WO2019163465A1 - Rinse agent and method for using rinse agent - Google Patents
Rinse agent and method for using rinse agent Download PDFInfo
- Publication number
- WO2019163465A1 WO2019163465A1 PCT/JP2019/003388 JP2019003388W WO2019163465A1 WO 2019163465 A1 WO2019163465 A1 WO 2019163465A1 JP 2019003388 W JP2019003388 W JP 2019003388W WO 2019163465 A1 WO2019163465 A1 WO 2019163465A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- weight
- parts
- rinse agent
- agent
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
- B08B3/08—Cleaning involving contact with liquid the liquid having chemical or dissolving effect
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/26—Organic compounds containing oxygen
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/26—Cleaning or polishing of the conductive pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
Definitions
- the present invention relates to a rinse agent and a method of using the rinse agent.
- a rinse agent by including a predetermined amount of water, it is excellent in environmental safety (for example, safety in work environment), while rinsing that can exhibit excellent rinsing properties after washing the object to be cleaned with a specific cleaning agent (benzyl alcohol, etc.) And a method of using such a rinse agent.
- Industrial cleaners for example, flux cleaners
- flux cleaners are widely used to remove flux and flux residue after solder paste is used to bond electronic components that are to be cleaned to the electrodes of the printed wiring board.
- a cleaning agent for flux composed of a glycol-based cleaning agent composed mainly of various glycol-based compounds is used because it exhibits good cleaning properties and has relatively few environmental problems.
- a cleaning composition for removing lead-free solder flux comprising water is disclosed (see, for example, WO2009 / 020199 (Patent Document 1)).
- Patent Document 2 Japanese Patent Laid-Open No. 7-080423 (Patent Document 2)).
- a cleaning agent containing a specific glycol ether compound is brought into contact with the substrate on which the rosin solder flux is adhered, and the flux is removed from the substrate, and then a lower alcohol or an aqueous solution thereof is contacted as a rinsing agent.
- a method for cleaning a substrate to be squeezed is disclosed (for example, see Japanese Patent Application Laid-Open No. 5-175541 (Patent Document 3)).
- the flux cleaning agent itself disclosed in Patent Document 1 has a problem that it usually has a high boiling point and is difficult to dry in a short time. Further, the flux cleaning agent has a problem that the degree of cleanliness with respect to the object to be cleaned is likely to decrease. For this reason, there has been a problem that it is necessary to provide a process for drying an object to be cleaned while rinsing agents such as water and hydrous alcohol are used to replace the flux cleaning agent.
- the inventor of the present invention is a rinsing agent having a predetermined ratio of the blending amount of the water-soluble glycol ether compound and the blending amount of water, and the solubility of benzyl alcohol in the rinsing agent. It has been found that the conventional problem can be solved by setting the value to a predetermined value or more. That is, the present invention is an aqueous rinsing agent excellent in environmental safety (for example, working environment safety) used after washing an object to be cleaned with a hydrophobic specific cleaning agent (benzyl alcohol or the like), and It aims at providing the rinse agent which can exhibit the outstanding rinse property, and the usage method of such a rinse agent.
- environmental safety for example, working environment safety
- a hydrophobic specific cleaning agent benzyl alcohol or the like
- a rinsing agent containing at least a water-soluble glycol ether compound and water and having a solubility of benzyl alcohol of 10 vol% or more, and the amount of water is 100 parts by weight of the water-soluble glycol ether compound.
- a rinse agent is provided that is 50 to 1000 parts by weight. According to the present invention, the above-described problems can be solved. Thus, it is a rinse agent excellent in environmental safety (for example, working environment safety) in which the ratio between the blending amount of the water-soluble glycol ether compound and the blending amount of water is a value within a predetermined range.
- the light transmittance in the temperature range from room temperature to 80 ° C. is preferably 90% or more.
- a predetermined light transmittance in a predetermined temperature range it can be judged that it has virtually no cloud point, without phase-separating in the temperature range from room temperature to 80 degreeC. Therefore, in a normal use temperature range, it has no cloud point and maintains transparency, so that it is possible to provide a rinse agent with good usability.
- the flash point of the rinse agent is preferably 50 ° C. or higher.
- the rinse agent which is more excellent in environmental safety for example, work environment safety
- the rinse agent which is more excellent in environmental safety can be provided by setting it as the value more than predetermined temperature.
- the initial contact angle of water with respect to the resist surface of the printed circuit board whose surface is protected by the cured photosensitive solder resist is ⁇ 1
- the printed circuit board is changed to a 30 ° C. rinse agent.
- the contact angle of water with respect to the resist surface of the printed circuit board after being immersed for 10 minutes and dried at 100 ° C. for 5 minutes is ⁇ 2
- is 3 ° or less. Is preferred.
- the water-soluble glycol ether compound preferably has a boiling point (under atmospheric pressure) of 250 ° C. or lower.
- the rinse agent can be regenerated more easily and the drying property is further improved.
- the water-soluble glycol ether compound includes ethylene glycol monopropyl ether, ethylene glycol mono-tert-butyl ether, 3-methoxy-3-methylbutanol, 3-methoxybutanol, ethylene glycol mono It is preferably at least one compound selected from the group consisting of isopropyl ether, diethylene glycol isopropyl methyl ether, dipropylene glycol monomethyl ether, diethylene glycol ethyl methyl ether, triethylene glycol dimethyl ether and diethylene glycol dimethyl ether.
- a water-soluble glycol ether compound it is possible to provide a rinse agent that is excellent in environmental safety (for example, safety in work environment), has little residual cleaning agent, and is relatively inexpensive. .
- the rinse agent further contains an amine compound having a boiling point of 250 ° C. or less, and the compounding amount of the amine compound is 0 with respect to 100 parts by weight of the water-soluble glycol ether compound. It is preferably 1 to 10 parts by weight.
- Another aspect of the present invention is a method of using a rinse agent characterized by having the following steps (1) to (2).
- a rinsing agent containing a water-soluble glycol ether compound and water and having a solubility of benzyl alcohol of 10 vol% or more, and the amount of water is 50 to 1000 parts by weight with respect to 100 parts by weight of the water-soluble glycol ether compound.
- a rinse process excellent in for example, work environment safety
- various cleaning agents can be rinsed, including hydrophobic compounds such as benzyl alcohol, which have been difficult to rinse with water.
- the rinsing process can be performed with a rinsing agent in which the predetermined cleaning agent remains very little in the object.
- aqueous rinsing agent excellent in environmental safety (for example, working environment safety) used after washing an object to be cleaned with a hydrophobic specific cleaning agent (benzyl alcohol or the like), and It becomes possible to provide a rinsing agent capable of exhibiting excellent rinsing properties and a method of using such a rinsing agent.
- environmental safety for example, working environment safety
- a hydrophobic specific cleaning agent benzyl alcohol or the like
- FIG. 1 is a diagram provided to explain the relationship between the solubility (vol%) of benzyl alcohol and the evaluation point (relative value) of compatibility (rinsability) with respect to the unit volume (100 ml) of the rinse agent.
- the first embodiment is a rinsing agent containing at least a water-soluble glycol ether compound and water, and having a solubility of benzyl alcohol of 10 vol% or more, and the blending amount of water with respect to 100 parts by weight of the water-soluble glycol ether compound Is a rinse agent characterized by having a value within the range of 50 to 1000 parts by weight.
- the rinse agent is a rinse agent containing at least a water-soluble glycol ether compound and water, and having a solubility of benzyl alcohol of 10 vol% or more
- the water content is 50 to 1000 parts by weight per 100 parts by weight of the water-soluble glycol ether compound.
- the rinse agent of the first embodiment of the present invention will be specifically described with reference to the drawings as appropriate.
- the notation in the form of “A to B” means the upper and lower limits of the range (that is, A or more and B or less), and the unit is not described in A, but the unit is described only in B
- the unit of A and the unit of B are the same.
- the water-soluble glycol ether compound is the main component of the rinse agent.
- the “glycol ether compound” means a compound in which one or both of the hydroxyl groups of the diol or its condensate are etherified.
- the glycol ether compound which comprises the rinse agent of this invention is different from what was used at said 1st process (process (1)) (hydrophobic glycol ether compound contained in a washing
- the water-soluble glycol ether compound used in the present invention preferably has a boiling point (under atmospheric pressure) usually at a value of 250 ° C. or lower. That is, the water-soluble glycol ether compound preferably has a boiling point (under atmospheric pressure) of 250 ° C. or lower.
- “atmospheric pressure” is 1013.25 hPa. The reason for this is that by using a water-soluble glycol ether compound having such a boiling point, the rinse agent can be more easily regenerated, and the resulting rinse agent is no longer flammable, and environmental safety ( This is because, for example, the working environment safety is further improved.
- the rinse agent of this invention has a flash point, it is preferable that it is 50 degreeC or more, or does not have a flash point. That is, during the operation of the cleaning apparatus, there is no danger of igniting the rinse agent, and a cleaning operation including a very stable rinsing process can be performed. Therefore, the boiling point of the water-soluble glycol ether compound is more preferably set to a value within the range of 120 to 230 ° C., and further preferably set to a value within the range of 140 to 220 ° C.
- water-soluble glycol ether compounds include ethylene glycol monopropyl ether (PS), ethylene glycol mono-tert-butyl ether (ETB), 3-methoxy-3-methylbutanol (MMB), 2- Methoxybutanol (2MB), 3-methoxybutanol (3MB), ethylene glycol monoisopropyl ether (iPG), diethylene glycol isopropyl methyl ether (IPDM), dipropylene glycol monomethyl ether (DPM), diethylene glycol ethyl methyl ether (MEDG), triethylene List at least one compound selected from the group consisting of glycol dimethyl ether (DMTG) and diethylene glycol dimethyl ether (DMDG). It can be.
- PS ethylene glycol monopropyl ether
- ETB ethylene glycol mono-tert-butyl ether
- MMB 2- Methoxybutanol
- 3MB 3-methoxybutanol
- iPG ethylene glycol monoisopropyl ether
- the said water-soluble glycol ether compound may be used individually by 1 type, and may be used in combination of multiple types.
- Examples of combinations of the plurality of water-soluble glycol ethers include PS and MMB, PS and 3MB, PS and IPDM, PS and DPM, PS and DMTG, ETB and MMB, ETB and DPM, MMB and DPM, and MMB.
- DMTG is mentioned. Needless to say, three or more of the above water-soluble glycol ether compounds may be combined.
- the water-soluble glycol ether compound may be a compound having a structure represented by the following formula 1, formula 2, or formula 3.
- R 1 represents an alkyl group having 1 to 3 carbon atoms.
- R 2 represents an alkyl group having 1 or 2 carbon atoms
- R 3 represents a hydrogen atom or an alkyl group having 1 or 2 carbon atoms.
- one of R 4 and R 6 represents a hydrogen atom and the other represents an alkoxy group having 1 or 2 carbon atoms
- one of R 5 and R 7 is a hydrogen atom.
- the other represents a hydrogen atom or an alkyl group having 1 or 2 carbon atoms.
- the group represented by — [C 3 H 6 —O] 2 — for example, a group represented by — [(CH 2 ) 3 —O] 2 —, — [CH 2 CH (CH 3 ) a group represented by —O] 2 — and a group represented by — [CH (CH 3 ) CH 2 —O] 2 —.
- the group represented by — [C 3 H 6 —O] 2 — in Formula 1 may be a group represented by — [CH 2 CH (CH 3 ) —O] 2 —. preferable.
- water-soluble glycol ether compounds are ethylene glycol monopropyl ether, ethylene glycol mono-tert-butyl ether, 3-methoxy-3-methylbutanol, dipropylene glycol monomethyl ether, triethylene glycol dimethyl ether, etc., they are safe. It can be used as a more suitable water-soluble glycol ether compound because of its compatibility (rinseability) with a hydrophobic compound and a reason for drying.
- the water rinse agent is characterized in that the amount of water is within the range of 50 to 1000 parts by weight per 100 parts by weight of the water-soluble glycol ether compound. In other words, the water content is 50 to 1000 parts by weight per 100 parts by weight of the water-soluble glycol ether compound.
- the reason for this is that if the amount of water is excessively reduced, the rinsing agent obtained may increase the flammability or adversely affect the resist (change in contact angle). On the other hand, if the amount of water is excessively large, the rinsing property by the rinse agent or the re-adhesion prevention property of the flux may be remarkably lowered.
- the amount of water is preferably set to a value within the range of 80 to 600 parts by weight, and within the range of 100 to 400 parts by weight with respect to 100 parts by weight of the water-soluble glycol ether compound. More preferably, the value of In other words, the amount of water is preferably 80 to 600 parts by weight, and more preferably 100 to 400 parts by weight with respect to 100 parts by weight of the water-soluble glycol ether compound.
- a pure water ion-exchange water, distilled water, etc.
- the water has an electric conductivity of preferably 1 to 10 ⁇ S / cm, and more preferably 1 to 5 ⁇ S / cm.
- the solubility of benzyl alcohol with respect to the unit volume (100 ml) of the rinse agent is set to a value of 10 vol% or more.
- the solubility of benzyl alcohol with respect to the unit volume (100 ml) of the rinse agent is 10 vol% or more. That is, the rinsing agent used in the present invention is configured as described above in order to rinse the object to be cleaned even when a specific cleaning agent such as benzyl alcohol or a hydrophobic glycol ether compound is used. Is provided.
- the reason why the solubility of benzyl alcohol is used as an index is that benzyl alcohol has the lowest solubility in the rinse agent among benzyl alcohol and hydrophobic glycol ether compounds. Moreover, if the solubility of benzyl alcohol with respect to the unit volume (100 ml) of the rinsing agent is a value of 10 vol% or more, the change in turbidity value at the time of washing can be reduced as much as possible, and the rinsing is rich in transparency. This is because the state of the agent can be maintained.
- the solubility of benzyl alcohol with respect to the unit volume (100 ml) of the rinse agent is preferably set to a value within the range of 15 vol% to 40 vol%, and more preferably set to a value within the range of 20 vol% to 30 vol%. .
- the horizontal axis of FIG. 1 shows the solubility (vol%) of benzyl alcohol with respect to the unit volume of the rinsing agent
- the vertical axis shows the evaluation point (relative to the compatibility (rinsing property or rinsing property)). Value).
- the evaluation points 0, 1, 2, 3, 4, and 5 on the vertical axis respectively correspond to the evaluations E, D, C, B, A ′, and A of rinse properties in examples described later.
- the rinse agent used in the present invention preferably contains an amine compound having a boiling point of 250 ° C. or lower under atmospheric pressure. That is, the rinse agent preferably further contains an amine compound having a boiling point of 250 ° C. or lower. This is because by adding an amine compound having such a boiling point, it is possible to increase the solubility of the flux without greatly hindering the regeneration of the rinse agent, thereby improving the cleaning property. In addition, by adding such an amine compound, it is possible to effectively prevent re-adhesion of the flux, and to make the rinse agent also function as a cleaning agent. Accordingly, the boiling point of such an amine compound is more preferably set to a value within the range of 120 to 230 ° C., and further preferably set to a value within the range of 140 to 220 ° C.
- the “amine compound” means a compound in which a hydrogen atom of ammonia is substituted with a hydrocarbon group or an aromatic atomic group.
- the amine compound includes a primary amine, a secondary amine, and a tertiary amine.
- the amine compound includes an aliphatic amine and an aromatic amine.
- the amine compound includes monoamines, diamines, and polyamines.
- the compounding amount of the amine compound having such a boiling point is usually within a range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the water-soluble glycol ether compound contained in the rinse agent. Is preferred.
- the compounding amount of the amine compound is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the water-soluble glycol ether compound. That is, it is because the compounding effect of an amine compound may not be acquired when mix
- the flash point of an amine compound having a boiling point of 250 ° C. or lower is preferably set to a value within the range of 30 to 100 ° C. That is, the amine compound preferably has a flash point of 30 to 100 ° C. This is because, with an amine compound having such a flash point, even if a relatively large amount is added, the flash point of the rinse agent hardly fluctuates.
- amine compounds having a boiling point of 250 ° C. or lower include N, N, N ′, N′-tetramethyl-1,6-hexamethylenediamine (TMHMDA), N, N, N ′, N′— Tetramethyl-1,4-diaminobutane (TMDAB), N, N, N ′, N′-tetramethyl-1,3-diaminopropane (TMDAP), dibutylamine (DBA), N, N-diethylhydroxyamine ( DEHA) and N-ethylethanolamine (MEM) may be used singly or in combination of two or more. Examples of the combination of two or more of the above amine compounds include DBA and DEHA.
- the amine compound having a boiling point of 250 ° C. or lower may be a compound having a structure represented by any of the following formulas 4 to 7.
- the group represented by —C q H 2q — may be linear (when q is an integer of 1 to 4) or branched (q is 2). For integers of ⁇ 4).
- the group represented by —C r H 2r — may be linear (when r is an integer of 1 to 4) or branched (r is 2). For integers of ⁇ 4).
- compositions to be blended in the rinse agent at least one of an antioxidant, an antistatic agent, a surfactant, a viscosity modifier, and the like can be given.
- the blending amount of these components can be appropriately determined according to the blending purpose, but it is usually set to a value within the range of 0.01 to 10% by weight with respect to the total amount of the rinse agent. preferable.
- Flash point It is preferable to set the flash point of the rinse agent measured according to JIS K 2265-1 and 4 (how to determine the flash point) to a value of 50 ° C or higher. That is, the rinsing agent preferably has a flash point of 50 ° C. or higher. The reason for this is that even if the rinse agent has a flash point, if the value is 50 ° C. or higher, handling is further facilitated and safety can be further improved. However, when the rinse agent has a flash point, if the value exceeds 120 ° C., the types of the rinse agent compounding components that can be used for regeneration are excessively limited, and the cost increases, which is economically disadvantageous. It may become. Accordingly, the flash point of the rinsing agent is preferably set to a value within the range of 60 to 120 ° C., and more preferably set to a value within the range of 70 to 100 ° C.
- the light transmittance (visible light transmittance) of the rinse agent in the temperature range from room temperature to 80 ° C. is 90% or more. That is, the rinsing agent preferably has a light transmittance of 90% or more in a temperature range from room temperature to 80 ° C. This is because, in such a temperature range (room temperature to 80 ° C.), by having a predetermined light transmittance, it can be determined that there is virtually no cloud point without phase separation. . Accordingly, it is possible to provide a rinse agent that is easy to use as long as it does not have a cloud point within a predetermined temperature range.
- the light transmittance of the rinse agent in the temperature range from room temperature to 80 ° C. is more preferably 95% or more, and even more preferably 98% or more.
- the upper limit of the said light transmittance is not restrict
- the light transmittance was measured using a spectrophotometer (manufactured by JASCO Corporation, product name: UV-visible spectrophotometer V-530), visible light (wavelength 660 nm), room temperature (25 ° C.) to 80 ° C. Perform under the conditions of
- of the difference between these contact angles is preferably set to a value of 3 ° or less.
- the initial contact angle of water with respect to the resist surface of the printed circuit board whose surface is protected by the cured photosensitive solder resist is ⁇ 1 , and the printed circuit board is immersed in a rinse agent at 30 ° C. for 10 minutes, and then 100 ° C.
- is 3 where ⁇ 2 is the contact angle of water with the resist surface of the printed circuit board dried for 5 minutes under the above conditions. It is preferable that the angle is not more than °.
- of the contact angle difference is more preferably 2 ° or less, and further preferably 1 ° or less.
- of the contact angle difference is not particularly limited, and examples thereof include 0 ° or more.
- the manufacturing method of the rinse agent which concerns on this embodiment includes the process of mixing components, such as the water-soluble glycol ether compound mentioned above and water.
- the mixing step any method may be used as long as the above-described water-soluble glycol ether compound and water are uniformly mixed. Examples of the mixing step include adding a predetermined component to the flask and stirring and mixing with a magnetic stirrer. Moreover, in a chemical plant etc., you may mix components, such as the water-soluble glycol ether compound mentioned above on an industrial scale, and water.
- the second embodiment is a method of using a rinse agent characterized by having the following steps (1) to (2).
- (1) A step of cleaning the flux adhering to the object to be cleaned with a cleaning liquid containing benzyl alcohol and a hydrophobic glycol ether compound or one of them.
- (2) The washing object washed in the above step (1) is a rinse agent containing at least a water-soluble glycol ether compound and water, and having a solubility of benzyl alcohol of 10 vol% or more, wherein the water-soluble glycol ether compound 100
- the method of using the rinse agent is a method of using the rinse agent including the following steps (1) to (2).
- a step of cleaning the flux adhering to the object to be cleaned using a cleaning agent containing benzyl alcohol and a hydrophobic glycol ether compound or one of them (2)
- the above-described cleaning target cleaned in the above step (1) A rinsing agent containing at least a water-soluble glycol ether compound and water, wherein the solubility of the benzyl alcohol is 10 vol% or more, and the amount of water added is 100 parts by weight of the water-soluble glycol ether compound.
- Step (1) includes soldered semiconductor elements, for example, semiconductor components such as BGA (ball grid array), CSP (chip size package), PGA (pin grid array), LGA (land grid array), and semiconductor-mounted TAB.
- BGA ball grid array
- CSP chip size package
- PGA pin grid array
- LGA laand grid array
- TAB semiconductor-mounted TAB
- Such a flux contains rosin as a main component and contains an organic acid salt, a glycidyl ether compound, an oxyacid, a (di) carboxylic acid, and the like. Moreover, since it solders under heating, the said flux will also contain heat-transformed bodies, such as rosin. Therefore, since it is very difficult to remove the flux using a water-soluble glycol ether compound, a hydrophobic glycol ether compound or benzyl alcohol is preferably used for removing the flux.
- benzyl alcohols to be used include ethyl benzyl alcohol, methyl benzyl alcohol, benzyl alcohol and the like. It will be used in a combination of two or more. In the present invention, it is most preferable to use benzyl alcohol. This is because benzyl alcohol can exhibit excellent detergency even for a relatively short time.
- hydrophobic glycol ether compound used in the present invention examples include propylene glycol monobutyl ether (BFG), dipropylene glycol dimethyl ether (DMFDG), dipropylene glycol monobutyl ether (BFDG), dipropylene glycol monopropyl ether (PFDG). ), Diethylene glycol monohexyl ether (HeDG), ethylene glycol monophenyl ether (PhG), diethylene glycol monophenyl ether (PhDG), ethylene glycol monobenzyl ether (BzG), propylene glycol monophenyl ether (PhFG), diethylene glycol dibutyl ether (DBDG) ))
- BFG propylene glycol monobutyl ether
- DMFDG dipropylene glycol dimethyl ether
- BFDG dipropylene glycol monobutyl ether
- PFDG dipropylene glycol monopropyl ether
- HeDG diethylene glycol monohexyl ether
- benzyl alcohol and a hydrophobic glycol ether compound can be used in combination.
- other components can also be mix
- at least one of a water-soluble glycol ether compound, an amine compound, an antioxidant, an antistatic agent, a surfactant, a rust inhibitor, a viscosity modifier, and the like can be given. be able to.
- Step (2) is a step of rinsing the object to be cleaned, which has been cleaned using a predetermined cleaning agent in step (1), using a predetermined rinsing agent. And in process (2), by using the rinse agent demonstrated in 1st Embodiment, the solubility of benzyl alcohol etc. which were used in the washing
- cleaning process of process (1) can be adjusted to a high value with 10 vol% or more. it can. Therefore, even if a relatively large amount of benzyl alcohol flows into the rinsing agent in step (2) due to the specific cleaning agent in step (1), the rinsing agent remains between room temperature and 80 ° C. Phase separation does not occur, turbidity does not decrease, and predetermined transparency can be maintained.
- the rinse agent used by this invention can maintain the solubility of benzyl alcohol to 10 vol% or more by mix
- Drying step After performing the rinse treatment (step (2)), it is preferable to carry out a step of drying the object to be cleaned.
- drying conditions can be set as appropriate, but the drying temperature is usually preferably in the range of 60 to 120 ° C., more preferably in the range of 80 to 100 ° C. Then, at a drying temperature within this range, drying is usually performed by blowing hot air for 1 to 20 minutes, preferably 5 to 10 minutes.
- the reason why the drying can be performed in such a short time is that the rinsing agent of the present invention is made into an aqueous system, and although a boiling point is relatively high, a configuration in which a small amount of a predetermined glycol ether is added is adopted.
- the blending component of the rinsing agent is almost completely removed, and most of the surplus components remain on the surface of the object to be cleaned other than the components intended to remain such as a rust inhibitor. It will be in a state that does not.
- Example 1 Process (1) Microcleaner MC3USHD-1.5E (manufactured by Kaken Tech Co., Ltd.) was used as a cleaning device, and benzyl alcohol was accommodated as a cleaning solution in the cleaning tank. Next, the cleaning apparatus was operated to clean the substrate with a semiconductor element as an object to be cleaned. That is, the object to be cleaned was immersed in benzyl alcohol, which is a cleaning liquid stored in a cleaning tank, and ultrasonic cleaning was performed at 70 ° C. for 5 minutes.
- benzyl alcohol which is a cleaning liquid stored in a cleaning tank
- Step (2) Subsequently, the to-be-cleaned object wash
- the rinsing tank in which the rinsing agent was stored was provided with a predetermined distillation apparatus, and the rinsing liquid was distilled to separate the compatible benzyl alcohol.
- the glass epoxy substrate is accommodated in the beaker containing the rinse agent, and in that state, the magnetic in the beaker containing the rinse agent is contained.
- the stirrer was rotated and immersed for a predetermined time.
- the rotation of the magnetic stirrer was stopped, the glass epoxy substrate was taken out from the rinse agent, and drying was performed for 10 minutes using a circulation oven maintained at 100 ° C. Thereafter, the dried glass epoxy substrate was taken out from the circulation oven, visually observed on the surface, and rinsed (rinsed) of the rinse agent was evaluated in light of the following criteria.
- a ' No benzyl alcohol remaining in the rinse time of 7 minutes.
- B No benzyl alcohol remaining after rinsing time of 10 minutes.
- C There is a little liquid residue of benzyl alcohol after a rinsing time of 10 minutes.
- D There is a lot of liquid residue of benzyl alcohol after a rinsing time of 10 minutes.
- E There is much liquid residue of benzyl alcohol after rinsing time of 15 minutes.
- ⁇ 1 represents the contact angle (initial contact angle) of ion-exchanged water with respect to the surface of the solder resist before cleaning
- ⁇ 2 represents the contact angle of ion-exchanged water with respect to the resist surface subjected to the rinsing process and the drying process described above. Indicates.
- the flash point of the rinse agent was measured according to JIS K2265-1 and 4 (how to determine the flash point).
- it is preferable not to have a flash point even if it exists, it is preferable that it is the temperature of 50 degreeC or more.
- “having no flash point” means that there is no flash point in the range from room temperature to the boiling point of the rinse agent.
- Example 2 In Example 2, the object to be cleaned was treated in the same manner except that the same amount of ETB was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
- PS ethylene glycol monopropyl ether
- Example 3 In Example 3, the object to be cleaned was treated in the same manner except that the same amount of MMB was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
- PS ethylene glycol monopropyl ether
- Example 4 the object to be cleaned was treated in the same manner except that the same amount of iPG was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
- Example 5 the object to be cleaned was treated in the same manner except that the same amount of DPM was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
- PS ethylene glycol monopropyl ether
- Example 6 In Example 6, the object to be cleaned was treated in the same manner except that the same amount of MEDG was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
- PS ethylene glycol monopropyl ether
- Example 7 In Example 7, the object to be cleaned was treated in the same manner except that the same amount of DMTG was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
- PS ethylene glycol monopropyl ether
- Example 8 the object to be cleaned was treated in the same manner except that the same amount of DMDG was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
- Example 9 In Example 9, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, the amount of PS used was 20 parts by weight and the amount of water was 80 parts by weight. The object to be cleaned was treated in the same manner except that it was changed. The obtained results are shown in Table 2.
- PS ethylene glycol monopropyl ether
- Example 10 In Example 10, it was cleaned in the same manner except that 15 parts by weight of PS and 15 parts by weight of MMB were used instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1. The product was processed. The obtained results are shown in Table 2.
- PS ethylene glycol monopropyl ether
- Example 11 In Example 11, 15 parts by weight of PS and 15 parts by weight of MMB were used in place of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, and 1 part by weight of TMHMDA was used as the amine compound. The object to be cleaned was treated in the same manner except that it was used and the amount of water was changed to 69 parts by weight. The obtained results are shown in Table 2.
- Example 12 In Example 12, 15 parts by weight of PS and 15 parts by weight of MMB were used in place of the ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, and 0.5 parts by weight of DBA was used as the amine compound. The object to be cleaned was treated in the same manner except that 0.5 parts by weight of DEHA was used and the amount of water was changed to 69 parts by weight. The obtained results are shown in Table 2.
- Example 13 In Example 13, 20 parts by weight of PS and 20 parts by weight of MMB were used in place of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, and the amount of water was further changed to 60 parts. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 2.
- PS ethylene glycol monopropyl ether
- Example 14 In Example 14, 30 parts by weight of ETB was used in place of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, and 1 part by weight of TMHMDA was used as an amine compound. Further, the object to be cleaned was treated in the same manner except that the amount of water was changed to 69 parts by weight. The obtained results are shown in Table 2.
- PS ethylene glycol monopropyl ether
- Example 15 In Example 15, 30 parts by weight of DPM was used instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, and 0.5 weight of DBA was added as an amine compound. And 0.5 parts by weight of DEHA were used, and further, the object to be cleaned was treated in the same manner except that the amount of water was changed to 69 parts by weight. The obtained results are shown in Table 2.
- PS ethylene glycol monopropyl ether
- Example 16 In Example 16, 30 parts by weight of PS and 5 parts by weight of DPM were used in place of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, and the amount of water was 65%. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 3.
- PS ethylene glycol monopropyl ether
- Example 17 In Example 17, 10 parts by weight of PS and 30 parts by weight of DMTG were used in place of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, and the amount of water was further changed to 60 parts. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 3.
- PS ethylene glycol monopropyl ether
- Example 18 In Example 18, it was cleaned in the same manner except that 10 parts by weight of ETB and 20 parts by weight of MMB were used instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1. The product was processed. The obtained results are shown in Table 3.
- PS ethylene glycol monopropyl ether
- Example 19 In Example 19, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 10 parts by weight of ETB and 15 parts by weight of DPM were used, and the amount of water was 75%. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 3.
- PS ethylene glycol monopropyl ether
- Example 20 In Example 20, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 25 parts by weight of MMB and 15 parts by weight of DPM were used. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 3.
- PS ethylene glycol monopropyl ether
- Example 21 In Example 21, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, 15 parts by weight of MMB and 20 parts by weight of DMTG were used, and TMHMDA was added as an amine compound. The objects to be cleaned were treated in the same manner except that parts by weight were used and the amount of water was changed to 64 parts by weight. The obtained results are shown in Table 3.
- PS ethylene glycol monopropyl ether
- Example 22 In Example 22, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, 15 parts by weight of PS and 15 parts by weight of MMB were used, and TMDAP was added as an amine compound. The objects to be cleaned were treated in the same manner except that parts by weight were used and the amount of water was changed to 69 parts by weight. The obtained results are shown in Table 3.
- PS ethylene glycol monopropyl ether
- Example 23 In Example 23, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 15 parts by weight of PS and 15 parts by weight of 3MB were used. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 3.
- PS ethylene glycol monopropyl ether
- Example 24 In Example 24, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 20 parts by weight of PS and 20 parts by weight of IPDM were used, and the amount of water was changed to 60 parts. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 3.
- PS ethylene glycol monopropyl ether
- Comparative Example 1 In Comparative Example 1, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, the amount of PS used was changed to 80 parts by weight, and the amount of water used was changed. The object to be cleaned was treated in the same manner except that the amount was changed to 20 parts by weight. Table 4 shows the obtained results.
- PS ethylene glycol monopropyl ether
- Comparative Example 2 In Comparative Example 2, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 15 parts by weight of PS and 3 parts by weight of BFG were used. The object to be cleaned was treated in the same manner except that the amount of water used was changed to 82 parts by weight. Table 4 shows the obtained results.
- PS ethylene glycol monopropyl ether
- Comparative Example 3 In Comparative Example 3, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, 40 parts by weight of BFG was used and the amount of water was 60 parts by weight. The object to be cleaned was treated in the same manner except that it was changed. Table 4 shows the obtained results.
- PS ethylene glycol monopropyl ether
- Comparative Example 4 In Comparative Example 4, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 25 parts by weight of DMFDG was used and the amount of water was changed to 75 parts by weight. Except for the above, the object to be cleaned was treated in the same manner. Table 4 shows the obtained results.
- PS ethylene glycol monopropyl ether
- Comparative Example 5 In Comparative Example 5, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 20 parts by weight of DMFDG and 10 parts by weight of MMB were used. The object to be cleaned was treated in the same manner except that 1 part by weight of MEM was used as the compound and the amount of water was changed to 69 parts by weight. Table 4 shows the obtained results.
- PS ethylene glycol monopropyl ether
- Comparative Example 6 In Comparative Example 6, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in the step (2) of Example 1, 30 parts by weight of DEDG was used. Processed. Table 4 shows the obtained results.
- PS ethylene glycol monopropyl ether
- Comparative Example 7 In Comparative Example 7, the object to be cleaned was similarly prepared except that 30 parts by weight of iBG was used instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. Processed. Table 4 shows the obtained results.
- iBG ethylene glycol monopropyl ether
- Example 8 In Example 1, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2), 60 parts by weight of ethanol was used and the amount of water was changed to 40 parts by weight. In the same manner, the object to be cleaned was processed. Table 4 shows the obtained results.
- PS ethylene glycol monopropyl ether
- the ratio between the blending amount of the water-soluble glycol ether compound and the blending amount of water is set to a value within a predetermined range, and the solubility of benzyl alcohol is set to a predetermined value or more.
- environmental safety for example, work environment safety
- the present invention not only the conventional water-soluble glycol ether compound but also the rinsing property and the drying property with respect to the object to be cleaned by a hydrophobic solvent such as benzyl alcohol and hydrophobic glycol ether compound can be improved. became.
- the rinsing property after cleaning is excellent, and the cleaning property and the anti-reattachment property of the flux are also improved. Therefore, both the rinse agent and the cleaning agent can be used for both purposes. It has become possible.
- the present invention is a method of using a predetermined rinse agent, after the object to be cleaned is efficiently cleaned using the predetermined cleaning agent, environmental safety (for example, work environment safety) and reproducibility In addition, it is possible to efficiently obtain an object to be cleaned with little residual cleaning agent. Therefore, according to the rinsing agent of the present invention and the method of using the same, it is highly expected that the object to be cleaned is cleaned and rinsed safely and efficiently at a low cost.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Emergency Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Detergent Compositions (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
The present invention provides a rinse agent which contains at least a water-soluble glycol ether compound and water, and which is configured such that: the rinse agent has a solubility of benzyl alcohol of 10 vol% or more; and 50-1,000 parts by weight of water is blended per 100 parts by weight of the water-soluble glycol ether compound.
Description
本発明は、リンス剤及びリンス剤の使用方法に関する。特に、所定量の水を含むことにより、環境安全性(例えば、作業環境安全性)に優れる一方、特定洗浄剤(ベンジルアルコール等)による被洗浄物に対する洗浄後に、優れたリンス性を発揮できるリンス剤及びそのようなリンス剤の使用方法に関する。
The present invention relates to a rinse agent and a method of using the rinse agent. In particular, by including a predetermined amount of water, it is excellent in environmental safety (for example, safety in work environment), while rinsing that can exhibit excellent rinsing properties after washing the object to be cleaned with a specific cleaning agent (benzyl alcohol, etc.) And a method of using such a rinse agent.
工業用洗浄剤、例えば、フラックス用洗浄剤は、ソルダペーストを用いて、被洗浄物である電子部品をプリント配線基板の電極に接合した後、フラックス及びフラックス残渣を除去するために、幅広く使用されている。
そのため、良好な洗浄性を発揮し、環境問題等が比較的少ないことから、各種グリコール系化合物を主成分とした、グリコール系洗浄剤からなるフラックス用洗浄剤が使用されている。 Industrial cleaners, for example, flux cleaners, are widely used to remove flux and flux residue after solder paste is used to bond electronic components that are to be cleaned to the electrodes of the printed wiring board. ing.
For this reason, a cleaning agent for flux composed of a glycol-based cleaning agent composed mainly of various glycol-based compounds is used because it exhibits good cleaning properties and has relatively few environmental problems.
そのため、良好な洗浄性を発揮し、環境問題等が比較的少ないことから、各種グリコール系化合物を主成分とした、グリコール系洗浄剤からなるフラックス用洗浄剤が使用されている。 Industrial cleaners, for example, flux cleaners, are widely used to remove flux and flux residue after solder paste is used to bond electronic components that are to be cleaned to the electrodes of the printed wiring board. ing.
For this reason, a cleaning agent for flux composed of a glycol-based cleaning agent composed mainly of various glycol-based compounds is used because it exhibits good cleaning properties and has relatively few environmental problems.
特定構造式で表される非ハロゲン系有機溶剤(A)と、特定構造式で表されるアミン化合物(B)と、アミノ基非含有キレート剤(C)と、必要に応じて、所定量の水とを含んでなる鉛フリーハンダフラックス除去用洗浄剤組成物が開示されている(例えば、WO2009/020199号公報(特許文献1)参照)。
A non-halogen organic solvent (A) represented by the specific structural formula, an amine compound (B) represented by the specific structural formula, an amino group-free chelating agent (C), and, if necessary, a predetermined amount A cleaning composition for removing lead-free solder flux comprising water is disclosed (see, for example, WO2009 / 020199 (Patent Document 1)).
また、非イオン性界面活性剤及び/又は炭化水素化合物等を含んでなる洗浄剤組成物を用いて洗浄工程を実施した後、5~100℃の水を使用するリンス工程と、を有する洗浄方法が開示されている(例えば、特開平7-080423号公報(特許文献2)参照)。
And a rinsing step using water at 5 to 100 ° C. after performing the cleaning step using a cleaning composition comprising a nonionic surfactant and / or a hydrocarbon compound. (See, for example, Japanese Patent Laid-Open No. 7-080423 (Patent Document 2)).
さらにまた、ロジン系ハンダフラックスが付着した基板に、特定のグリコールエーテル系化合物を含有してなる洗浄剤を接触せしめ、該基板よりフラックス洗浄除去し、次いですすぎ剤として低級アルコールもしくはその水溶液等を接触せしめる基板の洗浄処理方法が開示されている(例えば、特開平5-175641号公報(特許文献3)参照)。
Furthermore, a cleaning agent containing a specific glycol ether compound is brought into contact with the substrate on which the rosin solder flux is adhered, and the flux is removed from the substrate, and then a lower alcohol or an aqueous solution thereof is contacted as a rinsing agent. A method for cleaning a substrate to be squeezed is disclosed (for example, see Japanese Patent Application Laid-Open No. 5-175541 (Patent Document 3)).
しかしながら、特許文献1に開示されたフラックス用洗浄剤自体は、通常、沸点が高く、短時間に乾燥させることが困難であるという課題があった。さらに、当該フラックス用洗浄剤は、被洗浄物に対する清浄度が低下しやすいという問題が見られた。
そのため、水及び含水アルコール等のリンス剤を用いて、フラックス用洗浄剤を置換しつつ、被洗浄物を乾燥させるプロセスを設けることが必要であるという問題が見られた。 However, the flux cleaning agent itself disclosed inPatent Document 1 has a problem that it usually has a high boiling point and is difficult to dry in a short time. Further, the flux cleaning agent has a problem that the degree of cleanliness with respect to the object to be cleaned is likely to decrease.
For this reason, there has been a problem that it is necessary to provide a process for drying an object to be cleaned while rinsing agents such as water and hydrous alcohol are used to replace the flux cleaning agent.
そのため、水及び含水アルコール等のリンス剤を用いて、フラックス用洗浄剤を置換しつつ、被洗浄物を乾燥させるプロセスを設けることが必要であるという問題が見られた。 However, the flux cleaning agent itself disclosed in
For this reason, there has been a problem that it is necessary to provide a process for drying an object to be cleaned while rinsing agents such as water and hydrous alcohol are used to replace the flux cleaning agent.
また、特許文献2に開示された洗浄方法の場合、洗浄剤組成物の種類が過度に制限されるという課題があった。さらに、当該洗浄方法の場合、リンス工程における水温を、厳格に所定範囲内の値(5~100℃)に制御しなければならないという問題が見られた。
その上、リンス剤として水を用いた場合、乾燥性が悪いばかりか、疎水性のフラックス用洗浄剤、例えば、ベンジルアルコール等に対する溶解性が低いため、濯ぎ不良となりやすいという問題も見られた。 Moreover, in the case of the cleaning method disclosed inPatent Document 2, there is a problem that the type of the cleaning composition is excessively limited. Further, in the case of the cleaning method, there has been a problem that the water temperature in the rinsing step must be strictly controlled to a value within a predetermined range (5 to 100 ° C.).
In addition, when water is used as a rinse agent, there is a problem that not only the drying property is bad, but also the hydrophobic flux cleaning agent such as benzyl alcohol has low solubility, and thus it is likely to cause poor rinsing.
その上、リンス剤として水を用いた場合、乾燥性が悪いばかりか、疎水性のフラックス用洗浄剤、例えば、ベンジルアルコール等に対する溶解性が低いため、濯ぎ不良となりやすいという問題も見られた。 Moreover, in the case of the cleaning method disclosed in
In addition, when water is used as a rinse agent, there is a problem that not only the drying property is bad, but also the hydrophobic flux cleaning agent such as benzyl alcohol has low solubility, and thus it is likely to cause poor rinsing.
特許文献3に開示された基板の洗浄処理方法の場合、リンス剤として含水アルコールを用いていることから、疎水性のフラックス用洗浄剤に対する溶解性は、比較的良好である。しかしながら、当該リンス剤は、引火点が低く、環境安全性(例えば、作業環境安全性)が不十分であるという問題が見られた。
In the substrate cleaning method disclosed in Patent Document 3, water-containing alcohol is used as the rinse agent, so that the solubility in the hydrophobic flux cleaning agent is relatively good. However, the rinse agent has a problem that the flash point is low and environmental safety (for example, work environment safety) is insufficient.
そこで、本発明の発明者は鋭意検討した結果、水溶性グリコールエーテル化合物の配合量と、水の配合量との割合を所定割合としたリンス剤であって、かつ、リンス剤におけるベンジルアルコールの溶解度を所定値以上とすることによって、従来の問題を解決することを見出した。
すなわち、本発明は、疎水性の特定洗浄剤(ベンジルアルコール等)による被洗浄物の洗浄後に用いられる、環境安全性(例えば、作業環境安全性)に優れた水系リンス剤であって、かつ、優れたリンス性を発揮することができるリンス剤及びこのようなリンス剤の使用方法を提供することを目的とする。 Therefore, as a result of intensive studies, the inventor of the present invention is a rinsing agent having a predetermined ratio of the blending amount of the water-soluble glycol ether compound and the blending amount of water, and the solubility of benzyl alcohol in the rinsing agent. It has been found that the conventional problem can be solved by setting the value to a predetermined value or more.
That is, the present invention is an aqueous rinsing agent excellent in environmental safety (for example, working environment safety) used after washing an object to be cleaned with a hydrophobic specific cleaning agent (benzyl alcohol or the like), and It aims at providing the rinse agent which can exhibit the outstanding rinse property, and the usage method of such a rinse agent.
すなわち、本発明は、疎水性の特定洗浄剤(ベンジルアルコール等)による被洗浄物の洗浄後に用いられる、環境安全性(例えば、作業環境安全性)に優れた水系リンス剤であって、かつ、優れたリンス性を発揮することができるリンス剤及びこのようなリンス剤の使用方法を提供することを目的とする。 Therefore, as a result of intensive studies, the inventor of the present invention is a rinsing agent having a predetermined ratio of the blending amount of the water-soluble glycol ether compound and the blending amount of water, and the solubility of benzyl alcohol in the rinsing agent. It has been found that the conventional problem can be solved by setting the value to a predetermined value or more.
That is, the present invention is an aqueous rinsing agent excellent in environmental safety (for example, working environment safety) used after washing an object to be cleaned with a hydrophobic specific cleaning agent (benzyl alcohol or the like), and It aims at providing the rinse agent which can exhibit the outstanding rinse property, and the usage method of such a rinse agent.
本発明によれば、少なくとも水溶性グリコールエーテル化合物及び水を含み、ベンジルアルコールの溶解度が10vol%以上であるリンス剤であって、水溶性グリコールエーテル化合物100重量部に対して、水の配合量が50~1000重量部であるリンス剤が提供される。本発明によれば、上述した問題点を解決することができる。
このように水溶性グリコールエーテル化合物の配合量と、水の配合量との割合を所定範囲内の値とした、環境安全性(例えば、作業環境安全性)に優れたリンス剤である。
そして、単位体積当たりのリンス剤に対するベンジルアルコールの溶解度を所定値以上とすることによって、従来水ではすすぎが困難であったベンジルアルコール等の疎水性化合物をはじめ、様々な洗浄剤をすすぐことが出来る。そのため、被洗浄物における所定洗浄剤の残留が極めて少ないリンス剤を提供することができる。 According to the present invention, a rinsing agent containing at least a water-soluble glycol ether compound and water and having a solubility of benzyl alcohol of 10 vol% or more, and the amount of water is 100 parts by weight of the water-soluble glycol ether compound. A rinse agent is provided that is 50 to 1000 parts by weight. According to the present invention, the above-described problems can be solved.
Thus, it is a rinse agent excellent in environmental safety (for example, working environment safety) in which the ratio between the blending amount of the water-soluble glycol ether compound and the blending amount of water is a value within a predetermined range.
In addition, by setting the solubility of benzyl alcohol in the rinse agent per unit volume to a predetermined value or more, it is possible to rinse various cleaning agents including hydrophobic compounds such as benzyl alcohol, which have been difficult to rinse with water conventionally. . Therefore, it is possible to provide a rinse agent in which the predetermined cleaning agent remains very little in the object to be cleaned.
このように水溶性グリコールエーテル化合物の配合量と、水の配合量との割合を所定範囲内の値とした、環境安全性(例えば、作業環境安全性)に優れたリンス剤である。
そして、単位体積当たりのリンス剤に対するベンジルアルコールの溶解度を所定値以上とすることによって、従来水ではすすぎが困難であったベンジルアルコール等の疎水性化合物をはじめ、様々な洗浄剤をすすぐことが出来る。そのため、被洗浄物における所定洗浄剤の残留が極めて少ないリンス剤を提供することができる。 According to the present invention, a rinsing agent containing at least a water-soluble glycol ether compound and water and having a solubility of benzyl alcohol of 10 vol% or more, and the amount of water is 100 parts by weight of the water-soluble glycol ether compound. A rinse agent is provided that is 50 to 1000 parts by weight. According to the present invention, the above-described problems can be solved.
Thus, it is a rinse agent excellent in environmental safety (for example, working environment safety) in which the ratio between the blending amount of the water-soluble glycol ether compound and the blending amount of water is a value within a predetermined range.
In addition, by setting the solubility of benzyl alcohol in the rinse agent per unit volume to a predetermined value or more, it is possible to rinse various cleaning agents including hydrophobic compounds such as benzyl alcohol, which have been difficult to rinse with water conventionally. . Therefore, it is possible to provide a rinse agent in which the predetermined cleaning agent remains very little in the object to be cleaned.
また、本発明のリンス剤を構成するにあたり、室温から80℃の温度範囲における光透過率が90%以上であることが好ましい。
このように所定温度範囲において、所定の光透過率を有することによって、室温から80℃までの温度範囲において相分離することなく、事実上、曇点を有しないと判断することができる。したがって、通常の使用温度範囲では、曇点を有さず、透明性を維持することから、使い勝手が良好なリンス剤を提供することができる。 Further, in constituting the rinse agent of the present invention, the light transmittance in the temperature range from room temperature to 80 ° C. is preferably 90% or more.
Thus, by having a predetermined light transmittance in a predetermined temperature range, it can be judged that it has virtually no cloud point, without phase-separating in the temperature range from room temperature to 80 degreeC. Therefore, in a normal use temperature range, it has no cloud point and maintains transparency, so that it is possible to provide a rinse agent with good usability.
このように所定温度範囲において、所定の光透過率を有することによって、室温から80℃までの温度範囲において相分離することなく、事実上、曇点を有しないと判断することができる。したがって、通常の使用温度範囲では、曇点を有さず、透明性を維持することから、使い勝手が良好なリンス剤を提供することができる。 Further, in constituting the rinse agent of the present invention, the light transmittance in the temperature range from room temperature to 80 ° C. is preferably 90% or more.
Thus, by having a predetermined light transmittance in a predetermined temperature range, it can be judged that it has virtually no cloud point, without phase-separating in the temperature range from room temperature to 80 degreeC. Therefore, in a normal use temperature range, it has no cloud point and maintains transparency, so that it is possible to provide a rinse agent with good usability.
また、本発明のリンス剤を構成するにあたり、リンス剤の引火点が50℃以上であることが好ましい。
このように引火点を有する場合であっても、所定温度以上の値とすることによって、より環境安全性(例えば、作業環境安全性)に優れるリンス剤を提供することができる。 In constituting the rinse agent of the present invention, the flash point of the rinse agent is preferably 50 ° C. or higher.
Thus, even if it has a flash point, the rinse agent which is more excellent in environmental safety (for example, work environment safety) can be provided by setting it as the value more than predetermined temperature.
このように引火点を有する場合であっても、所定温度以上の値とすることによって、より環境安全性(例えば、作業環境安全性)に優れるリンス剤を提供することができる。 In constituting the rinse agent of the present invention, the flash point of the rinse agent is preferably 50 ° C. or higher.
Thus, even if it has a flash point, the rinse agent which is more excellent in environmental safety (for example, work environment safety) can be provided by setting it as the value more than predetermined temperature.
また、本発明のリンス剤を構成するにあたり、感光性ソルダーレジスト硬化体によって表面が保護されたプリント基板のレジスト表面に対する水の初期接触角をθ1とし、上記プリント基板を30℃のリンス剤に10分間浸漬した後、100℃で5分の条件で乾燥させた該プリント基板のレジスト表面に対する水の接触角をθ2としたときに、|θ2-θ1|が3°以下であることが好ましい。
このように所定接触角の差の絶対値とすることによって、プリント基板等の被洗浄物に対する悪影響が少ないリンス剤を、定量的に提供することができる。 Further, in constituting the rinse agent of the present invention, the initial contact angle of water with respect to the resist surface of the printed circuit board whose surface is protected by the cured photosensitive solder resist is θ 1 , and the printed circuit board is changed to a 30 ° C. rinse agent. When the contact angle of water with respect to the resist surface of the printed circuit board after being immersed for 10 minutes and dried at 100 ° C. for 5 minutes is θ 2 , | θ 2 −θ 1 | is 3 ° or less. Is preferred.
Thus, by setting it as the absolute value of the difference of a predetermined contact angle, the rinse agent with little bad influence with respect to to-be-cleaned objects, such as a printed circuit board, can be provided quantitatively.
このように所定接触角の差の絶対値とすることによって、プリント基板等の被洗浄物に対する悪影響が少ないリンス剤を、定量的に提供することができる。 Further, in constituting the rinse agent of the present invention, the initial contact angle of water with respect to the resist surface of the printed circuit board whose surface is protected by the cured photosensitive solder resist is θ 1 , and the printed circuit board is changed to a 30 ° C. rinse agent. When the contact angle of water with respect to the resist surface of the printed circuit board after being immersed for 10 minutes and dried at 100 ° C. for 5 minutes is θ 2 , | θ 2 −θ 1 | is 3 ° or less. Is preferred.
Thus, by setting it as the absolute value of the difference of a predetermined contact angle, the rinse agent with little bad influence with respect to to-be-cleaned objects, such as a printed circuit board, can be provided quantitatively.
また、本発明のリンス剤を構成するにあたり、水溶性グリコールエーテル化合物は、その沸点(大気圧下)が250℃以下であることが好ましい。
このように水溶性グリコールエーテル化合物の沸点を制限することによって、リンス剤の再生をさらに容易に行うことができ、かつ、乾燥性にもさらに優れたものとなる。 In constituting the rinse agent of the present invention, the water-soluble glycol ether compound preferably has a boiling point (under atmospheric pressure) of 250 ° C. or lower.
Thus, by restricting the boiling point of the water-soluble glycol ether compound, the rinse agent can be regenerated more easily and the drying property is further improved.
このように水溶性グリコールエーテル化合物の沸点を制限することによって、リンス剤の再生をさらに容易に行うことができ、かつ、乾燥性にもさらに優れたものとなる。 In constituting the rinse agent of the present invention, the water-soluble glycol ether compound preferably has a boiling point (under atmospheric pressure) of 250 ° C. or lower.
Thus, by restricting the boiling point of the water-soluble glycol ether compound, the rinse agent can be regenerated more easily and the drying property is further improved.
また、本発明のリンス剤を構成するにあたり、水溶性グリコールエーテル化合物は、エチレングリコールモノプロピルエーテル、エチレングリコールモノ-tert-ブチルエーテル、3-メトキシ-3-メチルブタノール、3-メトキシブタノール、エチレングリコールモノイソプロピルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールエチルメチルエーテル、トリエチレングリコールジメチルエーテル及びジエチレングリコールジメチルエーテルからなる群より選ばれる少なくとも1種の化合物であることが好ましい。
このような水溶性グリコールエーテル化合物を用いることによって、環境安全性(例えば、作業環境安全性)に優れるとともに、洗浄剤の残留が少なく、さらには、比較的安価なリンス剤を提供することができる。 In constituting the rinse agent of the present invention, the water-soluble glycol ether compound includes ethylene glycol monopropyl ether, ethylene glycol mono-tert-butyl ether, 3-methoxy-3-methylbutanol, 3-methoxybutanol, ethylene glycol mono It is preferably at least one compound selected from the group consisting of isopropyl ether, diethylene glycol isopropyl methyl ether, dipropylene glycol monomethyl ether, diethylene glycol ethyl methyl ether, triethylene glycol dimethyl ether and diethylene glycol dimethyl ether.
By using such a water-soluble glycol ether compound, it is possible to provide a rinse agent that is excellent in environmental safety (for example, safety in work environment), has little residual cleaning agent, and is relatively inexpensive. .
このような水溶性グリコールエーテル化合物を用いることによって、環境安全性(例えば、作業環境安全性)に優れるとともに、洗浄剤の残留が少なく、さらには、比較的安価なリンス剤を提供することができる。 In constituting the rinse agent of the present invention, the water-soluble glycol ether compound includes ethylene glycol monopropyl ether, ethylene glycol mono-tert-butyl ether, 3-methoxy-3-methylbutanol, 3-methoxybutanol, ethylene glycol mono It is preferably at least one compound selected from the group consisting of isopropyl ether, diethylene glycol isopropyl methyl ether, dipropylene glycol monomethyl ether, diethylene glycol ethyl methyl ether, triethylene glycol dimethyl ether and diethylene glycol dimethyl ether.
By using such a water-soluble glycol ether compound, it is possible to provide a rinse agent that is excellent in environmental safety (for example, safety in work environment), has little residual cleaning agent, and is relatively inexpensive. .
また、本発明のリンス剤を構成するにあたり、上記リンス剤は沸点が250℃以下であるアミン化合物を更に含み、当該アミン化合物の配合量は、水溶性グリコールエーテル化合物100重量部に対して、0.1~10重量部であることが好ましい。
このように所定沸点を有するアミン化合物を所定量配合することによって、洗浄剤中に含まれるフラックス残渣との相溶性を上げることができるとともに、リンス剤の再生をさらに容易に行うことができ、かつ、プリント基板等の被洗浄物に対する悪影響が少ないリンス剤で被洗浄物を効率的に洗浄することができるリンス剤を提供することができる。 Further, in constituting the rinse agent of the present invention, the rinse agent further contains an amine compound having a boiling point of 250 ° C. or less, and the compounding amount of the amine compound is 0 with respect to 100 parts by weight of the water-soluble glycol ether compound. It is preferably 1 to 10 parts by weight.
By blending a predetermined amount of the amine compound having a predetermined boiling point as described above, compatibility with the flux residue contained in the cleaning agent can be increased, and the rinse agent can be regenerated more easily, and In addition, it is possible to provide a rinse agent that can efficiently clean an object to be cleaned with a rinse agent that has little adverse effect on the object to be cleaned such as a printed circuit board.
このように所定沸点を有するアミン化合物を所定量配合することによって、洗浄剤中に含まれるフラックス残渣との相溶性を上げることができるとともに、リンス剤の再生をさらに容易に行うことができ、かつ、プリント基板等の被洗浄物に対する悪影響が少ないリンス剤で被洗浄物を効率的に洗浄することができるリンス剤を提供することができる。 Further, in constituting the rinse agent of the present invention, the rinse agent further contains an amine compound having a boiling point of 250 ° C. or less, and the compounding amount of the amine compound is 0 with respect to 100 parts by weight of the water-soluble glycol ether compound. It is preferably 1 to 10 parts by weight.
By blending a predetermined amount of the amine compound having a predetermined boiling point as described above, compatibility with the flux residue contained in the cleaning agent can be increased, and the rinse agent can be regenerated more easily, and In addition, it is possible to provide a rinse agent that can efficiently clean an object to be cleaned with a rinse agent that has little adverse effect on the object to be cleaned such as a printed circuit board.
本発明の別の態様は、下記工程(1)~工程(2)を有することを特徴としたリンス剤の使用方法である。
(1)被洗浄物に付着したフラックスを、ベンジルアルコール及び疎水性グリコールエーテル化合物、あるいはいずれか一方を含む洗浄液で洗浄する工程
(2)上記工程(1)で洗浄された被洗浄物を、少なくとも水溶性グリコールエーテル化合物及び水を含み、ベンジルアルコールの溶解度が10vol%以上であるリンス剤であって、水溶性グリコールエーテル化合物100重量部に対して、水の配合量が50~1000重量部であるリンス剤を用いて、リンスする工程
このように水溶性グリコールエーテル化合物の配合量と、水の配合量との割合を所定範囲内の値とし、かつ、ベンジルアルコールの溶解度を所定値以上としたリンス剤を用いることによって、所定洗浄剤を用いて被洗浄物を効率的に洗浄した後であっても、環境安全性(例えば、作業環境安全性)に優れたリンス処理を行うことができる。
その上、洗浄工程において、所定洗浄剤を用いた場合であっても、従来水ではすすぎが困難であったベンジルアルコール等の疎水性化合物をはじめ、様々な洗浄剤をすすぐことが出来、被洗浄物における所定洗浄剤の残留が極めて少ないリンス剤でリンス処理を行うことができる。 Another aspect of the present invention is a method of using a rinse agent characterized by having the following steps (1) to (2).
(1) A step of cleaning the flux adhering to the object to be cleaned with a cleaning liquid containing benzyl alcohol and a hydrophobic glycol ether compound or one of them (2) At least the object to be cleaned cleaned in the above step (1) A rinsing agent containing a water-soluble glycol ether compound and water and having a solubility of benzyl alcohol of 10 vol% or more, and the amount of water is 50 to 1000 parts by weight with respect to 100 parts by weight of the water-soluble glycol ether compound. Rinsing step using a rinsing agent Rinse with the ratio of the blending amount of the water-soluble glycol ether compound and the blending amount of water being within a predetermined range and the solubility of benzyl alcohol being not less than a predetermined value. By using the agent, environmental safety is ensured even after the object to be cleaned is efficiently cleaned using the specified cleaner. A rinse process excellent in (for example, work environment safety) can be performed.
In addition, even in the case where a predetermined cleaning agent is used in the cleaning process, various cleaning agents can be rinsed, including hydrophobic compounds such as benzyl alcohol, which have been difficult to rinse with water. The rinsing process can be performed with a rinsing agent in which the predetermined cleaning agent remains very little in the object.
(1)被洗浄物に付着したフラックスを、ベンジルアルコール及び疎水性グリコールエーテル化合物、あるいはいずれか一方を含む洗浄液で洗浄する工程
(2)上記工程(1)で洗浄された被洗浄物を、少なくとも水溶性グリコールエーテル化合物及び水を含み、ベンジルアルコールの溶解度が10vol%以上であるリンス剤であって、水溶性グリコールエーテル化合物100重量部に対して、水の配合量が50~1000重量部であるリンス剤を用いて、リンスする工程
このように水溶性グリコールエーテル化合物の配合量と、水の配合量との割合を所定範囲内の値とし、かつ、ベンジルアルコールの溶解度を所定値以上としたリンス剤を用いることによって、所定洗浄剤を用いて被洗浄物を効率的に洗浄した後であっても、環境安全性(例えば、作業環境安全性)に優れたリンス処理を行うことができる。
その上、洗浄工程において、所定洗浄剤を用いた場合であっても、従来水ではすすぎが困難であったベンジルアルコール等の疎水性化合物をはじめ、様々な洗浄剤をすすぐことが出来、被洗浄物における所定洗浄剤の残留が極めて少ないリンス剤でリンス処理を行うことができる。 Another aspect of the present invention is a method of using a rinse agent characterized by having the following steps (1) to (2).
(1) A step of cleaning the flux adhering to the object to be cleaned with a cleaning liquid containing benzyl alcohol and a hydrophobic glycol ether compound or one of them (2) At least the object to be cleaned cleaned in the above step (1) A rinsing agent containing a water-soluble glycol ether compound and water and having a solubility of benzyl alcohol of 10 vol% or more, and the amount of water is 50 to 1000 parts by weight with respect to 100 parts by weight of the water-soluble glycol ether compound. Rinsing step using a rinsing agent Rinse with the ratio of the blending amount of the water-soluble glycol ether compound and the blending amount of water being within a predetermined range and the solubility of benzyl alcohol being not less than a predetermined value. By using the agent, environmental safety is ensured even after the object to be cleaned is efficiently cleaned using the specified cleaner. A rinse process excellent in (for example, work environment safety) can be performed.
In addition, even in the case where a predetermined cleaning agent is used in the cleaning process, various cleaning agents can be rinsed, including hydrophobic compounds such as benzyl alcohol, which have been difficult to rinse with water. The rinsing process can be performed with a rinsing agent in which the predetermined cleaning agent remains very little in the object.
本発明によれば、疎水性の特定洗浄剤(ベンジルアルコール等)による被洗浄物の洗浄後に用いられる、環境安全性(例えば、作業環境安全性)に優れた水系リンス剤であって、かつ、優れたリンス性を発揮することができるリンス剤及びこのようなリンス剤の使用方法を提供することが可能になる。
According to the present invention, it is an aqueous rinsing agent excellent in environmental safety (for example, working environment safety) used after washing an object to be cleaned with a hydrophobic specific cleaning agent (benzyl alcohol or the like), and It becomes possible to provide a rinsing agent capable of exhibiting excellent rinsing properties and a method of using such a rinsing agent.
[第1の実施形態]
第1の実施形態は、少なくとも水溶性グリコールエーテル化合物及び水を含み、ベンジルアルコールの溶解度が10vol%以上であるリンス剤であって、水溶性グリコールエーテル化合物100重量部に対して、水の配合量を50~1000重量部の範囲内の値とすることを特徴とするリンス剤である。
言い換えると、上記リンス剤は、少なくとも水溶性グリコールエーテル化合物及び水を含み、ベンジルアルコールの溶解度が10vol%以上であるリンス剤であって、
上記水溶性グリコールエーテル化合物100重量部に対して、上記水の配合量が50~1000重量部である。
以下、本発明の第1の実施形態のリンス剤を、適宜図面を参照しながら、具体的に説明する。なお、本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。 [First embodiment]
The first embodiment is a rinsing agent containing at least a water-soluble glycol ether compound and water, and having a solubility of benzyl alcohol of 10 vol% or more, and the blending amount of water with respect to 100 parts by weight of the water-soluble glycol ether compound Is a rinse agent characterized by having a value within the range of 50 to 1000 parts by weight.
In other words, the rinse agent is a rinse agent containing at least a water-soluble glycol ether compound and water, and having a solubility of benzyl alcohol of 10 vol% or more,
The water content is 50 to 1000 parts by weight per 100 parts by weight of the water-soluble glycol ether compound.
Hereinafter, the rinse agent of the first embodiment of the present invention will be specifically described with reference to the drawings as appropriate. In the present specification, the notation in the form of “A to B” means the upper and lower limits of the range (that is, A or more and B or less), and the unit is not described in A, but the unit is described only in B The unit of A and the unit of B are the same.
第1の実施形態は、少なくとも水溶性グリコールエーテル化合物及び水を含み、ベンジルアルコールの溶解度が10vol%以上であるリンス剤であって、水溶性グリコールエーテル化合物100重量部に対して、水の配合量を50~1000重量部の範囲内の値とすることを特徴とするリンス剤である。
言い換えると、上記リンス剤は、少なくとも水溶性グリコールエーテル化合物及び水を含み、ベンジルアルコールの溶解度が10vol%以上であるリンス剤であって、
上記水溶性グリコールエーテル化合物100重量部に対して、上記水の配合量が50~1000重量部である。
以下、本発明の第1の実施形態のリンス剤を、適宜図面を参照しながら、具体的に説明する。なお、本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。 [First embodiment]
The first embodiment is a rinsing agent containing at least a water-soluble glycol ether compound and water, and having a solubility of benzyl alcohol of 10 vol% or more, and the blending amount of water with respect to 100 parts by weight of the water-soluble glycol ether compound Is a rinse agent characterized by having a value within the range of 50 to 1000 parts by weight.
In other words, the rinse agent is a rinse agent containing at least a water-soluble glycol ether compound and water, and having a solubility of benzyl alcohol of 10 vol% or more,
The water content is 50 to 1000 parts by weight per 100 parts by weight of the water-soluble glycol ether compound.
Hereinafter, the rinse agent of the first embodiment of the present invention will be specifically described with reference to the drawings as appropriate. In the present specification, the notation in the form of “A to B” means the upper and lower limits of the range (that is, A or more and B or less), and the unit is not described in A, but the unit is described only in B The unit of A and the unit of B are the same.
1.水溶性グリコールエーテル化合物
水溶性グリコールエーテル化合物は、リンス剤の主成分である。ここで、「グリコールエーテル化合物」とは、ジオール又はその縮合体の水酸基の片方又は両方がエーテル化した化合物を意味する。
そして、本発明のリンス剤を構成するグリコールエーテル化合物は、上記の第1工程(工程(1))で使用したもの(洗浄液に含まれる疎水性グリコールエーテル化合物)とは異なり、水溶性グリコールエーテル化合物である。
この理由は、かかる水溶性グリコールエーテル化合物を用いることにより、水100重量部に100ml溶解させても、懸濁又は分離が生じないことになるためである。
そして、被洗浄物に残留する疎水性を有するベンジルアルコール又は疎水性グリコールエーテル化合物を除去して、被洗浄物を効率的にリンスすることが可能になるためである。
なお、ここで使用される水溶性グリコールエーテル化合物としては、例えば、水への溶解度(測定温度:20℃)が50重量%を超える水溶性を示すものが好ましい。 1. Water-soluble glycol ether compound The water-soluble glycol ether compound is the main component of the rinse agent. Here, the “glycol ether compound” means a compound in which one or both of the hydroxyl groups of the diol or its condensate are etherified.
And the glycol ether compound which comprises the rinse agent of this invention is different from what was used at said 1st process (process (1)) (hydrophobic glycol ether compound contained in a washing | cleaning liquid), and a water-soluble glycol ether compound It is.
This is because by using such a water-soluble glycol ether compound, even if 100 ml is dissolved in 100 parts by weight of water, no suspension or separation occurs.
This is because it is possible to remove the hydrophobic benzyl alcohol or hydrophobic glycol ether compound remaining in the object to be cleaned and to efficiently rinse the object to be cleaned.
In addition, as a water-soluble glycol ether compound used here, the thing which shows the water solubility whose solubility (measurement temperature: 20 degreeC) in water exceeds 50 weight% is preferable, for example.
水溶性グリコールエーテル化合物は、リンス剤の主成分である。ここで、「グリコールエーテル化合物」とは、ジオール又はその縮合体の水酸基の片方又は両方がエーテル化した化合物を意味する。
そして、本発明のリンス剤を構成するグリコールエーテル化合物は、上記の第1工程(工程(1))で使用したもの(洗浄液に含まれる疎水性グリコールエーテル化合物)とは異なり、水溶性グリコールエーテル化合物である。
この理由は、かかる水溶性グリコールエーテル化合物を用いることにより、水100重量部に100ml溶解させても、懸濁又は分離が生じないことになるためである。
そして、被洗浄物に残留する疎水性を有するベンジルアルコール又は疎水性グリコールエーテル化合物を除去して、被洗浄物を効率的にリンスすることが可能になるためである。
なお、ここで使用される水溶性グリコールエーテル化合物としては、例えば、水への溶解度(測定温度:20℃)が50重量%を超える水溶性を示すものが好ましい。 1. Water-soluble glycol ether compound The water-soluble glycol ether compound is the main component of the rinse agent. Here, the “glycol ether compound” means a compound in which one or both of the hydroxyl groups of the diol or its condensate are etherified.
And the glycol ether compound which comprises the rinse agent of this invention is different from what was used at said 1st process (process (1)) (hydrophobic glycol ether compound contained in a washing | cleaning liquid), and a water-soluble glycol ether compound It is.
This is because by using such a water-soluble glycol ether compound, even if 100 ml is dissolved in 100 parts by weight of water, no suspension or separation occurs.
This is because it is possible to remove the hydrophobic benzyl alcohol or hydrophobic glycol ether compound remaining in the object to be cleaned and to efficiently rinse the object to be cleaned.
In addition, as a water-soluble glycol ether compound used here, the thing which shows the water solubility whose solubility (measurement temperature: 20 degreeC) in water exceeds 50 weight% is preferable, for example.
また、本発明で使用する水溶性グリコールエーテル化合物は、その沸点(大気圧下)を、通常、250℃以下の値とすることが好ましい。すなわち、上記水溶性グリコールエーテル化合物は、その沸点(大気圧下)が250℃以下であることが好ましい。本実施形態において、「大気圧」は1013.25hPaである。
この理由は、このような沸点を有する水溶性グリコールエーテル化合物を使用することにより、リンス剤の再生をさらに容易に行うことができ、かつ、得られるリンス剤が引火性でなくなり、環境安全性(例えば、作業環境安全性)にもさらに優れたものとなるためである。
従って、本発明のリンス剤は、引火点を有する場合であっても、それが50℃以上であるか、又は引火点を有していないことが好ましい。
すなわち、洗浄装置の運転中に、リンス剤への引火の危険性がなくなり、非常に安定したリンス工程を含む洗浄作業を行うことができる。
よって、水溶性グリコールエーテル化合物の沸点を120~230℃の範囲内の値とすることがより好ましく、140~220℃の範囲内の値とすることがさらに好ましい。 The water-soluble glycol ether compound used in the present invention preferably has a boiling point (under atmospheric pressure) usually at a value of 250 ° C. or lower. That is, the water-soluble glycol ether compound preferably has a boiling point (under atmospheric pressure) of 250 ° C. or lower. In this embodiment, “atmospheric pressure” is 1013.25 hPa.
The reason for this is that by using a water-soluble glycol ether compound having such a boiling point, the rinse agent can be more easily regenerated, and the resulting rinse agent is no longer flammable, and environmental safety ( This is because, for example, the working environment safety is further improved.
Therefore, even if the rinse agent of this invention has a flash point, it is preferable that it is 50 degreeC or more, or does not have a flash point.
That is, during the operation of the cleaning apparatus, there is no danger of igniting the rinse agent, and a cleaning operation including a very stable rinsing process can be performed.
Therefore, the boiling point of the water-soluble glycol ether compound is more preferably set to a value within the range of 120 to 230 ° C., and further preferably set to a value within the range of 140 to 220 ° C.
この理由は、このような沸点を有する水溶性グリコールエーテル化合物を使用することにより、リンス剤の再生をさらに容易に行うことができ、かつ、得られるリンス剤が引火性でなくなり、環境安全性(例えば、作業環境安全性)にもさらに優れたものとなるためである。
従って、本発明のリンス剤は、引火点を有する場合であっても、それが50℃以上であるか、又は引火点を有していないことが好ましい。
すなわち、洗浄装置の運転中に、リンス剤への引火の危険性がなくなり、非常に安定したリンス工程を含む洗浄作業を行うことができる。
よって、水溶性グリコールエーテル化合物の沸点を120~230℃の範囲内の値とすることがより好ましく、140~220℃の範囲内の値とすることがさらに好ましい。 The water-soluble glycol ether compound used in the present invention preferably has a boiling point (under atmospheric pressure) usually at a value of 250 ° C. or lower. That is, the water-soluble glycol ether compound preferably has a boiling point (under atmospheric pressure) of 250 ° C. or lower. In this embodiment, “atmospheric pressure” is 1013.25 hPa.
The reason for this is that by using a water-soluble glycol ether compound having such a boiling point, the rinse agent can be more easily regenerated, and the resulting rinse agent is no longer flammable, and environmental safety ( This is because, for example, the working environment safety is further improved.
Therefore, even if the rinse agent of this invention has a flash point, it is preferable that it is 50 degreeC or more, or does not have a flash point.
That is, during the operation of the cleaning apparatus, there is no danger of igniting the rinse agent, and a cleaning operation including a very stable rinsing process can be performed.
Therefore, the boiling point of the water-soluble glycol ether compound is more preferably set to a value within the range of 120 to 230 ° C., and further preferably set to a value within the range of 140 to 220 ° C.
また、このような水溶性グリコールエーテル化合物の具体例としては、エチレングリコールモノプロピルエーテル(PS)、エチレングリコールモノ-tert-ブチルエーテル(ETB)、3-メトキシ-3-メチルブタノール(MMB)、2-メトキシブタノール(2MB)、3-メトキシブタノール(3MB)、エチレングリコールモノイソプロピルエーテル(iPG)、ジエチレングリコールイソプロピルメチルエーテル(IPDM)、ジプロピレングリコールモノメチルエーテル(DPM)、ジエチレングリコールエチルメチルエーテル(MEDG)、トリエチレングリコールジメチルエーテル(DMTG)及びジエチレングリコールジメチルエーテル(DMDG)からなる群より選ばれる少なくとも一種類の化合物を挙げることができる。
上記水溶性グリコールエーテル化合物は、一種を単独で使用してもよいし、複数種を組み合わせて使用してもよい。複数種の上記水溶性グリコールエーテルの組み合わせとしては、例えば、PSとMMB、PSと3MB、PSとIPDM、PSとDPM、PSとDMTG、ETBとMMB、ETBとDPM、MMBとDPM、及びMMBとDMTGが挙げられる。なお、上記水溶性グリコールエーテル化合物の三種以上を組み合わせてもよいことは言うまでもない。 Specific examples of such water-soluble glycol ether compounds include ethylene glycol monopropyl ether (PS), ethylene glycol mono-tert-butyl ether (ETB), 3-methoxy-3-methylbutanol (MMB), 2- Methoxybutanol (2MB), 3-methoxybutanol (3MB), ethylene glycol monoisopropyl ether (iPG), diethylene glycol isopropyl methyl ether (IPDM), dipropylene glycol monomethyl ether (DPM), diethylene glycol ethyl methyl ether (MEDG), triethylene List at least one compound selected from the group consisting of glycol dimethyl ether (DMTG) and diethylene glycol dimethyl ether (DMDG). It can be.
The said water-soluble glycol ether compound may be used individually by 1 type, and may be used in combination of multiple types. Examples of combinations of the plurality of water-soluble glycol ethers include PS and MMB, PS and 3MB, PS and IPDM, PS and DPM, PS and DMTG, ETB and MMB, ETB and DPM, MMB and DPM, and MMB. DMTG is mentioned. Needless to say, three or more of the above water-soluble glycol ether compounds may be combined.
上記水溶性グリコールエーテル化合物は、一種を単独で使用してもよいし、複数種を組み合わせて使用してもよい。複数種の上記水溶性グリコールエーテルの組み合わせとしては、例えば、PSとMMB、PSと3MB、PSとIPDM、PSとDPM、PSとDMTG、ETBとMMB、ETBとDPM、MMBとDPM、及びMMBとDMTGが挙げられる。なお、上記水溶性グリコールエーテル化合物の三種以上を組み合わせてもよいことは言うまでもない。 Specific examples of such water-soluble glycol ether compounds include ethylene glycol monopropyl ether (PS), ethylene glycol mono-tert-butyl ether (ETB), 3-methoxy-3-methylbutanol (MMB), 2- Methoxybutanol (2MB), 3-methoxybutanol (3MB), ethylene glycol monoisopropyl ether (iPG), diethylene glycol isopropyl methyl ether (IPDM), dipropylene glycol monomethyl ether (DPM), diethylene glycol ethyl methyl ether (MEDG), triethylene List at least one compound selected from the group consisting of glycol dimethyl ether (DMTG) and diethylene glycol dimethyl ether (DMDG). It can be.
The said water-soluble glycol ether compound may be used individually by 1 type, and may be used in combination of multiple types. Examples of combinations of the plurality of water-soluble glycol ethers include PS and MMB, PS and 3MB, PS and IPDM, PS and DPM, PS and DMTG, ETB and MMB, ETB and DPM, MMB and DPM, and MMB. DMTG is mentioned. Needless to say, three or more of the above water-soluble glycol ether compounds may be combined.
本実施形態の一側面において、上記水溶性グリコールエーテル化合物は、以下の式1、式2又は式3で表される構造を有する化合物であってもよい。
HO-[C3H6-O]2-R1 (式1)
R2-O-[(CH2)2-O]3-R3 (式2)
CH3-CR4R5-CR6R7-CH2-OH (式3)
(式1中、R1は炭素数1~3のアルキル基を示す。式2中、R2は炭素数1又は2のアルキル基を示し、R3は水素原子又は炭素数1又は2のアルキル基を示す。式3中、R4及びR6は、一方が水素原子を示し、他方が炭素数1又は2のアルコキシ基を示す。式3中、R5及びR7は、一方が水素原子を示し、他方が水素原子又は炭素数1若しくは2のアルキル基を示す。) In one aspect of the present embodiment, the water-soluble glycol ether compound may be a compound having a structure represented by the followingformula 1, formula 2, or formula 3.
HO— [C 3 H 6 —O] 2 —R 1 (Formula 1)
R 2 —O — [(CH 2 ) 2 —O] 3 —R 3 (Formula 2)
CH 3 —CR 4 R 5 —CR 6 R 7 —CH 2 —OH (Formula 3)
(InFormula 1, R 1 represents an alkyl group having 1 to 3 carbon atoms. In Formula 2, R 2 represents an alkyl group having 1 or 2 carbon atoms, and R 3 represents a hydrogen atom or an alkyl group having 1 or 2 carbon atoms. In formula 3, one of R 4 and R 6 represents a hydrogen atom and the other represents an alkoxy group having 1 or 2 carbon atoms, and in formula 3, one of R 5 and R 7 is a hydrogen atom. And the other represents a hydrogen atom or an alkyl group having 1 or 2 carbon atoms.)
HO-[C3H6-O]2-R1 (式1)
R2-O-[(CH2)2-O]3-R3 (式2)
CH3-CR4R5-CR6R7-CH2-OH (式3)
(式1中、R1は炭素数1~3のアルキル基を示す。式2中、R2は炭素数1又は2のアルキル基を示し、R3は水素原子又は炭素数1又は2のアルキル基を示す。式3中、R4及びR6は、一方が水素原子を示し、他方が炭素数1又は2のアルコキシ基を示す。式3中、R5及びR7は、一方が水素原子を示し、他方が水素原子又は炭素数1若しくは2のアルキル基を示す。) In one aspect of the present embodiment, the water-soluble glycol ether compound may be a compound having a structure represented by the following
HO— [C 3 H 6 —O] 2 —R 1 (Formula 1)
R 2 —O — [(CH 2 ) 2 —O] 3 —R 3 (Formula 2)
CH 3 —CR 4 R 5 —CR 6 R 7 —CH 2 —OH (Formula 3)
(In
式1中、-[C3H6-O]2-で表される基としては、例えば、-[(CH2)3-O]2-で表される基、-[CH2CH(CH3)-O]2-で表される基、及び-[CH(CH3)CH2-O]2-で表される基が挙げられる。本実施形態において、式1中の-[C3H6-O]2-で表される基は、-[CH2CH(CH3)-O]2-で表される基であることが好ましい。
In formula 1, as the group represented by — [C 3 H 6 —O] 2 —, for example, a group represented by — [(CH 2 ) 3 —O] 2 —, — [CH 2 CH (CH 3 ) a group represented by —O] 2 — and a group represented by — [CH (CH 3 ) CH 2 —O] 2 —. In this embodiment, the group represented by — [C 3 H 6 —O] 2 — in Formula 1 may be a group represented by — [CH 2 CH (CH 3 ) —O] 2 —. preferable.
そして、これらの水溶性グリコールエーテル化合物中、エチレングリコールモノプロピルエーテル、エチレングリコールモノ-tert-ブチルエーテル、3-メトキシ-3-メチルブタノール、ジプロピレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル等であれば、安全性、疎水性化合物との相溶性(すすぎ性)、乾燥性の理由から、より好適な水溶性グリコールエーテル化合物として使用することができる。
If these water-soluble glycol ether compounds are ethylene glycol monopropyl ether, ethylene glycol mono-tert-butyl ether, 3-methoxy-3-methylbutanol, dipropylene glycol monomethyl ether, triethylene glycol dimethyl ether, etc., they are safe. It can be used as a more suitable water-soluble glycol ether compound because of its compatibility (rinseability) with a hydrophobic compound and a reason for drying.
2.水
リンス剤を構成するにあたり、水溶性グリコールエーテル化合物100重量部に対して、水の配合量を50~1000重量部の範囲内の値とすることを特徴とする。言い換えると、上記水溶性グリコールエーテル化合物100重量部に対して、上記水の配合量が50~1000重量部である。
この理由は、過度に水の配合量が少なくなると、得られるリンス剤の引火性が高まったり、レジストに対する悪影響(接触角変化)が生じたりする場合があるためである。
一方、過度に水の配合量が多くなると、リンス剤によるリンス性又はフラックスの再付着防止性が著しく低下する場合があるためである。 2. Water The water rinse agent is characterized in that the amount of water is within the range of 50 to 1000 parts by weight per 100 parts by weight of the water-soluble glycol ether compound. In other words, the water content is 50 to 1000 parts by weight per 100 parts by weight of the water-soluble glycol ether compound.
The reason for this is that if the amount of water is excessively reduced, the rinsing agent obtained may increase the flammability or adversely affect the resist (change in contact angle).
On the other hand, if the amount of water is excessively large, the rinsing property by the rinse agent or the re-adhesion prevention property of the flux may be remarkably lowered.
リンス剤を構成するにあたり、水溶性グリコールエーテル化合物100重量部に対して、水の配合量を50~1000重量部の範囲内の値とすることを特徴とする。言い換えると、上記水溶性グリコールエーテル化合物100重量部に対して、上記水の配合量が50~1000重量部である。
この理由は、過度に水の配合量が少なくなると、得られるリンス剤の引火性が高まったり、レジストに対する悪影響(接触角変化)が生じたりする場合があるためである。
一方、過度に水の配合量が多くなると、リンス剤によるリンス性又はフラックスの再付着防止性が著しく低下する場合があるためである。 2. Water The water rinse agent is characterized in that the amount of water is within the range of 50 to 1000 parts by weight per 100 parts by weight of the water-soluble glycol ether compound. In other words, the water content is 50 to 1000 parts by weight per 100 parts by weight of the water-soluble glycol ether compound.
The reason for this is that if the amount of water is excessively reduced, the rinsing agent obtained may increase the flammability or adversely affect the resist (change in contact angle).
On the other hand, if the amount of water is excessively large, the rinsing property by the rinse agent or the re-adhesion prevention property of the flux may be remarkably lowered.
したがって、リンス剤を構成するにあたり、水溶性グリコールエーテル化合物100重量部に対して、水の配合量を80~600重量部の範囲内の値とすることが好ましく、100~400重量部の範囲内の値とすることがさらに好ましい。言い換えると、上記水溶性グリコールエーテル化合物100重量部に対して、水の配合量が80~600重量部であることが好ましく、100~400重量部であることがさらに好ましい。
そして、水溶性グリコールエーテル化合物に対して、配合する水としては、純水(イオン交換水、蒸留水等)が好ましく、電気伝導率が10μS/cm程度の清浄性を有することが好ましく、1μS/cm程度の清浄性を有することがより好ましい。言い換えると、上記水は、その電気伝導率が1~10μS/cmであることが好ましく、1~5μS/cmであることがより好ましい。 Therefore, in constituting the rinse agent, the amount of water is preferably set to a value within the range of 80 to 600 parts by weight, and within the range of 100 to 400 parts by weight with respect to 100 parts by weight of the water-soluble glycol ether compound. More preferably, the value of In other words, the amount of water is preferably 80 to 600 parts by weight, and more preferably 100 to 400 parts by weight with respect to 100 parts by weight of the water-soluble glycol ether compound.
And as water to mix | blend with respect to a water-soluble glycol ether compound, a pure water (ion-exchange water, distilled water, etc.) is preferable, and it is preferable to have a cleanliness | conductivity whose electrical conductivity is about 10 microsiemens / cm. It is more preferable to have cleanliness of about cm. In other words, the water has an electric conductivity of preferably 1 to 10 μS / cm, and more preferably 1 to 5 μS / cm.
そして、水溶性グリコールエーテル化合物に対して、配合する水としては、純水(イオン交換水、蒸留水等)が好ましく、電気伝導率が10μS/cm程度の清浄性を有することが好ましく、1μS/cm程度の清浄性を有することがより好ましい。言い換えると、上記水は、その電気伝導率が1~10μS/cmであることが好ましく、1~5μS/cmであることがより好ましい。 Therefore, in constituting the rinse agent, the amount of water is preferably set to a value within the range of 80 to 600 parts by weight, and within the range of 100 to 400 parts by weight with respect to 100 parts by weight of the water-soluble glycol ether compound. More preferably, the value of In other words, the amount of water is preferably 80 to 600 parts by weight, and more preferably 100 to 400 parts by weight with respect to 100 parts by weight of the water-soluble glycol ether compound.
And as water to mix | blend with respect to a water-soluble glycol ether compound, a pure water (ion-exchange water, distilled water, etc.) is preferable, and it is preferable to have a cleanliness | conductivity whose electrical conductivity is about 10 microsiemens / cm. It is more preferable to have cleanliness of about cm. In other words, the water has an electric conductivity of preferably 1 to 10 μS / cm, and more preferably 1 to 5 μS / cm.
3.溶解度
また、リンス剤の特性に関して、当該リンス剤の単位体積(100ml)に対する、ベンジルアルコールの溶解度を10vol%以上の値とすることを特徴とする。言い換えると、上記リンス剤の単位体積(100ml)に対する、ベンジルアルコールの溶解度が10vol%以上である。
すなわち、本発明で使用するリンス剤は、特定の洗浄剤、例えば、ベンジルアルコール又は疎水性グリコールエーテル化合物を用いた場合であっても、それらが付着した被洗浄物をリンスするため、上述の構成を備える。
ここで、ベンジルアルコールの溶解度を指標としたのは、ベンジルアルコール、疎水性グリコールエーテル化合物のうち、当該リンス剤への溶解性が最も低いのがベンジルアルコールであるためである。
また、かかるリンス剤の単位体積(100ml)に対する、ベンジルアルコールの溶解度が10vol%以上の値であれば、洗浄時の濁度の値の変化を極力低下させることができ、透明性に富んだリンス剤の状態を維持できるためである。 3. Solubility Moreover, regarding the characteristics of the rinse agent, the solubility of benzyl alcohol with respect to the unit volume (100 ml) of the rinse agent is set to a value of 10 vol% or more. In other words, the solubility of benzyl alcohol with respect to the unit volume (100 ml) of the rinse agent is 10 vol% or more.
That is, the rinsing agent used in the present invention is configured as described above in order to rinse the object to be cleaned even when a specific cleaning agent such as benzyl alcohol or a hydrophobic glycol ether compound is used. Is provided.
Here, the reason why the solubility of benzyl alcohol is used as an index is that benzyl alcohol has the lowest solubility in the rinse agent among benzyl alcohol and hydrophobic glycol ether compounds.
Moreover, if the solubility of benzyl alcohol with respect to the unit volume (100 ml) of the rinsing agent is a value of 10 vol% or more, the change in turbidity value at the time of washing can be reduced as much as possible, and the rinsing is rich in transparency. This is because the state of the agent can be maintained.
また、リンス剤の特性に関して、当該リンス剤の単位体積(100ml)に対する、ベンジルアルコールの溶解度を10vol%以上の値とすることを特徴とする。言い換えると、上記リンス剤の単位体積(100ml)に対する、ベンジルアルコールの溶解度が10vol%以上である。
すなわち、本発明で使用するリンス剤は、特定の洗浄剤、例えば、ベンジルアルコール又は疎水性グリコールエーテル化合物を用いた場合であっても、それらが付着した被洗浄物をリンスするため、上述の構成を備える。
ここで、ベンジルアルコールの溶解度を指標としたのは、ベンジルアルコール、疎水性グリコールエーテル化合物のうち、当該リンス剤への溶解性が最も低いのがベンジルアルコールであるためである。
また、かかるリンス剤の単位体積(100ml)に対する、ベンジルアルコールの溶解度が10vol%以上の値であれば、洗浄時の濁度の値の変化を極力低下させることができ、透明性に富んだリンス剤の状態を維持できるためである。 3. Solubility Moreover, regarding the characteristics of the rinse agent, the solubility of benzyl alcohol with respect to the unit volume (100 ml) of the rinse agent is set to a value of 10 vol% or more. In other words, the solubility of benzyl alcohol with respect to the unit volume (100 ml) of the rinse agent is 10 vol% or more.
That is, the rinsing agent used in the present invention is configured as described above in order to rinse the object to be cleaned even when a specific cleaning agent such as benzyl alcohol or a hydrophobic glycol ether compound is used. Is provided.
Here, the reason why the solubility of benzyl alcohol is used as an index is that benzyl alcohol has the lowest solubility in the rinse agent among benzyl alcohol and hydrophobic glycol ether compounds.
Moreover, if the solubility of benzyl alcohol with respect to the unit volume (100 ml) of the rinsing agent is a value of 10 vol% or more, the change in turbidity value at the time of washing can be reduced as much as possible, and the rinsing is rich in transparency. This is because the state of the agent can be maintained.
但し、かかるリンス剤の単位体積(100ml)に対する、ベンジルアルコールの溶解度が過度に大きくなると、使用可能な水溶性グリコールエーテル化合物の種類が過度に制限される場合がある。
したがって、かかるリンス剤の単位体積(100ml)に対する、ベンジルアルコールの溶解度を15vol%~40vol%の範囲内の値とすることが好ましく、20vol%~30vol%の範囲内の値とすることがさらに好ましい。 However, when the solubility of benzyl alcohol with respect to the unit volume (100 ml) of the rinse agent becomes excessively large, the types of water-soluble glycol ether compounds that can be used may be excessively limited.
Therefore, the solubility of benzyl alcohol with respect to the unit volume (100 ml) of the rinse agent is preferably set to a value within the range of 15 vol% to 40 vol%, and more preferably set to a value within the range of 20 vol% to 30 vol%. .
したがって、かかるリンス剤の単位体積(100ml)に対する、ベンジルアルコールの溶解度を15vol%~40vol%の範囲内の値とすることが好ましく、20vol%~30vol%の範囲内の値とすることがさらに好ましい。 However, when the solubility of benzyl alcohol with respect to the unit volume (100 ml) of the rinse agent becomes excessively large, the types of water-soluble glycol ether compounds that can be used may be excessively limited.
Therefore, the solubility of benzyl alcohol with respect to the unit volume (100 ml) of the rinse agent is preferably set to a value within the range of 15 vol% to 40 vol%, and more preferably set to a value within the range of 20 vol% to 30 vol%. .
ここで、図1を参照して、リンス剤の単位体積(100ml)に対する、ベンジルアルコールの溶解度(vol%)と、相溶性(すすぎ性、又はリンス性)の評価点(相対値)との関係を説明する。
すなわち、図1の横軸に、リンス剤の単位体積に対する、ベンジルアルコールの溶解度(vol%)をとって示してあり、縦軸に、相溶性(すすぎ性、又はリンス性)の評価点(相対値)をとって示してある。ここで、縦軸の評価点0、1、2、3、4及び5は、それぞれ後述する実施例におけるリンス性の評価E、D、C、B、A’及びAに対応している。
そして、図1中の特性曲線から判断して、ベンジルアルコールの溶解度が5vol%程度では、評価点は未だ低いものの、ベンジルアルコールの溶解度が10vol%を超えると、急激に評価点が高くなる傾向がある。
そして、ベンジルアルコールの溶解度(vol%)が15vol%程度を超え、少なくとも25vol%程度までは、最高の評価点が得られている。
したがって、リンス剤におけるベンジルアルコールの溶解度を10vol%以上に適宜調整することにより、相溶性(すすぎ性、又はリンス性)の評価に関して、良好な結果が得られることが理解される。 Here, with reference to FIG. 1, the relationship between the solubility (vol%) of benzyl alcohol and the evaluation point (relative value) of compatibility (rinse or rinse) with respect to the unit volume (100 ml) of the rinse agent. Will be explained.
That is, the horizontal axis of FIG. 1 shows the solubility (vol%) of benzyl alcohol with respect to the unit volume of the rinsing agent, and the vertical axis shows the evaluation point (relative to the compatibility (rinsing property or rinsing property)). Value). Here, the evaluation points 0, 1, 2, 3, 4, and 5 on the vertical axis respectively correspond to the evaluations E, D, C, B, A ′, and A of rinse properties in examples described later.
Judging from the characteristic curve in FIG. 1, when the solubility of benzyl alcohol is about 5 vol%, the evaluation point is still low, but when the solubility of benzyl alcohol exceeds 10 vol%, the evaluation point tends to increase rapidly. is there.
The highest evaluation score is obtained when the solubility (vol%) of benzyl alcohol exceeds about 15 vol% and is at least about 25 vol%.
Therefore, it is understood that good results can be obtained with respect to the evaluation of compatibility (rinsing property or rinsing property) by appropriately adjusting the solubility of benzyl alcohol in the rinsing agent to 10 vol% or more.
すなわち、図1の横軸に、リンス剤の単位体積に対する、ベンジルアルコールの溶解度(vol%)をとって示してあり、縦軸に、相溶性(すすぎ性、又はリンス性)の評価点(相対値)をとって示してある。ここで、縦軸の評価点0、1、2、3、4及び5は、それぞれ後述する実施例におけるリンス性の評価E、D、C、B、A’及びAに対応している。
そして、図1中の特性曲線から判断して、ベンジルアルコールの溶解度が5vol%程度では、評価点は未だ低いものの、ベンジルアルコールの溶解度が10vol%を超えると、急激に評価点が高くなる傾向がある。
そして、ベンジルアルコールの溶解度(vol%)が15vol%程度を超え、少なくとも25vol%程度までは、最高の評価点が得られている。
したがって、リンス剤におけるベンジルアルコールの溶解度を10vol%以上に適宜調整することにより、相溶性(すすぎ性、又はリンス性)の評価に関して、良好な結果が得られることが理解される。 Here, with reference to FIG. 1, the relationship between the solubility (vol%) of benzyl alcohol and the evaluation point (relative value) of compatibility (rinse or rinse) with respect to the unit volume (100 ml) of the rinse agent. Will be explained.
That is, the horizontal axis of FIG. 1 shows the solubility (vol%) of benzyl alcohol with respect to the unit volume of the rinsing agent, and the vertical axis shows the evaluation point (relative to the compatibility (rinsing property or rinsing property)). Value). Here, the evaluation points 0, 1, 2, 3, 4, and 5 on the vertical axis respectively correspond to the evaluations E, D, C, B, A ′, and A of rinse properties in examples described later.
Judging from the characteristic curve in FIG. 1, when the solubility of benzyl alcohol is about 5 vol%, the evaluation point is still low, but when the solubility of benzyl alcohol exceeds 10 vol%, the evaluation point tends to increase rapidly. is there.
The highest evaluation score is obtained when the solubility (vol%) of benzyl alcohol exceeds about 15 vol% and is at least about 25 vol%.
Therefore, it is understood that good results can be obtained with respect to the evaluation of compatibility (rinsing property or rinsing property) by appropriately adjusting the solubility of benzyl alcohol in the rinsing agent to 10 vol% or more.
4.所定沸点のアミン化合物
また、本発明で使用するリンス剤には、大気圧下の沸点が250℃以下のアミン化合物を配合することが好ましい。すなわち、上記リンス剤は、沸点が250℃以下であるアミン化合物を更に含むことが好ましい。
この理由は、かかる沸点を有するアミン化合物を配合することにより、リンス剤の再生を大きく妨げることなく、フラックスの溶解度を高めることができ、ひいては、洗浄性の向上が図られるためである。
その上、かかるアミン化合物を配合することにより、フラックスの再付着についても有効に防止でき、かかるリンス剤を洗浄剤としての機能も発揮させるためである。
したがって、かかるアミン化合物の沸点を120~230℃の範囲内の値とすることがより好ましく、140~220℃の範囲内の値とすることがさらに好ましい。 4. Amine compound having a predetermined boiling point The rinse agent used in the present invention preferably contains an amine compound having a boiling point of 250 ° C. or lower under atmospheric pressure. That is, the rinse agent preferably further contains an amine compound having a boiling point of 250 ° C. or lower.
This is because by adding an amine compound having such a boiling point, it is possible to increase the solubility of the flux without greatly hindering the regeneration of the rinse agent, thereby improving the cleaning property.
In addition, by adding such an amine compound, it is possible to effectively prevent re-adhesion of the flux, and to make the rinse agent also function as a cleaning agent.
Accordingly, the boiling point of such an amine compound is more preferably set to a value within the range of 120 to 230 ° C., and further preferably set to a value within the range of 140 to 220 ° C.
また、本発明で使用するリンス剤には、大気圧下の沸点が250℃以下のアミン化合物を配合することが好ましい。すなわち、上記リンス剤は、沸点が250℃以下であるアミン化合物を更に含むことが好ましい。
この理由は、かかる沸点を有するアミン化合物を配合することにより、リンス剤の再生を大きく妨げることなく、フラックスの溶解度を高めることができ、ひいては、洗浄性の向上が図られるためである。
その上、かかるアミン化合物を配合することにより、フラックスの再付着についても有効に防止でき、かかるリンス剤を洗浄剤としての機能も発揮させるためである。
したがって、かかるアミン化合物の沸点を120~230℃の範囲内の値とすることがより好ましく、140~220℃の範囲内の値とすることがさらに好ましい。 4. Amine compound having a predetermined boiling point The rinse agent used in the present invention preferably contains an amine compound having a boiling point of 250 ° C. or lower under atmospheric pressure. That is, the rinse agent preferably further contains an amine compound having a boiling point of 250 ° C. or lower.
This is because by adding an amine compound having such a boiling point, it is possible to increase the solubility of the flux without greatly hindering the regeneration of the rinse agent, thereby improving the cleaning property.
In addition, by adding such an amine compound, it is possible to effectively prevent re-adhesion of the flux, and to make the rinse agent also function as a cleaning agent.
Accordingly, the boiling point of such an amine compound is more preferably set to a value within the range of 120 to 230 ° C., and further preferably set to a value within the range of 140 to 220 ° C.
本実施形態において「アミン化合物」とは、アンモニアの水素原子を炭化水素基又は芳香族原子団で置換した化合物を意味する。上記アミン化合物には、第一級アミン、第二級アミン及び第三級アミンが含まれる。また、他の側面において、上記アミン化合物には、脂肪族アミン及び芳香族アミンが含まれる。さらに他の側面において、上記アミン化合物には、モノアミン、ジアミン及びポリアミンが含まれる。
In the present embodiment, the “amine compound” means a compound in which a hydrogen atom of ammonia is substituted with a hydrocarbon group or an aromatic atomic group. The amine compound includes a primary amine, a secondary amine, and a tertiary amine. In another aspect, the amine compound includes an aliphatic amine and an aromatic amine. In yet another aspect, the amine compound includes monoamines, diamines, and polyamines.
また、このような沸点を有するアミン化合物の配合量を、リンス剤中に含まれる水溶性グリコールエーテル化合物100重量部に対して、通常、0.1~10重量部の範囲内の値とすることが好ましい。言い換えると、当該アミン化合物の配合量は、上記水溶性グリコールエーテル化合物100重量部に対して、0.1~10重量部であることが好ましい。
すなわち、過度に少なく配合すると、アミン化合物の配合効果が得られない場合があるためである。
一方、過度に配合すると、洗浄装置を構成する金属、基板における導体等を腐食させたり、臭気が強くなったりする場合があるためである。
したがって、上記アミン化合物の配合量は、リンス剤中に含まれる水溶性グリコールエーテル化合物100重量部に対して、0.2~5重量部の範囲内の値とすることがより好ましく、0.5~3重量部の範囲内の値とすることがさらに好ましい。 In addition, the compounding amount of the amine compound having such a boiling point is usually within a range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the water-soluble glycol ether compound contained in the rinse agent. Is preferred. In other words, the compounding amount of the amine compound is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the water-soluble glycol ether compound.
That is, it is because the compounding effect of an amine compound may not be acquired when mix | blending too little.
On the other hand, when it mix | blends excessively, it is because the metal which comprises a washing | cleaning apparatus, the conductor in a board | substrate, etc. may be corroded, or an odor may become strong.
Therefore, the compounding amount of the amine compound is more preferably 0.2 to 5 parts by weight with respect to 100 parts by weight of the water-soluble glycol ether compound contained in the rinse agent. More preferably, the value is in the range of ˜3 parts by weight.
すなわち、過度に少なく配合すると、アミン化合物の配合効果が得られない場合があるためである。
一方、過度に配合すると、洗浄装置を構成する金属、基板における導体等を腐食させたり、臭気が強くなったりする場合があるためである。
したがって、上記アミン化合物の配合量は、リンス剤中に含まれる水溶性グリコールエーテル化合物100重量部に対して、0.2~5重量部の範囲内の値とすることがより好ましく、0.5~3重量部の範囲内の値とすることがさらに好ましい。 In addition, the compounding amount of the amine compound having such a boiling point is usually within a range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the water-soluble glycol ether compound contained in the rinse agent. Is preferred. In other words, the compounding amount of the amine compound is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the water-soluble glycol ether compound.
That is, it is because the compounding effect of an amine compound may not be acquired when mix | blending too little.
On the other hand, when it mix | blends excessively, it is because the metal which comprises a washing | cleaning apparatus, the conductor in a board | substrate, etc. may be corroded, or an odor may become strong.
Therefore, the compounding amount of the amine compound is more preferably 0.2 to 5 parts by weight with respect to 100 parts by weight of the water-soluble glycol ether compound contained in the rinse agent. More preferably, the value is in the range of ˜3 parts by weight.
また、沸点が250℃以下のアミン化合物の引火点を30~100℃の範囲内の値とすることが好ましい。すなわち、上記アミン化合物は、その引火点が30~100℃であることが好ましい。
このような引火点を有するアミン化合物であれば、比較的多く配合したとしても、リンス剤の引火点の変動が殆ど発現しないためである。 The flash point of an amine compound having a boiling point of 250 ° C. or lower is preferably set to a value within the range of 30 to 100 ° C. That is, the amine compound preferably has a flash point of 30 to 100 ° C.
This is because, with an amine compound having such a flash point, even if a relatively large amount is added, the flash point of the rinse agent hardly fluctuates.
このような引火点を有するアミン化合物であれば、比較的多く配合したとしても、リンス剤の引火点の変動が殆ど発現しないためである。 The flash point of an amine compound having a boiling point of 250 ° C. or lower is preferably set to a value within the range of 30 to 100 ° C. That is, the amine compound preferably has a flash point of 30 to 100 ° C.
This is because, with an amine compound having such a flash point, even if a relatively large amount is added, the flash point of the rinse agent hardly fluctuates.
よって、沸点が250℃以下のアミン化合物の好適例としては、N,N,N’,N’-テトラメチル-1,6-ヘキサメチレンジアミン(TMHMDA)、N,N,N’,N’-テトラメチル-1,4-ジアミノブタン(TMDAB)、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン(TMDAP)、ジブチルアミン(DBA)、N,N-ジエチルヒドロキシアミン(DEHA)、N-エチルエタノールアミン(MEM)の一種単独又は二種以上の組み合わせを挙げることができる。二種以上の上記アミン化合物の組み合わせとしては、例えば、DBAとDEHAが挙げられる。
Accordingly, preferred examples of amine compounds having a boiling point of 250 ° C. or lower include N, N, N ′, N′-tetramethyl-1,6-hexamethylenediamine (TMHMDA), N, N, N ′, N′— Tetramethyl-1,4-diaminobutane (TMDAB), N, N, N ′, N′-tetramethyl-1,3-diaminopropane (TMDAP), dibutylamine (DBA), N, N-diethylhydroxyamine ( DEHA) and N-ethylethanolamine (MEM) may be used singly or in combination of two or more. Examples of the combination of two or more of the above amine compounds include DBA and DEHA.
本実施形態の一側面において、沸点が250℃以下のアミン化合物は、以下の式4~式7のいずれかで表される構造を有する化合物であってもよい。式7中、-CqH2q-で表される基は、直鎖状であってもよいし(qが1~4の整数の場合)、分岐鎖状であってもよい(qが2~4の整数の場合)。式7中、-CrH2r-で表される基は、直鎖状であってもよいし(rが1~4の整数の場合)、分岐鎖状であってもよい(rが2~4の整数の場合)。
(CH3)2-N-(CH2)n-N-(CH3)2 (式4)
(H-(CH2)m)2-NH(式5)
(H-(CH2)p)2-N-OH (式6)
H-CqH2q-NH-CrH2r-OH (式7)
(式4中、nは3~6の整数を示す。式5中、mは4又は5の整数を示す。式6中、pは2~4の整数を示す。式7中、qは1~4の整数を示し、rは1~4の整数を示す。) In one aspect of this embodiment, the amine compound having a boiling point of 250 ° C. or lower may be a compound having a structure represented by any of the followingformulas 4 to 7. In Formula 7, the group represented by —C q H 2q — may be linear (when q is an integer of 1 to 4) or branched (q is 2). For integers of ~ 4). In Formula 7, the group represented by —C r H 2r — may be linear (when r is an integer of 1 to 4) or branched (r is 2). For integers of ~ 4).
(CH 3 ) 2 —N— (CH 2 ) n —N— (CH 3 ) 2 (Formula 4)
(H— (CH 2 ) m ) 2 —NH (Formula 5)
(H— (CH 2 ) p ) 2 —N—OH (Formula 6)
H—C q H 2q —NH—C r H 2r —OH (Formula 7)
(InFormula 4, n represents an integer of 3 to 6. In Formula 5, m represents an integer of 4 or 5. In Formula 6, p represents an integer of 2 to 4. In Formula 7, q is 1. Represents an integer of ˜4, and r represents an integer of 1 to 4.)
(CH3)2-N-(CH2)n-N-(CH3)2 (式4)
(H-(CH2)m)2-NH(式5)
(H-(CH2)p)2-N-OH (式6)
H-CqH2q-NH-CrH2r-OH (式7)
(式4中、nは3~6の整数を示す。式5中、mは4又は5の整数を示す。式6中、pは2~4の整数を示す。式7中、qは1~4の整数を示し、rは1~4の整数を示す。) In one aspect of this embodiment, the amine compound having a boiling point of 250 ° C. or lower may be a compound having a structure represented by any of the following
(CH 3 ) 2 —N— (CH 2 ) n —N— (CH 3 ) 2 (Formula 4)
(H— (CH 2 ) m ) 2 —NH (Formula 5)
(H— (CH 2 ) p ) 2 —N—OH (Formula 6)
H—C q H 2q —NH—C r H 2r —OH (Formula 7)
(In
5.他の配合成分
また、リンス剤に配合される、その他の成分としては、酸化防止剤、帯電防止剤、界面活性剤、粘度調整剤等の少なくとも一種を挙げることができる。
そして、これらの成分の配合量は、それぞれ配合目的に応じて適宜決めることができるが、通常、リンス剤の全体量に対して、0.01~10重量%の範囲内の値とすることが好ましい。 5. Other compounding components As other components to be blended in the rinse agent, at least one of an antioxidant, an antistatic agent, a surfactant, a viscosity modifier, and the like can be given.
The blending amount of these components can be appropriately determined according to the blending purpose, but it is usually set to a value within the range of 0.01 to 10% by weight with respect to the total amount of the rinse agent. preferable.
また、リンス剤に配合される、その他の成分としては、酸化防止剤、帯電防止剤、界面活性剤、粘度調整剤等の少なくとも一種を挙げることができる。
そして、これらの成分の配合量は、それぞれ配合目的に応じて適宜決めることができるが、通常、リンス剤の全体量に対して、0.01~10重量%の範囲内の値とすることが好ましい。 5. Other compounding components As other components to be blended in the rinse agent, at least one of an antioxidant, an antistatic agent, a surfactant, a viscosity modifier, and the like can be given.
The blending amount of these components can be appropriately determined according to the blending purpose, but it is usually set to a value within the range of 0.01 to 10% by weight with respect to the total amount of the rinse agent. preferable.
6.引火点
JIS K 2265-1及び4(引火点の求め方)に準じて測定されるリンス剤の引火点を50℃以上の値とすることが好ましい。すなわち、上記リンス剤は、その引火点が50℃以上であることが好ましい。
この理由は、リンス剤が引火点を有する場合であっても、その値が50℃以上であれば、取り扱いがさらに容易になるとともに、安全性をさらに向上させることができるためである。
但し、リンス剤が引火点を有する場合、その値が120℃を超えると、再生上、使用可能なリンス剤の配合成分の種類が過度に制限されたり、コストが高くなって、経済的に不利となったりする場合がある。
したがって、リンス剤の引火点を60~120℃の範囲内の値とすることが好ましく、70~100℃の範囲内の値とすることがさらに好ましい。 6). Flash point It is preferable to set the flash point of the rinse agent measured according to JIS K 2265-1 and 4 (how to determine the flash point) to a value of 50 ° C or higher. That is, the rinsing agent preferably has a flash point of 50 ° C. or higher.
The reason for this is that even if the rinse agent has a flash point, if the value is 50 ° C. or higher, handling is further facilitated and safety can be further improved.
However, when the rinse agent has a flash point, if the value exceeds 120 ° C., the types of the rinse agent compounding components that can be used for regeneration are excessively limited, and the cost increases, which is economically disadvantageous. It may become.
Accordingly, the flash point of the rinsing agent is preferably set to a value within the range of 60 to 120 ° C., and more preferably set to a value within the range of 70 to 100 ° C.
JIS K 2265-1及び4(引火点の求め方)に準じて測定されるリンス剤の引火点を50℃以上の値とすることが好ましい。すなわち、上記リンス剤は、その引火点が50℃以上であることが好ましい。
この理由は、リンス剤が引火点を有する場合であっても、その値が50℃以上であれば、取り扱いがさらに容易になるとともに、安全性をさらに向上させることができるためである。
但し、リンス剤が引火点を有する場合、その値が120℃を超えると、再生上、使用可能なリンス剤の配合成分の種類が過度に制限されたり、コストが高くなって、経済的に不利となったりする場合がある。
したがって、リンス剤の引火点を60~120℃の範囲内の値とすることが好ましく、70~100℃の範囲内の値とすることがさらに好ましい。 6). Flash point It is preferable to set the flash point of the rinse agent measured according to JIS K 2265-1 and 4 (how to determine the flash point) to a value of 50 ° C or higher. That is, the rinsing agent preferably has a flash point of 50 ° C. or higher.
The reason for this is that even if the rinse agent has a flash point, if the value is 50 ° C. or higher, handling is further facilitated and safety can be further improved.
However, when the rinse agent has a flash point, if the value exceeds 120 ° C., the types of the rinse agent compounding components that can be used for regeneration are excessively limited, and the cost increases, which is economically disadvantageous. It may become.
Accordingly, the flash point of the rinsing agent is preferably set to a value within the range of 60 to 120 ° C., and more preferably set to a value within the range of 70 to 100 ° C.
7.光透過率
また、室温から80℃の温度範囲における、リンス剤の光透過率(可視光透過率)を90%以上の値とすることが好ましい。すなわち、上記リンス剤は、室温から80℃の温度範囲における光透過率が90%以上であることが好ましい。
この理由は、このような温度範囲(室温から80℃)において、所定の光透過率を有することによって、相分離することなく、事実上、曇点を有しないと判断することができるためである。したがって、所定温度範囲内に曇点を有しない以上、使い勝手が良好なリンス剤を提供することができる。
すなわち、このようにリンス剤が相分離せず透明な間は、前工程である洗浄工程で使用したベンジルアルコール、疎水性グリコールエーテル化合物等を有効に相溶することができるためである。それと共にフラックスの再付着も起こらず、充分にリンス剤として機能することができるためである。
したがって、室温から80℃の温度範囲における、リンス剤の光透過率を95%以上の値とすることがより好ましく、98%以上の値とすることがさらに好ましい。上記光透過率の上限は、本発明の効果を損なわない範囲において特に制限されないが、例えば、100%以下が挙げられる。
なお、光透過率の測定は、分光光度計(日本分光株式会社製、製品名:紫外可視分光光度計V-530)を用いて、可視光(波長660nm)、室温(25℃)~80℃の条件で行う。 7. Light transmittance In addition, it is preferable that the light transmittance (visible light transmittance) of the rinse agent in the temperature range from room temperature to 80 ° C. is 90% or more. That is, the rinsing agent preferably has a light transmittance of 90% or more in a temperature range from room temperature to 80 ° C.
This is because, in such a temperature range (room temperature to 80 ° C.), by having a predetermined light transmittance, it can be determined that there is virtually no cloud point without phase separation. . Accordingly, it is possible to provide a rinse agent that is easy to use as long as it does not have a cloud point within a predetermined temperature range.
That is, as long as the rinse agent is not phase-separated and is transparent, the benzyl alcohol, the hydrophobic glycol ether compound, etc. used in the previous washing step can be effectively dissolved. At the same time, flux re-adhesion does not occur, and it can sufficiently function as a rinse agent.
Therefore, the light transmittance of the rinse agent in the temperature range from room temperature to 80 ° C. is more preferably 95% or more, and even more preferably 98% or more. Although the upper limit of the said light transmittance is not restrict | limited in particular in the range which does not impair the effect of this invention, For example, 100% or less is mentioned.
The light transmittance was measured using a spectrophotometer (manufactured by JASCO Corporation, product name: UV-visible spectrophotometer V-530), visible light (wavelength 660 nm), room temperature (25 ° C.) to 80 ° C. Perform under the conditions of
また、室温から80℃の温度範囲における、リンス剤の光透過率(可視光透過率)を90%以上の値とすることが好ましい。すなわち、上記リンス剤は、室温から80℃の温度範囲における光透過率が90%以上であることが好ましい。
この理由は、このような温度範囲(室温から80℃)において、所定の光透過率を有することによって、相分離することなく、事実上、曇点を有しないと判断することができるためである。したがって、所定温度範囲内に曇点を有しない以上、使い勝手が良好なリンス剤を提供することができる。
すなわち、このようにリンス剤が相分離せず透明な間は、前工程である洗浄工程で使用したベンジルアルコール、疎水性グリコールエーテル化合物等を有効に相溶することができるためである。それと共にフラックスの再付着も起こらず、充分にリンス剤として機能することができるためである。
したがって、室温から80℃の温度範囲における、リンス剤の光透過率を95%以上の値とすることがより好ましく、98%以上の値とすることがさらに好ましい。上記光透過率の上限は、本発明の効果を損なわない範囲において特に制限されないが、例えば、100%以下が挙げられる。
なお、光透過率の測定は、分光光度計(日本分光株式会社製、製品名:紫外可視分光光度計V-530)を用いて、可視光(波長660nm)、室温(25℃)~80℃の条件で行う。 7. Light transmittance In addition, it is preferable that the light transmittance (visible light transmittance) of the rinse agent in the temperature range from room temperature to 80 ° C. is 90% or more. That is, the rinsing agent preferably has a light transmittance of 90% or more in a temperature range from room temperature to 80 ° C.
This is because, in such a temperature range (room temperature to 80 ° C.), by having a predetermined light transmittance, it can be determined that there is virtually no cloud point without phase separation. . Accordingly, it is possible to provide a rinse agent that is easy to use as long as it does not have a cloud point within a predetermined temperature range.
That is, as long as the rinse agent is not phase-separated and is transparent, the benzyl alcohol, the hydrophobic glycol ether compound, etc. used in the previous washing step can be effectively dissolved. At the same time, flux re-adhesion does not occur, and it can sufficiently function as a rinse agent.
Therefore, the light transmittance of the rinse agent in the temperature range from room temperature to 80 ° C. is more preferably 95% or more, and even more preferably 98% or more. Although the upper limit of the said light transmittance is not restrict | limited in particular in the range which does not impair the effect of this invention, For example, 100% or less is mentioned.
The light transmittance was measured using a spectrophotometer (manufactured by JASCO Corporation, product name: UV-visible spectrophotometer V-530), visible light (wavelength 660 nm), room temperature (25 ° C.) to 80 ° C. Perform under the conditions of
8.接触角
また、本発明で使用するリンス剤につき、被洗浄物に対する表面改質を少なくすることが好ましい。
すなわち、本発明で使用するリンス剤と被洗浄物とが接触しても、被洗浄物の乾燥後における水の接触角変化が非常に少なく、本発明のリンス剤が被洗浄物に及ぼす影響が極めて少ないといえる。
より具体的には、感光性ソルダーレジスト硬化体によって表面が保護されたプリント基板のレジスト表面に対する水の初期接触角をθ1とし、30℃のリンス剤に10分間浸漬した後のこのレジスト表面に対する水の接触角をθ2としたときに、これら接触角の差の絶対値|θ2-θ1|を3°以下の値とすることが好ましい。
言い換えると、感光性ソルダーレジスト硬化体により表面が保護されたプリント基板のレジスト表面に対する水の初期の接触角をθ1とし、上記プリント基板を30℃のリンス剤に10分間浸漬した後、100℃で5分の条件で乾燥させた上記プリント基板のレジスト表面に対する水の接触角をθ2としたときに、接触角θ2とθ1との差の絶対値|θ2-θ1|が3°以下であることが好ましい。
この理由は、かかる接触角の差の絶対値が3°を超えると、レジストの封止樹脂との密着性又は電気絶縁性、さらには機械的強度が過度に低下する場合があるためである。
したがって、かかる接触角の差の絶対値|θ2-θ1|を2°以下の値とすることがより好ましく、1°以下の値とすることがさらに好ましい。上記接触角の差の絶対値|θ2-θ1|の下限は特に制限されないが、例えば、0°以上が挙げられる。 8). Contact angle Moreover, it is preferable to reduce the surface modification with respect to a to-be-cleaned object about the rinse agent used by this invention.
That is, even if the rinse agent used in the present invention comes into contact with the object to be cleaned, the change in the contact angle of water after drying the object to be cleaned is very small, and the rinse agent of the present invention has an effect on the object to be cleaned. It can be said that there are very few.
More specifically, the initial contact angle of water with respect to the resist surface of the printed circuit board whose surface is protected by the cured photosensitive solder resist is θ 1, and the resist surface after being immersed in a rinsing agent at 30 ° C. for 10 minutes is used. When the contact angle of water is θ 2 , the absolute value | θ 2 −θ 1 | of the difference between these contact angles is preferably set to a value of 3 ° or less.
In other words, the initial contact angle of water with respect to the resist surface of the printed circuit board whose surface is protected by the cured photosensitive solder resist is θ 1 , and the printed circuit board is immersed in a rinse agent at 30 ° C. for 10 minutes, and then 100 ° C. The absolute value of the difference between the contact angles θ 2 and θ 1 | θ 2 −θ 1 | is 3 where θ 2 is the contact angle of water with the resist surface of the printed circuit board dried for 5 minutes under the above conditions. It is preferable that the angle is not more than °.
This is because if the absolute value of the difference in contact angle exceeds 3 °, the adhesion of the resist to the sealing resin or the electrical insulation, and further the mechanical strength may be excessively lowered.
Therefore, the absolute value | θ 2 −θ 1 | of the contact angle difference is more preferably 2 ° or less, and further preferably 1 ° or less. The lower limit of the absolute value | θ 2 −θ 1 | of the contact angle difference is not particularly limited, and examples thereof include 0 ° or more.
また、本発明で使用するリンス剤につき、被洗浄物に対する表面改質を少なくすることが好ましい。
すなわち、本発明で使用するリンス剤と被洗浄物とが接触しても、被洗浄物の乾燥後における水の接触角変化が非常に少なく、本発明のリンス剤が被洗浄物に及ぼす影響が極めて少ないといえる。
より具体的には、感光性ソルダーレジスト硬化体によって表面が保護されたプリント基板のレジスト表面に対する水の初期接触角をθ1とし、30℃のリンス剤に10分間浸漬した後のこのレジスト表面に対する水の接触角をθ2としたときに、これら接触角の差の絶対値|θ2-θ1|を3°以下の値とすることが好ましい。
言い換えると、感光性ソルダーレジスト硬化体により表面が保護されたプリント基板のレジスト表面に対する水の初期の接触角をθ1とし、上記プリント基板を30℃のリンス剤に10分間浸漬した後、100℃で5分の条件で乾燥させた上記プリント基板のレジスト表面に対する水の接触角をθ2としたときに、接触角θ2とθ1との差の絶対値|θ2-θ1|が3°以下であることが好ましい。
この理由は、かかる接触角の差の絶対値が3°を超えると、レジストの封止樹脂との密着性又は電気絶縁性、さらには機械的強度が過度に低下する場合があるためである。
したがって、かかる接触角の差の絶対値|θ2-θ1|を2°以下の値とすることがより好ましく、1°以下の値とすることがさらに好ましい。上記接触角の差の絶対値|θ2-θ1|の下限は特に制限されないが、例えば、0°以上が挙げられる。 8). Contact angle Moreover, it is preferable to reduce the surface modification with respect to a to-be-cleaned object about the rinse agent used by this invention.
That is, even if the rinse agent used in the present invention comes into contact with the object to be cleaned, the change in the contact angle of water after drying the object to be cleaned is very small, and the rinse agent of the present invention has an effect on the object to be cleaned. It can be said that there are very few.
More specifically, the initial contact angle of water with respect to the resist surface of the printed circuit board whose surface is protected by the cured photosensitive solder resist is θ 1, and the resist surface after being immersed in a rinsing agent at 30 ° C. for 10 minutes is used. When the contact angle of water is θ 2 , the absolute value | θ 2 −θ 1 | of the difference between these contact angles is preferably set to a value of 3 ° or less.
In other words, the initial contact angle of water with respect to the resist surface of the printed circuit board whose surface is protected by the cured photosensitive solder resist is θ 1 , and the printed circuit board is immersed in a rinse agent at 30 ° C. for 10 minutes, and then 100 ° C. The absolute value of the difference between the contact angles θ 2 and θ 1 | θ 2 −θ 1 | is 3 where θ 2 is the contact angle of water with the resist surface of the printed circuit board dried for 5 minutes under the above conditions. It is preferable that the angle is not more than °.
This is because if the absolute value of the difference in contact angle exceeds 3 °, the adhesion of the resist to the sealing resin or the electrical insulation, and further the mechanical strength may be excessively lowered.
Therefore, the absolute value | θ 2 −θ 1 | of the contact angle difference is more preferably 2 ° or less, and further preferably 1 ° or less. The lower limit of the absolute value | θ 2 −θ 1 | of the contact angle difference is not particularly limited, and examples thereof include 0 ° or more.
9.製造方法
本実施形態に係るリンス剤の製造方法は、上述した水溶性グリコールエーテル化合物及び水などの成分を混合する工程を含む。当該混合する工程は、上述した水溶性グリコールエーテル化合物及び水などの成分が均一に混合されれば、どのような手法を用いてもよい。混合する工程としては、例えば、フラスコに所定の成分を加えて、マグネチックスターラーで攪拌混合することが挙げられる。また、化学プラント等において、工業的規模で上述した水溶性グリコールエーテル化合物及び水などの成分を混合してもよい。 9. Manufacturing method The manufacturing method of the rinse agent which concerns on this embodiment includes the process of mixing components, such as the water-soluble glycol ether compound mentioned above and water. As the mixing step, any method may be used as long as the above-described water-soluble glycol ether compound and water are uniformly mixed. Examples of the mixing step include adding a predetermined component to the flask and stirring and mixing with a magnetic stirrer. Moreover, in a chemical plant etc., you may mix components, such as the water-soluble glycol ether compound mentioned above on an industrial scale, and water.
本実施形態に係るリンス剤の製造方法は、上述した水溶性グリコールエーテル化合物及び水などの成分を混合する工程を含む。当該混合する工程は、上述した水溶性グリコールエーテル化合物及び水などの成分が均一に混合されれば、どのような手法を用いてもよい。混合する工程としては、例えば、フラスコに所定の成分を加えて、マグネチックスターラーで攪拌混合することが挙げられる。また、化学プラント等において、工業的規模で上述した水溶性グリコールエーテル化合物及び水などの成分を混合してもよい。 9. Manufacturing method The manufacturing method of the rinse agent which concerns on this embodiment includes the process of mixing components, such as the water-soluble glycol ether compound mentioned above and water. As the mixing step, any method may be used as long as the above-described water-soluble glycol ether compound and water are uniformly mixed. Examples of the mixing step include adding a predetermined component to the flask and stirring and mixing with a magnetic stirrer. Moreover, in a chemical plant etc., you may mix components, such as the water-soluble glycol ether compound mentioned above on an industrial scale, and water.
[第2の実施形態]
第2の実施形態は、下記工程(1)~工程(2)を有することを特徴としたリンス剤の使用方法である。
(1)被洗浄物に付着したフラックスを、ベンジルアルコール及び疎水性グリコールエーテル化合物、あるいはいずれか一方を含む洗浄液で洗浄する工程。
(2)上記工程(1)で洗浄された被洗浄物を、少なくとも水溶性グリコールエーテル化合物及び水を含み、ベンジルアルコールの溶解度が10vol%以上であるリンス剤であって、水溶性グリコールエーテル化合物100重量部に対して、水の配合量を50~1000重量部としたリンス剤を用いてリンスする工程
すなわち、第2の実施形態は、工程(1)~工程(2)を有することを特徴とした特定洗浄剤及びリンス剤を用いてなるフラックスの洗浄方法でもある。 [Second Embodiment]
The second embodiment is a method of using a rinse agent characterized by having the following steps (1) to (2).
(1) A step of cleaning the flux adhering to the object to be cleaned with a cleaning liquid containing benzyl alcohol and a hydrophobic glycol ether compound or one of them.
(2) The washing object washed in the above step (1) is a rinse agent containing at least a water-soluble glycol ether compound and water, and having a solubility of benzyl alcohol of 10 vol% or more, wherein the water-soluble glycol ether compound 100 A step of rinsing with a rinsing agent in which the blending amount of water is 50 to 1000 parts by weight with respect to parts by weight. That is, the second embodiment is characterized by having steps (1) to (2). It is also a flux cleaning method using the specified cleaning agent and rinse agent.
第2の実施形態は、下記工程(1)~工程(2)を有することを特徴としたリンス剤の使用方法である。
(1)被洗浄物に付着したフラックスを、ベンジルアルコール及び疎水性グリコールエーテル化合物、あるいはいずれか一方を含む洗浄液で洗浄する工程。
(2)上記工程(1)で洗浄された被洗浄物を、少なくとも水溶性グリコールエーテル化合物及び水を含み、ベンジルアルコールの溶解度が10vol%以上であるリンス剤であって、水溶性グリコールエーテル化合物100重量部に対して、水の配合量を50~1000重量部としたリンス剤を用いてリンスする工程
すなわち、第2の実施形態は、工程(1)~工程(2)を有することを特徴とした特定洗浄剤及びリンス剤を用いてなるフラックスの洗浄方法でもある。 [Second Embodiment]
The second embodiment is a method of using a rinse agent characterized by having the following steps (1) to (2).
(1) A step of cleaning the flux adhering to the object to be cleaned with a cleaning liquid containing benzyl alcohol and a hydrophobic glycol ether compound or one of them.
(2) The washing object washed in the above step (1) is a rinse agent containing at least a water-soluble glycol ether compound and water, and having a solubility of benzyl alcohol of 10 vol% or more, wherein the water-soluble glycol ether compound 100 A step of rinsing with a rinsing agent in which the blending amount of water is 50 to 1000 parts by weight with respect to parts by weight. That is, the second embodiment is characterized by having steps (1) to (2). It is also a flux cleaning method using the specified cleaning agent and rinse agent.
上記第2の実施形態の他の側面において、上記リンス剤の使用方法は、下記工程(1)~(2)を含む、リンス剤の使用方法である。
(1)ベンジルアルコール及び疎水性グリコールエーテル化合物、あるいはいずれか一方を含む洗浄剤を用いて、被洗浄物に付着したフラックスを洗浄する工程
(2)上記工程(1)で洗浄された上記被洗浄物を、少なくとも水溶性グリコールエーテル化合物及び水を含み、上記ベンジルアルコールの溶解度が10vol%以上であるリンス剤であって、上記水溶性グリコールエーテル化合物100重量部に対して、上記水の配合量が50~1000重量部であるリンス剤を用いてリンスする工程 In another aspect of the second embodiment, the method of using the rinse agent is a method of using the rinse agent including the following steps (1) to (2).
(1) A step of cleaning the flux adhering to the object to be cleaned using a cleaning agent containing benzyl alcohol and a hydrophobic glycol ether compound or one of them (2) The above-described cleaning target cleaned in the above step (1) A rinsing agent containing at least a water-soluble glycol ether compound and water, wherein the solubility of the benzyl alcohol is 10 vol% or more, and the amount of water added is 100 parts by weight of the water-soluble glycol ether compound. Rinsing with a rinse agent that is 50 to 1000 parts by weight
(1)ベンジルアルコール及び疎水性グリコールエーテル化合物、あるいはいずれか一方を含む洗浄剤を用いて、被洗浄物に付着したフラックスを洗浄する工程
(2)上記工程(1)で洗浄された上記被洗浄物を、少なくとも水溶性グリコールエーテル化合物及び水を含み、上記ベンジルアルコールの溶解度が10vol%以上であるリンス剤であって、上記水溶性グリコールエーテル化合物100重量部に対して、上記水の配合量が50~1000重量部であるリンス剤を用いてリンスする工程 In another aspect of the second embodiment, the method of using the rinse agent is a method of using the rinse agent including the following steps (1) to (2).
(1) A step of cleaning the flux adhering to the object to be cleaned using a cleaning agent containing benzyl alcohol and a hydrophobic glycol ether compound or one of them (2) The above-described cleaning target cleaned in the above step (1) A rinsing agent containing at least a water-soluble glycol ether compound and water, wherein the solubility of the benzyl alcohol is 10 vol% or more, and the amount of water added is 100 parts by weight of the water-soluble glycol ether compound. Rinsing with a rinse agent that is 50 to 1000 parts by weight
1.工程(1)
工程(1)は、ハンダ付けされた半導体素子、例えば、BGA(ball grid array)、CSP(chip size package)、PGA(pin grid array)、LGA(land grid array)等の半導体部品、半導体搭載TAB(tape automated bonding)テープ、半導体搭載リードフレーム、半導体搭載コンデンサ、半導体搭載抵抗、半導体素子用基板などの被洗浄物を、洗浄剤を用いて洗浄する工程である。
すなわち、これらの被洗浄物のハンダ付けに際して、フラックスが使用されるので、ハンダ付けされた部分にはフラックスが付着していることになる。
そして、このようなフラックスは、ロジンを主成分とし、有機酸塩、グリシジルエーテル化合物、オキシ酸、(ジ)カルボン酸などが含有されている。
また、加熱下でハンダ付けされることから、当該フラックスはロジン等の熱変成体も含有されることになる。
そのため、水溶性のグリコールエーテル化合物を用いて、フラックスを除去するのは非常に困難であることから、フラックスの除去には疎水性のグリコールエーテル化合物又はベンジルアルコールが好適に使用される。 1. Process (1)
Step (1) includes soldered semiconductor elements, for example, semiconductor components such as BGA (ball grid array), CSP (chip size package), PGA (pin grid array), LGA (land grid array), and semiconductor-mounted TAB. (Tape automated bonding) This is a step of cleaning an object to be cleaned such as a tape, a semiconductor-mounted lead frame, a semiconductor-mounted capacitor, a semiconductor-mounted resistor, a semiconductor element substrate using a cleaning agent.
That is, since flux is used for soldering these objects to be cleaned, the flux is attached to the soldered portion.
Such a flux contains rosin as a main component and contains an organic acid salt, a glycidyl ether compound, an oxyacid, a (di) carboxylic acid, and the like.
Moreover, since it solders under heating, the said flux will also contain heat-transformed bodies, such as rosin.
Therefore, since it is very difficult to remove the flux using a water-soluble glycol ether compound, a hydrophobic glycol ether compound or benzyl alcohol is preferably used for removing the flux.
工程(1)は、ハンダ付けされた半導体素子、例えば、BGA(ball grid array)、CSP(chip size package)、PGA(pin grid array)、LGA(land grid array)等の半導体部品、半導体搭載TAB(tape automated bonding)テープ、半導体搭載リードフレーム、半導体搭載コンデンサ、半導体搭載抵抗、半導体素子用基板などの被洗浄物を、洗浄剤を用いて洗浄する工程である。
すなわち、これらの被洗浄物のハンダ付けに際して、フラックスが使用されるので、ハンダ付けされた部分にはフラックスが付着していることになる。
そして、このようなフラックスは、ロジンを主成分とし、有機酸塩、グリシジルエーテル化合物、オキシ酸、(ジ)カルボン酸などが含有されている。
また、加熱下でハンダ付けされることから、当該フラックスはロジン等の熱変成体も含有されることになる。
そのため、水溶性のグリコールエーテル化合物を用いて、フラックスを除去するのは非常に困難であることから、フラックスの除去には疎水性のグリコールエーテル化合物又はベンジルアルコールが好適に使用される。 1. Process (1)
Step (1) includes soldered semiconductor elements, for example, semiconductor components such as BGA (ball grid array), CSP (chip size package), PGA (pin grid array), LGA (land grid array), and semiconductor-mounted TAB. (Tape automated bonding) This is a step of cleaning an object to be cleaned such as a tape, a semiconductor-mounted lead frame, a semiconductor-mounted capacitor, a semiconductor-mounted resistor, a semiconductor element substrate using a cleaning agent.
That is, since flux is used for soldering these objects to be cleaned, the flux is attached to the soldered portion.
Such a flux contains rosin as a main component and contains an organic acid salt, a glycidyl ether compound, an oxyacid, a (di) carboxylic acid, and the like.
Moreover, since it solders under heating, the said flux will also contain heat-transformed bodies, such as rosin.
Therefore, since it is very difficult to remove the flux using a water-soluble glycol ether compound, a hydrophobic glycol ether compound or benzyl alcohol is preferably used for removing the flux.
したがって、使用するベンジルアルコール類(単に、「ベンジルアルコール」と称する場合もある。)の好適例としては、エチルベンジルアルコール、メチルベンジルアルコール、ベンジルアルコールなどを挙げることができるが、これらは単独使用又は二種以上の組み合わせで使用されることになる。
そして、特に本発明では、ベンジルアルコールを使用することが最も好ましい。
この理由は、ベンジルアルコールであれば、比較的短時間であっても、優れた洗浄性を示すことができるためである。 Accordingly, preferred examples of benzyl alcohols to be used (sometimes simply referred to as “benzyl alcohol”) include ethyl benzyl alcohol, methyl benzyl alcohol, benzyl alcohol and the like. It will be used in a combination of two or more.
In the present invention, it is most preferable to use benzyl alcohol.
This is because benzyl alcohol can exhibit excellent detergency even for a relatively short time.
そして、特に本発明では、ベンジルアルコールを使用することが最も好ましい。
この理由は、ベンジルアルコールであれば、比較的短時間であっても、優れた洗浄性を示すことができるためである。 Accordingly, preferred examples of benzyl alcohols to be used (sometimes simply referred to as “benzyl alcohol”) include ethyl benzyl alcohol, methyl benzyl alcohol, benzyl alcohol and the like. It will be used in a combination of two or more.
In the present invention, it is most preferable to use benzyl alcohol.
This is because benzyl alcohol can exhibit excellent detergency even for a relatively short time.
また、本発明で使用される疎水性グリコールエーテル化合物の例としてはプロピレングリコールモノブチルエーテル(BFG)、ジプロピレングリコールジメチルエーテル(DMFDG)、ジプロピレングリコールモノブチルエーテル(BFDG)、ジプロピレングリコールモノプロピルエーテル(PFDG)、ジエチレングリコールモノヘキシルエーテル(HeDG)、エチレングリコールモノフェニルエーテル(PhG)、ジエチレングリコールモノフェニルエーテル(PhDG)、エチレングリコールモノベンジルエーテル(BzG)、プロピレングリコールモノフェニルエーテル(PhFG)、ジエチレングリコールジブチルエーテル(DBDG)等の一種単独又は二種以上の組み合わせを挙げることができる。なお、ここで使用される疎水性グリコールエーテル化合物としては、例えば、水への溶解度(測定温度:20℃)が50重量%以下の疎水性を示すものが好ましい。
Examples of the hydrophobic glycol ether compound used in the present invention include propylene glycol monobutyl ether (BFG), dipropylene glycol dimethyl ether (DMFDG), dipropylene glycol monobutyl ether (BFDG), dipropylene glycol monopropyl ether (PFDG). ), Diethylene glycol monohexyl ether (HeDG), ethylene glycol monophenyl ether (PhG), diethylene glycol monophenyl ether (PhDG), ethylene glycol monobenzyl ether (BzG), propylene glycol monophenyl ether (PhFG), diethylene glycol dibutyl ether (DBDG) )) Or a combination of two or more. In addition, as a hydrophobic glycol ether compound used here, the thing which shows the hydrophobicity whose solubility (measurement temperature: 20 degreeC) in water is 50 weight% or less is preferable, for example.
さらにまた、本発明において、ベンジルアルコールと、疎水性グリコールエーテル化合物とは両者を混合して使用することもできる。
また、ベンジルアルコール又は疎水性グリコールエーテル化合物に、その他の成分を配合することもできる。
なお、洗浄剤に配合される、その他の成分としては、水溶性グリコールエーテル化合物、アミン化合物、酸化防止剤、帯電防止剤、界面活性剤、防錆剤、粘度調整剤等の少なくとも一つを挙げることができる。 Furthermore, in the present invention, benzyl alcohol and a hydrophobic glycol ether compound can be used in combination.
Moreover, other components can also be mix | blended with benzyl alcohol or a hydrophobic glycol ether compound.
In addition, as other components blended in the cleaning agent, at least one of a water-soluble glycol ether compound, an amine compound, an antioxidant, an antistatic agent, a surfactant, a rust inhibitor, a viscosity modifier, and the like can be given. be able to.
また、ベンジルアルコール又は疎水性グリコールエーテル化合物に、その他の成分を配合することもできる。
なお、洗浄剤に配合される、その他の成分としては、水溶性グリコールエーテル化合物、アミン化合物、酸化防止剤、帯電防止剤、界面活性剤、防錆剤、粘度調整剤等の少なくとも一つを挙げることができる。 Furthermore, in the present invention, benzyl alcohol and a hydrophobic glycol ether compound can be used in combination.
Moreover, other components can also be mix | blended with benzyl alcohol or a hydrophobic glycol ether compound.
In addition, as other components blended in the cleaning agent, at least one of a water-soluble glycol ether compound, an amine compound, an antioxidant, an antistatic agent, a surfactant, a rust inhibitor, a viscosity modifier, and the like can be given. be able to.
2.工程(2)
工程(2)は、工程(1)において、所定洗浄剤を用いて洗浄した被洗浄物を、所定のリンス剤を用いてリンスする工程である。
そして、工程(2)において、第1の実施形態で説明したリンス剤を用いることにより、工程(1)の洗浄工程において使用したベンジルアルコール等の溶解度を10vol%以上と高い値に調整することができる。
したがって、工程(1)の特定洗浄剤に起因して、工程(2)のリンス剤に対して、比較的多量のベンジルアルコールが流入したとしても、リンス剤は、室温から80℃までの間に相分離することがなく、濁度が低下せず、所定の透明性を維持することができる。 2. Step (2)
Step (2) is a step of rinsing the object to be cleaned, which has been cleaned using a predetermined cleaning agent in step (1), using a predetermined rinsing agent.
And in process (2), by using the rinse agent demonstrated in 1st Embodiment, the solubility of benzyl alcohol etc. which were used in the washing | cleaning process of process (1) can be adjusted to a high value with 10 vol% or more. it can.
Therefore, even if a relatively large amount of benzyl alcohol flows into the rinsing agent in step (2) due to the specific cleaning agent in step (1), the rinsing agent remains between room temperature and 80 ° C. Phase separation does not occur, turbidity does not decrease, and predetermined transparency can be maintained.
工程(2)は、工程(1)において、所定洗浄剤を用いて洗浄した被洗浄物を、所定のリンス剤を用いてリンスする工程である。
そして、工程(2)において、第1の実施形態で説明したリンス剤を用いることにより、工程(1)の洗浄工程において使用したベンジルアルコール等の溶解度を10vol%以上と高い値に調整することができる。
したがって、工程(1)の特定洗浄剤に起因して、工程(2)のリンス剤に対して、比較的多量のベンジルアルコールが流入したとしても、リンス剤は、室温から80℃までの間に相分離することがなく、濁度が低下せず、所定の透明性を維持することができる。 2. Step (2)
Step (2) is a step of rinsing the object to be cleaned, which has been cleaned using a predetermined cleaning agent in step (1), using a predetermined rinsing agent.
And in process (2), by using the rinse agent demonstrated in 1st Embodiment, the solubility of benzyl alcohol etc. which were used in the washing | cleaning process of process (1) can be adjusted to a high value with 10 vol% or more. it can.
Therefore, even if a relatively large amount of benzyl alcohol flows into the rinsing agent in step (2) due to the specific cleaning agent in step (1), the rinsing agent remains between room temperature and 80 ° C. Phase separation does not occur, turbidity does not decrease, and predetermined transparency can be maintained.
また、本発明で使用するリンス剤は、上述のように水溶性グリコールエーテル化合物に特定量の水を配合することにより、ベンジルアルコールの溶解度を10vol%以上に保持することができる。
そのため、洗浄剤に起因して、リンス剤に混入するベンジルアルコール又は疎水性グリコールエーテル化合物を容易に相溶することができる。
しかも本発明のリンス剤によれば、洗浄剤に溶解したフラックスの再付着も有効に抑制することができ、洗浄液としての機能も発揮するため、非常に清浄度の高い被洗浄物を得ることができる。 Moreover, the rinse agent used by this invention can maintain the solubility of benzyl alcohol to 10 vol% or more by mix | blending a specific amount of water with a water-soluble glycol ether compound as mentioned above.
Therefore, due to the cleaning agent, benzyl alcohol or hydrophobic glycol ether compound mixed in the rinse agent can be easily compatible.
Moreover, according to the rinse agent of the present invention, the re-adhesion of the flux dissolved in the cleaning agent can be effectively suppressed, and the function as a cleaning liquid is also exhibited, so that an object to be cleaned having a very high cleanliness can be obtained. it can.
そのため、洗浄剤に起因して、リンス剤に混入するベンジルアルコール又は疎水性グリコールエーテル化合物を容易に相溶することができる。
しかも本発明のリンス剤によれば、洗浄剤に溶解したフラックスの再付着も有効に抑制することができ、洗浄液としての機能も発揮するため、非常に清浄度の高い被洗浄物を得ることができる。 Moreover, the rinse agent used by this invention can maintain the solubility of benzyl alcohol to 10 vol% or more by mix | blending a specific amount of water with a water-soluble glycol ether compound as mentioned above.
Therefore, due to the cleaning agent, benzyl alcohol or hydrophobic glycol ether compound mixed in the rinse agent can be easily compatible.
Moreover, according to the rinse agent of the present invention, the re-adhesion of the flux dissolved in the cleaning agent can be effectively suppressed, and the function as a cleaning liquid is also exhibited, so that an object to be cleaned having a very high cleanliness can be obtained. it can.
3.乾燥工程
リンス処理(工程(2))を行った後、被洗浄物を乾燥させる工程を実施することが好ましい。
かかる乾燥条件については、適宜設定できるが、乾燥温度を、通常、60~120℃の範囲内の値とすることが好ましく、80~100℃の範囲内の値とすることがより好ましい。
そして、この範囲内の乾燥温度において、通常は、1~20分間、好ましくは5~10分間、熱風を吹き付けることにより乾燥が行われる。
このように短時間で乾燥ができるのは、本発明のリンス剤を水系にして、沸点が比較的高いものの、所定のグリコールエーテルを少量加えるという構成を採用したからである。
したがって、上記のようにして乾燥させることにより、リンス剤の配合成分はほぼ完全に除去されて、防錆剤などの残留を意図した成分以外は、被洗浄物の表面には余剰成分は殆ど残存しない状態になる。 3. Drying step After performing the rinse treatment (step (2)), it is preferable to carry out a step of drying the object to be cleaned.
Such drying conditions can be set as appropriate, but the drying temperature is usually preferably in the range of 60 to 120 ° C., more preferably in the range of 80 to 100 ° C.
Then, at a drying temperature within this range, drying is usually performed by blowing hot air for 1 to 20 minutes, preferably 5 to 10 minutes.
The reason why the drying can be performed in such a short time is that the rinsing agent of the present invention is made into an aqueous system, and although a boiling point is relatively high, a configuration in which a small amount of a predetermined glycol ether is added is adopted.
Therefore, by drying as described above, the blending component of the rinsing agent is almost completely removed, and most of the surplus components remain on the surface of the object to be cleaned other than the components intended to remain such as a rust inhibitor. It will be in a state that does not.
リンス処理(工程(2))を行った後、被洗浄物を乾燥させる工程を実施することが好ましい。
かかる乾燥条件については、適宜設定できるが、乾燥温度を、通常、60~120℃の範囲内の値とすることが好ましく、80~100℃の範囲内の値とすることがより好ましい。
そして、この範囲内の乾燥温度において、通常は、1~20分間、好ましくは5~10分間、熱風を吹き付けることにより乾燥が行われる。
このように短時間で乾燥ができるのは、本発明のリンス剤を水系にして、沸点が比較的高いものの、所定のグリコールエーテルを少量加えるという構成を採用したからである。
したがって、上記のようにして乾燥させることにより、リンス剤の配合成分はほぼ完全に除去されて、防錆剤などの残留を意図した成分以外は、被洗浄物の表面には余剰成分は殆ど残存しない状態になる。 3. Drying step After performing the rinse treatment (step (2)), it is preferable to carry out a step of drying the object to be cleaned.
Such drying conditions can be set as appropriate, but the drying temperature is usually preferably in the range of 60 to 120 ° C., more preferably in the range of 80 to 100 ° C.
Then, at a drying temperature within this range, drying is usually performed by blowing hot air for 1 to 20 minutes, preferably 5 to 10 minutes.
The reason why the drying can be performed in such a short time is that the rinsing agent of the present invention is made into an aqueous system, and although a boiling point is relatively high, a configuration in which a small amount of a predetermined glycol ether is added is adopted.
Therefore, by drying as described above, the blending component of the rinsing agent is almost completely removed, and most of the surplus components remain on the surface of the object to be cleaned other than the components intended to remain such as a rust inhibitor. It will be in a state that does not.
次に本発明の実施例を示して本発明をさらに詳細に説明するが、本発明はこれらにより限定されるものではない。
なお、次表に実施例のリンス剤を構成するのに使用する化合物の名称とその略号及びその物性を表記する。 EXAMPLES Next, the present invention will be described in more detail with reference to examples of the present invention, but the present invention is not limited thereto.
In addition, the name of the compound used for comprising the rinse agent of an Example, its symbol, and its physical property are described in the following table.
なお、次表に実施例のリンス剤を構成するのに使用する化合物の名称とその略号及びその物性を表記する。 EXAMPLES Next, the present invention will be described in more detail with reference to examples of the present invention, but the present invention is not limited thereto.
In addition, the name of the compound used for comprising the rinse agent of an Example, its symbol, and its physical property are described in the following table.
[実施例1]
1.工程(1)
洗浄装置として、マイクロクリーナーMC3USHD-1.5E(化研テック株式会社製)を用いるとともに、その洗浄槽において、洗浄液としてベンジルアルコールを収容した。
次いで、洗浄装置を動作させ、被洗浄物としての半導体素子付き基板を洗浄した。
すなわち、洗浄槽に収容した洗浄液であるベンジルアルコールを用いて、それに被洗浄物を浸漬させ、70℃、5分間の条件で、超音波洗浄を行った。 [Example 1]
1. Process (1)
Microcleaner MC3USHD-1.5E (manufactured by Kaken Tech Co., Ltd.) was used as a cleaning device, and benzyl alcohol was accommodated as a cleaning solution in the cleaning tank.
Next, the cleaning apparatus was operated to clean the substrate with a semiconductor element as an object to be cleaned.
That is, the object to be cleaned was immersed in benzyl alcohol, which is a cleaning liquid stored in a cleaning tank, and ultrasonic cleaning was performed at 70 ° C. for 5 minutes.
1.工程(1)
洗浄装置として、マイクロクリーナーMC3USHD-1.5E(化研テック株式会社製)を用いるとともに、その洗浄槽において、洗浄液としてベンジルアルコールを収容した。
次いで、洗浄装置を動作させ、被洗浄物としての半導体素子付き基板を洗浄した。
すなわち、洗浄槽に収容した洗浄液であるベンジルアルコールを用いて、それに被洗浄物を浸漬させ、70℃、5分間の条件で、超音波洗浄を行った。 [Example 1]
1. Process (1)
Microcleaner MC3USHD-1.5E (manufactured by Kaken Tech Co., Ltd.) was used as a cleaning device, and benzyl alcohol was accommodated as a cleaning solution in the cleaning tank.
Next, the cleaning apparatus was operated to clean the substrate with a semiconductor element as an object to be cleaned.
That is, the object to be cleaned was immersed in benzyl alcohol, which is a cleaning liquid stored in a cleaning tank, and ultrasonic cleaning was performed at 70 ° C. for 5 minutes.
2.工程(2)
次いで、洗浄槽において洗浄した被洗浄物を、搬送装置を用いてリンス槽に移動させた。
すなわち、リンス液を収容したリンス槽において、30℃で5分間の条件で、被洗浄物に対して、リンス剤に対する浸漬処理を行い、さらにリンス処理を行った。このリンス剤の組成及び特性を表2に示す。
なお、リンス剤を貯留したリンス槽には、所定の蒸留装置が設けられており、リンス液を蒸留して、相溶しているベンジルアルコールの分離を行った。 2. Step (2)
Subsequently, the to-be-cleaned object wash | cleaned in the washing tank was moved to the rinse tank using the conveying apparatus.
That is, in the rinse tank which accommodated the rinse liquid, the immersion process with respect to the rinse agent was performed with respect to the to-be-washed object on the conditions for 5 minutes at 30 degreeC, and also the rinse process was performed. Table 2 shows the composition and characteristics of this rinse agent.
The rinsing tank in which the rinsing agent was stored was provided with a predetermined distillation apparatus, and the rinsing liquid was distilled to separate the compatible benzyl alcohol.
次いで、洗浄槽において洗浄した被洗浄物を、搬送装置を用いてリンス槽に移動させた。
すなわち、リンス液を収容したリンス槽において、30℃で5分間の条件で、被洗浄物に対して、リンス剤に対する浸漬処理を行い、さらにリンス処理を行った。このリンス剤の組成及び特性を表2に示す。
なお、リンス剤を貯留したリンス槽には、所定の蒸留装置が設けられており、リンス液を蒸留して、相溶しているベンジルアルコールの分離を行った。 2. Step (2)
Subsequently, the to-be-cleaned object wash | cleaned in the washing tank was moved to the rinse tank using the conveying apparatus.
That is, in the rinse tank which accommodated the rinse liquid, the immersion process with respect to the rinse agent was performed with respect to the to-be-washed object on the conditions for 5 minutes at 30 degreeC, and also the rinse process was performed. Table 2 shows the composition and characteristics of this rinse agent.
The rinsing tank in which the rinsing agent was stored was provided with a predetermined distillation apparatus, and the rinsing liquid was distilled to separate the compatible benzyl alcohol.
3.乾燥工程
上記のようにしてリンス処理を行った被洗浄物を、リンス槽から取り出し、100℃、5分の乾燥条件で、熱風乾燥を行った。
その結果、被洗浄物の表面から、リンス剤等は完全に除去されたことを目視にて確認した。 3. Drying Step The object to be cleaned that had been rinsed as described above was taken out of the rinsing tank and dried with hot air under drying conditions at 100 ° C. for 5 minutes.
As a result, it was visually confirmed that the rinse agent and the like were completely removed from the surface of the object to be cleaned.
上記のようにしてリンス処理を行った被洗浄物を、リンス槽から取り出し、100℃、5分の乾燥条件で、熱風乾燥を行った。
その結果、被洗浄物の表面から、リンス剤等は完全に除去されたことを目視にて確認した。 3. Drying Step The object to be cleaned that had been rinsed as described above was taken out of the rinsing tank and dried with hot air under drying conditions at 100 ° C. for 5 minutes.
As a result, it was visually confirmed that the rinse agent and the like were completely removed from the surface of the object to be cleaned.
4.物性評価(1)
(1)ベンジルアルコールの溶解度の測定方法
容量200mlのメスシリンダーにリンス剤を100ml秤取る。ここにベンジルアルコールを1ml滴下して攪拌する。攪拌して溶液が均一透明であれば、再度ベンジルアルコールを1ml滴下して攪拌する。
そして、上記の滴下及び攪拌を繰り返して、攪拌後白濁/分離した時点での滴下したベンジルアルコールの全容量(ml)を測定して、最終的にリンス剤に対してベンジルアルコールが、何ml溶解したかを測定した。
それからベンジルアルコールの溶解量(vol%)を算出して、リンス剤に対するベンジルアルコールの溶解度とした。 4). Physical property evaluation (1)
(1) Measuring method of solubility of benzyl alcohol 100 ml of rinsing agent is weighed into a measuring cylinder having a capacity of 200 ml. 1 ml of benzyl alcohol is added dropwise thereto and stirred. If the solution is homogeneous and transparent by stirring, 1 ml of benzyl alcohol is again added dropwise and stirred.
Then, repeating the above dropping and stirring, measuring the total volume (ml) of the dropped benzyl alcohol at the time of clouding / separation after stirring, and finally, how many ml of benzyl alcohol is dissolved in the rinse agent Was measured.
Then, the amount of benzyl alcohol dissolved (vol%) was calculated and used as the solubility of benzyl alcohol in the rinse agent.
(1)ベンジルアルコールの溶解度の測定方法
容量200mlのメスシリンダーにリンス剤を100ml秤取る。ここにベンジルアルコールを1ml滴下して攪拌する。攪拌して溶液が均一透明であれば、再度ベンジルアルコールを1ml滴下して攪拌する。
そして、上記の滴下及び攪拌を繰り返して、攪拌後白濁/分離した時点での滴下したベンジルアルコールの全容量(ml)を測定して、最終的にリンス剤に対してベンジルアルコールが、何ml溶解したかを測定した。
それからベンジルアルコールの溶解量(vol%)を算出して、リンス剤に対するベンジルアルコールの溶解度とした。 4). Physical property evaluation (1)
(1) Measuring method of solubility of benzyl alcohol 100 ml of rinsing agent is weighed into a measuring cylinder having a capacity of 200 ml. 1 ml of benzyl alcohol is added dropwise thereto and stirred. If the solution is homogeneous and transparent by stirring, 1 ml of benzyl alcohol is again added dropwise and stirred.
Then, repeating the above dropping and stirring, measuring the total volume (ml) of the dropped benzyl alcohol at the time of clouding / separation after stirring, and finally, how many ml of benzyl alcohol is dissolved in the rinse agent Was measured.
Then, the amount of benzyl alcohol dissolved (vol%) was calculated and used as the solubility of benzyl alcohol in the rinse agent.
(2)リンス性(すすぎ性)の評価方法
ベンジルアルコール及びリンス剤各200gを、それぞれ容量300mlのビーカー内部に収容した。その後、ベンジルアルコールは温度を60℃に、リンス剤は30℃に温度を維持した。
次いで、ガラスエポキシ基板を、ベンジルアルコール入りビーカーの内部に収容し、その状態で、当該ベンジルアルコール入りビーカー内のマグネチックスターラーを回転させて、10分の浸漬を行った。
次いで、マグネチックスターラーの回転を止めて、ガラスエポキシ基板をベンジルアルコールから取り出した後、ガラスエポキシ基板を、リンス剤入りビーカーの内部に収容し、その状態で、当該リンス剤入りビーカー内のマグネチックスターラーを回転させて、所定時間の浸漬を行った。
次いで、マグネチックスターラーの回転を止めて、ガラスエポキシ基板をリンス剤から取り出し、100℃に保持された循環オーブンを用いて、10分間の乾燥を行った。
その後、乾燥させたガラスエポキシ基板を循環オーブンから取り出し、目視により表面観察し、以下の基準に照らして、リンス剤のリンス性(すすぎ性)評価を行った。
A : リンス時間5分でベンジルアルコールの液残りなし。
A’: リンス時間7分でベンジルアルコールの液残りなし。
B : リンス時間10分でベンジルアルコールの液残りなし。
C : リンス時間10分でベンジルアルコールの液残りが少々ある。
D : リンス時間10分でベンジルアルコールの多くの液残りがある。
E : リンス時間15分でベンジルアルコールの多くの液残りがある。 (2) Rinse (Rinse) Evaluation Method Each 200 g of benzyl alcohol and a rinse agent were accommodated in a beaker having a capacity of 300 ml. Thereafter, the temperature of benzyl alcohol was maintained at 60 ° C, and the temperature of the rinse agent was maintained at 30 ° C.
Next, the glass epoxy substrate was housed in a beaker containing benzyl alcohol, and in that state, the magnetic stirrer in the beaker containing benzyl alcohol was rotated and immersed for 10 minutes.
Next, after stopping the rotation of the magnetic stirrer and taking out the glass epoxy substrate from the benzyl alcohol, the glass epoxy substrate is accommodated in the beaker containing the rinse agent, and in that state, the magnetic in the beaker containing the rinse agent is contained. The stirrer was rotated and immersed for a predetermined time.
Next, the rotation of the magnetic stirrer was stopped, the glass epoxy substrate was taken out from the rinse agent, and drying was performed for 10 minutes using a circulation oven maintained at 100 ° C.
Thereafter, the dried glass epoxy substrate was taken out from the circulation oven, visually observed on the surface, and rinsed (rinsed) of the rinse agent was evaluated in light of the following criteria.
A: No benzyl alcohol remaining after rinsing time of 5 minutes.
A ': No benzyl alcohol remaining in the rinse time of 7 minutes.
B: No benzyl alcohol remaining after rinsing time of 10 minutes.
C: There is a little liquid residue of benzyl alcohol after a rinsing time of 10 minutes.
D: There is a lot of liquid residue of benzyl alcohol after a rinsing time of 10 minutes.
E: There is much liquid residue of benzyl alcohol after rinsing time of 15 minutes.
ベンジルアルコール及びリンス剤各200gを、それぞれ容量300mlのビーカー内部に収容した。その後、ベンジルアルコールは温度を60℃に、リンス剤は30℃に温度を維持した。
次いで、ガラスエポキシ基板を、ベンジルアルコール入りビーカーの内部に収容し、その状態で、当該ベンジルアルコール入りビーカー内のマグネチックスターラーを回転させて、10分の浸漬を行った。
次いで、マグネチックスターラーの回転を止めて、ガラスエポキシ基板をベンジルアルコールから取り出した後、ガラスエポキシ基板を、リンス剤入りビーカーの内部に収容し、その状態で、当該リンス剤入りビーカー内のマグネチックスターラーを回転させて、所定時間の浸漬を行った。
次いで、マグネチックスターラーの回転を止めて、ガラスエポキシ基板をリンス剤から取り出し、100℃に保持された循環オーブンを用いて、10分間の乾燥を行った。
その後、乾燥させたガラスエポキシ基板を循環オーブンから取り出し、目視により表面観察し、以下の基準に照らして、リンス剤のリンス性(すすぎ性)評価を行った。
A : リンス時間5分でベンジルアルコールの液残りなし。
A’: リンス時間7分でベンジルアルコールの液残りなし。
B : リンス時間10分でベンジルアルコールの液残りなし。
C : リンス時間10分でベンジルアルコールの液残りが少々ある。
D : リンス時間10分でベンジルアルコールの多くの液残りがある。
E : リンス時間15分でベンジルアルコールの多くの液残りがある。 (2) Rinse (Rinse) Evaluation Method Each 200 g of benzyl alcohol and a rinse agent were accommodated in a beaker having a capacity of 300 ml. Thereafter, the temperature of benzyl alcohol was maintained at 60 ° C, and the temperature of the rinse agent was maintained at 30 ° C.
Next, the glass epoxy substrate was housed in a beaker containing benzyl alcohol, and in that state, the magnetic stirrer in the beaker containing benzyl alcohol was rotated and immersed for 10 minutes.
Next, after stopping the rotation of the magnetic stirrer and taking out the glass epoxy substrate from the benzyl alcohol, the glass epoxy substrate is accommodated in the beaker containing the rinse agent, and in that state, the magnetic in the beaker containing the rinse agent is contained. The stirrer was rotated and immersed for a predetermined time.
Next, the rotation of the magnetic stirrer was stopped, the glass epoxy substrate was taken out from the rinse agent, and drying was performed for 10 minutes using a circulation oven maintained at 100 ° C.
Thereafter, the dried glass epoxy substrate was taken out from the circulation oven, visually observed on the surface, and rinsed (rinsed) of the rinse agent was evaluated in light of the following criteria.
A: No benzyl alcohol remaining after rinsing time of 5 minutes.
A ': No benzyl alcohol remaining in the rinse time of 7 minutes.
B: No benzyl alcohol remaining after rinsing time of 10 minutes.
C: There is a little liquid residue of benzyl alcohol after a rinsing time of 10 minutes.
D: There is a lot of liquid residue of benzyl alcohol after a rinsing time of 10 minutes.
E: There is much liquid residue of benzyl alcohol after rinsing time of 15 minutes.
(3)乾燥性の評価方法
リンス剤200gを、容量300mlのビーカー内部に収容した後、温度を30℃に維持した。
次いで、ガラスエポキシ基板を、200gのリンス剤入りビーカーの内部に収容し、その状態で、当該ビーカー内のマグネチックスターラーを回転させて、10分の浸漬を行った。次いで、マグネチックスターラーの回転を止めて、ガラスエポキシ基板をリンス剤から取り出し、100℃に保持された循環オーブンを用いて、所定時間の乾燥を行った。その後、乾燥させたガラスエポキシ基板を循環オーブンから取り出し、目視により表面観察し、以下の基準に照らして、リンス剤の乾燥性評価を行った。
A : 5分以内で、乾燥可能である。
A’: 7分以内で、乾燥可能である。
B : 10分以内で、乾燥可能である。
C : 10分間の乾燥で、液残りが少々ある。
D : 10分間の乾燥で、多くの液残りがある。 (3) Drying Evaluation Method After rinsing 200 g in a 300 ml capacity beaker, the temperature was maintained at 30 ° C.
Next, the glass epoxy substrate was accommodated in a beaker containing 200 g of a rinse agent, and in that state, the magnetic stirrer in the beaker was rotated and immersed for 10 minutes. Next, the rotation of the magnetic stirrer was stopped, the glass epoxy substrate was taken out of the rinse agent, and drying was performed for a predetermined time using a circulation oven maintained at 100 ° C. Then, the dried glass epoxy board | substrate was taken out from the circulation oven, the surface was observed visually, and the dryness evaluation of the rinse agent was performed in light of the following references | standards.
A: It can be dried within 5 minutes.
A ′: Drying is possible within 7 minutes.
B: Drying is possible within 10 minutes.
C: There is a little liquid residue after drying for 10 minutes.
D: There is a lot of liquid residue after drying for 10 minutes.
リンス剤200gを、容量300mlのビーカー内部に収容した後、温度を30℃に維持した。
次いで、ガラスエポキシ基板を、200gのリンス剤入りビーカーの内部に収容し、その状態で、当該ビーカー内のマグネチックスターラーを回転させて、10分の浸漬を行った。次いで、マグネチックスターラーの回転を止めて、ガラスエポキシ基板をリンス剤から取り出し、100℃に保持された循環オーブンを用いて、所定時間の乾燥を行った。その後、乾燥させたガラスエポキシ基板を循環オーブンから取り出し、目視により表面観察し、以下の基準に照らして、リンス剤の乾燥性評価を行った。
A : 5分以内で、乾燥可能である。
A’: 7分以内で、乾燥可能である。
B : 10分以内で、乾燥可能である。
C : 10分間の乾燥で、液残りが少々ある。
D : 10分間の乾燥で、多くの液残りがある。 (3) Drying Evaluation Method After rinsing 200 g in a 300 ml capacity beaker, the temperature was maintained at 30 ° C.
Next, the glass epoxy substrate was accommodated in a beaker containing 200 g of a rinse agent, and in that state, the magnetic stirrer in the beaker was rotated and immersed for 10 minutes. Next, the rotation of the magnetic stirrer was stopped, the glass epoxy substrate was taken out of the rinse agent, and drying was performed for a predetermined time using a circulation oven maintained at 100 ° C. Then, the dried glass epoxy board | substrate was taken out from the circulation oven, the surface was observed visually, and the dryness evaluation of the rinse agent was performed in light of the following references | standards.
A: It can be dried within 5 minutes.
A ′: Drying is possible within 7 minutes.
B: Drying is possible within 10 minutes.
C: There is a little liquid residue after drying for 10 minutes.
D: There is a lot of liquid residue after drying for 10 minutes.
(4)イオン交換水接触角度の測定方法
感光性ソルダーレジスト(日立化成工業(株)製SRシリーズ)により表面が保護されたプリント配線基板を接触角測定標準サンプルとして用いた。洗浄前のソルダーレジスト表面と、各種リンス剤で攪拌浸漬30℃/10分の条件でリンス処理した後、熱風100℃/5分間の条件で乾燥処理したレジスト表面に対して、イオン交換水の接触角の変化(|θ2-θ1|)を測定した。ここで、θ1は洗浄前のソルダーレジスト表面に対するイオン交換水の接触角(初期の接触角)を示し、θ2は上述のリンス処理及び乾燥処理を施したレジスト表面に対するイオン交換水の接触角を示す。 (4) Measuring method of contact angle of ion-exchanged water A printed wiring board whose surface was protected by a photosensitive solder resist (SR series manufactured by Hitachi Chemical Co., Ltd.) was used as a contact angle measurement standard sample. Contact with ion-exchanged water on the surface of the solder resist before washing and the resist surface that has been rinsed with various rinsing agents under conditions of 30 ° C / 10 minutes of stirring and then dried under conditions of hot air 100 ° C / 5 minutes The change in angle (| θ 2 −θ 1 |) was measured. Here, θ 1 represents the contact angle (initial contact angle) of ion-exchanged water with respect to the surface of the solder resist before cleaning, and θ 2 represents the contact angle of ion-exchanged water with respect to the resist surface subjected to the rinsing process and the drying process described above. Indicates.
感光性ソルダーレジスト(日立化成工業(株)製SRシリーズ)により表面が保護されたプリント配線基板を接触角測定標準サンプルとして用いた。洗浄前のソルダーレジスト表面と、各種リンス剤で攪拌浸漬30℃/10分の条件でリンス処理した後、熱風100℃/5分間の条件で乾燥処理したレジスト表面に対して、イオン交換水の接触角の変化(|θ2-θ1|)を測定した。ここで、θ1は洗浄前のソルダーレジスト表面に対するイオン交換水の接触角(初期の接触角)を示し、θ2は上述のリンス処理及び乾燥処理を施したレジスト表面に対するイオン交換水の接触角を示す。 (4) Measuring method of contact angle of ion-exchanged water A printed wiring board whose surface was protected by a photosensitive solder resist (SR series manufactured by Hitachi Chemical Co., Ltd.) was used as a contact angle measurement standard sample. Contact with ion-exchanged water on the surface of the solder resist before washing and the resist surface that has been rinsed with various rinsing agents under conditions of 30 ° C / 10 minutes of stirring and then dried under conditions of hot air 100 ° C / 5 minutes The change in angle (| θ 2 −θ 1 |) was measured. Here, θ 1 represents the contact angle (initial contact angle) of ion-exchanged water with respect to the surface of the solder resist before cleaning, and θ 2 represents the contact angle of ion-exchanged water with respect to the resist surface subjected to the rinsing process and the drying process described above. Indicates.
(5)曇点の測定方法
サンプル(リンス剤)の液温を20℃にして、外観を測定しながら徐々に昇温して、サンプルが白濁又は分離し始めた時の温度を曇点とした。
但し、かかる曇点は、少なくとも室温から80℃の温度範囲において、存在しないことが好ましい。
すなわち、このような使用温度範囲(室温から80℃)では、曇点を有さず、透明性を維持することから、使い勝手が良好なリンス剤を提供することができるためである。
したがって、このように所定温度範囲において、透明性を有しており、所定の光透過率を有することによって、室温から80℃までの温度範囲において相分離することがないほうが、実用上、便利である。
なお、後述する表2~表4における曇点の「なし」との評価は、20℃~80℃の範囲においてリンス剤が白濁及び分離しなかったことを意味する。 (5) Measuring method of cloud point Set the liquid temperature of the sample (rinse agent) to 20 ° C., gradually increase the temperature while measuring the appearance, and the temperature when the sample starts to become cloudy or separated is taken as the cloud point. .
However, such a cloud point is preferably absent at least in the temperature range of room temperature to 80 ° C.
That is, in such a use temperature range (from room temperature to 80 ° C.), since it has no cloud point and maintains transparency, it is possible to provide a rinse agent with good usability.
Therefore, it is practically convenient to have transparency in such a predetermined temperature range and not to cause phase separation in the temperature range from room temperature to 80 ° C. by having a predetermined light transmittance. is there.
In Tables 2 to 4, which will be described later, the evaluation of “None” for the cloud point means that the rinse agent was not clouded or separated in the range of 20 ° C. to 80 ° C.
サンプル(リンス剤)の液温を20℃にして、外観を測定しながら徐々に昇温して、サンプルが白濁又は分離し始めた時の温度を曇点とした。
但し、かかる曇点は、少なくとも室温から80℃の温度範囲において、存在しないことが好ましい。
すなわち、このような使用温度範囲(室温から80℃)では、曇点を有さず、透明性を維持することから、使い勝手が良好なリンス剤を提供することができるためである。
したがって、このように所定温度範囲において、透明性を有しており、所定の光透過率を有することによって、室温から80℃までの温度範囲において相分離することがないほうが、実用上、便利である。
なお、後述する表2~表4における曇点の「なし」との評価は、20℃~80℃の範囲においてリンス剤が白濁及び分離しなかったことを意味する。 (5) Measuring method of cloud point Set the liquid temperature of the sample (rinse agent) to 20 ° C., gradually increase the temperature while measuring the appearance, and the temperature when the sample starts to become cloudy or separated is taken as the cloud point. .
However, such a cloud point is preferably absent at least in the temperature range of room temperature to 80 ° C.
That is, in such a use temperature range (from room temperature to 80 ° C.), since it has no cloud point and maintains transparency, it is possible to provide a rinse agent with good usability.
Therefore, it is practically convenient to have transparency in such a predetermined temperature range and not to cause phase separation in the temperature range from room temperature to 80 ° C. by having a predetermined light transmittance. is there.
In Tables 2 to 4, which will be described later, the evaluation of “None” for the cloud point means that the rinse agent was not clouded or separated in the range of 20 ° C. to 80 ° C.
(6)濁度の測定方法、フラックスの再付着性評価
市販のポストフラックス(型番:スパークルフラックスPO-Z―7(千往金属工業(株)製)を用いて、当該ポストフラックスから溶剤成分を留去した後、回収した固形分残渣(フラックス)を試料とした。
そして、ベンジルアルコールに対して3重量%になるようにフラックスを添加した。
こうして得られたフラックス混入ベンジルアルコール溶液を、各リンス剤に1重量%添加し、水質計WA-1(日本電色工業(株)製)を使用し濁度を測定した。この濁度をフラックスの再付着性の指標とした。なお、濁度が0に近いほど透明かつ均一で再付着しにくいといえる。 (6) Turbidity measurement method, flux re-adhesion evaluation Using a commercially available post-flux (model number: Sparkle Flux PO-Z-7 (manufactured by Senjo Metal Industry Co., Ltd.)), the solvent component is extracted from the post-flux. After the distillation, the collected solid residue (flux) was used as a sample.
And the flux was added so that it might become 3 weight% with respect to benzyl alcohol.
The flux-mixed benzyl alcohol solution thus obtained was added to each rinse agent in an amount of 1% by weight, and the turbidity was measured using a water quality meter WA-1 (manufactured by Nippon Denshoku Industries Co., Ltd.). This turbidity was used as an index of flux reattachment. It can be said that the closer the turbidity is to 0, the clearer, more uniform and less likely to reattach.
市販のポストフラックス(型番:スパークルフラックスPO-Z―7(千往金属工業(株)製)を用いて、当該ポストフラックスから溶剤成分を留去した後、回収した固形分残渣(フラックス)を試料とした。
そして、ベンジルアルコールに対して3重量%になるようにフラックスを添加した。
こうして得られたフラックス混入ベンジルアルコール溶液を、各リンス剤に1重量%添加し、水質計WA-1(日本電色工業(株)製)を使用し濁度を測定した。この濁度をフラックスの再付着性の指標とした。なお、濁度が0に近いほど透明かつ均一で再付着しにくいといえる。 (6) Turbidity measurement method, flux re-adhesion evaluation Using a commercially available post-flux (model number: Sparkle Flux PO-Z-7 (manufactured by Senjo Metal Industry Co., Ltd.)), the solvent component is extracted from the post-flux. After the distillation, the collected solid residue (flux) was used as a sample.
And the flux was added so that it might become 3 weight% with respect to benzyl alcohol.
The flux-mixed benzyl alcohol solution thus obtained was added to each rinse agent in an amount of 1% by weight, and the turbidity was measured using a water quality meter WA-1 (manufactured by Nippon Denshoku Industries Co., Ltd.). This turbidity was used as an index of flux reattachment. It can be said that the closer the turbidity is to 0, the clearer, more uniform and less likely to reattach.
(7)引火点の測定方法
リンス剤の引火点は、JIS K 2265-1及び4(引火点の求め方)に準じて測定した。
なお、引火点については、有しないほうが好適であるが、あったとしても、50℃以上の温度であることが好ましい。ここで、「引火点を有しない」とは室温以上、上記リンス剤の沸点以下の範囲において引火点が存在しないことを意味する。 (7) Measuring method of flash point The flash point of the rinse agent was measured according to JIS K2265-1 and 4 (how to determine the flash point).
In addition, although it is preferable not to have a flash point, even if it exists, it is preferable that it is the temperature of 50 degreeC or more. Here, “having no flash point” means that there is no flash point in the range from room temperature to the boiling point of the rinse agent.
リンス剤の引火点は、JIS K 2265-1及び4(引火点の求め方)に準じて測定した。
なお、引火点については、有しないほうが好適であるが、あったとしても、50℃以上の温度であることが好ましい。ここで、「引火点を有しない」とは室温以上、上記リンス剤の沸点以下の範囲において引火点が存在しないことを意味する。 (7) Measuring method of flash point The flash point of the rinse agent was measured according to JIS K2265-1 and 4 (how to determine the flash point).
In addition, although it is preferable not to have a flash point, even if it exists, it is preferable that it is the temperature of 50 degreeC or more. Here, “having no flash point” means that there is no flash point in the range from room temperature to the boiling point of the rinse agent.
[実施例2]
実施例2においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)の代わりに、ETBを同量使用した以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 2]
In Example 2, the object to be cleaned was treated in the same manner except that the same amount of ETB was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
実施例2においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)の代わりに、ETBを同量使用した以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 2]
In Example 2, the object to be cleaned was treated in the same manner except that the same amount of ETB was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
[実施例3]
実施例3においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)の代わりに、MMBを同量使用した以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 3]
In Example 3, the object to be cleaned was treated in the same manner except that the same amount of MMB was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
実施例3においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)の代わりに、MMBを同量使用した以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 3]
In Example 3, the object to be cleaned was treated in the same manner except that the same amount of MMB was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
[実施例4]
実施例4においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)の代わりにiPGを同量使用した以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 4]
In Example 4, the object to be cleaned was treated in the same manner except that the same amount of iPG was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
実施例4においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)の代わりにiPGを同量使用した以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 4]
In Example 4, the object to be cleaned was treated in the same manner except that the same amount of iPG was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
[実施例5]
実施例5においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)の代わりにDPMを同量使用した以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 5]
In Example 5, the object to be cleaned was treated in the same manner except that the same amount of DPM was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
実施例5においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)の代わりにDPMを同量使用した以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 5]
In Example 5, the object to be cleaned was treated in the same manner except that the same amount of DPM was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
[実施例6]
実施例6においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)の代わりにMEDGを同量使用した以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 6]
In Example 6, the object to be cleaned was treated in the same manner except that the same amount of MEDG was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
実施例6においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)の代わりにMEDGを同量使用した以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 6]
In Example 6, the object to be cleaned was treated in the same manner except that the same amount of MEDG was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
[実施例7]
実施例7においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)の代わりにDMTGを同量使用した以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 7]
In Example 7, the object to be cleaned was treated in the same manner except that the same amount of DMTG was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
実施例7においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)の代わりにDMTGを同量使用した以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 7]
In Example 7, the object to be cleaned was treated in the same manner except that the same amount of DMTG was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
[実施例8]
実施例8においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)の代わりにDMDGを同量使用した以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 8]
In Example 8, the object to be cleaned was treated in the same manner except that the same amount of DMDG was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
実施例8においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)の代わりにDMDGを同量使用した以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 8]
In Example 8, the object to be cleaned was treated in the same manner except that the same amount of DMDG was used instead of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. The obtained results are shown in Table 2.
[実施例9]
実施例9においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、PSの使用量を20重量部とし、水の量を80重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 9]
In Example 9, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, the amount of PS used was 20 parts by weight and the amount of water was 80 parts by weight. The object to be cleaned was treated in the same manner except that it was changed. The obtained results are shown in Table 2.
実施例9においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、PSの使用量を20重量部とし、水の量を80重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 9]
In Example 9, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, the amount of PS used was 20 parts by weight and the amount of water was 80 parts by weight. The object to be cleaned was treated in the same manner except that it was changed. The obtained results are shown in Table 2.
[実施例10]
実施例10においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりにPS15重量部とMMB15重量部とを使用した以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 10]
In Example 10, it was cleaned in the same manner except that 15 parts by weight of PS and 15 parts by weight of MMB were used instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1. The product was processed. The obtained results are shown in Table 2.
実施例10においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりにPS15重量部とMMB15重量部とを使用した以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 10]
In Example 10, it was cleaned in the same manner except that 15 parts by weight of PS and 15 parts by weight of MMB were used instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1. The product was processed. The obtained results are shown in Table 2.
[実施例11]
実施例11においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)の代わりにPS15重量部と、MMB15重量部とを使用し、さらにアミン化合物としてTMHMDAを1重量部使用し、水の量を69重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 11]
In Example 11, 15 parts by weight of PS and 15 parts by weight of MMB were used in place of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, and 1 part by weight of TMHMDA was used as the amine compound. The object to be cleaned was treated in the same manner except that it was used and the amount of water was changed to 69 parts by weight. The obtained results are shown in Table 2.
実施例11においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)の代わりにPS15重量部と、MMB15重量部とを使用し、さらにアミン化合物としてTMHMDAを1重量部使用し、水の量を69重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 11]
In Example 11, 15 parts by weight of PS and 15 parts by weight of MMB were used in place of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, and 1 part by weight of TMHMDA was used as the amine compound. The object to be cleaned was treated in the same manner except that it was used and the amount of water was changed to 69 parts by weight. The obtained results are shown in Table 2.
[実施例12]
実施例12においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)の代わりにPS15重量部とMMB15重量部とを使用し、さらにアミン化合物としてDBA0.5重量部とDEHA0.5重量部をそれぞれ使用し、水の量を69重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 12]
In Example 12, 15 parts by weight of PS and 15 parts by weight of MMB were used in place of the ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, and 0.5 parts by weight of DBA was used as the amine compound. The object to be cleaned was treated in the same manner except that 0.5 parts by weight of DEHA was used and the amount of water was changed to 69 parts by weight. The obtained results are shown in Table 2.
実施例12においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)の代わりにPS15重量部とMMB15重量部とを使用し、さらにアミン化合物としてDBA0.5重量部とDEHA0.5重量部をそれぞれ使用し、水の量を69重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 12]
In Example 12, 15 parts by weight of PS and 15 parts by weight of MMB were used in place of the ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, and 0.5 parts by weight of DBA was used as the amine compound. The object to be cleaned was treated in the same manner except that 0.5 parts by weight of DEHA was used and the amount of water was changed to 69 parts by weight. The obtained results are shown in Table 2.
[実施例13]
実施例13においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、PS20重量部及びMMB20重量部を使用し、さらに、水の量を60重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 13]
In Example 13, 20 parts by weight of PS and 20 parts by weight of MMB were used in place of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, and the amount of water was further changed to 60 parts. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 2.
実施例13においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、PS20重量部及びMMB20重量部を使用し、さらに、水の量を60重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 13]
In Example 13, 20 parts by weight of PS and 20 parts by weight of MMB were used in place of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, and the amount of water was further changed to 60 parts. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 2.
[実施例14]
実施例14においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、ETBを30重量部使用し、さらにアミン化合物としてTMHMDAを1重量部使用し、さらには、水の量を69重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 14]
In Example 14, 30 parts by weight of ETB was used in place of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, and 1 part by weight of TMHMDA was used as an amine compound. Further, the object to be cleaned was treated in the same manner except that the amount of water was changed to 69 parts by weight. The obtained results are shown in Table 2.
実施例14においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、ETBを30重量部使用し、さらにアミン化合物としてTMHMDAを1重量部使用し、さらには、水の量を69重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 14]
In Example 14, 30 parts by weight of ETB was used in place of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, and 1 part by weight of TMHMDA was used as an amine compound. Further, the object to be cleaned was treated in the same manner except that the amount of water was changed to 69 parts by weight. The obtained results are shown in Table 2.
[実施例15]
実施例15においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、DPMを30重量部使用し、さらにアミン化合物としてDBAを0.5重量部と、DEHAを0.5重量部とを使用し、さらには、水の量を69重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 15]
In Example 15, 30 parts by weight of DPM was used instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, and 0.5 weight of DBA was added as an amine compound. And 0.5 parts by weight of DEHA were used, and further, the object to be cleaned was treated in the same manner except that the amount of water was changed to 69 parts by weight. The obtained results are shown in Table 2.
実施例15においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、DPMを30重量部使用し、さらにアミン化合物としてDBAを0.5重量部と、DEHAを0.5重量部とを使用し、さらには、水の量を69重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表2に示す。 [Example 15]
In Example 15, 30 parts by weight of DPM was used instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, and 0.5 weight of DBA was added as an amine compound. And 0.5 parts by weight of DEHA were used, and further, the object to be cleaned was treated in the same manner except that the amount of water was changed to 69 parts by weight. The obtained results are shown in Table 2.
[実施例16]
実施例16においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、PS30重量部及びDPM5重量部を使用し、さらに、水の量を65重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表3に示す。 [Example 16]
In Example 16, 30 parts by weight of PS and 5 parts by weight of DPM were used in place of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, and the amount of water was 65%. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 3.
実施例16においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、PS30重量部及びDPM5重量部を使用し、さらに、水の量を65重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表3に示す。 [Example 16]
In Example 16, 30 parts by weight of PS and 5 parts by weight of DPM were used in place of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, and the amount of water was 65%. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 3.
[実施例17]
実施例17においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、PS10重量部及びDMTG30重量部を使用し、さらに、水の量を60重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表3に示す。 [Example 17]
In Example 17, 10 parts by weight of PS and 30 parts by weight of DMTG were used in place of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, and the amount of water was further changed to 60 parts. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 3.
実施例17においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、PS10重量部及びDMTG30重量部を使用し、さらに、水の量を60重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表3に示す。 [Example 17]
In Example 17, 10 parts by weight of PS and 30 parts by weight of DMTG were used in place of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, and the amount of water was further changed to 60 parts. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 3.
[実施例18]
実施例18においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、ETB10重量部及びMMB20重量部を使用した以外は、同様にして被洗浄物の処理を行った。得られた結果を表3に示す。 [Example 18]
In Example 18, it was cleaned in the same manner except that 10 parts by weight of ETB and 20 parts by weight of MMB were used instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1. The product was processed. The obtained results are shown in Table 3.
実施例18においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、ETB10重量部及びMMB20重量部を使用した以外は、同様にして被洗浄物の処理を行った。得られた結果を表3に示す。 [Example 18]
In Example 18, it was cleaned in the same manner except that 10 parts by weight of ETB and 20 parts by weight of MMB were used instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1. The product was processed. The obtained results are shown in Table 3.
[実施例19]
実施例19においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、ETB10重量部及びDPM15重量部を使用し、さらに、水の量を75重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表3に示す。 [Example 19]
In Example 19, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 10 parts by weight of ETB and 15 parts by weight of DPM were used, and the amount of water was 75%. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 3.
実施例19においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、ETB10重量部及びDPM15重量部を使用し、さらに、水の量を75重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表3に示す。 [Example 19]
In Example 19, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 10 parts by weight of ETB and 15 parts by weight of DPM were used, and the amount of water was 75%. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 3.
[実施例20]
実施例20においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、MMB25重量部及びDPM15重量部を使用し、さらに、水の量を60重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表3に示す。 [Example 20]
In Example 20, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 25 parts by weight of MMB and 15 parts by weight of DPM were used. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 3.
実施例20においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、MMB25重量部及びDPM15重量部を使用し、さらに、水の量を60重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表3に示す。 [Example 20]
In Example 20, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 25 parts by weight of MMB and 15 parts by weight of DPM were used. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 3.
[実施例21]
実施例21においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、MMB15重量部及びDMTG20重量部を使用し、さらにアミン化合物としてTMHMDAを1重量部使用し、さらには、水の量を64重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表3に示す。 [Example 21]
In Example 21, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, 15 parts by weight of MMB and 20 parts by weight of DMTG were used, and TMHMDA was added as an amine compound. The objects to be cleaned were treated in the same manner except that parts by weight were used and the amount of water was changed to 64 parts by weight. The obtained results are shown in Table 3.
実施例21においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、MMB15重量部及びDMTG20重量部を使用し、さらにアミン化合物としてTMHMDAを1重量部使用し、さらには、水の量を64重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表3に示す。 [Example 21]
In Example 21, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, 15 parts by weight of MMB and 20 parts by weight of DMTG were used, and TMHMDA was added as an amine compound. The objects to be cleaned were treated in the same manner except that parts by weight were used and the amount of water was changed to 64 parts by weight. The obtained results are shown in Table 3.
[実施例22]
実施例22においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、PS15重量部及びMMB15重量部を使用し、さらにアミン化合物としてTMDAPを1重量部使用し、さらには、水の量を69重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表3に示す。 [Example 22]
In Example 22, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, 15 parts by weight of PS and 15 parts by weight of MMB were used, and TMDAP was added as an amine compound. The objects to be cleaned were treated in the same manner except that parts by weight were used and the amount of water was changed to 69 parts by weight. The obtained results are shown in Table 3.
実施例22においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、PS15重量部及びMMB15重量部を使用し、さらにアミン化合物としてTMDAPを1重量部使用し、さらには、水の量を69重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表3に示す。 [Example 22]
In Example 22, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, 15 parts by weight of PS and 15 parts by weight of MMB were used, and TMDAP was added as an amine compound. The objects to be cleaned were treated in the same manner except that parts by weight were used and the amount of water was changed to 69 parts by weight. The obtained results are shown in Table 3.
[実施例23]
実施例23においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、PS15重量部及び3MB15重量部を使用し、さらに、水の量を70重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表3に示す。 [Example 23]
In Example 23, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 15 parts by weight of PS and 15 parts by weight of 3MB were used. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 3.
実施例23においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、PS15重量部及び3MB15重量部を使用し、さらに、水の量を70重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表3に示す。 [Example 23]
In Example 23, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 15 parts by weight of PS and 15 parts by weight of 3MB were used. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 3.
[実施例24]
実施例24においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、PS20重量部及びIPDM20重量部を使用し、さらに、水の量を60重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表3に示す。 [Example 24]
In Example 24, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 20 parts by weight of PS and 20 parts by weight of IPDM were used, and the amount of water was changed to 60 parts. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 3.
実施例24においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)30重量部の代わりに、PS20重量部及びIPDM20重量部を使用し、さらに、水の量を60重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表3に示す。 [Example 24]
In Example 24, instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 20 parts by weight of PS and 20 parts by weight of IPDM were used, and the amount of water was changed to 60 parts. The object to be cleaned was treated in the same manner except that the parts were changed to parts by weight. The obtained results are shown in Table 3.
[比較例1]
比較例1においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)を30重量部使用する代わりに、PSの使用量を80重量部に変え、水の使用量を20重量部に変えた以外は同様にして被洗浄物の処理を行った。得られた結果を表4に示す。 [Comparative Example 1]
In Comparative Example 1, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, the amount of PS used was changed to 80 parts by weight, and the amount of water used was changed. The object to be cleaned was treated in the same manner except that the amount was changed to 20 parts by weight. Table 4 shows the obtained results.
比較例1においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)を30重量部使用する代わりに、PSの使用量を80重量部に変え、水の使用量を20重量部に変えた以外は同様にして被洗浄物の処理を行った。得られた結果を表4に示す。 [Comparative Example 1]
In Comparative Example 1, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, the amount of PS used was changed to 80 parts by weight, and the amount of water used was changed. The object to be cleaned was treated in the same manner except that the amount was changed to 20 parts by weight. Table 4 shows the obtained results.
[比較例2]
比較例2においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)を30重量部使用する代わりに、PSを15重量部、BFGを3重量部使用し、さらには、水の使用量を82重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表4に示す。 [Comparative Example 2]
In Comparative Example 2, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 15 parts by weight of PS and 3 parts by weight of BFG were used. The object to be cleaned was treated in the same manner except that the amount of water used was changed to 82 parts by weight. Table 4 shows the obtained results.
比較例2においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)を30重量部使用する代わりに、PSを15重量部、BFGを3重量部使用し、さらには、水の使用量を82重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表4に示す。 [Comparative Example 2]
In Comparative Example 2, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 15 parts by weight of PS and 3 parts by weight of BFG were used. The object to be cleaned was treated in the same manner except that the amount of water used was changed to 82 parts by weight. Table 4 shows the obtained results.
[比較例3]
比較例3においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)を30重量部使用する代わりに、BFGを40重量部使用し、水の量を60重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表4に示す。 [Comparative Example 3]
In Comparative Example 3, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, 40 parts by weight of BFG was used and the amount of water was 60 parts by weight. The object to be cleaned was treated in the same manner except that it was changed. Table 4 shows the obtained results.
比較例3においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)を30重量部使用する代わりに、BFGを40重量部使用し、水の量を60重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表4に示す。 [Comparative Example 3]
In Comparative Example 3, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1, 40 parts by weight of BFG was used and the amount of water was 60 parts by weight. The object to be cleaned was treated in the same manner except that it was changed. Table 4 shows the obtained results.
[比較例4]
比較例4においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)を30重量部使用する代わりにDMFDGを25重量部使用し、水の量を75重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表4に示す。 [Comparative Example 4]
In Comparative Example 4, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 25 parts by weight of DMFDG was used and the amount of water was changed to 75 parts by weight. Except for the above, the object to be cleaned was treated in the same manner. Table 4 shows the obtained results.
比較例4においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)を30重量部使用する代わりにDMFDGを25重量部使用し、水の量を75重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表4に示す。 [Comparative Example 4]
In Comparative Example 4, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 25 parts by weight of DMFDG was used and the amount of water was changed to 75 parts by weight. Except for the above, the object to be cleaned was treated in the same manner. Table 4 shows the obtained results.
[比較例5]
比較例5においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)を30重量部使用する代わりにDMFDGを20重量部とMMBを10重量部とを使用し、アミン化合物としてMEMを1重量部使用し、水の量を69重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表4に示す。 [Comparative Example 5]
In Comparative Example 5, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 20 parts by weight of DMFDG and 10 parts by weight of MMB were used. The object to be cleaned was treated in the same manner except that 1 part by weight of MEM was used as the compound and the amount of water was changed to 69 parts by weight. Table 4 shows the obtained results.
比較例5においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)を30重量部使用する代わりにDMFDGを20重量部とMMBを10重量部とを使用し、アミン化合物としてMEMを1重量部使用し、水の量を69重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表4に示す。 [Comparative Example 5]
In Comparative Example 5, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2) of Example 1, 20 parts by weight of DMFDG and 10 parts by weight of MMB were used. The object to be cleaned was treated in the same manner except that 1 part by weight of MEM was used as the compound and the amount of water was changed to 69 parts by weight. Table 4 shows the obtained results.
[比較例6]
比較例6においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)を30重量部使用する代わりに、DEDGを30重量部使用した以外は同様にして被洗浄物の処理を行った。得られた結果を表4に示す。 [Comparative Example 6]
In Comparative Example 6, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in the step (2) of Example 1, 30 parts by weight of DEDG was used. Processed. Table 4 shows the obtained results.
比較例6においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)を30重量部使用する代わりに、DEDGを30重量部使用した以外は同様にして被洗浄物の処理を行った。得られた結果を表4に示す。 [Comparative Example 6]
In Comparative Example 6, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in the step (2) of Example 1, 30 parts by weight of DEDG was used. Processed. Table 4 shows the obtained results.
[比較例7]
比較例7においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)を30重量部使用する代わりにiBGを30重量部使用した以外は、同様にして被洗浄物の処理を行った。得られた結果を表4に示す。 [Comparative Example 7]
In Comparative Example 7, the object to be cleaned was similarly prepared except that 30 parts by weight of iBG was used instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. Processed. Table 4 shows the obtained results.
比較例7においては、実施例1の工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)を30重量部使用する代わりにiBGを30重量部使用した以外は、同様にして被洗浄物の処理を行った。得られた結果を表4に示す。 [Comparative Example 7]
In Comparative Example 7, the object to be cleaned was similarly prepared except that 30 parts by weight of iBG was used instead of 30 parts by weight of ethylene glycol monopropyl ether (PS) used in Step (2) of Example 1. Processed. Table 4 shows the obtained results.
[比較例8]
実施例1においては、工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)を30重量部使用する代わりに、エタノールを60重量部使用し、水の量を40重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表4に示す。 [Comparative Example 8]
In Example 1, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2), 60 parts by weight of ethanol was used and the amount of water was changed to 40 parts by weight. In the same manner, the object to be cleaned was processed. Table 4 shows the obtained results.
実施例1においては、工程(2)で使用したエチレングリコールモノプロピルエーテル(PS)を30重量部使用する代わりに、エタノールを60重量部使用し、水の量を40重量部に変えた以外は、同様にして被洗浄物の処理を行った。得られた結果を表4に示す。 [Comparative Example 8]
In Example 1, instead of using 30 parts by weight of ethylene glycol monopropyl ether (PS) used in step (2), 60 parts by weight of ethanol was used and the amount of water was changed to 40 parts by weight. In the same manner, the object to be cleaned was processed. Table 4 shows the obtained results.
5.物性評価(2)
(1)光透過率の測定方法
実施例1~24及び比較例1~8のリンス剤の光透過率を以下の方法で測定した。まず、リンス剤200gを、容量300mlのビーカーに収容した。次いで、所定の温度(20、40又は80℃)に維持し、マグネチックスターラーを用いてビーカー内の撹拌子回転させ、リンス剤を撹拌した。撹拌後のリンス剤を直ちに分光光度計のセルに収容した後、その光透過率を、以下の条件で測定した。測定結果を表5に示す。表5の結果から実施例1~24のリンス剤は、室温から80℃の温度範囲における光透過率が90%以上であることが確認された。
分光光度計:紫外可視分光光度計V-530(日本分光株式会社製)
測定波長 :可視光(660nm) 5. Physical property evaluation (2)
(1) Measuring method of light transmittance The light transmittance of the rinse agents of Examples 1 to 24 and Comparative Examples 1 to 8 was measured by the following method. First, 200 g of the rinse agent was accommodated in a 300 ml capacity beaker. Subsequently, it maintained at predetermined | prescribed temperature (20, 40, or 80 degreeC), the stirrer in a beaker was rotated using the magnetic stirrer, and the rinse agent was stirred. The rinse agent after stirring was immediately accommodated in a spectrophotometer cell, and the light transmittance was measured under the following conditions. Table 5 shows the measurement results. From the results in Table 5, it was confirmed that the rinse agents of Examples 1 to 24 had a light transmittance of 90% or more in the temperature range from room temperature to 80 ° C.
Spectrophotometer: UV-visible spectrophotometer V-530 (manufactured by JASCO Corporation)
Measurement wavelength: Visible light (660 nm)
(1)光透過率の測定方法
実施例1~24及び比較例1~8のリンス剤の光透過率を以下の方法で測定した。まず、リンス剤200gを、容量300mlのビーカーに収容した。次いで、所定の温度(20、40又は80℃)に維持し、マグネチックスターラーを用いてビーカー内の撹拌子回転させ、リンス剤を撹拌した。撹拌後のリンス剤を直ちに分光光度計のセルに収容した後、その光透過率を、以下の条件で測定した。測定結果を表5に示す。表5の結果から実施例1~24のリンス剤は、室温から80℃の温度範囲における光透過率が90%以上であることが確認された。
分光光度計:紫外可視分光光度計V-530(日本分光株式会社製)
測定波長 :可視光(660nm) 5. Physical property evaluation (2)
(1) Measuring method of light transmittance The light transmittance of the rinse agents of Examples 1 to 24 and Comparative Examples 1 to 8 was measured by the following method. First, 200 g of the rinse agent was accommodated in a 300 ml capacity beaker. Subsequently, it maintained at predetermined | prescribed temperature (20, 40, or 80 degreeC), the stirrer in a beaker was rotated using the magnetic stirrer, and the rinse agent was stirred. The rinse agent after stirring was immediately accommodated in a spectrophotometer cell, and the light transmittance was measured under the following conditions. Table 5 shows the measurement results. From the results in Table 5, it was confirmed that the rinse agents of Examples 1 to 24 had a light transmittance of 90% or more in the temperature range from room temperature to 80 ° C.
Spectrophotometer: UV-visible spectrophotometer V-530 (manufactured by JASCO Corporation)
Measurement wavelength: Visible light (660 nm)
以上説明したように、本発明によれば、水溶性グリコールエーテル化合物の配合量と、水の配合量との割合を所定範囲内の値とするとともに、ベンジルアルコールの溶解度を所定値以上とすることによって、環境安全性(例えば、作業環境安全性)を著しく高めることができた。また、本発明によれば、従来の水溶性グリコールエーテル化合物だけでなく、ベンジルアルコール、疎水性グリコールエーテル化合物等の疎水性溶剤による被洗浄物に対するリンス性及び乾燥性を向上させることができるようになった。
As described above, according to the present invention, the ratio between the blending amount of the water-soluble glycol ether compound and the blending amount of water is set to a value within a predetermined range, and the solubility of benzyl alcohol is set to a predetermined value or more. As a result, environmental safety (for example, work environment safety) can be remarkably improved. Further, according to the present invention, not only the conventional water-soluble glycol ether compound but also the rinsing property and the drying property with respect to the object to be cleaned by a hydrophobic solvent such as benzyl alcohol and hydrophobic glycol ether compound can be improved. became.
また、本発明によれば、洗浄後のリンス性も優れているとともに、洗浄性及びフラックスの再付着防止性についても向上していることから、リンス剤としても、洗浄剤としても、両用使用が可能となった。
In addition, according to the present invention, the rinsing property after cleaning is excellent, and the cleaning property and the anti-reattachment property of the flux are also improved. Therefore, both the rinse agent and the cleaning agent can be used for both purposes. It has become possible.
さらに、本発明は、所定リンス剤を用いた使用方法であることから、所定洗浄剤を用いて被洗浄物を効率的に洗浄した後、環境安全性(例えば、作業環境安全性)及び再生性に優れるとともに、洗浄剤の残留が少ない被洗浄物を効率的に得ることができるようになった。
よって、本発明のリンス剤及びそれを用いた使用方法によれば、産業上、被洗浄物を安全かつ効率的に、しかも安価に洗浄したり、リンスしたりすることが大いに期待される。 Furthermore, since the present invention is a method of using a predetermined rinse agent, after the object to be cleaned is efficiently cleaned using the predetermined cleaning agent, environmental safety (for example, work environment safety) and reproducibility In addition, it is possible to efficiently obtain an object to be cleaned with little residual cleaning agent.
Therefore, according to the rinsing agent of the present invention and the method of using the same, it is highly expected that the object to be cleaned is cleaned and rinsed safely and efficiently at a low cost.
よって、本発明のリンス剤及びそれを用いた使用方法によれば、産業上、被洗浄物を安全かつ効率的に、しかも安価に洗浄したり、リンスしたりすることが大いに期待される。 Furthermore, since the present invention is a method of using a predetermined rinse agent, after the object to be cleaned is efficiently cleaned using the predetermined cleaning agent, environmental safety (for example, work environment safety) and reproducibility In addition, it is possible to efficiently obtain an object to be cleaned with little residual cleaning agent.
Therefore, according to the rinsing agent of the present invention and the method of using the same, it is highly expected that the object to be cleaned is cleaned and rinsed safely and efficiently at a low cost.
以上のように本発明の実施形態及び実施例について説明を行なったが、上述の各実施形態及び各実施例の構成を適宜組み合わせることも当初から予定している。
Although the embodiments and examples of the present invention have been described as described above, it is also planned from the beginning to appropriately combine the configurations of the above-described embodiments and examples.
今回開示された実施の形態及び実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態及び実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。
It should be considered that the embodiments and examples disclosed this time are examples in all respects and are not restrictive. The scope of the present invention is shown not by the above-described embodiments and examples but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
Claims (8)
- 少なくとも水溶性グリコールエーテル化合物及び水を含み、ベンジルアルコールの溶解度が10vol%以上であるリンス剤であって、
前記水溶性グリコールエーテル化合物100重量部に対して、前記水の配合量が50~1000重量部である、リンス剤。 A rinse agent comprising at least a water-soluble glycol ether compound and water, and having a solubility of benzyl alcohol of 10 vol% or more,
A rinse agent in which the water content is 50 to 1000 parts by weight with respect to 100 parts by weight of the water-soluble glycol ether compound. - 室温から80℃の温度範囲における光透過率が90%以上である、請求項1に記載のリンス剤。 The rinse agent according to claim 1, wherein the light transmittance in a temperature range from room temperature to 80 ° C is 90% or more.
- 引火点が50℃以上である、請求項1又は2に記載のリンス剤。 The rinse agent of Claim 1 or 2 whose flash point is 50 degreeC or more.
- 感光性ソルダーレジスト硬化体により表面が保護されたプリント基板の表面に対する水の初期の接触角をθ1とし、
前記プリント基板を30℃のリンス剤に10分間浸漬した後、100℃で5分の条件で乾燥させた前記プリント基板の表面に対する水の接触角をθ2としたときに、
接触角θ2とθ1との差の絶対値|θ2-θ1|が3°以下である、請求項1~3のいずれか一項に記載のリンス剤。 The initial contact angle of water with respect to the surface of the printed circuit board whose surface is protected by a cured photosensitive solder resist is θ 1 ,
When the contact angle of water with respect to the surface of the printed circuit board, which was dried at 100 ° C. for 5 minutes, was immersed in a rinse agent at 30 ° C. for 10 minutes, and θ 2 ,
The rinse agent according to any one of claims 1 to 3, wherein an absolute value | θ 2 -θ 1 | of a difference between the contact angles θ 2 and θ 1 is 3 ° or less. - 前記水溶性グリコールエーテル化合物は、その沸点が250℃以下である、請求項1~4のいずれか一項に記載のリンス剤。 The rinsing agent according to any one of claims 1 to 4, wherein the water-soluble glycol ether compound has a boiling point of 250 ° C or lower.
- 前記水溶性グリコールエーテル化合物は、エチレングリコールモノプロピルエーテル、エチレングリコールモノ-tert-ブチルエーテル、3-メトキシ-3-メチルブタノール、3-メトキシブタノール、エチレングリコールモノイソプロピルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールエチルメチルエーテル、トリエチレングリコールジメチルエーテル、及びジエチレングリコールジメチルエーテルからなる群より選択される少なくとも1種の化合物である、請求項1~5のいずれか一項に記載のリンス剤。 The water-soluble glycol ether compound includes ethylene glycol monopropyl ether, ethylene glycol mono-tert-butyl ether, 3-methoxy-3-methylbutanol, 3-methoxybutanol, ethylene glycol monoisopropyl ether, diethylene glycol isopropyl methyl ether, dipropylene glycol The rinsing agent according to any one of claims 1 to 5, which is at least one compound selected from the group consisting of monomethyl ether, diethylene glycol ethyl methyl ether, triethylene glycol dimethyl ether, and diethylene glycol dimethyl ether.
- 沸点が250℃以下であるアミン化合物を更に含み、
当該アミン化合物の配合量は、前記水溶性グリコールエーテル化合物100重量部に対して、0.1~10重量部である、請求項1~6のいずれか一項に記載のリンス剤。 An amine compound having a boiling point of 250 ° C. or lower,
The rinse agent according to any one of claims 1 to 6, wherein the compounding amount of the amine compound is 0.1 to 10 parts by weight with respect to 100 parts by weight of the water-soluble glycol ether compound. - 下記工程(1)~(2)を含む、リンス剤の使用方法。
(1)ベンジルアルコール及び疎水性グリコールエーテル化合物、あるいはいずれか一方を含む洗浄剤を用いて、被洗浄物に付着したフラックスを洗浄する工程
(2)前記工程(1)で洗浄された前記被洗浄物を、少なくとも水溶性グリコールエーテル化合物及び水を含み、前記ベンジルアルコールの溶解度が10vol%以上であるリンス剤であって、前記水溶性グリコールエーテル化合物100重量部に対して、前記水の配合量が50~1000重量部であるリンス剤を用いてリンスする工程 A method of using a rinse agent comprising the following steps (1) to (2).
(1) A step of cleaning the flux adhering to an object to be cleaned using a cleaning agent containing benzyl alcohol and a hydrophobic glycol ether compound or one of them (2) The target to be cleaned cleaned in the step (1) A rinsing agent containing at least a water-soluble glycol ether compound and water, wherein the solubility of the benzyl alcohol is 10 vol% or more, and the amount of the water is 100 parts by weight of the water-soluble glycol ether compound. Rinsing with a rinse agent that is 50 to 1000 parts by weight
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019540107A JP7320839B2 (en) | 2018-02-26 | 2019-01-31 | How to use rinse agent and rinse agent |
CN201980002873.7A CN110741738B (en) | 2018-02-26 | 2019-01-31 | Rinse agent and method of using rinse agent |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-032126 | 2018-02-26 | ||
JP2018032126 | 2018-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019163465A1 true WO2019163465A1 (en) | 2019-08-29 |
Family
ID=67688322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/003388 WO2019163465A1 (en) | 2018-02-26 | 2019-01-31 | Rinse agent and method for using rinse agent |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7320839B2 (en) |
CN (1) | CN110741738B (en) |
TW (1) | TWI756511B (en) |
WO (1) | WO2019163465A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021038378A (en) * | 2019-09-02 | 2021-03-11 | 荒川化学工業株式会社 | Cleaning agent, method for recycling cleaning agent, and cleaning method |
JP7144892B1 (en) | 2022-01-20 | 2022-09-30 | 義彦 星原 | cleaning equipment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07197095A (en) * | 1993-12-29 | 1995-08-01 | Olympus Optical Co Ltd | Detergent composition for rosin flux |
JPH10219155A (en) * | 1997-02-10 | 1998-08-18 | Olympus Optical Co Ltd | Composition and method for peeling coating film |
JPH10339958A (en) * | 1997-06-05 | 1998-12-22 | Toray Ind Inc | Rinse solution for photosensitive polyimide |
JP2002156765A (en) * | 2000-08-01 | 2002-05-31 | Nagase Chemtex Corp | Composition of rinsing and peeling liquid |
JP2010043248A (en) * | 2008-07-17 | 2010-02-25 | Kaken Tec Kk | Quick-drying liquid composition, cleaning method using the same and cleaning apparatus |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0959698A (en) * | 1995-08-23 | 1997-03-04 | Asahi Chem Ind Co Ltd | Detergent composition for metal mask |
US7435711B2 (en) * | 2003-08-27 | 2008-10-14 | Kaken Tech Co., Ltd. | Cleaning agent for removing solder flux and method for cleaning solder flux |
JP6487630B2 (en) * | 2014-05-20 | 2019-03-20 | 化研テック株式会社 | Stock solution for cleaning composition, cleaning composition and cleaning method |
JP6458964B2 (en) * | 2016-09-27 | 2019-01-30 | 荒川化学工業株式会社 | Azeotropic cleaning agent and its regeneration method, cleaning method, and cleaning agent kit |
-
2019
- 2019-01-31 WO PCT/JP2019/003388 patent/WO2019163465A1/en active Application Filing
- 2019-01-31 JP JP2019540107A patent/JP7320839B2/en active Active
- 2019-01-31 CN CN201980002873.7A patent/CN110741738B/en active Active
- 2019-02-01 TW TW108104125A patent/TWI756511B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07197095A (en) * | 1993-12-29 | 1995-08-01 | Olympus Optical Co Ltd | Detergent composition for rosin flux |
JPH10219155A (en) * | 1997-02-10 | 1998-08-18 | Olympus Optical Co Ltd | Composition and method for peeling coating film |
JPH10339958A (en) * | 1997-06-05 | 1998-12-22 | Toray Ind Inc | Rinse solution for photosensitive polyimide |
JP2002156765A (en) * | 2000-08-01 | 2002-05-31 | Nagase Chemtex Corp | Composition of rinsing and peeling liquid |
JP2010043248A (en) * | 2008-07-17 | 2010-02-25 | Kaken Tec Kk | Quick-drying liquid composition, cleaning method using the same and cleaning apparatus |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021038378A (en) * | 2019-09-02 | 2021-03-11 | 荒川化学工業株式会社 | Cleaning agent, method for recycling cleaning agent, and cleaning method |
JP7468226B2 (en) | 2019-09-02 | 2024-04-16 | 荒川化学工業株式会社 | Detergent, method for regenerating detergent, and cleaning method |
JP7144892B1 (en) | 2022-01-20 | 2022-09-30 | 義彦 星原 | cleaning equipment |
JP2023106225A (en) * | 2022-01-20 | 2023-08-01 | 義彦 星原 | Washing apparatus |
Also Published As
Publication number | Publication date |
---|---|
TW201940684A (en) | 2019-10-16 |
CN110741738A (en) | 2020-01-31 |
JP7320839B2 (en) | 2023-08-04 |
CN110741738B (en) | 2023-08-29 |
TWI756511B (en) | 2022-03-01 |
JPWO2019163465A1 (en) | 2020-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5428859B2 (en) | Cleaning composition for removing lead-free solder flux and method for removing lead-free solder flux | |
US7776808B2 (en) | Cleaning agent for removing solder flux and method for cleaning solder flux | |
KR102176804B1 (en) | Screen plate cleaner composition | |
KR101729612B1 (en) | Cleaning agent for removal of, removal method for, and cleaning method for water-soluble, lead-free solder flux | |
WO2019163465A1 (en) | Rinse agent and method for using rinse agent | |
KR101847208B1 (en) | Detergent composition for flat panel display device | |
CN108774597B (en) | Circuit board acid cleaning agent and preparation method thereof | |
KR20120005374A (en) | Cleaning composition for removing polyimide | |
TW201900862A (en) | Lead-free solder flux cleaning agent composition, lead-free solder flux cleaning method | |
KR101645036B1 (en) | Cleaning solution composition for dicing a wafer | |
KR20080111268A (en) | Cleaning solution composition and cleaning method using the same | |
KR101128865B1 (en) | Formulation of cleaner for removing residual flux after reflow and cleaning method by using it | |
JP7372662B2 (en) | Cleaning compositions and stock solutions for cleaning compositions | |
CN116033975A (en) | Cleaning agent composition for soldering flux | |
CN108570683B (en) | Steel mesh water-based cleaning agent and preparation method thereof | |
JP7372661B2 (en) | Cleaning compositions and stock solutions for cleaning compositions | |
KR101696390B1 (en) | A cleaning composition for TFT-LCD or semiconductor displays | |
KR20110123971A (en) | Cleaning composition for removing polyimide | |
KR20110121122A (en) | A detergent composition for a glass substrate of flat panel display device | |
JP2024115058A (en) | Detergent composition and concentrate for detergent composition | |
KR20170001122A (en) | Cleaning solution composition for magazine | |
CN117683591A (en) | Environment-friendly aqueous cleaning agent and preparation method thereof | |
CN118638586A (en) | Stripper composition and cleaning method | |
KR20090086695A (en) | Cleaning solution composition and process of cleaning panel using the same | |
JPH06212197A (en) | Flux detergent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019540107 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19757441 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19757441 Country of ref document: EP Kind code of ref document: A1 |