔部41Aは、軸方向の可動によって第一変速ギヤ21A及び第二変速ギヤ21Bと当接可能な傾斜部43Aを有するため、軸方向の一方向における動きのみで固定する変速ギヤ21A,21Bを簡単に切り替えることができる。 Further, in the present embodiment, the wedge portion 41A has the inclined portion 43A that can be brought into contact with the first transmission gear 21A and the second transmission gear 21B by moving in the axial direction, and is fixed only by movement in one axial direction. The transmission gears 21A and 21B to be switched can be easily switched.
 (第三実施形態)
 次に、本発明の第三実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成については同一の符号を付し、その説明を簡略若しくは省略する。
(Third embodiment)
Next, a third embodiment of the present invention will be described. In the following description, the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
 図11は、本発明の第三実施形態における変速装置1Bの縦断面図である。
 第三実施形態の変速装置1Bは、カム部30の径方向の内側に、カム部30を回転させるモータ2Bを備える。
FIG. 11 is a longitudinal sectional view of the transmission 1B according to the third embodiment of the present invention.
The transmission 1 </ b> B according to the third embodiment includes a motor 2 </ b> B that rotates the cam portion 30 inside the cam portion 30 in the radial direction.
 モータ2Bは、アウターロータ型のモータである。モータ2Bは、複数のコイル102が設けられるステータ100と、複数の永久磁石111が設けられるアウターロータ110と、を備える。なお、コイル102をアウターロータ110に設け、永久磁石111をステータ100に設けることも可能である。 The motor 2B is an outer rotor type motor. The motor 2B includes a stator 100 provided with a plurality of coils 102, and an outer rotor 110 provided with a plurality of permanent magnets 111. The coil 102 can be provided on the outer rotor 110 and the permanent magnet 111 can be provided on the stator 100.
 ステータ100は、ステータコア101と、ステータコア101に支持されたコイル102と、を有している。ステータコア101は、軸線Lに沿って延びる円柱状に形成されている。ステータコア101の周面には、径方向外側に延びる複数のティース101a(突極)が形成されている。ティース101aには、コイル102が巻き掛けられている。 The stator 100 has a stator core 101 and a coil 102 supported by the stator core 101. The stator core 101 is formed in a cylindrical shape extending along the axis L. On the circumferential surface of the stator core 101, a plurality of teeth 101a (saliency poles) extending outward in the radial direction are formed. A coil 102 is wound around the teeth 101a.
 ステータコア101の下端部101bは、ハウジング10の取付板11と一体となった円柱支持部材43Bの頂部に固定されている。円柱支持部材43Bは、取付板11の上面の中央部から軸線Lに沿って上方に延びている。この円柱支持部材43Bは、上述した円筒支持部材43(図2参照)が中実となったものであり、他の構成は、円筒支持部材43と同様である。 The lower end portion 101 b of the stator core 101 is fixed to the top portion of the columnar support member 43 </ b> B integrated with the mounting plate 11 of the housing 10. The columnar support member 43 </ b> B extends upward along the axis L from the center portion of the upper surface of the mounting plate 11. The columnar support member 43B is the solid cylindrical support member 43 (see FIG. 2) described above, and the other configuration is the same as that of the cylindrical support member 43.
 アウターロータ110は、永久磁石111と、永久磁石111を支持するロータコア112と、を有している。永久磁石111は、ステータコア101のティース101aと径方向において隙間をあけて対向している。永久磁石111は、ロータコア112の中心を軸方向に貫通する貫通孔112aの内周面に固定されている。 The outer rotor 110 has a permanent magnet 111 and a rotor core 112 that supports the permanent magnet 111. The permanent magnet 111 is opposed to the teeth 101a of the stator core 101 with a gap in the radial direction. The permanent magnet 111 is fixed to the inner peripheral surface of a through hole 112a that penetrates the center of the rotor core 112 in the axial direction.
 ロータコア112は、上述したカム部30と一体となっている。言い換えると、ロータコア112が、カム部30を形成しているとも言える。ロータコア112は、上述したカム部30と同様に、軸受35及び軸受36を介して軸線L回りに回転自在に支持されている。また、ロータコア112は、転動体33を介して軸線Lに直交する平面に対して斜めに第三冠ギヤ23を支持している。なお、ロータコア112は、上述したカム部30と同様に第一カム31と第二カム32に分割可能な構成であってもよい。 The rotor core 112 is integrated with the cam portion 30 described above. In other words, it can be said that the rotor core 112 forms the cam portion 30. The rotor core 112 is supported so as to be rotatable around the axis L via the bearing 35 and the bearing 36 in the same manner as the cam portion 30 described above. The rotor core 112 supports the third crown gear 23 obliquely with respect to a plane orthogonal to the axis L via the rolling elements 33. The rotor core 112 may be configured to be divided into the first cam 31 and the second cam 32 in the same manner as the cam portion 30 described above.
 上記構成の変速装置1Bによれば、モータ2Bのアウターロータ110を回転させると、ロータコア112(カム部30)に支持された第三冠ギヤ23が波動運動する(すなわち、第三冠ギヤ23が歳差運動する)。この第三冠ギヤ23の波動運動に伴い、第一冠ギヤ21と第三冠ギヤ23との噛み合い箇所、及び第三冠ギヤ23と第二冠ギヤ22との噛み合い箇所が円周方向に移動する。このような第三冠ギヤ23の波動運動に伴い、第三冠ギヤ23が第一冠ギヤ21に対して両者の歯数差の分だけ相対的に軸線Lの回りを回転する。また、第二冠ギヤ22が第三冠ギヤ23に対して両者の歯数差の分だけ相対的に軸線Lの回りを回転する。つまり、上述した実施形態と同様の減速比が得られる。 According to the transmission 1B having the above configuration, when the outer rotor 110 of the motor 2B is rotated, the third crown gear 23 supported by the rotor core 112 (cam portion 30) performs a wave motion (that is, the third crown gear 23 is moved). Precession exercise). Along with the wave motion of the third crown gear 23, the meshing position of the first crown gear 21 and the third crown gear 23 and the meshing position of the third crown gear 23 and the second crown gear 22 move in the circumferential direction. To do. With such wave motion of the third crown gear 23, the third crown gear 23 rotates around the axis L relative to the first crown gear 21 by the difference in the number of teeth of both. Further, the second crown gear 22 rotates about the axis L relative to the third crown gear 23 by the difference in the number of teeth of both. That is, a reduction ratio similar to that in the above-described embodiment can be obtained.
 このような第三実施形態によれば、上述した実施形態と同様の作用効果に加えて、カム部30の径方向の内側に、カム部30を回転させるモータ2Bを備えているので、例えば図2に示す変速装置1と比べて、変速装置1Bの軸方向における寸法がコンパクトになる。 According to the third embodiment, since the motor 2B that rotates the cam portion 30 is provided on the inner side in the radial direction of the cam portion 30 in addition to the same effects as the above-described embodiment, for example, FIG. Compared with the transmission 1 shown in FIG. 2, the axial dimension of the transmission 1B is compact.
 モータ2Bは、さらに、第一冠ギヤ21、第二冠ギヤ22、第三冠ギヤ23の少なくともいずれか一つ(図11に示す例では全て)の径方向の内側に配置されているので、第一冠ギヤ21、第二冠ギヤ22、第三冠ギヤ23に重複する軸方向位置にモータ2Bが配置され、変速装置1Bの軸方向における寸法のコンパクト化に寄与できる。 The motor 2B is further arranged on the inner side in the radial direction of at least one of the first crown gear 21, the second crown gear 22, and the third crown gear 23 (all in the example shown in FIG. 11). The motor 2B is disposed at an axial position overlapping with the first crown gear 21, the second crown gear 22, and the third crown gear 23, which can contribute to a reduction in the size of the transmission 1B in the axial direction.
 また、モータ2Bは、カム部30と一体となったアウターロータ110を備えているので、カム部30とアウターロータ110を径方向で分割した別部品で構成する必要は無く、変速装置1Bの径方向における寸法のコンパクト化に寄与できる。 Further, since the motor 2B includes the outer rotor 110 integrated with the cam portion 30, it is not necessary to configure the cam portion 30 and the outer rotor 110 as separate parts divided in the radial direction, and the diameter of the transmission 1B. It can contribute to the compactness of the dimension in the direction.
 (第四実施形態)
 次に、本発明の第四実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成については同一の符号を付し、その説明を簡略若しくは省略する。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described. In the following description, the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
 図12は、本発明の第四実施形態における変速装置1Cの縦断面図である。
 第四実施形態の変速装置1Cは、カム部30の径方向の内側に、カム部30を回転させるモータ2Cを備える。また、第四実施形態の変速装置1Cは、第一冠ギヤ21と反対側でカム部30に支持された第三冠ギヤ23Cを備える。また、第四実施形態の変速装置1Cは、第一冠ギヤ21と同じ側で、第三冠ギヤ23Cに噛み合う第二冠ギヤ22Cを備える。つまり、第四実施形態の第三冠ギヤ23Cは、第一冠ギヤ21に対向する対向歯23aと、第二冠ギヤ22Cに対向する対向歯23bとを、軸方向において同じ側に持つ。
FIG. 12 is a longitudinal sectional view of a transmission 1C according to the fourth embodiment of the present invention.
A transmission device 1 </ b> C according to the fourth embodiment includes a motor 2 </ b> C that rotates the cam portion 30 inside the cam portion 30 in the radial direction. Further, the transmission 1 </ b> C of the fourth embodiment includes a third crown gear 23 </ b> C supported by the cam portion 30 on the side opposite to the first crown gear 21. The transmission 1C of the fourth embodiment includes a second crown gear 22C that meshes with the third crown gear 23C on the same side as the first crown gear 21. That is, the third crown gear 23C of the fourth embodiment has the opposing teeth 23a facing the first crown gear 21 and the opposing teeth 23b facing the second crown gear 22C on the same side in the axial direction.
 第三冠ギヤ23Cは、対向歯23aの径方向の外側に、対向歯23bを有している。対向歯23aと対向歯23bとの間には、環状溝23fが形成されている。第三冠ギヤ23Cの対向歯23bに噛み合う第二冠ギヤ22Cは、第一冠ギヤ21の径方向の外側に配置されている。言い換えると、第三冠ギヤ23Cの径方向の内側に、第一冠ギヤ21が配置されている。第三冠ギヤ23Cは、上述した軸受15を介して、軸線L回りに回転自在に支持されている。 The third crown gear 23C has opposing teeth 23b on the outer side in the radial direction of the opposing teeth 23a. An annular groove 23f is formed between the opposing tooth 23a and the opposing tooth 23b. The second crown gear 22 </ b> C that meshes with the opposing teeth 23 b of the third crown gear 23 </ b> C is disposed on the outer side in the radial direction of the first crown gear 21. In other words, the first crown gear 21 is disposed inside the radial direction of the third crown gear 23C. The third crown gear 23C is supported so as to be rotatable around the axis L via the bearing 15 described above.
 第三冠ギヤ23Cの対向歯23a及び対向歯23bの形成面と反対側は、軸線Lと直交する平面に対して傾いた傾斜面23eとなっている。傾斜面23eの周縁部には、上述した転動体転走溝23cが形成されている。転動体転走溝23cは、軸方向においてカム部30に形成された転動体転走溝32cと対向している。転動体転走溝32cは、傾斜面23eと平行に形成された傾斜面212bの周縁部に形成されている。転動体転走溝23cと転動体転走溝32cとの間には、複数の転動体33が軸線L回りに無限循環可能に配列されている。 The opposite side of the third crown gear 23C from the surface where the opposing teeth 23a and 23b are formed is an inclined surface 23e inclined with respect to a plane orthogonal to the axis L. The rolling element rolling groove 23c mentioned above is formed in the peripheral part of the inclined surface 23e. The rolling element rolling groove 23c is opposed to the rolling element rolling groove 32c formed in the cam portion 30 in the axial direction. The rolling element rolling groove 32c is formed in the peripheral part of the inclined surface 212b formed in parallel with the inclined surface 23e. Between the rolling element rolling groove 23c and the rolling element rolling groove 32c, a plurality of rolling elements 33 are arranged around the axis L so as to be capable of infinite circulation.
 カム部30は、第三冠ギヤ23Cの傾斜面23e側(対向歯23a及び対向歯23bの形成面と反対側)に配置されている。また、カム部30は、第三冠ギヤ23Cと略同じ径を持つ円板状に形成されている。つまり、カム部30は、第三冠ギヤ23Cの径方向の内側に配置されておらず、さらには、第一冠ギヤ21及び第二冠ギヤ22Cの径方向の内側にも配置されていない。このカム部30は、図12において図示しないハウジング10に支持された軸受16(図2参照)を介して、軸線L回りに回転自在に支持されている。 The cam portion 30 is disposed on the inclined surface 23e side of the third crown gear 23C (on the side opposite to the formation surface of the opposing teeth 23a and the opposing teeth 23b). Further, the cam portion 30 is formed in a disk shape having substantially the same diameter as the third crown gear 23C. That is, the cam portion 30 is not arranged on the inner side in the radial direction of the third crown gear 23C, and further, is not arranged on the inner side in the radial direction of the first crown gear 21 and the second crown gear 22C. The cam portion 30 is supported so as to be rotatable around the axis L via a bearing 16 (see FIG. 2) supported by the housing 10 (not shown in FIG. 12).
 このカム部30の径方向の内側には、カム部30を回転させるモータ2Cが配置されている。モータ2Cは、上述した第三実施形態のモータ3Bと同様のアウターロータ型のモータである。モータ2Cは、複数のコイル202が設けられるステータ200と、複数の永久磁石211が設けられるアウターロータ210と、を備える。なお、コイル202をアウターロータ210に設け、永久磁石211をステータ200に設けることも可能である。 The motor 2C for rotating the cam portion 30 is disposed inside the cam portion 30 in the radial direction. The motor 2C is an outer rotor type motor similar to the motor 3B of the third embodiment described above. The motor 2 </ b> C includes a stator 200 provided with a plurality of coils 202 and an outer rotor 210 provided with a plurality of permanent magnets 211. The coil 202 can be provided on the outer rotor 210 and the permanent magnet 211 can be provided on the stator 200.
 ステータ200は、ステータコア201と、ステータコア201に支持されたコイル202と、を有している。ステータコア201は、軸線Lと同軸の円環状に形成されている。ステータコア201の周面には、径方向外側に延びる複数のティース201a(突極)が形成されている。ティース201aには、コイル202が巻き掛けられている。 The stator 200 has a stator core 201 and a coil 202 supported by the stator core 201. The stator core 201 is formed in an annular shape coaxial with the axis L. On the circumferential surface of the stator core 201, a plurality of teeth 201a (saliency poles) extending outward in the radial direction are formed. A coil 202 is wound around the teeth 201a.
 ステータコア201の径方向の内側には、外周面に段差222が形成された第2円筒支持部材220が嵌合している。第2円筒支持部材220は、上述した円筒支持部材43の上端部にボルト46を介して固定されている。第2円筒支持部材220は、円筒支持部材43の上端部から軸線Lに沿って上方に延びている。また、第2円筒支持部材220の下端部は、径方向の外側に拡径したフランジ221となっている。 A second cylindrical support member 220 having a step 222 formed on the outer peripheral surface is fitted inside the stator core 201 in the radial direction. The second cylindrical support member 220 is fixed to the upper end portion of the above-described cylindrical support member 43 through bolts 46. The second cylindrical support member 220 extends upward along the axis L from the upper end portion of the cylindrical support member 43. Further, the lower end portion of the second cylindrical support member 220 is a flange 221 whose diameter is increased outward in the radial direction.
 フランジ221は、円筒支持部材43の上端部よりも径方向の外側に延びて、軸方向において軸受35と当接している。軸受35は、円筒支持部材43に外挿された円筒状のスリーブ230に支持されている。スリーブ230の外周面には、軸受35を軸方向で支持する段差231が形成されている。また、スリーブ230の下端部は、第一ワンウェイクラッチ41と軸方向で当接している。フランジ221は、スリーブ230と共に軸受35を軸方向で挟持すると共に、上述した押え板45と同様の機能を有し、スリーブ230を介して、第一ワンウェイクラッチ41、間座44、及び第二ワンウェイクラッチ42を軸方向で挟み込んでいる。 The flange 221 extends radially outward from the upper end of the cylindrical support member 43 and is in contact with the bearing 35 in the axial direction. The bearing 35 is supported by a cylindrical sleeve 230 that is extrapolated to the cylindrical support member 43. A step 231 that supports the bearing 35 in the axial direction is formed on the outer peripheral surface of the sleeve 230. Further, the lower end portion of the sleeve 230 is in contact with the first one-way clutch 41 in the axial direction. The flange 221 sandwiches the bearing 35 in the axial direction together with the sleeve 230 and has the same function as the press plate 45 described above, and the first one-way clutch 41, the spacer 44, and the second one-way are interposed via the sleeve 230. The clutch 42 is sandwiched in the axial direction.
 アウターロータ210は、永久磁石211と、永久磁石211を支持するロータコア212と、を有している。永久磁石211は、ステータコア201のティース201aと径方向において隙間をあけて対向している。永久磁石211は、ロータコア212の中心を軸方向に貫通する貫通孔212aの内周面に固定されている。 The outer rotor 210 has a permanent magnet 211 and a rotor core 212 that supports the permanent magnet 211. The permanent magnet 211 is opposed to the teeth 201a of the stator core 201 with a gap in the radial direction. The permanent magnet 211 is fixed to the inner peripheral surface of a through hole 212a that penetrates the center of the rotor core 212 in the axial direction.
 ロータコア212は、上述したカム部30と一体となっている。言い換えると、ロータコア212が、カム部30を形成しているとも言える。ロータコア212の構成は、上述したカム部30の構成と同じであるため、その説明は割愛する。 The rotor core 212 is integrated with the cam portion 30 described above. In other words, it can be said that the rotor core 212 forms the cam portion 30. Since the structure of the rotor core 212 is the same as the structure of the cam part 30 mentioned above, the description is omitted.
 上記構成の変速装置1Cによれば、モータ2Cのアウターロータ210を回転させると、ロータコア212(カム部30)に支持された第三冠ギヤ23Cが波動運動する(すなわち、第三冠ギヤ23が歳差運動する)。この第三冠ギヤ23Cの波動運動に伴い、第一冠ギヤ21と第三冠ギヤ23Cとの噛み合い箇所、及び第三冠ギヤ23と第二冠ギヤ22Cとの噛み合い箇所が円周方向に移動する。このような第三冠ギヤ23Cの波動運動に伴い、第三冠ギヤ23Cが第一冠ギヤ21に対して両者の歯数差の分だけ相対的に軸線Lの回りを回転する。また、第二冠ギヤ22Cが第三冠ギヤ23Cに対して両者の歯数差の分だけ相対的に軸線Lの回りを回転する。つまり、上述した実施形態と同様の減速比が得られる。 According to the transmission 1C configured as described above, when the outer rotor 210 of the motor 2C is rotated, the third crown gear 23C supported by the rotor core 212 (cam portion 30) performs a wave motion (that is, the third crown gear 23 is moved). Precession exercise). Along with the wave motion of the third crown gear 23C, the meshing location of the first crown gear 21 and the third crown gear 23C and the meshing location of the third crown gear 23 and the second crown gear 22C move in the circumferential direction. To do. With such wave motion of the third crown gear 23C, the third crown gear 23C rotates about the axis L relative to the first crown gear 21 by the difference in the number of teeth of both. Further, the second crown gear 22C rotates about the axis L relative to the third crown gear 23C by the difference in the number of teeth of both. That is, a reduction ratio similar to that in the above-described embodiment can be obtained.
 上述した第四実施形態によれば、上述した実施形態と同様の作用効果に加えて、カム部30の径方向の内側に、カム部30を回転させるモータ2Cを備えているので、上述した第三実施形態と同様に、変速装置1Cの軸方向における寸法がコンパクトになる。 According to the fourth embodiment described above, in addition to the same functions and effects as those of the above-described embodiment, the motor 2C that rotates the cam portion 30 is provided inside the cam portion 30 in the radial direction. Similar to the third embodiment, the dimension of the transmission 1C in the axial direction becomes compact.
 また、本実施形態では、モータ2Bは、カム部30と一体となったアウターロータ210を備えているので、カム部30とアウターロータ210を径方向で分割した別部品で構成する必要は無く、変速装置1Cの径方向における寸法のコンパクト化に寄与できる。 In the present embodiment, the motor 2B includes the outer rotor 210 that is integrated with the cam portion 30. Therefore, it is not necessary to configure the cam portion 30 and the outer rotor 210 as separate parts divided in the radial direction. This can contribute to a reduction in the size of the transmission 1C in the radial direction.
 また、本実施形態では、第一冠ギヤ21と同じ側で、第三冠ギヤ23Cに噛み合う第二冠ギヤ22Cを備えるので、第一冠ギヤ21(変速ギヤ)と同じ側から出力を取り出すことができる。 In the present embodiment, since the second crown gear 22C meshing with the third crown gear 23C is provided on the same side as the first crown gear 21, the output is taken out from the same side as the first crown gear 21 (transmission gear). Can do.
 以上、図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 The preferred embodiment of the present invention has been described above with reference to the drawings, but the present invention is not limited to the above embodiment. Various shapes, combinations, and the like of the constituent members shown in the above-described embodiments are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
 例えば、上記実施形態では、第一冠ギヤ21が2つの変速ギヤ21A,21Bを有する構成について説明したが、第一冠ギヤ21が歯数の異なる3つ以上の変速ギヤを有していてもよい。
 また、これら複数の変速ギヤが、第一冠ギヤ21側ではなく、第二冠ギヤ22側にあってもよい(出力側で減速比を切り替える構成であってもよい)。
For example, in the above-described embodiment, the configuration in which the first crown gear 21 has the two transmission gears 21A and 21B has been described, but the first crown gear 21 may have three or more transmission gears having different numbers of teeth. Good.
Further, the plurality of transmission gears may be on the second crown gear 22 side instead of the first crown gear 21 side (a configuration in which the reduction ratio is switched on the output side may be employed).
 また、例えば、上記第一実施形態では、切替機構40として無電源のワンウェイクラッチを用いる構成について説明したが、電動式ワンウェイクラッチを使用してもよい。なお、この電動式ワンウェイクラッチは、例えば、第一変速ギヤ21Aと第二変速ギヤ21Bとの隙間に配置して、いずれか一方の変速ギヤを回転させて、他方の変速ギヤを固定する配置としてもよい。 For example, in the first embodiment, the configuration using the non-powered one-way clutch as the switching mechanism 40 has been described. However, an electric one-way clutch may be used. The electric one-way clutch is arranged, for example, in a gap between the first transmission gear 21A and the second transmission gear 21B, and rotates one of the transmission gears to fix the other transmission gear. Also good.
 上記した変速装置によれば、コンパクトで減速比を切り替えることができる。 ¡According to the transmission described above, the reduction gear ratio can be switched in a compact manner.
1 変速装置
1A 変速装置
2 モータ
2B モータ
2C モータ
2a 回転軸
10 ハウジング
21 第一冠ギヤ
21A 第一変速ギヤ
21a 対向歯
21a1 傾斜面
21B 第二変速ギヤ
21b 対向歯
21b1 傾斜面
22 第二冠ギヤ
22a 対向歯
23 第三冠ギヤ
23a 対向歯
23b 対向歯
30 カム部
40 切替機構
40A 切替機構
41 第一ワンウェイクラッチ
41A 楔部
42 第二ワンウェイクラッチ
42A 可動部
43A 傾斜部
100 ステータ
110 アウターロータ
200 ステータ
210 アウターロータ
L 軸線
P1 第一固定位置
P2 第二固定位置
α 角度
 
DESCRIPTION OF SYMBOLS 1 Transmission 1A Transmission 2 Motor 2B Motor 2C Motor 2a Rotating shaft 10 Housing 21 First crown gear 21A First transmission gear 21a Opposing tooth 21a1 Inclined surface 21B Second transmission gear 21b Opposing tooth 21b1 Inclining surface 22 Second crown gear 22a Counter tooth 23 Third crown gear 23a Counter tooth 23b Counter tooth 30 Cam part 40 Switching mechanism 40A Switching mechanism 41 First one-way clutch 41A Wedge part 42 Second one-way clutch 42A Movable part 43A Inclined part 100 Stator 110 Outer rotor 200 Stator 210 Outer Rotor L Axis P1 First fixed position P2 Second fixed position α Angle

Claims (8)

  1.  第一冠ギヤと、
     第二冠ギヤと、
     前記第一冠ギヤに対向する対向歯と前記第二冠ギヤに対向する対向歯とを持つ第三冠ギヤと、
     前記第三冠ギヤが前記第一冠ギヤに噛み合い、前記第三冠ギヤが前記第二冠ギヤに噛み合うように、前記第三冠ギヤを前記第一冠ギヤ及び前記第二冠ギヤに対して傾斜させ、かつ噛み合う箇所が円周方向に移動するように前記第三冠ギヤを波動運動させるカム部と、を備え、
     前記第一冠ギヤ及び前記第二冠ギヤのいずれか一方は、径方向に分割された歯数の異なる複数の変速ギヤを有し、
     前記複数の変速ギヤの中から固定する変速ギヤを切り替える切替機構を有する、変速装置。
    The first crown gear,
    A second crown gear,
    A third crown gear having opposing teeth facing the first crown gear and opposing teeth facing the second crown gear;
    The third crown gear with respect to the first crown gear and the second crown gear so that the third crown gear meshes with the first crown gear and the third crown gear meshes with the second crown gear. And a cam portion that wave-moves the third crown gear so that the inclining and meshing portions move in the circumferential direction,
    Either one of the first crown gear and the second crown gear has a plurality of transmission gears with different numbers of teeth divided in the radial direction,
    A transmission device comprising a switching mechanism for switching a transmission gear to be fixed from among the plurality of transmission gears.
  2.  前記切替機構は、回転方向に応じて、前記固定する変速ギヤを切り替える、請求項1に記載の変速装置。 The transmission according to claim 1, wherein the switching mechanism switches the fixed transmission gear according to a rotation direction.
  3.  前記複数の変速ギヤは、第一変速ギヤと、第二変速ギヤと、を有し、
     前記切替機構は、
     前記第一変速ギヤを一方向のみに回転させる第一ワンウェイクラッチと、
     前記第二変速ギヤを前記第一変速ギヤと逆向きの一方向のみに回転させる第二ワンウェイクラッチと、を有する、請求項2に記載の変速装置。
    The plurality of transmission gears include a first transmission gear and a second transmission gear,
    The switching mechanism is
    A first one-way clutch that rotates the first transmission gear in only one direction;
    The transmission according to claim 2, further comprising: a second one-way clutch that rotates the second transmission gear in only one direction opposite to the first transmission gear.
  4.  前記複数の変速ギヤは、第一変速ギヤと、第二変速ギヤと、を有し、
     前記切替機構は、
     前記第一変速ギヤと前記第二変速ギヤとの隙間に挿入され、軸方向の可動によって前記第一変速ギヤ及び前記第二変速ギヤと当接可能な傾斜部を備える楔部と、
     前記楔部を、前記第一変速ギヤを固定する第一固定位置と、前記第二変速ギヤを固定する第二固定位置との間で軸方向に可動させる可動部と、を有する、請求項1または2に記載の変速装置。
    The plurality of transmission gears include a first transmission gear and a second transmission gear,
    The switching mechanism is
    A wedge portion that is inserted into a gap between the first transmission gear and the second transmission gear and includes an inclined portion that can be brought into contact with the first transmission gear and the second transmission gear by moving in the axial direction;
    2. The movable portion that moves the wedge portion in an axial direction between a first fixed position for fixing the first transmission gear and a second fixed position for fixing the second transmission gear. Or the transmission of 2.
  5.  前記複数の変速ギヤは、前記第三冠ギヤの対向歯と同じ歯数の変速ギヤを含む、請求項1~4のいずれか一項に記載の変速装置。 The transmission according to any one of claims 1 to 4, wherein the plurality of transmission gears include a transmission gear having the same number of teeth as the opposing teeth of the third crown gear.
  6.  前記カム部の径方向の内側に、前記カム部を回転させるモータを備える、請求項1~5のいずれか一項に記載の変速装置。 The transmission according to any one of claims 1 to 5, further comprising a motor that rotates the cam portion on a radially inner side of the cam portion.
  7.  前記モータは、さらに、前記第一冠ギヤ、前記第二冠ギヤ、前記第三冠ギヤの少なくともいずれか一つの径方向の内側に配置されている、請求項6に記載の変速装置。 The transmission according to claim 6, wherein the motor is further disposed on a radially inner side of at least one of the first crown gear, the second crown gear, and the third crown gear.
  8.  ステータと、アウターロータと、を有するモータを備え、
     前記アウターロータと、前記カム部が一体である、請求項1~7のいずれか一項に記載の変速装置。
    A motor having a stator and an outer rotor;
    The transmission according to any one of claims 1 to 7, wherein the outer rotor and the cam portion are integrated.
PCT/JP2019/005582 2018-02-20 2019-02-15 Transmission device WO2019163670A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020501731A JPWO2019163670A1 (en) 2018-02-20 2019-02-15 Transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-027758 2018-02-20
JP2018027758 2018-02-20

Publications (1)

Publication Number Publication Date
WO2019163670A1 true WO2019163670A1 (en) 2019-08-29

Family

ID=67687572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005582 WO2019163670A1 (en) 2018-02-20 2019-02-15 Transmission device

Country Status (3)

Country Link
JP (1) JPWO2019163670A1 (en)
TW (1) TW201937078A (en)
WO (1) WO2019163670A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949376U (en) * 1972-08-05 1974-04-30
JPH01118238U (en) * 1988-12-26 1989-08-10
JP2011241974A (en) * 2010-04-21 2011-12-01 Ntn Corp Speed reduction device
JP2013087781A (en) * 2011-10-13 2013-05-13 Toshiaki Shimada Gear device and drive device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949376U (en) * 1972-08-05 1974-04-30
JPH01118238U (en) * 1988-12-26 1989-08-10
JP2011241974A (en) * 2010-04-21 2011-12-01 Ntn Corp Speed reduction device
JP2013087781A (en) * 2011-10-13 2013-05-13 Toshiaki Shimada Gear device and drive device

Also Published As

Publication number Publication date
JPWO2019163670A1 (en) 2021-03-04
TW201937078A (en) 2019-09-16

Similar Documents

Publication Publication Date Title
JP5060969B2 (en) Robot joint drive device
JP5331125B2 (en) Drive device having at least one transmission stage
JP5533194B2 (en) Transmission gear unit
KR101748177B1 (en) Wave gear device with composite roller bearing
JP5006691B2 (en) Hypoid gear motor and manufacturing method thereof
JP5205523B2 (en) Decelerator
JP6137875B2 (en) Planetary gear reducer
EP2479456A1 (en) Eccentric oscillation gear device and method for producing eccentric oscillation gear device
US9488248B2 (en) Actuator
JP2007016838A (en) Silk hat type harmonic drive
US20190283242A1 (en) Multi-directional drive device, robot joint mechanism, and multi-directional drive method
JP2020072641A (en) Reduction gear and electrical facility
JP6836343B2 (en) Motor unit for strain wave gearing reducer
WO2018043398A1 (en) Electric motor-equipped wave gear speed reducer
WO2019163670A1 (en) Transmission device
JP2010084842A (en) Rotary drive device, robot joint structure and robot arm
US20180031079A1 (en) Gear device
JP2007028883A (en) Geared motor and shaft member for the same
JP2015074036A (en) Actuator, and robot joint structure provided with the same
JP2012016200A (en) Cylindrical motor
JP2009250358A (en) Magnetic gear reduction gear
JP6684313B2 (en) Speed reducer with power source
US20180372187A1 (en) Speed reducing device having power source
JP2006329390A (en) Magnetic coupling device
WO2019123666A1 (en) Coreless motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501731

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757251

Country of ref document: EP

Kind code of ref document: A1