WO2019161717A1 - 光栅图片的生成方法、装置及存储介质 - Google Patents

光栅图片的生成方法、装置及存储介质 Download PDF

Info

Publication number
WO2019161717A1
WO2019161717A1 PCT/CN2019/071990 CN2019071990W WO2019161717A1 WO 2019161717 A1 WO2019161717 A1 WO 2019161717A1 CN 2019071990 W CN2019071990 W CN 2019071990W WO 2019161717 A1 WO2019161717 A1 WO 2019161717A1
Authority
WO
WIPO (PCT)
Prior art keywords
pictures
picture
raster
target
distance information
Prior art date
Application number
PCT/CN2019/071990
Other languages
English (en)
French (fr)
Inventor
陈建江
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019161717A1 publication Critical patent/WO2019161717A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/218Image signal generators using stereoscopic image cameras using a single 2D image sensor using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers

Definitions

  • the present invention relates to, but is not limited to, the field of computers, and in particular, to a method, an apparatus, and a storage medium for generating a raster picture.
  • the raster stereoscopic photograph in the related art can exhibit a remarkable stereoscopic effect and has longitudinal information as compared with a planar photograph. That is, in the naked eye state, the user can distinguish the various levels of information such as the foreground, the middle scene, and the back scene of the raster stereo photo.
  • the three-dimensional photographs of the gratings are manually completed according to different processes, the whole process of shooting, the production of raster files, printing, and the production of stereo photos, etc., which have high professional requirements, especially for photographing and making raster files. Strong professional knowledge, the average user is difficult to do.
  • the raster stereo photos are all performed manually, and need to go through multiple steps, the production is cumbersome, the cost is high, and the user's personal customization is not much.
  • the Taobao shop has a stereoscopic picture customization business, that is, a picture, hand-made by Taobao shop. Making stereo raster files, batch printing, this mode distributes the cost of hand-made raster files by mass printing, and distributes the cost of making the screen.
  • Embodiments of the present invention provide a method, an apparatus, and a storage medium for generating a raster picture.
  • An embodiment of the present invention provides a method for generating a raster image, including: using an original image collected by a camera, and acquiring distance information of multiple targets to the camera, where the original image is displayed with the plurality of a plurality of target pictures corresponding to the target; shifting the plurality of target pictures according to the distance information; generating a shifted raster picture.
  • the embodiment of the present invention further provides a raster image generating apparatus, including: a processing module configured to use an original image collected by a camera, and acquire distance information of a plurality of targets to the camera, wherein the original image is displayed There are a plurality of target screens corresponding to the plurality of targets; a shifting module configured to shift the plurality of target screens according to the distance information; and a generating module configured to generate the shifted raster images.
  • a processing module configured to use an original image collected by a camera, and acquire distance information of a plurality of targets to the camera, wherein the original image is displayed There are a plurality of target screens corresponding to the plurality of targets; a shifting module configured to shift the plurality of target screens according to the distance information; and a generating module configured to generate the shifted raster images.
  • the embodiment of the invention further provides a device for generating a raster image, comprising:
  • a memory configured to save a raster image generation program
  • the processor is configured to run the program, and the method for generating the raster image provided by the embodiment of the present invention is executed when the program is running.
  • the embodiment of the present invention further provides a processor, where the processor is configured to run a program, where the program is executed to execute the method for generating the raster image provided by the embodiment of the present invention.
  • the embodiment of the invention further provides a storage medium, which is arranged to store program code for performing the following steps:
  • the original picture Using the original picture collected by the camera, and acquiring distance information of the plurality of targets to the camera, wherein the original picture displays a plurality of target pictures corresponding to the plurality of targets;
  • the embodiment of the present invention provides a scheme for automatically generating a raster image by using a terminal camera, which can solve the problem that the raster image can only be manually used in the related art, and the playability of the terminal is enhanced.
  • FIG. 1 is a block diagram showing the hardware structure of a mobile terminal for generating a raster picture according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for generating a raster picture according to an embodiment of the present invention
  • FIG. 3 is a structural block diagram of a device for generating a raster picture according to an embodiment of the present invention
  • FIG. 4 is a system block diagram of a synthesizing system for a raster stereo photo provided by this embodiment
  • FIG. 5 is a schematic diagram of stereoscopic imaging provided by the embodiment.
  • FIG. 6 is a schematic diagram of a photograph taken by the dual camera provided by the embodiment.
  • FIG. 7 is a schematic diagram of relative positions of a dual camera mobile phone according to the embodiment.
  • Figure 8 is a schematic diagram of conversion of P1 to P2 provided in this embodiment.
  • FIG. 9 is a schematic diagram of converting P11 to P21 provided in this embodiment.
  • FIG. 10 is a schematic diagram of P12 performing column sampling generation P13 provided in this embodiment.
  • FIG. 11 is a schematic diagram of P12 performing column sampling generation P23 provided in this embodiment.
  • FIG. 12 is a schematic perspective view of a grating synthesized by the four images provided in the embodiment.
  • FIG. 13 is a flowchart of a method for generating a raster picture according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing the hardware structure of a mobile terminal for generating a raster picture according to an embodiment of the present invention.
  • the mobile terminal 10 may include one or more (only one shown) processor 102 (the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA).
  • the memory 104 configured to store data
  • the transmission device 106 configured as a communication function
  • the camera module 108 are configured to collect pictures and take pictures.
  • the structure shown in FIG. 1 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration than that shown in FIG.
  • the memory 104 can be configured as a software program and a module for storing application software, such as a program instruction/module corresponding to the method for generating a raster image in the embodiment of the present invention, and the processor 102 executes the software program and the module stored in the memory 104, thereby
  • the above methods are implemented by performing various functional applications and data processing.
  • Memory 104 may include high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 104 may also include memory remotely located relative to processor 102, which may be connected to mobile terminal 10 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 106 is configured to receive or transmit data via a network.
  • the network instance described above may include a wireless network provided by a communication provider of the mobile terminal 10.
  • the transmission device 106 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 can be a Radio Frequency (RF) module configured to communicate with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • FIG. 2 is a flowchart of a method for generating a raster image according to an embodiment of the present invention. As shown in FIG. 2, the flow includes the following steps. :
  • Step S202 using the original picture collected by the camera, and acquiring distance information of the plurality of targets to the camera, wherein the original picture displays a plurality of target pictures corresponding to the plurality of targets;
  • Step S204 shifting the plurality of target screens according to the distance information
  • Step S206 generating a shifted raster picture.
  • a scheme for automatically generating a raster image by using a terminal camera is provided, which can solve the problem that the raster image can only be manually used in the related art, and the playability of the terminal is enhanced.
  • the execution body of the above steps may be any terminal with a camera (one camera or more than one camera), such as a mobile phone, etc., but is not limited thereto.
  • shifting the plurality of target pictures according to the distance information includes:
  • layering the contour according to the distance information includes one of: a layer of the target contour conforming to a predetermined condition within a predetermined area, wherein the distance information includes one or more of the a preset area range; one area of the one or more target contours within a preset distance is divided into one layer, wherein the distance information is greater than the preset distance. Different targets but the same or similar distances are divided into the same layer.
  • the number of second pictures is the same as the number of layers.
  • obtaining distance information of the plurality of targets to the lens includes:
  • sensors can also be used for ranging.
  • the step of generating the shifted picture comprises:
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a plurality of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the method described in the embodiments of the present invention.
  • a raster image generating device is also provided, which is configured to implement the above-described method for generating a raster image, which has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a structural block diagram of a raster picture generating apparatus according to an embodiment of the present invention. As shown in FIG. 3, the apparatus includes:
  • the processing module 30 is configured to use the original image collected by the camera, and obtain distance information of multiple targets to the camera, where multiple target images corresponding to multiple targets are displayed in the original image;
  • the shifting module 32 is configured to shift the plurality of target images according to the distance information
  • the generating module 34 is configured to generate the shifted raster image.
  • the shifting module includes: a separating unit configured to separate contours of respective objects in all target images; a hierarchical unit configured to layer the contour according to the distance information; the first translation unit configured to be original The picture is a reference point, and the main picture of each layer is translated in the first direction to obtain a plurality of second pictures; the second translation unit is configured to use the original picture as a reference point, and the second picture is translated to the second direction. Two distances get multiple third pictures.
  • the generating module includes: an intercepting unit configured to intercept the overlapping portions of the plurality of third pictures with the original picture as a reference point; and the converting unit configured to perform DPI conversion per pixel pixel points on the overlapping portion to obtain a resolution a plurality of fourth pictures matched with the grating plate; the sampling unit is configured to perform column sampling on different columns of the plurality of fourth pictures to generate a plurality of fifth pictures; and the generating unit is configured to perform interleaving and superimposing on the plurality of fifth pictures Raster image.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • the photos it takes have the ability to record positions before and after multiple shooting targets. In this way, the user can directly output the raster stereo photo file by taking a photo with a dual-camera smartphone.
  • the user uses a dual camera phone to take a photo, selects to enter the raster stereo photo mode, and aligns the target photo, and the mobile phone generates a raster stereo photo file.
  • the user outputs the document to the printer, prints the photo with a lenticular film, or directly outputs it to the flatbed printer to print the photo on the lenticular film.
  • FIG. 4 is a system block diagram of a synthesizing system for a raster stereo photograph provided by the embodiment, including: a dual camera photographing unit 40 configured to photograph a target.
  • the image processing unit 42 is configured to analyze the photos taken by the dual cameras, obtain the positional relationship of the objects in the photos, and separate the contours of the objects.
  • the central processor 44, system program unit 46, is configured to be responsible for overall system operation, data exchange, and the like.
  • the storage unit 48 is configured to store data and programs.
  • the principle of stereoscopic photo imaging is to make the left eye see the left eye photo, the right eye to see the right eye photo, and the left eye photo and the right eye photo are the eyes of the simulated person's eyes.
  • the left eye photo and the right eye photo are the eyes of the simulated person's eyes.
  • FIG. 5 is a schematic diagram of the stereo photo imaging provided by the embodiment, as shown in FIG. 5 , which is a schematic diagram of the front and rear positions of the object perceived by the human eyes.
  • the angle of the front object, the right eye - the left eye - the object 1 is smaller than the right eye -
  • the angle of the left eye-object 2 likewise, the angle of the left eye-right eye-object 1 is smaller than the angle of the left eye-right eye-object 2
  • the human brain judges that the object 1 is in the front and the object 2 is in the back.
  • Stereo photos all the scenes are on the display carrier of the photographic paper.
  • the photographic paper is obviously flat. It is necessary for the user to feel that an object is in front and an object is behind, and the stereoscopic effect is perceived.
  • the object has a different visual angle, that is, a front object close to the human eye, a small visual angle, an object far from the human eye, and a large angle of view.
  • the key point of the stereo photo is to make the left eye see the left eye photo, the right eye to see the right eye photo, and the target in the photo, the angle of view is different, which makes the person form the front and rear positional relationship of the target in the brain.
  • the grating has the same plane, and the picture in two directions is isolated, so that the left eye sees the left eye picture and the right eye sees the right eye picture.
  • the purpose of the movement of the object in the photograph according to the embodiment is to adjust the angle of view of the target, so that the person can perceive the positional relationship of the respective objects.
  • a scheme for automatically generating the raster stereo photo file is proposed, so as to greatly reduce the threshold of the raster stereo photo production.
  • FIG. 6 is a schematic diagram of a photograph taken by the dual camera of the embodiment.
  • the photographs have A1, A2, B, and three targets, wherein A1 is the front target close to the dual camera.
  • B is the farthest target (can be seen as the background, the background can move or not move), and the position of A2 is between A1 and B.
  • the lower left corner of the picture is defined as the origin of the picture system, O(0,0), the X axis of the picture is X', and the Y axis is Y'.
  • the mobile phone and the supporting image processing software have the ability to measure the target and the stratification ability of the map, that is, the target ranging can be performed by the dual camera, and the targets A1 and A2 at different distances from the shooting lens are separated from the background B.
  • FIG. 7 is a schematic diagram of the relative position of the camera of the dual camera in this embodiment.
  • the Lens is a dual camera phone camera lens.
  • the distance between Lens and A1 is Da1
  • the distance from A2 is Da2
  • the distance from B is Db.
  • Dual camera phone and image processing software with the ability to calculate Da1, Da2, Db, and layer the target A1 from the background B, layering the target A2 from the background B.
  • Da1b Db-Da1
  • Da2b Db-Da2
  • the raster stereo photo file needs to be shifted and synthesized according to the relative position of the shooting target.
  • the raster perspective view is described by taking four pictures as an example.
  • Step 1 The dual-camera smartphone takes a picture in the raster stereo photo mode, and obtains the position data of the A1, A2, and B targets in the photo, Da1b, Da2b, Db, and the corresponding layer of the target A1, and the layer of the target A2.
  • the moving target A1, A2, and background B are superimposed to form P2.
  • Fig. 8 is a schematic view showing the conversion of P1 to P2 in the present embodiment.
  • Step 5 Based on P1, define the P1 picture as P11, and the origin O1 of P11 does not change in the picture system coordinate, and is O1 (0, 0).
  • the image processing unit shifts the picture P2 to the left by L pixels to form P21.
  • the position of the origin O21 of P21 in the system coordinates is O21 (-L, 0).
  • Fig. 9 is a schematic diagram showing the conversion of P11 to P21 in the present embodiment.
  • Step 6 In the picture coordinate system, the picture P3 is shifted to the left by 2L pixels to form P31.
  • the position of the origin O31 of P31 in the system coordinates is O31 (-2L, 0).
  • step 7 in the picture coordinate system, the picture P4 is shifted to the left by 3L pixels to form P41.
  • the position of the origin O41 of P41 in the system coordinates is O41 (-3L, 0).
  • step 9 the P11, P21, P31, and P41 pictures are cropped, and the overlapping portions of the four pictures are obtained.
  • the horizontal X-axis coordinate of the picture of P11 is the maximum X' pixel
  • the vertical Y-axis coordinate is Y'
  • the picture size of the overlapping part of the four pictures is obtained.
  • the cutting size is unchanged in the Y-axis direction, and the P41 figure is left.
  • the 3L pixel is moved, and the maximum pixel in the X-axis direction of the four pictures is X'-3L pixels.
  • the origin of the four images is restored to O(0,0), the X-axis pixel of the picture is X'-3L, and the Y-axis pixel is unchanged, which is Y'.
  • step 10 DPI (resolution, how many pixels per inch) is converted for 4 pictures according to the output stereo grating film specification parameter.
  • the grating plate size is nLPI (the number of n prisms per inch), and the resolution parameters of 4 images are modified to 4nDPI, respectively, to generate P12, P22, P32, P42.
  • step 11 the four pictures are subjected to column sampling, and in the P12 picture, the first column of pixels to the left of the origin O(0, 0), the 4+1th column of pixels, the 8th column of the 8th column are extracted, and the picture P13 is generated.
  • the P22 picture the second column pixel to the left of the origin O(0, 0), the 4th + 2 column pixel, the 8th + 2 column pixel whereas, the picture P23 picture is generated.
  • the manner of sampling is not limited to the methods described herein.
  • FIG. 10 is a schematic diagram of column sampling generation P13 in the embodiment P12
  • FIG. 11 is a schematic diagram of column sampling generation P23 in the embodiment P22.
  • Fig. 12 is a perspective view showing a grating in a four-figure diagram of the embodiment.
  • the grating prism direction should be consistent with the pixel sampling strip direction, that is, the grating prism strip is in the vertical direction, and the synthesized grating stereo image pixel sampling strip is also in the vertical direction, and the grating film is closely attached to the composite image, and the grating
  • the film and the picture are fine-tuned in the horizontal direction so that the left and right eyes see different images, and the stereoscopic effect will come to the fore.
  • FIG. 13 is a flowchart of a method for generating a raster image according to an embodiment of the present invention. For the sake of simplicity, the description is still based on FIG. 6 , and the shooting target is described by A1, A2, and B, which mainly includes the following steps:
  • S1302 acquiring target information, and the mobile phone is aimed at the target shooting, and obtains initial position picture P1 and position information of each target and lens in the initial picture;
  • the mobile phone analyzes the position information of each target and the lens, and layeres each target image in the initial picture P1 (different targets but the same distance or similar, divided into the same layer);
  • the target is shifted to the right, and the mobile phone is based on P1, and the target in each layer is shifted to the right by the distance from the lens to generate P2, P3, P4 and other series of pictures;
  • the phone performs DPI conversion on four images to generate P12, P22, P32, P42. Matching the image resolution to the grating plate;
  • the mobile phone superimposes four pictures P13, P23, P33, P43. Generate the final raster image.
  • P1, P2, P3, P4 pictures it can also be achieved by shooting with 4 cameras.
  • the cameras are arranged in a row, and the cameras are arranged at equal distances.
  • the pictures taken by the camera are transmitted to the smartphone by wire or wirelessly, and the mobile phone performs the processing according to step 5 and subsequent steps.
  • a calibration error t2 pixel can be added, that is, P2 is moved to the left by L+t2 to generate P21.
  • the calibration error t3 is added, that is, the amount of movement of P3 to the left is 2L+t3, and P31 is generated.
  • P4 moves 3L+t4 to the left to generate P41.
  • a raster stereoscopic photograph is generated by using four pictures, and 2-8 pictures can also be made.
  • This embodiment exemplifies a scheme in which the target moves to the right in the picture, and the background moves to the left. Others, such as moving the target to the left and moving the background to the right, are similarly protected by the embodiment.
  • the embodiment of the invention further provides a storage medium, which may be configured to store program code for performing the following steps:
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • mobile hard disk a magnetic disk
  • magnetic disk a magnetic disk
  • optical disk a variety of media that can store program code.
  • the processor executes the original image acquired by the camera according to the stored program code in the storage medium, and acquires a plurality of target-to-camera distance information, wherein the original image displays multiple corresponding to the plurality of targets.
  • Target screen
  • the processor performs shifting the plurality of target pictures according to the distance information according to the stored program code in the storage medium
  • the processor performs generating the shifted raster picture based on the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices.
  • they may be implemented by program code executable by a computing device such that they may be stored in a storage device for execution by the computing device and, in some cases, may differ from this
  • the steps shown or described are performed sequentially, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Studio Devices (AREA)

Abstract

一种光栅图片的生成方法、装置及存储介质,其中,该方法包括:使用摄像头采集的原始图片,并获取多个目标到摄像头的距离信息,其中,原始图片中显示有与多个目标对应的多个目标画面(S202);根据距离信息对多个目标画面进行移位(S204);生成移位后的光栅图片(S206)。

Description

光栅图片的生成方法、装置及存储介质
相关申请的交叉引用
本申请基于申请号为201810155084.4、申请日为2018年02月23日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及但不限于计算机领域,尤其涉及一种光栅图片的生成方法、装置及存储介质。
背景技术
相关技术中的光栅立体照片,能呈现明显的立体效果,与平面照片相比,具有纵向信息。即在裸眼状态下,用户就能分辨光栅立体照片的前景,中景,后景等各种层次的信息。
相关技术中制作光栅立体照片都是由人工按照不同工序完成的,整个过程中的拍摄,制作光栅文件,打印,制作立体照片等步骤,对专业要求较高,尤其拍摄与制作光栅文件,需要具备较强专业知识,一般用户难以胜任。
相关技术中,光栅立体照片,都是手工进行,需要经过多个步骤,制作繁琐,成本高居不下,用户个人定制不多,淘宝店有立体图片定制业务,即由一张图片,由淘宝店手工制作立体光栅文件,批量印刷,这种模式通过大量印刷分摊手工制作光栅文件的成本,分摊制作网版的成本,但这与用户所需要拍摄的照片制作1张或几张光栅立体照片的需求有差异。
发明内容
本发明实施例提供了一种光栅图片的生成方法、装置及存储介质。
本发明实施例提供了一种光栅图片的生成方法,包括:使用摄像头采集的原始图片,并获取多个目标到所述摄像头的距离信息,其中,所述原始图片中显示有与所述多个目标对应的多个目标画面;根据所述距离信息对所述多个目标画面进行移位;生成移位后的光栅图片。
本发明实施例还提供了一种光栅图片的生成装置,包括:处理模块,配置为使用摄像头采集的原始图片,并获取多个目标到所述摄像头的距离信息,其中,所述原始图片中显示有与所述多个目标对应的多个目标画面;移位模块,配置为根据所述距离信息对所述多个目标画面进行移位;生成模块,配置为生成移位后的光栅图片。
本发明实施例还提供了一种光栅图片的生成装置,包括:
存储器,配置为保存光栅图片的生成程序;
处理器,配置为运行所述程序,其中,所述程序运行时执行本发明实施例提供的所述光栅图片的生成方法。
本发明实施例还提供了一种处理器,所述处理器配置为运行程序,其中,所述程序运行时执行本发明实施例提供的所述光栅图片的生成方法。
本发明实施例还提供了一种存储介质,该存储介质设置为存储用于执行以下步骤的程序代码:
使用摄像头采集的原始图片,并获取多个目标到所述摄像头的距离信息,其中,所述原始图片中显示有与所述多个目标对应的多个目标画面;
根据所述距离信息对所述多个目标画面进行移位;
生成移位后的光栅图片。
通过本发明实施例,提供了使用终端摄像头自动生成光栅图片的方案,可以解决了相关技术中只能使用人工来制作光栅图片问题,同时增强了终 端的可玩性。
附图说明
图1是本发明实施例提供的一种光栅图片的生成方法的移动终端的硬件结构框图;
图2是本发明实施例提供的光栅图片的生成方法的流程图;
图3是本发明实施例提供的光栅图片的生成装置的结构框图;
图4是本实施例提供的光栅立体照片的合成系统的系统框图;
图5是本实施例提供的立体照片成像原理图;
图6是本实施例提供的双摄像头拍摄的照片示意图;
图7是本实施例提供的双摄像头手机拍照相对位置示意图;
图8是本实施例提供的P1转化为P2示意图;
图9是本实施例提供的P11转换为P21的示意图;
图10是本实施例提供的P12进行列抽样生成P13示意图;
图11是本实施例提供的P22进行列抽样生成P23示意图;
图12是本实施例提供的4张图合成的一张光栅立体图示意图;
图13是本发明实施例提供的光栅图片的生成方法流程图。
具体实施方式
以下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例一所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本发明实施 例的一种光栅图片的生成方法的移动终端的硬件结构框图。如图1所示,移动终端10可以包括一个或多个(图中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、配置为存储数据的存储器104、以及配置为通信功能的传输装置106、摄像头模块108,配置为采集图片和拍照。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可配置为存储应用软件的软件程序以及模块,如本发明实施例中的光栅图片的生成方法对应的程序指令/模块,处理器102通过运行存储在存储器104内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104还可包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106配置为经由一个网络接收或者发送数据。上述的网络实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,RF)模块,其配置为通过无线方式与互联网进行通讯。
在一些实施例中提供了一种运行于上述移动终端的光栅图片的生成方法,图2是根据本发明实施例的光栅图片的生成方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,使用摄像头采集的原始图片,并获取多个目标到所述摄像头的距离信息,其中,所述原始图片中显示有与所述多个目标对应的多个目标画面;
步骤S204,根据所述距离信息对所述多个目标画面进行移位;
步骤S206,生成移位后的光栅图片。
通过上述步骤,提供了使用终端摄像头自动生成光栅图片的方案,可以解决相关技术中只能使用人工来制作光栅图片问题,同时增强了终端的可玩性。
在一些实施例中,上述步骤的执行主体可以为任意带有摄像头(一个摄像头或者多于一个摄像头)的终端,如手机等,但不限于此。
在一些实施例中,根据所述距离信息对所述多个目标画面进行移位包括:
S11,分离所有目标画面中各目标的轮廓;
S12,根据所述距离信息对所述轮廓进行分层;
S13,以所述原始图片为参考点,对各层的主体画面向第一方向平移后得到多个第二图片;
S14,以原始图片为参考点,对多个第二图片向第二方向平移第二距离得到多个第三图片;可选的,第一方向为左时,第二方向为右,第一方向为右时,第二方向为左,第一方向为上时,第二方向为下,第一方向为下时,第二方向为上,第一方向与第二方向相反。
在一些实施例中,根据距离信息对轮廓进行分层包括方式之一:在一个预设区域范围内目标轮廓符合预定条件的分为一层,其中,所述距离信息包括一个或多个所述预设区域范围;一个或多个目标轮廓在预设距离内的一个区域分为一层,其中,所述距离信息大于所述预设距离。不同目标但距离相同或相近,分在同一层。
在一些实施例中,第二图片的数量与分层数量相同。
在一些实施例中,获取多个目标到镜头的距离信息包括:
S21,使用摄像头对多个目标分别进行测距;
S22,记录测距得到的多个目标到镜头的距离信息。
在实际实施时,也可以用传感器(如距离传输器)来测距。
在一些实施例中,生成移位后的图片步骤包括:
S31,以原始图片为参考点,截取多个第三图片的重合部分;
S32,对重合部分进行每英寸像素点数(Dots Per Inch,DPI)转换得到分辨率与光栅板匹配的多个第四图片;
S33,对多个第四图片在不同列进行列抽样生成多个第五图片;
S34,对多个第五图片进行交织叠加生成光栅图片。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明实施例所述的方法。
在一些实施例中,还提供了一种光栅图片的生成装置,该装置配置为实现上述光栅图片的生成方法,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本发明实施例的光栅图片的生成装置的结构框图,如图3所示,该装置包括:
处理模块30,配置为使用摄像头采集的原始图片,并获取多个目标到 摄像头的距离信息,其中,原始图片中显示有与多个目标对应的多个目标画面;
移位模块32,配置为根据距离信息对多个目标画面进行移位;
生成模块34,配置为生成移位后的光栅图片。
在一些实施例中,移位模块包括:分离单元,配置为分离所有目标画面中各目标的轮廓;分层单元,配置为根据距离信息对轮廓进行分层;第一平移单元,配置为以原始图片为参考点,对各层的主体画面向第一方向平移后得到多个第二图片;第二平移单元,配置为以原始图片为参考点,对多个第二图片向第二方向平移第二距离得到多个第三图片。
在一些实施例中,生成模块包括:截取单元,配置为以原始图片为参考点,截取多个第三图片的重合部分;转换单元,配置为对重合部分进行每英寸像素点数DPI转换得到分辨率与光栅板匹配的多个第四图片;抽样单元,配置为对多个第四图片在不同列进行列抽样生成多个第五图片;生成单元,配置为对多个第五图片进行交织叠加生成光栅图片。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
随着双摄智能手机出现,其拍摄的照片具备对多个拍摄目标前后位置记录功能。这样,用户使用双摄智能手机拍照,就可直接输出光栅立体照片文件。
在实际使用场景中,用户使用双摄像头手机拍照,选择进入光栅立体照片模式,对准目标拍照,手机生成光栅立体照片文件。用户将文件输出到打印机,打印照片装光栅膜,或直接输出到平板打印机,在光栅膜上打印照片。
在一些实施例中,还提供了一种光栅立体照片的合成系统,图4是本 实施例提供的光栅立体照片的合成系统的系统框图,包括:双摄像头拍摄单元40,配置为拍摄目标。图像处理单元42,配置为对双摄像头拍出的照片进行分析,获取照片中各目标的前后位置关系,并分离出各目标的轮廓。中央处理器44,系统程序单元46,配置为负责整个系统运行,数据交换等。存储单元48,配置为存放数据及程序。
立体照片成像原理是,使左眼看到左眼照片,右眼看到右眼照片,左眼照片和右眼照片是模拟人的双眼看大的景象。人感知某物体在前,某物体在后,一个重要原因是与双眼对物体的夹角有关。
图5是本实施例提供的立体照片成像原理图,如图5所示,是人双眼感知物体前后位置的示意图,对前物体,∠右眼-左眼-物体1的角度小于∠右眼-左眼-物体2的角度,同样,∠左眼-右眼-物体1的角度小于∠左眼-右眼-物体2的角度,人的大脑就判断物体1在前,物体2在后,对于立体照片,所有拍摄的景物都在照相纸的这个显示载体上,照相纸显然是平面的,要让用户感觉到某物体在前,某物体在后,让人感知立体效果,使用的方法就是前后物体,其视觉角度不同,即靠近人眼的前物体,视觉角度小,远离人眼的物体,视角角度大。
立体照片关键点就是使左眼看到左眼照片,右眼看到右眼照片,并且照片中的目标,视角大小不一,使人在大脑中形成目标的前后位置关系。光栅具有在同一平面上,隔离出2个方向的图片,实现左眼看到左眼图片,右眼看到右眼图片的功能。本实施例涉及的照片中目标的移动,其目的就是调整目标的视角,从而让人感知各个目标的前后位置关系。
本发明实施例是对双摄手机拍摄的照片和对目标分层基础上,提出一种自动生成光栅立体照片文件的方案,以便大幅降低光栅立体照片制作门槛。
如图6所示,图6是本实施例双摄像头拍摄的照片示意图,为简化描述,拍摄的照片中有A1,A2,B,三个目标,其中A1为最前面的靠近双 摄手机的目标,B为最远处目标(可以看成是背景,背景可以移动或者不移动),A2的位置处与A1,B之间。图片左下角O定义为图片系统原点,O(0,0),图片X轴为X′,Y轴的为Y′。手机和配套图像处理软件,具有对目标的测距能力,抠图分层能力,即能够通过双摄像头对目标测距,将与拍摄镜头不同距离的目标A1,A2从背景B中分离出来。
如图7所示,图7是本实施例双摄像头手机拍照相对位置示意图。其中Lens(镜片)是双摄像头手机照相机拍摄镜片。Lens与A1的距离为Da1,与A2的距离为Da2,与B的距离为Db。双摄像头手机及图像处理软件,具备计算出Da1,Da2,Db的能力,以及将目标A1从背景B中抠图分层,将目标A2从背景B中抠图分层。
已知Da1,Da2,Db
可知,Da1b=Db-Da1,Da2b=Db-Da2
现定义A1,A2移动的对应关系,以B为原点,A1,A2横向移动像素,需要A1,A2与B的距离成正比。设A1移动f个像素,A2按与距离成正比移动像素,
A2=(Da2b/Da1b)f
光栅立体照片文件需要对拍摄目标,依据前后相对位置进行位移,合成。为简化描述,此处光栅立体图以4张图片为例进行描述。
步骤1,双摄智能手机在光栅立体照片模式下拍照,获得照片中A1,A2,B目标的位置数据,Da1b,Da2b,Db,以及对应的目标A1的图层,目标A2的图层。
步骤2,以图片2为基础,原始图6定义为P1,图像处理单元将图片中的目标A1向右移动R1个像素,A2向右移动R2=(Da2b/Da1b)R1像素。将完成移动的目标A1,A2,以及背景B进行叠加,形成P2。图8是本实施例P1转化为P2示意图。
步骤3,以P1为基础,图像处理单元将A1向右移动2R1个像素,A2 向右移动A2=2(Da2b/Da1b)R1个像素,并将A1,A2和B进行叠加,生成P3
步骤4,以P1为基础,图像处理单元将A1向右移动3R1个像素,A2向右移动A2=3(Da2b/Da1b)R1个像素,并将A1,A2,B进行叠加,生成P4。
(当前P1,P2,P3,P4的4张图片中A1,A2的位置有差异,但原点的位置是相同的,都是P1的原点)
步骤5,以P1为基础,定义P1图片为P11,P11的原点O1在图片系统坐标没有变化,为O1(0,0)。在图片坐标系统中,图像处理单元将图片P2向左平移L个像素,形成P21。P21的原点O21的坐标在系统坐标中的位置为O21(-L,0)。图9是本实施例P11转换为P21的示意图。
步骤6,在图片坐标系统中,将图片P3向左平移2L个像素,形成P31。P31的原点O31的坐标在系统坐标中的位置为O31(-2L,0)。
步骤7,在图片坐标系统中,将图片P4向左平移3L个像素,形成P41。P41的原点O41的坐标在系统坐标中的位置为O41(-3L,0)。
注意:按经验值,L<R。
步骤9,对P11,P21,P31,P41图片进行裁剪,获取4张图片重合部分。以P11为基础,P11的图片横向X轴坐标最大为X′像素,纵向Y轴坐标为Y′,获取4张图片重合部分的图片尺寸,该裁剪尺寸Y轴方向不变,因P41图向左移动了3L像素,4张图片X轴方向的重合最大像素为X′-3L像素。裁剪后4张图的原点回复到O(0,0),图片X轴像素为X′-3L,Y轴像素不变,为Y′。
步骤10,按输出的立体光栅膜规格参数,对4张图片进行DPI(分辨率,每英寸有多少个像素)转换。光栅板规格为nLPI(每英寸有n个棱镜条数),将4张图片分辨率参数修改为4nDPI,分别生成P12,P22,P32,P42。
步骤11,对4张图片进行列抽样,在P12图中抽取原点O(0,0)左边的第1列像素,第4+1列像素,第8+1列像素…,生成图片P13。在P22图片中抽取原点O(0,0)左边的第2列像素,第4+2列像素,第8+2列像素.....,生成图片P23图片。同理,通过列抽样,生成图片P33,P43。应当理解,抽样的方式不限于本文描述的方法。图10是本实施例P12进行列抽样生成P13示意图,图11是本实施例P22进行列抽样生成P23示意图。
步骤12,将4张图P13,P23,P33,P43进行叠加,生成光栅立体照片合成文件Pf。图12是本实施例4张图合成的一张光栅立体图示意图。
后续通过打印图片,光栅装配,完成立体图片制作。也可用平板打印机将文件直接打在光栅上,因光栅打印需打在光栅的光面,看立体图是在光栅的棱镜面,使用平板打印机打印图片,需要将图片左右反相打印,保证立体光栅照片与拍摄的实际目标左右一致。
光栅立体图装配光栅时,需使光栅棱镜方向与像素取样条方向保持一致,即光栅棱镜条处于垂直方向,合成的光栅立体图像素取样条也处于垂直方向,将光栅膜紧贴在合成图片上,光栅膜与图片在水平方向微调,使得左右眼看到不同的图像,立体效果就会浮现在眼前。
图13为本发明实施例提供的光栅图片的生成方法流程图,为简化描述,仍然以图6为基础,拍摄目标按A1,A2,B进行描述,主要包括以下步骤:
S1301,初始化,手机启动立体光栅拍照模式;
S1302,获取目标信息,手机对准目标拍摄,获得初始图片P1及初始图片中各目标与镜头的位置信息;
S1303,目标分层,手机分析各目标与镜头的位置信息,对初始图片P1中各目标抠图分层(不同目标但距离相同或相近,分在同一层);
S1304,目标右移,手机以P1为基础,对各层中的目标,按与镜头之间的距离,向右进行移位,生成P2,P3,P4等系列图片;
S1305,图片整体左移,手机以P1为基础,并设定P1为P11,向左移 动P2,P3,P4等系列图片,生成P21,P31,P41;
S1306,裁剪,手机以P11为基础,联合P21,P31,P41,获取4张图片的重合部分;
S1307,分辨率转换,根据光栅板规格,手机对4张图进行DPI转换,生成P12,P22,P32,P42。使得图片分辨率与光栅板匹配;
S1308,列抽样,手机对4张图进行列抽样。P12在X轴第1列,第4+1列…像素抽样生成P13。P22在第2列,第4+2列….像素抽样生成P23。同理,生成P33,P43;
S1309,交织叠加,手机对4张图P13,P23,P33,P43进行叠加。生成最终的光栅图片。
需要说明的是,在获取P1,P2,P3,P4图片方面,还可以通过4个摄像头拍摄实现。摄像头排成一排,摄像头之间等距离排布,摄像头拍摄的图片通过有线或无线传递给智能手机,由手机按步骤5,及后续步骤进行处理。
为消除4个摄像头X轴方向的安装误差,在以P2向左移动L时,可以加入校准误差t2像素,即P2向左移动L+t2,生成P21。同理,以P3向左移动2L时,加入校准误差t3,即P3向左移动量为2L+t3,生成P31。P4向左移动3L+t4,生成P41。
本实施例例举了用4张图片生成光栅立体照片,也可以使2-8张图片。
本实施例例举了图片中的目标向右移动,背景向左移动的方案,其他如将目标向左移动,背景向右移动等制作出的光栅立体合成图,同样属于被实施例保护范围。
通过双摄像头智能手机,或具有图像处理能力的操作系统的双摄像头,或多摄像头装置,拍摄照片后,直接生成光栅立体照片,改变了当前光栅立体照片需要专业人员在电脑上处理,才能生成光栅立体照片的麻烦。手机拍照是各手机厂家竞争的焦点,具备拍摄光栅立体照片的智能手机,是 一个巨大卖点,能在当前智能手机同质化严重的市场环境中脱颖而出。光栅立体照片拍摄与生成,大大降低了当前光栅立体照片的门槛,可能改变目前的彩扩行业,将平面相纸,改为光栅相纸。光栅立体照片能非常方便地拍摄,会演变出光栅立体照片相机,双镜头,或多镜头光栅立体照片相机。
本发明实施例还提供了一种存储介质,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,使用摄像头采集的原始图片,并获取多个目标到摄像头的距离信息,其中,原始图片中显示有与多个目标对应的多个目标画面;
S2,根据距离信息对多个目标画面进行移位;
S3,生成移位后的光栅图片。
在一些实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
在一些实施例中,处理器根据存储介质中已存储的程序代码执行使用摄像头采集的原始图片,并获取多个目标到摄像头的距离信息,其中,原始图片中显示有与多个目标对应的多个目标画面;
在一些实施例中,处理器根据存储介质中已存储的程序代码执行根据距离信息对多个目标画面进行移位;
在一些实施例中,处理器根据存储介质中已存储的程序代码执行生成移位后的光栅图片。
本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,在一些实施例中,它们可以用计算 装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种光栅图片的生成方法,包括:
    使用摄像头采集的原始图片,并获取多个目标到所述摄像头的距离信息,其中,所述原始图片中显示有与所述多个目标对应的多个目标画面;
    根据所述距离信息对所述多个目标画面进行移位;
    生成移位后的光栅图片。
  2. 根据权利要求1所述的方法,其中,根据所述距离信息对所述多个目标画面进行移位包括:
    分离所有目标画面中各目标的轮廓;
    根据所述距离信息对所述轮廓进行分层;
    以所述原始图片为参考点,对各层的主体画面向第一方向平移后得到多个第二图片;
    以所述原始图片为参考点,对多个所述第二图片向第二方向平移第二距离得到多个第三图片。
  3. 根据权利要求2所述的方法,其中,根据所述距离信息对所述轮廓进行分层包括以下至少之一:
    在一个预设区域范围内目标轮廓符合预定条件的分为一层,其中,所述距离信息包括一个或多个所述预设区域范围;
    一个或多个目标轮廓在预设距离内的一个区域分为一层,其中,所述距离信息大于所述预设距离。
  4. 根据权利要求2所述的方法,其中,所述第二图片的数量与分层数量相同。
  5. 根据权利要求1所述的方法,其中,获取所述多个目标到所述摄像头镜头的距离信息包括:
    使用所述摄像头对所述多个目标分别进行测距;
    记录测距得到的所述多个目标到所述摄像头的距离信息。
  6. 根据权利要求2所述的方法,其中,生成移位后的图片包括:
    以所述原始图片为参考点,截取所述多个第三图片的重合部分;
    对所述重合部分进行每英寸像素点数DPI转换得到分辨率与光栅板匹配的多个第四图片;
    对所述多个第四图片在不同列进行列抽样生成多个第五图片;
    对所述多个第五图片进行交织叠加生成光栅图片。
  7. 一种光栅图片的生成装置,包括:
    处理模块,配置为使用摄像头采集的原始图片,并获取多个目标到所述摄像头的距离信息,其中,所述原始图片中显示有与所述多个目标对应的多个目标画面;
    移位模块,配置为根据所述距离信息对所述多个目标画面进行移位;
    生成模块,配置为生成移位后的光栅图片。
  8. 根据权利要求7所述的装置,其中,所述移位模块包括:
    分离单元,配置为分离所有目标画面中各目标的轮廓;
    分层单元,配置为根据所述距离信息对所述轮廓进行分层;
    第一平移单元,配置为以所述原始图片为参考点,对各层的主体画面向第一方向平移后得到多个第二图片;
    第二平移单元,配置为以所述原始图片为参考点,对多个所述第二图片向第二方向平移第二距离得到多个第三图片。
  9. 根据权利要求8所述的装置,其中,所述生成模块包括:
    截取单元,配置为以所述原始图片为参考点,截取所述多个第三图片的重合部分;
    转换单元,配置为对所述重合部分进行每英寸像素点数DPI转换得到分辨率与光栅板匹配的多个第四图片;
    抽样单元,配置为对所述多个第四图片在不同列进行列抽样生成多个 第五图片;
    生成单元,配置为对所述多个第五图片进行交织叠加生成光栅图片。
  10. 一种光栅图片的生成装置,包括:
    存储器,配置为保存光栅图片的生成程序;
    处理器,配置为运行所述程序,其中,所述程序运行时执行权利要求1至6中任一项所述的光栅图片的生成方法。
  11. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至6中任一项所述的光栅图片的生成方法。
  12. 一种处理器,所述处理器,配置为运行程序,其中,所述程序运行时执行权利要求1至6中任一项所述的光栅图片的生成方法。
PCT/CN2019/071990 2018-02-23 2019-01-16 光栅图片的生成方法、装置及存储介质 WO2019161717A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810155084.4 2018-02-23
CN201810155084.4A CN110191332A (zh) 2018-02-23 2018-02-23 光栅图片的生成方法及装置

Publications (1)

Publication Number Publication Date
WO2019161717A1 true WO2019161717A1 (zh) 2019-08-29

Family

ID=67686945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071990 WO2019161717A1 (zh) 2018-02-23 2019-01-16 光栅图片的生成方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN110191332A (zh)
WO (1) WO2019161717A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105447895A (zh) * 2014-09-22 2016-03-30 酷派软件技术(深圳)有限公司 一种层次化的图片黏贴方法、装置及终端设备
CN106296574A (zh) * 2016-08-02 2017-01-04 乐视控股(北京)有限公司 三维照片生成方法和装置
CN106899781A (zh) * 2017-03-06 2017-06-27 宇龙计算机通信科技(深圳)有限公司 一种图像处理方法及电子设备
CN106993112A (zh) * 2017-03-09 2017-07-28 广东欧珀移动通信有限公司 基于景深的背景虚化方法及装置和电子装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1231456A (zh) * 1999-01-23 1999-10-13 中国科学院固体物理研究所 用计算机图对合成方法制作立体图片
CN1547156A (zh) * 2003-12-01 2004-11-17 济南三宝经贸有限公司 用家用计算机制作立体广告图象的方法
CN101408972A (zh) * 2007-10-08 2009-04-15 陈伟明 一种利用电脑制作个性化立体图案的方法
CN102999943B (zh) * 2012-12-21 2016-04-13 吴心妮 图像处理方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105447895A (zh) * 2014-09-22 2016-03-30 酷派软件技术(深圳)有限公司 一种层次化的图片黏贴方法、装置及终端设备
CN106296574A (zh) * 2016-08-02 2017-01-04 乐视控股(北京)有限公司 三维照片生成方法和装置
CN106899781A (zh) * 2017-03-06 2017-06-27 宇龙计算机通信科技(深圳)有限公司 一种图像处理方法及电子设备
CN106993112A (zh) * 2017-03-09 2017-07-28 广东欧珀移动通信有限公司 基于景深的背景虚化方法及装置和电子装置

Also Published As

Publication number Publication date
CN110191332A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
US11076142B2 (en) Real-time aliasing rendering method for 3D VR video and virtual three-dimensional scene
EP3356887B1 (en) Method for stitching together images taken through fisheye lens in order to produce 360-degree spherical panorama
US9544574B2 (en) Selecting camera pairs for stereoscopic imaging
CN106170822B (zh) 3d光场相机和摄影方法
JP4072674B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
EP2603834B1 (en) Method for forming images
JP5127787B2 (ja) 複眼撮影装置及びその制御方法
WO2015192547A1 (zh) 一种基于移动终端的三维照片拍摄方法及移动终端
CN109218630B (zh) 一种多媒体信息处理方法及装置、终端、存储介质
WO2019085022A1 (zh) 光场3d显示单元图像的生成方法及生成装置
JP4958689B2 (ja) 立体画像生成装置およびプログラム
JP2012186755A (ja) 画像処理装置、画像処理方法、およびプログラム
JP2013042301A (ja) 画像処理装置、画像処理方法及びプログラム
CN104599317A (zh) 一种实现3d扫描建模功能的移动终端及方法
US20180288241A1 (en) Digital multi-dimensional image photon platform system and methods of use
US10033990B2 (en) Digital multi-dimensional image photon platform system and methods of use
US20150326847A1 (en) Method and system for capturing a 3d image using single camera
KR20150003576A (ko) 삼차원 영상 생성 또는 재생을 위한 장치 및 방법
WO2023169283A1 (zh) 双目立体全景图像的生成方法、装置、设备、存储介质和产品
US20070122029A1 (en) System and method for capturing visual data and non-visual data for multi-dimensional image display
JP2011013993A (ja) 画像表示装置および方法並びにプログラム
JP2006211386A (ja) 立体画像処理装置、立体画像表示装置、及び立体画像生成方法
JP7110378B2 (ja) 深度データを用いた拡張現実画像提供方法及びプログラム
WO2019161717A1 (zh) 光栅图片的生成方法、装置及存储介质
JP6367803B2 (ja) オブジェクト空間のオブジェクト点の記述のための方法およびその実施のための結合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19758203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/01/1205A)

122 Ep: pct application non-entry in european phase

Ref document number: 19758203

Country of ref document: EP

Kind code of ref document: A1