WO2019163071A1 - アンテナ装置およびアレーアンテナ装置 - Google Patents

アンテナ装置およびアレーアンテナ装置 Download PDF

Info

Publication number
WO2019163071A1
WO2019163071A1 PCT/JP2018/006614 JP2018006614W WO2019163071A1 WO 2019163071 A1 WO2019163071 A1 WO 2019163071A1 JP 2018006614 W JP2018006614 W JP 2018006614W WO 2019163071 A1 WO2019163071 A1 WO 2019163071A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
hole
antenna
waveguide
linear
Prior art date
Application number
PCT/JP2018/006614
Other languages
English (en)
French (fr)
Inventor
崇 ▲柳▼
鈴木 清孝
英俊 牧村
西岡 泰弘
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/006614 priority Critical patent/WO2019163071A1/ja
Priority to JP2020501937A priority patent/JP6739678B2/ja
Priority to US16/966,993 priority patent/US11223137B2/en
Priority to EP18906900.8A priority patent/EP3742554B1/en
Publication of WO2019163071A1 publication Critical patent/WO2019163071A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0031Parallel-plate fed arrays; Lens-fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure

Definitions

  • This invention relates to a circularly polarized wave element antenna.
  • Helical antennas are antennas that are formed by winding a conductor in a spiral shape, and can be used for circularly polarized wave excitation with a simple configuration without using a circularly polarized wave excitation circuit, and are widely used for antennas for satellite communications. .
  • a method for feeding power to the helical antenna, a method is often used in which the end of the linear conductor constituting the helical antenna element is passed through a hole provided in the ground conductor to form a coaxial line and connected to a feeding circuit (for example, a waveguide). It is done.
  • a feeding circuit for example, a waveguide.
  • the circular polarization characteristic (axial ratio) of the helical antenna changes due to electromagnetic coupling between the two. For this reason, there has been a problem that it is limited to use at a frequency where manufacturing tolerance does not become a problem, and the yield is deteriorated.
  • Patent Document 1 discloses a practical method of a helical antenna.
  • a helical antenna is added via a capacitive element to the tip of a feed pin that supplies a high-frequency current to a microstrip antenna.
  • Patent Document 1 Since the helical antenna of Patent Document 1 is configured as described above, it is possible to reduce mutual interference with the microstrip antenna and obtain a good circularly polarized wave. However, the influence on the circular polarization characteristics (axial ratio) cannot be reduced because the distance between the helical antenna and the microstrip antenna changes due to manufacturing tolerances. Therefore, there has been a problem that it is necessary to newly provide a support structure for fixing the helical antenna element in order to reduce the yield or to reduce the manufacturing tolerance.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain an antenna device in which the change in circular polarization characteristics is small with respect to the distance between the helical antenna element and the ground conductor.
  • the antenna device includes a ground conductor plate having a circular first hole, and a circular second conductor having a center disposed on a straight line passing through the center of the first hole and orthogonal to the ground conductor plate.
  • a disc-shaped conductor plate having a hole, the center of which coincides with the center of the second hole, and disposed substantially parallel to the ground conductor plate; a first end penetrating the first hole; A linear first conductor penetrating the second hole and a first end connected to the second end of the first conductor and arranged substantially parallel to the ground conductor plate
  • the second conductor and an antenna element connected to the second end of the second conductor are provided.
  • the present invention can provide an antenna device in which the change in circular polarization characteristics is small with respect to the distance between the helical antenna element and the ground conductor.
  • FIG. 1 is a configuration diagram illustrating an antenna device according to Embodiment 1.
  • FIG. 1 is a cross-sectional view showing an antenna device according to a first embodiment.
  • FIG. 5 is a diagram showing a distribution of current 21 induced by current 20 flowing through horizontal conductor 3 in the antenna device according to Embodiment 1 (without disc 5).
  • FIG. 3 is a diagram showing a distribution of a current 22 induced by a current 20 flowing through a horizontal conductor 3 in the antenna device (with a disk 5) according to the first embodiment.
  • 6 is a graph showing changes in the axial ratio of the circularly polarized wave element antenna 2 with respect to an error ⁇ H in the antenna installation height of the antenna device according to Embodiment 1.
  • FIG. 1 is a cross-sectional view showing an antenna device according to a first embodiment.
  • FIG. 5 is a diagram showing a distribution of current 21 induced by current 20 flowing through horizontal conductor 3 in the antenna device according to Embodiment 1 (without disc 5).
  • FIG. 6 is a configuration diagram illustrating an antenna device according to a second embodiment.
  • FIG. 6 is a cross-sectional view showing an antenna device according to a second embodiment.
  • 10 is a graph showing changes in the axial ratio of the circularly polarized wave element antenna 2 with respect to the error ⁇ H in the antenna installation height of the antenna device according to the second embodiment.
  • FIG. 6 is a cross-sectional view showing an antenna device according to a third embodiment.
  • FIG. 9 is a schematic diagram showing a bottom surface of a support member 9a of an antenna device according to Embodiment 3.
  • 6 is a schematic diagram showing a structure of a support member 9b of an antenna device according to Embodiment 3.
  • FIG. 10 is a configuration diagram showing an array antenna apparatus according to a fifth embodiment.
  • FIG. 10 is a cross-sectional view showing an array antenna device according to a fifth embodiment.
  • FIG. 1 is a block diagram showing an antenna apparatus according to Embodiment 1 of the present invention.
  • 1 is a ground conductor (ground conductor plate)
  • 2 is a circularly polarized wave element antenna (antenna element)
  • 3 is a horizontal conductor (second conductor)
  • 4 is a vertical conductor (first conductor)
  • 5 is A disc (conductor plate)
  • 6 is a first hole provided in the ground conductor 1
  • 7 is a second hole provided in the disc 5.
  • FIG. 2 is a sectional view in a plane including the vertical conductor 4 and perpendicular to the ground conductor 1.
  • the ground conductor 1 is made of a metal such as copper or aluminum, and operates as a ground for the antenna device.
  • the ground conductor 1 is shown as a square plate, but if the operation as the ground of the antenna device can be obtained, a free shape can be selected as appropriate. Is possible. For example, it may be circular.
  • a feed line (not shown) is provided on the surface of the ground conductor 1 opposite to the surface on which the circularly polarized wave element antenna (antenna element) 2 is provided.
  • the circularly polarized wave element antenna 2 is an antenna that transmits or receives circularly polarized waves.
  • a helical structure in which the direction in which circularly polarized waves are transmitted or received is wound around a shaft and a linear conductor is spirally wound around the side surface of the shaft.
  • an antenna is taken as an example, a curled antenna or a spiral antenna in which a linear conductor is wound in a circular shape perpendicular to the axis may be used.
  • the circularly polarized wave element antenna 2 is designed in diameter, pitch and number of turns so that a good circularly polarized wave is radiated at a desired frequency.
  • the horizontal conductor 3 is a linear conductor having one end connected to the lower end of the circularly polarized wave element antenna 2 and the other end connected to the vertical conductor 4 so as to be parallel to the ground conductor 1 above the ground conductor 1. It is arranged to become.
  • the vertical conductor 4 is a linear conductor, and the first hole 6 and the second hole 7 are connected so that one end is connected to the horizontal conductor 3 and the other end is connected to a feed line (not shown). Placed through. Note that the central axis of the vertical conductor 4 coincides with the central axis of the circularly polarized wave element antenna 2.
  • the disc 5 is a plate-like conductor plate arranged in parallel to the ground conductor 1.
  • the center of the disk 5 coincides with the central axis of the vertical conductor 4.
  • the disk 5 is fixed to the vertical conductor 4 so that the distance between the horizontal conductors 3 is constant. At this time, the disk 5 is fixed in such a manner that it is not electrically connected to the vertical conductor 4.
  • the radius of the disk 5 is preferably ⁇ / 4 (1/4 of the operating wavelength) where ⁇ is the wavelength with respect to the operating frequency. Furthermore, it is desirable that the length obtained by subtracting the radius of the first hole 6 from the radius of the disk 5 is ⁇ / 4.
  • the distance between the disk 5 and the ground conductor 1 may be within ⁇ / 4, which is a limit considered as a transmission path, and is preferably ⁇ / 10 (1/10 of the operating wavelength).
  • the first hole 6 is provided in the ground conductor 1 so that the vertical conductor 4 does not contact the ground conductor 1.
  • the cross section of the first hole 6 is circular, and it is desirable that the central axis of the vertical conductor 4 passes through the center of the first hole 6. As a result, a coaxial line having the vertical conductor 4 as the inner conductor and the ground conductor 1 as the outer conductor is formed.
  • the second hole 7 is provided in the disc 5 so that the vertical conductor 4 does not contact the disc 5.
  • the cross section of the second hole 7 is circular, and it is desirable that the vertical axis passing through the center of the disk 5 coincides with the vertical axis passing through the center of the second hole 7. Similar to the first hole 6, it is desirable that the central axis of the vertical conductor 4 passes through the center of the second hole 7.
  • FIG. 3 is a cross-sectional view showing the configuration of the circularly polarized wave element antenna when the disc 5 is not provided
  • FIG. 4 is a cross-sectional view showing the configuration of the circularly polarized wave element antenna when the disc 5 is provided.
  • 3 and 4 the same reference numerals as those in FIG. 1 indicate the same or corresponding parts.
  • 20 indicates a current flowing from the vertical conductor 4 to the horizontal conductor 3
  • 21 and 22 are currents induced by the current 20.
  • the operation when the disk 5 is not provided will be described.
  • radiation from the current flowing through the vertical conductor 4 deteriorates the circular polarization characteristics of the circularly polarized element antenna 2. Therefore, the length of the vertical conductor 4 protruding from the ground conductor 1 can be made as short as possible. desirable.
  • the horizontal conductor 3 and the ground conductor 1 are close to each other, so that the current 21 induced by the current 20 flowing through the horizontal conductor 3 is applied to the ground conductor 1. Flowing.
  • a disk 5 is added between the ground conductor 1 and the horizontal conductor 3. Since the distance between the disk 5 and the ground conductor 1 is ⁇ / 4 or less and sufficiently small with respect to the wavelength ⁇ with respect to the operating frequency, the space between the disk 5 and the ground conductor 1 can be regarded as a radial line waveguide. Furthermore, since the radius of the disk 5 is ⁇ / 4, the impedance when the ground conductor 1 is viewed from the disk 5 becomes very high, and the current from the disk 5 to the ground conductor 1 is interrupted.
  • the current 22 induced by the current flows on the disk 5 and therefore does not flow in the ground conductor 1. Therefore, even if the shape of the ground conductor 1 is changed or the relative positions of the circularly polarized wave element antenna 2 and the ground conductor 1 are different, the circular polarization characteristics of the antenna are not affected.
  • FIG. 5 is a graph showing the change in the axial ratio of the circularly polarized wave element antenna 2 with respect to the fluctuation amount of the distance between the ground conductor 1 and the horizontal conductor 3, that is, the antenna installation height error ⁇ H.
  • the calculated frequency is 12 GHz.
  • the circularly polarized element antenna 2 that is a helical antenna and the disk 5 having a radius of a quarter of the wavelength with respect to the operating frequency between the ground conductor 1.
  • FIG. 6 is a configuration diagram showing the antenna device according to the present embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 7 is a cross-sectional view in a plane including the vertical conductor 4 and perpendicular to the ground conductor 1.
  • the difference between the antenna device according to the present embodiment and the antenna device according to the first embodiment is that a short-circuit conductor 8 that electrically connects the disk 5 and the ground conductor 1 is newly provided.
  • the short-circuit conductor 8 is a cylindrical conductor disposed along the edge of the second hole 7 provided in the disk 5. The upper end of the short-circuit conductor 8 is electrically connected to the disk 5, and the lower end of the short-circuit conductor 8 is electrically connected to the ground conductor 1.
  • the operation of the antenna device according to this embodiment will be described. Basically, the operation is the same as that described in the first embodiment, but in the case of the antenna device according to the present embodiment, a choke structure is formed not only by the disk 5 and the ground conductor 1 but also by the short-circuit conductor 8. Thus, the current flowing from the horizontal conductor 3 to the ground conductor 1 can be blocked more effectively.
  • the short-circuit conductor 8 in addition to the disk 5, the circular polarization characteristics of the circularly polarized wave element antenna 2 can be further improved as compared with the case where only the disk 5 is used, and the antenna installation conditions can be reduced.
  • An antenna device can be obtained in which the deterioration of the circular polarization characteristic is small with respect to changes and manufacturing errors.
  • FIG. 8 is a graph showing the variation in the distance between the ground conductor 1 and the horizontal conductor 3, that is, the change in the axial ratio of the circularly polarized wave element antenna 2 with respect to the antenna installation height error ⁇ H.
  • the absolute value of the axial ratio is smaller than when there is no short-circuit conductor 8, and it can be seen that the circular polarization characteristics are good. Further, the amount of change of the axial ratio with respect to ⁇ H is ⁇ 0.7 dB, which is almost the same as the case where the short-circuit conductor 8 is not provided.
  • the short-circuit conductor 8 that electrically connects the disk 5 and the ground conductor 1 is newly provided, so that changes in antenna installation conditions and manufacturing errors can be avoided.
  • FIG. 9 is a cross-sectional view of the antenna device according to the embodiment of the present invention.
  • 9a is a support member (first dielectric) for fixing the circularly polarized wave element antenna 2
  • 9b is a support member (second dielectric) for fixing the vertical conductor 4
  • 9c is for fixing the disk 5. This is a supporting member (third dielectric).
  • FIG. 9 is a cross-sectional view of a plane including the vertical conductor 4 and perpendicular to the ground conductor 1.
  • the difference between the antenna device according to the present embodiment and the antenna device according to the first embodiment is that a support member for supporting the circularly polarized wave element antenna 2, the vertical conductor 4, and the disk 5 is newly provided. is there.
  • the material of the supporting members 9a to 9c is preferably a dielectric such as polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the material used as the support member may be appropriately selected.
  • the support member 9a is preferably cylindrical, and the circularly polarized wave element antenna 2 can be fixed to the side surface of the support member 9a.
  • FIG. 10 is a schematic diagram illustrating the bottom surface of the support member 9a. Note that the support member 9c is omitted from FIG. As shown in FIG. 10, the horizontal conductor 3 can be fixed to the bottom surface of the support member 9a. In other respects, as in the case of the first embodiment, one end of the horizontal conductor 3 is connected to the lower end of the circularly polarized wave element antenna 2, and the other end is connected to the vertical conductor 4.
  • FIG. 11 is a schematic diagram showing the structure of the support member 9b.
  • the support member 9b has, for example, a shape in which a cylinder is divided in half by a plane including its central axis, and the vertical conductor 4 can be fixed along the central axis of the cylinder.
  • the vertical conductor 4 has one end connected to the other end of the horizontal conductor 3 and the other end of the vertical conductor 4 connected to a feed line (not shown). Connected.
  • the support member 9 b and the vertical conductor 4 are arranged so that a part thereof penetrates the first hole 6 of the ground conductor 1. Naturally, the first hole 6 is sized so as not to contact the ground conductor 1 when the support member 9b rotates.
  • the support member 9b is fixed to the bottom surface of the support member 9a so that the center axis of the support member 9b coincides with the center axis of the support member 9a.
  • the support member 9b may be integrally formed with the support member 9a.
  • the support member 9c is a plate-like dielectric fixed to the support member 9b at a predetermined interval from the ground conductor 1 perpendicular to the central axis of the support member 9b.
  • the disc 5 can be fixed to the bottom surface of the support member 9c.
  • a third hole is provided at the center of the support member 9c so that the support member 9b can rotate without contacting.
  • the outer periphery of the support member 9c is desirably circular, and the central axis of the support member 9c coincides with the support member 9b and the support member 9a.
  • the size of the third hole may be a size through which the support member 9b passes, whereby the support member 9b and the support member 9c may be fixed.
  • the support member 9c may be integrally formed with the support member 9b.
  • the method of fixing each support member to the circularly polarized wave element antenna 2, the horizontal conductor 3, the vertical conductor 4, and the disc 5 is a method of winding a film substrate on which a conductor pattern is formed, or plating the conductor pattern.
  • a method of forming by vapor deposition or the like can be considered.
  • a film substrate on which a conductor pattern of the circularly polarized wave element antenna 2 and the horizontal conductor 3 is formed is wound around the support member 9a, and a film on which the conductor pattern of the vertical conductor 4 is formed is attached to the support member 9b.
  • plating may be performed so as to form a conductor pattern of the disk 5.
  • the horizontal conductor 3 is the same as in the first and second embodiments. It is possible to block the current induced by the upper current from flowing through the ground conductor 1. Even if the antenna installation conditions change or manufacturing errors occur, such as when the shape of the ground conductor 1 is changed or the relative positions of the circularly polarized wave element antenna 2 and the ground conductor 1 are different, the circular polarization Deterioration of wave characteristics can be suppressed.
  • Another effect of this embodiment is that the manufacturing accuracy of the circularly polarized wave element antenna 2 is improved. If the distance between the horizontal conductor 3 and the disk 5 changes during the manufacturing process, the amplitude and phase of the current induced in the disk 5 by the current on the horizontal conductor 3 changes, and the circularly polarized wave element antenna 2 Although the influence on the circular polarization characteristic is not constant, in the embodiment of the present invention, the support member 9b and the support member 9c are fixed, so that the distance between the horizontal conductor 3 and the disk 5 is kept constant. Can do. That is, variations in manufacturing the antenna device can be suppressed.
  • Embodiment 4 FIG.
  • the case where the antenna device is handled as a single unit has been described.
  • a case will be described in which an array antenna having a plurality of antenna devices (arranged) is formed.
  • any one of the antenna apparatuses described in the first to third embodiments is configured as an array antenna element antenna, and a plurality of the antenna apparatuses are appropriately arranged.
  • an array antenna is configured by feeding power.
  • FIG. 12 An example of the configuration of the array antenna apparatus according to the present embodiment is shown in FIG. In the example of FIG. 12, a linear array antenna in which element antennas of the array antenna are arranged linearly is shown.
  • FIG. 13 is an explanatory diagram showing another example of the configuration of the array antenna.
  • 10 is a waveguide (waveguide), and 10 a is one surface of the waveguide 10.
  • the first surface 10a of the waveguide 10 corresponds to the ground conductor 1 in FIG. Accordingly, the hole provided in the first surface 10 a is also referred to as the first hole 6.
  • the vertical conductor 4 extends to the inside of the waveguide 10 through the hole 6 provided in the first surface 10 a of the waveguide 10.
  • the internal electric field of the waveguide 10 is coupled to the vertical conductor 4, and a current is generated in the vertical conductor 4.
  • any of the antenna devices described in the first to third embodiments is configured as an array antenna element antenna, and a plurality of the antenna devices are appropriately arranged on one surface of the waveguide and fed.
  • directivity synthesis by arraying can be performed, and desired radiation characteristics can be realized.
  • the adjacent circularly polarized wave element antennas 2 may be arranged so as to be arranged at positions opposite to each other across the tube axis center line.
  • adjacent circularly polarized wave element antennas 2 may be arranged so that the distance between them is different.
  • the plurality of circularly polarized wave element antennas 2 may be arranged at arbitrary positions as long as they do not contact each other, that is, do not physically interfere with each other.
  • each vertical conductor 4 may have a different length as long as it is determined based on the distribution and the impedance characteristics at the feeding end of the waveguide 10.
  • FIG. 15 is a block diagram showing an antenna apparatus according to Embodiment 5 of the present invention.
  • 16 is a cross-sectional view taken along the line AA in the antenna apparatus of FIG. 15 and 16, the same components as those in FIGS. 1 to 14 are denoted by the same reference numerals, and description thereof is omitted.
  • FIGS. 1 to 14 the same components as those in FIGS. 1 to 14 are denoted by the same reference numerals, and description thereof is omitted.
  • 11 is a connecting shaft
  • 12 is a connecting shaft insertion hole (fourth hole)
  • 13 is a rotating shaft
  • 14 is a rotating device
  • 15 is a control device.
  • Reference numeral 10b denotes a second surface facing the first surface 10a of the waveguide 10 in parallel.
  • Reference numeral 16 denotes a rotation drive device provided in the control device
  • reference numeral 17 denotes a rotation control device provided in the control device 15.
  • connection shaft 11 is formed of an insulator such as a dielectric.
  • the connection shaft 11 is inserted so that one end passes through the connection shaft insertion hole 12 provided in the second surface 10 b facing the first surface 10 a of the waveguide 10, and the other end is the lower end of the vertical conductor 4.
  • Connected with As a method of connecting the connection shaft 11 and the vertical conductor 4, for example, a method of screwing the connection shaft 11 and the vertical conductor 4 by providing a screw hole in the connection shaft 11 and providing a male screw in the vertical conductor is considered. It is done. Further, a method of providing a fitting hole in the connecting shaft 11 and press-fitting the vertical conductor 4 into the fitting hole is conceivable. Further, a method of forming a conductor pattern constituting the vertical conductor 4 on the connecting shaft 11 is conceivable.
  • the connecting shaft insertion hole 12 is a hole formed in the surface 10b of the waveguide 10 so that the connecting shaft 11 can penetrate freely.
  • the diameter of the connecting shaft insertion hole 12 is larger than that of the connecting shaft 11, but is desirably sufficiently small compared to the wavelength of the high frequency signal propagating through the waveguide 10.
  • the hole diameter of the first hole 6 formed so that the vertical conductor 4 can loosely penetrate the surface 10 a of the waveguide 10 is sufficiently larger than the wavelength of the high-frequency signal propagating in the waveguide 10. A small size is desirable.
  • the rotating shaft 13 is formed of a metal conductor, one end is connected to the other end of the connecting shaft 11, and the other end is connected to the rotating device 14.
  • the connection method between the rotary shaft 13 and the connection shaft 11 is the same as the connection method between the vertical conductor 4 and the connection shaft 11. Further, the connection position between the rotation shaft 13 and the connection shaft 11 is outside the waveguide 10.
  • Rotating device 14 is realized by an electric motor such as a DC motor, an AC motor, or a stepping motor, for example.
  • an electric motor such as a DC motor, an AC motor, or a stepping motor, for example.
  • the control device 15 includes a rotation drive device 16 and a rotation control device 17, and is a device that individually controls the rotation of the plurality of rotation devices 14.
  • the rotation drive device 16 is a motor driver realized by, for example, a network interface such as a semiconductor integrated circuit or a communication device, a power supply circuit, a drive current generation circuit, or the like.
  • the rotation drive device 16 drives the rotation device 14 so that the rotation shaft 13 rotates to a predetermined angle by outputting a drive current corresponding to the command value output from the rotation control device 17 to the rotation device 14.
  • the rotation control device 17 is, for example, a storage device such as a RAM (Random Access Memory) or a hard disk, a semiconductor integrated circuit mounted with a CPU (Central Processing Unit) or a user interface such as a keyboard or mouse, and a communication device. It has a network interface.
  • the rotation control device 17 calculates, for example, the rotation angle of the rotation shaft 13 based on information input through the user interface or information stored in the storage device, and calculates the calculated rotation angle through the network interface.
  • the indicated command value is output to the rotary drive device 16.
  • the rotation drive device 16 that has received the command value output from the rotation control device 17 outputs a drive current corresponding to the command value output from the rotation control device 17 to the rotation device 14, so that the rotation shaft 13 has a predetermined value.
  • the rotating device 14 is driven to rotate to an angle.
  • the control device 15 is described as being divided into the rotation drive device 16 and the rotation control device 17, but only the control device 15 having both functions may be used.
  • the connection shaft 11 and the rotation device 14 are connected via the rotation shaft 13.
  • the connection shaft 11 and the rotation device 14 may be directly connected.
  • not only the rotating shaft 13 but also the connecting shaft may be used, and the vertical conductor 4 and the rotating device 14 may be directly connected.
  • the internal electric field of the waveguide 10 is coupled to the vertical conductor 4, and a current is generated in the vertical conductor 4.
  • electric power is supplied to the circularly polarized wave element antenna 2 to radiate circularly polarized waves.
  • the phase difference between the circularly polarized elements radiated from each circularly polarized element antenna 2 is different from the phase difference of the current flowing through each vertical conductor 4 and the reference angle of each circularly polarized element antenna 2. It is determined by the difference in physical rotation angle.
  • Each circularly polarized wave element antenna 2 is connected to each rotating shaft 13 via the vertical conductor 4 and the connecting shaft 11, and each rotating shaft 13 is connected to each rotating device 14.
  • the control apparatus 15 can control the rotation angle of each circularly polarized wave element antenna 2 by controlling each rotation apparatus 14 separately. This corresponds to the fact that the excitation phase of the element antenna can be individually controlled.
  • the rotating device 14 is connected to the vertical conductor 4 connected to each circularly polarized wave element antenna 2 via the connecting shaft 11 and the rotating shaft 13, and each rotating device 14 is controlled.
  • An active phased array antenna can be configured by controlling the device 15 at a time, and desired directivity control can be performed.
  • the antenna device also has a gap between the circularly polarized wave element antenna 2 that is a helical antenna and the first surface 10 a of the waveguide 10.
  • the disk 5 having a radius of a quarter of the wavelength with respect to the operating frequency, the current induced on the first surface 10a of the waveguide 10 by the current flowing on the horizontal conductor 3 is suppressed, and the antenna Therefore, it is possible to suppress the deterioration of the circular polarization characteristics with respect to changes in installation conditions and manufacturing errors.
  • there is a slight variation in the position of the rotating shaft of the electric motor there is a slight variation in the position of the rotating shaft of the electric motor.
  • the disk 5 described above it is possible to reduce the deterioration of the circular polarization characteristics with respect to changes in antenna installation conditions and manufacturing errors. Therefore, an active phased array antenna with good circular polarization characteristics can be obtained.
  • the shape of the disk 5 may be appropriately hollowed out or deformed as long as the operation does not change.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本発明は、円状の第1の穴6を有する地導体板1と、第1の穴6の中心を通り地導体板1と直交する直線上に中心を配置した円状の第2の穴7を有し、中心が第2の穴7の中心と一致する、地導体板1と略平行に配置された円板状の導体板5と、第1の端が第1の穴を貫通し、第2の端が第2の穴を貫通する線状の第1の導体4と、第1の端が第1の導体の第2の端と接続し、地導体板と略平行に配置されている線状の第2の導体3と、第2の導体の第2の端に接続するアンテナ素子2とを備えたことを特徴とするアンテナ装置を提供する。

Description

アンテナ装置およびアレーアンテナ装置
 この発明は、円偏波素子アンテナに関するものである。
 無線通信において、効率の良い送受信を可能とするには送信アンテナと受信アンテナの偏波面を一致させることが必要である。そのため、衛星通信のように、人工衛星が回転しアンテナの偏波面が定まらない場合には、円偏波が良く用いられる。円偏波を励振することができるアンテナ素子の1つにヘリカルアンテナがある。ヘリカルアンテナは導体をらせん状に巻いた形状からなるアンテナであり、円偏波励振回路を用いずに簡易な構成で円偏波励振が可能であり、衛星通信用アンテナ等に広く用いられている。
 ヘリカルアンテナへの給電には、ヘリカルアンテナ素子を構成する線状導体の末端を地導体に設けた穴に通して同軸線路を構成し、給電回路(例えば導波管)に接続する方法が良く用いられる。しかし、ヘリカルアンテナ素子と地導体の間隔が狭いと両者の電磁結合によりヘリカルアンテナの円偏波特性(軸比)が変化する。このため、製造公差が問題とならない周波数での使用に限られたり、歩留まりが悪くなったりするという問題があった。
 特許文献1ではヘリカルアンテナの実用方法が開示されている。特許文献1では、マイクロストリップアンテナに高周波電流を供給する給電ピンの先端に容量性素子を介してヘリカルアンテナを付加している。
特開平10-135734
 特許文献1のヘリカルアンテナは上記のように構成されているので、マイクロストリップアンテナとの相互干渉を軽減し、良好な円偏波を得ることができる。しかし、製造公差によりヘリカルアンテナとマイクロストリップアンテナの間隔が変化することに対して、円偏波特性(軸比)への影響を軽減することはできない。そのため、歩留まりが悪くなったり、製造公差を小さくするためにヘリカルアンテナ素子を固定する支持構造を新たに設けたりする必要があるという課題があった。
 この発明は上記のような問題を解決するためになされたものであり、ヘリカルアンテナ素子と地導体の間隔に対して円偏波特性の変化が小さいアンテナ装置を得ることを目的とする。
 この発明に係るアンテナ装置は、円状の第1の穴を有する地導体板と、第1の穴の中心を通り前記地導体板と直交する直線上に中心を配置した円状の第2の穴を有し、中心が第2の穴の中心と一致する、地導体板と略平行に配置された円板状の導体板と、第1の端が第1の穴を貫通し、第2の端が第2の穴を貫通する線状の第1の導体と、第1の端が第1の導体の第2の端と接続し、地導体板と略平行に配置されている線状の第2の導体と、第2の導体の第2の端に接続するアンテナ素子とを設けたものである。
 本発明は、ヘリカルアンテナ素子と地導体の間隔に対して円偏波特性の変化が小さいアンテナ装置を得ることができる。
実施の形態1に係るアンテナ装置を示す構成図である。 実施の形態1に係るアンテナ装置を示す断面図である。 実施の形態1に係るアンテナ装置(円板5なし)において、水平導体3を流れる電流20により誘起される電流21の分布を示す図である。 実施の形態1に係るアンテナ装置(円板5あり)において、水平導体3を流れる電流20により誘起される電流22の分布を示す図である。 実施の形態1に係るアンテナ装置のアンテナ設置高さの誤差ΔHに対する円偏波素子アンテナ2の軸方向の軸比の変化を示すグラフである。 実施の形態2に係るアンテナ装置を示す構成図である。 実施の形態2に係るアンテナ装置を示す断面図である。 実施の形態2に係るアンテナ装置のアンテナ設置高さの誤差ΔHに対する円偏波素子アンテナ2の軸方向の軸比の変化を示すグラフである。 実施の形態3に係るアンテナ装置を示す断面図である。 実施の形態3に係るアンテナ装置の支持部材9aの底面を示す模式図である。 実施の形態3に係るアンテナ装置の支持部材9bの構造を示す模式図である。 地導体1に対しアンテナ装置を直線状に配列したアレーアンテナ装置の構成の一例を示す図である。 導波路10の1つの面に対し、アンテナ装置を導波管の中心軸に対して直線状に配列したアレーアンテナ装置の構成の一例を示す図である。 導波路10の1つの面に対し、アンテナ装置を導波管の中心軸に対して交互に配列したアレーアンテナ装置の構成の一例を示す図である。 実施の形態5に係るアレーアンテナ装置を示す構成図である。 実施の形態5に係るアレーアンテナ装置を示す断面図である。
 以下、この発明の実施の形態について、図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係るアンテナ装置を示す構成図である。図1において、1は地導体(地導体板)、2は円偏波素子アンテナ(アンテナ素子)、3は水平導体(第2の導体)、4は垂直導体(第1の導体)、5は円板(導体板)、6は地導体1に設けられた第1の穴、7は円板5に設けられた第2の穴である。
 また、図2は垂直導体4を含み地導体1に垂直な面における断面図である。
 地導体1は、銅やアルミ等の金属で構成され、アンテナ装置のグランドとして動作する。なお、本実施の形態では、図1および図2に示すように、地導体1は方形の板状で示されているが、アンテナ装置のグランドとしての動作が得られれば適宜自由な形状を選択可能である。例えば、円形でも良い。
 なお、地導体1の円偏波素子アンテナ(アンテナ素子)2が設けられる面と反対側の面には給電線路(図示しない)が設けられる。
 円偏波素子アンテナ2は、円偏波を送信または受信するアンテナである。本実施の形態では、図1および図2に示すように、円偏波を送信または受信する方向を軸に対し、線状の導体を軸の側面にらせん状に巻いたような構成をしたヘリカルアンテナを例としたが、線状の導体を軸に対し垂直な円形となるように巻いたカールアンテナ、またはスパイラルアンテナであってもよい。
 円偏波素子アンテナ2は、所望の周波数において良好な円偏波が放射されるように、直径、ピッチおよび巻数が設計されている。
 水平導体3は、線状の導体であり、一端が円偏波素子アンテナ2の下端に接続され、もう一方の端が垂直導体4に接続されて地導体1の上方に地導体1と平行となるように配置される。
 垂直導体4は、線状の導体であり、一端が水平導体3に接続され、もう一方の端が給電線路(図示しない)に接続されるように第1の穴6および第2の穴7を通って配置される。なお、垂直導体4の中心軸は、円偏波素子アンテナ2の中心軸と一致している。
 円板5は、地導体1に対して平行に配置された板状の導体板である。円板5の中心は、垂直導体4の中心軸と一致している。なお、円板5は、水平導体3の間隔が一定となるよう、垂直導体4に固定されている。このとき、円板5は垂直導体4と電気的に接続されないような方法で固定される。
 円板5の半径は、動作周波数に対する波長をλとすると、λ/4(動作波長の4分の1)とするのが望ましい。更には、円板5の半径から第1の穴6の半径を差し引いた長さをλ/4とするのが望ましい。
 なお、円板5と地導体1との間隔は、伝送経路とみなされる限界であるλ/4以内であればよく、λ/10(動作波長の10分の1)とするのが望ましい。
 第1の穴6は、垂直導体4が地導体1に接触しないように地導体1に設けられている。第1の穴6の断面は円形で、垂直導体4の中心軸が第1の穴6の中心を通るようにするのが望ましい。これにより、垂直導体4を内導体、地導体1を外導体とする同軸線路が形成される。
 第2の穴7は、垂直導体4が円板5に接触しないように円板5に設けられている。第2の穴7の断面は円形であり、円板5の中心をとおる垂直軸と第2の穴7の中心をとおる垂直軸が一致していることが望ましい。第1の穴6と同様、垂直導体4の中心軸が第2の穴7の中心を通るようにするのが望ましい。
 次に、本実施の形態に係るアンテナ装置の動作について説明する。なお、送信アンテナと受信アンテナには可逆性が成り立つため、ここでは送信アンテナとしての動作についてのみ説明する。
 給電回路(図示せず)により、垂直導体4と地導体1の間に高周波電圧が印加されると、両者に電荷の移動が発生し交流電流が流れる。その結果、垂直導体4および水平導体3を介して円偏波素子アンテナ2に高周波電流が流れ、円偏波を放射する。
 図3、図4を用いて円板5の効果を説明する。図3は、円板5を設けない場合の円偏波素子アンテナの構成を表す断面図で、図4は、円板5を設けた場合の円偏波素子アンテナの構成を表す断面図である。
 図3、図4において、図1と同一符号は同一または相当部分を示している。
 図3、図4において、20は垂直導体4から水平導体3を流れる電流を示し、21と22は、電流20によって誘起された電流である。
 まず、円板5を設けない場合の動作について説明する。
 図3において、垂直導体4を流れる電流からの放射は、円偏波素子アンテナ2の円偏波特性を劣化させるため、垂直導体4が地導体1から突出する長さは極力短くすることが望ましい。しかし、垂直導体4が地導体1から突出する長さを短くした場合、水平導体3と地導体1が近接するため、水平導体3を流れる電流20に誘起された電流21が地導体1上に流れる。
 これは言い換えると水平導体3と地導体1の間に強い電界が生じることとなり、円偏波素子アンテナ2の円偏波特性に影響を与える。このため、地導体1の形状および地導体1と円偏波素子アンテナ2との相対位置は、使用したい状況に応じた調整が必要となる。
 したがって、アンテナを設置する際、地導体1の形状が変わったり、地導体1と円偏波素子アンテナ2の相対位置が異なったりすると、あらかじめ設計された円偏波特性が得られなくなる。
 これに対し、この発明の実施の形態1に係るアンテナ装置では、図4に示すように、地導体1と水平導体3との間に円板5を追加している。
 円板5と地導体1との間隔はλ/4以下であり動作周波数に対する波長λに対して十分小さいので、円板5と地導体1の間をラジアルライン導波路と見なすことができる。
 さらに、円板5の半径をλ/4としているので、円板5から地導体1を見たときのインピーダンスが非常に高くなり、円板5から地導体1への電流が遮断される。
 図4に示すように、電流により誘起された電流22は円板5上を流れるため、地導体1には流れない。したがって、地導体1の形状が変わったり円偏波素子アンテナ2と地導体1の相対位置が異なったりしても、アンテナの円偏波特性に影響を与えることが無い。
 このように、円板5が設けられた条件下において、円偏波素子アンテナ2を設計することにより、アンテナの設置条件の変化や製造誤差に対して円偏波特性の劣化が小さいアンテナ装置を得ることができる。
 次に、本実施の形態に係るアンテナ装置の円板5の効果を説明するため、電磁界シミュレーションを行った結果を示す。
 図5は、地導体1と水平導体3の間の距離の変動量、つまりアンテナ設置高さの誤差ΔHに対する円偏波素子アンテナ2の軸方向の軸比の変化を示したグラフである。計算した周波数は12GHzである。
 円板5を設けない場合、ΔH=0(設計寸法通り)のとき軸比は2.0dBであるのに対し、ΔH=-0.5mmでは軸比が4.2dBにまで劣化しており、わずかな誤差で円偏波特性が大きく劣化することがわかる。
 一方、円板5を設けた場合、ΔH=±1mmでも軸比の変化量は±0.5dBにとどまり、円偏波特性の変動を緩和できることが確認できる。
 以上説明したように、本実施の形態に係るアンテナ装置では、ヘリカルアンテナである円偏波素子アンテナ2と、地導体1の間に動作周波数に対する波長の四分の一の半径をもつ円板5を備えることで、水平導体3上を流れる電流により地導体1上で誘起される電流を抑制し、アンテナの設置条件の変化や製造誤差に対して円偏波特性の劣化を抑えることができる。
実施の形態2.
 実施の形態1では、地導体1と円偏波素子アンテナ2との間に円板5を設けた場合について説明を行った。本実施の形態では、地導体1と円板5との間に、短絡導体(第3の導体)8を新たに設けた場合について説明する。
 図6は、本実施の形態に係るアンテナ装置を示す構成図である。図6において、実施の形態1と同一の構成には同一符号を付し、説明を省略する。また、図7は垂直導体4を含み地導体1に垂直な面における断面図である。
 本実施の形態に係るアンテナ装置と、実施の形態1に係るアンテナ装置との相違点は、円板5と地導体1とを電気的に接続する短絡導体8を新たに設けた点である。
 短絡導体8は、円板5に設けられた第2の穴7の縁に沿うように配置された円筒状の導体である。短絡導体8の上端は円板5に、短絡導体8の下端は地導体1に、それぞれ電気的に接続される。
 次に、本実施の形態に係るアンテナ装置の動作について説明する。基本的には、実施の形態1で説明した動作と一緒であるが、本実施の形態に係るアンテナ装置の場合、円板5と地導体1だけではなく、短絡導体8により、チョーク構造が形成され、水平導体3から地導体1に流れる電流をより効果的に遮断することができる。このように円板5の他に短絡導体8を用いることにより、円偏波素子アンテナ2の円偏波特性を円板5だけを用いた場合よりも更に改善し、かつアンテナの設置条件の変化や製造誤差に対して円偏波特性の劣化が小さいアンテナ装置を得ることができる。
 本実施の形態に係るアンテナ装置のチョーク構造の効果を説明するため、電磁界シミュレーションを行った結果を図8示す。
 図8は、地導体1と水平導体3の間の距離の変動量、つまりアンテナ設置高さの誤差ΔHに対する円偏波素子アンテナ2の軸方向の軸比の変化を示したグラフである。
 実施の形態1で説明したように、円板5を設けることで、ΔH=±1mmでも軸比の劣化量は±0.5dB以下となり円偏波特性の変動を緩和できる。一方、円板5に短絡導体8を追加した場合、軸比の絶対値は短絡導体8がない場合よりも小さくなり円偏波特性が良好となることがわかる。また、ΔHに対する軸比の変化量は±0.7dBであり、短絡導体8がない場合とほぼ同等である。
 以上説明したように、本実施の形態に係るアンテナ装置では、円板5と地導体1を電気的に接続する短絡導体8を新たに備えたことにより、アンテナの設置条件の変化や製造誤差に対して円偏波特性の劣化が小さいアンテナ装置を得ることができる。
実施の形態3.
 実施の形態2では、地導体1と円板5との間に、短絡導体8を新たに備えることにより、アンテナの設置条件の変化や製造誤差に対し、円偏波特性の劣化を小さくする場合について説明した。
 本実施の形態では、支持部材を備えた場合について説明する。
 図9は本発明の実施の形態に係るアンテナ装置の断面図である。図9において、9aは円偏波素子アンテナ2を固定する支持部材(第1の誘電体)、9bは垂直導体4を固定する支持部材(第2の誘電体)、9cは円板5を固定する支持部材(第3の誘電体)である。
 図9において、実施の形態1、2と同一の構成には同一符号を付し、説明を省略する。なお、図9は垂直導体4を含み地導体1に垂直な面における断面図を表している。
 本実施の形態に係るアンテナ装置と、実施の形態1に係るアンテナ装置との相違点は、円偏波素子アンテナ2、垂直導体4、円板5を支持する支持部材を新たに備えた点である。
 支持部材9a~9cの材質は、ポリテトラフルオロエチレン(PTFE)などの誘電体が望ましい。なお、使用する材質に合わせてアンテナが設計されていれば、支持部材として利用される材質を適宜選択してもよい。
 支持部材9aは、望ましくは円柱形状であり、支持部材9aの側面に円偏波素子アンテナ2を固定できるようにしている。
 図10は、支持部材9aの底面を表す模式図である。なお、見やすくするため、支持部材9cは図10から省略している。
 支持部材9aの底面には、図10に示すように水平導体3が固定できるようにしている。その他については、実施の形態1の場合と同様、水平導体3の一端は円偏波素子アンテナ2の下端に接続され、もう一方の端が垂直導体4に接続される。
 図11は、支持部材9bの構造を表す模式図である。支持部材9bは、例えば円柱をその中心軸を含む面で半分に割った形状を有しており、円柱の中心軸に沿うように垂直導体4が固定できるようにしている。その他については、実施の形態1の場合と同様、垂直導体4は、一端が水平導体3のもう一方の端に接続され、垂直導体4のもう一方の端には給電線路(図示せず)に接続される。
 支持部材9bと垂直導体4は、その一部が地導体1の第1の穴6を貫通するように配置される。当然、第1の穴6は、支持部材9bが回転する際、地導体1と接触しない大きさとする。また、支持部材9bは、支持部材9bの中心軸が支持部材9aの中心軸に一致するように、支持部材9aの底面に固定される。支持部材9bは支持部材9aと一体形成してもよい。
 支持部材9cは、支持部材9bの中心軸と垂直に、地導体1から所定の間隔を設けて支持部材9bに固定された板状の誘電体である。支持部材9cの底面には円板5が固定できるようにしている。支持部材9cの中心には、支持部材9bが接触しないで回転することが可能な第3の穴が設けられている。支持部材9cの外周は望ましくは円形であり、支持部材9cの中心軸は支持部材9bおよび支持部材9aに一致している。
 なお、第3の穴の大きさを、支持部材9bがちょうど通る大きさとし、これにより、支持部材9bと支持部材9cとを固定してもよい。更に、支持部材9cは支持部材9bと一体形成しても良い。
 なお、円偏波素子アンテナ2、水平導体3、垂直導体4、および円板5に対し、各支持部材を固定する方法は、導体パターンを形成したフィルム基板を巻きつける方法や、導体パターンをめっきや蒸着などによって形成する方法が考えられる。
 例えば、円偏波素子アンテナ2と水平導体3の導体パターンを形成したフィルム基板を支持部材9aに巻きつけ、垂直導体4の導体パターンを形成したフィルムを支持部材9bに張り付け、支持部材9cには、円板5の導体パターンを形成するようめっきを行ってもよい。
 以上説明したように、支持部材で円偏波素子アンテナ2、水平導体3、垂直導体4及び円板5を固定することにより、実施の形態1及び実施の形態2の場合と同様、水平導体3上の電流により誘起された電流が地導体1に流れることを遮断することが可能となる。また、地導体1の形状が変わったり、円偏波素子アンテナ2と地導体1の相対位置が異なったりする等、アンテナの設置条件の変化や製造誤差が生じた場合であっても、円偏波特性の劣化を抑えることができる。
 また、本実施の形態の別の効果として、円偏波素子アンテナ2の製作精度が向上することが挙げられる。水平導体3と円板5の間隔が製造の過程で変化してしまうと、水平導体3上の電流により円板5に誘起された電流の振幅および位相が変化し、円偏波素子アンテナ2の円偏波特性に及ぼす影響が一定では無くなるが、本発明の実施の形態では、支持部材9bと支持部材9cが固定されているため、水平導体3と円板5の間隔を一定に保つことができる。つまり、アンテナ装置を製造する際のばらつきを抑えることができる。
実施の形態4.
 実施の形態1~3では、アンテナ装置を単体として扱った場合について説明した。本実施の形態では、アンテナ装置を複数構成(複数配置)したアレーアンテナが形成された場合について説明する。
 本実施の形態に係るアレーアンテナ装置で用いられるアンテナ装置は、前記の実施の形態1~3で説明したアンテナ装置のいずれかの構成をアレーアンテナの素子アンテナの構成とし、その複数個を適宜配列して給電することによりアレーアンテナを構成する。
 本実施の形態に係るアレーアンテナ装置の構成の一例を図12に示す。
 図12の例では、アレーアンテナの素子アンテナが直線状に配列されたリニアアレーアンテナを示している。
 また、図13はアレーアンテナの構成の別の一例を示す説明図である。図13において10は導波路(導波管)、10aは導波路10の1つの面である。この導波路10の第1の面10aは、図12における地導体1に相当する。従って、この第1の面10aに設けられた穴も第1の穴6とする。
 また、図13において、垂直導体4は、導波路10の第1の面10aに設けた穴6を通り、導波路10の内部まで延伸される。
 導波路10に高周波電圧が印加されると、導波路10の内部電界が垂直導体4に結合し、垂直導体4に電流が生じる。これにより円偏波素子アンテナ2に電力が供給され円偏波が放射される。
 このとき、各々の円偏波素子アンテナ2から放射される円偏波の素子間位相差は、各々の垂直導体4に流れる電流の位相差と、各々の円偏波素子アンテナ2の基準角度に対する物理的な回転角の差とによって定められる。
 以上のように、実施の形態1~3で説明したアンテナ装置のいずれかの構成をアレーアンテナの素子アンテナの構成とし、その複数個を導波路の1つの面上に適宜配列して給電することによってアレー化による指向性合成を行う事が可能となり所望の放射特性を実現することができる。
 なお、この実施の形態4では、複数の円偏波素子アンテナ2が、導波路10の管軸中心線の一方の側に等間隔で配置されている例を示しているが、これは一例に過ぎず、例えば、図14に示すように、隣接している円偏波素子アンテナ2が、管軸中心線を挟んで、互いに反対の位置に並ぶように配置されていてもよい。
 また、隣接している円偏波素子アンテナ2の間隔がそれぞれ異なるように配置されていてもよい。
 また、複数の円偏波素子アンテナ2が、互いに接触しない、つまり、物理的に干渉しない範囲であれば、任意の位置に配置されていてもよい。
 本実施の形態では、複数の垂直導体4における導波路10の内部への挿入長が全て同一の長さである例を示しているが、所望の放射パターンを得るためのアレーアンテナとしての励振振幅分布と、導波路10の給電端におけるインピーダンス特性とに基づいて決定されていれば、各々の垂直導体4は異なる長さであってもよい。
実施の形態5.
 実施の形態4では、実施の形態1~3で説明したアンテナ装置のいずれかの構成をアレーアンテナの素子アンテナの構成とし、その複数個を導波路の1つの面上に適宜配列して給電した場合について説明した。本実施の形態では、円偏波素子アンテナ2を個別に制御できるようにした場合について説明する。
 図15はこの発明の実施の形態5に係るアンテナ装置を示す構成図である。図16は図15のアンテナ装置におけるA-A断面図である。図15および図16において図1~14と同一の構成には同一符号を付し、説明を省略する。
 図15および図16において、11は接続軸、12は接続軸挿入孔(第4の穴)、13は回転軸、14は回転装置、15は制御装置である。10bは、導波路10の第1の面10aと平行に向かい合う第2の面である。また、16は制御装置15に備えられた回転駆動装置であり、17は制御装置15に備えられた回転制御装置である。
 接続軸11は、例えば誘電体などの絶縁体で形成されている。接続軸11は、一端が導波路10の第1の面10aと向かい合う第2の面10bに設けられた接続軸挿入孔12を貫通するように挿入されており、もう一端が垂直導体4の下端と接続されている。
 接続軸11と垂直導体4との接続方法としては、例えば、接続軸11にネジ穴を設けて、垂直導体に雄ネジを設けることで接続軸11と垂直導体4とをネジ止めする方法が考えられる。また、接続軸11に嵌め合い穴を設けて、垂直導体4を嵌め合い穴に圧入する方法が考えられる。また、接続軸11に垂直導体4を構成する導体パターンを形成する方法が考えられる。
 接続軸挿入孔12は、接続軸11が遊貫できるように、導波路10の面10bに形成されている穴である。接続軸挿入孔12の穴径は、接続軸11よりも大きいが、導波路10内を伝搬する高周波信号の波長に比べて十分小さい大きさであることが望ましい。同様に、導波路10の面10aに対し、垂直導体4が遊貫できるように形成されている第1の穴6の穴径も、導波路10内を伝搬する高周波信号の波長に比べて十分小さい大きさであることが望ましい。
 回転軸13は、金属導体で形成されており、一方の端が接続軸11の他端と接続され、もう一方の端が回転装置14と接続されている。回転軸13と接続軸11との接続方法は、垂直導体4と接続軸11との接続方法と同様である。また、回転軸13と接続軸11との接続位置は、導波路10の外部である。
 回転装置14は、例えば、直流モータ、交流モータ、ステッピングモータなどの電動機で実現される。回転装置14により回転軸13を回転させることで、回転軸に接続された接続軸11、垂直導体4を介して円偏波素子アンテナ2を回転させる。
 制御装置15は、回転駆動装置16と回転制御装置17を備えており、複数の回転装置14の回転を個別に制御する装置である。
 回転駆動装置16は、例えば、半導体集積回路、通信機器などのネットワークインタフェース、電源回路、駆動電流発生回路などで実現されるモータドライバである。
 回転駆動装置16は、回転制御装置17から出力された指令値に対応する駆動電流を回転装置14に出力することで、回転軸13が所定の角度まで回転するように回転装置14を駆動する。
 回転制御装置17は、例えば、RAM(Random Access Memory)又はハードディスクなどの記憶装置、CPU(Central Processing Unit)を実装している半導体集積回路又はワンチップマイコン、キーボード又はマウスなどのユーザインタフェース及び通信機器などのネットワークインタフェースを備えている。
 回転制御装置17は、例えば、ユーザインタフェースによって入力された情報、あるいは、記憶装置に記憶された情報に基づいて、回転軸13の回転角度などを算出し、ネットワークインタフェースを通じて、算出した回転角度などを示す指令値を回転駆動装置16に出力する。
 回転制御装置17から出力された指令値を受け取った回転駆動装置16は、回転制御装置17から出力された指令値に対応する駆動電流を回転装置14に出力することで、回転軸13が所定の角度まで回転するように回転装置14を駆動する。
 なお、本実施の形態では、制御装置15を回転駆動装置16と回転制御装置17に分けて説明したが、双方の機能を併せ持つ制御装置15だけでもよい。
 また、本実施の形態では、接続軸11と回転装置14との間に回転軸13を介して接続する場合について説明したが、接続軸11と回転装置14を直接接続してもよい。
 更に、アンテナ装置の設計上、問題が無ければ、回転軸13を使わないだけではなく、接続軸も使わず、垂直導体4と回転装置14を直接接続しても良い。
 実施の形態4で説明したとおり、導波路10に高周波電圧を印加すると、導波路10の内部電界が垂直導体4に結合し、垂直導体4に電流が生じる。これにより円偏波素子アンテナ2に電力が供給され円偏波が放射される。このとき、各々の円偏波素子アンテナ2から放射される円偏波の素子間位相差は、各々の垂直導体4に流れる電流の位相差と、各々の円偏波素子アンテナ2の基準角度に対する物理的な回転角の差とによって定められる。
 各々の円偏波素子アンテナ2は、垂直導体4および接続軸11を介して、各々の回転軸13と接続され、各々の回転軸13は、各々の回転装置14と接続されている。このため、制御装置15は、各々の回転装置14を個別に制御することで、各々の円偏波素子アンテナ2の回転角を個別に制御することができる。これは素子アンテナの励振位相を個別に制御できることに相当する。
 以上のように、各々の円偏波素子アンテナ2に接続されている垂直導体4に対し、接続軸11および回転軸13を介して回転装置14をそれぞれに接続し、それぞれの回転装置14を制御装置15で一度に制御することによりアクティブフェーズドアレーアンテナを構成することができ、所望の指向性制御を行うことが可能となる。
 また、実施の形態1~3で説明したのと同様、本実施の形態に係るアンテナ装置でも、ヘリカルアンテナである円偏波素子アンテナ2と、導波路10の第1の面10aとの間に、動作周波数に対する波長の四分の一の半径をもつ円板5を備えることで、水平導体3上を流れる電流により導波路10の第1の面10a上で誘起される電流を抑制し、アンテナの設置条件の変化や製造誤差に対して円偏波特性の劣化を抑えることができる。
 一般に、電動機の回転軸の位置には若干のばらつきが生じる。しかし、前述した円板5を構成することによって、アンテナの設置条件の変化や製造誤差に対して円偏波特性の劣化を小さくできる。したがって、円偏波特性の良いアクティブフェーズドアレーアンテナを得ることができる。
 なお、実施の形態1から5において、円板5の形状については、その動作が変わらない範囲内で適宜くりぬき部や変形を加えてもよい。

Claims (9)

  1.  円状の第1の穴を有する地導体板と、
     前記第1の穴の中心を通り前記地導体板と直交する直線上に中心を配置した円状の第2の穴を有し、中心が前記第2の穴の中心と一致する、前記地導体板と略平行に配置された円板状の導体板と、
     第1の端が前記第1の穴を貫通し、第2の端が前記第2の穴を貫通する線状の第1の導体と、
     第1の端が前記第1の導体の第2の端と接続し、前記地導体板と略平行に配置されている線状の第2の導体と、
     前記第2の導体の第2の端に接続するアンテナ素子と
     を備えたことを特徴とするアンテナ装置。
  2.  前記地導体板と前記導体板との間に配置され、一方の縁端が前記第1の穴の縁に接続し、もう一方の縁端が前記第2の穴の縁に接続する円筒状の第3の導体と
    を備えたことを特徴とする請求項1に記載のアンテナ装置。
  3.  前記導体板の半径の長さから前記第2の穴の半径の長さを引いた長さが動作波長の4分の1であることを特徴とする請求項1または2に記載のアンテナ装置。
  4.  請求項1から3のいずれか一項に記載のアンテナ装置が複数配置され、
     前記地導体板が、複数配置された前記アンテナ装置によって共有されることを特徴とするアレーアンテナ装置。
  5.  第1の面に円状の第1の穴を有する導波管と、
     前記第1の面と直交する前記第1の穴の中心を通り前記第1の面と直交する直線上に中心を配置した円状の第2の穴を有し、中心が前記第2の穴の中心と一致する、前記導波管の第1の面と略平行に配置された円板状の導体板と、
     第1の端が前記第1の穴を貫通し、第2の端が前記第2の穴を貫通する線状の第1の導体と、
     第1の端が前記第1の導体の第2の端と接続し、前記第1の面と略平行に配置されている線状の第2の導体と、
     前記第2の導体の第2の端に接続するアンテナ素子と
     を備えたことを特徴とするアンテナ装置。
  6.  前記導波管と前記導体板との間に配置され、一方の縁端が前記第1の穴の縁に接続し、もう一方の縁端が前記第2の穴の縁に接続する円筒状の第3の導体と
    を備えたことを特徴とする請求項5に記載のアンテナ装置。
  7.  前記導体板の半径の長さから前記第2の穴の半径の長さを引いた長さが動作波長の4分の1であることを特徴とする請求項5または6に記載のアンテナ装置。
  8.  請求項5から7のいずれか一項に記載のアンテナ装置が複数配置され、
     前記導波管が、複数配置された前記アンテナ装置によって共有されることを特徴とするアレーアンテナ装置。
  9.  第1の面に複数の円状の第1の穴が施され、前記第1の面と対向している第2の面に複数の接続軸挿入孔が施されている導波管と、
     第1の端が前記導波管の内側に、第2の端が前記導波管の外側に配置されるよう、前記複数の第1の穴にそれぞれ挿入されている複数の線状の第1の導体と、
     円状の第2の穴を有し、前記複数の線状の第1の導体にそれぞれ前記第2の穴が挿入されるよう、前記導波管の外側に前記第1の面と略平行に配置されている複数の円板状の導体板と、
     第1の端が、前記複数の線状の第1の導体の第2の端とそれぞれ接続し、前記第1の面と略平行に配置されている複数の線状の第2の導体と、
     前記複数の線状の第2の導体の第2の端にそれぞれ接続されている複数のアンテナ素子と、
     前記複数の接続軸挿入孔のそれぞれに挿入されており、第1の端が前記複数の線状の第1の導体の第1の端とそれぞれ接続されている複数の接続軸と、
     前記複数の接続軸のそれぞれを回転させる複数の回転装置と、
     前記複数の回転装置の回転を個別に制御する制御装置と、
     を備えたアレーアンテナ装置。
PCT/JP2018/006614 2018-02-23 2018-02-23 アンテナ装置およびアレーアンテナ装置 WO2019163071A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/006614 WO2019163071A1 (ja) 2018-02-23 2018-02-23 アンテナ装置およびアレーアンテナ装置
JP2020501937A JP6739678B2 (ja) 2018-02-23 2018-02-23 アレーアンテナ装置
US16/966,993 US11223137B2 (en) 2018-02-23 2018-02-23 Array antenna device
EP18906900.8A EP3742554B1 (en) 2018-02-23 2018-02-23 Antenna device and array antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/006614 WO2019163071A1 (ja) 2018-02-23 2018-02-23 アンテナ装置およびアレーアンテナ装置

Publications (1)

Publication Number Publication Date
WO2019163071A1 true WO2019163071A1 (ja) 2019-08-29

Family

ID=67688060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006614 WO2019163071A1 (ja) 2018-02-23 2018-02-23 アンテナ装置およびアレーアンテナ装置

Country Status (4)

Country Link
US (1) US11223137B2 (ja)
EP (1) EP3742554B1 (ja)
JP (1) JP6739678B2 (ja)
WO (1) WO2019163071A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11715875B2 (en) * 2020-11-06 2023-08-01 Electronics And Telecommunications Research Institute Individual rotating radiating element and array antenna using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336448A (en) * 1976-09-17 1978-04-04 Kokusai Denshin Denwa Co Ltd Circularly polarized linear antenna
US5345248A (en) * 1992-07-22 1994-09-06 Space Systems/Loral, Inc. Staggered helical array antenna
JPH06310930A (ja) * 1993-04-27 1994-11-04 Mitsubishi Electric Corp アンテナ装置
JPH0878946A (ja) * 1994-09-01 1996-03-22 Mitsubishi Electric Corp ヘリカルアンテナのアレー構造
JPH10135734A (ja) 1996-10-31 1998-05-22 Kyocera Corp 共用アンテナ装置およびこれを用いた携帯無線機
JPH11308019A (ja) * 1998-04-17 1999-11-05 Yokowo Co Ltd アレーアンテナ
WO2003107483A1 (en) * 2002-06-12 2003-12-24 Marine-Watch Ltd Helix antenna
JP2004048369A (ja) * 2002-07-11 2004-02-12 Alps Electric Co Ltd 複合アンテナ
JP2007306368A (ja) * 2006-05-12 2007-11-22 Furuno Electric Co Ltd アンテナ装置及び受信装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2981949A (en) * 1956-09-04 1961-04-25 Hughes Aircraft Co Flush-mounted plural waveguide slot antenna
US3022506A (en) * 1959-03-27 1962-02-20 Hughes Aircraft Co Arbitrarily polarized slot antenna
DE69302407T2 (de) * 1992-01-23 1996-08-14 Yokowo Seisakusho Kk Zirkularpolarisierte, ebene Antenne
JP3277755B2 (ja) * 1995-05-29 2002-04-22 松下電器産業株式会社 ヘリカル一次放射器とコンバーター
JPH11317619A (ja) * 1998-05-06 1999-11-16 Dx Antenna Co Ltd アンテナ装置
US6115005A (en) * 1998-06-29 2000-09-05 Harris Corporation Gain-optimized lightweight helical antenna arrangement
CN109244630A (zh) * 2018-10-16 2019-01-18 西南交通大学 螺旋反射天线及其构成的高功率容量阵列和发射系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336448A (en) * 1976-09-17 1978-04-04 Kokusai Denshin Denwa Co Ltd Circularly polarized linear antenna
US5345248A (en) * 1992-07-22 1994-09-06 Space Systems/Loral, Inc. Staggered helical array antenna
JPH06310930A (ja) * 1993-04-27 1994-11-04 Mitsubishi Electric Corp アンテナ装置
JPH0878946A (ja) * 1994-09-01 1996-03-22 Mitsubishi Electric Corp ヘリカルアンテナのアレー構造
JPH10135734A (ja) 1996-10-31 1998-05-22 Kyocera Corp 共用アンテナ装置およびこれを用いた携帯無線機
JPH11308019A (ja) * 1998-04-17 1999-11-05 Yokowo Co Ltd アレーアンテナ
WO2003107483A1 (en) * 2002-06-12 2003-12-24 Marine-Watch Ltd Helix antenna
JP2004048369A (ja) * 2002-07-11 2004-02-12 Alps Electric Co Ltd 複合アンテナ
JP2007306368A (ja) * 2006-05-12 2007-11-22 Furuno Electric Co Ltd アンテナ装置及び受信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3742554A4

Also Published As

Publication number Publication date
US11223137B2 (en) 2022-01-11
US20210044023A1 (en) 2021-02-11
EP3742554B1 (en) 2021-07-14
EP3742554A1 (en) 2020-11-25
EP3742554A4 (en) 2020-12-09
JP6739678B2 (ja) 2020-08-12
JPWO2019163071A1 (ja) 2020-07-16

Similar Documents

Publication Publication Date Title
JP3683422B2 (ja) マイクロストリップアンテナおよびマイクロストリップアンテナ基板
US11128053B2 (en) Array antenna device
US20100245204A1 (en) Circularly polarized antenna for satellite communication
US10381737B2 (en) 3D printed miniaturized quadrifilar helix antenna
WO2012134709A1 (en) Wireless communications device including side-by-side passive loop antennas and related methods
JP2003078336A (ja) 積層スパイラルアンテナ
JP2002359515A (ja) M型アンテナ装置
US11349184B2 (en) Phase shifter including first and second boards having rails thereon and configured to be rotatable with respect to each other and an antenna formed therefrom
JP6456506B2 (ja) アンテナ装置
KR20150080927A (ko) 쿼드리필러 헬릭스 안테나
WO2019163071A1 (ja) アンテナ装置およびアレーアンテナ装置
JP2008066838A (ja) アンテナ装置
Wu et al. A circularly polarized low‐profile magnetoelectric dipole antenna
JPH07501432A (ja) 小型広帯域マイクロストリップアンテナ
JP5562080B2 (ja) アンテナ
WO2019064683A1 (ja) アレーアンテナ装置
US10804609B1 (en) Circular polarization antenna array
KR100768788B1 (ko) 람다/4 단락 스터브를 이용한 위상 보정 기능을 갖는큐에이치에이 급전구조
KR20080027054A (ko) 90도 위상차를 갖는 윌킨슨 전력분배기를 이용한큐에이치에이 피더
US20230238693A1 (en) Antenna device
RU2744042C1 (ru) Слабонаправленная спиральная антенна с круговой поляризацией поля излучения
Fan et al. Wideband circularly polarized SIW antenna array that uses sequential rotation feeding
RU2395877C1 (ru) Квадрифилярная антенна
Chu et al. Design of a broadband dielectric resonator antenna and its application in low sensitivity frequency beam‐scanning array with wide scanning angle and suppressed sidelobes
Chandan et al. Low SLL enhanced gain proximity coupled linear antenna array for 5G wireless communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906900

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501937

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018906900

Country of ref document: EP

Effective date: 20200821