WO2019163166A1 - Genetically modified non-human animal, and method for screening for therapeutic agent or prophylactic agent for spinocerebellar degeneration - Google Patents

Genetically modified non-human animal, and method for screening for therapeutic agent or prophylactic agent for spinocerebellar degeneration Download PDF

Info

Publication number
WO2019163166A1
WO2019163166A1 PCT/JP2018/031919 JP2018031919W WO2019163166A1 WO 2019163166 A1 WO2019163166 A1 WO 2019163166A1 JP 2018031919 W JP2018031919 W JP 2018031919W WO 2019163166 A1 WO2019163166 A1 WO 2019163166A1
Authority
WO
WIPO (PCT)
Prior art keywords
genetically modified
mouse
mice
modified non
human animal
Prior art date
Application number
PCT/JP2018/031919
Other languages
French (fr)
Japanese (ja)
Inventor
秀史 川上
豊之 森野
由喜子 松田
Original Assignee
国立大学法人広島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人広島大学 filed Critical 国立大学法人広島大学
Priority to JP2020502002A priority Critical patent/JPWO2019163166A1/en
Publication of WO2019163166A1 publication Critical patent/WO2019163166A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the genetically modified mice show signs of neurodegeneration, particularly Purkinje cell degeneration.
  • the density of Purkinje cells is significantly smaller than that of the wild type. Purkinje cell density can be evaluated by staining cerebellar sections collected from wild-type and genetically modified mice with hematoxylin and eosin (H & E) according to a known method, and counting Purkinje cells present in the visual field under the microscope.
  • H & E hematoxylin and eosin

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Genetics & Genomics (AREA)
  • General Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Cell Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A genetically modified non-human animal is an animal in which, in a gene encoding T-type calcium channel Cav3.1 in one or both of the homologous chromosomes thereof, a triplet encoding arginine that is the seventh amino acid as counted from the N-terminal of an amino acid sequence represented by Arg-Ile-Met-Arg-Val-Leu-Arg-Ile-Ala-Arg as observed from the N-terminal to the C-terminal in S4 domain in repeat IV in the Cav3.1 is substituted by a triplet encoding an amino acid other than arginine.

Description

遺伝子改変非ヒト動物及び脊髄小脳変性症の治療薬又は予防薬のスクリーニング方法Screening method for therapeutic or prophylactic agent for genetically modified non-human animals and spinocerebellar degeneration
 本発明は、遺伝子改変非ヒト動物及び脊髄小脳変性症の治療薬又は予防薬のスクリーニング方法に関する。 The present invention relates to a screening method for a therapeutic or prophylactic agent for genetically modified non-human animals and spinocerebellar degeneration.
 脊髄小脳変性症(spinocerebellar degeneration、SCD)は、運動失調症状をきたす神経変性疾患である。SCDは、根本的治療法が確立されていない難病である。SCDには、遺伝的な多様性があることが知られている。これまでに常染色体優性遺伝性である種々の病型で原因遺伝子が同定されている。 Spinocerebellar degeneration (SCD) is a neurodegenerative disease that causes ataxia. SCD is an intractable disease for which no fundamental treatment has been established. SCD is known to have genetic diversity. To date, causative genes have been identified in various disease types that are autosomal dominant.
 例えば、SCDの病型の1つである脊髄小脳失調症(spinocerebellar ataxia、SCA)1型の原因遺伝子として、ATXN1遺伝子が同定されている。SCA1型は、ATXN1遺伝子において異常伸長したCAG繰り返し配列によって発症する。非特許文献1には、30回の繰り返し配列及び82回の繰り返し配列を有するATXN1遺伝子を人為的に導入したトランスジェニックマウスが開示されている。当該トランスジェニックマウスは、運動失調症状及びプルキンエ細胞の変性を示した。 For example, the ATXN1 gene has been identified as a causal gene of spinocerebellar ataxia (SCA) type 1, which is one of the types of SCD. SCA1 type is caused by a CAG repeat sequence that is abnormally extended in the ATXN1 gene. Non-Patent Document 1 discloses a transgenic mouse into which an ATXN1 gene having 30 repeat sequences and 82 repeat sequences is artificially introduced. The transgenic mice showed ataxia symptoms and Purkinje cell degeneration.
 特許文献1には、マウス胚性幹細胞ウイルスプロモーターに連結された目的遺伝子を含むベクターを生殖系列に導入したトランスジェニックマウスが開示されている。当該トランスジェニックマウスでは、目的遺伝子が小脳プルキンエ細胞、脳幹及び嗅球に特異的に過剰発現する。特許文献1には、目的遺伝子としてSCA14型の原因遺伝子であるPKCG遺伝子をプルキンエ細胞に過剰発現させたことが記載されている。 Patent Document 1 discloses a transgenic mouse in which a vector containing a target gene linked to a mouse embryonic stem cell virus promoter is introduced into the germ line. In the transgenic mouse, the target gene is specifically overexpressed in cerebellar Purkinje cells, brain stem and olfactory bulb. Patent Document 1 describes that a PKCG gene, which is a causal gene of SCA14 type, was overexpressed in Purkinje cells as a target gene.
 上記のようにSCDの原因遺伝子の解明が進められているものの、優性遺伝性が推測される症例のうち約30%においては、原因遺伝子が不明で、依然として未解明な部分も多い。SCDに関してさらに詳細な病態の解明が求められている。 Although the elucidation of the causative gene of SCD has been promoted as described above, in about 30% of cases in which dominant inheritance is estimated, the causative gene is unknown and there are still many unexplained parts. There is a need for more detailed elucidation of the pathology of SCD.
 近年、非特許文献2に開示されたように、日本人の常染色体優性遺伝性SCAの大家系についての遺伝学的な解析によって、新たな原因遺伝子としてCACNA1G遺伝子が同定された。CACNA1G遺伝子は、低電位活動型電位依存性カルシウムチャネル(T-type voltage-dependent calcium channel)の1つであるCav3.1をコードする。Cav3.1は、図1に示すように、6個の膜貫通部位(S1~S6)を4回繰り返す構造(リピートI~IV)を有している。リピートI~IVそれぞれのS4に電位センサとしての役割がある。非特許文献2によれば、CACNA1G遺伝子の変異によって、リピートIVのS4に存在するアルギニン残基がヒスチジンに置換されている(R1716H)。非特許文献2で同定されたCACNA1G遺伝子の変異は、非特許文献3で報告されたように、別のSCAの家系でも見出されている。 Recently, as disclosed in Non-Patent Document 2, a CACNA1G gene was identified as a new causative gene by genetic analysis of a large family of Japanese autosomal dominant hereditary SCA. The CACNA1G gene encodes Cav3.1, which is one of low-potential action-type voltage-dependent calcium channels (T-type voltage-dependent calcium channel). As shown in FIG. 1, Cav3.1 has a structure (repeats I to IV) in which six transmembrane sites (S1 to S6) are repeated four times. S4 of each of repeats I to IV has a role as a potential sensor. According to Non-Patent Document 2, the arginine residue present in S4 of repeat IV is replaced with histidine due to mutation in the CACNA1G gene (R1716H). The mutation of the CACNA1G gene identified in Non-Patent Document 2 has also been found in other SCA families as reported in Non-Patent Document 3.
特開2011-254701号公報JP 2011-254701 A
 非特許文献1及び特許文献1に開示されたトランスジェニックマウスでは、人為的に導入した遺伝子が内在性の原因遺伝子とは別のゲノム上の位置に挿入され、過剰に発現する。このため、遺伝子が挿入されたゲノム上の位置及び過剰な発現量がマウスに影響を及ぼすおそれがある。さらに、トランスジェニックマウスでは、導入した遺伝子のコピー数もマウスに影響することがある。このため、遺伝子を導入しても、ヒトの病態がマウスで十分に再現されない懸念がある。 In the transgenic mice disclosed in Non-Patent Document 1 and Patent Document 1, an artificially introduced gene is inserted at a position on the genome different from the endogenous causative gene and is overexpressed. For this reason, the position on the genome where the gene is inserted and the excessive expression level may affect the mouse. Furthermore, in transgenic mice, the copy number of the introduced gene may also affect the mouse. For this reason, even if a gene is introduced, there is a concern that human pathology is not sufficiently reproduced in mice.
 また、CACNA1G遺伝子に上述の変異を有するモデル動物はこれまでに作製されていない。CACNA1G遺伝子の変異に起因するSCAの病態の解明及び治療法の確立のためにも、CACNA1G遺伝子に同様の変異を有するモデル動物が求められている。 In addition, no model animal having the above-described mutation in the CACNA1G gene has been prepared so far. A model animal having a similar mutation in the CACNA1G gene is also required in order to elucidate the pathological condition of SCA resulting from the CACNA1G gene mutation and to establish a therapeutic method.
 本発明は、上記実情に鑑みてなされたものであり、ヒトの病態をより忠実に再現できる遺伝子改変非ヒト動物及び該遺伝子改変非ヒト動物を用いた脊髄小脳変性症の治療薬又は予防薬のスクリーニング方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and includes a genetically modified non-human animal that can faithfully reproduce human pathology, and a therapeutic or preventive agent for spinocerebellar degeneration using the genetically modified non-human animal. An object is to provide a screening method.
 本発明の第1の観点に係る遺伝子改変非ヒト動物は、
 相同染色体の一方又は両方のT型カルシウムチャネルCav3.1をコードする遺伝子において、該Cav3.1におけるリピートIVのS4領域内のN末端からC末端に向かってArg-Ile-Met-Arg-Val-Leu-Arg-Ile-Ala-Argで示されるアミノ酸配列のN末端から7個目のアミノ酸であるアルギニンをコードするトリプレットがアルギニン以外のアミノ酸をコードするトリプレットに置換されている。
The genetically modified non-human animal according to the first aspect of the present invention is:
In the gene encoding one or both of the T-type calcium channels Cav3.1 of homologous chromosomes, Arg-Ile-Met-Arg-Val- A triplet encoding arginine, which is the seventh amino acid from the N-terminal of the amino acid sequence represented by Leu-Arg-Ile-Ala-Arg, is substituted with a triplet encoding an amino acid other than arginine.
 この場合、前記アルギニン以外のアミノ酸は、
 ヒスチジンである、
 こととしてもよい。
In this case, the amino acids other than arginine are
Histidine,
It is good as well.
 また、プルキンエ細胞の密度が、
 野生型と比較して有意に小さい、
 こととしてもよい。
In addition, the density of Purkinje cells
Significantly smaller than the wild type,
It is good as well.
 また、プルキンエ細胞の樹状突起スパインの密度が、
 野生型と比較して有意に小さい、
 こととしてもよい。
Also, the density of Purkinje cell dendritic spines is
Significantly smaller than the wild type,
It is good as well.
 また、上記本発明の第1の観点に係る遺伝子改変非ヒト動物は、
 マウスである、
 こととしてもよい。
In addition, the genetically modified non-human animal according to the first aspect of the present invention,
A mouse,
It is good as well.
 また、上記本発明の第1の観点に係る遺伝子改変非ヒト動物は、
 脊髄小脳変性症モデル動物である、
 こととしてもよい。
In addition, the genetically modified non-human animal according to the first aspect of the present invention,
A spinal cerebellar degeneration model animal,
It is good as well.
 本発明の第2の観点に係る脊髄小脳変性症の治療薬又は予防薬のスクリーニング方法は、
 上記本発明の第1の観点に係る遺伝子改変非ヒト動物を用いる。
The screening method for a therapeutic or prophylactic agent for spinocerebellar degeneration according to the second aspect of the present invention comprises:
The genetically modified non-human animal according to the first aspect of the present invention is used.
 本発明によれば、ヒトの病態をより忠実に再現できる。 According to the present invention, human pathology can be reproduced more faithfully.
Cav3.1の構造を模式的に示す図である。It is a figure which shows the structure of Cav3.1 typically. ノックインマウスのゲノムにおいて置換される塩基の位置を示す図である。It is a figure which shows the position of the base substituted in the genome of a knock-in mouse. 野生型及びノックインマウスにおけるCav3.1をコードする遺伝子の塩基配列の一部を示す図である。It is a figure which shows a part of base sequence of the gene which codes Cav3.1 in a wild type and knock-in mouse. 実施例2に係るロタロッドテストの結果を示す図である。(A)及び(B)は、それぞれ6か月齢及び14か月齢のマウスが回転台から落ちるまでの時間を示す図である。It is a figure which shows the result of the rotarod test which concerns on Example 2. FIG. (A) And (B) is a figure which shows time until a 6-month-old mouse | mouth and a 14-month-old mouse | mouth fall from a turntable, respectively. 実施例3に係るビームウォーキングテストの結果を示す図である。(A)及び(B)は、それぞれ6か月齢及び10か月齢のマウスがゴール地点に辿り着くまでの時間を示す図である。It is a figure which shows the result of the beam walking test which concerns on Example 3. FIG. (A) And (B) is a figure which shows time until a 6-month-old mouse | mouth and a 10-month-old mouse | mouth reach a goal point, respectively. 実施例4に係るフットプリントテストの結果を示す図である。(A)はマウスの足跡を示す図である。(B)はマウスの歩幅を示す図である。It is a figure which shows the result of the footprint test which concerns on Example 4. FIG. (A) is a figure which shows the footprint of a mouse | mouth. (B) is a figure which shows the stride of a mouse | mouth. 実施例5に係るオープンフィールドテストの結果を示す図である。It is a figure which shows the result of the open field test which concerns on Example 5. FIG. (A)は実施例6に係る小脳切片の画像を示す図である。(B)はプルキンエ細胞の密度を示す図である。(A) is a diagram showing an image of a cerebellar slice according to Example 6. FIG. (B) is a diagram showing the density of Purkinje cells. (A)は実施例7に係る樹状突起スパインの画像を示す図である。(B)は樹状突起スパインの密度を示す図である。(A) is a figure which shows the image of the dendrite spine which concerns on Example 7. FIG. (B) is a figure which shows the density of a dendritic spine.
 本発明に係る実施の形態について添付の図面を参照して説明する。なお、本発明は下記の実施の形態及び図面によって限定されるものではない。 Embodiments according to the present invention will be described with reference to the accompanying drawings. In addition, this invention is not limited by the following embodiment and drawing.
 (実施の形態1)
 本実施の形態に係る遺伝子改変非ヒト動物は、相同染色体の一方又は両方のT型カルシウムチャネルCav3.1をコードする遺伝子が改変されている。上記非ヒト動物は、ヒトを除く脊椎動物、好ましくは哺乳類、より好ましくはげっ歯類である。具体的には、非ヒト動物としては、マウス、ラット、モルモット、ハムスター、ウサギ、ニワトリ及びサル等が挙げられる。汎用性及び利便性を考慮すると、好適には非ヒト動物はマウスである。以下では、本実施の形態に係る非ヒト動物として、マウスを用いた場合について説明する。
(Embodiment 1)
In the genetically modified non-human animal according to the present embodiment, the gene encoding one or both of the homologous chromosomes of the T-type calcium channel Cav3.1 is modified. The non-human animal is a vertebrate other than a human, preferably a mammal, more preferably a rodent. Specifically, examples of non-human animals include mice, rats, guinea pigs, hamsters, rabbits, chickens and monkeys. Considering versatility and convenience, the non-human animal is preferably a mouse. Below, the case where a mouse | mouth is used as a non-human animal which concerns on this Embodiment is demonstrated.
 Cav3.1をコードするCACNA1G遺伝子は、ヒトでは17番染色体にある。Cav3.1は、中枢神経系、特には小脳及び視床で発現する。ヒトCav3.1は、例えば、米国国立生物工学情報センター(NCBI)のデータベースにおいてID:NP_938196.1として登録されている。当該IDで登録されたアミノ酸配列のN末端から1686番目のアミノ酸から1707番目のアミノ酸までがリピートIVのS4領域である。Cav3.1におけるリピートIVのS4領域内には、N末端からC末端に向かってArg-Ile-Met-Arg-Val-Leu-Arg-Ile-Ala-Arg(配列番号1)で示される4個のアルギニン残基を含むアミノ酸配列が存在する。配列番号1に示されるアミノ酸配列は、ヒト、ゴリラ、サル、ウサギ、マウス、ニワトリ及びカエル等の動物において広く保存されている。 CACNA1G gene encoding Cav3.1 is on chromosome 17 in humans. Cav3.1 is expressed in the central nervous system, particularly in the cerebellum and thalamus. Human Cav3.1 is registered as, for example, ID: NP_934196.1 in the database of the National Center for Biotechnology Information (NCBI). The S4 region of repeat IV is from the 1686th amino acid to the 1707th amino acid from the N-terminal of the amino acid sequence registered with the ID. Within the S4 region of repeat IV in Cav3.1, there are four elements represented by Arg-Ile-Met-Arg-Val-Leu-Arg-Ile-Ala-Arg (SEQ ID NO: 1) from the N-terminus toward the C-terminus There is an amino acid sequence containing the following arginine residues. The amino acid sequence shown in SEQ ID NO: 1 is widely conserved in animals such as humans, gorillas, monkeys, rabbits, mice, chickens and frogs.
 Cav3.1において、カルシウムチャネルを開くためには、リピートI~IVそれぞれのS4が同時に活性化される必要がある。アルギニンは側鎖に正電荷を有するアミノ酸であるため、配列番号1に示されるアミノ酸配列における4個のアルギニンは電圧感知及びS4の活性化に重要である。 In Cav3.1, in order to open calcium channels, S4 of each of repeats I to IV needs to be activated simultaneously. Since arginine is an amino acid having a positive charge in the side chain, the four arginines in the amino acid sequence shown in SEQ ID NO: 1 are important for voltage sensing and S4 activation.
 42型に分類されるSCA(SCA42型)は、進行性失調症及び小脳萎縮を呈する。SCA42型の患者では、配列番号1に示されるアミノ酸配列のN末端から7個目のアミノ酸であるアルギニンがヒスチジンに置換されている。アルギニンがヒスチジンに置換されることで、Cav3.1の電気生理学的な特性が変化する。この結果、SCA42型を発症すると考えられる。 SCA classified as type 42 (SCA type 42) exhibits progressive ataxia and cerebellar atrophy. In patients with SCA42 type, arginine, which is the seventh amino acid from the N-terminal of the amino acid sequence shown in SEQ ID NO: 1, is substituted with histidine. Replacing arginine with histidine changes the electrophysiological properties of Cav3.1. As a result, SCA42 type is considered to develop.
 CACNA1G遺伝子のマウスにおけるオーソログはCacna1g遺伝子である。Cacna1g遺伝子は、11番染色体にある。マウスにおいて、配列番号1に示されるアミノ酸配列は、Cacna1g遺伝子のエクソン29にコードされている。 The ortholog in the mouse of the CACNA1G gene is the Cacna1g gene. The Cacna1g gene is on chromosome 11. In mice, the amino acid sequence shown in SEQ ID NO: 1 is encoded by exon 29 of the Cacna1g gene.
 したがって、本実施の形態に係る遺伝子改変マウスは、Cacna1g遺伝子において、配列番号1に示されるアミノ酸配列のN末端から7個目のアミノ酸であるアルギニンをコードするトリプレットがアルギニン以外のアミノ酸をコードするトリプレットに置換されている。アルギニン以外のアミノ酸としては、SCA42型に係る変異と同様にヒスチジンが好ましい。なお、アルギニン以外のアミノ酸は、Cav3.1が細胞膜に発現し、野生型の活性と同等ではなくとも一定の活性を有するのであれば特に限定されない。例えば、アルギニン以外のアミノ酸は、側鎖に正電荷を有するリシン、又は側鎖に電荷を有していないアミノ酸等であってもよい。 Therefore, the genetically modified mouse according to the present embodiment is a triplet in which the triplet encoding arginine, which is the seventh amino acid from the N-terminal of the amino acid sequence shown in SEQ ID NO: 1, encodes an amino acid other than arginine in the Cacna1g gene. Has been replaced. As the amino acid other than arginine, histidine is preferable as in the mutation related to SCA42 type. The amino acids other than arginine are not particularly limited as long as Cav3.1 is expressed on the cell membrane and has a certain activity even if it is not equivalent to the wild-type activity. For example, the amino acid other than arginine may be lysine having a positive charge in the side chain, or an amino acid having no charge in the side chain.
 野生型マウスの場合、配列番号1に示されるアミノ酸配列をコードするDNAの塩基配列は、配列番号2に示される。一方、上記遺伝子改変マウスでは、相同染色体の一方又は両方において、配列番号2に示される塩基配列が、例えば配列番号3に示される塩基配列に置換される。配列番号1に示されるアミノ酸配列のN末端から7個目のアミノ酸であるアルギニンは、配列番号2の5’末端から数えて7個目のトリプレット「CGC」でコードされているが、配列番号3に示された塩基配列では、当該トリプレットがヒスチジンをコードする「CAC」に置換されている。遺伝子改変マウスでは、配列番号2の5’末端から数えて7個目のトリプレット「CGC」がヒスチジンをコードする「CAT」に置換されていてもよい。なお、配列番号2及び配列番号3に示されるCacna1g遺伝子における塩基配列は、コーディング鎖の塩基配列である。 In the case of a wild type mouse, the base sequence of DNA encoding the amino acid sequence shown in SEQ ID NO: 1 is shown in SEQ ID NO: 2. On the other hand, in the genetically modified mouse, the base sequence shown in SEQ ID NO: 2 is replaced with the base sequence shown in SEQ ID NO: 3, for example, in one or both of the homologous chromosomes. Arginine, which is the seventh amino acid from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1, is encoded by the seventh triplet “CGC” counted from the 5 ′ end of SEQ ID NO: 2, In this nucleotide sequence, the triplet is replaced with “CAC” encoding histidine. In the genetically modified mouse, the seventh triplet “CGC” counted from the 5 ′ end of SEQ ID NO: 2 may be replaced with “CAT” encoding histidine. The base sequence in the Cacna1g gene shown in SEQ ID NO: 2 and SEQ ID NO: 3 is the base sequence of the coding strand.
 次に、上記遺伝子改変マウスの作製方法について説明する。Cacna1g遺伝子を上記のように改変するには、一細胞期受精卵のゲノムを改変し、得られた個体から目的の変異が導入された個体を選抜しなければならい。上記遺伝子改変マウスは、好ましくは、Cacna1g遺伝子に相同組換えにより変異遺伝子を導入し、変異タンパク質を発現させるノックインマウスである。 Next, a method for producing the genetically modified mouse will be described. In order to modify the Cacna1g gene as described above, the genome of a one-cell fertilized egg must be modified, and an individual into which the target mutation has been introduced must be selected from the obtained individuals. The genetically modified mouse is preferably a knock-in mouse in which a mutant gene is introduced into the Cacna1g gene by homologous recombination to express the mutant protein.
 ノックインは、公知の方法で行うことができる。好適には、ノックインには、CRISPR-Cas(Clustered Regularly Interspaced Short Palindromic Repeat and Crisper associated protein)システム(「CRISPR/Cas9」ともいう)が用いられる。 Knock-in can be performed by a known method. Preferably, a CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeat and Criss associated protein) system (also referred to as “CRISPR / Cas9”) is used for the knock-in.
 CRISPR/Cas9では、PAM配列に隣接する標的の塩基配列に相補的な塩基配列を有するガイドRNAと、Cas9ヌクレアーゼとを使用する。Cacna1g遺伝子の標的とする塩基配列に結合したガイドRNAを認識したCas9ヌクレアーゼがPAM配列より5’末端側において二本鎖DNAを切断する。ガイドRNAの代わりに、DNA修復の鋳型として1本鎖オリゴDNA(ssODN)を用いてもよい。ssODNは、変異を導入した標的塩基と、標的塩基の5’末端側及び3’末端側にそれぞれ隣接する40~80塩基の相同配列(アーム配列)と、を有する。 In CRISPR / Cas9, a guide RNA having a base sequence complementary to the target base sequence adjacent to the PAM sequence and Cas9 nuclease are used. The Cas9 nuclease that recognizes the guide RNA bound to the target base sequence of the Cacna1g gene cleaves the double-stranded DNA at the 5 'end side from the PAM sequence. Instead of guide RNA, single-stranded oligo DNA (ssODN) may be used as a template for DNA repair. The ssODN has a target base into which a mutation has been introduced and a homologous sequence (arm sequence) of 40 to 80 bases adjacent to the 5 'end side and 3' end side of the target base.
 Cacna1g遺伝子において、配列番号1に示されるアミノ酸配列のN末端から7個目のアミノ酸であるアルギニンをコードするトリプレットを、ヒスチジンをコードするトリプレット「CAC」に置換する場合、配列番号4に示される塩基配列のssODNが好ましい。 In the Cacna1g gene, when the triplet encoding arginine which is the seventh amino acid from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 is replaced with the triplet “CAC” encoding histidine, the base shown in SEQ ID NO: 4 The sequence ssODN is preferred.
 二本鎖DNAの切断は、多くの遺伝情報の損失又はガン化の原因になるため、細胞内で極めて迅速に修復される。修復の主な経路の1つである、切断された末端同士を繋ぎ合わせる非相同末端結合修復の際、ssODNを鋳型としてCacna1g遺伝子における上記アルギニンをコードするトリプレットがヒスチジンをコードするトリプレットに高確率で置換される。 The double-strand DNA breakage causes a loss of much genetic information or canceration, so it is repaired very rapidly in the cell. In non-homologous end-joining repair, which is one of the main pathways for repair, where the cleaved ends are joined together, the triplet encoding the arginine in the Cacna1g gene using ssODN as a template has high probability to the triplet encoding histidine. Replaced.
 なお、二本鎖DNAの切断には、Cas9ヌクレアーゼに限らず、TALEN及びzinc finger nuclease(ZFN)等のプログラマブルエンドヌクレアーゼを用いてもよい。 Note that not only Cas9 nuclease but also a programmable endonuclease such as TALEN and zinc finger nuclease (ZFN) may be used for the cleavage of double-stranded DNA.
 CRISPR/Cas9では、Cas9ヌクレアーゼとガイドRNAとを発現するベクターを、マウスの受精卵に導入する。導入方法は、特に限定されず、例えば、マイクロインジェクション法、エレクトロポレーション法、リン酸カルシウム法及びリポフェクション法などの公知の方法が挙げられる。ssODNを用いる場合は、Cas9ヌクレアーゼを発現するCRISPR/Cas9ベクターをssODNとともに受精卵に導入すればよい。 In CRISPR / Cas9, a vector expressing Cas9 nuclease and guide RNA is introduced into a fertilized mouse egg. The introduction method is not particularly limited, and examples thereof include known methods such as a microinjection method, an electroporation method, a calcium phosphate method, and a lipofection method. When ssODN is used, a CRISPR / Cas9 vector expressing Cas9 nuclease may be introduced into a fertilized egg together with ssODN.
 CRISPR/Cas9ベクター等を導入した受精卵を、野生型の偽妊娠マウスの胎内に戻すことで得られるキメラマウスと、野生型マウスとの交配によりヘテロ接合体の雄及び雌が得られる。次に、ヘテロ接合体の雄及び雌を交配することで、Cacna1g遺伝子に変異が導入されたホモ接合体のマウスを得ることができる。ヘテロ接合体のマウスでは、相同染色体の一方のCacna1g遺伝子に変異が導入されている。ホモ接合体のマウスでは、相同染色体の両方のCacna1g遺伝子に変異が導入されている。 A heterozygous male and female are obtained by crossing a chimeric mouse obtained by returning a fertilized egg introduced with a CRISPR / Cas9 vector or the like into the womb of a wild type pseudopregnant mouse and a wild type mouse. Next, by mating heterozygous males and females, homozygous mice in which a mutation has been introduced into the Cacna1g gene can be obtained. In heterozygous mice, a mutation has been introduced into one of the Cacna1g genes of the homologous chromosome. In homozygous mice, mutations have been introduced into both Cacna1g genes of homologous chromosomes.
 Cacna1g遺伝子に変異が導入されたか否かを確認するには、マウスからDNAを抽出し、PCR(Polymerase Chain Reaction)及びRFLP(Restriction Fragment Length Polymorphism)法等の公知の方法を用いればよい。 In order to confirm whether or not a mutation has been introduced into the Cacna1g gene, DNA may be extracted from the mouse and a known method such as PCR (Polymerase Chain Reaction) and RFLP (Restriction Fragment Length Polymorphism) may be used.
 次に、本実施の形態に係る遺伝子改変マウスの病理学的特徴を以下に説明する。当該遺伝子改変マウスは、神経変性、特にプルキンエ細胞の変性の兆候が見られる。例えば、当該遺伝子改変マウスでは、プルキンエ細胞の密度が、野生型と比較して有意に小さい。プルキンエ細胞の密度は、公知の方法に従って、野生型及び遺伝子改変マウスから採取した小脳切片をヘマトキシリン・エオシン(H&E)染色し、顕微鏡下の視野内に存在するプルキンエ細胞を計数することで評価できる。 Next, the pathological features of the genetically modified mouse according to this embodiment will be described below. The genetically modified mice show signs of neurodegeneration, particularly Purkinje cell degeneration. For example, in the genetically modified mouse, the density of Purkinje cells is significantly smaller than that of the wild type. Purkinje cell density can be evaluated by staining cerebellar sections collected from wild-type and genetically modified mice with hematoxylin and eosin (H & E) according to a known method, and counting Purkinje cells present in the visual field under the microscope.
 また、当該遺伝子改変マウスは、プルキンエ細胞の樹状突起スパインの密度が、野生型と比較して有意に小さい。樹状突起スパインの密度は、野生型及び遺伝子改変マウスから採取した小脳から小脳スライスを作製し、公知の方法に従ってプルキンエ細胞を染色し、顕微鏡下の視野内に存在する樹状突起スパインを計数することで評価できる。 In addition, the density of dendritic spines in Purkinje cells is significantly smaller in the genetically modified mice than in the wild type. Dendritic spine density is determined by preparing cerebellar slices from cerebellum collected from wild-type and genetically modified mice, staining Purkinje cells according to known methods, and counting dendritic spines present in the visual field under the microscope Can be evaluated.
 ここで「有意に小さい」とは、統計学上の有意な差をもって小さいことを意味する。例えば、プルキンエ細胞の密度の場合、野生型及び遺伝子改変マウスそれぞれの複数個体の小脳切片についてプルキンエ細胞の個数を計数し、小脳切片におけるプルキンエ細胞の密度の平均値を算出し、野生型及び遺伝子改変マウスの平均個数の差を、t検定等の統計学的手法で検定すればよい。上記遺伝子改変マウスは、数ヶ月齢以上、好ましくは6か月齢以上、7か月齢以上、8か月齢以上、好ましくは9か月齢以上、10か月齢以上、11か月齢以上又は12か月齢以上で上述の病理学的特徴が現れる。 Here, “significantly small” means small with a statistically significant difference. For example, in the case of Purkinje cell density, the number of Purkinje cells is counted for a plurality of individual cerebellar sections of wild type and genetically modified mice, and the average value of Purkinje cell density in the cerebellar section is calculated, and wild type and genetically modified What is necessary is just to test the difference of the average number of mice | mouth by statistical methods, such as t test. The genetically modified mouse is several months old or more, preferably 6 months old or more, 7 months old or more, 8 months old or more, preferably 9 months old or more, 10 months old or more, 11 months old or more, or 12 months old or more The above pathological features appear.
 また、本実施の形態に係る遺伝子改変マウスは、下記実施例2~4に示すように運動失調症状を呈する。より詳細には、運動失調症状は、例えば、野生型と比較して有意な運動機能の低下、平衡感覚の低下、運動協調の低下及び歩行障害が見られる。また、上記遺伝子改変マウスは、野生型と比較して自発的活動性が向上する。 In addition, the genetically modified mouse according to the present embodiment exhibits ataxia symptoms as shown in Examples 2 to 4 below. More specifically, ataxia symptoms include, for example, a significant decrease in motor function, a decrease in balance, a decrease in motor coordination, and gait disturbance compared to the wild type. In addition, the spontaneous activity of the genetically modified mouse is improved compared to the wild type.
 上記遺伝子改変マウスの用途は特に限定されない。上記病理学的特徴及び運動失調症状から、上記遺伝子改変マウスは、神経変性疾患、特にはSCD、SCA及びSCA42型のモデルマウスとして好適である。例えば、上記遺伝子改変マウスは、SCD及びSCA、特にSCA42型の発症メカニズムの解明及び病態の理解に有用である。また、Cav3.1はT型カルシウムチャネルであるため、プルキンエ細胞の変性におけるCa2+シグナルパスウェイの役割の解明に有用である。 The use of the genetically modified mouse is not particularly limited. Due to the pathological features and ataxia symptoms, the genetically modified mice are suitable as model mice for neurodegenerative diseases, particularly SCD, SCA and SCA42 types. For example, the genetically modified mouse is useful for elucidating the onset mechanism of SCD and SCA, particularly SCA42 type, and for understanding the disease state. Moreover, since Cav3.1 is a T-type calcium channel, it is useful for elucidating the role of the Ca2 + signal pathway in the degeneration of Purkinje cells.
 上記遺伝子改変マウスは、自発的活動性が向上するため、過活動のモデルマウスとしても用いることができる。過活動は自閉症等の症状の1つであるため、当該遺伝子改変マウスは、自閉症等のメカニズムの解明及び病態の理解にも有用である。 The above-mentioned genetically modified mouse can be used as an overactive model mouse since spontaneous activity is improved. Since overactivity is one of the symptoms such as autism, the genetically modified mouse is also useful for elucidating the mechanism such as autism and understanding the disease state.
 上記遺伝子改変マウスの用途として、好ましくはSCD、SCA及びSCA42型(SCD等)の治療薬又は予防薬のスクリーニング方法が挙げられる。上記遺伝子改変マウスを用いる当該スクリーニング方法は、例えば、遺伝子改変マウスに被験物質を投与する投与ステップと、該遺伝子改変マウスのSCD等に関する指標を評価する評価ステップと、を含む。投与ステップでは、10か月齢以上の遺伝子改変マウスを用いるのがSCD等の病理をより忠実に再現する点で好ましい。 The use of the above-mentioned genetically modified mouse is preferably a screening method for therapeutic or prophylactic drugs of SCD, SCA and SCA42 type (SCD etc.). The screening method using the genetically modified mouse includes, for example, an administration step of administering a test substance to the genetically modified mouse, and an evaluation step of evaluating an index related to SCD and the like of the genetically modified mouse. In the administration step, it is preferable to use a genetically modified mouse that is 10 months of age or more in terms of more faithfully reproducing the pathology such as SCD.
 上記遺伝子改変マウスへの被験物質の投与では、化合物、抗体、ペプチド、DNAアプタマー、RNAアプタマー、siRNA、miRNA及びアンチセンス核酸等の被験物質を、上記遺伝子改変マウスに投与する。投与の方法は、特に限定されないが、被験物質に適切な方法を選択するのが好ましい。投与の方法としては、例えば、経口投与、腹腔内投与、静脈注射及び皮下注射等が挙げられる。被験物質の投与は、単回でもよいし、複数回であってもよい。被験物質の濃度は、被験物質の種類によって適宜決定すればよい。また、被験物質の濃度を数段階希釈した複数の濃度の被験物質を投与してもよい。 In the administration of the test substance to the genetically modified mouse, a test substance such as a compound, antibody, peptide, DNA aptamer, RNA aptamer, siRNA, miRNA and antisense nucleic acid is administered to the genetically modified mouse. The method of administration is not particularly limited, but it is preferable to select an appropriate method for the test substance. Examples of the administration method include oral administration, intraperitoneal administration, intravenous injection, and subcutaneous injection. The test substance may be administered once or multiple times. What is necessary is just to determine the density | concentration of a test substance suitably with the kind of test substance. Moreover, you may administer the test substance of the several density | concentration which diluted the density | concentration of the test substance several steps.
 評価ステップにおける指標としては、プルキンエ細胞の形態、プルキンエ細胞の密度及び樹状突起スパインの密度等の病理評価、並びに運動失調指標及び行動指標等が挙げられる。評価ステップでは、被験物質を投与された上記遺伝子改変マウスと、被験物質を投与されなかった上記遺伝子改変マウスとの間で、SCD等に関する指標を比較してもよい。指標によってSCD等を改善した被験物質をSCD等の治療薬又は予防薬の候補として選抜すればよい。 Examples of the index in the evaluation step include pathological evaluation such as Purkinje cell morphology, Purkinje cell density and dendritic spine density, and ataxia index and behavior index. In the evaluation step, an index related to SCD or the like may be compared between the genetically modified mouse to which the test substance is administered and the genetically modified mouse to which the test substance is not administered. A test substance that has improved SCD or the like by an index may be selected as a candidate for a therapeutic or prophylactic agent such as SCD.
 以上詳細に説明したように、上記遺伝子改変マウスは、下記実施例に示すように、その病理学的特徴からヒトのSCD及びSCA、特にはSCA42型の病態をより忠実に再現できる。 As described in detail above, the genetically modified mouse can reproduce human SCD and SCA, particularly SCA42 type pathology more faithfully from its pathological characteristics as shown in the following examples.
 なお、上記遺伝子改変マウスの一部、例えば、臓器、組織及び細胞もSCD等の治療薬又は予防薬のスクリーニング方法に使用することができる。 In addition, some of the above-mentioned genetically modified mice, for example, organs, tissues, and cells can also be used in screening methods for therapeutic or prophylactic drugs such as SCD.
 以下の実施例により、本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。 The following examples further illustrate the present invention, but the present invention is not limited to the examples.
 (実施例1:ノックインマウスの作製)
 Cacna1g遺伝子に変異を有するノックインマウスを以下のように作製した。図2は、C57BL/6JマウスのCacna1g遺伝子のエクソン29の塩基配列の一部を示す。ノックインマウスでは、CRISPR/Cas9システムを用いて、図2において矢印で示される塩基G(コーディング鎖)及びC(非コーディング鎖)をそれぞれA及びTに置換した(Ensemble:ENSMUST00000107789、cDNA:5147G>A、タンパク質:R1716H)。図3には、置換する塩基を含む領域の野生型マウスのアレル及びノックインマウスのアレルを示す。野生型マウスではアルギニンをコードする「CGC」の「G」が、ノックインマウスではヒスチジンをコードする「CAC」の「A」に置換される。
(Example 1: Production of knock-in mouse)
A knock-in mouse having a mutation in the Cacna1g gene was prepared as follows. FIG. 2 shows a part of the nucleotide sequence of exon 29 of Cacna1g gene of C57BL / 6J mouse. In the knock-in mouse, bases G (coding strand) and C (non-coding strand) indicated by arrows in FIG. , Protein: R1716H). FIG. 3 shows the allele of the wild-type mouse and the knock-in mouse in the region containing the base to be substituted. In wild-type mice, “G” of “CGC” encoding arginine is replaced with “A” of “CAC” encoding histidine in knock-in mice.
 ssODNとして、置換後の塩基と、当該塩基の5’末端側に隣接する60塩基及び当該塩基の3’末端側に隣接する59塩基のアーム配列を有する計120塩基のオリゴDNAを用いた。置換する塩基から3’末端側には図2に示すようにPAM配列が存在する。当該PAM配列にCas9ヌクレアーゼが結合する。 As the ssODN, an oligo DNA having a total of 120 bases having a base after substitution, an arm sequence of 60 bases adjacent to the 5 'end of the base and 59 bases adjacent to the 3' end of the base was used. As shown in FIG. 2, a PAM sequence is present on the 3 'end side from the base to be substituted. Cas9 nuclease binds to the PAM sequence.
 CRISPR/Cas9ベクター及びssODNを、C57BL/6Jマウスの受精卵に注入し、相同組換えにより変異を導入した。常法に従って、受精卵を偽妊娠ICRマウスに移植し、ノックインマウスを得た。 CRISPR / Cas9 vector and ssODN were injected into fertilized eggs of C57BL / 6J mice, and mutations were introduced by homologous recombination. In accordance with a conventional method, fertilized eggs were transplanted into pseudopregnant ICR mice to obtain knock-in mice.
 得られたヘテロ接合体(+/R1716Hマウス)及びホモ接合体(R1716H/R1716Hマウス)のゲノムにおけるCacna1g遺伝子の塩基配列は、PCR及びRFLPで確認した。PCRに用いたフォワードプライマー及びリバースプライマーの塩基配列を、それぞれ配列番号5及び6に示す。 The base sequence of the Cacna1g gene in the genome of the obtained heterozygote (+ / R1716H mouse) and homozygote (R1716H / R1716H mouse) was confirmed by PCR and RFLP. The base sequences of the forward primer and the reverse primer used for PCR are shown in SEQ ID NOs: 5 and 6, respectively.
 (実施例2:ロタロッドテスト)
 ノックインマウスの運動機能を評価するために、加速ロタロッドテストを行った。2日間のトレーニング後、1日4回の試行を4日間連続で行った。1回目の試行をすべてのマウスで行った後、2回目の試行を行い、同じマウスにおける試行間隔を20分以上とした。5分間で5rpmから40rpmまで一定に回転台を加速させ、マウスが回転台から落ちるまでの時間を測定した。評価の対象は、6か月齢と14か月齢の野生型マウス(+/+マウス)とR1716H/R1716Hマウスとした。+/+マウスとR1716H/R1716Hマウスとで、4日目の平均値を比較した。
(Example 2: Rotarod test)
In order to evaluate the motor function of knock-in mice, an accelerated rotarod test was performed. After 2 days of training, 4 trials per day were conducted for 4 consecutive days. After the first trial was performed on all mice, the second trial was performed, and the trial interval in the same mouse was 20 minutes or longer. The turntable was constantly accelerated from 5 rpm to 40 rpm in 5 minutes, and the time until the mouse fell from the turntable was measured. The subjects of evaluation were 6-month-old and 14-month-old wild-type mice (+ / + mice) and R1716H / R1716H mice. The mean values on the 4th day were compared between + / + mice and R1716H / R1716H mice.
 6か月齢及び14か月齢での回転台から落ちるまでの時間の平均値を、それぞれ図4(A)及び図4(B)に示す。6か月齢では、+/+マウスとR1716H/R1716Hマウスとの間に有意な差は見られなかった。一方、14か月齢では、R1716H/R1716Hマウスにおいて回転台から落ちるまでの時間が有意に短くなった。この結果より、変異によって運動機能が低下することが示された。 4A and 4B show the average values of the time taken to fall from the turntable at 6 months and 14 months of age, respectively. At 6 months of age, there was no significant difference between + / + and R1716H / R1716H mice. On the other hand, at the age of 14 months, the time to drop from the turntable in the R1716H / R1716H mice was significantly shortened. From these results, it was shown that the motor function was reduced by the mutation.
 (実施例3:ビームウォーキングテスト)
 平衡感覚及び運動協調を評価するために、ビームウォーキングテストを行った。直径1cm、長さ90cmの木製の梁を地面から50cmの高さに設置した。スタート地点を照明装置で明るくし、ゴール地点に黒いホームケージを置いた。マウスがスタート地点からゴール地点に向かって梁の上を移動し、ゴール地点に辿り着くまでの時間を測定した。一日目に2回のトレーニングを行い、2日目に2回試行を行い、最も短い時間を記録値とした。評価の対象は、6か月齢と10か月齢の+/+マウス、+/R1716Hマウス及びR1716H/R1716Hマウスとした。
(Example 3: Beam walking test)
A beam walking test was performed to evaluate balance and motor coordination. A wooden beam having a diameter of 1 cm and a length of 90 cm was placed at a height of 50 cm from the ground. The starting point was brightened with a lighting device, and a black home cage was placed at the goal point. The time taken for the mouse to move from the start point to the goal point on the beam and reach the goal point was measured. The training was performed twice on the first day, the trial was performed twice on the second day, and the shortest time was recorded. The evaluation targets were 6 and 10 month old + / + mice, + / R1716H mice and R1716H / R1716H mice.
 6か月齢及び10か月齢でのゴール地点に辿り着くまでの時間の平均値を、それぞれ図5(A)及び図5(B)に示す。6か月齢では、+/+マウス、+/R1716Hマウス及びR1716H/R1716Hマウスの間に有意な差は見られなかった。一方、10か月齢では、+/+マウスと比較して、R1716H/R1716Hマウスにおいてゴール地点に辿り着くまでの時間が長くなる傾向が見られた。この結果より、変異によって平衡感覚及び運動協調が低下することが示された。 The average values of the time required to reach the goal point at 6 months and 10 months are shown in FIGS. 5 (A) and 5 (B), respectively. At 6 months of age, there was no significant difference between + / +, + / R1716H and R1716H / R1716H mice. On the other hand, at the age of 10 months, the time required to reach the goal point in R1716H / R1716H mice tended to be longer than that in + / + mice. From this result, it was shown that the balance sensation and motor coordination are reduced by the mutation.
 (実施例4:フットプリントテスト)
 歩き方を観察するために、フットプリントテストを行った。マウスの前足に赤の墨、後ろ足に黒の墨を塗布し、半紙を敷いた長さ110cmの筒の中をマウスに歩かせ、図6(A)に示すように、足跡から歩幅を測定した。観察の対象は、12か月齢の+/+マウス及びR1716H/R1716Hマウスとした。
(Example 4: Footprint test)
A footprint test was conducted to observe how to walk. A black ink was applied to the front leg of the mouse, and a black ink was applied to the back leg, and the mouse was allowed to walk in a 110 cm long tube with half paper, and the stride was measured from the footprint as shown in FIG. . The subjects of observation were 12-month-old + / + mice and R1716H / R1716H mice.
 マウスの歩幅の平均値を、図6(B)に示す。+/+マウスと比較して、R1716H/R1716Hマウスにおいて歩幅が短くなる傾向が見られた。この結果より、変異によって歩行障害が生じていることが示唆された。 The average value of the mouse stride is shown in FIG. 6 (B). There was a tendency for the stride to be shorter in R1716H / R1716H mice compared to + / + mice. From these results, it was suggested that the gait disturbance was caused by the mutation.
 (実施例5:オープンフィールドテスト)
 行動解析装置SCANET(メルクエスト社製)を用いてオープンフィールドテストを行った。探索行動を比較するため、トレーニングをせずに、行動解析装置にマウスを置いたと同時に測定を開始し、10分毎30分間の総移動距離を測定した。総移動距離は、x軸及びy軸がそれぞれ6mm幅のセンサを横切った回数として評価した。評価の対象は、6か月齢の+/+マウス、+/R1716Hマウス及びR1716H/R1716Hマウスとした。
(Example 5: Open field test)
An open field test was performed using a behavior analysis apparatus SCANET (Merquest). In order to compare exploratory behavior, without starting training, the measurement was started at the same time as placing the mouse on the behavior analysis device, and the total travel distance was measured every 10 minutes for 30 minutes. The total movement distance was evaluated as the number of times that the x-axis and the y-axis each crossed a sensor having a width of 6 mm. The subjects of evaluation were 6-month-old + / + mice, + / R1716H mice, and R1716H / R1716H mice.
 総移動距離の平均値を図7に示す。+/+マウスと比較して、R1716H/R1716Hマウスにおいて移動距離が有意に長くなった。この結果より、変異によって過活動傾向があることが示唆された。 Figure 7 shows the average value of the total travel distance. Compared to + / + mice, the distance traveled was significantly longer in R1716H / R1716H mice. This result suggested that there was an overactivity tendency due to mutation.
 (実施例6:プルキンエ細胞の密度)
 10か月齢の+/+マウス及びR1716H/R1716Hマウスにおいてプルキンエ細胞の密度を測定し比較した。マウスをソムノペンチル(1.5mg/g体重)の腹腔内注射により麻酔した。4%PFAを含むリン酸緩衝生理食塩水を用いた心臓内灌流によって、全身を灌流固定した。10%、20%及び30%スクロースにより、固定した脳を徐々に脱水させ、OCT-compound中で凍結させた。クライオスタット(Leica CM3050S)を用いて10μmの脳切片を作製し、スライドガラスに貼り付けた。脳切片に対してH&E染色を行い、顕微鏡下で小脳プルキンエ細胞の個数を計数した。プルキンエ細胞の個数を細胞体の中心を結んだ線の長さで除してプルキンエ細胞の密度を測定した。小脳切片の撮像には光学顕微鏡(Nikon社製)を用いた。
(Example 6: Purkinje cell density)
The density of Purkinje cells was measured and compared in 10 month old + / + mice and R1716H / R1716H mice. Mice were anesthetized by intraperitoneal injection of somnopentyl (1.5 mg / g body weight). The whole body was perfused and fixed by intracardiac perfusion with phosphate buffered saline containing 4% PFA. The fixed brain was slowly dehydrated with 10%, 20% and 30% sucrose and frozen in OCT-compound. A 10 μm brain section was prepared using a cryostat (Leica CM3050S) and attached to a slide glass. Brain sections were subjected to H & E staining, and the number of cerebellar Purkinje cells was counted under a microscope. The density of Purkinje cells was measured by dividing the number of Purkinje cells by the length of the line connecting the centers of the cell bodies. An optical microscope (manufactured by Nikon) was used for imaging the cerebellar slice.
 図8(A)は、+/+マウス及びR1716H/R1716Hマウスについて、顕微鏡下で撮像した小脳切片を示す。図8(B)に示すように、+/+マウスと比較して、R1716H/R1716Hマウスにおけるプルキンエ細胞の密度は有意に小さかった。 FIG. 8 (A) shows cerebellar sections imaged under a microscope for + / + mice and R1716H / R1716H mice. As shown in FIG. 8 (B), the density of Purkinje cells in R1716H / R1716H mice was significantly smaller compared to + / + mice.
 (実施例7:プルキンエ細胞樹状突起スパインの密度)
 6~7か月齢の+/+マウス及びR1716H/R1716Hマウスにおいてプルキンエ細胞樹状突起スパインの密度を測定し比較した。マウスにCOガスを吸入させて麻酔した後、マウスより脳を採取し、ビブラトームにより250μmの小脳スライスを作製した。パッチピペットにより、プルキンエ細胞の細胞体にneurobiotinを注入し、小脳スライスを4%PFAで固定後、anti-biotina Alexa488により染色し、顕微鏡下で観察した。樹状突起スパインの撮像にはZeiss社製のコンフォーカル顕微鏡(LSM800 Airyscan)を用いた。対物レンズには63xoilを用いた。樹状突起スパインの個数はImaris(Bitplane社製)を用いて計数した。
(Example 7: Density of Purkinje cell dendritic spine)
The density of Purkinje cell dendritic spines was measured and compared in 6-7 month old + / + and R1716H / R1716H mice. After the mouse was inhaled with CO 2 gas and anesthetized, the brain was collected from the mouse, and a 250 μm cerebellar slice was prepared by vibratome. Neurobiotin was injected into Purkinje cell bodies with a patch pipette, and cerebellar slices were fixed with 4% PFA, stained with anti-biotina Alexa 488, and observed under a microscope. A confocal microscope (LSM800 Airyscan) manufactured by Zeiss was used for imaging dendritic spines. 63xoil was used for the objective lens. The number of dendritic spines was counted using Imaris (manufactured by Bitplane).
 図9(A)は、+/+マウス及びR1716H/R1716Hマウスについて、撮像した樹状突起スパインを示す。図9(B)に示すように、+/+マウスと比較して、R1716H/R1716Hマウスにおける樹状突起スパインの密度は有意に小さかった。 FIG. 9 (A) shows dendritic spines imaged for + / + mice and R1716H / R1716H mice. As shown in FIG. 9 (B), the density of dendritic spines in R1716H / R1716H mice was significantly lower compared to + / + mice.
 上記実施例に係るノックインマウスは、ヒトにおけるSCDの運動失調症状を呈し、小脳のプルキンエ細胞の変性の兆候を示した。 The knock-in mice according to the above examples exhibited ataxia symptoms of SCD in humans and showed signs of degeneration of cerebellar Purkinje cells.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等な発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. In other words, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 本出願は、2018年2月26日に出願された、日本国特許出願2018-31706号に基づく。本明細書中に日本国特許出願2018-31706号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2018-31706 filed on Feb. 26, 2018. The specification, claims, and entire drawings of Japanese Patent Application No. 2018-31706 are incorporated herein by reference.
 本発明は、ヒトの病態を再現するモデル動物、特にはSCDのモデル動物に好適である。 The present invention is suitable for a model animal that reproduces a human disease state, particularly an SCD model animal.

Claims (7)

  1.  相同染色体の一方又は両方のT型カルシウムチャネルCav3.1をコードする遺伝子において、該Cav3.1におけるリピートIVのS4領域内のN末端からC末端に向かってArg-Ile-Met-Arg-Val-Leu-Arg-Ile-Ala-Argで示されるアミノ酸配列のN末端から7個目のアミノ酸であるアルギニンをコードするトリプレットがアルギニン以外のアミノ酸をコードするトリプレットに置換されている、
     遺伝子改変非ヒト動物。
    In the gene encoding one or both of the T-type calcium channels Cav3.1 of homologous chromosomes, Arg-Ile-Met-Arg-Val- A triplet encoding arginine, which is the seventh amino acid from the N-terminal of the amino acid sequence represented by Leu-Arg-Ile-Ala-Arg, is substituted with a triplet encoding an amino acid other than arginine;
    Genetically modified non-human animals.
  2.  前記アルギニン以外のアミノ酸は、
     ヒスチジンである、
     請求項1に記載の遺伝子改変非ヒト動物。
    Amino acids other than arginine are
    Histidine,
    The genetically modified non-human animal according to claim 1.
  3.  プルキンエ細胞の密度が、
     野生型と比較して有意に小さい、
     請求項1又は2に記載の遺伝子改変非ヒト動物。
    Purkinje cell density is
    Significantly smaller than the wild type,
    The genetically modified non-human animal according to claim 1 or 2.
  4.  プルキンエ細胞の樹状突起スパインの密度が、
     野生型と比較して有意に小さい、
     請求項1から3のいずれか一項に記載の遺伝子改変非ヒト動物。
    Purkinje cell dendritic spine density is
    Significantly smaller than the wild type,
    The genetically modified non-human animal according to any one of claims 1 to 3.
  5.  マウスである、
     請求項1から4のいずれか一項に記載の遺伝子改変非ヒト動物。
    A mouse,
    The genetically modified non-human animal according to any one of claims 1 to 4.
  6.  脊髄小脳変性症モデル動物である、
     請求項1から5のいずれか一項に記載の遺伝子改変非ヒト動物。
    A spinal cerebellar degeneration model animal,
    The genetically modified non-human animal according to any one of claims 1 to 5.
  7.  請求項1から6のいずれか一項に記載の遺伝子改変非ヒト動物を用いる、
     脊髄小脳変性症の治療薬又は予防薬のスクリーニング方法。
    Using the genetically modified non-human animal according to any one of claims 1 to 6,
    A screening method for a therapeutic or prophylactic agent for spinocerebellar degeneration.
PCT/JP2018/031919 2018-02-26 2018-08-29 Genetically modified non-human animal, and method for screening for therapeutic agent or prophylactic agent for spinocerebellar degeneration WO2019163166A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020502002A JPWO2019163166A1 (en) 2018-02-26 2018-08-29 Screening method for therapeutic or prophylactic agents for genetically modified non-human animals and spinocerebellar degeneration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018031706 2018-02-26
JP2018-031706 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019163166A1 true WO2019163166A1 (en) 2019-08-29

Family

ID=67688323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031919 WO2019163166A1 (en) 2018-02-26 2018-08-29 Genetically modified non-human animal, and method for screening for therapeutic agent or prophylactic agent for spinocerebellar degeneration

Country Status (2)

Country Link
JP (1) JPWO2019163166A1 (en)
WO (1) WO2019163166A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053402A1 (en) * 2013-10-11 2015-04-16 国立大学法人東京医科歯科大学 Drug for prevention or treatment of spinocerebellar degeneration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053402A1 (en) * 2013-10-11 2015-04-16 国立大学法人東京医科歯科大学 Drug for prevention or treatment of spinocerebellar degeneration

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
COUTELIER, M. ET AL.: "A recurrent mutation in CACNA1G alters Cav3.1 T-type calcium-channel conduction and causes autosomal-dominant cerebellar ataxia", THE AMERICAN JOURNAL OF HUMAN GENETICS, vol. 97, no. 5, 2015, pages 726 - 737, XP055632393, ISSN: 0002-9297 *
MATSUDA, Y. ET AL.: "213.11/Q2- A mutation of the spinocerebellar ataxia gene CACNA1G induces cerebellar Purkinje cell death and ataxia in mice", NEUROSCIENCE, 12 November 2017 (2017-11-12), XP055632348, Retrieved from the Internet <URL:http://www.abstractsonline.com/pp8/index.html#!/4376/presentation/28576> [retrieved on 20181109] *
MORINO, H. ET AL.: "A mutation in the low voltage-gated calcium channel CACNA1G alters the physiological properties of the channel, causing spinocerebellar ataxia", MOLECULAR BRAIN, vol. 8, no. 89, 2015, pages 1 - 9, XP055632388, ISSN: 1756-6606 *
MORINO, TOYOYUKI ET AL.: "Clinic of SCA42 and molecular pathogenesis mechanism", NEUROLOGICAL THERAPEUTICS, vol. 34, no. 6, 2017, pages S111, XP055632381, ISSN: 0916-8443 *

Also Published As

Publication number Publication date
JPWO2019163166A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
Feng et al. Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces
JP2021169461A (en) Animal models of longevity and related methods for increasing longevity and inhibiting tumorigenesis
US9429567B2 (en) Method for screening substances having weight-regulating action
US20240065237A1 (en) A genetically modified immunodeficient mouse expressing human or humanized app and mutated human psen1
US7022893B1 (en) Knockin gene-mutated mouse comprising a mutant presenilin-1 gene
JP2009178162A (en) Transgenic animal model of neurodegenerative disorder
US6593512B1 (en) Transgenic mouse expressing human tau gene
WO2019163166A1 (en) Genetically modified non-human animal, and method for screening for therapeutic agent or prophylactic agent for spinocerebellar degeneration
JP2015062407A (en) Mental/psychiatric disease model animal
JP2021058148A (en) Alzheimer&#39;s disease model non-human animal and its production method
JP4494340B2 (en) Glutamate transporter GLAST function-deficient mice
CN116144658B (en) sgRNA for constructing neurodegenerative animal model and application thereof
JP2019092417A (en) Genetically modified non-human animal and its use
JP5994132B2 (en) Behavioral disorder model animal and screening method
KR101917346B1 (en) A transgenic animal model overexpressing Thrsp gene and a use thereof
Tobler et al. Sleep and Circadian Rest–Activity Rhythms in Prion Protein Knockout Mice
US20130047273A1 (en) Genetically altered animal specimen and related methods
JP3817638B2 (en) Transgenic non-human mammal
Yamanaka Animal models for neurodegenerative disorders
WO2018123540A1 (en) Knockout nonhuman animal, method for creating knockout nonhuman animal, and method for screening drug for preventing or treating amyotrophic lateral sclerosis or dementia
JP2009225697A (en) Abca12 GENE FUNCTION-DEFICIENT MOUSE
US8946503B2 (en) hnRNP A1 knockout animal model and use thereof
JPH11146743A (en) Model animal for alzheimer&#39;s disease
WO2018012497A1 (en) Disease model animal and disease therapeutic agent
Bliska et al. Modeling Intermediate Spinal Muscular Atrophy in C. elegans

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502002

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906855

Country of ref document: EP

Kind code of ref document: A1