WO2019163661A1 - Soft magnetic alloy and magnetic component - Google Patents

Soft magnetic alloy and magnetic component Download PDF

Info

Publication number
WO2019163661A1
WO2019163661A1 PCT/JP2019/005514 JP2019005514W WO2019163661A1 WO 2019163661 A1 WO2019163661 A1 WO 2019163661A1 JP 2019005514 W JP2019005514 W JP 2019005514W WO 2019163661 A1 WO2019163661 A1 WO 2019163661A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
magnetic alloy
alloy according
flux density
alloy
Prior art date
Application number
PCT/JP2019/005514
Other languages
French (fr)
Japanese (ja)
Inventor
一 天野
明洋 原田
和宏 吉留
賢治 堀野
裕之 松元
健輔 荒
暁斗 長谷川
誠吾 野老
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US16/971,477 priority Critical patent/US20200377982A1/en
Priority to CN201980014084.5A priority patent/CN111771010A/en
Publication of WO2019163661A1 publication Critical patent/WO2019163661A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • B22F2009/0828Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0844Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid in controlled atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a soft magnetic alloy and a magnetic component.
  • Patent Document 1 describes an Fe-based soft magnetic alloy having a fine crystal grain size.
  • a nanocrystalline material can provide a higher saturation magnetic flux density or the like than a conventional crystalline material such as FeSi or an amorphous material such as FeSiB.
  • An object of the present invention is to provide a soft magnetic alloy having a high saturation magnetic flux density, a low coercive force, and a high specific resistance.
  • the soft magnetic alloy according to the present invention comprises: Composition formula (Fe (1- ( ⁇ + ⁇ )) X1 ⁇ X2 ⁇ ) a (1- (a + b + c + d + e)) M a Si b Cu c soft magnetic alloy consisting of X3 d B e,
  • X1 is one or more selected from the group consisting of Co and Ni
  • X2 is one or more selected from the group consisting of Ti, V, Mn, Ag, Zn, Al, Sn, As, Sb, Bi and rare earth elements
  • X3 is one or more selected from the group consisting of C and Ge
  • M is at least one selected from the group consisting of Zr, Nb, Hf, Ta, Mo and W; 0.030 ⁇ a ⁇ 0.120 0.020 ⁇ b ⁇ 0.175 0 ⁇ c ⁇ 0.020 0 ⁇ d ⁇ 0.100 0 ⁇ e ⁇ 0.030 ⁇ ⁇ ⁇
  • the soft magnetic alloy according to the present invention has the above-described characteristics, and thus tends to have a structure that is likely to become an Fe-based nanocrystalline alloy by heat treatment. Furthermore, the Fe-based nanocrystalline alloy having the above characteristics has a preferable soft magnetic characteristic of a high saturation magnetic flux density and a low coercive force, and further becomes a soft magnetic alloy having a high specific resistance.
  • the soft magnetic alloy according to the present invention may satisfy 0 ⁇ e ⁇ 0.010.
  • the soft magnetic alloy according to the present invention may satisfy 0 ⁇ e ⁇ 0.001.
  • the soft magnetic alloy according to the present invention may satisfy 0.730 ⁇ 1- (a + b + c + d + e) ⁇ 0.930.
  • the soft magnetic alloy according to the present invention may satisfy 0 ⁇ ⁇ ⁇ 1 ⁇ (a + b + c + d + e) ⁇ ⁇ 0.40.
  • the soft magnetic alloy according to the present invention may satisfy 0 ⁇ ⁇ ⁇ 1- (a + b + c + d + e) ⁇ ⁇ 0.030.
  • the soft magnetic alloy according to the present invention may have a nanoheterostructure in which initial microcrystals exist in an amorphous state.
  • the average grain size of the initial microcrystal may be 0.3 to 10 nm.
  • the soft magnetic alloy according to the present invention may have a structure made of Fe-based nanocrystals.
  • the average particle diameter of the Fe-based nanocrystal may be 5 to 30 nm.
  • the soft magnetic alloy according to the present invention may have a ribbon shape.
  • the soft magnetic alloy according to the present invention may be in a powder form.
  • the magnetic component according to the present invention is made of the above soft magnetic alloy.
  • Soft magnetic alloy according to the present embodiment, the composition formula (Fe (1- ( ⁇ + ⁇ )) X1 ⁇ X2 ⁇ ) there with (1- (a + b + c + d + e)) M a Si b Cu c X3 d soft magnetic alloy consisting of B e
  • X1 is one or more selected from the group consisting of Co and Ni
  • X2 is one or more selected from the group consisting of Ti, V, Mn, Ag, Zn, Al, Sn, As, Sb, Bi and rare earth elements
  • X3 is one or more selected from the group consisting of C and Ge
  • M is at least one selected from the group consisting of Zr, Nb, Hf, Ta, Mo and W; 0.030 ⁇ a ⁇ 0.120 0.020 ⁇ b ⁇ 0.175 0 ⁇ c ⁇ 0.020 0 ⁇ d ⁇ 0.100 0 ⁇ e ⁇ 0.030 ⁇ ⁇ 0 ⁇ 0
  • the soft magnetic alloy having the above composition is easily made into a soft magnetic alloy that is amorphous and does not include a crystal phase that is composed of crystals having a particle size larger than 15 nm. And when heat-treating the soft magnetic alloy, Fe-based nanocrystals are likely to precipitate. And the soft magnetic alloy containing Fe-based nanocrystal tends to have a high saturation magnetic flux density, a low coercive force, and a high specific resistance. Furthermore, the oxidation resistance tends to be high.
  • the soft magnetic alloy having the above composition is easily used as a starting material for the soft magnetic alloy in which Fe-based nanocrystals are precipitated.
  • the soft magnetic alloy before the heat treatment may be made entirely of amorphous material, but is composed of amorphous material and initial microcrystals having a particle size of 15 nm or less, and the initial microcrystals are in the amorphous state. It preferably has a nanoheterostructure present in When the initial microcrystal has a nanoheterostructure existing in an amorphous state, Fe-based nanocrystals are easily precipitated during heat treatment.
  • the initial crystallites preferably have an average particle size of 0.3 to 10 nm.
  • M content (a) satisfies 0.030 ⁇ a ⁇ 0.120.
  • the content (a) of M is preferably 0.050 ⁇ a ⁇ 0.100.
  • the Si content (b) satisfies 0.020 ⁇ b ⁇ 0.175.
  • the Si content (b) preferably satisfies 0.030 ⁇ b ⁇ 0.100.
  • Cu content (c) satisfies 0 ⁇ c ⁇ 0.020. That is, Cu does not have to be contained.
  • the saturation magnetic flux density increases as the Cu content decreases, and the coercive force tends to decrease as the Cu content increases.
  • c is too large, the saturation magnetic flux density is too low.
  • X3 is at least one selected from the group consisting of C and Ge.
  • the content (d) of X3 satisfies 0 ⁇ d ⁇ 0.100. That is, X3 may not be contained.
  • the content (d) of X3 is preferably 0 ⁇ d ⁇ 0.050. When the content of X3 is too large, the saturation magnetic flux density tends to be low, and the coercive force tends to be high.
  • B content (e) satisfies 0 ⁇ e ⁇ 0.030. That is, B may not be contained. Furthermore, it is preferable that 0 ⁇ e ⁇ 0.010, and it is further preferable that B is not substantially contained. Note that “substantially not containing B” refers to the case of 0 ⁇ e ⁇ 0.001. When the content of B is large, the saturation magnetic flux density tends to be low, and the coercive force is likely to be high.
  • the Fe content (1- (a + b + c + d + e)) is not particularly limited, but preferably satisfies 0.730 ⁇ 1- (a + b + c + d + e) ⁇ 0.930. 0.780 ⁇ 1 ⁇ (a + b + c + d + e) ⁇ 0.930 may be satisfied.
  • the saturation magnetic flux density is easily improved and the coercive force is easily reduced.
  • a part of Fe may be substituted with X1 and / or X2.
  • X1 is at least one selected from the group consisting of Co and Ni.
  • the number of atoms of X1 is preferably 40 at% or less, where the total number of atoms in the composition is 100 at%. That is, it is preferable to satisfy 0 ⁇ ⁇ ⁇ 1 ⁇ (a + b + c + d + e) ⁇ ⁇ 0.40.
  • the range of substitution amount for substituting Fe with X1 and / or X2 is 0 ⁇ ⁇ + ⁇ ⁇ 0.55. In the case of ⁇ + ⁇ > 0.55, it becomes difficult to form an Fe-based nanocrystalline alloy by heat treatment, and even if the Fe-based nanocrystalline alloy is formed, the coercive force tends to increase.
  • the soft magnetic alloy according to this embodiment may contain elements other than the above as inevitable impurities. Further, elements other than the above may be contained in total less than 1% by weight with respect to 100% by weight of the soft magnetic alloy.
  • the single roll method first, pure metals of each metal element contained in the finally obtained soft magnetic alloy are prepared and weighed so as to have the same composition as the finally obtained soft magnetic alloy. And the pure metal of each metal element is melt
  • the method for dissolving the pure metal is not particularly limited. For example, there is a method in which the pure metal is melted by high-frequency heating after evacuation in a chamber.
  • the master alloy and the soft magnetic alloy consisting of the finally obtained Fe-based nanocrystal usually have the same composition.
  • the thickness of the ribbon obtained mainly by adjusting the rotation speed of the roll can be adjusted, but for example, by adjusting the interval between the nozzle and the roll, the temperature of the molten metal, etc.
  • the thickness of the obtained ribbon can be adjusted.
  • the thickness of the ribbon is not particularly limited, but can be 5 to 30 ⁇ m, for example.
  • the ribbon is amorphous with no crystal having a particle size larger than 15 nm.
  • An Fe-based nanocrystalline alloy can be obtained by subjecting the amorphous ribbon to a heat treatment described later.
  • the thin ribbon before the heat treatment may not contain any initial crystallites having a particle size of less than 15 nm, but preferably contains initial crystallites. That is, it is preferable that the ribbon before the heat treatment has a nanoheterostructure composed of amorphous and the initial microcrystals present in the amorphous.
  • the particle size of the initial microcrystal is not particularly limited, but the average particle size is preferably in the range of 0.3 to 10 nm.
  • the roll temperature is preferably 4 to 30 ° C. to make it amorphous.
  • the higher the rotation speed of the roll the smaller the average grain size of the initial crystallites, and 30 to 40 m / sec. Is preferable in order to obtain initial microcrystals having an average particle size of 0.3 to 10 nm.
  • the atmosphere inside the chamber is preferably in the air considering cost.
  • the heat treatment conditions for producing the Fe-based nanocrystalline alloy there are no particular restrictions on the heat treatment conditions for producing the Fe-based nanocrystalline alloy.
  • Preferred heat treatment conditions vary depending on the composition of the soft magnetic alloy. Usually, the preferred heat treatment temperature is about 400 to 600 ° C., and the preferred heat treatment time is about 10 minutes to 10 hours. However, depending on the composition, there may be a preferred heat treatment temperature and heat treatment time outside the above range.
  • the method for calculating the average particle diameter in the obtained Fe-based nanocrystalline alloy can be calculated by observing using a transmission electron microscope.
  • the method for confirming that the crystal structure is bcc (body-centered cubic lattice structure).
  • it can be confirmed using X-ray diffraction measurement.
  • a molten alloy at 1200 to 1500 ° C. is obtained in the same manner as the single roll method described above. Thereafter, the molten alloy is sprayed in a chamber to produce a powder.
  • the preferable nanoheterostructure can be easily obtained.
  • thermodynamic equilibrium state can be reached in a short time, strain and stress can be removed, and an Fe-based soft magnetic alloy having an average particle size of 10 to 50 nm can be easily obtained.
  • the shape of the soft magnetic alloy according to this embodiment is not particularly limited. As described above, a ribbon shape and a powder shape are exemplified, but a block shape and the like are also conceivable.
  • the use of the soft magnetic alloy (Fe-based nanocrystalline alloy) according to the present embodiment is not particularly limited.
  • magnetic parts are mentioned, and among these, a magnetic core is particularly mentioned. It can be suitably used as a magnetic core for an inductor, particularly a power inductor.
  • the soft magnetic alloy according to this embodiment can be suitably used for a thin film inductor and a magnetic head in addition to a magnetic core.
  • a method for obtaining a magnetic component in particular, a magnetic core and an inductor from the soft magnetic alloy according to the present embodiment will be described.
  • a method for obtaining the magnetic core and the inductor from the soft magnetic alloy according to the present embodiment is not limited to the following method.
  • applications of magnetic cores include transformers and motors.
  • Examples of a method for obtaining a magnetic core from a ribbon-shaped soft magnetic alloy include a method of winding a ribbon-shaped soft magnetic alloy and a method of laminating. When laminating thin ribbon-shaped soft magnetic alloys via an insulator, a magnetic core with further improved characteristics can be obtained.
  • a method for obtaining a magnetic core from a soft magnetic alloy in the form of a powder for example, a method in which a magnetic core is appropriately mixed with a binder and then molded using a mold can be mentioned.
  • a method in which a magnetic core is appropriately mixed with a binder and then molded using a mold can be mentioned.
  • an oxidation treatment, an insulating film or the like to the powder surface before mixing with the binder, the specific resistance is improved and the magnetic core is adapted to a higher frequency band.
  • the molding method is not particularly limited, and examples thereof include molding using a mold and molding.
  • the space factor is 70% or more, 1.6%.
  • a magnetic core having a magnetic flux density of 0.45 T or more and a specific resistance of 1 ⁇ ⁇ cm or more when a magnetic field of ⁇ 10 4 A / m is applied can be obtained.
  • the above characteristics are equivalent to or better than general ferrite cores.
  • the space factor is 80%.
  • a dust core having a magnetic flux density of 0.9 T or more and a specific resistance of 0.1 ⁇ ⁇ cm or more when a magnetic field of 1.6 ⁇ 10 4 A / m is applied can be obtained.
  • the above characteristics are superior to general dust cores.
  • the molded body having the above-described magnetic core is subjected to heat treatment after molding as a strain relief heat treatment, thereby further reducing core loss and increasing usefulness. Note that the core loss of the magnetic core is reduced by reducing the coercive force of the magnetic body constituting the magnetic core.
  • an inductance component can be obtained by winding the magnetic core.
  • the manner in which the winding is applied and the method of manufacturing the inductance component For example, a method of winding a winding at least one turn or more around the magnetic core manufactured by the above method can be mentioned.
  • a soft magnetic alloy paste obtained by adding a binder and a solvent to the soft magnetic alloy particles and a paste obtained by adding a binder and a solvent to the conductor metal for the coil can be obtained by heating and firing after alternately laminating and laminating the conductive paste.
  • an inductance component in which the coil is built in the magnetic body is obtained. Can be obtained.
  • a soft magnetic alloy powder having a maximum particle size of 45 ⁇ m or less and a center particle size (D50) of 30 ⁇ m or less. It is preferable for obtaining the Q characteristic.
  • a sieve having an opening of 45 ⁇ m may be used, and only the soft magnetic alloy powder passing through the sieve may be used.
  • the Q value in the high frequency region tends to decrease as the soft magnetic alloy powder having a large maximum particle size is used. Particularly when the soft magnetic alloy powder having a maximum particle size exceeding 45 ⁇ m in the sieve diameter is used, The Q value may be greatly reduced. However, if the Q value in the high frequency region is not important, soft magnetic alloy powder having a large variation can be used. Since soft magnetic alloy powders with large variations can be manufactured at a relatively low cost, it is possible to reduce costs when using soft magnetic alloy powders with large variations.
  • the raw metal was weighed so as to have the alloy compositions of the examples and comparative examples shown in the table below, and was melted by high-frequency heating to prepare a master alloy.
  • the produced master alloy is heated and melted to form a molten metal at 1300 ° C., and then a 20 ° C. roll is rotated in the atmosphere at a rotational speed of 40 m / sec.
  • the metal was jetted onto a roll by the single roll method used in the above to create a ribbon.
  • the thickness of the ribbon was 20 to 25 ⁇ m, the width of the ribbon was about 15 mm, and the length of the ribbon was about 10 m.
  • the coercive force was 10.0 A / m or less, and 7.0 A / m or less was even better.
  • the specific resistance ( ⁇ ) is the specific resistance ( ⁇ ) of a ribbon (hereinafter also referred to as Fe 90 Zr 7 B 3 ribbon) prepared by the same manufacturing method as in Example 3 except that the composition is Fe 90 Zr 7 B 3. ) To 20% or more and less than 40%, the case where it rises is considered good, and the case where it rises 40% or more is considered even better.
  • Table 1 describes examples and comparative examples in which the content (a) of Zr was changed when M was only Zr and Cu, X3 and B were not included.
  • Comparative Example 1 in which the Zr content was too small, the ribbon before the heat treatment was composed of a crystalline phase, the coercive force Hc after the heat treatment was remarkably high, and the specific resistance ⁇ was low. Further, in Comparative Example 2 in which the Zr content was too large, the saturation magnetic flux density was lowered.
  • Table 2 describes examples and comparative examples in which the content (a) of Nb was changed when M was only Nb and Cu, X3, and B were not included.
  • Table 3 describes examples and comparative examples in which the Cu content (c) was changed when M was only Zr and X3 and B were not included.
  • Table 4 describes examples and comparative examples in which the type and content (d) of X3 are changed when M is only Zr and Cu and B are not included.
  • Table 5 describes examples and comparative examples in which the content (e) of B was changed when M was only Zr and Cu and X3 were not included.
  • Examples 24 to 27 in which the content of each component was within a predetermined range had good saturation magnetic flux density Bs, coercive force Hc, and specific resistance ⁇ .
  • Table 6 describes examples in which the type of M was changed from Example 3.
  • Examples 28 to 32 in which the content of each component is within a predetermined range even when the type of M is changed have good saturation magnetic flux density Bs, coercive force Hc, and specific resistance ⁇ .
  • Table 7 describes examples and comparative examples in which the content of Zr (a) and the content of Si (b) were changed when M was Zr only and Cu, X3 and B were not included. . As described above, with respect to the examples and comparative examples shown in Table 7, changes in saturation magnetic flux density and coercive force due to changes with time were measured.
  • Examples 32a to 32d and 52 to 56 were excellent in saturation magnetic flux density, coercive force, and specific resistance, and the change in saturation magnetic flux density and coercive force with time was small.
  • Comparative Example 8a having too little Si has a large coercive force, and also has a large change with time in the saturation magnetic flux density and the coercive force.
  • Comparative Example 11 with too much Si resulted in a large coercive force. Further, as compared with Examples 52 to 56 having the same Zr content, the saturation magnetic flux density was also reduced.
  • Table 8 describes an example in which part of Fe in Example 3 was replaced with X1 and / or X2.
  • Table 9 shows examples and comparative examples in which the average grain size of the initial microcrystals and the average grain size of the Fe-based nanocrystalline alloy were changed by changing the rotation speed of the roll, the heat treatment temperature and / or the heat treatment time for Example 3. Is described.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Provided is a soft magnetic alloy which has high saturation flux density, low coercivity, and a high specific resistance, and is represented by the compositional formula (Fe(1-(α+β))X1αX2β)(1-(a+b+c+d+e))MaSibCucX3dBe, wherein X1 is at least one element selected from the group consisting of Co and Ni, X2 is at least one element selected from the group consisting of Ti, V, Mn, Ag, Zn, Al, Sn, As, Sb, Bi, and rare earth elements, X3 is at least one element selected from the group consisting of C and Ge, and M is at least one element selected from the group consisting of Zr, Nb, Hf, Ta, Mo, and W, and wherein 0.030 ≤ a ≤ 0.120, 0.020 ≤ b ≤ 0.175, 0 ≤ c ≤ 0.020, 0 ≤ d ≤ 0.100, 0 ≤ e ≤ 0.030, α ≥ 0, β ≥ 0, and 0 ≤ α+β ≤ 0.55.

Description

軟磁性合金および磁性部品Soft magnetic alloys and magnetic parts
 本発明は、軟磁性合金および磁性部品に関する。 The present invention relates to a soft magnetic alloy and a magnetic component.
 近年、磁性部品用軟磁性材料、特にパワーインダクタ用軟磁性材料としてナノ結晶材料が主流になりつつある。例えば、特許文献1には、微細な結晶粒径を有するFe基軟磁性合金が記載されている。ナノ結晶材料は従来のFeSiなどの結晶性材料やFeSiBなどのアモルファス系材料と比較して高い飽和磁束密度等が得られる。 In recent years, nanocrystalline materials are becoming mainstream as soft magnetic materials for magnetic components, particularly soft magnetic materials for power inductors. For example, Patent Document 1 describes an Fe-based soft magnetic alloy having a fine crystal grain size. A nanocrystalline material can provide a higher saturation magnetic flux density or the like than a conventional crystalline material such as FeSi or an amorphous material such as FeSiB.
 しかし、現在では、磁性部品、特にパワーインダクタのさらなる高周波化と小型化が進み、さらに高い直流重畳特性と低いコアロス(磁気損失)を併せ持つ磁心を得ることができる軟磁性合金が求められている。 However, at present, there is a need for a soft magnetic alloy capable of obtaining a magnetic core having both a high DC superposition characteristic and a low core loss (magnetic loss) as magnetic components, particularly power inductors, are further increased in frequency and size.
特開2002-322546号公報JP 2002-322546 A
 なお、上記の磁心のコアロスを低減する方法として、特に磁心を構成する磁性体の保磁力および比抵抗を低減することが考えられる。また、高い直流重畳特性を得る方法としては、特に磁心を構成する磁性体の飽和磁束密度を上昇させることが考えられる。 Note that, as a method of reducing the core loss of the magnetic core, it is conceivable to reduce the coercive force and the specific resistance of the magnetic material constituting the magnetic core. Further, as a method for obtaining a high DC superposition characteristic, it is conceivable to increase the saturation magnetic flux density of the magnetic material constituting the magnetic core.
 本発明は、高い飽和磁束密度、低い保磁力および高い比抵抗を有する軟磁性合金等を提供することを目的とする。 An object of the present invention is to provide a soft magnetic alloy having a high saturation magnetic flux density, a low coercive force, and a high specific resistance.
 上記の目的を達成するために、本発明に係る軟磁性合金は、
 組成式(Fe(1-(α+β))X1αX2β(1-(a+b+c+d+e))SiCuX3からなる軟磁性合金であって、
 X1はCoおよびNiからなる群から選択される1種以上、
 X2はTi,V,Mn,Ag,Zn,Al,Sn,As,Sb,Biおよび希土類元素からなる群より選択される1種以上、
 X3はCおよびGeからなる群から選択される1種以上、
 MはZr,Nb,Hf,Ta,MoおよびWからなる群から選択される1種以上であり、
 0.030≦a≦0.120
 0.020≦b≦0.175
 0≦c≦0.020
 0≦d≦0.100
 0≦e≦0.030
 α≧0
 β≧0
 0≦α+β≦0.55
 であることを特徴とする。
In order to achieve the above object, the soft magnetic alloy according to the present invention comprises:
Composition formula (Fe (1- (α + β )) X1 α X2 β) a (1- (a + b + c + d + e)) M a Si b Cu c soft magnetic alloy consisting of X3 d B e,
X1 is one or more selected from the group consisting of Co and Ni,
X2 is one or more selected from the group consisting of Ti, V, Mn, Ag, Zn, Al, Sn, As, Sb, Bi and rare earth elements,
X3 is one or more selected from the group consisting of C and Ge,
M is at least one selected from the group consisting of Zr, Nb, Hf, Ta, Mo and W;
0.030 ≦ a ≦ 0.120
0.020 ≦ b ≦ 0.175
0 ≦ c ≦ 0.020
0 ≦ d ≦ 0.100
0 ≦ e ≦ 0.030
α ≧ 0
β ≧ 0
0 ≦ α + β ≦ 0.55
It is characterized by being.
 本発明に係る軟磁性合金は、上記の特徴を有することで、熱処理を施すことによりFe基ナノ結晶合金となりやすい構造を有しやすい。さらに、上記の特徴を有するFe基ナノ結晶合金は飽和磁束密度が高く保磁力が低いという好ましい軟磁気特性を有し、さらに比抵抗が高い軟磁性合金となる。 The soft magnetic alloy according to the present invention has the above-described characteristics, and thus tends to have a structure that is likely to become an Fe-based nanocrystalline alloy by heat treatment. Furthermore, the Fe-based nanocrystalline alloy having the above characteristics has a preferable soft magnetic characteristic of a high saturation magnetic flux density and a low coercive force, and further becomes a soft magnetic alloy having a high specific resistance.
 本発明に係る軟磁性合金は、0≦e≦0.010であってもよい。 The soft magnetic alloy according to the present invention may satisfy 0 ≦ e ≦ 0.010.
 本発明に係る軟磁性合金は、0≦e<0.001であってもよい。 The soft magnetic alloy according to the present invention may satisfy 0 ≦ e <0.001.
 本発明に係る軟磁性合金は、0.730≦1-(a+b+c+d+e)≦0.930であってもよい。 The soft magnetic alloy according to the present invention may satisfy 0.730 ≦ 1- (a + b + c + d + e) ≦ 0.930.
 本発明に係る軟磁性合金は、0≦α{1-(a+b+c+d+e)}≦0.40であってもよい。 The soft magnetic alloy according to the present invention may satisfy 0 ≦ α {1− (a + b + c + d + e)} ≦ 0.40.
 本発明に係る軟磁性合金は、α=0であってもよい。 The soft magnetic alloy according to the present invention may have α = 0.
 本発明に係る軟磁性合金は、0≦β{1-(a+b+c+d+e)}≦0.030であってもよい。 The soft magnetic alloy according to the present invention may satisfy 0 ≦ β {1- (a + b + c + d + e)} ≦ 0.030.
 本発明に係る軟磁性合金は、β=0であってもよい。 The soft magnetic alloy according to the present invention may have β = 0.
 本発明に係る軟磁性合金は、α=β=0であってもよい。 The soft magnetic alloy according to the present invention may have α = β = 0.
 本発明に係る軟磁性合金は、初期微結晶が非晶質中に存在するナノヘテロ構造を有していてもよい。 The soft magnetic alloy according to the present invention may have a nanoheterostructure in which initial microcrystals exist in an amorphous state.
 本発明に係る軟磁性合金は、前記初期微結晶の平均粒径が0.3~10nmであってもよい。 In the soft magnetic alloy according to the present invention, the average grain size of the initial microcrystal may be 0.3 to 10 nm.
 本発明に係る軟磁性合金は、Fe基ナノ結晶からなる構造を有していてもよい。 The soft magnetic alloy according to the present invention may have a structure made of Fe-based nanocrystals.
 本発明に係る軟磁性合金は、前記Fe基ナノ結晶の平均粒径が5~30nmであってもよい。 In the soft magnetic alloy according to the present invention, the average particle diameter of the Fe-based nanocrystal may be 5 to 30 nm.
 本発明に係る軟磁性合金は、薄帯形状であってもよい。 The soft magnetic alloy according to the present invention may have a ribbon shape.
 本発明に係る軟磁性合金は、粉末形状であってもよい。 The soft magnetic alloy according to the present invention may be in a powder form.
 また、本発明に係る磁性部品は、上記の軟磁性合金からなる。 The magnetic component according to the present invention is made of the above soft magnetic alloy.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 本実施形態に係る軟磁性合金は、組成式(Fe(1-(α+β))X1αX2β(1-(a+b+c+d+e))SiCuX3からなる軟磁性合金であって、
 X1はCoおよびNiからなる群から選択される1種以上、
 X2はTi,V,Mn,Ag,Zn,Al,Sn,As,Sb,Biおよび希土類元素からなる群より選択される1種以上、
 X3はCおよびGeからなる群から選択される1種以上、
 MはZr,Nb,Hf,Ta,MoおよびWからなる群から選択される1種以上であり、
 0.030≦a≦0.120
 0.020≦b≦0.175
 0≦c≦0.020
 0≦d≦0.100
 0≦e≦0.030
 α≧0
 β≧0
 0≦α+β≦0.55
 である組成を有する。
Soft magnetic alloy according to the present embodiment, the composition formula (Fe (1- (α + β )) X1 α X2 β) there with (1- (a + b + c + d + e)) M a Si b Cu c X3 d soft magnetic alloy consisting of B e And
X1 is one or more selected from the group consisting of Co and Ni,
X2 is one or more selected from the group consisting of Ti, V, Mn, Ag, Zn, Al, Sn, As, Sb, Bi and rare earth elements,
X3 is one or more selected from the group consisting of C and Ge,
M is at least one selected from the group consisting of Zr, Nb, Hf, Ta, Mo and W;
0.030 ≦ a ≦ 0.120
0.020 ≦ b ≦ 0.175
0 ≦ c ≦ 0.020
0 ≦ d ≦ 0.100
0 ≦ e ≦ 0.030
α ≧ 0
β ≧ 0
0 ≦ α + β ≦ 0.55
The composition is
 上記の組成を有する軟磁性合金は、非晶質からなり、粒径が15nmよりも大きい結晶からなる結晶相を含まない軟磁性合金としやすい。そして、当該軟磁性合金を熱処理する場合には、Fe基ナノ結晶を析出しやすい。そして、Fe基ナノ結晶を含む軟磁性合金は高い飽和磁束密度、低い保磁力および高い比抵抗を有しやすい。さらに、耐酸化性も高くなりやすい。 The soft magnetic alloy having the above composition is easily made into a soft magnetic alloy that is amorphous and does not include a crystal phase that is composed of crystals having a particle size larger than 15 nm. And when heat-treating the soft magnetic alloy, Fe-based nanocrystals are likely to precipitate. And the soft magnetic alloy containing Fe-based nanocrystal tends to have a high saturation magnetic flux density, a low coercive force, and a high specific resistance. Furthermore, the oxidation resistance tends to be high.
 言いかえれば、上記の組成を有する軟磁性合金は、Fe基ナノ結晶を析出させた軟磁性合金の出発原料としやすい。 In other words, the soft magnetic alloy having the above composition is easily used as a starting material for the soft magnetic alloy in which Fe-based nanocrystals are precipitated.
 Fe基ナノ結晶とは、粒径がナノオーダーであり、Feの結晶構造がbcc(体心立方格子構造)である結晶のことである。本実施形態においては、平均粒径が5~30nmであるFe基ナノ結晶を析出させることが好ましい。このようなFe基ナノ結晶を析出させた軟磁性合金は、飽和磁束密度が高くなり、保磁力が低くなりやすい。さらに、比抵抗も高くなりやすい。 The Fe-based nanocrystal is a crystal having a particle size of nano-order and a Fe crystal structure of bcc (body-centered cubic lattice structure). In this embodiment, it is preferable to deposit Fe-based nanocrystals having an average particle size of 5 to 30 nm. A soft magnetic alloy in which such Fe-based nanocrystals are deposited tends to have a high saturation magnetic flux density and a low coercive force. Furthermore, the specific resistance tends to be high.
 なお、熱処理前の軟磁性合金は完全に非晶質のみからなっていてもよいが、非晶質および粒径が15nm以下である初期微結晶からなり、前記初期微結晶が前記非晶質中に存在するナノヘテロ構造を有することが好ましい。初期微結晶が非晶質中に存在するナノヘテロ構造を有することにより、熱処理時にFe基ナノ結晶を析出させやすくなる。なお、本実施形態では、前記初期微結晶は平均粒径が0.3~10nmであることが好ましい。 The soft magnetic alloy before the heat treatment may be made entirely of amorphous material, but is composed of amorphous material and initial microcrystals having a particle size of 15 nm or less, and the initial microcrystals are in the amorphous state. It preferably has a nanoheterostructure present in When the initial microcrystal has a nanoheterostructure existing in an amorphous state, Fe-based nanocrystals are easily precipitated during heat treatment. In the present embodiment, the initial crystallites preferably have an average particle size of 0.3 to 10 nm.
 以下、本実施形態に係る軟磁性合金の各成分について詳細に説明する。 Hereinafter, each component of the soft magnetic alloy according to the present embodiment will be described in detail.
 MはZr,Nb,Hf,Ta,MoおよびWからなる群から選択される1種以上である。また、Mの種類としてはNb,HfおよびZrからなる群から選択される1種以上のみからなることが好ましい。Mの種類がNb,HfおよびZrからなる群から選択される1種以上であることにより飽和磁束密度が高くなりやすく、保磁力が低くなりやすくなる。 M is at least one selected from the group consisting of Zr, Nb, Hf, Ta, Mo and W. Further, the type of M is preferably composed of only one or more selected from the group consisting of Nb, Hf and Zr. When the type of M is at least one selected from the group consisting of Nb, Hf, and Zr, the saturation magnetic flux density tends to increase and the coercive force tends to decrease.
 Mの含有量(a)は0.030≦a≦0.120を満たす。Mの含有量(a)は0.050≦a≦0.100であることが好ましい。aが小さい場合には、熱処理前の軟磁性合金に粒径が15nmよりも大きい結晶からなる結晶相が生じやすく、熱処理によりFe基ナノ結晶を析出させることができず、保磁力が高くなりやすくなる。aが大きい場合には、飽和磁束密度が低くなりやすくなる。 M content (a) satisfies 0.030 ≦ a ≦ 0.120. The content (a) of M is preferably 0.050 ≦ a ≦ 0.100. When a is small, the soft magnetic alloy before the heat treatment tends to have a crystal phase composed of crystals having a particle size larger than 15 nm, and Fe-based nanocrystals cannot be precipitated by the heat treatment, and the coercive force tends to be high. Become. When a is large, the saturation magnetic flux density tends to be low.
 Siの含有量(b)は0.020≦b≦0.175を満たす。Siの含有量(b)は0.030≦b≦0.100を満たすことが好ましい。bが小さい場合には、保磁力が高くなりやすくなる。また、bが大きい場合には、飽和磁束密度が低くなりやすくなる。 The Si content (b) satisfies 0.020 ≦ b ≦ 0.175. The Si content (b) preferably satisfies 0.030 ≦ b ≦ 0.100. When b is small, the coercive force tends to be high. Further, when b is large, the saturation magnetic flux density tends to be low.
 なお、Mの含有量(a)が小さいほどSiの含有量(b)は大きい方が良好な特性が得られる傾向にある。逆に、Mの含有量(a)が大きいほどSiの含有量は小さい方が良好な特性が得られる傾向にある。 The smaller the M content (a), the better the Si characteristics (b). Conversely, the larger the M content (a), the better the characteristics obtained when the Si content is smaller.
 Cuの含有量(c)は0≦c≦0.020を満たす。すなわち、Cuは含有しなくてもよい。Cuの含有量が小さくなるほど飽和磁束密度が高くなり、Cuの含有量が大きくなるほど保磁力が低くなる傾向にある。cが大きすぎる場合には、飽和磁束密度が低くなりすぎる。 Cu content (c) satisfies 0 ≦ c ≦ 0.020. That is, Cu does not have to be contained. The saturation magnetic flux density increases as the Cu content decreases, and the coercive force tends to decrease as the Cu content increases. When c is too large, the saturation magnetic flux density is too low.
 X3はCおよびGeからなる群から選択される1種以上である。X3の含有量(d)は0≦d≦0.100を満たす。すなわち、X3は含有しなくてもよい。X3の含有量(d)は0≦d≦0.050であることが好ましい。X3の含有量が多すぎる場合には、飽和磁束密度が低くなりやすくなり、保磁力が高くなりやすくなる。 X3 is at least one selected from the group consisting of C and Ge. The content (d) of X3 satisfies 0 ≦ d ≦ 0.100. That is, X3 may not be contained. The content (d) of X3 is preferably 0 ≦ d ≦ 0.050. When the content of X3 is too large, the saturation magnetic flux density tends to be low, and the coercive force tends to be high.
 Bの含有量(e)は0≦e≦0.030を満たす。すなわち、Bは含有しなくてもよい。さらに、0≦e≦0.010であることが好ましく、実質的にBを含有しないことがさらに好ましい。なお、実質的にBを含有しないとは0≦e<0.001である場合を指す。Bの含有量が多い場合には飽和磁束密度が低くなりやすくなり、保磁力が高くなりやすくなる。 B content (e) satisfies 0 ≦ e ≦ 0.030. That is, B may not be contained. Furthermore, it is preferable that 0 ≦ e ≦ 0.010, and it is further preferable that B is not substantially contained. Note that “substantially not containing B” refers to the case of 0 ≦ e <0.001. When the content of B is large, the saturation magnetic flux density tends to be low, and the coercive force is likely to be high.
 Feの含有量(1-(a+b+c+d+e))については、特に制限はないが0.730≦1-(a+b+c+d+e)≦0.930を満たすことが好ましい。0.780≦1-(a+b+c+d+e)≦0.930を満たしていてもよい。上記の範囲を満たす場合には飽和磁束密度を向上させやすく、保磁力を低下させやすくなる。 The Fe content (1- (a + b + c + d + e)) is not particularly limited, but preferably satisfies 0.730 ≦ 1- (a + b + c + d + e) ≦ 0.930. 0.780 ≦ 1− (a + b + c + d + e) ≦ 0.930 may be satisfied. When the above range is satisfied, the saturation magnetic flux density is easily improved and the coercive force is easily reduced.
 また、本実施形態に係る軟磁性合金においては、Feの一部をX1および/またはX2で置換してもよい。 Further, in the soft magnetic alloy according to the present embodiment, a part of Fe may be substituted with X1 and / or X2.
 X1はCoおよびNiからなる群から選択される1種以上である。X1の含有量(α)はα=0でもよい。すなわち、X1は含有しなくてもよい。また、X1の原子数は組成全体の原子数を100at%として40at%以下であることが好ましい。すなわち、0≦α{1-(a+b+c+d+e)}≦0.40を満たすことが好ましい。 X1 is at least one selected from the group consisting of Co and Ni. The content (α) of X1 may be α = 0. That is, X1 may not be contained. Further, the number of atoms of X1 is preferably 40 at% or less, where the total number of atoms in the composition is 100 at%. That is, it is preferable to satisfy 0 ≦ α {1− (a + b + c + d + e)} ≦ 0.40.
 X2はTi,V,Mn,Ag,Zn,Al,Sn,As,Sb,Biおよび希土類元素からなる群より選択される1種以上である。X2の含有量(β)はβ=0でもよい。すなわち、X2は含有しなくてもよい。また、X2の原子数は組成全体の原子数を100at%として3.0at%以下であることが好ましい。すなわち、0≦β{1-(a+b+c+d+e)}≦0.030を満たすことが好ましい。 X2 is at least one selected from the group consisting of Ti, V, Mn, Ag, Zn, Al, Sn, As, Sb, Bi, and rare earth elements. The content (β) of X2 may be β = 0. That is, X2 may not be contained. Further, the number of atoms of X2 is preferably 3.0 at% or less, where the number of atoms in the entire composition is 100 at%. That is, it is preferable to satisfy 0 ≦ β {1− (a + b + c + d + e)} ≦ 0.030.
 FeをX1および/またはX2に置換する置換量の範囲としては、0≦α+β≦0.55とする。α+β>0.55の場合には、熱処理によりFe基ナノ結晶合金とすることが困難となり、仮にFe基ナノ結晶合金とできたとしても保磁力が高くなりやすい。 The range of substitution amount for substituting Fe with X1 and / or X2 is 0 ≦ α + β ≦ 0.55. In the case of α + β> 0.55, it becomes difficult to form an Fe-based nanocrystalline alloy by heat treatment, and even if the Fe-based nanocrystalline alloy is formed, the coercive force tends to increase.
 なお、本実施形態に係る軟磁性合金は上記以外の元素を不可避的不純物として含んでいてもよい。また、上記以外の元素は軟磁性合金100重量%に対して合計で1重量%未満、含んでいてもよい。 Note that the soft magnetic alloy according to this embodiment may contain elements other than the above as inevitable impurities. Further, elements other than the above may be contained in total less than 1% by weight with respect to 100% by weight of the soft magnetic alloy.
 以下、本実施形態に係る軟磁性合金の製造方法について説明する Hereinafter, a method for producing a soft magnetic alloy according to this embodiment will be described.
 本実施形態に係る軟磁性合金の製造方法には特に限定はない。例えば単ロール法により本実施形態に係る軟磁性合金の薄帯を製造する方法がある。また、薄帯は連続薄帯であってもよい。 The method for producing the soft magnetic alloy according to this embodiment is not particularly limited. For example, there is a method of manufacturing a soft magnetic alloy ribbon according to this embodiment by a single roll method. The ribbon may be a continuous ribbon.
 単ロール法では、まず、最終的に得られる軟磁性合金に含まれる各金属元素の純金属を準備し、最終的に得られる軟磁性合金と同組成となるように秤量する。そして、各金属元素の純金属を溶解し、混合して母合金を作製する。なお、前記純金属の溶解方法には特に制限はないが、例えばチャンバー内で真空引きした後に高周波加熱にて溶解させる方法がある。なお、母合金と最終的に得られるFe基ナノ結晶からなる軟磁性合金とは通常、同組成となる。 In the single roll method, first, pure metals of each metal element contained in the finally obtained soft magnetic alloy are prepared and weighed so as to have the same composition as the finally obtained soft magnetic alloy. And the pure metal of each metal element is melt | dissolved and mixed, and a mother alloy is produced. The method for dissolving the pure metal is not particularly limited. For example, there is a method in which the pure metal is melted by high-frequency heating after evacuation in a chamber. The master alloy and the soft magnetic alloy consisting of the finally obtained Fe-based nanocrystal usually have the same composition.
 次に、作製した母合金を加熱して溶融させ、溶融金属(溶湯)を得る。溶融金属の温度には特に制限はないが、例えば1200~1500℃とすることができる。 Next, the produced mother alloy is heated and melted to obtain a molten metal (molten metal). The temperature of the molten metal is not particularly limited, but can be set to 1200 to 1500 ° C., for example.
 単ロール法においては、主にロールの回転速度を調整することで得られる薄帯の厚さを調整することができるが、例えばノズルとロールとの間隔や溶融金属の温度などを調整することでも得られる薄帯の厚さを調整することができる。薄帯の厚さには特に制限はないが、例えば5~30μmとすることができる。 In the single roll method, the thickness of the ribbon obtained mainly by adjusting the rotation speed of the roll can be adjusted, but for example, by adjusting the interval between the nozzle and the roll, the temperature of the molten metal, etc. The thickness of the obtained ribbon can be adjusted. The thickness of the ribbon is not particularly limited, but can be 5 to 30 μm, for example.
 後述する熱処理前の時点では、薄帯は粒径が15nmよりも大きい結晶が含まれていない非晶質である。非晶質である薄帯に対して後述する熱処理を施すことにより、Fe基ナノ結晶合金を得ることができる。 At the time before heat treatment, which will be described later, the ribbon is amorphous with no crystal having a particle size larger than 15 nm. An Fe-based nanocrystalline alloy can be obtained by subjecting the amorphous ribbon to a heat treatment described later.
 なお、熱処理前の軟磁性合金の薄帯に粒径が15nmよりも大きい結晶が含まれているか否かを確認する方法には特に制限はない。例えば、粒径が15nmよりも大きい結晶の有無については、通常のX線回折測定により確認することができる。 In addition, there is no restriction | limiting in particular in the method of confirming whether the crystal | crystallization larger than 15 nm is contained in the soft magnetic alloy ribbon before heat processing. For example, the presence or absence of crystals having a particle size larger than 15 nm can be confirmed by ordinary X-ray diffraction measurement.
 また、熱処理前の薄帯には、粒径が15nm未満の初期微結晶が全く含まれていなくてもよいが、初期微結晶が含まれていることが好ましい。すなわち、熱処理前の薄帯は、非晶質および該非晶質中に存在する該初期微結晶とからなるナノヘテロ構造であることが好ましい。なお、初期微結晶の粒径に特に制限はないが、平均粒径が0.3~10nmの範囲内であることが好ましい。 In addition, the thin ribbon before the heat treatment may not contain any initial crystallites having a particle size of less than 15 nm, but preferably contains initial crystallites. That is, it is preferable that the ribbon before the heat treatment has a nanoheterostructure composed of amorphous and the initial microcrystals present in the amorphous. The particle size of the initial microcrystal is not particularly limited, but the average particle size is preferably in the range of 0.3 to 10 nm.
 また、上記の初期微結晶の有無および平均粒径の観察方法については、特に制限はないが、例えば、イオンミリングにより薄片化した試料に対して、透過電子顕微鏡を用いて、制限視野回折像、ナノビーム回折像、明視野像または高分解能像を得ることで確認できる。制限視野回折像またはナノビーム回折像を用いる場合、回折パターンにおいて非晶質の場合にはリング状の回折が形成されるのに対し、非晶質ではない場合には結晶構造に起因した回折斑点が形成される。また、明視野像または高分解能像を用いる場合には、倍率1.00×10~3.00×10倍で目視にて観察することで初期微結晶の有無および平均粒径を観察できる。 In addition, the observation method of the presence or absence of the initial microcrystal and the average particle size is not particularly limited. For example, for a sample sliced by ion milling, using a transmission electron microscope, a limited field diffraction image, This can be confirmed by obtaining a nanobeam diffraction image, a bright field image, or a high resolution image. When using a limited-field diffraction image or a nanobeam diffraction image, a ring-shaped diffraction pattern is formed when the diffraction pattern is amorphous, whereas diffraction spots due to the crystal structure are formed when the diffraction pattern is not amorphous. It is formed. When a bright field image or a high resolution image is used, the presence or absence of initial microcrystals and the average grain size can be observed by visual observation at a magnification of 1.00 × 10 5 to 3.00 × 10 5 times. .
 ロールの温度、回転速度およびチャンバー内部の雰囲気には特に制限はない。ロールの温度は4~30℃とすることが非晶質化のため好ましい。ロールの回転速度は速いほど初期微結晶の平均粒径が小さくなる傾向にあり、30~40m/sec.とすることが平均粒径0.3~10nmの初期微結晶を得るためには好ましい。チャンバー内部の雰囲気はコスト面を考慮すれば大気中とすることが好ましい。 ¡There are no particular restrictions on roll temperature, rotation speed and atmosphere inside the chamber. The roll temperature is preferably 4 to 30 ° C. to make it amorphous. The higher the rotation speed of the roll, the smaller the average grain size of the initial crystallites, and 30 to 40 m / sec. Is preferable in order to obtain initial microcrystals having an average particle size of 0.3 to 10 nm. The atmosphere inside the chamber is preferably in the air considering cost.
 また、Fe基ナノ結晶合金を製造するための熱処理条件には特に制限はない。軟磁性合金の組成により好ましい熱処理条件は異なる。通常、好ましい熱処理温度は概ね400~600℃、好ましい熱処理時間は概ね10分~10時間となる。しかし、組成によっては上記の範囲を外れたところに好ましい熱処理温度および熱処理時間が存在する場合もある。また、熱処理時の雰囲気には特に制限はない。大気中のような活性雰囲気下で行ってもよいし、Arガス中のような不活性雰囲気下で行ってもよい。 In addition, there are no particular restrictions on the heat treatment conditions for producing the Fe-based nanocrystalline alloy. Preferred heat treatment conditions vary depending on the composition of the soft magnetic alloy. Usually, the preferred heat treatment temperature is about 400 to 600 ° C., and the preferred heat treatment time is about 10 minutes to 10 hours. However, depending on the composition, there may be a preferred heat treatment temperature and heat treatment time outside the above range. Moreover, there is no restriction | limiting in particular in the atmosphere at the time of heat processing. It may be performed under an active atmosphere such as in the air, or may be performed under an inert atmosphere such as in Ar gas.
 また、得られたFe基ナノ結晶合金における平均粒径の算出方法には特に制限はない。例えば透過電子顕微鏡を用いて観察することで算出できる。また、結晶構造がbcc(体心立方格子構造)であること確認する方法にも特に制限はない。例えばX線回折測定を用いて確認することができる。 Also, there is no particular limitation on the method for calculating the average particle diameter in the obtained Fe-based nanocrystalline alloy. For example, it can be calculated by observing using a transmission electron microscope. There is no particular limitation on the method for confirming that the crystal structure is bcc (body-centered cubic lattice structure). For example, it can be confirmed using X-ray diffraction measurement.
 また、本実施形態に係る軟磁性合金を得る方法として、上記した単ロール法以外にも、例えば水アトマイズ法またはガスアトマイズ法により本実施形態に係る軟磁性合金の粉体を得る方法がある。以下、ガスアトマイズ法について説明する。 Further, as a method for obtaining the soft magnetic alloy according to the present embodiment, there is a method for obtaining the soft magnetic alloy powder according to the present embodiment by, for example, a water atomizing method or a gas atomizing method other than the single roll method described above. Hereinafter, the gas atomization method will be described.
 ガスアトマイズ法では、上記した単ロール法と同様にして1200~1500℃の溶融合金を得る。その後、前記溶融合金をチャンバー内で噴射させ、粉体を作製する。 In the gas atomization method, a molten alloy at 1200 to 1500 ° C. is obtained in the same manner as the single roll method described above. Thereafter, the molten alloy is sprayed in a chamber to produce a powder.
 このとき、ガス噴射温度を4~30℃とし、チャンバー内の蒸気圧を1hPa以下とすることで、上記の好ましいナノヘテロ構造を得やすくなる。 At this time, by setting the gas injection temperature to 4 to 30 ° C. and the vapor pressure in the chamber to 1 hPa or less, the preferable nanoheterostructure can be easily obtained.
 ガスアトマイズ法で粉体を作製した後に、400~600℃で0.5~10分、熱処理を行うことで、各粉体同士が焼結し粉体が粗大化することを防ぎつつ元素の拡散を促し、熱力学的平衡状態に短時間で到達させることができ、歪や応力を除去することができ、平均粒径が10~50nmのFe基軟磁性合金を得やすくなる。 After producing the powder by the gas atomization method, heat treatment is performed at 400 to 600 ° C. for 0.5 to 10 minutes, so that each powder can be sintered and the elements can be prevented from being coarsened and the element can be diffused. The thermodynamic equilibrium state can be reached in a short time, strain and stress can be removed, and an Fe-based soft magnetic alloy having an average particle size of 10 to 50 nm can be easily obtained.
 以上、本発明の一実施形態について説明したが、本発明は上記の実施形態に限定されない。 As mentioned above, although one Embodiment of this invention was described, this invention is not limited to said embodiment.
 本実施形態に係る軟磁性合金の形状には特に制限はない。上記した通り、薄帯形状や粉末形状が例示されるが、それ以外にもブロック形状等も考えられる。 The shape of the soft magnetic alloy according to this embodiment is not particularly limited. As described above, a ribbon shape and a powder shape are exemplified, but a block shape and the like are also conceivable.
 本実施形態に係る軟磁性合金(Fe基ナノ結晶合金)の用途には特に制限はない。例えば、磁性部品が挙げられ、その中でも特に磁心が挙げられる。インダクタ用、特にパワーインダクタ用の磁心として好適に用いることができる。本実施形態に係る軟磁性合金は、磁心の他にも薄膜インダクタ、磁気ヘッドにも好適に用いることができる。 The use of the soft magnetic alloy (Fe-based nanocrystalline alloy) according to the present embodiment is not particularly limited. For example, magnetic parts are mentioned, and among these, a magnetic core is particularly mentioned. It can be suitably used as a magnetic core for an inductor, particularly a power inductor. The soft magnetic alloy according to this embodiment can be suitably used for a thin film inductor and a magnetic head in addition to a magnetic core.
 以下、本実施形態に係る軟磁性合金から磁性部品、特に磁心およびインダクタを得る方法について説明するが、本実施形態に係る軟磁性合金から磁心およびインダクタを得る方法は下記の方法に限定されない。また、磁心の用途としては、インダクタの他にも、トランスおよびモータなどが挙げられる。 Hereinafter, a method for obtaining a magnetic component, in particular, a magnetic core and an inductor from the soft magnetic alloy according to the present embodiment will be described. However, a method for obtaining the magnetic core and the inductor from the soft magnetic alloy according to the present embodiment is not limited to the following method. In addition to inductors, applications of magnetic cores include transformers and motors.
 薄帯形状の軟磁性合金から磁心を得る方法としては、例えば、薄帯形状の軟磁性合金を巻き回す方法や積層する方法が挙げられる。薄帯形状の軟磁性合金を積層する際に絶縁体を介して積層する場合には、さらに特性を向上させた磁芯を得ることができる。 Examples of a method for obtaining a magnetic core from a ribbon-shaped soft magnetic alloy include a method of winding a ribbon-shaped soft magnetic alloy and a method of laminating. When laminating thin ribbon-shaped soft magnetic alloys via an insulator, a magnetic core with further improved characteristics can be obtained.
 粉末形状の軟磁性合金から磁心を得る方法としては、例えば、適宜バインダと混合した後、金型を用いて成形する方法が挙げられる。また、バインダと混合する前に、粉末表面に酸化処理や絶縁被膜等を施すことにより、比抵抗が向上し、より高周波帯域に適合した磁心となる。 As a method for obtaining a magnetic core from a soft magnetic alloy in the form of a powder, for example, a method in which a magnetic core is appropriately mixed with a binder and then molded using a mold can be mentioned. In addition, by applying an oxidation treatment, an insulating film or the like to the powder surface before mixing with the binder, the specific resistance is improved and the magnetic core is adapted to a higher frequency band.
 成形方法に特に制限はなく、金型を用いる成形やモールド成形などが例示される。バインダの種類に特に制限はなく、シリコーン樹脂が例示される。軟磁性合金粉末とバインダとの混合比率にも特に制限はない。例えば軟磁性合金粉末100質量%に対し、1~10質量%のバインダを混合させる。 The molding method is not particularly limited, and examples thereof include molding using a mold and molding. There is no restriction | limiting in particular in the kind of binder, A silicone resin is illustrated. There is no particular limitation on the mixing ratio of the soft magnetic alloy powder and the binder. For example, a binder of 1 to 10% by mass is mixed with 100% by mass of the soft magnetic alloy powder.
 例えば、軟磁性合金粉末100質量%に対し、1~5質量%のバインダを混合させ、金型を用いて圧縮成形することで、占積率(粉末充填率)が70%以上、1.6×10A/mの磁界を印加したときの磁束密度が0.45T以上、かつ比抵抗が1Ω・cm以上である磁心を得ることができる。上記の特性は、一般的なフェライト磁心と同等以上の特性である。 For example, by mixing 1 to 5% by mass of a binder to 100% by mass of the soft magnetic alloy powder and compressing it using a mold, the space factor (powder filling rate) is 70% or more, 1.6%. A magnetic core having a magnetic flux density of 0.45 T or more and a specific resistance of 1 Ω · cm or more when a magnetic field of × 10 4 A / m is applied can be obtained. The above characteristics are equivalent to or better than general ferrite cores.
 また、例えば、軟磁性合金粉末100質量%に対し、1~3質量%のバインダを混合させ、バインダの軟化点以上の温度条件下の金型で圧縮成形することで、占積率が80%以上、1.6×10A/mの磁界を印加したときの磁束密度が0.9T以上、かつ比抵抗が0.1Ω・cm以上である圧粉磁心を得ることができる。上記の特性は、一般的な圧粉磁心よりも優れた特性である。 In addition, for example, by mixing 1 to 3% by mass of a binder with 100% by mass of the soft magnetic alloy powder and compressing with a mold under a temperature condition equal to or higher than the softening point of the binder, the space factor is 80%. As described above, a dust core having a magnetic flux density of 0.9 T or more and a specific resistance of 0.1 Ω · cm or more when a magnetic field of 1.6 × 10 4 A / m is applied can be obtained. The above characteristics are superior to general dust cores.
 さらに、上記の磁心を成す成形体に対し、歪取り熱処理として成形後に熱処理することで、さらにコアロスが低下し、有用性が高まる。なお、磁心のコアロスは、磁心を構成する磁性体の保磁力を低減することで低下する。 Further, the molded body having the above-described magnetic core is subjected to heat treatment after molding as a strain relief heat treatment, thereby further reducing core loss and increasing usefulness. Note that the core loss of the magnetic core is reduced by reducing the coercive force of the magnetic body constituting the magnetic core.
 また、上記磁心に巻線を施すことでインダクタンス部品が得られる。巻線の施し方およびインダクタンス部品の製造方法には特に制限はない。例えば、上記の方法で製造した磁心に巻線を少なくとも1ターン以上巻き回す方法が挙げられる。 Also, an inductance component can be obtained by winding the magnetic core. There are no particular restrictions on the manner in which the winding is applied and the method of manufacturing the inductance component. For example, a method of winding a winding at least one turn or more around the magnetic core manufactured by the above method can be mentioned.
 さらに、軟磁性合金粒子を用いる場合には、巻線コイルが磁性体に内蔵されている状態で加圧成形し一体化することでインダクタンス部品を製造する方法がある。この場合には高周波かつ大電流に対応したインダクタンス部品を得やすい。 Furthermore, when soft magnetic alloy particles are used, there is a method of manufacturing an inductance component by press-molding and integrating the winding coil in a state where the winding coil is built in the magnetic body. In this case, it is easy to obtain an inductance component corresponding to a high frequency and a large current.
 さらに、軟磁性合金粒子を用いる場合には、軟磁性合金粒子にバインダおよび溶剤を添加してペースト化した軟磁性合金ペースト、および、コイル用の導体金属にバインダおよび溶剤を添加してペースト化した導体ペーストを交互に印刷積層した後に加熱焼成することで、インダクタンス部品を得ることができる。あるいは、軟磁性合金ペーストを用いて軟磁性合金シートを作製し、軟磁性合金シートの表面に導体ペーストを印刷し、これらを積層し焼成することで、コイルが磁性体に内蔵されたインダクタンス部品を得ることができる。 Further, when soft magnetic alloy particles are used, a soft magnetic alloy paste obtained by adding a binder and a solvent to the soft magnetic alloy particles and a paste obtained by adding a binder and a solvent to the conductor metal for the coil. An inductance component can be obtained by heating and firing after alternately laminating and laminating the conductive paste. Alternatively, by producing a soft magnetic alloy sheet using a soft magnetic alloy paste, printing a conductor paste on the surface of the soft magnetic alloy sheet, laminating and firing these, an inductance component in which the coil is built in the magnetic body is obtained. Can be obtained.
 ここで、軟磁性合金粒子を用いてインダクタンス部品を製造する場合には、最大粒径が篩径で45μm以下、中心粒径(D50)が30μm以下の軟磁性合金粉末を用いることが、優れたQ特性を得る上で好ましい。最大粒径を篩径で45μm以下とするために、目開き45μmの篩を用い、篩を通過する軟磁性合金粉末のみを用いてもよい。 Here, when producing an inductance component using soft magnetic alloy particles, it is excellent to use a soft magnetic alloy powder having a maximum particle size of 45 μm or less and a center particle size (D50) of 30 μm or less. It is preferable for obtaining the Q characteristic. In order to set the maximum particle size to 45 μm or less in terms of sieve diameter, a sieve having an opening of 45 μm may be used, and only the soft magnetic alloy powder passing through the sieve may be used.
 最大粒径が大きな軟磁性合金粉末を用いるほど高周波領域でのQ値が低下する傾向があり、特に最大粒径が篩径で45μmを超える軟磁性合金粉末を用いる場合には、高周波領域でのQ値が大きく低下する場合がある。ただし、高周波領域でのQ値を重視しない場合には、バラツキの大きな軟磁性合金粉末を使用可能である。バラツキの大きな軟磁性合金粉末は比較的安価で製造できるため、バラツキの大きな軟磁性合金粉末を用いる場合には、コストを低減することが可能である。 The Q value in the high frequency region tends to decrease as the soft magnetic alloy powder having a large maximum particle size is used. Particularly when the soft magnetic alloy powder having a maximum particle size exceeding 45 μm in the sieve diameter is used, The Q value may be greatly reduced. However, if the Q value in the high frequency region is not important, soft magnetic alloy powder having a large variation can be used. Since soft magnetic alloy powders with large variations can be manufactured at a relatively low cost, it is possible to reduce costs when using soft magnetic alloy powders with large variations.
 以下、実施例に基づき本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described based on examples.
 下表に示す各実施例および比較例の合金組成となるように原料金属を秤量し、高周波加熱にて溶解し、母合金を作製した。 The raw metal was weighed so as to have the alloy compositions of the examples and comparative examples shown in the table below, and was melted by high-frequency heating to prepare a master alloy.
 その後、作製した母合金を加熱して溶融させ、1300℃の溶融状態の金属とした後に、大気中において20℃のロールを回転速度40m/sec.で用いた単ロール法により前記金属をロールに噴射させ、薄帯を作成した。薄帯の厚さ20~25μm、薄帯の幅約15mm、薄帯の長さ約10mとした。 Thereafter, the produced master alloy is heated and melted to form a molten metal at 1300 ° C., and then a 20 ° C. roll is rotated in the atmosphere at a rotational speed of 40 m / sec. The metal was jetted onto a roll by the single roll method used in the above to create a ribbon. The thickness of the ribbon was 20 to 25 μm, the width of the ribbon was about 15 mm, and the length of the ribbon was about 10 m.
 得られた各薄帯に対してX線回折測定を行い、粒径が15nmよりも大きい結晶の有無を確認した。そして、粒径が15nmよりも大きい結晶が存在しない場合には非晶質相からなるとし、粒径が15nmよりも大きい結晶が存在する場合には結晶相からなるとした。 X-ray diffraction measurement was performed on each obtained ribbon to confirm the presence or absence of crystals having a particle size larger than 15 nm. When there is no crystal having a particle size larger than 15 nm, it is assumed to be composed of an amorphous phase, and when a crystal having a particle size larger than 15 nm is present, it is composed of a crystalline phase.
 その後、各実施例および比較例の薄帯に対し、550℃、60minで熱処理を行った。熱処理後の各薄帯に対し、飽和磁束密度および保磁力を測定した。飽和磁束密度(Bs)は振動試料型磁力計(VSM)を用いて磁場1000kA/mで測定した。保磁力(Hc)は直流BHトレーサーを用いて磁場5kA/mで測定した。比抵抗(ρ)は4探針法による抵抗率測定で測定した。本実施例では、飽和磁束密度は1.30T以上を良好とし、1.45T以上をさらに良好とした。保磁力は10.0A/m以下を良好とし、7.0A/m以下をさらに良好とした。比抵抗(ρ)は組成をFe90Zrとした点以外は実施例3と同一の製法で作成した薄帯(以下、Fe90Zr薄帯とも呼ぶ)の比抵抗(ρ)に対して、20%以上40%未満、上昇した場合を良好とし、40%以上、上昇した場合をさらに良好とした。以下に示す表では、比抵抗がFe90Zr薄帯の比抵抗から40%以上、上昇した場合を◎、Fe90Zr薄帯の比抵抗から20%以上40%未満、上昇した場合を〇、Fe90Zr薄帯の比抵抗と同一、または20%未満、上昇した場合を△、Fe90Zr薄帯の比抵抗よりも低い場合を×とした。なお、比抵抗(ρ)は良好でなくても本願発明の目的を達成できる。 Thereafter, heat treatment was performed at 550 ° C. for 60 minutes on the ribbons of the examples and comparative examples. Saturation magnetic flux density and coercive force were measured for each ribbon after the heat treatment. The saturation magnetic flux density (Bs) was measured at a magnetic field of 1000 kA / m using a vibrating sample magnetometer (VSM). The coercive force (Hc) was measured at a magnetic field of 5 kA / m using a direct current BH tracer. The specific resistance (ρ) was measured by resistivity measurement by a 4-probe method. In this example, the saturation magnetic flux density was set to 1.30 T or more, and 1.45 T or more was further improved. The coercive force was 10.0 A / m or less, and 7.0 A / m or less was even better. The specific resistance (ρ) is the specific resistance (ρ) of a ribbon (hereinafter also referred to as Fe 90 Zr 7 B 3 ribbon) prepared by the same manufacturing method as in Example 3 except that the composition is Fe 90 Zr 7 B 3. ) To 20% or more and less than 40%, the case where it rises is considered good, and the case where it rises 40% or more is considered even better. In the table shown below, when the specific resistance increases by 40% or more from the specific resistance of the Fe 90 Zr 7 B 3 ribbon, ◎, 20% or more and less than 40% from the specific resistance of the Fe 90 Zr 7 B 3 ribbon, The case where it rises is ◯, the specific resistance of the Fe 90 Zr 7 B 3 ribbon is less than 20%, the case where it rises is Δ, and the case where it is lower than the resistivity of Fe 90 Zr 7 B 3 ribbon is x . The object of the present invention can be achieved even if the specific resistance (ρ) is not good.
 また、表7では経時変化による飽和磁束密度および保磁力の変化について測定した。具体的には、飽和磁束密度Bsおよび保磁力Hcを測定した各薄帯に対して3000分間の酸化処理を施し、酸化処理後の飽和磁束密度(Bs3000)および保磁力(Hc3000)を測定した。酸化処理は大気雰囲気下で150℃50時間の条件下で行った。 In Table 7, changes in saturation magnetic flux density and coercive force due to changes with time were measured. Specifically, each strip obtained by measuring the saturation magnetic flux density Bs 0 and the coercive force Hc 0 is subjected to an oxidation treatment for 3000 minutes, and the saturation magnetic flux density (Bs 3000 ) and the coercive force (Hc 3000 ) after the oxidation treatment. Was measured. The oxidation treatment was performed under an atmosphere of 150 ° C. for 50 hours.
 表7では、Bs≧1.30T、Bs3000/Bs≦0.85、Hc≦10.0A/mおよびHc3000/Hc≦1.30である場合を良好とした。 In Table 7, the case where Bs 0 ≧ 1.30T, Bs 3000 / Bs 0 ≦ 0.85, Hc 0 ≦ 10.0 A / m and Hc 3000 / Hc 0 ≦ 1.30 was considered good.
 なお、以下に示す実施例では特に記載の無い限り、全て平均粒径が5~30nmであり結晶構造がbccであるFe基ナノ結晶を有していたことをX線回折測定、および透過電子顕微鏡を用いた観察で確認した。また、下記の表8以外の表に記載した全ての実施例および比較例はX1およびX2を含有しない。 In the examples shown below, X-ray diffraction measurement and transmission electron microscope showed that all had Fe-based nanocrystals having an average particle diameter of 5 to 30 nm and a crystal structure of bcc unless otherwise specified. It was confirmed by observation using Moreover, all the Examples and Comparative Examples described in Tables other than Table 8 below do not contain X1 and X2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1はMがZrのみでありCu、X3およびBを含まない場合において、Zrの含有量(a)を変化させた実施例および比較例を記載したものである。 Table 1 describes examples and comparative examples in which the content (a) of Zr was changed when M was only Zr and Cu, X3 and B were not included.
 各成分の含有量が所定の範囲内である実施例1~6は飽和磁束密度Bsおよび保磁力Hcが良好であった。 In Examples 1 to 6 in which the content of each component is within a predetermined range, the saturation magnetic flux density Bs and the coercive force Hc were good.
 これに対し、Zrの含有量が小さすぎる比較例1は熱処理前の薄帯が結晶相からなり、熱処理後の保磁力Hcが著しく高くなり、比抵抗ρが低くなった。また、Zrの含有量が大きすぎる比較例2は飽和磁束密度が低下した。 On the other hand, in Comparative Example 1 in which the Zr content was too small, the ribbon before the heat treatment was composed of a crystalline phase, the coercive force Hc after the heat treatment was remarkably high, and the specific resistance ρ was low. Further, in Comparative Example 2 in which the Zr content was too large, the saturation magnetic flux density was lowered.
 表2はMがNbのみでありCu、X3およびBを含まない場合において、Nbの含有量(a)を変化させた実施例および比較例を記載したものである。 Table 2 describes examples and comparative examples in which the content (a) of Nb was changed when M was only Nb and Cu, X3, and B were not included.
 各成分の含有量が所定の範囲内である実施例7~12は飽和磁束密度Bs、保磁力Hcおよび比抵抗ρが良好であった。 In Examples 7 to 12 in which the content of each component is within a predetermined range, the saturation magnetic flux density Bs, the coercive force Hc, and the specific resistance ρ were good.
 これに対し、Nbの含有量が小さすぎる比較例3は熱処理前の薄帯が結晶相からなり、熱処理後の保磁力Hcが著しく高くなった。また、Nbの含有量が大きすぎる比較例4は飽和磁束密度が低下した。 In contrast, in Comparative Example 3 in which the Nb content was too small, the ribbon before the heat treatment consisted of a crystalline phase, and the coercive force Hc after the heat treatment was remarkably high. Further, in Comparative Example 4 in which the Nb content was too large, the saturation magnetic flux density was lowered.
 表3はMがZrのみでありX3およびBを含まない場合において、Cuの含有量(c)を変化させた実施例および比較例を記載したものである。 Table 3 describes examples and comparative examples in which the Cu content (c) was changed when M was only Zr and X3 and B were not included.
 各成分の含有量が所定の範囲内である実施例13~16は飽和磁束密度Bsおよび保磁力Hcが良好であった。 In Examples 13 to 16 in which the content of each component is within a predetermined range, the saturation magnetic flux density Bs and the coercive force Hc were good.
 これに対し、Cuの含有量が大きすぎる比較例5は熱処理前の薄帯が結晶相からなり、熱処理後の保磁力Hcが著しく高くなった。さらに、飽和磁束密度Bsが低くなった。 On the other hand, in Comparative Example 5 in which the Cu content was too large, the ribbon before the heat treatment consisted of a crystalline phase, and the coercive force Hc after the heat treatment was remarkably high. Furthermore, the saturation magnetic flux density Bs was lowered.
 表4はMがZrのみでありCuおよびBを含まない場合において、X3の種類および含有量(d)を変化させた実施例および比較例を記載したものである。 Table 4 describes examples and comparative examples in which the type and content (d) of X3 are changed when M is only Zr and Cu and B are not included.
 各成分の含有量が所定の範囲内である実施例17~23は飽和磁束密度Bs、保磁力Hcおよび比抵抗ρが良好であった。 In Examples 17 to 23 in which the content of each component is within a predetermined range, the saturation magnetic flux density Bs, the coercive force Hc, and the specific resistance ρ were good.
 これに対し、X3の含有量が大きすぎる比較例7は飽和磁束密度Bsが低下し保磁力Hcが高くなった。 On the other hand, in Comparative Example 7 in which the content of X3 is too large, the saturation magnetic flux density Bs decreased and the coercive force Hc increased.
 表5はMがZrのみでありCuおよびX3を含まない場合において、Bの含有量(e)を変化させた実施例および比較例を記載したものである。 Table 5 describes examples and comparative examples in which the content (e) of B was changed when M was only Zr and Cu and X3 were not included.
 各成分の含有量が所定の範囲内である実施例24~27は飽和磁束密度Bs、保磁力Hcおよび比抵抗ρが良好であった。 Examples 24 to 27 in which the content of each component was within a predetermined range had good saturation magnetic flux density Bs, coercive force Hc, and specific resistance ρ.
 これに対し、Bの含有量が大きすぎる比較例8は飽和磁束密度Bsが低下し、保磁力Hcが高くなった。 In contrast, in Comparative Example 8 in which the B content was too large, the saturation magnetic flux density Bs decreased and the coercive force Hc increased.
 表6は実施例3からMの種類を変化させた実施例を記載したものである。 Table 6 describes examples in which the type of M was changed from Example 3.
 Mの種類が変化しても各成分の含有量が所定の範囲内である実施例28~32は飽和磁束密度Bs、保磁力Hcおよび比抵抗ρが良好であった。 Examples 28 to 32 in which the content of each component is within a predetermined range even when the type of M is changed have good saturation magnetic flux density Bs, coercive force Hc, and specific resistance ρ.
 表7はMがZrのみでありCu、X3およびBを含まない場合において、Zrの含有量(a)およびSiの含有量(b)を変化させた実施例および比較例を記載したものである。また、上記の通り、表7に記載の実施例および比較例については、経時変化による飽和磁束密度および保磁力の変化を測定した。 Table 7 describes examples and comparative examples in which the content of Zr (a) and the content of Si (b) were changed when M was Zr only and Cu, X3 and B were not included. . As described above, with respect to the examples and comparative examples shown in Table 7, changes in saturation magnetic flux density and coercive force due to changes with time were measured.
 実施例32a~32dおよび52~56は飽和磁束密度、保磁力および比抵抗が優れており、経時変化による飽和磁束密度および保磁力の変化も小さかった。これに対し、Siが少なすぎる比較例8aは保磁力が大きく、また、飽和磁束密度と保磁力の経時変化も大きい結果となった。Siが多すぎる比較例11は保磁力が大きくなる結果となった。また、Zrの含有量が同一である実施例52~56と比較して飽和磁束密度も小さくなる結果となった。 Examples 32a to 32d and 52 to 56 were excellent in saturation magnetic flux density, coercive force, and specific resistance, and the change in saturation magnetic flux density and coercive force with time was small. On the other hand, Comparative Example 8a having too little Si has a large coercive force, and also has a large change with time in the saturation magnetic flux density and the coercive force. Comparative Example 11 with too much Si resulted in a large coercive force. Further, as compared with Examples 52 to 56 having the same Zr content, the saturation magnetic flux density was also reduced.
 表8は実施例3についてFeの一部をX1および/またはX2で置換した実施例を記載したものである。 Table 8 describes an example in which part of Fe in Example 3 was replaced with X1 and / or X2.
 Feの一部をX1および/またはX2で置換しても良好な特性を示した。ただし、α+βが0.55を超える比較例9は保磁力が上昇した。 Even when a part of Fe was replaced with X1 and / or X2, good characteristics were exhibited. However, in Comparative Example 9 where α + β exceeds 0.55, the coercive force increased.
 表9は実施例3についてロールの回転速度、熱処理温度および/または熱処理時間を変化させることで初期微結晶の平均粒径およびFe基ナノ結晶合金の平均粒径を変化させた実施例および比較例を記載したものである。 Table 9 shows examples and comparative examples in which the average grain size of the initial microcrystals and the average grain size of the Fe-based nanocrystalline alloy were changed by changing the rotation speed of the roll, the heat treatment temperature and / or the heat treatment time for Example 3. Is described.
 初期微結晶の平均粒径およびFe基ナノ結晶合金の平均粒径を変化させても、熱処理前の薄帯に粒径が15nmよりも大きい結晶が存在しない場合は良好な特性を示した。これに対し、熱処理前の薄帯に粒径が15nmよりも大きい結晶が存在する場合、すなわち、熱処理前の薄帯が結晶相からなる場合には、熱処理後のFe基ナノ結晶の平均粒径が著しく高くなり、保磁力Hcが著しく高くなった。 Even when the average grain size of the initial microcrystals and the average grain size of the Fe-based nanocrystalline alloy were changed, good characteristics were exhibited when there were no crystals having a grain size larger than 15 nm in the ribbon before the heat treatment. On the other hand, when there is a crystal having a particle size larger than 15 nm in the ribbon before the heat treatment, that is, when the ribbon before the heat treatment is composed of a crystalline phase, the average particle diameter of the Fe-based nanocrystals after the heat treatment Was significantly increased, and the coercive force Hc was significantly increased.

Claims (16)

  1.  組成式(Fe(1-(α+β))X1αX2β(1-(a+b+c+d+e))SiCuX3からなる軟磁性合金であって、
     X1はCoおよびNiからなる群から選択される1種以上、
     X2はTi,V,Mn,Ag,Zn,Al,Sn,As,Sb,Biおよび希土類元素からなる群より選択される1種以上、
     X3はCおよびGeからなる群から選択される1種以上、
     MはZr,Nb,Hf,Ta,MoおよびWからなる群から選択される1種以上であり、
     0.030≦a≦0.120
     0.020≦b≦0.175
     0≦c≦0.020
     0≦d≦0.100
     0≦e≦0.030
     α≧0
     β≧0
     0≦α+β≦0.55
     であることを特徴とする軟磁性合金。
    Composition formula (Fe (1- (α + β )) X1 α X2 β) a (1- (a + b + c + d + e)) M a Si b Cu c soft magnetic alloy consisting of X3 d B e,
    X1 is one or more selected from the group consisting of Co and Ni,
    X2 is one or more selected from the group consisting of Ti, V, Mn, Ag, Zn, Al, Sn, As, Sb, Bi and rare earth elements,
    X3 is one or more selected from the group consisting of C and Ge,
    M is at least one selected from the group consisting of Zr, Nb, Hf, Ta, Mo and W;
    0.030 ≦ a ≦ 0.120
    0.020 ≦ b ≦ 0.175
    0 ≦ c ≦ 0.020
    0 ≦ d ≦ 0.100
    0 ≦ e ≦ 0.030
    α ≧ 0
    β ≧ 0
    0 ≦ α + β ≦ 0.55
    A soft magnetic alloy characterized by
  2.  0≦e≦0.010である請求項1に記載の軟磁性合金。 The soft magnetic alloy according to claim 1, wherein 0 ≦ e ≦ 0.010.
  3.  0≦e<0.001である請求項1または2に記載の軟磁性合金。 The soft magnetic alloy according to claim 1, wherein 0 ≦ e <0.001.
  4.  0.730≦1-(a+b+c+d+e)≦0.930である請求項1~3のいずれかに記載の軟磁性合金。 The soft magnetic alloy according to any one of claims 1 to 3, wherein 0.730≤1- (a + b + c + d + e) ≤0.930.
  5.  0≦α{1-(a+b+c+d+e)}≦0.40である請求項1~4のいずれかに記載の軟磁性合金。 5. The soft magnetic alloy according to claim 1, wherein 0 ≦ α {1− (a + b + c + d + e)} ≦ 0.40.
  6.  α=0である請求項1~5のいずれかに記載の軟磁性合金。 The soft magnetic alloy according to any one of claims 1 to 5, wherein α = 0.
  7.  0≦β{1-(a+b+c+d+e)}≦0.030である請求項1~6のいずれかに記載の軟磁性合金。 7. The soft magnetic alloy according to claim 1, wherein 0 ≦ β {1- (a + b + c + d + e)} ≦ 0.030.
  8.  β=0である請求項1~7のいずれかに記載の軟磁性合金。 The soft magnetic alloy according to any one of claims 1 to 7, wherein β = 0.
  9.  α=β=0である請求項1~8のいずれかに記載の軟磁性合金。 The soft magnetic alloy according to any one of claims 1 to 8, wherein α = β = 0.
  10.  初期微結晶が非晶質中に存在するナノヘテロ構造を有する請求項1~9のいずれかに記載の軟磁性合金。 The soft magnetic alloy according to any one of claims 1 to 9, which has a nano-heterostructure in which initial microcrystals exist in an amorphous state.
  11.  前記初期微結晶の平均粒径が0.3~10nmである請求項10に記載の軟磁性合金。 The soft magnetic alloy according to claim 10, wherein the initial crystallite has an average particle size of 0.3 to 10 nm.
  12.  前記軟磁性合金はFe基ナノ結晶からなる構造を有する請求項1~9のいずれかに記載の軟磁性合金。 The soft magnetic alloy according to any one of claims 1 to 9, wherein the soft magnetic alloy has a structure made of Fe-based nanocrystals.
  13.  前記Fe基ナノ結晶の平均粒径が5~30nmである請求項12に記載の軟磁性合金。 The soft magnetic alloy according to claim 12, wherein the average particle diameter of the Fe-based nanocrystal is 5 to 30 nm.
  14.  薄帯形状である請求項1~13のいずれかに記載の軟磁性合金。 The soft magnetic alloy according to any one of claims 1 to 13, which has a ribbon shape.
  15.  粉末形状である請求項1~13のいずれかに記載の軟磁性合金。 The soft magnetic alloy according to any one of claims 1 to 13, which is in a powder form.
  16.  請求項1~15のいずれかに記載の軟磁性合金からなる磁性部品。 A magnetic component comprising the soft magnetic alloy according to any one of claims 1 to 15.
PCT/JP2019/005514 2018-02-21 2019-02-15 Soft magnetic alloy and magnetic component WO2019163661A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/971,477 US20200377982A1 (en) 2018-02-21 2019-02-15 Soft magnetic alloy and magnetic component
CN201980014084.5A CN111771010A (en) 2018-02-21 2019-02-15 Soft magnetic alloy and magnetic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018028915A JP7043877B2 (en) 2018-02-21 2018-02-21 Soft magnetic alloys and magnetic parts
JP2018-028915 2018-02-21

Publications (1)

Publication Number Publication Date
WO2019163661A1 true WO2019163661A1 (en) 2019-08-29

Family

ID=67687813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005514 WO2019163661A1 (en) 2018-02-21 2019-02-15 Soft magnetic alloy and magnetic component

Country Status (5)

Country Link
US (1) US20200377982A1 (en)
JP (1) JP7043877B2 (en)
CN (1) CN111771010A (en)
TW (1) TWI687525B (en)
WO (1) WO2019163661A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073148A (en) * 1998-08-25 2000-03-07 Alps Electric Co Ltd Iron base soft magnetic alloy
JP2016094652A (en) * 2014-11-14 2016-05-26 株式会社リケン Soft magnetic alloy and magnetic part
CN105861958A (en) * 2016-05-26 2016-08-17 江苏奥玛德新材料科技有限公司 Low-cost high-conductivity magnet based amorphous nanocrystalline magnetically soft alloy and preparation method thereof
JP2016211067A (en) * 2015-04-30 2016-12-15 メトグラス、インコーポレイテッド Wide iron-based amorphous alloy, precursor to nanocrystalline alloy

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4881989A (en) * 1986-12-15 1989-11-21 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
US4904543A (en) * 1987-04-23 1990-02-27 Matsushita Electric Industrial Co., Ltd. Compositionally modulated, nitrided alloy films and method for making the same
JP2611994B2 (en) * 1987-07-23 1997-05-21 日立金属株式会社 Fe-based alloy powder and method for producing the same
JP2713980B2 (en) * 1988-05-17 1998-02-16 株式会社東芝 Fe-based soft magnetic alloy
EP1450378A3 (en) * 2003-02-24 2006-07-05 TDK Corporation Soft magnetic member, method for manufacturing thereof and electromagnetic wave controlling sheet
CN100447277C (en) * 2005-10-31 2008-12-31 宝山钢铁股份有限公司 Iron-niobium-silicon alloy
EP2390377B1 (en) * 2009-01-23 2017-09-27 Alps Electric Co., Ltd. Iron-based soft magnetic alloy and dust core comprising the iron-based soft magnetic alloy
DE102009038386A1 (en) * 2009-08-24 2011-03-03 Stahlwerk Ergste Gmbh Soft magnetic ferritic chrome steel
CN102610348B (en) * 2012-04-11 2015-04-29 安泰科技股份有限公司 Iron-based nanocrystalline soft magnetic alloy material and preparing method thereof
CN102719746A (en) * 2012-07-02 2012-10-10 苏州宝越新材料科技有限公司 Iron-based nanocrystalline magnetically soft alloy material and preparation method thereof
DE102012218656A1 (en) * 2012-10-12 2014-06-12 Vacuumschmelze Gmbh & Co. Kg Magnetic core, in particular for a current transformer, and method for its production
CN104485192B (en) * 2014-12-24 2016-09-07 江苏奥玛德新材料科技有限公司 A kind of iron-based amorphous and nanocrystalline soft magnetic alloy and preparation method thereof
JP6245391B1 (en) * 2017-01-30 2017-12-13 Tdk株式会社 Soft magnetic alloys and magnetic parts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073148A (en) * 1998-08-25 2000-03-07 Alps Electric Co Ltd Iron base soft magnetic alloy
JP2016094652A (en) * 2014-11-14 2016-05-26 株式会社リケン Soft magnetic alloy and magnetic part
JP2016211067A (en) * 2015-04-30 2016-12-15 メトグラス、インコーポレイテッド Wide iron-based amorphous alloy, precursor to nanocrystalline alloy
CN105861958A (en) * 2016-05-26 2016-08-17 江苏奥玛德新材料科技有限公司 Low-cost high-conductivity magnet based amorphous nanocrystalline magnetically soft alloy and preparation method thereof

Also Published As

Publication number Publication date
TWI687525B (en) 2020-03-11
TW201936945A (en) 2019-09-16
US20200377982A1 (en) 2020-12-03
JP2019143202A (en) 2019-08-29
JP7043877B2 (en) 2022-03-30
CN111771010A (en) 2020-10-13

Similar Documents

Publication Publication Date Title
JP6160760B1 (en) Soft magnetic alloys and magnetic parts
JP6160759B1 (en) Soft magnetic alloys and magnetic parts
JP6245391B1 (en) Soft magnetic alloys and magnetic parts
JP6226093B1 (en) Soft magnetic alloys and magnetic parts
JP6226094B1 (en) Soft magnetic alloys and magnetic parts
JP2019148004A (en) Soft magnetic alloy and magnetic part
JP6256647B1 (en) Soft magnetic alloys and magnetic parts
JP6245390B1 (en) Soft magnetic alloys and magnetic parts
US11521770B2 (en) Soft magnetic alloy and magnetic device
JP6614300B2 (en) Soft magnetic alloys and magnetic parts
JP6451878B1 (en) Soft magnetic alloys and magnetic parts
JP6981200B2 (en) Soft magnetic alloys and magnetic parts
JP6338001B1 (en) Soft magnetic alloys and magnetic parts
JP6436206B1 (en) Soft magnetic alloys and magnetic parts
JP6338004B1 (en) Soft magnetic alloys and magnetic parts
JP6981199B2 (en) Soft magnetic alloys and magnetic parts
JP6337994B1 (en) Soft magnetic alloys and magnetic parts
JP6604407B2 (en) Soft magnetic alloys and magnetic parts
JP2019052367A (en) Soft magnetic alloy and magnetic member
JP7043877B2 (en) Soft magnetic alloys and magnetic parts
JP6962232B2 (en) Soft magnetic alloys and magnetic parts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757364

Country of ref document: EP

Kind code of ref document: A1