WO2019161542A1 - 一种功率余量上报方法及装置、计算机存储介质 - Google Patents

一种功率余量上报方法及装置、计算机存储介质 Download PDF

Info

Publication number
WO2019161542A1
WO2019161542A1 PCT/CN2018/077041 CN2018077041W WO2019161542A1 WO 2019161542 A1 WO2019161542 A1 WO 2019161542A1 CN 2018077041 W CN2018077041 W CN 2018077041W WO 2019161542 A1 WO2019161542 A1 WO 2019161542A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink signal
bwp
bwps
terminal
power control
Prior art date
Application number
PCT/CN2018/077041
Other languages
English (en)
French (fr)
Inventor
陈文洪
史志华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP18907174.9A priority Critical patent/EP3745766B1/en
Priority to JP2020544437A priority patent/JP7164617B2/ja
Priority to PCT/CN2018/077041 priority patent/WO2019161542A1/zh
Priority to CN201880065350.2A priority patent/CN111213402A/zh
Priority to KR1020207025348A priority patent/KR102434078B1/ko
Priority to CN202010423291.0A priority patent/CN111542092B/zh
Priority to AU2018409912A priority patent/AU2018409912B2/en
Publication of WO2019161542A1 publication Critical patent/WO2019161542A1/zh
Priority to US16/896,578 priority patent/US11039407B2/en
Priority to US17/328,923 priority patent/US11785558B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a power headroom reporting method and apparatus, and a computer storage medium.
  • the physical uplink shared channel is the difference between the maximum transmit power allowed by the terminal and the currently calculated PUSCH transmit power.
  • PH_PUSCH UEAllowedMaxTransPower ⁇ PuschPower, where PH_PUSCH represents the PUSCH power headroom, UEAllowedMaxTransPower represents the maximum transmission power allowed by the terminal, and PuschPower represents the currently calculated PUSCH transmission power.
  • the PUSCH power headroom indicates how much transmission power the terminal can use in addition to the transmission power used in the current PUSCH transmission.
  • PuschPower is not the actual transmission power of the terminal, but the transmission power calculated according to a certain formula.
  • the unit of PH_PUSCH is dB. If PH_PUSCH is negative, it means that the calculated transmit power of the terminal exceeds its maximum allowed transmit power.
  • the terminal needs to perform Power Headroom Report (PHR) for the PUSCH and the Sounding Reference Signal (SRS) respectively.
  • PHR Power Headroom Report
  • SRS Sounding Reference Signal
  • the terminal not only needs to perform PH reporting on the carrier that currently transmits the PUSCH or the SRS, but also performs PH reporting on the carrier that does not transmit the PUSCH or the SRS, thereby providing a reference for the network side to schedule on the carrier.
  • one carrier can include up to four bandwidth parts (BWP, Bandwidth Part), and the network side can dynamically activate some of the BWPs for data or reference signal transmission.
  • BWP bandwidth parts
  • Different BWPs can allocate different bandwidths and be used for data transmission of different service types.
  • one BWP can be used for data transmission of Enhanced Mobile Broadband (eMBB)
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra Reliable Low Latency Communication
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra Reliable Low Latency Communication
  • the network side cannot obtain specific power headroom information on each BWP in the carrier, so that the uplink signal transmission on each BWP cannot be reasonably scheduled.
  • the PUSCH transmission can be dynamically switched between multiple BWPs, the network side needs to have real-time power headroom information on multiple BWPs at the same time, so that a reasonable BWP handover can be performed.
  • an embodiment of the present invention provides a power headroom reporting method and apparatus, and a computer storage medium.
  • the terminal calculates a PH of an uplink signal on multiple BWPs, where the multiple BWPs are BWPs currently configured or activated by the terminal;
  • the terminal sends a PH of an uplink signal on at least one of the plurality of BWPs to the network device.
  • the method further includes:
  • the RRC Radio Resource Control
  • SI System Information
  • MAC Media Access Control
  • DCI Downlink Control Information
  • the plurality of BWPs are BWPs configured or activated by the network device on the one carrier.
  • the terminal calculates a power headroom PH of an uplink signal on multiple BWPs, including:
  • the terminal calculates a PH of an uplink signal on each BWP of the multiple BWPs according to a transmission parameter and/or a power control parameter of an uplink signal on each BWP of the multiple BWPs.
  • the transmission parameter of the uplink signal includes at least one of: a transmission bandwidth of the uplink signal, a modulation and coding mode of the uplink signal, and a subcarrier spacing of the uplink signal.
  • the power control parameter of the uplink signal includes at least one of the following: a maximum transmit power, a target receive power, a path loss factor, a path loss estimate, and a closed loop power adjustment factor.
  • the transmission parameter and/or the power control parameter of the uplink signal are separately configured by the network device for each of the plurality of BWPs.
  • the transmission parameter and/or the power control parameter of the uplink signal on the BWP is a transmission parameter and/or a power control parameter of an uplink signal sent on the BWP at a time when the PH is calculated; or
  • the transmission parameters and/or power control parameters of the uplink signal on the BWP are transmission parameters and/or power control parameters of the uplink signal transmitted on the BWP last time before the PH calculation.
  • the terminal if the terminal transmits an uplink signal on the first BWP of the multiple BWPs at the time of calculating the PH, the terminal according to the uplink signal on each BWP of the multiple BWPs.
  • the transmission parameter and/or the power control parameter, calculating the PH of the uplink signal on each BWP of the plurality of BWPs including:
  • the terminal calculates a PH of the uplink signal on the first BWP according to a transmission parameter and a power control parameter of the uplink signal on the first BWP.
  • the terminal if the terminal does not send an uplink signal on the first BWP of the multiple BWPs at the time of calculating the PH, the terminal according to the uplink signal on each BWP of the multiple BWPs.
  • the transmission parameter and/or the power control parameter, calculating the PH of the uplink signal on each BWP of the plurality of BWPs including:
  • the terminal calculates a PH of the uplink signal on the first BWP according to a power control parameter of the uplink signal on the first BWP.
  • the terminal is Calculating a transmission parameter and/or a power control parameter of an uplink signal on each of the plurality of BWPs, and calculating a PH of the uplink signal on each of the plurality of BWPs, including:
  • the terminal calculates a PH of the uplink signal on the second BWP according to a transmission parameter and a power control parameter of the uplink signal on the second BWP.
  • the time interval between the time when the uplink signal is transmitted on the second BWP of the plurality of BWPs and the time when the PH is calculated is the greater than or equal to the first duration
  • the terminal calculates a PH of the uplink signal on the second BWP according to a power control parameter of the uplink signal on the second BWP.
  • the transmitting, by the terminal, the PH of the uplink signal on the at least one of the plurality of BWPs to the network device including:
  • the terminal sends a BWP index of each BWP in at least one of the plurality of BWPs to the network device along with a PH corresponding to the BWP.
  • the transmitting, by the terminal, the PH of the uplink signal on the at least one of the plurality of BWPs to the network device including:
  • the terminal sends the PH of the uplink signal on the BWP in the activated state among the plurality of BWPs to the network device.
  • the transmitting, by the terminal, the PH of the uplink signal on the at least one of the plurality of BWPs to the network device including:
  • the terminal sends, to the network device, a PH of an uplink signal on at least one BWP whose maximum PH value is the largest or smallest among the plurality of BWPs.
  • the multiple BWPs belong to a first carrier; the method further includes:
  • the terminal calculates a PH of the uplink signal on the first carrier based on a PH of an uplink signal on at least one of the plurality of BWPs on the first carrier;
  • the terminal calculates, according to the PH of the uplink signal on the at least one BWP of the multiple BWPs on the first carrier, the PH of the uplink signal on the first carrier, including :
  • the terminal calculates a PH of the uplink signal on the first carrier based on a PH of an uplink signal on all BWPs of the multiple BWPs on the first carrier; or
  • the terminal calculates a PH of the uplink signal on the first carrier based on a PH of an uplink signal on the BWP in an active state among the plurality of BWPs on the first carrier.
  • the transmitting, by the terminal, the PH of the uplink signal on the at least one of the plurality of BWPs to the network device including:
  • the uplink signal is a PUSCH, or an SRS, or a Physical Uplink Control Channel (PUCCH), or a Physical Random Access Channel (PRACH).
  • PUSCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • a first calculating unit configured to calculate a power headroom PH of the uplink signals on the multiple BWPs, where the multiple BWPs are BWPs currently configured or activated by the terminal;
  • a first sending unit configured to send, to the network device, a PH of an uplink signal on at least one of the plurality of BWPs.
  • the device further includes:
  • a receiving unit configured to receive the multiple BWPs that are indicated by the network device by using RRC signaling, SI, MAC signaling, or DCI signaling.
  • the plurality of BWPs are BWPs configured or activated by the network device on the one carrier.
  • the first calculating unit is configured to calculate each of the multiple BWPs according to a transmission parameter and/or a power control parameter of an uplink signal on each BWP of the multiple BWPs.
  • the transmission parameter of the uplink signal includes at least one of: a transmission bandwidth of the uplink signal, a modulation and coding mode of the uplink signal, and a subcarrier spacing of the uplink signal.
  • the power control parameter of the uplink signal includes at least one of the following: a maximum transmit power, a target receive power, a path loss factor, a path loss estimate, and a closed loop power adjustment factor.
  • the transmission parameter and/or the power control parameter of the uplink signal are separately configured by the network device for each of the plurality of BWPs.
  • the transmission parameter and/or the power control parameter of the uplink signal on the BWP is a transmission parameter and/or a power control parameter of an uplink signal sent on the BWP at a time when the PH is calculated; or
  • the transmission parameter and/or the power control parameter of the uplink signal on the BWP is a transmission parameter and/or a power control parameter of an uplink signal that is transmitted on the BWP last time before the PH calculation.
  • the first calculating unit is configured according to the uplink signal on the first BWP. Transmitting parameters and power control parameters, calculating a PH of the uplink signal on the first BWP.
  • the first calculating unit is configured according to the uplink signal on the first BWP.
  • the power control parameter calculates a PH of the uplink signal on the first BWP.
  • the first calculation is performed.
  • the unit calculates a PH of the uplink signal on the second BWP according to a transmission parameter and a power control parameter of the uplink signal on the second BWP.
  • a calculating unit calculates a PH of the uplink signal on the second BWP according to a power control parameter of the uplink signal on the second BWP.
  • the first sending unit is further configured to send, to the network device, a BWP index of each BWP of the at least one BWP of the plurality of BWPs and a PH corresponding to the BWP. .
  • the first sending unit is configured to send, to the network device, a PH of an uplink signal on the BWP in the activated state among the plurality of BWPs.
  • the first sending unit is configured to send, to the network device, a PH of an uplink signal on at least one BWP whose maximum PH value is the largest or smallest of the plurality of BWPs.
  • the multiple BWPs belong to a first carrier; the device further includes:
  • a second calculating unit configured to calculate a PH of the uplink signal on the first carrier based on a PH of an uplink signal on at least one of the plurality of BWPs on the first carrier;
  • a second sending unit configured to send, to the network device, a PH of the uplink signal on the first carrier.
  • the second calculating unit is configured to calculate an uplink on the first carrier based on a PH of an uplink signal on all BWPs of the multiple BWPs on the first carrier.
  • the PH of the signal or, based on the PH of the uplink signal on the active BWP of the plurality of BWPs on the first carrier, calculate the PH of the uplink signal on the first carrier.
  • the first sending unit is configured to send, to the network device, a first PH of the uplink signal on the first BWP of the plurality of BWPs, and the plurality of BWPs are a difference between a PH of an uplink signal on at least one BWP other than the first BWP and the first PH.
  • the uplink signal is a PUSCH, or an SRS, or a PUCCH, or a PRACH.
  • the computer storage medium provided by the embodiment of the present invention has stored thereon computer executable instructions, and the computer executable instructions are implemented by the processor to implement the power headroom reporting method.
  • the terminal calculates the PH of the uplink signal on the multiple BWPs, where the multiple BWPs are BWPs currently configured or activated by the terminal; the terminal sends the multiple BWPs to the network device.
  • the PH of the upstream signal on at least one of the BWPs.
  • the terminal performs power headroom reporting on the currently configured or activated BWP, so that the network side can flexibly perform resource scheduling and uplink power control on each BWP.
  • FIG. 1 is a schematic flowchart of a power headroom reporting method according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a power headroom reporting apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a computer device according to an embodiment of the present invention.
  • the terminal transmits a PUSCH on a certain carrier at a certain time
  • the corresponding PH can be expressed as:
  • P CMAX,f,c (i) is the maximum transmit power of the terminal
  • the calculation result in the braces is the expected transmit power calculated by the terminal according to the actual PUSCH transmission parameter on the carrier at that time.
  • the terminal does not transmit PUSCH on a certain carrier at a certain time
  • the corresponding PH can be expressed as:
  • the calculation result in the braces is the expected transmit power of the terminal on the carrier (no PUSCH transmission parameter).
  • the terminal transmits the SRS on a certain carrier at a certain time the corresponding PH can be expressed as:
  • P CMAX,f,c (i) is the maximum transmit power of the terminal
  • the calculation result in the braces is the expected transmit power calculated by the terminal according to the actual SRS transmission parameter on the carrier at that time.
  • the terminal does not transmit SRS on a certain carrier at a certain time, the corresponding PH can be expressed as:
  • the calculation result in the braces is the expected transmit power of the terminal on the carrier (no SRS transmission parameter).
  • FIG. 1 is a schematic flowchart of a power headroom reporting method according to an embodiment of the present invention. As shown in FIG. 1, the power headroom reporting method includes the following steps:
  • Step 101 The terminal calculates a power headroom PH of an uplink signal on multiple BWPs, where the multiple BWPs are BWPs currently configured or activated by the terminal.
  • the terminal is any device capable of communicating with a network device, such as a mobile phone, a tablet computer, a notebook computer, or a desktop computer.
  • the terminal receives the multiple BWPs indicated by the network device by using RRC signaling, SI, MAC signaling, or DCI signaling, specifically:
  • the terminal receives a first message sent by the network device, where the first message is used to configure N BWPs for the terminal, where N is an integer greater than 1.
  • the first message is RRC signaling, or SI.
  • the terminal receives a second message sent by the network device, where the second message is used to indicate to the terminal that the BWP that needs to be activated is M BWPs in the N BWPs, where M is less than or equal to A positive integer of N.
  • the second message is MAC signaling, or DCI signaling.
  • the plurality of BWPs are the N BWPs (that is, the plurality of BWPs are BWPs currently configured by the terminal); or the plurality of BWPs are the M BWPs (ie, the plurality of BWPs)
  • the BWPs are the BWPs currently activated by the terminal.
  • the plurality of BWPs are BWPs configured or activated by the network device on the one carrier.
  • the terminal calculates a PH of an uplink signal on each BWP of the multiple BWPs according to a transmission parameter and/or a power control parameter of an uplink signal on each BWP of the multiple BWPs.
  • the transmission parameter of the uplink signal includes at least one of: a transmission bandwidth of the uplink signal, a modulation and coding manner of the uplink signal, and a subcarrier spacing of the uplink signal.
  • the power control parameter of the uplink signal includes at least one of the following: a maximum transmit power, a target receive power, a path loss factor, a path loss estimate, and a closed loop power adjustment factor.
  • the transmission parameter and/or the power control parameter of the uplink signal are separately configured by the network device for each of the plurality of BWPs.
  • the transmission parameter and/or the power control parameter of the uplink signal on the BWP is a transmission parameter and/or a power control parameter of an uplink signal sent on the BWP at a time when the PH is calculated; or
  • the transmission parameter and/or the power control parameter of the uplink signal on the BWP is a transmission parameter and/or a power control parameter of an uplink signal that is transmitted on the BWP last time before the PH calculation.
  • the embodiment of the present invention calculates the PH by:
  • the terminal 1) if the terminal transmits an uplink signal on the first BWP of the plurality of BWPs at the time of calculating the PH, the terminal according to the transmission parameter of the uplink signal on each of the plurality of BWPs and/or a power control parameter, calculating a PH of an uplink signal on each of the plurality of BWPs, including:
  • the terminal calculates a PH of the uplink signal on the first BWP according to a transmission parameter and a power control parameter of the uplink signal on the first BWP.
  • the terminal if the terminal does not send an uplink signal on the first BWP of the multiple BWPs at the time of calculating the PH, the terminal according to the transmission parameter of the uplink signal on each BWP of the multiple BWPs and/or a power control parameter, calculating a PH of an uplink signal on each of the plurality of BWPs, including:
  • the terminal calculates a PH of the uplink signal on the first BWP according to a power control parameter of the uplink signal on the first BWP.
  • the terminal is determined according to each of the plurality of BWPs Calculating the transmission parameters and/or power control parameters of the uplink signals on the BWPs, and calculating the PH of the uplink signals on each of the plurality of BWPs, including:
  • the terminal calculates a PH of the uplink signal on the second BWP according to a transmission parameter and a power control parameter of the uplink signal on the second BWP.
  • the terminal is according to the plurality of BWPs Calculating, by the transmission parameter and/or the power control parameter of the uplink signal on each BWP, the PH of the uplink signal on each BWP of the multiple BWPs, including:
  • the terminal calculates a PH of the uplink signal on the second BWP according to a power control parameter of the uplink signal on the second BWP.
  • the first duration is a predefined interval, and in an example, the first duration may be a number of slots.
  • the uplink signal is a PUSCH, or an SRS, or a PUCCH, or a PRACH.
  • the PH calculated according to the transmission parameter and the power control parameter of the uplink signal is also referred to as a true PH
  • the PH calculated according to the power control parameter is also referred to as a virtual PH.
  • Example 1 The method for calculating the real PH of the PUSCH on the BWP based on the transmission parameters and power control parameters of the PUSCH on the BWP k on the carrier c is as follows:
  • the parameters in the above formula are parameters configured or indicated for the PUSCH on the BWP k (ie, parameters specific to each BWP), where Indicates the transmission bandwidth of the PUSCH, ⁇ TF, f, c, k (i) is obtained according to the modulation and coding scheme, ⁇ is the subcarrier spacing of the PUSCH transmission, and P CMAX, f, c, k (i) is the terminal on the BWP.
  • the maximum transmit power, P O_PUSCH, f, c, k (j) is the PUSCH target received power
  • ⁇ f,c,k (j) is the path loss factor
  • PL f,c,k (q d ) is the path loss estimate.
  • f f,c,k (i,l) are closed-loop power adjustment factors.
  • Example 2 The method for calculating the virtual PH of the PUSCH on the BWP based on the power control parameter of the PUSCH on the BWP k on the carrier c is as follows:
  • the parameters in the above formula are power control parameters configured or indicated for the PUSCH on the BWP k (ie, parameters specific to each BWP), where For the maximum transmit power assumed by the terminal on the BWP, P O_PUSCH, f, c, k (j) is the PUSCH target received power, and ⁇ f,c,k (j) is the path loss factor, PL f,c,k ( q d ) is the path loss estimate, and f f,c,k (i,l) is the closed-loop power adjustment factor. .
  • Example 3 The method for calculating the true PH of the SRS on the BWP based on the transmission parameters and power control parameters of the SRS on the BWP k on the carrier c is as follows:
  • the parameters in the above formula are parameters configured or indicated for the SRS on the BWP k (ie, parameters specific to each BWP), where M SRS, f, c, k (i) represents the SRS transmission bandwidth, and ⁇ is the SRS.
  • the transmitted subcarrier spacing, P CMAX,f,c,k (i) is the maximum transmit power of the terminal on the BWP, P O_SRS,f,c,k (q s ) is the target received power, ⁇ SRS,f, c,k (q s ) is the path loss factor, PL f,c,k (q s ) is the path loss estimate, and h f,c,k (i,l) is the SRS closed-loop power adjustment factor.
  • Example 4 The method for calculating the virtual PH of the SRS on the BWP based on the power control parameters of the SRS on the BWP k on the carrier c is as follows:
  • the parameters in the above formula are parameters configured or indicated for the SRS on the BWP k (ie, parameters specific to each BWP), wherein For the maximum transmit power assumed by the terminal on the BWP, P O_SRS, f, c, k (q s0 ) is the target received power, ⁇ SRS, f, c, k (q s0 ) is the path loss factor, PL f, c , k (q s0 ) is the path loss estimate, and h f,c,k (i,l) is the SRS closed-loop power adjustment factor.
  • Step 102 The terminal sends, to the network device, a PH of an uplink signal on at least one of the plurality of BWPs.
  • the terminal sends, to the network device, a first PH of the uplink signal on the first BWP of the multiple BWPs, and at least one BWP of the plurality of BWPs except the first BWP.
  • the terminal only reports the actual PH value of the uplink signal on one BWP, and the uplink signal on the other BWPs only reports the differential PH value, thereby saving signaling overhead of reporting.
  • the BWP for reporting the actual PH value here may be the BWP with the lowest index among the plurality of BWPs, or the BWP with the highest priority among the plurality of BWPs.
  • the terminal sends a BWP index of each BWP of the at least one BWP of the plurality of BWPs to the network device along with a PH corresponding to the BWP. Therefore, the network side can determine the BWP corresponding to each PH according to the index.
  • the terminal sends the PH of the uplink signal on the BWP in the activated state among the plurality of BWPs to the network device. Specifically, when the terminal reports the PH at a certain time, only one or a plurality of BWPs of the plurality of BWPs are activated at the moment, the terminal only reports the PH corresponding to the activated BWPs, and does not report the inactive BWPs. PH. If only one BWP is activated at each time, the network side can know the BWP corresponding to the reported PH according to the currently activated BWP.
  • the terminal sends, to the network device, a PH of an uplink signal on at least one BWP whose maximum PH value is the largest or smallest among the plurality of BWPs.
  • the multiple BWPs belong to a first carrier; the method further includes:
  • the terminal calculates a PH of the uplink signal on the first carrier based on a PH of an uplink signal on at least one of the plurality of BWPs on the first carrier (the method may be an average value, Summation, etc.);
  • the terminal calculates the PH of the uplink signal on the first carrier based on the PH of the uplink signal on the at least one BWP of the multiple BWPs on the first carrier, in the following two manners.
  • Manner 1 The terminal calculates a PH of an uplink signal on the first carrier based on a PH of an uplink signal on all BWPs of the multiple BWPs on the first carrier.
  • the network side configures four BWPs on one carrier of the terminal, and the terminal calculates the PH of the PUSCH or the SRS on each BWP, and averages the linear values of the PHs of the four BWPs to obtain the carrier. PH and report it to the network side.
  • Manner 2 The terminal calculates the PH of the uplink signal on the first carrier based on the PH of the uplink signal on the BWP in the active state among the multiple BWPs on the first carrier.
  • the network side configures four BWPs on one carrier of the terminal, but only activates two BWPs at the time of PH reporting, and the terminal averages the linear values of the PHs of the activated two BWPs to obtain the The PH of the carrier is reported to the network side.
  • the terminal may report the PH corresponding to each BWP configured on one carrier, so that the network side can flexibly switch between multiple BWPs, and determine resource allocation and uplink power control on each BWP. parameter.
  • the power headroom reporting apparatus includes:
  • a first calculating unit 201 configured to calculate a power headroom PH of an uplink signal on multiple BWPs, where the multiple BWPs are BWPs currently configured or activated by the terminal;
  • the first sending unit 202 is configured to send, to the network device, a PH of an uplink signal on at least one of the plurality of BWPs.
  • the device further includes:
  • the receiving unit 203 is configured to receive the multiple BWPs that are indicated by the network device by using RRC signaling, SI, MAC signaling, or DCI signaling.
  • the plurality of BWPs are BWPs configured or activated by the network device on the one carrier.
  • the first calculating unit 201 is configured to calculate, according to a transmission parameter and/or a power control parameter of an uplink signal on each BWP of the multiple BWPs, each BWP of the multiple BWPs.
  • the PH of the upstream signal is configured to calculate, according to a transmission parameter and/or a power control parameter of an uplink signal on each BWP of the multiple BWPs, each BWP of the multiple BWPs.
  • the PH of the upstream signal is configured to calculate, according to a transmission parameter and/or a power control parameter of an uplink signal on each BWP of the multiple BWPs.
  • the transmission parameter of the uplink signal includes at least one of: a transmission bandwidth of the uplink signal, a modulation and coding manner of the uplink signal, and a subcarrier spacing of the uplink signal.
  • the power control parameter of the uplink signal includes at least one of the following: a maximum transmit power, a target receive power, a path loss factor, a path loss estimate, and a closed loop power adjustment factor.
  • the transmission parameters and/or power control parameters of the uplink signal are separately configured by the network device for each of the plurality of BWPs.
  • the transmission parameter and/or the power control parameter of the uplink signal on the BWP is a transmission parameter and/or a power control parameter of an uplink signal sent on the BWP at a time when the PH is calculated; or
  • the transmission parameter and/or the power control parameter of the uplink signal on the BWP is a transmission parameter and/or a power control parameter of an uplink signal that is transmitted on the BWP last time before the PH calculation.
  • the first calculating unit 201 is configured to transmit according to the uplink signal on the first BWP.
  • the parameter and the power control parameter calculate a PH of the uplink signal on the first BWP.
  • the first calculating unit 201 is configured according to the power of the uplink signal on the first BWP. Controlling a parameter, calculating a PH of the uplink signal on the first BWP.
  • the first calculating unit 201 is used. And calculating a PH of the uplink signal on the second BWP according to a transmission parameter and a power control parameter of the uplink signal on the second BWP.
  • the first calculation is performed.
  • the unit 201 calculates the PH of the uplink signal on the second BWP according to the power control parameter of the uplink signal on the second BWP.
  • the first sending unit 202 is further configured to send, to the network device, a BWP index of each BWP of the at least one BWP of the plurality of BWPs and a PH corresponding to the BWP.
  • the first sending unit 202 is configured to send, to the network device, the PH of the uplink signal on the BWP in the activated state among the multiple BWPs.
  • the first sending unit 202 is configured to send, to the network device, a PH of an uplink signal on at least one BWP of a maximum PH value of the plurality of BWPs.
  • the multiple BWPs belong to a first carrier; the device further includes:
  • the second calculating unit 204 is configured to calculate a PH of the uplink signal on the first carrier based on a PH of an uplink signal on at least one of the plurality of BWPs on the first carrier;
  • the second sending unit 205 is configured to send, to the network device, a PH of the uplink signal on the first carrier.
  • the second calculating unit 204 is configured to calculate an uplink signal on the first carrier based on a PH of an uplink signal on all BWPs of the multiple BWPs on the first carrier.
  • the PH of the uplink signal on the first carrier is calculated based on the PH of the uplink signal on the active BWP of the plurality of BWPs on the first carrier.
  • the first sending unit 202 is configured to send, to the network device, a first PH of the uplink signal on the first BWP of the plurality of BWPs, and the first plurality of BWPs The difference between the PH of the uplink signal on at least one BWP other than the BWP and the first PH.
  • the uplink signal is a PUSCH, or an SRS, or a PUCCH, or a PRACH.
  • the implementation functions of the units in the power headroom reporting apparatus shown in FIG. 2 can be understood by referring to the related description of the foregoing power headroom reporting method.
  • the functions of the units in the power headroom reporting device shown in FIG. 2 can be implemented by a program running on a processor, or can be realized by a specific logic circuit.
  • the power headroom reporting device may be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a standalone product.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • embodiments of the invention are not limited to any specific combination of hardware and software.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer-executable instructions are stored, and the computer-executable instructions are executed by the processor to implement the power headroom reporting method of the embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a computer device according to an embodiment of the present invention, and the computer device may be any type of terminal.
  • computer device 100 may include one or more (only one shown) processor 1002 (processor 1002 may include, but is not limited to, a Micro Controller Unit (MCU) or a programmable logic device.
  • a processing device such as an FPGA (Field Programmable Gate Array), a memory 1004 for storing data, and a transmission device 1006 for a communication function.
  • FPGA Field Programmable Gate Array
  • FIG. 3 is merely illustrative and does not limit the structure of the above electronic device.
  • computer device 100 may also include more or fewer components than those shown in FIG. 3, or have a different configuration than that shown in FIG.
  • the memory 1004 can be used to store software programs and modules of application software, such as program instructions/modules corresponding to the method in the embodiment of the present invention, and the processor 1002 executes various functional applications by running software programs and modules stored in the memory 1004. And data processing, that is, to achieve the above method.
  • Memory 1004 can include high speed random access memory, and can also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 1004 can further include memory remotely located relative to processor 1002, which can be connected to computer device 100 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 1006 is for receiving or transmitting data via a network.
  • the network specific examples described above may include a wireless network provided by a communication provider of computer device 100.
  • the transmission device 1006 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 1006 can be a radio frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF radio frequency
  • the disclosed method and smart device may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one second processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种功率余量上报方法及装置、计算机存储介质,所述方法包括:终端计算多个带宽部分BWP上的上行信号的功率余量PH,所述多个BWP为所述终端当前配置或激活的BWP;所述终端向网络设备发送所述多个BWP中的至少一个BWP上的上行信号的PH。

Description

一种功率余量上报方法及装置、计算机存储介质 技术领域
本发明涉及无线通信技术领域,尤其涉及一种功率余量上报方法及装置、计算机存储介质。
背景技术
物理上行共享信道(PUSCH,Physical Uplink Shared Channel)功率余量(PH,Power Headroom)是指终端允许的最大传输功率与当前计算得到的PUSCH传输功率之间的差值,用公式可以简单的表示为:PH_PUSCH=UEAllowedMaxTransPower–PuschPower,其中,PH_PUSCH表示PUSCH功率余量,UEAllowedMaxTransPower表示终端允许的最大传输功率,PuschPower表示当前计算得到的PUSCH传输功率。PUSCH功率余量表示的是除了当前PUSCH传输所使用的传输功率之外,终端还有多少传输功率可以使用,其中PuschPower并不是终端实际的发送功率,而是根据一定公式计算出的发送功率。PH_PUSCH的单位是dB,如果PH_PUSCH是负值则表示终端计算出的发送功率超过了其最大允许的发送功率。
在新无线(NR,New Radio)中,终端需要针对PUSCH和探测参考信号(SRS,Sounding Reference Signal)分别进行功率余量上报(Power Headroom Report,PHR)。终端不仅需要针对当前传输了PUSCH或SRS的载波进行PH上报,同时也要针对未传输PUSCH或SRS的载波进行PH上报,从而为网络侧在该载波上的调度提供参考。
此外,在NR中,一个载波可以包含最多四个带宽部分(BWP,Bandwidth Part),网络侧可以动态的激活其中的部分BWP用于数据或者参考信号传输。不同的BWP可以分配不同的带宽,并用于不同业务类型的数据传输。例如,一个BWP可以用于增强型移动宽带(eMBB,Enhance Mobile Broadband)的数据传输,另一个BWP可以用于低时延高可靠通信(URLLC,Ultra Reliable Low Latency Communication)的数据传输。目前,每个载波只有一个PHR,网络侧无法获得载波内每个BWP上具体的功率余量信息,从而无法合理调度各BWP上的上行信号传输。而且,由于PUSCH传输可以在多个BWP之间动态切换,网络侧需要同时有多个BWP上的实时功率余量信息,才能进 行合理的BWP切换。
发明内容
为解决上述技术问题,本发明实施例提供了一种功率余量上报方法及装置、计算机存储介质。
本发明实施例提供的功率余量上报方法,包括:
终端计算多个BWP上的上行信号的PH,所述多个BWP为所述终端当前配置或激活的BWP;
所述终端向网络设备发送所述多个BWP中的至少一个BWP上的上行信号的PH。
在本发明一实施方式中,所述方法还包括:
所述终端接收所述网络设备通过无线资源控制(RRC,Radio Resource Control)信令、系统消息(SI,System Information)、媒体接入控制(MAC,Media Access Control)信令、或者下行控制信息(DCI,Downlink Control Information)信令指示的所述多个BWP。
在本发明一实施方式中,所述多个BWP为一个载波上所述网络设备为所述终端配置或激活的BWP。
在本发明一实施方式中,所述终端计算多个BWP上的上行信号的功率余量PH,包括:
所述终端根据所述多个BWP中每个BWP上的上行信号的传输参数和/或功率控制参数,计算所述多个BWP中每个BWP上的上行信号的PH。
在本发明一实施方式中,所述上行信号的传输参数包括以下至少之一:所述上行信号的传输带宽、所述上行信号的调制编码方式、所述上行信号的子载波间隔。
在本发明一实施方式中,所述上行信号的功率控制参数包括以下至少之一:最大发送功率、目标接收功率、路损因子、路损估计值、闭环功率调整因子。
在本发明一实施方式中,所述上行信号的传输参数和/或功率控制参数由所述网络设备针对所述多个BWP中的每个BWP分别进行配置。
在本发明一实施方式中,对于所述多个BWP中的每个BWP:
所述BWP上的上行信号的传输参数和/或功率控制参数为计算PH的时刻在所述BWP上发送的上行信号的传输参数和/或功率控制参数;或者,
所述BWP上的上行信号的传输参数和/或功率控制参数为计算PH之前最近一次在 该BWP上发送的上行信号的传输参数和/或功率控制参数。
在本发明一实施方式中,如果计算PH的时刻所述终端在所述多个BWP中的第一BWP上发送上行信号,则所述终端根据所述多个BWP中每个BWP上的上行信号的传输参数和/或功率控制参数,计算所述多个BWP中每个BWP上的上行信号的PH,包括:
所述终端根据所述第一BWP上的上行信号的传输参数和功率控制参数,计算所述第一BWP上的上行信号的PH。
在本发明一实施方式中,如果计算PH的时刻所述终端不在所述多个BWP中的第一BWP上发送上行信号,则所述终端根据所述多个BWP中每个BWP上的上行信号的传输参数和/或功率控制参数,计算所述多个BWP中每个BWP上的上行信号的PH,包括:
所述终端根据所述第一BWP上的上行信号的功率控制参数,计算所述第一BWP上的上行信号的PH。
在本发明一实施方式中,如果计算PH之前最近一次在所述多个BWP中的第二BWP上发送上行信号的时刻与计算PH的时刻的时间间隔小于第一时长,则所述终端根据所述多个BWP中每个BWP上的上行信号的传输参数和/或功率控制参数,计算所述多个BWP中每个BWP上的上行信号的PH,包括:
所述终端根据所述第二BWP上的上行信号的传输参数和功率控制参数,计算所述第二BWP上的上行信号的PH。
在本发明一实施方式中,如果计算PH之前最近一次在所述多个BWP中的第二BWP上发送上行信号的时刻与计算PH的时刻的时间间隔大于或等于第一时长,则所述终端根据所述多个BWP中每个BWP上的上行信号的传输参数和/或功率控制参数,计算所述多个BWP中每个BWP上的上行信号的PH,包括:
所述终端根据所述第二BWP上的上行信号的功率控制参数,计算所述第二BWP上的上行信号的PH。
在本发明一实施方式中,所述终端向网络设备发送所述多个BWP中的至少一个BWP上的上行信号的PH,包括:
所述终端将所述多个BWP中的至少一个BWP中每个BWP的BWP索引与所述BWP对应的PH一起发送给所述网络设备。
在本发明一实施方式中,所述终端向网络设备发送所述多个BWP中的至少一个BWP上的上行信号的PH,包括:
所述终端向网络设备发送所述多个BWP中的处于激活状态的BWP上的上行信号的PH。
在本发明一实施方式中,所述终端向网络设备发送所述多个BWP中的至少一个BWP上的上行信号的PH,包括:
所述终端向所述网络设备发送所述多个BWP中对应的PH取值最大或者最小的至少一个BWP上的上行信号的PH。
在本发明一实施方式中,所述多个BWP属于第一载波;所述方法还包括:
所述终端基于所述第一载波上的所述多个BWP中的至少一个BWP上的上行信号的PH,计算所述第一载波上的上行信号的PH;
所述终端向所述网络设备发送所述第一载波上的上行信号的PH。
在本发明一实施方式中,所述终端基于所述第一载波上的所述多个BWP中的至少一个BWP上的上行信号的PH,计算所述第一载波上的上行信号的PH,包括:
所述终端基于所述第一载波上的所述多个BWP中的全部BWP上的上行信号的PH,计算所述第一载波上的上行信号的PH;或者,
所述终端基于所述第一载波上的所述多个BWP中的处于激活状态的BWP上的上行信号的PH,计算所述第一载波上的上行信号的PH。
在本发明一实施方式中,所述终端向网络设备发送所述多个BWP中的至少一个BWP上的上行信号的PH,包括:
所述终端向网络设备发送所述多个BWP中的第一BWP上的上行信号的第一PH,以及所述多个BWP中除所述第一BWP以外的至少一个BWP上的上行信号的PH与所述第一PH的差值。
在本发明一实施方式中,所述上行信号为PUSCH,、或者SRS、或者物理上行控制信道(PUCCH,Physical Uplink Control Channel,)、或者物理随机接入信道(PRACH,Physical Random Access Channel)。
本发明实施例提供的功率余量上报装置,包括:
第一计算单元,用于计算多个BWP上的上行信号的功率余量PH,所述多个BWP为所述终端当前配置或激活的BWP;
第一发送单元,用于向网络设备发送所述多个BWP中的至少一个BWP上的上行信号的PH。
在本发明一实施方式中,所述装置还包括:
接收单元,用于接收所述网络设备通过RRC信令、SI、MAC信令、或者DCI信令指示的所述多个BWP。
在本发明一实施方式中,所述多个BWP为一个载波上所述网络设备为所述终端配置或激活的BWP。
在本发明一实施方式中,所述第一计算单元,用于根据所述多个BWP中每个BWP上的上行信号的传输参数和/或功率控制参数,计算所述多个BWP中每个BWP上的上行信号的PH。
在本发明一实施方式中,所述上行信号的传输参数包括以下至少之一:所述上行信号的传输带宽、所述上行信号的调制编码方式、所述上行信号的子载波间隔。
在本发明一实施方式中,所述上行信号的功率控制参数包括以下至少之一:最大发送功率、目标接收功率、路损因子、路损估计值、闭环功率调整因子。
在本发明一实施方式中,所述上行信号的传输参数和/或功率控制参数由所述网络设备针对所述多个BWP中的每个BWP分别进行配置。
在本发明一实施方式中,对于所述多个BWP中的每个BWP:
所述BWP上的上行信号的传输参数和/或功率控制参数为计算PH的时刻在所述BWP上发送的上行信号的传输参数和/或功率控制参数;或者,
所述BWP上的上行信号的传输参数和/或功率控制参数为计算PH之前最近一次在该BWP上发送的上行信号的传输参数和/或功率控制参数。
在本发明一实施方式中,如果计算PH的时刻所述终端在所述多个BWP中的第一BWP上发送上行信号,则所述第一计算单元根据所述第一BWP上的上行信号的传输参数和功率控制参数,计算所述第一BWP上的上行信号的PH。
在本发明一实施方式中,如果计算PH的时刻所述终端不在所述多个BWP中的第一BWP上发送上行信号,则所述第一计算单元根据所述第一BWP上的上行信号的功率控制参数,计算所述第一BWP上的上行信号的PH。
在本发明一实施方式中,如果计算PH之前最近一次在所述多个BWP中的第二BWP上发送上行信号的时刻与计算PH的时刻的时间间隔小于第一时长,则所述第一计算单元根据所述第二BWP上的上行信号的传输参数和功率控制参数,计算所述第二BWP上的上行信号的PH。
在本发明一实施方式中,如果计算PH之前最近一次在所述多个BWP中的第二BWP上发送上行信号的时刻与计算PH的时刻的时间间隔大于或等于第一时长,则所述 第一计算单元根据所述第二BWP上的上行信号的功率控制参数,计算所述第二BWP上的上行信号的PH。
在本发明一实施方式中,所述第一发送单元,还用于将所述多个BWP中的至少一个BWP中每个BWP的BWP索引与所述BWP对应的PH一起发送给所述网络设备。
在本发明一实施方式中,所述第一发送单元,用于向网络设备发送所述多个BWP中的处于激活状态的BWP上的上行信号的PH。
在本发明一实施方式中,所述第一发送单元,用于向所述网络设备发送所述多个BWP中对应的PH取值最大或者最小的至少一个BWP上的上行信号的PH。
在本发明一实施方式中,所述多个BWP属于第一载波;所述装置还包括:
第二计算单元,用于基于所述第一载波上的所述多个BWP中的至少一个BWP上的上行信号的PH,计算所述第一载波上的上行信号的PH;
第二发送单元,用于向所述网络设备发送所述第一载波上的上行信号的PH。
在本发明一实施方式中,所述第二计算单元,用于基于所述第一载波上的所述多个BWP中的全部BWP上的上行信号的PH,计算所述第一载波上的上行信号的PH;或者,基于所述第一载波上的所述多个BWP中的处于激活状态的BWP上的上行信号的PH,计算所述第一载波上的上行信号的PH。
在本发明一实施方式中,所述第一发送单元,用于向网络设备发送所述多个BWP中的第一BWP上的上行信号的第一PH,以及所述多个BWP中除所述第一BWP以外的至少一个BWP上的上行信号的PH与所述第一PH的差值。
在本发明一实施方式中,所述上行信号为PUSCH、或者SRS、或者PUCCH、或者PRACH。
本发明实施例提供的计算机存储介质,其上存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现上述的功率余量上报方法。
本发明实施例的技术方案中,终端计算多个BWP上的上行信号的PH,所述多个BWP为所述终端当前配置或激活的BWP;所述终端向网络设备发送所述多个BWP中的至少一个BWP上的上行信号的PH。采用本发明实施例的技术方案,终端针对当前配置或激活的BWP分别进行功率余量上报,从而令网络侧可以灵活的在各个BWP上进行资源调度和上行功率控制。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例的功率余量上报方法的流程示意图;
图2为本发明实施例的功率余量上报装置的结构组成示意图;
图3为本发明实施例的计算机设备的结构组成示意图。
具体实施方式
为便于理解本发明实施例的技术方案,以下对本发明实施例相关的PH计算方法进行说明。
1)如果终端在某时刻在某个载波上传输了PUSCH,则相应的PH可以表示为:
Figure PCTCN2018077041-appb-000001
其中,P CMAX,f,c(i)为终端的最大发送功率,大括号中的计算结果为终端根据该时刻该载波上实际的PUSCH传输参数计算得到的期望发送功率。
2)如果终端在某时刻在某个载波上未传输PUSCH,则相应的PH可以表示为:
Figure PCTCN2018077041-appb-000002
其中,
Figure PCTCN2018077041-appb-000003
为终端在该载波上假设的最大发送功率,大括号内的计算结果为终端在该载波上的预期发送功率(无PUSCH传输参数)。
3)如果终端在某时刻在某个载波上传输了SRS,则相应的PH可以表示为:
PH type3,f,c(i,q s,l)=
P CMAX,f,c(i)-{P O_SRS,f,c(q s)+10log 10(2 μ·M SRS,f,c(i))+α SRS,f,c(q s)·PL f,c(q s)+h f,c(i,l)}
其中,P CMAX,f,c(i)为终端的最大发送功率,大括号中的计算结果为终端根据该时刻该载波上实际的SRS传输参数计算得到的期望发送功率。
4)如果终端在某时刻在某个载波上未传输SRS,则相应的PH可以表示为:
Figure PCTCN2018077041-appb-000004
其中,
Figure PCTCN2018077041-appb-000005
为终端在该载波上假设的最大发送功率,大括号内的计算结果为终端在该载波上的预期发送功率(无SRS传输参数)。
以下结合附图对本发明实施例的技术方案做详细描述。
图1为本发明实施例的功率余量上报方法的流程示意图,如图1所示,所述功率余量上报方法包括以下步骤:
步骤101:终端计算多个BWP上的上行信号的功率余量PH,所述多个BWP为所述终端当前配置或激活的BWP。
本发明实施例中,所述终端为手机、平板电脑、笔记本电脑、台式机等任意能够与网络设备进行通信的设备。
本发明实施例中,所述终端接收所述网络设备通过RRC信令、SI、MAC信令、或者DCI信令指示的所述多个BWP,具体地:
1)所述终端接收所述网络设备发送的第一消息,所述第一消息用于为所述终端配置N个BWP,其中,N为大于1的整数。
进一步,所述第一消息为RRC信令、或者SI。
2)所述终端接收所述网络设备发送的第二消息,所述第二消息用于向所述终端指示需要激活的BWP为所述N个BWP中的M个BWP,其中,M为小于等于N的正整数。
进一步,所述第二消息为MAC信令、或者DCI信令。
3)所述多个BWP为所述N个BWP(也即所述多个BWP为所述终端当前配置的BWP);或者,所述多个BWP为所述M个BWP(也即所述多个BWP为所述终端当前激活的BWP)。
在一实施方式中,所述多个BWP为一个载波上所述网络设备为所述终端配置或激活的BWP。
本发明实施例中,所述终端根据所述多个BWP中每个BWP上的上行信号的传输参数和/或功率控制参数,计算所述多个BWP中每个BWP上的上行信号的PH。
在一实施方式中,所述上行信号的传输参数包括以下至少之一:所述上行信号的传输带宽、所述上行信号的调制编码方式、所述上行信号的子载波间隔。
在一实施方式中,所述上行信号的功率控制参数包括以下至少之一:最大发送功率、目标接收功率、路损因子、路损估计值、闭环功率调整因子。
上述方案中,所述上行信号的传输参数和/或功率控制参数由所述网络设备针对所述多个BWP中的每个BWP分别进行配置。
本发明实施例中,对于所述多个BWP中的每个BWP:
所述BWP上的上行信号的传输参数和/或功率控制参数为计算PH的时刻在所述 BWP上发送的上行信号的传输参数和/或功率控制参数;或者,
所述BWP上的上行信号的传输参数和/或功率控制参数为计算PH之前最近一次在该BWP上发送的上行信号的传输参数和/或功率控制参数。
结合上述上行信号的不同传输情况,本发明实施例通过以下方式计算PH:
1)如果计算PH的时刻所述终端在所述多个BWP中的第一BWP上发送上行信号,则所述终端根据所述多个BWP中每个BWP上的上行信号的传输参数和/或功率控制参数,计算所述多个BWP中每个BWP上的上行信号的PH,包括:
所述终端根据所述第一BWP上的上行信号的传输参数和功率控制参数,计算所述第一BWP上的上行信号的PH。
2)如果计算PH的时刻所述终端不在所述多个BWP中的第一BWP上发送上行信号,则所述终端根据所述多个BWP中每个BWP上的上行信号的传输参数和/或功率控制参数,计算所述多个BWP中每个BWP上的上行信号的PH,包括:
所述终端根据所述第一BWP上的上行信号的功率控制参数,计算所述第一BWP上的上行信号的PH。
3)如果计算PH之前最近一次在所述多个BWP中的第二BWP上发送上行信号的时刻与计算PH的时刻的时间间隔小于第一时长,则所述终端根据所述多个BWP中每个BWP上的上行信号的传输参数和/或功率控制参数,计算所述多个BWP中每个BWP上的上行信号的PH,包括:
所述终端根据所述第二BWP上的上行信号的传输参数和功率控制参数,计算所述第二BWP上的上行信号的PH。
4)如果计算PH之前最近一次在所述多个BWP中的第二BWP上发送上行信号的时刻与计算PH的时刻的时间间隔大于或等于第一时长,则所述终端根据所述多个BWP中每个BWP上的上行信号的传输参数和/或功率控制参数,计算所述多个BWP中每个BWP上的上行信号的PH,包括:
所述终端根据所述第二BWP上的上行信号的功率控制参数,计算所述第二BWP上的上行信号的PH。
这里,所述第一时长为预定义的间隔,在一示例中,所述第一时长可以是若干个时隙。
在一实施方式中,所述上行信号为PUSCH、或者SRS、或者PUCCH、或者PRACH。
本发明实施例中,根据上行信号的传输参数和功率控制参数算出的PH也称为真 实PH,根据功率控制参数算出的PH也称为虚拟PH。以下结合具体示例进行说明。
示例一:终端基于载波c上的BWP k上的PUSCH的传输参数和功率控制参数计算该BWP上的PUSCH的真实PH的方法如下:
Figure PCTCN2018077041-appb-000006
上述公式中的参数是为该BWP k上的PUSCH而配置或指示的参数(即每个BWP专属的参数),其中,
Figure PCTCN2018077041-appb-000007
表示PUSCH的传输带宽,Δ TF,f,c,k(i)根据调制编码方式得到,μ为PUSCH传输的子载波间隔,P CMAX,f,c,k(i)为终端在该BWP上的最大发送功率,P O_PUSCH,f,c,k(j)为PUSCH目标接收功率,α f,c,k(j)为路损因子,PL f,c,k(q d)为路损估计值,f f,c,k(i,l)为闭环功率调整因子。
示例二:终端基于载波c上的BWP k上的PUSCH的功率控制参数计算该BWP上的PUSCH的虚拟PH的方法如下:
Figure PCTCN2018077041-appb-000008
上述公式中的参数是为该BWP k上的PUSCH而配置或指示的功率控制参数(即每个BWP专属的参数),其中,
Figure PCTCN2018077041-appb-000009
为终端在该BWP上假设的最大发送功率,P O_PUSCH,f,c,k(j)为PUSCH目标接收功率,α f,c,k(j)为路损因子,PL f,c,k(q d)为路损估计值,f f,c,k(i,l)为闭环功率调整因子。。
示例三:终端基于载波c上的BWP k上的SRS的传输参数和功率控制参数计算该BWP上的SRS的真实PH的方法如下:
PH type3,f,c,k(i,q s,l)=
P CMAX,f,c,k(i)-{P O_SRS,f,c,k(q s)+10log 10(2 μ·M SRS,f,c,k(i))+α SRS,f,c,k(q s)·PL f,c,k(q s)+h f,c,k(i,l)}
上述公式中的参数是为该BWP k上的SRS而配置或指示的参数(即每个BWP专属的参数),其中,M SRS,f,c,k(i)表示SRS传输带宽,μ为SRS传输的子载波间隔,P CMAX,f,c,k(i)为终端在该BWP上的最大发送功率,P O_SRS,f,c,k(q s)为目标接收功率,α SRS,f,c,k(q s)为路损因子,PL f,c,k(q s)为路损估计值,h f,c,k(i,l)为SRS闭环功率调整因子。
示例四:终端基于载波c上的BWP k上的SRS的功率控制参数计算该BWP上的SRS的虚拟PH的方法如下:
Figure PCTCN2018077041-appb-000010
上述公式中的参数是为该BWP k上的SRS而配置或指示的参数(即每个BWP专属的参数),其中,
Figure PCTCN2018077041-appb-000011
为终端在该BWP上假设的最大发送功率,P O_SRS,f,c,k(q s0)为目标接收功率,α SRS,f,c,k(q s0)为路损因子,PL f,c,k(q s0)为路损估计值,h f,c,k(i,l)为SRS闭环功率调整因子。
步骤102:所述终端向网络设备发送所述多个BWP中的至少一个BWP上的上行信号的PH。
在一实施方式中,所述终端向网络设备发送所述多个BWP中的第一BWP上的上行信号的第一PH,以及所述多个BWP中除所述第一BWP以外的至少一个BWP上的上行信号的PH与所述第一PH的差值。具体地,终端只上报一个BWP上的上行信号的实际PH值,其他BWP上的上行信号只上报差分的PH值,从而可以节约上报的信令开销。这里上报实际PH值的BWP可以是所述多个BWP中索引最低的BWP,或者所述多个BWP中优先级最高的BWP。
在一实施方式中,所述终端将所述多个BWP中的至少一个BWP中每个BWP的BWP索引与所述BWP对应的PH一起发送给所述网络设备。从而网络侧可以根据该索引确定每个PH对应的BWP。
在一实施方式中,所述终端向网络设备发送所述多个BWP中的处于激活状态的BWP上的上行信号的PH。具体地,终端在某个时刻上报PH时,该时刻所述多个BWP中只有一个或者几个BWP是激活的,则终端只上报这些激活的BWP对应的PH,不上报非激活的BWP对应的PH。如果每个时刻只有一个BWP是激活的,则网络侧根据当前激活的BWP,就可以知道上报的PH对应的BWP。
在一实施方式中,所述终端向所述网络设备发送所述多个BWP中对应的PH取值最大或者最小的至少一个BWP上的上行信号的PH。
在一实施方式中,所述多个BWP属于第一载波;所述方法还包括:
所述终端基于所述第一载波上的所述多个BWP中的至少一个BWP上的上行信号的PH,计算所述第一载波上的上行信号的PH(计算的方法可以是取平均值,求和等);
所述终端向所述网络设备发送所述第一载波上的上行信号的PH。
这里,所述终端基于所述第一载波上的所述多个BWP中的至少一个BWP上的上 行信号的PH,计算所述第一载波上的上行信号的PH,通过以下两种方式中的其中一种实现:
方式一:所述终端基于所述第一载波上的所述多个BWP中的全部BWP上的上行信号的PH,计算所述第一载波上的上行信号的PH。
例如:网络侧为终端的一个载波上配置了4个BWP,终端分别计算每个BWP上的PUSCH或SRS的PH,并将所述4个BWP的PH的线性值进行平均后,得到所述载波的PH,并上报给网络侧。
方式二:所述终端基于所述第一载波上的所述多个BWP中的处于激活状态的BWP上的上行信号的PH,计算所述第一载波上的上行信号的PH。
例如:网络侧为终端的一个载波上配置了4个BWP,但是在PH上报的时刻只激活了其中2个BWP,则终端将激活的2个BWP的PH的线性值进行平均后,得到所述载波的PH,并上报给网络侧。
本发明实施例的技术方案,终端可以上报一个载波上配置的多个BWP各自对应的PH,从而网络侧可以灵活在多个BWP之间进行切换,同时确定各个BWP上的资源分配和上行功率控制参数。
图2为本发明实施例的功率余量上报装置的结构组成示意图,如图2所示,所述功率余量上报装置包括:
第一计算单元201,用于计算多个BWP上的上行信号的功率余量PH,所述多个BWP为所述终端当前配置或激活的BWP;
第一发送单元202,用于向网络设备发送所述多个BWP中的至少一个BWP上的上行信号的PH。
在一实施方式中,所述装置还包括:
接收单元203,用于接收所述网络设备通过RRC信令、SI、MAC信令、或者DCI信令指示的所述多个BWP。
在一实施方式中,所述多个BWP为一个载波上所述网络设备为所述终端配置或激活的BWP。
在一实施方式中,所述第一计算单元201,用于根据所述多个BWP中每个BWP上的上行信号的传输参数和/或功率控制参数,计算所述多个BWP中每个BWP上的上行信号的PH。
在一实施方式中,所述上行信号的传输参数包括以下至少之一:所述上行信号的传 输带宽、所述上行信号的调制编码方式、所述上行信号的子载波间隔。
在一实施方式中,所述上行信号的功率控制参数包括以下至少之一:最大发送功率、目标接收功率、路损因子、路损估计值、闭环功率调整因子。
在一实施方式中,所述上行信号的传输参数和/或功率控制参数由所述网络设备针对所述多个BWP中的每个BWP分别进行配置。
在一实施方式中,对于所述多个BWP中的每个BWP:
所述BWP上的上行信号的传输参数和/或功率控制参数为计算PH的时刻在所述BWP上发送的上行信号的传输参数和/或功率控制参数;或者,
所述BWP上的上行信号的传输参数和/或功率控制参数为计算PH之前最近一次在该BWP上发送的上行信号的传输参数和/或功率控制参数。
在一实施方式中,如果计算PH的时刻所述终端在所述多个BWP中的第一BWP上发送上行信号,则所述第一计算单元201根据所述第一BWP上的上行信号的传输参数和功率控制参数,计算所述第一BWP上的上行信号的PH。
在一实施方式中,如果计算PH的时刻所述终端不在所述多个BWP中的第一BWP上发送上行信号,则所述第一计算单元201根据所述第一BWP上的上行信号的功率控制参数,计算所述第一BWP上的上行信号的PH。
在一实施方式中,如果计算PH之前最近一次在所述多个BWP中的第二BWP上发送上行信号的时刻与计算PH的时刻的时间间隔小于第一时长,则所述第一计算单元201根据所述第二BWP上的上行信号的传输参数和功率控制参数,计算所述第二BWP上的上行信号的PH。
在一实施方式中,如果计算PH之前最近一次在所述多个BWP中的第二BWP上发送上行信号的时刻与计算PH的时刻的时间间隔大于或等于第一时长,则所述第一计算单元201根据所述第二BWP上的上行信号的功率控制参数,计算所述第二BWP上的上行信号的PH。
在一实施方式中,所述第一发送单元202,还用于将所述多个BWP中的至少一个BWP中每个BWP的BWP索引与所述BWP对应的PH一起发送给所述网络设备。
在一实施方式中,所述第一发送单元202,用于向网络设备发送所述多个BWP中的处于激活状态的BWP上的上行信号的PH。
在一实施方式中,所述第一发送单元202,用于向所述网络设备发送所述多个BWP中对应的PH取值最大或者最小的至少一个BWP上的上行信号的PH。
在一实施方式中,所述多个BWP属于第一载波;所述装置还包括:
第二计算单元204,用于基于所述第一载波上的所述多个BWP中的至少一个BWP上的上行信号的PH,计算所述第一载波上的上行信号的PH;
第二发送单元205,用于向所述网络设备发送所述第一载波上的上行信号的PH。
在一实施方式中,所述第二计算单元204,用于基于所述第一载波上的所述多个BWP中的全部BWP上的上行信号的PH,计算所述第一载波上的上行信号的PH;或者,基于所述第一载波上的所述多个BWP中的处于激活状态的BWP上的上行信号的PH,计算所述第一载波上的上行信号的PH。
在一实施方式中,所述第一发送单元202,用于向网络设备发送所述多个BWP中的第一BWP上的上行信号的第一PH,以及所述多个BWP中除所述第一BWP以外的至少一个BWP上的上行信号的PH与所述第一PH的差值。
在一实施方式中,所述上行信号为PUSCH、或者SRS、或者PUCCH、或者PRACH。
本领域技术人员应当理解,图2所示的功率余量上报装置中的各单元的实现功能可参照前述功率余量上报方法的相关描述而理解。图2所示的功率余量上报装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
本发明实施例上述功率余量上报装置如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例还提供一种计算机存储介质,其中存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现本发明实施例的上述功率余量上报方法。
图3为本发明实施例的计算机设备的结构组成示意图,该计算机设备可以是任意类型的终端。如图3所示,计算机设备100可以包括一个或多个(图中仅示出一个)处理器1002(处理器1002可以包括但不限于微处理器(MCU,Micro Controller Unit)或可编程逻辑器件(FPGA,Field Programmable Gate Array)等的处理装置)、用于存储数据的存储器1004、以及用于通信功能的传输装置1006。本领域普通技术人员可以理解, 图3所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,计算机设备100还可包括比图3中所示更多或者更少的组件,或者具有与图3所示不同的配置。
存储器1004可用于存储应用软件的软件程序以及模块,如本发明实施例中的方法对应的程序指令/模块,处理器1002通过运行存储在存储器1004内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器1004可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器1004可进一步包括相对于处理器1002远程设置的存储器,这些远程存储器可以通过网络连接至计算机设备100。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置1006用于经由一个网络接收或者发送数据。上述的网络具体实例可包括计算机设备100的通信供应商提供的无线网络。在一个实例中,传输装置1006包括一个网络适配器(NIC,Network Interface Controller),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置1006可以为射频(RF,Radio Frequency)模块,其用于通过无线方式与互联网进行通讯。
本发明实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
在本发明所提供的几个实施例中,应该理解到,所揭露的方法和智能设备,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个第二处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应 涵盖在本发明的保护范围之内。

Claims (39)

  1. 一种功率余量上报方法,所述方法包括:
    终端计算多个带宽部分BWP上的上行信号的功率余量PH,所述多个BWP为所述终端当前配置或激活的BWP;
    所述终端向网络设备发送所述多个BWP中的至少一个BWP上的上行信号的PH。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端接收所述网络设备通过无线资源控制RRC信令、系统消息SI、媒体接入控制MAC信令、或者下行控制信息DCI信令指示的所述多个BWP。
  3. 根据权利要求1至2任一项所述的方法,其中,所述多个BWP为一个载波上所述网络设备为所述终端配置或激活的BWP。
  4. 根据权利要求1至3任一项所述的方法,其中,所述终端计算多个BWP上的上行信号的功率余量PH,包括:
    所述终端根据所述多个BWP中每个BWP上的上行信号的传输参数和/或功率控制参数,计算所述多个BWP中每个BWP上的上行信号的PH。
  5. 根据权利要求4所述的方法,其中,所述上行信号的传输参数包括以下至少之一:所述上行信号的传输带宽、所述上行信号的调制编码方式、所述上行信号的子载波间隔。
  6. 根据权利要求4或5所述的方法,其中,所述上行信号的功率控制参数包括以下至少之一:最大发送功率、目标接收功率、路损因子、路损估计值、闭环功率调整因子。
  7. 根据权利要求4至6任一项所述的方法,其中,所述上行信号的传输参数和/或功率控制参数由所述网络设备针对所述多个BWP中的每个BWP分别进行配置。
  8. 根据权利要求4至7任一项所述的方法,其中,对于所述多个BWP中的每个BWP:
    所述BWP上的上行信号的传输参数和/或功率控制参数为计算PH的时刻在所述BWP上发送的上行信号的传输参数和/或功率控制参数;或者,
    所述BWP上的上行信号的传输参数和/或功率控制参数为计算PH之前最近一次在该BWP上发送的上行信号的传输参数和/或功率控制参数。
  9. 根据权利要求4至7任一项所述的方法,其中,如果计算PH的时刻所述终端在所述多个BWP中的第一BWP上发送上行信号,则所述终端根据所述多个BWP中每个BWP上的上行信号的传输参数和/或功率控制参数,计算所述多个BWP中每个BWP上的上行信号的PH,包括:
    所述终端根据所述第一BWP上的上行信号的传输参数和功率控制参数,计算所述第一BWP上的上行信号的PH。
  10. 根据权利要求4至7任一项所述的方法,其中,如果计算PH的时刻所述终端不在所述多个BWP中的第一BWP上发送上行信号,则所述终端根据所述多个BWP中每个BWP上的上行信号的传输参数和/或功率控制参数,计算所述多个BWP中每个BWP上的上行信号的PH,包括:
    所述终端根据所述第一BWP上的上行信号的功率控制参数,计算所述第一BWP上的上行信号的PH。
  11. 根据权利要求4至7任一项所述的方法,其中,如果计算PH之前最近一次在所述多个BWP中的第二BWP上发送上行信号的时刻与计算PH的时刻的时间间隔小于第一时长,则所述终端根据所述多个BWP中每个BWP上的上行信号的传输参数和/或功率控制参数,计算所述多个BWP中每个BWP上的上行信号的PH,包括:
    所述终端根据所述第二BWP上的上行信号的传输参数和功率控制参数,计算所述第二BWP上的上行信号的PH。
  12. 根据权利要求4至7任一项所述的方法,其中,如果计算PH之前最近一次在所述多个BWP中的第二BWP上发送上行信号的时刻与计算PH的时刻的时间间隔大于或等于第一时长,则所述终端根据所述多个BWP中每个BWP上的上行信号的传输参数和/或功率控制参数,计算所述多个BWP中每个BWP上的上行信号的PH,包括:
    所述终端根据所述第二BWP上的上行信号的功率控制参数,计算所述第二BWP上的上行信号的PH。
  13. 根据权利要求1至12任一项所述的方法,其中,所述终端向网络设备发送所述多个BWP中的至少一个BWP上的上行信号的PH,包括:
    所述终端将所述多个BWP中的至少一个BWP中每个BWP的BWP索引与所述BWP对应的PH一起发送给所述网络设备。
  14. 根据权利要求1至12任一项所述的方法,其中,所述终端向网络设备发送所述多个BWP中的至少一个BWP上的上行信号的PH,包括:
    所述终端向网络设备发送所述多个BWP中的处于激活状态的BWP上的上行信号的PH。
  15. 根据权利要求1至12任一项所述的方法,其中,所述终端向网络设备发送所述多个BWP中的至少一个BWP上的上行信号的PH,包括:
    所述终端向所述网络设备发送所述多个BWP中对应的PH取值最大或者最小的至少一个BWP上的上行信号的PH。
  16. 根据权利要求1至15任一项所述的方法,其中,所述多个BWP属于第一载波;所述方法还包括:
    所述终端基于所述第一载波上的所述多个BWP中的至少一个BWP上的上行信号的PH,计算所述第一载波上的上行信号的PH;
    所述终端向所述网络设备发送所述第一载波上的上行信号的PH。
  17. 根据权利要求16所述的方法,其中,所述终端基于所述第一载波上的所述多个BWP中的至少一个BWP上的上行信号的PH,计算所述第一载波上的上行信号的PH,包括:
    所述终端基于所述第一载波上的所述多个BWP中的全部BWP上的上行信号的PH,计算所述第一载波上的上行信号的PH;或者,
    所述终端基于所述第一载波上的所述多个BWP中的处于激活状态的BWP上的上行信号的PH,计算所述第一载波上的上行信号的PH。
  18. 根据权利要求1至17任一项所述的方法,其中,所述终端向网络设备发送所述多个BWP中的至少一个BWP上的上行信号的PH,包括:
    所述终端向网络设备发送所述多个BWP中的第一BWP上的上行信号的第一PH,以及所述多个BWP中除所述第一BWP以外的至少一个BWP上的上行信号的PH与所述第一PH的差值。
  19. 根据权利要求1至18任一项所述的方法,其中,所述上行信号为物理上行共享信道PUSCH、或者探测参考信号SRS、或者物理上行控制信道PUCCH、或者物理随机接入信道PRACH。
  20. 一种功率余量上报装置,所述装置包括:
    第一计算单元,用于计算多个BWP上的上行信号的功率余量PH,所述多个BWP为所述终端当前配置或激活的BWP;
    第一发送单元,用于向网络设备发送所述多个BWP中的至少一个BWP上的上 行信号的PH。
  21. 根据权利要求20所述的装置,其中,所述装置还包括:
    接收单元,用于接收所述网络设备通过RRC信令、SI、MAC信令、或者DCI信令指示的所述多个BWP。
  22. 根据权利要求20至21任一项所述的装置,其中,所述多个BWP为一个载波上所述网络设备为所述终端配置或激活的BWP。
  23. 根据权利要求20至22任一项所述的装置,其中,所述第一计算单元,用于根据所述多个BWP中每个BWP上的上行信号的传输参数和/或功率控制参数,计算所述多个BWP中每个BWP上的上行信号的PH。
  24. 根据权利要求23所述的装置,其中,所述上行信号的传输参数包括以下至少之一:所述上行信号的传输带宽、所述上行信号的调制编码方式、所述上行信号的子载波间隔。
  25. 根据权利要求23或24所述的装置,其中,所述上行信号的功率控制参数包括以下至少之一:最大发送功率、目标接收功率、路损因子、路损估计值、闭环功率调整因子。
  26. 根据权利要求23至25任一项所述的装置,其中,所述上行信号的传输参数和/或功率控制参数由所述网络设备针对所述多个BWP中的每个BWP分别进行配置。
  27. 根据权利要求23至26任一项所述的装置,其中,对于所述多个BWP中的每个BWP:
    所述BWP上的上行信号的传输参数和/或功率控制参数为计算PH的时刻在所述BWP上发送的上行信号的传输参数和/或功率控制参数;或者,
    所述BWP上的上行信号的传输参数和/或功率控制参数为计算PH之前最近一次在该BWP上发送的上行信号的传输参数和/或功率控制参数。
  28. 根据权利要求23至26任一项所述的装置,其中,如果计算PH的时刻所述终端在所述多个BWP中的第一BWP上发送上行信号,则所述第一计算单元根据所述第一BWP上的上行信号的传输参数和功率控制参数,计算所述第一BWP上的上行信号的PH。
  29. 根据权利要求23至26任一项所述的装置,其中,如果计算PH的时刻所述终端不在所述多个BWP中的第一BWP上发送上行信号,则所述第一计算单元根据所述第一BWP上的上行信号的功率控制参数,计算所述第一BWP上的上行信号的 PH。
  30. 根据权利要求23至26任一项所述的装置,其中,如果计算PH之前最近一次在所述多个BWP中的第二BWP上发送上行信号的时刻与计算PH的时刻的时间间隔小于第一时长,则所述第一计算单元根据所述第二BWP上的上行信号的传输参数和功率控制参数,计算所述第二BWP上的上行信号的PH。
  31. 根据权利要求23至26任一项所述的装置,其中,如果计算PH之前最近一次在所述多个BWP中的第二BWP上发送上行信号的时刻与计算PH的时刻的时间间隔大于或等于第一时长,则所述第一计算单元根据所述第二BWP上的上行信号的功率控制参数,计算所述第二BWP上的上行信号的PH。
  32. 根据权利要求20至31任一项所述的装置,其中,所述第一发送单元,还用于将所述多个BWP中的至少一个BWP中每个BWP的BWP索引与所述BWP对应的PH一起发送给所述网络设备。
  33. 根据权利要求20至31任一项所述的装置,其中,所述第一发送单元,用于向网络设备发送所述多个BWP中的处于激活状态的BWP上的上行信号的PH。
  34. 根据权利要求20至31任一项所述的装置,其中,所述第一发送单元,用于向所述网络设备发送所述多个BWP中对应的PH取值最大或者最小的至少一个BWP上的上行信号的PH。
  35. 根据权利要求20至34任一项所述的装置,其中,所述多个BWP属于第一载波;所述装置还包括:
    第二计算单元,用于基于所述第一载波上的所述多个BWP中的至少一个BWP上的上行信号的PH,计算所述第一载波上的上行信号的PH;
    第二发送单元,用于向所述网络设备发送所述第一载波上的上行信号的PH。
  36. 根据权利要求35所述的装置,其中,所述第二计算单元,用于基于所述第一载波上的所述多个BWP中的全部BWP上的上行信号的PH,计算所述第一载波上的上行信号的PH;或者,基于所述第一载波上的所述多个BWP中的处于激活状态的BWP上的上行信号的PH,计算所述第一载波上的上行信号的PH。
  37. 根据权利要求20至36任一项所述的装置,其中,所述第一发送单元,用于向网络设备发送所述多个BWP中的第一BWP上的上行信号的第一PH,以及所述多个BWP中除所述第一BWP以外的至少一个BWP上的上行信号的PH与所述第一PH的差值。
  38. 根据权利要求20至37任一项所述的装置,其中,所述上行信号为PUSCH、或者SRS、或者PUCCH、或者PRACH。
  39. 一种计算机存储介质,其上存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现权利要求1至19任一项所述的方法步骤。
PCT/CN2018/077041 2018-02-23 2018-02-23 一种功率余量上报方法及装置、计算机存储介质 WO2019161542A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP18907174.9A EP3745766B1 (en) 2018-02-23 2018-02-23 Power headroom report method and apparatus, and computer storage medium
JP2020544437A JP7164617B2 (ja) 2018-02-23 2018-02-23 パワーヘッドルーム報告方法及び装置、コンピュータ記憶媒体
PCT/CN2018/077041 WO2019161542A1 (zh) 2018-02-23 2018-02-23 一种功率余量上报方法及装置、计算机存储介质
CN201880065350.2A CN111213402A (zh) 2018-02-23 2018-02-23 一种功率余量上报方法及装置、计算机存储介质
KR1020207025348A KR102434078B1 (ko) 2018-02-23 2018-02-23 전력 헤드룸 리포팅 방법 및 장치, 컴퓨터 저장 매체
CN202010423291.0A CN111542092B (zh) 2018-02-23 2018-02-23 一种功率余量上报方法及装置、计算机存储介质
AU2018409912A AU2018409912B2 (en) 2018-02-23 2018-02-23 Power headroom report method and apparatus, and computer storage medium
US16/896,578 US11039407B2 (en) 2018-02-23 2020-06-09 Power headroom report method and apparatus, and computer storage medium
US17/328,923 US11785558B2 (en) 2018-02-23 2021-05-24 Power headroom report method and apparatus, and computer storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/077041 WO2019161542A1 (zh) 2018-02-23 2018-02-23 一种功率余量上报方法及装置、计算机存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/896,578 Continuation US11039407B2 (en) 2018-02-23 2020-06-09 Power headroom report method and apparatus, and computer storage medium

Publications (1)

Publication Number Publication Date
WO2019161542A1 true WO2019161542A1 (zh) 2019-08-29

Family

ID=67686662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077041 WO2019161542A1 (zh) 2018-02-23 2018-02-23 一种功率余量上报方法及装置、计算机存储介质

Country Status (7)

Country Link
US (2) US11039407B2 (zh)
EP (1) EP3745766B1 (zh)
JP (1) JP7164617B2 (zh)
KR (1) KR102434078B1 (zh)
CN (2) CN111213402A (zh)
AU (1) AU2018409912B2 (zh)
WO (1) WO2019161542A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210227472A1 (en) * 2018-09-27 2021-07-22 Huawei Technologies Co., Ltd. Data transmission method and apparatus
US20220078717A1 (en) * 2020-09-04 2022-03-10 Qualcomm Incorporated Methods for power control in ultra wide bandwidth beamforming systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11832254B2 (en) * 2020-09-28 2023-11-28 Samsung Electronics Co., Ltd. Power headroom report types and triggering conditions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895923A (zh) * 2010-06-11 2010-11-24 新邮通信设备有限公司 载波聚合通信系统中的功率余量报告方法和用户设备
CN102291731A (zh) * 2010-06-18 2011-12-21 电信科学技术研究院 一种应用于分层网络的测量方法及其装置
CN102740346A (zh) * 2011-04-01 2012-10-17 中兴通讯股份有限公司 功率余量报告触发方法及装置
US20140198765A1 (en) * 2011-04-08 2014-07-17 Motorola Mobility Llc Method and Apparatus for Multi-Radio Coexistence on Adjacent Frequency Bands
CN103974319A (zh) * 2013-01-29 2014-08-06 电信科学技术研究院 载波聚合下的功率余量上报方法和设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR073833A1 (es) * 2008-10-20 2010-12-01 Interdigital Patent Holdings Metodos para el control ascendente de transmision de informacion para agregar ona portadora
WO2012020539A1 (ja) * 2010-08-09 2012-02-16 パナソニック株式会社 基地局、移動局、パワーヘッドルーム用算出パラメータの送信方法、及びパワーヘッドルームの送信方法
CN102123437B (zh) * 2011-03-03 2016-02-17 电信科学技术研究院 功率余量上报和调度子帧的方法、系统及设备
CN105144776B (zh) 2013-04-22 2019-07-12 Lg电子株式会社 在支持无线资源的使用变化的无线通信系统中的功率净空报告方法及其装置
CN105745975B (zh) * 2014-09-28 2020-12-22 华为技术有限公司 上行功率控制方法和装置
EP3282629B1 (en) * 2015-04-08 2020-09-09 LG Electronics Inc. Method for reporting channel state and apparatus therefor
CN107682923B (zh) * 2016-08-01 2023-05-12 北京三星通信技术研究有限公司 功率余量上报的方法及相应的用户设备
CN107690157A (zh) * 2016-08-04 2018-02-13 北京信威通信技术股份有限公司 一种上报功率余量的方法及装置
US10420044B2 (en) * 2017-03-10 2019-09-17 Qualcomm Incorporated Uplink power headroom report
US10912041B2 (en) * 2017-08-11 2021-02-02 Lg Electronics Inc. Method for triggering a power headroom reporting in wireless communication system and a device therefor
EP3698582B1 (en) * 2017-11-15 2022-09-14 Convida Wireless, LLC Method and device for power headroom reporting in 5g nr
WO2019095310A1 (en) * 2017-11-17 2019-05-23 Zte Corporation Method and apparatus for uplink transmission in multi-carrier systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895923A (zh) * 2010-06-11 2010-11-24 新邮通信设备有限公司 载波聚合通信系统中的功率余量报告方法和用户设备
CN102291731A (zh) * 2010-06-18 2011-12-21 电信科学技术研究院 一种应用于分层网络的测量方法及其装置
CN102740346A (zh) * 2011-04-01 2012-10-17 中兴通讯股份有限公司 功率余量报告触发方法及装置
US20140198765A1 (en) * 2011-04-08 2014-07-17 Motorola Mobility Llc Method and Apparatus for Multi-Radio Coexistence on Adjacent Frequency Bands
CN103974319A (zh) * 2013-01-29 2014-08-06 电信科学技术研究院 载波聚合下的功率余量上报方法和设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210227472A1 (en) * 2018-09-27 2021-07-22 Huawei Technologies Co., Ltd. Data transmission method and apparatus
US20220078717A1 (en) * 2020-09-04 2022-03-10 Qualcomm Incorporated Methods for power control in ultra wide bandwidth beamforming systems
WO2022051070A1 (en) * 2020-09-04 2022-03-10 Qualcomm Incorporated Methods for power control in ultra wide bandwidth beamforming systems
US11800455B2 (en) 2020-09-04 2023-10-24 Qualcomm Incorporated Methods for power control in ultra wide bandwidth beamforming systems

Also Published As

Publication number Publication date
US20200305092A1 (en) 2020-09-24
KR102434078B1 (ko) 2022-08-18
KR20200111817A (ko) 2020-09-29
AU2018409912B2 (en) 2021-08-12
US20210282095A1 (en) 2021-09-09
AU2018409912A1 (en) 2020-09-17
CN111542092A (zh) 2020-08-14
JP2021514595A (ja) 2021-06-10
US11785558B2 (en) 2023-10-10
EP3745766A4 (en) 2021-01-20
EP3745766B1 (en) 2022-08-03
CN111542092B (zh) 2023-07-04
EP3745766A1 (en) 2020-12-02
JP7164617B2 (ja) 2022-11-01
US11039407B2 (en) 2021-06-15
CN111213402A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
US11743839B2 (en) Method and apparatus for transmitting power headroom information in a communication system
KR102430558B1 (ko) 무선 통신 시스템에서 단말의 송신 전력 제어 방법 및 장치
CN110730492B (zh) 用于双连接的上行链路传输
US11785558B2 (en) Power headroom report method and apparatus, and computer storage medium
WO2018127022A1 (zh) 发送功率的确定方法、装置及系统
US10440701B2 (en) User equipment and power allocation method
KR102434749B1 (ko) 통신 시스템에서 파워 헤드룸 정보의 전송 방법 및 장치
JP2020191673A (ja) 短縮送信時間間隔パターンに対する無線周波数動作の設定制限
CN108605297B (zh) 传输具有较低a-mpr的pucch的方法和装置
KR102576618B1 (ko) 최소 스케줄링 오프셋 제한의 적용 지연 값 결정
KR20220047576A (ko) 물리 하향링크 제어채널 모니터링 방법 및 상기 방법을 이용하는 장치
CN116349334A (zh) 用于侧链路传输的资源分配技术,以及基于侧链路通信可靠性的资源分配技术之间的动态选择
KR102616262B1 (ko) 무선통신 시스템에서 불연속 수신 동작
CN116368875A (zh) 针对物理上行链路控制信道(pucch)和物理上行链路共享信道(pusch)的最大允许暴露(mpe)上行链路(ul)预算优先化
KR20230124734A (ko) 전송 전력 결정 방법 및 장치
KR20220047768A (ko) 무선통신 시스템에서 단말의 pdcch 모니터링 방법 및 상기 방법을 이용하는 장치
CN113545137A (zh) 对终端请求的功率降低的控制
WO2023138295A1 (zh) 一种功率余量上报方法和装置
CN116867043A (zh) 功率控制方法、装置及终端
CN117939608A (zh) 功率余量指示信息上报方法、电子设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020544437

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207025348

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018907174

Country of ref document: EP

Effective date: 20200825

ENP Entry into the national phase

Ref document number: 2018409912

Country of ref document: AU

Date of ref document: 20180223

Kind code of ref document: A