WO2019160151A1 - Plasma therapy apparatus and cover for plasma therapy apparatus - Google Patents

Plasma therapy apparatus and cover for plasma therapy apparatus Download PDF

Info

Publication number
WO2019160151A1
WO2019160151A1 PCT/JP2019/005938 JP2019005938W WO2019160151A1 WO 2019160151 A1 WO2019160151 A1 WO 2019160151A1 JP 2019005938 W JP2019005938 W JP 2019005938W WO 2019160151 A1 WO2019160151 A1 WO 2019160151A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
cover
nozzle
irradiation
tip
Prior art date
Application number
PCT/JP2019/005938
Other languages
French (fr)
Japanese (ja)
Inventor
悠 長原
哲平 青山
貴也 大下
喜重 瀧川
上原 剛
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2019572322A priority Critical patent/JP6916317B2/en
Publication of WO2019160151A1 publication Critical patent/WO2019160151A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/06Implements for therapeutic treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/44Applying ionised fluids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches

Definitions

  • the present invention relates to a plasma treatment apparatus and a cover for the plasma treatment apparatus.
  • Patent Document 1 discloses a plasma jet irradiation apparatus that performs dental treatment.
  • the said plasma jet irradiation apparatus is equipped with the irradiation instrument which has a plasma jet irradiation means.
  • the plasma jet irradiation apparatus irradiates an object with generated plasma and active species.
  • the active species are generated by the reaction of the gas in the plasma or the gas around the plasma with the plasma.
  • Patent Document 2 discloses a plasma treatment apparatus that generates an active gas (active species) inside an irradiation instrument, discharges the active gas from a nozzle, and irradiates the affected area.
  • the active gas is, for example, active oxygen or active nitrogen.
  • the present invention has been made in view of the above-described circumstances, and when using the plasma device without anesthesia for the treatment subject, the treatment subject contacts the tip of the nozzle to the treatment subject.
  • the purpose is to reduce the physical burden.
  • a plasma treatment apparatus includes a plasma generator, and a nozzle that discharges at least one of the plasma generated in the plasma generator and the active gas generated by the plasma, and the tip of the nozzle is hard.
  • the thickness (hardness measured by a type A durometer defined in JIS K 6253) is 0 degree or more and 60 degrees or less.
  • treatment target site a treatment target site of a treatment subject (animal other than a human) or the vicinity thereof (hereinafter referred to as “treatment target site”) during treatment with the plasma treatment apparatus.
  • a treatment target site a treatment target site of a treatment subject
  • the animal moves unexpectedly (for example, when used for a dog and is irradiated with plasma or active gas)
  • the dog is surprised
  • the site may be damaged at the tip of the nozzle.
  • the hardness of the tip of the nozzle (the hardness measured by a type A durometer defined in JIS K 6253, hereinafter referred to as “hardness”) is 0 degree or more and 60 degrees or less. It is. Therefore, for example, compared to a case where the hardness of the tip of the nozzle is larger than 60 degrees, the tip of the nozzle is not too hard. Thereby, even if the tip of the nozzle comes into contact with the treatment target site of the treatment subject, the physical burden on the treatment subject can be reduced.
  • the nozzle includes a main body tube through which at least one of the plasma and the active gas passes, and a cover that covers the main body tube, and the cover is a hard material measured by a type A durometer defined in JIS K 6253. May be formed of a material having a thickness of 0 degrees or more and 60 degrees or less, and may form the tip of the nozzle.
  • the cover forms the tip of the nozzle. Therefore, even if the tip of the nozzle comes into contact with the treatment target site and the like and the tip of the nozzle is contaminated, the contamination can remain in the cover. Thereby, contamination of the main body tube can be suppressed. Further, for example, contamination can be removed from the nozzle by replacing the cover.
  • the main body tube may be made of metal, and the cover may be made of resin.
  • the main body tube is made of metal. Therefore, the main tube can pass the plasma and the active gas stably over a long period of time.
  • the cover is made of resin. Therefore, for example, it is possible to easily reduce the weight and cost of the cover.
  • the front end portion of the cover may protrude with respect to the front end portion of the main body tube.
  • the front end of the cover protrudes from the front end of the main body tube. Therefore, for example, the distance from the distal end of the main body tube to the treatment target site while reducing the physical burden on the treatment target by using the tip of the cover in contact with the treatment target site (hereinafter referred to as the treatment target site) , "Irradiation distance" can be secured stably.
  • the concentration of the active species that contributes to the treatment effect varies depending on the irradiation distance. Therefore, a favorable therapeutic effect is expected by ensuring the irradiation distance stably as described above.
  • a pressure relief portion for releasing the gas supplied into the front end portion of the cover through the main body tube to the outside may be formed at the front end portion of the cover.
  • a pressure relief portion is formed at the tip of the cover. Therefore, when the front end portion of the cover is used while being abutted against the site to be treated, it is possible to suppress an excessive increase in the internal pressure of the front end portion of the cover. Thereby, it becomes possible to keep using the front-end
  • the nozzle is detachably attached to the housing. Therefore, even if the tip of the nozzle comes into contact with the treatment target site and the tip of the nozzle is contaminated, the contamination can be removed by, for example, replacing the nozzle.
  • a cover for a plasma type treatment apparatus includes a plasma generation unit, and a nozzle that discharges at least one of plasma generated in the plasma generation unit and active gas generated by the plasma, and the nozzle includes:
  • the cover is a cover that covers the main body tube, and the cover is measured by a type A durometer defined in JIS K 6253 It is made of a material having a hardness of 0 degrees or more and 60 degrees or less, and forms the tip of the nozzle.
  • FIG. 3 is an xx cross-sectional view of the irradiation instrument of FIG.
  • FIG. 3 is a yy sectional view of the irradiation instrument of FIG. 2.
  • It is a block diagram which shows schematic structure of the plasma type treatment apparatus which concerns on one Embodiment of this invention. It is sectional drawing of the principal part of the irradiation instrument of FIG. It is sectional drawing of the principal part of the plasma type treatment apparatus which concerns on the 1st modification of this invention.
  • the plasma treatment apparatus of the present invention is a plasma jet irradiation apparatus or an active gas irradiation apparatus.
  • the plasma jet irradiation apparatus generates plasma.
  • the plasma jet irradiation apparatus directly irradiates an object with generated plasma and active species.
  • the active species are generated by the reaction of the gas in the plasma or the gas around the plasma with the plasma.
  • Examples of the active species include active oxygen species and active nitrogen species.
  • Examples of the active oxygen species include hydroxyl radical, singlet oxygen, ozone, hydrogen peroxide, superoxide anion radical, and the like.
  • Examples of the active nitrogen species include nitric oxide, nitrogen dioxide, peroxynitrite, peroxynitrite, and dinitrogen trioxide.
  • the active gas irradiation device generates plasma.
  • the active gas irradiation apparatus irradiates an object with an active gas containing active species.
  • the active species are generated by the reaction of the gas in the plasma or the gas around the plasma
  • the plasma treatment apparatus of this embodiment is an active gas irradiation apparatus.
  • the active gas irradiation apparatus 100 includes an irradiation tool 10, a detection unit 15, a supply unit 20, a gas pipe 30, an electrical wiring 40, and a supply source 70. And a notification unit 80 and a control unit 90 (calculation unit).
  • the irradiation tool 10 discharges the active gas generated in the irradiation tool 10.
  • the supply unit 20 supplies power and plasma generation gas to the irradiation tool 10.
  • the supply unit 20 accommodates a supply source 70.
  • the supply source 70 contains a plasma generating gas.
  • the supply unit 20 is connected to a power source (not shown) such as a 100 V household power source.
  • the gas pipe line 30 connects the irradiation tool 10 and the supply unit 20.
  • the electrical wiring 40 connects the irradiation instrument 10 and the supply unit 20.
  • the gas pipeline 30 and the electrical wiring 40 are independent of each other, but the gas pipeline 30 and the electrical wiring 40 may be integrated.
  • FIG. 2 is a cross-sectional (longitudinal cross-sectional) view of the surface along the axis of the irradiation instrument 10.
  • the irradiation instrument 10 includes a long cowling 2 (housing), a nozzle 11 protruding from the tip of the cowling 2, and a plasma generator 12 positioned in the cowling 2.
  • the cowling 2 includes a cylindrical body portion 2b and a head portion 2a that closes the tip of the body portion 2b.
  • the body portion 2b is not limited to a cylindrical shape, and may be a polygonal cylindrical shape such as a square tube, a hexagonal tube, or an octagonal tube.
  • the head portion 2a is gradually narrowed toward the tip. That is, the head portion 2a in the present embodiment has a conical shape.
  • the head portion 2a is not limited to a conical shape, and may be a polygonal pyramid shape such as a quadrangular weight, a hexagonal weight, or an octagonal weight.
  • the head portion 2a has a fitting hole 2c at the tip.
  • the fitting hole 2 c is a hole that receives the nozzle 11.
  • the nozzle 11 is detachable from the head portion 2a.
  • the head part 2a has a first active gas channel 7 extending in the direction of the tube axis O1 inside.
  • the tube axis O1 is a tube axis of the body portion 2b.
  • the body portion 2b includes an operation switch 9 (operation portion) on the outer peripheral surface.
  • the plasma generator 12 includes a tubular dielectric 3 (dielectric), an internal electrode 4, and an external electrode 5.
  • the tubular dielectric 3 is a cylindrical member extending in the direction of the tube axis O1.
  • the tubular dielectric 3 has a gas flow path 6 extending in the direction of the tube axis O1 inside.
  • the first active gas channel 7 and the gas channel 6 communicate with each other.
  • the tube axis O1 is the same as the tube axis of the tubular dielectric 3.
  • the tubular dielectric 3 includes an internal electrode 4 inside.
  • the internal electrode 4 is a substantially columnar member extending in the direction of the tube axis O1.
  • the internal electrode 4 is separated from the inner surface of the tubular dielectric 3.
  • a part of the outer peripheral surface of the tubular dielectric 3 is provided with an external electrode 5 along the internal electrode 4.
  • the external electrode 5 is an annular electrode that circulates along the outer peripheral surface of the tubular dielectric 3.
  • the tubular dielectric 3, the internal electrode 4, and the external electrode 5 are located concentrically around the tube axis O1.
  • the outer peripheral surface of the internal electrode 4 and the inner peripheral surface of the external electrode 5 are opposed to each other with the tubular dielectric 3 interposed therebetween.
  • the plasma generator 12 can be detached from the cowling 2.
  • the plasma generator 12 is pulled out from the cowling 2 in the direction of the tube axis O1.
  • the plasma generation portion 12 may be configured so that the plasma generation portion 12 is pulled forward with respect to the body portion 2b (note that the tube The head portion 2a side is the front side and the body portion 2b side is the rear side along the direction of the axis O1).
  • the plasma generation unit 12 can be attached to the cowling 2 after the plasma generation unit 12 is detached from the cowling 2.
  • the new plasma generator 12 can be inserted into the cowling 2 in the direction of the tube axis O1.
  • the hardness of the tip of the nozzle 11 (the hardness measured by a type A durometer defined in JIS K 6253, hereinafter referred to as “hardness”) is 0 degree or more and 60 degrees or less. is there.
  • the nozzle 11 includes a main body tube 1 through which at least one of plasma and active gas passes, and a cover 13 that covers the main body tube 1.
  • the cover 13 forms the tip of the nozzle 11 and is formed of a material having a hardness of 0 degrees to 60 degrees.
  • the cover 13 is formed of a material having a hardness of 0 ° to 60 °, the hardness of at least the outer surface (outermost layer) of the tip portion of the nozzle 11 is 0 ° to 60 °. .
  • the hardness of the cover 13 is preferably 10 degrees or more and 40 degrees or less, for example. If the hardness of the cover 13 (tip portion of the nozzle 11) is 0 degree or more, the cover 13 (tip portion of the nozzle 11) is not too soft, and the treatment target portion of the treatment subject is stably and uniformly. Can be irradiated with plasma.
  • the cover 13 is a cover for the plasma treatment apparatus according to the present invention.
  • the main body tube 1 includes a pedestal portion 1b that fits into the fitting hole 2c, and an irradiation tube 1c that protrudes from the pedestal portion 1b.
  • the pedestal portion 1b is detachably attached to the fitting hole 2c (cow ring 2).
  • the irradiation tube 1c is formed in a cylindrical shape.
  • the pedestal portion 1b and the irradiation tube 1c are integrated.
  • the main body pipe 1 has a second active gas flow path 8 therein.
  • the main body tube 1 has an irradiation port 1a at the tip.
  • the second active gas channel 8 and the first active gas channel 7 are in communication.
  • the main body tube 1 (the pedestal portion 1b and the irradiation tube 1c) is integrally formed of the same material.
  • the main body tube 1 is formed of metal (for example, SUS (stainless steel)).
  • SUS stainless steel
  • tube 1 You may have insulation and may have electroconductivity.
  • a material of the main body tube 1 a material excellent in wear resistance and corrosion resistance is preferable. Examples of the material having excellent wear resistance and corrosion resistance include metals such as stainless steel.
  • the cover 13 is made of a soft material having biocompatibility and insulation.
  • the cover 13 is made of a resin (for example, a silicone resin, more specifically, a silicone resin having a hardness of about 20 degrees). Is formed.
  • the cover 13 is formed of a material having a hardness of 0 degrees or more and 60 degrees or less as described above, and the material forming the cover 13 is softer than SUS (stainless steel) or ABS resin, and the body tube 1 And softer than the material forming the cowling 2.
  • SUS stainless steel
  • ABS resin a member having the same shape and the same size as the cover 13
  • the cover is covered rather than this member.
  • the cover 13 is easier to deform.
  • “having an insulating property” means that the material has a volume resistivity of 1.0 ⁇ 10 13 ⁇ ⁇ cm or more, and 1.0 ⁇ 10 13 It is preferable that it is ⁇ ⁇ cm or more.
  • the cover 13 preferably has transparency so that the position of the distal end portion (front end surface 1d) of the irradiation tube 1c of the main body tube 1 in the cover 13 can be confirmed from the outside.
  • the cover 13 preferably has a haze value of 70% or less. The haze value is measured according to the method specified in JIS.
  • the cover 13 is fitted to the irradiation tube 1c from the outside.
  • the front end portion of the cover 13 protrudes with respect to the front end portion of the main body tube 1.
  • the tip of the cover 13 protrudes to the front side of the tip (tip surface 1d) of the irradiation tube 1c.
  • the cover 13 is formed in a cylindrical shape.
  • the thickness of the cover 13 is, for example, 0.5 mm to 5 mm, preferably 1 mm to 3 mm.
  • the thickness of the cover 13 is less than 0.5 mm, the effect of reducing the burden described later is hardly exhibited.
  • the cover 13 is thicker than 5 mm, the entire nozzle 11 becomes too thick, and it may be difficult to treat (dental treatment), for example.
  • the cover 13 is integrally provided with the head cover 14.
  • the head cover 14 covers the head part 2a, and in the illustrated example, is fitted to the head part 2a from the outside.
  • the cover 13 is detachably attached to the main body tube 1.
  • the head cover 14 is also detachably attached to the head portion 2a.
  • the cover 13 and the head cover 14 are detachably attached to the main body tube 1 and the head portion 2a integrally.
  • an uneven portion may be provided on the inner surface of the cover 13 or the head cover 14. By providing the concavo-convex portion, the contact area between the cover 13 and the head cover 14 and the main body tube 1 and the head portion 2a can be reduced, and the frictional resistance during attachment and detachment can be reduced.
  • the cover 13 (the connected body of the cover 13 and the head cover 14) may be manufactured, for example, by performing a secondary process after trial manufacture by extrusion molding.
  • the cover 13 may be manufactured by, for example, vacuum casting, RIM molding, or injection molding.
  • the cover 13 is formed by vacuum casting, RIM molding, or injection molding, for example, the above-described uneven portion is provided on the inner surface of the cover 13 as compared with the case where the cover 13 is subjected to trial processing by extrusion molding and then subjected to secondary processing. It is easy to make a cut or the like in the cover 13. Therefore, it is preferable to form the cover 13 by vacuum casting, RIM molding, or injection molding.
  • the material of the body portion 2b is not particularly limited, but an insulating material is preferable.
  • the insulating material include a thermoplastic resin and a thermosetting resin.
  • the thermoplastic resin include polyethylene, polypropylene, polyvinyl chloride, polystyrene, acrylonitrile-butadiene-styrene resin (ABS resin), and the like.
  • the thermosetting resin include phenol resin, melamine resin, urea resin, epoxy resin, unsaturated polyester resin, silicone resin and the like.
  • the material of the head part 2a is preferably a material excellent in wear resistance and corrosion resistance. Examples of the material having excellent wear resistance and corrosion resistance include metals such as stainless steel.
  • the material of the head part 2a and the body part 2b may be the same or different.
  • the size of the head portion 2a can be determined in consideration of the application of the active gas irradiation device 100 and the like. For example, when the active gas irradiation device 100 is an intraoral therapeutic instrument, the size of the head portion 2a is preferably large enough to be inserted into the oral cavity.
  • a dielectric material used for a known plasma apparatus can be applied.
  • the material of the tubular dielectric 3 include glass, ceramics, and synthetic resin.
  • the dielectric constant of the tubular dielectric 3 is preferably as low as possible.
  • the inner diameter R of the tubular dielectric 3 can be appropriately determined in consideration of the outer diameter d of the internal electrode 4.
  • the inner diameter R is determined so that a distance s described later is within a desired range.
  • the internal electrode 4 includes a shaft portion extending in the direction of the tube axis O1 and a thread on the outer peripheral surface of the shaft portion.
  • the shaft portion may be solid or hollow. Among these, the shaft portion is preferably solid. If the shaft portion is solid, processing is easy and mechanical durability can be improved.
  • the thread of the internal electrode 4 is a spiral thread that circulates in the circumferential direction of the shaft portion.
  • the form of the internal electrode 4 is the same form as the male screw. Since the internal electrode 4 has a thread on the outer peripheral surface, the electric field at the tip of the thread is locally increased, and the discharge start voltage is lowered. For this reason, plasma can be generated and maintained with low power.
  • the outer diameter d of the internal electrode 4 can be appropriately determined in consideration of the application of the active gas irradiation device 100 (that is, the size of the irradiation tool 10) and the like.
  • the outer diameter d is preferably 0.5 mm to 20 mm, and more preferably 1 mm to 10 mm. If the outer diameter d is not less than the above lower limit value, the internal electrode 4 can be easily manufactured. In addition, when the outer diameter d is equal to or greater than the lower limit, the surface area of the internal electrode 4 is increased, plasma can be generated more efficiently, and healing and the like can be further promoted. If the outer diameter d is less than or equal to the above upper limit value, plasma can be generated more efficiently and healing and the like can be further promoted without excessively increasing the irradiation tool 10.
  • the thread height h of the internal electrode 4 can be appropriately determined in consideration of the outer diameter d of the internal electrode 4.
  • the outer diameter d of the internal electrode 4 is the outer diameter at the thread of the internal electrode 4.
  • the thread pitch p of the internal electrode 4 can be appropriately determined in consideration of the length of the internal electrode 4 and the outer diameter d.
  • the material of the internal electrode 4 is not particularly limited as long as it is a conductive material, and a metal that can be used for an electrode of a known plasma device can be applied.
  • Examples of the material of the internal electrode 4 include metals such as stainless steel, copper, and tungsten, carbon, and the like.
  • JIS B 0205 2001 metric screw standard products (M2, M2.2, M2.5, M3, M3.5, etc.), JIS B 2016: 1987 metric trapezoidal screw standard products (Tr8 ⁇ 1.5, Tr9 ⁇ 2, Tr9 ⁇ 1.5 etc.), JIS B 0206: 1973 unified coarse thread standard products (No.1-64UNC, No.2-56UNC, No.3-48UNC etc.) A specification equivalent to the above is preferable. If the specifications are equivalent to those of these standard products, the cost is superior.
  • the distance s between the outer surface of the inner electrode 4 and the inner surface of the tubular dielectric 3 (the distance between the thread of the inner electrode 4 and the inner surface of the tubular dielectric 3) s is preferably 0.05 mm to 5 mm, and preferably 0.1 mm to 1 mm. More preferred. When the distance s is equal to or greater than the lower limit, a desired amount of plasma generating gas can be easily passed. If the distance s is not more than the above upper limit value, plasma can be generated more efficiently and the temperature of the active gas can be lowered.
  • the material of the external electrode 5 is not particularly limited as long as it is a conductive material, and a metal used for an electrode of a known plasma device can be applied.
  • Examples of the material of the external electrode 5 include metals such as stainless steel, copper, and tungsten, and carbon.
  • the length of the flow path in the irradiation tube 1c in the nozzle 11 (that is, the distance L2) can be appropriately determined in consideration of the application of the active gas irradiation device 100 and the like.
  • the opening diameter of the irradiation port 1a is preferably 0.5 mm to 5 mm, for example. If the opening diameter is equal to or larger than the lower limit, the pressure loss of the active gas can be suppressed. If the opening diameter is less than or equal to the above upper limit value, it is possible to increase the flow rate of the active gas to be irradiated and promote healing of the affected area.
  • the irradiation tube 1c is bent with respect to the tube axis O1. The angle ⁇ formed between the tube axis O2 and the tube axis O1 of the irradiation tube 1c can be determined in consideration of the application of the active gas irradiation device 100 and the like.
  • the distance to 1a) is appropriately determined in consideration of the size required for the active gas irradiation apparatus 100, the temperature of the surface that is irradiated with the irradiated active gas (irradiated surface), and the like. If the sum of the distance L1 and the distance L2 is long, the temperature of the irradiated surface can be lowered.
  • the tip Q2 is an intersection of the tube axis O1 and the tube axis O2.
  • the detection unit 15 detects an external force (impact force) applied to the irradiation tool 10.
  • the detection unit 15 is closer to the plasma generation unit 12 than the nozzle 11.
  • the detection unit 15 is disposed in the recess 16.
  • the recessed part 16 is formed in the inner peripheral surface of the trunk
  • the detection unit 15 is disposed on the outer side in the radial direction with respect to the tubular dielectric 3.
  • the detection unit 15 is formed in a tubular shape extending in the direction of the tube axis O1.
  • the detection unit 15 can be detached from the irradiation instrument 10.
  • the detector 15 is taken out from the cowling 2 after the plasma generator 12 is detached from the cowling 2.
  • the detection unit 15 changes color when an external force is applied to the detection unit 15.
  • the color of the detection unit 15 is different before and after an external force of a predetermined magnitude or more is applied to the detection unit 15.
  • the color of the detection unit 15 remains discolored without returning to the original color after an external force of a predetermined magnitude or more is applied to the detection unit 15.
  • the detection unit 15 changes color when an impact acceleration equal to or greater than a predetermined impact acceleration (impact value) is applied, and the discolored state is maintained.
  • the detection unit 15 for example, a Shockwatch (registered trademark) manufactured by Shockwatch can be used.
  • an impact detection tube for example, a shock watch (registered trademark) tube type
  • an impact detection indicator for example, shock watch (registered trademark) MAG2000
  • the detection unit 15 can be appropriately designed according to, for example, the strength (size, shape, material) of the tubular dielectric 3. By appropriately designing the detection unit 15, for example, it is possible to adjust a threshold value of impact acceleration related to discoloration of the detection unit 15.
  • the detection unit 15 is visible from the outside of the irradiation instrument 10.
  • the cowling 2 is provided with an inspection window 17.
  • the observation window 17 is disposed on the outer side in the radial direction with respect to the detection unit 15 (recess 16).
  • the detection unit 15 is visually recognized from the outside of the irradiation instrument 10 through the observation window 17.
  • the supply unit 20 as shown in FIG. 1 supplies electricity and plasma generating gas to the irradiation tool 10.
  • the supply unit 20 can adjust the voltage and frequency applied between the internal electrode 4 and the external electrode 5.
  • the supply unit 20 includes a housing 21 that houses a supply source 70.
  • casing 21 accommodates the supply source 70 so that isolation
  • the supply source 70 supplies a plasma generation gas to the plasma generation unit 12.
  • the supply source 70 is a pressure vessel in which a plasma generating gas is accommodated. As shown in FIG. 5, the supply source 70 is detachably attached to a pipe 75 disposed in the housing 21.
  • the pipe 75 connects the supply source 70 and the gas pipe 30.
  • a solenoid valve 71, a pressure regulator 73, a flow rate controller 74, and a pressure sensor 72 (remaining amount sensor) are attached to the pipe 75.
  • the electromagnetic valve 71 When the electromagnetic valve 71 is opened, the plasma generating gas is supplied from the supply source 70 to the irradiation tool 10 through the pipe 75 and the gas pipe 30.
  • the electromagnetic valve 71 is not configured to be able to adjust the valve opening, but is configured to be capable of only switching between opening and closing.
  • the electromagnetic valve 71 may be configured such that the valve opening degree can be adjusted.
  • the pressure regulator 73 is disposed between the electromagnetic valve 71 and the supply source 70. The pressure regulator 73 reduces the pressure of the plasma generating gas from the supply source 70 toward the electromagnetic valve 71 (decompresses the plasma generating gas).
  • the flow controller 74 is disposed between the electromagnetic valve 71 and the gas pipe 30.
  • the flow rate controller 74 adjusts the flow rate (the supply amount per unit time) of the plasma generating gas that has passed through the electromagnetic valve 71.
  • the flow rate controller 74 adjusts the flow rate of the plasma generating gas to, for example, 3 L / min.
  • the pressure sensor 72 detects the remaining amount V1 of the plasma generating gas in the supply source 70.
  • the pressure sensor 72 measures the pressure (residual pressure) in the supply source 70 as the remaining amount V1.
  • the pressure sensor 72 measures the pressure of the plasma generating gas that passes between the pressure regulator 73 and the supply source 70 (primary side of the pressure regulator 73) as the pressure of the supply source 70.
  • AP-V80 series specifically, for example, AP-15S manufactured by Keyence Corporation can be adopted.
  • a joint 76 is provided at the end of the pipe 75 on the supply source 70 side.
  • a supply source 70 is detachably attached to the joint 76.
  • the supply source 70 remains fixed to the casing 21 while the electromagnetic valve 71, the pressure regulator 73, the flow rate controller 74 and the pressure sensor 72 (hereinafter referred to as “electromagnetic valve 71 etc.”) are fixed. 70 can be exchanged.
  • a common solenoid valve 71 or the like can be used for both the supply source 70 before replacement and the supply source 70 after replacement.
  • the electromagnetic valve 71 and the like may be fixed to the supply source 70 and detachable from the housing 21 integrally with the supply source 70.
  • the gas pipe 30 is a path for supplying a plasma generating gas from the supply unit 20 to the irradiation instrument 10.
  • the gas conduit 30 is connected to the rear end portion of the tubular dielectric 3 of the irradiation instrument 10.
  • the material of the gas pipe 30 is not particularly limited, and a material used for a known gas pipe can be applied. Examples of the material of the gas pipe line 30 include resin piping and rubber tubes. As a material of the gas pipe line 30, a flexible material is preferable.
  • the electrical wiring 40 is a wiring that supplies electricity from the supply unit 20 to the irradiation instrument 10.
  • the electrical wiring 40 is connected to the internal electrode 4, the external electrode 5, and the operation switch 9 of the irradiation instrument 10.
  • the material of the electrical wiring 40 is not particularly limited, and a known material used for electrical wiring can be applied. Examples of the material of the electrical wiring 40 include a metal conductor covered with an insulating material.
  • the control unit 90 as shown in FIG. 5 is configured using an information processing apparatus. That is, the control unit 90 includes a CPU (Central Processor Unit), a memory, and an auxiliary storage device connected by a bus. The control unit 90 operates by executing a program. The control unit 90 may be incorporated in the supply unit 20, for example. The control unit 90 controls the irradiation instrument 10, the supply unit 20, and the notification unit 80.
  • a CPU Central Processor Unit
  • the control unit 90 controls the irradiation instrument 10, the supply unit 20, and the notification unit 80.
  • An operation switch 9 of the irradiation instrument 10 is electrically connected to the control unit 90.
  • an electric signal is sent from the operation switch 9 to the control unit 90.
  • the control unit 90 receives the electrical signal, the control unit 90 operates the electromagnetic valve 71 and the flow rate controller 74 and applies a voltage between the internal electrode 4 and the external electrode 5.
  • the operation switch 9 is a push button, and when the user presses the operation switch 9 once (the user operates the operation switch 9), the control unit 90 receives the electrical signal. Then, the control unit 90 opens the electromagnetic valve 71 for a predetermined time, causes the flow rate controller 74 to adjust the flow rate of the plasma generating gas that has passed through the electromagnetic valve 71, and the voltage between the internal electrode 4 and the external electrode 5. Is applied for a predetermined time. As a result, a constant amount of plasma generating gas is supplied from the supply source 70 to the plasma generating unit 12, and the active gas is continuously supplied from the nozzle 11 for a certain period of time (for example, several seconds to several tens of seconds, in this embodiment, 30 seconds). Then discharged.
  • a certain period of time for example, several seconds to several tens of seconds, in this embodiment, 30 seconds.
  • the controller 90 calculates the remaining number N (N is a natural number) of the plasma generating gas.
  • the remaining number N is the remaining number of times that the plasma generation gas can be supplied from the supply source 70 to the plasma generation unit 12 by the plasma generation gas remaining in the supply source 70.
  • the remaining number N can be calculated from the remaining amount V1 of the plasma generating gas in the supply source 70.
  • the notification unit 80 notifies the remaining number N.
  • the notification unit 80 displays the remaining number N calculated by the control unit 90 as a number.
  • a display device capable of displaying an arbitrary number may be employed, or a mechanical counter may be employed.
  • the notification unit 80 may notify the remaining number N by voice. In this case, for example, a speaker or the like can be employed as the notification unit 80.
  • the usage method of the active gas irradiation apparatus 100 is demonstrated.
  • a user such as a doctor moves the irradiation tool 10 and directs the nozzle 11 toward an irradiation object to be described later.
  • the operation switch 9 is pressed to supply electricity and plasma generating gas from the supply source 70 to the irradiation instrument 10.
  • the plasma generating gas supplied to the irradiation tool 10 flows from the rear end of the tubular dielectric 3 into the inner space of the tubular dielectric 3.
  • the plasma generating gas is ionized at the position where the internal electrode 4 and the external electrode 5 face each other, and becomes plasma.
  • the internal electrode 4 and the external electrode 5 face each other in a direction orthogonal to the direction in which the plasma generating gas flows.
  • the plasma generated at the position where the outer peripheral surface of the internal electrode 4 and the inner peripheral surface of the external electrode 5 face each other includes the gas flow path 6, the first active gas flow path 7, and the second active gas flow path 8. In this order. During this time, the plasma flows while changing the gas composition, and becomes an active gas containing active species such as radicals.
  • the generated active gas is discharged from the irradiation port 1a.
  • the discharged active gas further activates part of the gas near the irradiation port 1a to generate active species.
  • the irradiated object is irradiated with an active gas containing these active species.
  • Examples of irradiated objects include cells, living tissues, living organisms, and the like.
  • Examples of biological tissues include internal organs, epithelial tissues that cover the body surface and inner surfaces of body cavities, gums, alveolar bone, periodontal tissues such as periodontal ligament and cementum, teeth, bones, and the like.
  • the living organism may be any of mammals such as humans, dogs, cats and pigs; birds; fishes and the like.
  • the plasma generating gas examples include noble gases such as helium, neon, argon, and krypton; nitrogen; and the like. These gases may be used alone or in combination of two or more.
  • the plasma generating gas preferably contains nitrogen as a main component.
  • nitrogen as a main component means that the content of nitrogen in the plasma generating gas is more than 50% by volume. That is, the nitrogen content in the plasma generating gas is preferably more than 50% by volume, more preferably 70% by volume or more, and particularly preferably 90% by mass to 100% by mass.
  • the gas component other than nitrogen in the plasma generating gas is not particularly limited, and examples thereof include oxygen and rare gases.
  • the oxygen concentration of the plasma generating gas introduced into the tubular dielectric 3 is preferably 1% by volume or less. If the oxygen concentration is less than or equal to the upper limit value, the generation of ozone can be reduced.
  • the flow rate of the plasma generating gas introduced into the tubular dielectric 3 is preferably 1 L / min to 10 L / min.
  • the flow rate of the plasma generating gas introduced into the tubular dielectric 3 is equal to or higher than the lower limit, an increase in the temperature of the irradiated surface in the irradiated object can be easily suppressed.
  • the flow rate of the plasma generating gas is equal to or less than the upper limit value, it is possible to further promote the cleaning, activation, or healing of the irradiated object.
  • the AC voltage applied between the internal electrode 4 and the external electrode 5 is preferably 5 kVpp to 20 kVpp.
  • the unit “Vpp (Volt peak to peak)” representing the AC voltage is a potential difference between the highest value and the lowest value of the AC voltage waveform. If the AC voltage to be applied is not more than the above upper limit value, the temperature of the generated plasma can be kept low. If the AC voltage to be applied is equal to or higher than the lower limit value, plasma can be generated more efficiently.
  • the frequency of alternating current applied between the internal electrode 4 and the external electrode 5 is preferably 0.5 kHz or more and less than 20 kHz, more preferably 1 kHz or more and less than 15 kHz, further preferably 2 kHz or more and less than 10 kHz, and particularly preferably 3 kHz or more and less than 9 kHz. 4 kHz or more and less than 8 kHz is most preferable. If the AC frequency is less than the upper limit, the temperature of the generated plasma can be kept low. If the AC frequency is equal to or higher than the lower limit, plasma can be generated more efficiently.
  • the temperature of the active gas irradiated from the irradiation port 1a of the nozzle 11 is preferably 50 ° C. or lower, more preferably 45 ° C. or lower, and further preferably 40 ° C. or lower.
  • the temperature of the irradiated surface is easily set to 40 ° C. or lower.
  • the temperature of the active gas is a value obtained by measuring the temperature of the active gas at the irradiation port 1a with a thermocouple.
  • the distance (irradiation distance) from the irradiation port 1a (the front end surface 1d of the main body tube 1) to the irradiated surface is preferably, for example, 0.01 mm to 10 mm. If the irradiation distance is not less than the above lower limit value, the temperature of the irradiated surface can be lowered, and the stimulation to the irradiated surface can be further alleviated. If irradiation distance is below the said upper limit, effects, such as healing, are further improved.
  • the temperature of the irradiated surface at a position away from the irradiation port 1a (the tip surface 1d of the main body tube 1) by a distance of 1 mm or more and 10 mm or less is preferably 40 ° C. or less. If the temperature of the irradiated surface is 40 ° C. or less, the stimulation to the irradiated surface can be reduced. Although there is no restriction
  • the temperature of the surface to be irradiated is the AC voltage applied between the internal electrode 4 and the external electrode 5, the discharge amount of the active gas to be irradiated, the tip Q1 of the internal electrode 4 to the irradiation port 1a (the tip surface 1d of the main tube 1). It can be adjusted by the combination of the way up to.
  • the temperature of the irradiated surface can be measured using a thermocouple.
  • the active species (radicals, etc.) contained in the active gas include hydroxyl radical, singlet oxygen, ozone, hydrogen peroxide, superoxide anion radical, nitric oxide, nitrogen dioxide, peroxynitrite, peroxynitrite, and trioxide. Examples include dinitrogen.
  • the type of active species contained in the active gas can be further adjusted to, for example, the type of gas for generating plasma.
  • the hydroxy radical density (radical density) in the active gas is preferably 0.1 ⁇ mol / L to 300 ⁇ mol / L.
  • the radical density is equal to or higher than the lower limit value, it is easy to promote cleaning, activation, or healing of an object to be irradiated selected from cells, living tissues, and living organisms.
  • the radical density is less than or equal to the above upper limit, stimulation to the irradiated surface can be reduced.
  • the radical density can be measured, for example, by the following method.
  • An active gas is irradiated for 30 seconds to 0.2 mL of DMPO (5,5-dimethyl-1-pyrroline-N-oxide) 0.2 mol / L solution.
  • the distance from the irradiation port 1a (the front end surface 1d of the main body tube 1) to the liquid surface is set to 5.0 mm.
  • concentration is measured using an electron spin resonance (ESR) method, and this is made into a radical density.
  • ESR electron spin resonance
  • the singlet oxygen density (singlet oxygen density) in the active gas is preferably 0.1 ⁇ mol / L to 300 ⁇ mol / L.
  • the singlet oxygen density is equal to or higher than the lower limit, it is easy to promote cleaning, activation, or healing of abnormalities of irradiated objects such as cells, living tissues, and living organisms.
  • the amount is not more than the upper limit value, stimulation to the irradiated surface can be reduced.
  • the singlet oxygen density can be measured, for example, by the following method.
  • An active gas is irradiated for 30 seconds to 0.4 mL of a TPC (2,2,5,5-tetramethyl-3-pyrroline-3-carboxamide) 0.1 mol / L solution.
  • the distance from the irradiation port 1a to the liquid surface is set to 5.0 mm.
  • a singlet oxygen concentration is measured using an electron spin resonance (ESR) method, and this is made into a singlet oxygen density.
  • ESR electron spin resonance
  • the flow rate of the active gas irradiated from the irradiation port 1a is preferably 1 L / min to 10 L / min.
  • the flow rate of the active gas irradiated from the irradiation port 1a is equal to or higher than the lower limit, the effect of the active gas acting on the irradiated surface can be sufficiently enhanced.
  • the flow rate of the active gas irradiated from the irradiation port 1a is less than the upper limit value, it is possible to prevent the temperature of the surface irradiated with the active gas from excessively increasing. In addition, when the irradiated surface is wet, rapid drying of the irradiated surface can be prevented.
  • the flow rate of the active gas irradiated from the irradiation port 1 a can be adjusted by the supply amount of the plasma generating gas to the tubular dielectric 3.
  • the active gas generated by the active gas irradiation device 100 has an effect of promoting the healing of trauma and abnormalities.
  • the irradiated portion can be cleaned, activated, or healed.
  • the irradiation frequency, the number of irradiations and the irradiation period are not particularly limited.
  • irradiation conditions such as once to five times a day, 10 seconds to 10 minutes each time, and 1 to 30 days are set. From the viewpoint of promoting healing.
  • the active gas irradiation device 100 of the present embodiment is particularly useful as an intraoral therapeutic instrument and a dental therapeutic instrument. Moreover, the active gas irradiation apparatus 100 of this embodiment is also suitable as an animal treatment instrument (for example, a treatment apparatus for treating the oral cavity of an animal other than a human).
  • an animal treatment instrument for example, a treatment apparatus for treating the oral cavity of an animal other than a human.
  • the inventor of the present application makes contact with the tip of the nozzle 11 in the vicinity of the treatment subject (animal) of the treatment subject (animal) or the vicinity thereof (hereinafter referred to as “treatment subject portion”) during the treatment with the active gas irradiation device 100. It was found that a physical burden on the subject of treatment occurs. For example, when an animal as a treatment target is treated without anesthesia and the animal moves unexpectedly (for example, when used for a dog and is irradiated with plasma or active gas) When the dog is surprised), the possibility that the tip of the nozzle 11 comes into contact with the treatment target site or the like increases. When the tip of the nozzle 11 comes into contact with a treatment target site or the like, the site may be damaged at the tip of the nozzle 11.
  • the hardness of the tip portion of the nozzle 11 is not less than 0 degrees and not more than 60 degrees. Therefore, for example, compared to a case where the hardness of the tip of the nozzle 11 is greater than 60 degrees, the tip of the nozzle is not too hard. Thereby, even if the front-end
  • the “tip portion” means a region within 5 mm from the tip of the nozzle 11 in the direction of the tube axis O2.
  • the hardness of the region other than the tip portion may be the same as or different from the hardness of the tip portion. For example, if the region where the hardness of the tip is low is too large, the tip 11 may be deformed too easily and the operability may be reduced. Setting higher than this is also one of the preferred embodiments of the present invention. Further, in the nozzle 11, the region (tip portion) within 5 mm from the most advanced is made softest, and the hardness of the region other than the tip portion is set in two steps, three steps, etc. according to the portion covered by the main body tube 1. Thus, it may be hardened stepwise as it moves away from the tip.
  • the cover 13 forms the tip of the nozzle 11. Therefore, even if the tip portion of the nozzle 11 comes into contact with the treatment target site and the like and the tip portion of the nozzle 11 is contaminated, the contamination can remain in the cover 13. Thereby, contamination of the main body pipe
  • the hardness of the cover 13 is preferably 10 degrees or more and 40 degrees or less. If the hardness of the cover 13 is 10 degrees or more, the cover 13 (the tip of the nozzle 11) is not too soft, and the treatment target site of the treatment subject can be irradiated with plasma stably and uniformly.
  • the cover 13 If the hardness of the cover 13 is 40 degrees or more, the cover 13 (the tip portion of the nozzle 11) will not be too hard. Thereby, even if the cover 13 (tip portion of the nozzle 11) comes into contact with the treatment target site of the treatment subject, the physical burden on the treatment subject can be reduced. .
  • the cover 13 is formed of an insulating material as in the present embodiment, the leakage can be suppressed by the insulating cover 13 as described later. That is, even if an electrical leakage that reaches the main body tube 1 occurs in the plasma generator 12, the insulating cover 13 can suppress the transmission of the electrical leakage to the treatment subject.
  • the main body tube 1 is made of metal. Therefore, the main body tube 1 can pass the plasma and the active gas stably over a long period of time.
  • the cover 13 is made of resin. Therefore, for example, it is possible to easily reduce the weight and cost of the cover 13.
  • the front end portion of the cover 13 protrudes from the front end portion (the front end surface 1 d) of the main body tube 1. Therefore, for example, the distance from the distal end portion of the main body tube 1 to the treatment target portion while reducing the physical burden on the treatment subject by using the tip portion of the cover 13 against the treatment target portion. (Hereinafter referred to as “irradiation distance L3”) can be secured stably.
  • the concentration of the active species that contributes to the therapeutic effect changes according to the irradiation distance L3. Therefore, a favorable therapeutic effect is expected by securing the irradiation distance L3 stably as described above.
  • the irradiation distance L3 is the same as the distance at which the therapeutic effect is obtained, but is preferably shorter than that distance.
  • the distance at which a therapeutic effect is obtained is defined from the lifetime of the active species.
  • the irradiation distance L3 is 0.5 mm or more in order to reduce the impact on the treatment subject. It is preferable that In order not to be deactivated when plasma or active gas reaches the treatment target site of the treatment subject, the irradiation distance L3 is preferably equal to or less than the upper limit value defined by the lifetime of the active species.
  • a nozzle 11 is detachably attached to the cowling 2. Therefore, even if the tip of the nozzle 11 comes into contact with the treatment target site and the like and the tip of the nozzle 11 is contaminated, the contamination can be removed by, for example, replacing the nozzle 11.
  • the tip of the cover 13 may not protrude from the tip of the main body tube 1.
  • the head cover 14 may not be provided like the active gas irradiation device 120 according to the second modification shown in FIG. Even in this case, it is possible to reduce the burden on the treatment subject who may be given from the tip of the nozzle 11 and to reduce the cost.
  • the head cover 14 is formed of an insulating material. It is possible to take measures against electric leakage from the head portion 2a.
  • the cover 13 may not be provided.
  • the nozzle 11 is formed only by the main body tube 1.
  • the main body tube 1 is formed of the same material as that of the cover 13 in the active gas irradiation apparatus 100 of the above-described embodiment, and the hardness of the material forming the main body tube 1 is not less than 0 degrees and not more than 60 degrees.
  • a pressure relief part (opening part) 141 may be formed at the tip of the cover 13.
  • the pressure release portion 141 allows gas (active gas) supplied through the main body tube 1 and into the tip portion of the cover 13 to escape to the outside.
  • the pressure release portion 141 passes through the tip of the cover 13.
  • the pressure release part 151 may be formed in the front-end
  • the pressure release portion 151 allows gas (active gas) supplied through the main body tube 1 and into the tip portion of the cover 13 to escape to the outside.
  • the pressure release portion 151 passes through the tip portion of the cover 13.
  • the pressure release portion 151 is opened forward, and is formed in a cutout shape at the front opening edge of the cover 13.
  • pressure release portions 141 and 151 are formed at the tip of the cover 13. Therefore, when the front end portion of the cover 13 is used while being abutted against the treatment target site, it is possible to suppress the internal pressure of the front end portion of the cover 13 from excessively rising due to the active gas. Thereby, it becomes possible to keep using the front-end
  • the operation switch 9 may be different from that in the above embodiment.
  • a foot pedal instead of providing the operation switch 9 in the irradiation instrument 10, a foot pedal may be provided in the supply unit 20.
  • the step pedal is used as the operation unit and, for example, the plasma generation gas is supplied from the supply source 70 to the plasma generation unit 12 when the user steps on the step pedal.
  • the notification unit 80 and the detection unit 15 may be omitted.
  • the shape of the internal electrode 4 of this embodiment described above is a screw shape.
  • the shape of the internal electrode is not limited as long as plasma can be generated between the internal electrode and the external electrode.
  • the internal electrode may have irregularities on the surface or may not have irregularities on the surface.
  • corrugation in an outer peripheral surface is preferable.
  • the shape of the internal electrode may be a coil shape, or may be a rod shape or a cylindrical shape in which a plurality of protrusions, holes, and through holes are formed on the outer peripheral surface.
  • the cross-sectional shape of the internal electrode is not particularly limited, and examples thereof include a circle such as a perfect circle and an ellipse, and a polygon such as a quadrangle and a hexagon.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Dentistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Electrotherapy Devices (AREA)

Abstract

The present invention provides a plasma therapy apparatus (100) comprising: a plasma generator; and a nozzle (11) for discharging at least one of plasma generated in the plasma generator and active gas generated by the plasma, wherein the hardness (hardness measured by Type-A durometer according to JIS K 6253) of the tip portion of the nozzle (11) is 0-60 degrees.

Description

プラズマ式治療装置およびプラズマ式治療装置用のカバーPlasma therapy device and cover for plasma therapy device
本発明は、プラズマ式治療装置およびプラズマ式治療装置用のカバーに関する。
本願は、2018年2月16日に、日本に出願された特願2018-026052号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a plasma treatment apparatus and a cover for the plasma treatment apparatus.
This application claims priority based on Japanese Patent Application No. 2018-026052 filed in Japan on February 16, 2018, the contents of which are incorporated herein by reference.
従来から、例えば歯科治療等の医療を用途とするプラズマ式治療装置が知られている。プラズマ式治療装置は、創傷等の患部にプラズマ又は活性ガスを照射することで、患部を治癒する。前記活性ガスは、プラズマ式治療装置内でプラズマによって発生させられる。例えば、特許文献1は、歯科治療を行うプラズマジェット照射装置を開示している。前記プラズマジェット照射装置は、プラズマジェット照射手段を有する照射器具を備えている。前記プラズマジェット照射装置は、発生したプラズマと、活性種と、を被照射物に照射する。前記活性種は、プラズマ中の気体又はプラズマ周辺の気体とプラズマとが反応して生成される。
 特許文献2は、照射器具内部で活性ガス(活性種)を発生させ、その活性ガスをノズルから吐出して患部に照射するプラズマ式治療装置を開示している。前記活性ガスは、例えば、活性酸素や活性窒素等である。
2. Description of the Related Art Conventionally, plasma treatment apparatuses for medical use such as dental treatment are known. The plasma treatment apparatus heals an affected part by irradiating the affected part such as a wound with plasma or active gas. The active gas is generated by plasma in a plasma treatment apparatus. For example, Patent Document 1 discloses a plasma jet irradiation apparatus that performs dental treatment. The said plasma jet irradiation apparatus is equipped with the irradiation instrument which has a plasma jet irradiation means. The plasma jet irradiation apparatus irradiates an object with generated plasma and active species. The active species are generated by the reaction of the gas in the plasma or the gas around the plasma with the plasma.
Patent Document 2 discloses a plasma treatment apparatus that generates an active gas (active species) inside an irradiation instrument, discharges the active gas from a nozzle, and irradiates the affected area. The active gas is, for example, active oxygen or active nitrogen.
特許第5441066号公報Japanese Patent No. 5441066 特開2017-50267号公報JP 2017-50267 A
この種のプラズマ式治療装置による治療時において、治療対象者(人以外の動物)に無麻酔でプラズマ装置を使用すると治療対象者が動き、ノズルの先端部に治療対象者が接触して治療対象者に身体的負担を与えてしまう恐れがある。 During treatment with this type of plasma treatment device, if the treatment device (non-human animal) is used without anesthesia, the treatment subject moves, and the treatment subject contacts the tip of the nozzle and is treated. There is a risk of putting a physical burden on the person.
本発明は、前述した事情に鑑みてなされたものであって、治療対象者に無麻酔下でプラズマ装置を使用する際に、ノズルの先端部に治療対象者が接触することにより治療対象者に与える身体的負担を軽減することを目的とする。 The present invention has been made in view of the above-described circumstances, and when using the plasma device without anesthesia for the treatment subject, the treatment subject contacts the tip of the nozzle to the treatment subject. The purpose is to reduce the physical burden.
前記課題を解決するために、本発明は以下の手段を提案している。
本発明に係るプラズマ式治療装置は、プラズマ発生部と、前記プラズマ発生部にて発生したプラズマ及び前記プラズマによって生じる活性ガスの少なくとも一方を吐出するノズルと、を備え、前記ノズルの先端部の硬さ(JIS K 6253に規定されるタイプAデュロメータにより測定される硬さ)は、0度以上60度以下である。
In order to solve the above problems, the present invention proposes the following means.
A plasma treatment apparatus according to the present invention includes a plasma generator, and a nozzle that discharges at least one of the plasma generated in the plasma generator and the active gas generated by the plasma, and the tip of the nozzle is hard. The thickness (hardness measured by a type A durometer defined in JIS K 6253) is 0 degree or more and 60 degrees or less.
本願発明者は、プラズマ式治療装置による治療時に、治療対象者(人以外の動物)の治療対象部位やその近傍(以下、「治療対象部位など」という。)にノズルの先端部が接触すると、治療対象者の身体的な負担が生じることを見出した。例えば、治療対象者としての動物に無麻酔で治療を実施する場合であって、動物が予期せぬ動きをするとき(一例として、犬に使用する場合であって、プラズマや活性ガスの照射に犬が驚いたとき)等に、ノズルの先端部が治療対象部位などに接触する可能性が高くなる。ノズルの先端部が治療対象部位などに接触すると、その部位がノズルの先端部で傷つくことがある。
そこで、このプラズマ式治療装置では、ノズルの先端部の硬さ(JIS K 6253に規定されるタイプAデュロメータにより測定される硬さ、以下「硬さ」という。)が、0度以上60度以下である。したがって、例えば、ノズルの先端部の硬さが60度よりも大きい場合などに比べて、ノズルの先端部が硬すぎることがない。これにより、仮にノズルの先端部が治療対象者の治療対象部位などに接触したとしても、治療対象者の身体的な負担を軽減することができる。
When the tip of the nozzle comes into contact with a treatment target site of a treatment subject (animal other than a human) or the vicinity thereof (hereinafter referred to as “treatment target site”) during treatment with the plasma treatment apparatus, It has been found that physical burden on the subject of treatment occurs. For example, when an animal as a treatment target is treated without anesthesia and the animal moves unexpectedly (for example, when used for a dog and is irradiated with plasma or active gas) When the dog is surprised), there is a high possibility that the tip of the nozzle will come into contact with the site to be treated. When the tip of the nozzle comes into contact with a treatment target site, the site may be damaged at the tip of the nozzle.
Therefore, in this plasma treatment apparatus, the hardness of the tip of the nozzle (the hardness measured by a type A durometer defined in JIS K 6253, hereinafter referred to as “hardness”) is 0 degree or more and 60 degrees or less. It is. Therefore, for example, compared to a case where the hardness of the tip of the nozzle is larger than 60 degrees, the tip of the nozzle is not too hard. Thereby, even if the tip of the nozzle comes into contact with the treatment target site of the treatment subject, the physical burden on the treatment subject can be reduced.
前記ノズルは、前記プラズマ及び前記活性ガスの少なくとも一方が通過する本体管と、前記本体管を覆うカバーと、を備え、前記カバーは、JIS K 6253に規定されるタイプAデュロメータにより測定される硬さが0度以上60度以下の材料により形成され、かつ前記ノズルの先端部を形成していてもよい。 The nozzle includes a main body tube through which at least one of the plasma and the active gas passes, and a cover that covers the main body tube, and the cover is a hard material measured by a type A durometer defined in JIS K 6253. May be formed of a material having a thickness of 0 degrees or more and 60 degrees or less, and may form the tip of the nozzle.
この場合、カバーが、ノズルの先端部を形成している。したがって、仮にノズルの先端部が治療対象部位などに接触し、ノズルの先端部が汚染されたとしても、その汚染をカバーに留まらせることができる。これにより、本体管の汚染を抑制することができる。また、例えば、カバーを交換すること等により、ノズルから汚染を除去することができる。
 
In this case, the cover forms the tip of the nozzle. Therefore, even if the tip of the nozzle comes into contact with the treatment target site and the like and the tip of the nozzle is contaminated, the contamination can remain in the cover. Thereby, contamination of the main body tube can be suppressed. Further, for example, contamination can be removed from the nozzle by replacing the cover.
前記本体管は、金属により形成され、前記カバーは、樹脂により形成されていてもよい。 The main body tube may be made of metal, and the cover may be made of resin.
この場合、本体管が金属により形成されている。したがって、本体管がプラズマや活性ガスを長期間にわたって安定して通過させることができる。
カバーが樹脂により形成されている。したがって、例えば、カバーの軽量化や低コスト化などを図り易くすることができる。
In this case, the main body tube is made of metal. Therefore, the main tube can pass the plasma and the active gas stably over a long period of time.
The cover is made of resin. Therefore, for example, it is possible to easily reduce the weight and cost of the cover.
前記カバーの先端部は、前記本体管の先端部に対して突出していてもよい。 The front end portion of the cover may protrude with respect to the front end portion of the main body tube.
この場合、カバーの先端部が、本体管の先端部に対して突出している。したがって、例えば、カバーの先端部を治療対象部位に突き当てて使用することで、治療対象者の身体的な負担を軽減しつつ、本体管の先端部から治療対象部位に至るまでの距離(以下、「照射距離」という。)を安定して確保することができる。なお、プラズマ式治療装置では、照射距離に応じて、例えば、治療効果に寄与する活性種の濃度が変化する。そのため、前述のように照射距離を安定して確保することで、良好な治療効果が期待される。 In this case, the front end of the cover protrudes from the front end of the main body tube. Therefore, for example, the distance from the distal end of the main body tube to the treatment target site while reducing the physical burden on the treatment target by using the tip of the cover in contact with the treatment target site (hereinafter referred to as the treatment target site) , "Irradiation distance") can be secured stably. In the plasma treatment apparatus, for example, the concentration of the active species that contributes to the treatment effect varies depending on the irradiation distance. Therefore, a favorable therapeutic effect is expected by ensuring the irradiation distance stably as described above.
前記カバーの先端部には、前記本体管を通して前記カバーの先端部内に供給されるガスを外部に逃がす圧抜き部が形成されていてもよい。 A pressure relief portion for releasing the gas supplied into the front end portion of the cover through the main body tube to the outside may be formed at the front end portion of the cover.
この場合、カバーの先端部に圧抜き部が形成されている。したがって、カバーの先端部を治療対象部位に突き当てて使用するときに、カバーの先端部の内圧が過度に上昇するのを抑えることができる。これにより、カバーの先端部を治療対象部位に突き当てて使用し続けることが可能になり、照射距離を確実に安定して確保することができる。 In this case, a pressure relief portion is formed at the tip of the cover. Therefore, when the front end portion of the cover is used while being abutted against the site to be treated, it is possible to suppress an excessive increase in the internal pressure of the front end portion of the cover. Thereby, it becomes possible to keep using the front-end | tip part of a cover in contact with a treatment object site | part, and can ensure the irradiation distance reliably stably.
内部に前記プラズマ発生部が配置され、前記ノズルが着脱自在に装着される筐体を更に備えていてもよい。 You may further provide the housing | casing by which the said plasma generation part is arrange | positioned inside and the said nozzle is detachably mounted | worn.
この場合、ノズルが、筐体に着脱自在に装着されている。したがって、仮にノズルの先端部が治療対象部位などに接触し、ノズルの先端部が汚染されたとしても、例えば、ノズルを交換すること等により、汚染を除去することができる。 In this case, the nozzle is detachably attached to the housing. Therefore, even if the tip of the nozzle comes into contact with the treatment target site and the tip of the nozzle is contaminated, the contamination can be removed by, for example, replacing the nozzle.
本発明に係るプラズマ式治療装置用のカバーは、プラズマ発生部と、前記プラズマ発生部にて発生したプラズマ及び前記プラズマによって生じる活性ガスの少なくとも一方を吐出するノズルと、を備え、前記ノズルが、前記プラズマ及び前記活性ガスの少なくとも一方が通過する本体管を備えるプラズマ式治療装置において、前記本体管を覆うカバーであって、前記カバーは、JIS K 6253に規定されるタイプAデュロメータにより測定される硬さが0度以上60度以下の材料により形成され、かつ前記ノズルの先端部を形成している。 A cover for a plasma type treatment apparatus according to the present invention includes a plasma generation unit, and a nozzle that discharges at least one of plasma generated in the plasma generation unit and active gas generated by the plasma, and the nozzle includes: In a plasma treatment apparatus including a main body tube through which at least one of the plasma and the active gas passes, the cover is a cover that covers the main body tube, and the cover is measured by a type A durometer defined in JIS K 6253 It is made of a material having a hardness of 0 degrees or more and 60 degrees or less, and forms the tip of the nozzle.
この場合、前記カバーを備えるプラズマ式治療装置と同様の作用効果を奏功することができる。 In this case, the same effect as the plasma treatment apparatus including the cover can be achieved.
本発明によれば、治療対象者に無麻酔でプラズマ装置を使用する際に、ノズルの先端部に治療対象者が接触した場合に治療対象者の身体に与える負担を軽減することができる。 ADVANTAGE OF THE INVENTION According to this invention, when using a plasma apparatus without anesthesia to a treatment subject, when a treatment subject contacts the front-end | tip part of a nozzle, the burden given to a treatment subject's body can be reduced.
本発明の一実施形態に係るプラズマ式治療装置を示す模式図である。It is a mimetic diagram showing a plasma type treatment device concerning one embodiment of the present invention. 本発明の一実施形態に係るプラズマ式治療装置を構成する照射器具の部分断面図である。It is a fragmentary sectional view of the irradiation instrument which constitutes the plasma type treatment device concerning one embodiment of the present invention. 図2の照射器具のx-x断面図である。FIG. 3 is an xx cross-sectional view of the irradiation instrument of FIG. 図2の照射器具のy-y断面図である。FIG. 3 is a yy sectional view of the irradiation instrument of FIG. 2. 本発明の一実施形態に係るプラズマ式治療装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the plasma type treatment apparatus which concerns on one Embodiment of this invention. 図2の照射器具の要部の断面図である。It is sectional drawing of the principal part of the irradiation instrument of FIG. 本発明の第1変形例に係るプラズマ式治療装置の要部の断面図である。It is sectional drawing of the principal part of the plasma type treatment apparatus which concerns on the 1st modification of this invention. 本発明の第2変形例に係るプラズマ式治療装置の要部の断面図である。It is sectional drawing of the principal part of the plasma type treatment apparatus which concerns on the 2nd modification of this invention. 本発明の第3変形例に係るプラズマ式治療装置の要部の断面図である。It is sectional drawing of the principal part of the plasma type treatment apparatus which concerns on the 3rd modification of this invention. 本発明の第4変形例に係るプラズマ式治療装置のノズルの側面図である。It is a side view of the nozzle of the plasma type treatment apparatus concerning the 4th modification of the present invention. 本発明の第5変形例に係るプラズマ式治療装置のノズルの側面図である。It is a side view of the nozzle of the plasma type treatment apparatus concerning the 5th modification of the present invention.
本発明のプラズマ式治療装置は、プラズマジェット照射装置又は活性ガス照射装置である。
プラズマジェット照射装置は、プラズマを発生させる。プラズマジェット照射装置は、発生したプラズマと、活性種と、を被照射物に直接照射する。前記活性種は、プラズマ中の気体又はプラズマ周辺の気体とプラズマとが反応して生成される。活性種としては、活性酸素種や活性窒素種を例示できる。活性酸素種としては、ヒドロキシルラジカル、一重項酸素、オゾン、過酸化水素、スーパーオキシドアニオンラジカル等を例示できる。活性窒素種としては、一酸化窒素、二酸化窒素、ペルオキシナイトライト、過酸化亜硝酸、三酸化二窒素等を例示できる。
活性ガス照射装置は、プラズマを発生させる。活性ガス照射装置は、活性種を含む活性ガスを被照射物に照射する。前記活性種は、プラズマ中の気体又はプラズマ周辺の気体とプラズマとが反応して生成される。
The plasma treatment apparatus of the present invention is a plasma jet irradiation apparatus or an active gas irradiation apparatus.
The plasma jet irradiation apparatus generates plasma. The plasma jet irradiation apparatus directly irradiates an object with generated plasma and active species. The active species are generated by the reaction of the gas in the plasma or the gas around the plasma with the plasma. Examples of the active species include active oxygen species and active nitrogen species. Examples of the active oxygen species include hydroxyl radical, singlet oxygen, ozone, hydrogen peroxide, superoxide anion radical, and the like. Examples of the active nitrogen species include nitric oxide, nitrogen dioxide, peroxynitrite, peroxynitrite, and dinitrogen trioxide.
The active gas irradiation device generates plasma. The active gas irradiation apparatus irradiates an object with an active gas containing active species. The active species are generated by the reaction of the gas in the plasma or the gas around the plasma with the plasma.
以下、本発明のプラズマ式治療装置の一実施形態について説明する。
本実施形態のプラズマ式治療装置は、活性ガス照射装置である。
図1から図5に示すように、本実施形態の活性ガス照射装置100は、照射器具10と、検出部15と、供給ユニット20と、ガス管路30と、電気配線40と、供給源70と、報知部80と、制御部90(演算部)と、を備える。
照射器具10は、照射器具10内で発生した活性ガスを吐出する。供給ユニット20は、照射器具10に電力及びプラズマ発生用ガスを供給する。供給ユニット20は、供給源70を収容している。供給源70は、プラズマ発生用ガスを収容している。供給ユニット20は、例えば、100Vの家庭用電源等の電源(不図示)と接続されている。ガス管路30は、照射器具10と供給ユニット20とを接続している。電気配線40は、照射器具10と供給ユニット20とを接続している。本実施形態において、ガス管路30と電気配線40とは、各々独立しているが、ガス管路30と電気配線40とは一体でもよい。
Hereinafter, an embodiment of the plasma treatment apparatus of the present invention will be described.
The plasma treatment apparatus of this embodiment is an active gas irradiation apparatus.
As shown in FIGS. 1 to 5, the active gas irradiation apparatus 100 according to the present embodiment includes an irradiation tool 10, a detection unit 15, a supply unit 20, a gas pipe 30, an electrical wiring 40, and a supply source 70. And a notification unit 80 and a control unit 90 (calculation unit).
The irradiation tool 10 discharges the active gas generated in the irradiation tool 10. The supply unit 20 supplies power and plasma generation gas to the irradiation tool 10. The supply unit 20 accommodates a supply source 70. The supply source 70 contains a plasma generating gas. The supply unit 20 is connected to a power source (not shown) such as a 100 V household power source. The gas pipe line 30 connects the irradiation tool 10 and the supply unit 20. The electrical wiring 40 connects the irradiation instrument 10 and the supply unit 20. In the present embodiment, the gas pipeline 30 and the electrical wiring 40 are independent of each other, but the gas pipeline 30 and the electrical wiring 40 may be integrated.
図2は、照射器具10における軸線に沿う面の断面(縦断面)図である。
図2に示すように、照射器具10は、長尺状のカウリング2(筐体)と、カウリング2の先端から突出するノズル11と、カウリング2内に位置するプラズマ発生部12とを備える。
カウリング2は、円筒形の胴体部2bと、胴体部2bの先端を塞ぐヘッド部2aとを備える。なお、胴体部2bは、円筒形に限らず、四角筒、六角筒、八角筒等の多角筒形でもよい。
FIG. 2 is a cross-sectional (longitudinal cross-sectional) view of the surface along the axis of the irradiation instrument 10.
As shown in FIG. 2, the irradiation instrument 10 includes a long cowling 2 (housing), a nozzle 11 protruding from the tip of the cowling 2, and a plasma generator 12 positioned in the cowling 2.
The cowling 2 includes a cylindrical body portion 2b and a head portion 2a that closes the tip of the body portion 2b. The body portion 2b is not limited to a cylindrical shape, and may be a polygonal cylindrical shape such as a square tube, a hexagonal tube, or an octagonal tube.
ヘッド部2aは、先端に向かい漸次窄んでいる。即ち、本実施形態におけるヘッド部2aは、円錐形である。なお、ヘッド部2aは、円錐形に限らず、四角錘、六角錘、八角錘等の多角錘形でもよい。
ヘッド部2aは、先端に嵌合孔2cを有している。嵌合孔2cは、ノズル11を受け入れる孔である。ノズル11は、ヘッド部2aに着脱可能になっている。ヘッド部2aは、管軸O1方向に延びる第一の活性ガス流路7を内部に有している。管軸O1は、胴体部2bの管軸である。
胴体部2bは、外周面に操作スイッチ9(操作部)を備えている。
The head portion 2a is gradually narrowed toward the tip. That is, the head portion 2a in the present embodiment has a conical shape. The head portion 2a is not limited to a conical shape, and may be a polygonal pyramid shape such as a quadrangular weight, a hexagonal weight, or an octagonal weight.
The head portion 2a has a fitting hole 2c at the tip. The fitting hole 2 c is a hole that receives the nozzle 11. The nozzle 11 is detachable from the head portion 2a. The head part 2a has a first active gas channel 7 extending in the direction of the tube axis O1 inside. The tube axis O1 is a tube axis of the body portion 2b.
The body portion 2b includes an operation switch 9 (operation portion) on the outer peripheral surface.
図2及び図3に示すように、プラズマ発生部12は、管状誘電体3(誘電体)と、内部電極4と、外部電極5とを備える。
管状誘電体3は、管軸O1方向に延びる円筒状の部材である。管状誘電体3は、管軸O1方向に延びるガス流路6を内部に有している。第一の活性ガス流路7とガス流路6とは連通している。なお、管軸O1は、管状誘電体3の管軸と同じである。
管状誘電体3は、内部に内部電極4を備えている。内部電極4は、管軸O1方向に延びる略円柱状の部材である。内部電極4は、管状誘電体3の内面と離間している。
管状誘電体3の外周面の一部には、内部電極4に沿う外部電極5を備えている。外部電極5は、管状誘電体3の外周面に沿って周回する環状の電極である。
図3に示すように、管状誘電体3と内部電極4と外部電極5とは、管軸O1を中心として同心円状に位置している。
本実施形態において、内部電極4の外周面と外部電極5の内周面とは、管状誘電体3を挟んで互いに対向している。
As shown in FIGS. 2 and 3, the plasma generator 12 includes a tubular dielectric 3 (dielectric), an internal electrode 4, and an external electrode 5.
The tubular dielectric 3 is a cylindrical member extending in the direction of the tube axis O1. The tubular dielectric 3 has a gas flow path 6 extending in the direction of the tube axis O1 inside. The first active gas channel 7 and the gas channel 6 communicate with each other. The tube axis O1 is the same as the tube axis of the tubular dielectric 3.
The tubular dielectric 3 includes an internal electrode 4 inside. The internal electrode 4 is a substantially columnar member extending in the direction of the tube axis O1. The internal electrode 4 is separated from the inner surface of the tubular dielectric 3.
A part of the outer peripheral surface of the tubular dielectric 3 is provided with an external electrode 5 along the internal electrode 4. The external electrode 5 is an annular electrode that circulates along the outer peripheral surface of the tubular dielectric 3.
As shown in FIG. 3, the tubular dielectric 3, the internal electrode 4, and the external electrode 5 are located concentrically around the tube axis O1.
In the present embodiment, the outer peripheral surface of the internal electrode 4 and the inner peripheral surface of the external electrode 5 are opposed to each other with the tubular dielectric 3 interposed therebetween.
プラズマ発生部12は、カウリング2から離脱可能である。プラズマ発生部12は、例えば、カウリング2から管軸O1方向に引き抜かれる。例えば、カウリング2をヘッド部2aと胴体部2bとに分解した後、プラズマ発生部12が、胴体部2bに対して前側に引き抜かれるようにプラズマ発生部12を構成してもよい(なお、管軸O1方向に沿ってヘッド部2a側を前側、胴体部2b側を後側とする)。
例えば、プラズマ発生部12が破損した場合などには、カウリング2からプラズマ発生部12を離脱させた後、新たなプラズマ発生部12をカウリング2に装着することができる。このとき、新たなプラズマ発生部12は、カウリング2に対して管軸O1方向に差し込むことができる。
The plasma generator 12 can be detached from the cowling 2. For example, the plasma generator 12 is pulled out from the cowling 2 in the direction of the tube axis O1. For example, after the cowling 2 is disassembled into the head portion 2a and the body portion 2b, the plasma generation portion 12 may be configured so that the plasma generation portion 12 is pulled forward with respect to the body portion 2b (note that the tube The head portion 2a side is the front side and the body portion 2b side is the rear side along the direction of the axis O1).
For example, when the plasma generation unit 12 is damaged, the plasma generation unit 12 can be attached to the cowling 2 after the plasma generation unit 12 is detached from the cowling 2. At this time, the new plasma generator 12 can be inserted into the cowling 2 in the direction of the tube axis O1.
図6に示すように、ノズル11の先端部の硬さ(JIS K 6253に規定されるタイプAデュロメータにより測定される硬さ、以下「硬さ」という。)は、0度以上60度以下である。本実施形態では、ノズル11は、プラズマ及び活性ガスの少なくとも一方が通過する本体管1と、本体管1を覆うカバー13と、を備えている。カバー13が、ノズル11の先端部を形成し、硬さが0度以上60度以下の材料により形成されている。カバー13が、硬さが0度以上60度以下の材料により形成されていることで、ノズル11の先端部のうちの少なくとも外面(最外層)の硬さが、0度以上60度以下となる。カバー13の硬さは、例えば、10度以上40度以下であることが好ましい。カバー13(ノズル11の先端部)の硬さが0度以上であれば、カバー13(ノズル11の先端部)が軟らかすぎることがなく、安定して、かつ均一に治療対象者の治療対象部位にプラズマを照射することができる。カバー13(ノズル11の先端部)の硬さが60度以下であれば、カバー13(ノズル11の先端部)が硬すぎることがない。これにより、仮にカバー13(ノズル11の先端部)が治療対象者の治療対象部位などに接触したとしても、治療対象者の身体的な負担を軽減することができる。なお、カバー13は、本発明に係るプラズマ式治療装置用のカバーである。 As shown in FIG. 6, the hardness of the tip of the nozzle 11 (the hardness measured by a type A durometer defined in JIS K 6253, hereinafter referred to as “hardness”) is 0 degree or more and 60 degrees or less. is there. In the present embodiment, the nozzle 11 includes a main body tube 1 through which at least one of plasma and active gas passes, and a cover 13 that covers the main body tube 1. The cover 13 forms the tip of the nozzle 11 and is formed of a material having a hardness of 0 degrees to 60 degrees. Since the cover 13 is formed of a material having a hardness of 0 ° to 60 °, the hardness of at least the outer surface (outermost layer) of the tip portion of the nozzle 11 is 0 ° to 60 °. . The hardness of the cover 13 is preferably 10 degrees or more and 40 degrees or less, for example. If the hardness of the cover 13 (tip portion of the nozzle 11) is 0 degree or more, the cover 13 (tip portion of the nozzle 11) is not too soft, and the treatment target portion of the treatment subject is stably and uniformly. Can be irradiated with plasma. If the hardness of the cover 13 (tip portion of the nozzle 11) is 60 degrees or less, the cover 13 (tip portion of the nozzle 11) will not be too hard. Thereby, even if the cover 13 (tip portion of the nozzle 11) comes into contact with the treatment target site of the treatment subject, the physical burden on the treatment subject can be reduced. The cover 13 is a cover for the plasma treatment apparatus according to the present invention.
本体管1は、嵌合孔2cに嵌合する台座部1bと、台座部1bから突出する照射管1cとを備える。台座部1bは、嵌合孔2c(カウリング2)に対して着脱自在に装着されている。照射管1cは、円筒状に形成されている。台座部1bと照射管1cとは一体になっている。本体管1は、その内部に、第二の活性ガス流路8を有している。本体管1は、先端に照射口1aを有している。第二の活性ガス流路8と第一の活性ガス流路7とは、連通している。 The main body tube 1 includes a pedestal portion 1b that fits into the fitting hole 2c, and an irradiation tube 1c that protrudes from the pedestal portion 1b. The pedestal portion 1b is detachably attached to the fitting hole 2c (cow ring 2). The irradiation tube 1c is formed in a cylindrical shape. The pedestal portion 1b and the irradiation tube 1c are integrated. The main body pipe 1 has a second active gas flow path 8 therein. The main body tube 1 has an irradiation port 1a at the tip. The second active gas channel 8 and the first active gas channel 7 are in communication.
本体管1(台座部1bおよび照射管1c)は、同一材料で一体に形成されている。本実施形態では、本体管1が金属(例えば、SUS(ステンレス鋼)等)により形成されている。本体管1の材料は、特に制限はなく、絶縁性を有してもよいし、導電性を有してもよい。本体管1の材料としては、耐摩耗性、耐腐食性に優れる材料が好ましい。耐摩耗性、耐腐食性に優れる材料としては、ステンレス等の金属を例示できる。 The main body tube 1 (the pedestal portion 1b and the irradiation tube 1c) is integrally formed of the same material. In the present embodiment, the main body tube 1 is formed of metal (for example, SUS (stainless steel)). There is no restriction | limiting in particular in the material of the main body pipe | tube 1, You may have insulation and may have electroconductivity. As a material of the main body tube 1, a material excellent in wear resistance and corrosion resistance is preferable. Examples of the material having excellent wear resistance and corrosion resistance include metals such as stainless steel.
カバー13は、生体適合性かつ絶縁性を具備する軟質な材料によって形成され、本実施形態では、樹脂(例えば、シリコーン樹脂、より具体的には、硬さが20度程度のシリコーン樹脂など)により形成されている。カバー13は、前述のように硬さが0度以上60度以下の材料により形成されており、カバー13を形成する材料は、SUS(ステンレス鋼)やABS樹脂よりも軟質であり、本体管1やカウリング2を形成する材料よりも軟質である。言い換えると、カバー13と同等の形状、かつ同等の大きさの部材を、SUSやABS樹脂、本体管1を形成する材料、または、カウリング2を形成する材料によって形成した場合、この部材よりもカバー13の方が変形し易い。
尚、本明細書において、材料が「絶縁性を具備する」とは、その材料の体積固有抵抗率が1.0×1013Ω・cm以上であることを意味し、1.0×1013Ω・cm以上であることが好ましい。
カバー13は、カバー13内における、本体管1の照射管1cの先端部(先端面1d)の位置を、外部から確認できるようにするために、透明性を有することが好ましい。例えば、カバー13は、ヘイズ値が70%以下であることが好ましい。ヘイズ値の測定方法は、JIS             に規定される方法に準じて測定される。
The cover 13 is made of a soft material having biocompatibility and insulation. In the present embodiment, the cover 13 is made of a resin (for example, a silicone resin, more specifically, a silicone resin having a hardness of about 20 degrees). Is formed. The cover 13 is formed of a material having a hardness of 0 degrees or more and 60 degrees or less as described above, and the material forming the cover 13 is softer than SUS (stainless steel) or ABS resin, and the body tube 1 And softer than the material forming the cowling 2. In other words, when a member having the same shape and the same size as the cover 13 is formed of SUS or ABS resin, the material forming the main body tube 1 or the material forming the cowling 2, the cover is covered rather than this member. 13 is easier to deform.
In the present specification, “having an insulating property” means that the material has a volume resistivity of 1.0 × 10 13 Ω · cm or more, and 1.0 × 10 13 It is preferable that it is Ω · cm or more.
The cover 13 preferably has transparency so that the position of the distal end portion (front end surface 1d) of the irradiation tube 1c of the main body tube 1 in the cover 13 can be confirmed from the outside. For example, the cover 13 preferably has a haze value of 70% or less. The haze value is measured according to the method specified in JIS.
カバー13は、照射管1cに外側から嵌合されている。カバー13の先端部は、本体管1の先端部に対して突出している。図示の例では、カバー13の先端部が、照射管1cの先端部(先端面1d)よりも前側に突出している。カバー13は、円筒状に形成されている。カバー13の肉厚は、例えば、0.5mm~5mm、好ましくは1mm~3mmである。なお、カバー13の肉厚が0.5mm未満だと、後述する負担の軽減効果が発揮され難くなる。一方、カバー13の肉厚が5mmより厚いと、ノズル11の全体が太くなり過ぎ、例えば、治療(歯科治療)し難くなることがある。 The cover 13 is fitted to the irradiation tube 1c from the outside. The front end portion of the cover 13 protrudes with respect to the front end portion of the main body tube 1. In the illustrated example, the tip of the cover 13 protrudes to the front side of the tip (tip surface 1d) of the irradiation tube 1c. The cover 13 is formed in a cylindrical shape. The thickness of the cover 13 is, for example, 0.5 mm to 5 mm, preferably 1 mm to 3 mm. In addition, when the thickness of the cover 13 is less than 0.5 mm, the effect of reducing the burden described later is hardly exhibited. On the other hand, if the cover 13 is thicker than 5 mm, the entire nozzle 11 becomes too thick, and it may be difficult to treat (dental treatment), for example.
本実施形態では、カバー13には、ヘッドカバー14が一体に設けられている。ヘッドカバー14は、ヘッド部2aを覆っており、図示の例では、ヘッド部2aに外側から嵌合されている。
カバー13は、本体管1に対して着脱自在に装着されている。本実施形態では、ヘッドカバー14も、ヘッド部2aに対して着脱自在に装着されている。カバー13およびヘッドカバー14は、本体管1およびヘッド部2aに対して一体的に着脱自在に装着されている。なお、カバー13やヘッドカバー14の着脱性を向上させるため、カバー13やヘッドカバー14の内面に、凹凸部を設けてもよい。凹凸部を設けることにより、カバー13やヘッドカバー14と、本体管1やヘッド部2aと、の接触面積を低減させ、着脱時の摩擦抵抗を軽減させることができる。
In the present embodiment, the cover 13 is integrally provided with the head cover 14. The head cover 14 covers the head part 2a, and in the illustrated example, is fitted to the head part 2a from the outside.
The cover 13 is detachably attached to the main body tube 1. In the present embodiment, the head cover 14 is also detachably attached to the head portion 2a. The cover 13 and the head cover 14 are detachably attached to the main body tube 1 and the head portion 2a integrally. In order to improve the detachability of the cover 13 and the head cover 14, an uneven portion may be provided on the inner surface of the cover 13 or the head cover 14. By providing the concavo-convex portion, the contact area between the cover 13 and the head cover 14 and the main body tube 1 and the head portion 2a can be reduced, and the frictional resistance during attachment and detachment can be reduced.
カバー13(カバー13とヘッドカバー14との連結体)は、例えば、押し出し成形で試作後、二次加工をすることで製造してもよい。カバー13は、例えば、真空注型、RIM成形、射出成形により製造してもよい。真空注型やRIM成形、射出成形によりカバー13を形成する場合、カバー13を押し出し成形で試作後、二次加工をする場合に比べて、例えば、カバー13の内面に前述の凹凸部を設けたり、カバー13に切込みを入れたりすること等が容易である。そのため、真空注型やRIM成形、射出成形によりカバー13を形成することが好ましい。 The cover 13 (the connected body of the cover 13 and the head cover 14) may be manufactured, for example, by performing a secondary process after trial manufacture by extrusion molding. The cover 13 may be manufactured by, for example, vacuum casting, RIM molding, or injection molding. When the cover 13 is formed by vacuum casting, RIM molding, or injection molding, for example, the above-described uneven portion is provided on the inner surface of the cover 13 as compared with the case where the cover 13 is subjected to trial processing by extrusion molding and then subjected to secondary processing. It is easy to make a cut or the like in the cover 13. Therefore, it is preferable to form the cover 13 by vacuum casting, RIM molding, or injection molding.
図2に示すように、胴体部2bの材料は、特に制限はないが、絶縁性を有する材料が好ましい。絶縁性の材料としては、熱可塑性樹脂、熱硬化性樹脂等を例示できる。熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂)等を例示できる。熱硬化性樹脂としては、フェノール樹脂、メラミン樹脂、ユリア樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等を例示できる。
胴体部2bの大きさは、特に制限はなく、手指で把持しやすい大きさとすることができる。
As shown in FIG. 2, the material of the body portion 2b is not particularly limited, but an insulating material is preferable. Examples of the insulating material include a thermoplastic resin and a thermosetting resin. Examples of the thermoplastic resin include polyethylene, polypropylene, polyvinyl chloride, polystyrene, acrylonitrile-butadiene-styrene resin (ABS resin), and the like. Examples of the thermosetting resin include phenol resin, melamine resin, urea resin, epoxy resin, unsaturated polyester resin, silicone resin and the like.
There is no restriction | limiting in particular in the magnitude | size of the trunk | drum 2b, It can be set as the magnitude | size which is easy to hold | grip with a finger.
ヘッド部2aの材料は、特に制限はなく、絶縁性を有してもよいし、絶縁性を有しなくてもよい。ヘッド部2aの材料は、耐摩耗性、耐腐食性に優れる材料が好ましい。耐摩耗性、耐腐食性に優れる材料としては、ステンレス等の金属を例示できる。ヘッド部2aと胴体部2bとの材料は、同じでもよく、異なってもよい。
ヘッド部2aの大きさは、活性ガス照射装置100の用途等を勘案して決定できる。例えば、活性ガス照射装置100が口腔内用治療器具である場合、ヘッド部2aの大きさは、口腔内に挿入できる大きさが好ましい。
There is no restriction | limiting in particular in the material of the head part 2a, It may have insulation and does not need to have insulation. The material of the head part 2a is preferably a material excellent in wear resistance and corrosion resistance. Examples of the material having excellent wear resistance and corrosion resistance include metals such as stainless steel. The material of the head part 2a and the body part 2b may be the same or different.
The size of the head portion 2a can be determined in consideration of the application of the active gas irradiation device 100 and the like. For example, when the active gas irradiation device 100 is an intraoral therapeutic instrument, the size of the head portion 2a is preferably large enough to be inserted into the oral cavity.
管状誘電体3の材料としては、公知のプラズマ装置に使用する誘電体材料を適用できる。管状誘電体3の材料としては、例えば、ガラス、セラミックス、合成樹脂等を例示できる。管状誘電体3の誘電率は低いほど好ましい。 As a material of the tubular dielectric 3, a dielectric material used for a known plasma apparatus can be applied. Examples of the material of the tubular dielectric 3 include glass, ceramics, and synthetic resin. The dielectric constant of the tubular dielectric 3 is preferably as low as possible.
管状誘電体3の内径Rは、内部電極4の外径dを勘案して適宜決定できる。内径Rは、後述する距離sを所望の範囲とするように決定する。 The inner diameter R of the tubular dielectric 3 can be appropriately determined in consideration of the outer diameter d of the internal electrode 4. The inner diameter R is determined so that a distance s described later is within a desired range.
内部電極4は、管軸O1方向に延びる軸部と、軸部の外周面のねじ山とを備える。軸部は、中実でもよいし、中空でもよい。中でも、軸部は中実が好ましい。軸部が中実であれば、加工が容易であり、かつ機械的な耐久性を高められる。内部電極4のねじ山は、軸部の周方向に周回する螺旋状のねじ山である。内部電極4の形態は、雄ねじと同様の形態である。
内部電極4は、外周面にねじ山を有することで、ねじ山先端部の電界が局所的に強くなり、放電開始電圧が低くなる。このため、低電力でプラズマを生成し、維持できる。
The internal electrode 4 includes a shaft portion extending in the direction of the tube axis O1 and a thread on the outer peripheral surface of the shaft portion. The shaft portion may be solid or hollow. Among these, the shaft portion is preferably solid. If the shaft portion is solid, processing is easy and mechanical durability can be improved. The thread of the internal electrode 4 is a spiral thread that circulates in the circumferential direction of the shaft portion. The form of the internal electrode 4 is the same form as the male screw.
Since the internal electrode 4 has a thread on the outer peripheral surface, the electric field at the tip of the thread is locally increased, and the discharge start voltage is lowered. For this reason, plasma can be generated and maintained with low power.
内部電極4の外径dは、活性ガス照射装置100の用途(即ち、照射器具10の大きさ)等を勘案して、適宜決定できる。活性ガス照射装置100が口腔内用治療器具である場合、外径dは、0.5mm~20mmが好ましく、1mm~10mmがより好ましい。外径dが上記下限値以上であれば、内部電極4を容易に製造できる。加えて、外径dが上記下限値以上であれば、内部電極4の表面積が大きくなり、プラズマをより効率的に発生して、治癒等をより促進できる。外径dが上記上限値以下であれば、照射器具10を過度に大きくすることなく、プラズマをより効率的に発生し、治癒等をより促進できる。 The outer diameter d of the internal electrode 4 can be appropriately determined in consideration of the application of the active gas irradiation device 100 (that is, the size of the irradiation tool 10) and the like. When the active gas irradiation device 100 is an intraoral therapeutic instrument, the outer diameter d is preferably 0.5 mm to 20 mm, and more preferably 1 mm to 10 mm. If the outer diameter d is not less than the above lower limit value, the internal electrode 4 can be easily manufactured. In addition, when the outer diameter d is equal to or greater than the lower limit, the surface area of the internal electrode 4 is increased, plasma can be generated more efficiently, and healing and the like can be further promoted. If the outer diameter d is less than or equal to the above upper limit value, plasma can be generated more efficiently and healing and the like can be further promoted without excessively increasing the irradiation tool 10.
内部電極4のねじ山の高さhは、内部電極4の外径dを勘案して適宜決定できる。なお、内部電極4の外径dは、内部電極4のねじ山における外径である。
内部電極4のねじ山のピッチpは、内部電極4の長さや外径d等を勘案して適宜決定できる。
The thread height h of the internal electrode 4 can be appropriately determined in consideration of the outer diameter d of the internal electrode 4. The outer diameter d of the internal electrode 4 is the outer diameter at the thread of the internal electrode 4.
The thread pitch p of the internal electrode 4 can be appropriately determined in consideration of the length of the internal electrode 4 and the outer diameter d.
内部電極4の材料は、導電材であれば特に制限はなく、公知のプラズマ装置の電極に使用できる金属を適用できる。内部電極4の材料としては、ステンレス、銅、タングステン等の金属、カーボン等を例示できる。 The material of the internal electrode 4 is not particularly limited as long as it is a conductive material, and a metal that can be used for an electrode of a known plasma device can be applied. Examples of the material of the internal electrode 4 include metals such as stainless steel, copper, and tungsten, carbon, and the like.
内部電極4としては、JIS B 0205:2001のメートルねじの規格品(M2、M2.2、M2.5、M3、M3.5等)、JIS B 2016:1987のメートル台形ねじの規格品(Tr8×1.5、Tr9×2、Tr9×1.5等)、JIS B 0206:1973のユニファイ並目ねじの規格品(No.1-64UNC、No.2-56UNC、No.3-48UNC等)等と同等の仕様が好ましい。これらの規格品と同等の仕様であれば、コスト面で優位である。 As the internal electrode 4, JIS B 0205: 2001 metric screw standard products (M2, M2.2, M2.5, M3, M3.5, etc.), JIS B 2016: 1987 metric trapezoidal screw standard products (Tr8 × 1.5, Tr9 × 2, Tr9 × 1.5 etc.), JIS B 0206: 1973 unified coarse thread standard products (No.1-64UNC, No.2-56UNC, No.3-48UNC etc.) A specification equivalent to the above is preferable. If the specifications are equivalent to those of these standard products, the cost is superior.
内部電極4の外面と管状誘電体3の内面との距離(内部電極4のねじ山と管状誘電体3の内面との距離)sは、0.05mm~5mmが好ましく、0.1mm~1mmがより好ましい。距離sが上記下限値以上であれば、所望量のプラズマ発生用ガスを容易に通流できる。距離sが上記上限値以下であれば、プラズマをさらに効率的に発生し、活性ガスの温度を低くできる。 The distance s between the outer surface of the inner electrode 4 and the inner surface of the tubular dielectric 3 (the distance between the thread of the inner electrode 4 and the inner surface of the tubular dielectric 3) s is preferably 0.05 mm to 5 mm, and preferably 0.1 mm to 1 mm. More preferred. When the distance s is equal to or greater than the lower limit, a desired amount of plasma generating gas can be easily passed. If the distance s is not more than the above upper limit value, plasma can be generated more efficiently and the temperature of the active gas can be lowered.
外部電極5の材料は、導電材であれば特に制限はなく、公知のプラズマ装置の電極に使用する金属を適用できる。外部電極5の材料としては、ステンレス、銅、タングステン等の金属、カーボン等を例示できる。 The material of the external electrode 5 is not particularly limited as long as it is a conductive material, and a metal used for an electrode of a known plasma device can be applied. Examples of the material of the external electrode 5 include metals such as stainless steel, copper, and tungsten, and carbon.
ノズル11における照射管1c内の流路の長さ(即ち、距離L2)は、活性ガス照射装置100の用途等を勘案して、適宜決定できる。
照射口1aの開口径は、例えば、0.5mm~5mmが好ましい。開口径が上記下限値以上であれば、活性ガスの圧力損失を抑制できる。開口径が上記上限値以下であれば、照射する活性ガスの流速を高めて、患部の治癒等を促進できる。
照射管1cは、管軸O1に対して屈曲している。
照射管1cの管軸O2と管軸O1とのなす角度θは、活性ガス照射装置100の用途等を勘案して決定できる。
The length of the flow path in the irradiation tube 1c in the nozzle 11 (that is, the distance L2) can be appropriately determined in consideration of the application of the active gas irradiation device 100 and the like.
The opening diameter of the irradiation port 1a is preferably 0.5 mm to 5 mm, for example. If the opening diameter is equal to or larger than the lower limit, the pressure loss of the active gas can be suppressed. If the opening diameter is less than or equal to the above upper limit value, it is possible to increase the flow rate of the active gas to be irradiated and promote healing of the affected area.
The irradiation tube 1c is bent with respect to the tube axis O1.
The angle θ formed between the tube axis O2 and the tube axis O1 of the irradiation tube 1c can be determined in consideration of the application of the active gas irradiation device 100 and the like.
内部電極4の先端Q1からヘッド部2aの先端Q2までの距離L1と、先端Q2から照射口1a(本体管1の先端面1d)までの距離L2との合計(即ち、内部電極4から照射口1aまでの道のり)は、活性ガス照射装置100に求める大きさや、照射した活性ガスが当たる面(被照射面)における温度等を勘案して適宜決定する。距離L1と距離L2の合計が長ければ、被照射面の温度を低くできる。距離L1と距離L2の合計が短ければ、活性ガスのラジカル密度をさらに高めて、被照射面における清浄化、賦活化、治癒等の効果をさらに高められる。なお、先端Q2は、管軸O1と管軸O2との交点である。 The sum of the distance L1 from the tip Q1 of the internal electrode 4 to the tip Q2 of the head portion 2a and the distance L2 from the tip Q2 to the irradiation port 1a (tip surface 1d of the main body tube 1) (ie, from the internal electrode 4 to the irradiation port) The distance to 1a) is appropriately determined in consideration of the size required for the active gas irradiation apparatus 100, the temperature of the surface that is irradiated with the irradiated active gas (irradiated surface), and the like. If the sum of the distance L1 and the distance L2 is long, the temperature of the irradiated surface can be lowered. If the sum of the distance L1 and the distance L2 is short, the radical density of the active gas can be further increased, and effects such as cleaning, activation, and healing on the irradiated surface can be further enhanced. The tip Q2 is an intersection of the tube axis O1 and the tube axis O2.
図2及び図4に示すように、検出部15は、照射器具10に加えられた外力(衝撃力)を検出する。検出部15は、ノズル11よりもプラズマ発生部12に近い。検出部15は、凹部16に配置されている。凹部16は、胴体部2bの内周面に形成されている。管軸O1に直交する方向を径方向とすると、検出部15は、管状誘電体3に対して径方向の外側に配置されている。検出部15は、管軸O1方向に延びる管状に形成されている。
検出部15は、照射器具10から離脱可能である。検出部15は、プラズマ発生部12をカウリング2から離脱させた後、カウリング2内から外部に取り出される。
As shown in FIGS. 2 and 4, the detection unit 15 detects an external force (impact force) applied to the irradiation tool 10. The detection unit 15 is closer to the plasma generation unit 12 than the nozzle 11. The detection unit 15 is disposed in the recess 16. The recessed part 16 is formed in the inner peripheral surface of the trunk | drum 2b. When the direction orthogonal to the tube axis O <b> 1 is a radial direction, the detection unit 15 is disposed on the outer side in the radial direction with respect to the tubular dielectric 3. The detection unit 15 is formed in a tubular shape extending in the direction of the tube axis O1.
The detection unit 15 can be detached from the irradiation instrument 10. The detector 15 is taken out from the cowling 2 after the plasma generator 12 is detached from the cowling 2.
検出部15は、検出部15に外力が加えられたときに変色する。本実施形態では、検出部15の色は、検出部15に所定の大きさ以上の外力が加えられる前後で異なる。検出部15の色は、検出部15に所定の大きさ以上の外力が加えられた後、元の色に戻らず変色したままである。本実施形態では、検出部15が、所定の衝撃加速度(衝撃値)以上の衝撃加速度が加えられたときに変色し、変色した状態が維持される。 The detection unit 15 changes color when an external force is applied to the detection unit 15. In the present embodiment, the color of the detection unit 15 is different before and after an external force of a predetermined magnitude or more is applied to the detection unit 15. The color of the detection unit 15 remains discolored without returning to the original color after an external force of a predetermined magnitude or more is applied to the detection unit 15. In the present embodiment, the detection unit 15 changes color when an impact acceleration equal to or greater than a predetermined impact acceleration (impact value) is applied, and the discolored state is maintained.
検出部15としては、例えば、ショックウォッチ社のショックウォッチ(登録商標)を採用することができる。なお、本実施形態のように、検出部15が管状の場合、検出部15として、例えば、衝撃検知チューブ(例えば、ショックウォッチ(登録商標)のチューブタイプ等)などを採用することができる。さらに、衝撃検知チューブに代えて、例えば、衝撃検知ラベル(例えば、ショックウォッチ(登録商標)のラベルタイプ等)や、衝撃検知表示器(例えば、ショックウォッチ(登録商標)のMAG2000等)などを採用することができる。 As the detection unit 15, for example, a Shockwatch (registered trademark) manufactured by Shockwatch can be used. Note that when the detection unit 15 is tubular as in the present embodiment, for example, an impact detection tube (for example, a shock watch (registered trademark) tube type) or the like can be employed as the detection unit 15. Furthermore, instead of the impact detection tube, for example, an impact detection label (for example, a shock watch (registered trademark) label type, etc.) or an impact detection indicator (for example, shock watch (registered trademark) MAG2000) is adopted. can do.
検出部15は、例えば、管状誘電体3の強度(大きさや形状、材質)などに応じて適宜設計することができる。検出部15を適宜設計することにより、例えば、検出部15の変色に関する衝撃加速度の閾値を調節すること等ができる。
検出部15は、照射器具10の外部から視認可能である。カウリング2には、のぞき窓17が設けられている。のぞき窓17は、検出部15(凹部16)に対して径方向の外側に配置されている。検出部15は、のぞき窓17を通して照射器具10の外部から視認される。
The detection unit 15 can be appropriately designed according to, for example, the strength (size, shape, material) of the tubular dielectric 3. By appropriately designing the detection unit 15, for example, it is possible to adjust a threshold value of impact acceleration related to discoloration of the detection unit 15.
The detection unit 15 is visible from the outside of the irradiation instrument 10. The cowling 2 is provided with an inspection window 17. The observation window 17 is disposed on the outer side in the radial direction with respect to the detection unit 15 (recess 16). The detection unit 15 is visually recognized from the outside of the irradiation instrument 10 through the observation window 17.
図1に示すような供給ユニット20は、照射器具10に電気およびプラズマ発生用ガスを供給する。供給ユニット20は、内部電極4と外部電極5との間に印加する電圧及び周波数を調節できる。供給ユニット20は、供給源70を収容する筐体21を備えている。筐体21は、供給源70を離脱可能に収容する。これにより、筐体21に収容された供給源70内のガスがなくなったとき、供給源70を交換することができる。 The supply unit 20 as shown in FIG. 1 supplies electricity and plasma generating gas to the irradiation tool 10. The supply unit 20 can adjust the voltage and frequency applied between the internal electrode 4 and the external electrode 5. The supply unit 20 includes a housing 21 that houses a supply source 70. The housing | casing 21 accommodates the supply source 70 so that isolation | separation is possible. Thereby, when the gas in the supply source 70 accommodated in the housing | casing 21 runs out, the supply source 70 can be replaced | exchanged.
供給源70は、プラズマ発生部12にプラズマ発生用ガスを供給する。供給源70は、内部にプラズマ発生用ガスが収容された耐圧容器である。図5に示すように、供給源70は、筐体21内に配置された配管75に対して着脱可能に装着されている。配管75は、供給源70とガス管路30とを接続している。
配管75には、電磁弁71、圧力レギュレータ73、流量コントローラ74及び圧力センサ72(残量センサ)が取り付けられている。
The supply source 70 supplies a plasma generation gas to the plasma generation unit 12. The supply source 70 is a pressure vessel in which a plasma generating gas is accommodated. As shown in FIG. 5, the supply source 70 is detachably attached to a pipe 75 disposed in the housing 21. The pipe 75 connects the supply source 70 and the gas pipe 30.
A solenoid valve 71, a pressure regulator 73, a flow rate controller 74, and a pressure sensor 72 (remaining amount sensor) are attached to the pipe 75.
電磁弁71が開状態となると、供給源70から配管75及びガス管路30を介して照射器具10にプラズマ発生用ガスが供給される。図示の例では、電磁弁71は、弁開度が調節できる構成ではなく、開閉の切り替えのみができる構成である。なお、電磁弁71は、弁開度が調節できる構成であってもよい。
圧力レギュレータ73は、電磁弁71と供給源70との間に配置されている。圧力レギュレータ73は、供給源70から電磁弁71に向かうプラズマ発生用ガスの圧力を低下(プラズマ発生用ガスを減圧)させる。
When the electromagnetic valve 71 is opened, the plasma generating gas is supplied from the supply source 70 to the irradiation tool 10 through the pipe 75 and the gas pipe 30. In the illustrated example, the electromagnetic valve 71 is not configured to be able to adjust the valve opening, but is configured to be capable of only switching between opening and closing. The electromagnetic valve 71 may be configured such that the valve opening degree can be adjusted.
The pressure regulator 73 is disposed between the electromagnetic valve 71 and the supply source 70. The pressure regulator 73 reduces the pressure of the plasma generating gas from the supply source 70 toward the electromagnetic valve 71 (decompresses the plasma generating gas).
流量コントローラ74は、電磁弁71とガス管路30との間に配置されている。流量コントローラ74は、電磁弁71を通過したプラズマ発生用ガスの流量(単位時間当たりの供給量)を調整する。流量コントローラ74は、プラズマ発生用ガスの流量を、例えば、3L/minに調整する。
圧力センサ72は、供給源70におけるプラズマ発生用ガスの残量V1を検出する。圧力センサ72は、前記残量V1として、供給源70内の圧力(残圧)を測定する。圧力センサ72は、圧力レギュレータ73と供給源70との間(圧力レギュレータ73よりも一次側)を通過するプラズマ発生用ガスの圧力を、供給源70の圧力として測定する。圧力センサ72としては、例えば、キーエンス社のAP-V80シリーズ(具体的には、例えば、AP-15S)等を採用することができる。
The flow controller 74 is disposed between the electromagnetic valve 71 and the gas pipe 30. The flow rate controller 74 adjusts the flow rate (the supply amount per unit time) of the plasma generating gas that has passed through the electromagnetic valve 71. The flow rate controller 74 adjusts the flow rate of the plasma generating gas to, for example, 3 L / min.
The pressure sensor 72 detects the remaining amount V1 of the plasma generating gas in the supply source 70. The pressure sensor 72 measures the pressure (residual pressure) in the supply source 70 as the remaining amount V1. The pressure sensor 72 measures the pressure of the plasma generating gas that passes between the pressure regulator 73 and the supply source 70 (primary side of the pressure regulator 73) as the pressure of the supply source 70. As the pressure sensor 72, for example, AP-V80 series (specifically, for example, AP-15S) manufactured by Keyence Corporation can be adopted.
配管75の供給源70側の端部には、継手76が設けられている。継手76には、供給源70が着脱可能に装着されている。供給源70を継手76に着脱させることで、電磁弁71、圧力レギュレータ73、流量コントローラ74及び圧力センサ72(以下、「電磁弁71等」という。)を筐体21に固定したまま、供給源70を交換することができる。この場合、交換前の供給源70、交換後の供給源70のいずれについても共通の電磁弁71等を使用することができる。なお、電磁弁71等は、供給源70に固定され、供給源70と一体的に筐体21から離脱可能であってもよい。 A joint 76 is provided at the end of the pipe 75 on the supply source 70 side. A supply source 70 is detachably attached to the joint 76. By attaching / detaching the supply source 70 to / from the joint 76, the supply source 70 remains fixed to the casing 21 while the electromagnetic valve 71, the pressure regulator 73, the flow rate controller 74 and the pressure sensor 72 (hereinafter referred to as “electromagnetic valve 71 etc.”) are fixed. 70 can be exchanged. In this case, a common solenoid valve 71 or the like can be used for both the supply source 70 before replacement and the supply source 70 after replacement. The electromagnetic valve 71 and the like may be fixed to the supply source 70 and detachable from the housing 21 integrally with the supply source 70.
図1に示すように、ガス管路30は、供給ユニット20から照射器具10にプラズマ発生用ガスを供給する経路である。ガス管路30は、照射器具10の管状誘電体3の後端部に接続している。ガス管路30の材料は特に制限はなく、公知のガス管に用いる材料を適用できる。ガス管路30の材料としては、例えば、樹脂製の配管、ゴム製のチューブ等を例示できる。ガス管路30の材料としては、可撓性を有する材料が好ましい。 As shown in FIG. 1, the gas pipe 30 is a path for supplying a plasma generating gas from the supply unit 20 to the irradiation instrument 10. The gas conduit 30 is connected to the rear end portion of the tubular dielectric 3 of the irradiation instrument 10. The material of the gas pipe 30 is not particularly limited, and a material used for a known gas pipe can be applied. Examples of the material of the gas pipe line 30 include resin piping and rubber tubes. As a material of the gas pipe line 30, a flexible material is preferable.
電気配線40は、供給ユニット20から照射器具10に電気を供給する配線である。電気配線40は、照射器具10の内部電極4、外部電極5及び操作スイッチ9に接続している。電気配線40の材料は特に制限はなく、公知の電気配線に用いる材料を適用できる。電気配線40の材料としては、絶縁材料で被覆した金属導線等を例示できる。 The electrical wiring 40 is a wiring that supplies electricity from the supply unit 20 to the irradiation instrument 10. The electrical wiring 40 is connected to the internal electrode 4, the external electrode 5, and the operation switch 9 of the irradiation instrument 10. The material of the electrical wiring 40 is not particularly limited, and a known material used for electrical wiring can be applied. Examples of the material of the electrical wiring 40 include a metal conductor covered with an insulating material.
図5に示すような制御部90は、情報処理装置を用いて構成される。すなわち、制御部90は、バスで接続されたCPU(Central Processor Unit)、メモリ及び補助記憶装置を備える。制御部90は、プログラムを実行することによって動作する。制御部90は、例えば、供給ユニット20に内蔵されていてもよい。制御部90は、照射器具10、供給ユニット20および報知部80を制御する。 The control unit 90 as shown in FIG. 5 is configured using an information processing apparatus. That is, the control unit 90 includes a CPU (Central Processor Unit), a memory, and an auxiliary storage device connected by a bus. The control unit 90 operates by executing a program. The control unit 90 may be incorporated in the supply unit 20, for example. The control unit 90 controls the irradiation instrument 10, the supply unit 20, and the notification unit 80.
制御部90には、照射器具10の操作スイッチ9が電気的に接続されている。操作スイッチ9が操作されると、操作スイッチ9から制御部90に電気信号が送られる。制御部90が前記電気信号を受け付けると、制御部90は電磁弁71及び流量コントローラ74を作動させ、かつ内部電極4と外部電極5との間に電圧を印加する。 An operation switch 9 of the irradiation instrument 10 is electrically connected to the control unit 90. When the operation switch 9 is operated, an electric signal is sent from the operation switch 9 to the control unit 90. When the control unit 90 receives the electrical signal, the control unit 90 operates the electromagnetic valve 71 and the flow rate controller 74 and applies a voltage between the internal electrode 4 and the external electrode 5.
本実施形態では、操作スイッチ9が押釦であり、使用者が操作スイッチ9を1回押した(使用者が操作スイッチ9を操作した)ときに、制御部90が前記電気信号を受け付ける。すると制御部90が、電磁弁71を所定の時間、開放して電磁弁71を通過したプラズマ発生用ガスの流量を流量コントローラ74に調整させ、かつ内部電極4と外部電極5との間に電圧を所定の時間、印加する。その結果、供給源70からプラズマ発生部12に一定量のプラズマ発生用ガスが供給され、ノズル11から活性ガスが一定時間(例えば、数秒から数十秒程度、本実施形態では30秒)、継続して吐出される。 In the present embodiment, the operation switch 9 is a push button, and when the user presses the operation switch 9 once (the user operates the operation switch 9), the control unit 90 receives the electrical signal. Then, the control unit 90 opens the electromagnetic valve 71 for a predetermined time, causes the flow rate controller 74 to adjust the flow rate of the plasma generating gas that has passed through the electromagnetic valve 71, and the voltage between the internal electrode 4 and the external electrode 5. Is applied for a predetermined time. As a result, a constant amount of plasma generating gas is supplied from the supply source 70 to the plasma generating unit 12, and the active gas is continuously supplied from the nozzle 11 for a certain period of time (for example, several seconds to several tens of seconds, in this embodiment, 30 seconds). Then discharged.
制御部90は、プラズマ発生用ガスの残回数N(Nは自然数)を演算する。残回数Nは、供給源70に残存するプラズマ発生用ガスによって、供給源70からプラズマ発生部12にプラズマ発生用ガスを供給することができる残りの回数である。残回数Nは、供給源70におけるプラズマ発生用ガスの残量V1から算出することができる。残回数Nは、残量V1と、操作スイッチ9の操作1回あたりのプラズマ発生用ガスの供給量V2と、に基づいて演算(N=V1/V2)することができる。 The controller 90 calculates the remaining number N (N is a natural number) of the plasma generating gas. The remaining number N is the remaining number of times that the plasma generation gas can be supplied from the supply source 70 to the plasma generation unit 12 by the plasma generation gas remaining in the supply source 70. The remaining number N can be calculated from the remaining amount V1 of the plasma generating gas in the supply source 70. The remaining number N can be calculated (N = V1 / V2) based on the remaining amount V1 and the plasma generation gas supply amount V2 per operation of the operation switch 9.
報知部80は、残回数Nを報知する。報知部80は、制御部90が演算した残回数Nを数字で表示する。報知部80として、例えば、任意の数字を表示可能なディスプレイ装置を採用してもよく、機械式のカウンタを採用してもよい。なお報知部80は、音声によって残回数Nを報知してもよい。この場合、報知部80としては、例えば、スピーカ等を採用することができる。 The notification unit 80 notifies the remaining number N. The notification unit 80 displays the remaining number N calculated by the control unit 90 as a number. As the notification unit 80, for example, a display device capable of displaying an arbitrary number may be employed, or a mechanical counter may be employed. The notification unit 80 may notify the remaining number N by voice. In this case, for example, a speaker or the like can be employed as the notification unit 80.
次に、活性ガス照射装置100の使用方法を説明する。
例えば、医師などの使用者は、照射器具10を持って移動させ、ノズル11を後述する被照射物に向ける。この状態で操作スイッチ9を押し、供給源70から照射器具10に電気及びプラズマ発生用ガスを供給する。
照射器具10に供給したプラズマ発生用ガスは、管状誘電体3の後端部から管状誘電体3の内空部に流入する。プラズマ発生用ガスは、内部電極4と外部電極5とが対向する位置において電離し、プラズマになる。
Next, the usage method of the active gas irradiation apparatus 100 is demonstrated.
For example, a user such as a doctor moves the irradiation tool 10 and directs the nozzle 11 toward an irradiation object to be described later. In this state, the operation switch 9 is pressed to supply electricity and plasma generating gas from the supply source 70 to the irradiation instrument 10.
The plasma generating gas supplied to the irradiation tool 10 flows from the rear end of the tubular dielectric 3 into the inner space of the tubular dielectric 3. The plasma generating gas is ionized at the position where the internal electrode 4 and the external electrode 5 face each other, and becomes plasma.
本実施形態においては、内部電極4と外部電極5とが、プラズマ発生用ガスの流れる方向と直交する向きに対向している。内部電極4の外周面と外部電極5の内周面とが対向する位置で発生したプラズマは、ガス流路6と、第一の活性ガス流路7と、第二の活性ガス流路8とをこの順に通流する。この間、プラズマは、ガス組成を変化しつつ通流し、ラジカル等の活性種を含む活性ガスとなる。 In the present embodiment, the internal electrode 4 and the external electrode 5 face each other in a direction orthogonal to the direction in which the plasma generating gas flows. The plasma generated at the position where the outer peripheral surface of the internal electrode 4 and the inner peripheral surface of the external electrode 5 face each other includes the gas flow path 6, the first active gas flow path 7, and the second active gas flow path 8. In this order. During this time, the plasma flows while changing the gas composition, and becomes an active gas containing active species such as radicals.
生じた活性ガスは照射口1aから吐出される。吐出された活性ガスは、照射口1a近傍の気体の一部をさらに活性化して活性種を生成する。これらの活性種を含む活性ガスを被照射物に照射する。 The generated active gas is discharged from the irradiation port 1a. The discharged active gas further activates part of the gas near the irradiation port 1a to generate active species. The irradiated object is irradiated with an active gas containing these active species.
被照射物としては、例えば、細胞、生体組織、生物個体等を例示できる。
生体組織としては、内蔵等の各器官、体表や体腔の内面を覆う上皮組織、歯肉、歯槽骨、歯根膜及びセメント質等の歯周組織、歯、骨等を例示できる。
生物個体としては、ヒト、犬、猫、豚等の哺乳類;鳥類;魚類等のいずれでもよい。
Examples of irradiated objects include cells, living tissues, living organisms, and the like.
Examples of biological tissues include internal organs, epithelial tissues that cover the body surface and inner surfaces of body cavities, gums, alveolar bone, periodontal tissues such as periodontal ligament and cementum, teeth, bones, and the like.
The living organism may be any of mammals such as humans, dogs, cats and pigs; birds; fishes and the like.
プラズマ発生用ガスとしては、例えば、ヘリウム、ネオン、アルゴン、クリプトン等の希ガス;窒素;等を例示できる。これらのガスは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
プラズマ発生用ガスは、窒素を主成分とすることが好ましい。ここで、窒素を主成分とするとは、プラズマ発生用ガスにおける窒素の含有量が50体積%超であることをいう。即ち、プラズマ発生用ガスにおける窒素の含有量は、50体積%超が好ましく、70体積%以上がさらに好ましく、90質量%~100質量%が特に好ましい。プラズマ発生用ガス中、窒素以外のガス成分は、特に制限はなく、例えば、酸素、希ガス等を例示できる。
Examples of the plasma generating gas include noble gases such as helium, neon, argon, and krypton; nitrogen; and the like. These gases may be used alone or in combination of two or more.
The plasma generating gas preferably contains nitrogen as a main component. Here, nitrogen as a main component means that the content of nitrogen in the plasma generating gas is more than 50% by volume. That is, the nitrogen content in the plasma generating gas is preferably more than 50% by volume, more preferably 70% by volume or more, and particularly preferably 90% by mass to 100% by mass. The gas component other than nitrogen in the plasma generating gas is not particularly limited, and examples thereof include oxygen and rare gases.
活性ガス照射装置100が口腔内用治療器具である場合、管状誘電体3に導入するプラズマ発生用ガスの酸素濃度は、1体積%以下が好ましい。酸素濃度が上限値以下であれば、オゾンの発生を低減できる。 When the active gas irradiation device 100 is an intraoral therapeutic instrument, the oxygen concentration of the plasma generating gas introduced into the tubular dielectric 3 is preferably 1% by volume or less. If the oxygen concentration is less than or equal to the upper limit value, the generation of ozone can be reduced.
管状誘電体3に導入するプラズマ発生用ガスの流量は、1L/min~10L/minが好ましい。
管状誘電体3に導入するプラズマ発生用ガスの流量が前記下限値以上であると、被照射物における被照射面の温度の上昇を抑制しやすい。プラズマ発生用ガスの流量が前記上限値以下であると、被照射物の清浄化、賦活化又は治癒をさらに促進できる。
The flow rate of the plasma generating gas introduced into the tubular dielectric 3 is preferably 1 L / min to 10 L / min.
When the flow rate of the plasma generating gas introduced into the tubular dielectric 3 is equal to or higher than the lower limit, an increase in the temperature of the irradiated surface in the irradiated object can be easily suppressed. When the flow rate of the plasma generating gas is equal to or less than the upper limit value, it is possible to further promote the cleaning, activation, or healing of the irradiated object.
内部電極4と外部電極5との間に印加する交流電圧は、5kVpp以上20kVpp以下が好ましい。ここで、交流電圧を表す単位「Vpp(Volt peak to peak)」は、交流電圧波形の最高値と最低値との電位差である。
印加する交流電圧が前記上限値以下であれば、発生するプラズマの温度を低く抑えられる。印加する交流電圧が前記下限値以上であれば、さらに効率的にプラズマを発生できる。
The AC voltage applied between the internal electrode 4 and the external electrode 5 is preferably 5 kVpp to 20 kVpp. Here, the unit “Vpp (Volt peak to peak)” representing the AC voltage is a potential difference between the highest value and the lowest value of the AC voltage waveform.
If the AC voltage to be applied is not more than the above upper limit value, the temperature of the generated plasma can be kept low. If the AC voltage to be applied is equal to or higher than the lower limit value, plasma can be generated more efficiently.
内部電極4と外部電極5との間に印加する交流の周波数は、0.5kHz以上20kHz未満が好ましく、1kHz以上15kHz未満がより好ましく、2kHz以上10kHz未満がさらに好ましく、3kHz以上9kHz未満が特に好ましく、4kHz以上8kHz未満が最も好ましい。
交流の周波数が前記上限値未満であれば、発生するプラズマの温度を低く抑えられる。交流の周波数が前記下限値以上であれば、さらに効率的にプラズマを発生できる。
The frequency of alternating current applied between the internal electrode 4 and the external electrode 5 is preferably 0.5 kHz or more and less than 20 kHz, more preferably 1 kHz or more and less than 15 kHz, further preferably 2 kHz or more and less than 10 kHz, and particularly preferably 3 kHz or more and less than 9 kHz. 4 kHz or more and less than 8 kHz is most preferable.
If the AC frequency is less than the upper limit, the temperature of the generated plasma can be kept low. If the AC frequency is equal to or higher than the lower limit, plasma can be generated more efficiently.
ノズル11の照射口1aから照射する活性ガスの温度は、50℃以下が好ましく、45℃以下がより好ましく、40℃以下がさらに好ましい。
ノズル11の照射口1aから照射する活性ガスの温度が前記上限値以下であると、被照射面の温度を40℃以下にしやすい。被照射面の温度を40℃以下にすることで、被照射部分が患部である場合にも、患部への刺激を低減できる。
ノズル11の照射口1aから照射する活性ガスの温度の下限値は、特に制限はなく、例えば、10℃以上である。
活性ガスの温度は、照射口1aにおける活性ガスの温度を熱電対で測定した値である。
The temperature of the active gas irradiated from the irradiation port 1a of the nozzle 11 is preferably 50 ° C. or lower, more preferably 45 ° C. or lower, and further preferably 40 ° C. or lower.
When the temperature of the active gas irradiated from the irradiation port 1a of the nozzle 11 is equal to or lower than the upper limit value, the temperature of the irradiated surface is easily set to 40 ° C. or lower. By setting the temperature of the irradiated surface to 40 ° C. or lower, even when the irradiated portion is an affected part, stimulation to the affected part can be reduced.
There is no restriction | limiting in particular in the lower limit of the temperature of the active gas irradiated from the irradiation port 1a of the nozzle 11, For example, it is 10 degreeC or more.
The temperature of the active gas is a value obtained by measuring the temperature of the active gas at the irradiation port 1a with a thermocouple.
照射口1a(本体管1の先端面1d)から被照射面までの距離(照射距離)は、例えば、0.01mm~10mmが好ましい。照射距離が上記下限値以上であれば、被照射面の温度を低くし、被照射面への刺激をさらに緩和できる。照射距離が上記上限値以下であれば、治癒等の効果をさらに高められる。 The distance (irradiation distance) from the irradiation port 1a (the front end surface 1d of the main body tube 1) to the irradiated surface is preferably, for example, 0.01 mm to 10 mm. If the irradiation distance is not less than the above lower limit value, the temperature of the irradiated surface can be lowered, and the stimulation to the irradiated surface can be further alleviated. If irradiation distance is below the said upper limit, effects, such as healing, are further improved.
照射口1a(本体管1の先端面1d)から1mm以上10mm以下の距離で離れた位置の被照射面の温度は、40℃以下が好ましい。被照射面の温度が40℃以下であれば、被照射面への刺激を低減できる。被照射面の温度の下限値は特に制限はないが、例えば、10℃以上である。
被照射面の温度は、内部電極4と外部電極5との間に印加する交流電圧、照射する活性ガスの吐出量、内部電極4の先端Q1から照射口1a(本体管1の先端面1d)までの道のり等の組み合わせで調節できる。
被照射面の温度は、熱電対を用いて測定できる。
The temperature of the irradiated surface at a position away from the irradiation port 1a (the tip surface 1d of the main body tube 1) by a distance of 1 mm or more and 10 mm or less is preferably 40 ° C. or less. If the temperature of the irradiated surface is 40 ° C. or less, the stimulation to the irradiated surface can be reduced. Although there is no restriction | limiting in particular in the lower limit of the temperature of a to-be-irradiated surface, For example, it is 10 degreeC or more.
The temperature of the surface to be irradiated is the AC voltage applied between the internal electrode 4 and the external electrode 5, the discharge amount of the active gas to be irradiated, the tip Q1 of the internal electrode 4 to the irradiation port 1a (the tip surface 1d of the main tube 1). It can be adjusted by the combination of the way up to.
The temperature of the irradiated surface can be measured using a thermocouple.
活性ガスに含まれる活性種(ラジカル等)としては、ヒドロキシルラジカル、一重項酸素、オゾン、過酸化水素、スーパーオキシドアニオンラジカル、一酸化窒素、二酸化窒素、ペルオキシナイトライト、過酸化亜硝酸、三酸化二窒素等を例示できる。活性ガスに含まれる活性種の種類は、例えば、プラズマ発生用ガスの種類等にさらに調節できる。 The active species (radicals, etc.) contained in the active gas include hydroxyl radical, singlet oxygen, ozone, hydrogen peroxide, superoxide anion radical, nitric oxide, nitrogen dioxide, peroxynitrite, peroxynitrite, and trioxide. Examples include dinitrogen. The type of active species contained in the active gas can be further adjusted to, for example, the type of gas for generating plasma.
活性ガス中におけるヒドロキシラジカルの密度(ラジカル密度)は、0.1μmol/L~300μmol/Lが好ましい。ラジカル密度が前記下限値以上であると、細胞、生体組織及び生物個体から選ばれる被照射物の清浄化、賦活化又は異常の治癒を促進しやすい。ラジカル密度が前記上限値以下であると、被照射面への刺激を低減できる。 The hydroxy radical density (radical density) in the active gas is preferably 0.1 μmol / L to 300 μmol / L. When the radical density is equal to or higher than the lower limit value, it is easy to promote cleaning, activation, or healing of an object to be irradiated selected from cells, living tissues, and living organisms. When the radical density is less than or equal to the above upper limit, stimulation to the irradiated surface can be reduced.
ラジカル密度は、例えば、以下の方法で測定できる。
DMPO(5,5-ジメチル-1-ピロリン-N-オキシド)0.2mol/L溶液0.2mLに対して、活性ガスを30秒間照射する。この際、照射口1a(本体管1の先端面1d)から液面までの距離を5.0mmとする。活性ガスを照射した前記溶液について、電子スピン共鳴(ESR)法を利用してヒドロキシルラジカル濃度を測定し、これをラジカル密度とする。
The radical density can be measured, for example, by the following method.
An active gas is irradiated for 30 seconds to 0.2 mL of DMPO (5,5-dimethyl-1-pyrroline-N-oxide) 0.2 mol / L solution. At this time, the distance from the irradiation port 1a (the front end surface 1d of the main body tube 1) to the liquid surface is set to 5.0 mm. About the said solution irradiated with the active gas, a hydroxyl radical density | concentration is measured using an electron spin resonance (ESR) method, and this is made into a radical density.
活性ガス中における一重項酸素の密度(一重項酸素密度)は、0.1μmol/L~300μmol/Lが好ましい。一重項酸素密度が前記下限値以上であると、細胞、生体組織及び生物個体等の被照射物の清浄化、賦活化又は異常の治癒を促進しやすい。前記上限値以下であると、被照射面への刺激を低減できる。 The singlet oxygen density (singlet oxygen density) in the active gas is preferably 0.1 μmol / L to 300 μmol / L. When the singlet oxygen density is equal to or higher than the lower limit, it is easy to promote cleaning, activation, or healing of abnormalities of irradiated objects such as cells, living tissues, and living organisms. When the amount is not more than the upper limit value, stimulation to the irradiated surface can be reduced.
一重項酸素密度は、例えば、以下の方法で測定できる。
TPC(2,2,5,5-テトラメチル-3-ピロリン-3-カルボキサミド)0.1mol/L溶液0.4mLに対して、活性ガスを30秒間照射する。この際、照射口1aから液面までの距離を5.0mmとする。活性ガスを照射した前記溶液について、電子スピン共鳴(ESR)法を利用して一重項酸素濃度を測定し、これを一重項酸素密度とする。
The singlet oxygen density can be measured, for example, by the following method.
An active gas is irradiated for 30 seconds to 0.4 mL of a TPC (2,2,5,5-tetramethyl-3-pyrroline-3-carboxamide) 0.1 mol / L solution. At this time, the distance from the irradiation port 1a to the liquid surface is set to 5.0 mm. About the said solution irradiated with the active gas, a singlet oxygen concentration is measured using an electron spin resonance (ESR) method, and this is made into a singlet oxygen density.
照射口1aから照射する活性ガスの流量は、1L/min~10L/minが好ましい。
照射口1aから照射する活性ガスの流量が前記下限値以上であると、活性ガスが被照射面に作用する効果を充分に高められる。照射口1aから照射する活性ガスの流量が前記上限値未満であると、活性ガスの被照射面の温度が過度に高まることを防止できる。加えて、被照射面が濡れている場合には、被照射面の急速な乾燥を防止できる。さらに、被照射面が患部である場合には、患者への刺激を抑制できる。
なお、活性ガス照射装置100において、照射口1aから照射する活性ガスの流量は、管状誘電体3へのプラズマ発生用ガスの供給量で調節できる。
The flow rate of the active gas irradiated from the irradiation port 1a is preferably 1 L / min to 10 L / min.
When the flow rate of the active gas irradiated from the irradiation port 1a is equal to or higher than the lower limit, the effect of the active gas acting on the irradiated surface can be sufficiently enhanced. When the flow rate of the active gas irradiated from the irradiation port 1a is less than the upper limit value, it is possible to prevent the temperature of the surface irradiated with the active gas from excessively increasing. In addition, when the irradiated surface is wet, rapid drying of the irradiated surface can be prevented. Furthermore, when the irradiated surface is an affected area, stimulation to the patient can be suppressed.
In the active gas irradiation apparatus 100, the flow rate of the active gas irradiated from the irradiation port 1 a can be adjusted by the supply amount of the plasma generating gas to the tubular dielectric 3.
活性ガス照射装置100によって生じる活性ガスは、外傷や異常の治癒を促進する効果を有する。活性ガスを細胞、生体組織又は生物個体に照射することによって、その被照射部分の清浄化、賦活化、又はその被照射部分の治癒を促進できる。 The active gas generated by the active gas irradiation device 100 has an effect of promoting the healing of trauma and abnormalities. By irradiating a cell, a living tissue, or a living individual with an active gas, the irradiated portion can be cleaned, activated, or healed.
外傷や異常の治癒を促進する目的で活性ガスを照射する場合、その照射頻度、照射回数及び照射期間は特に制限はない。例えば、1L/min~5.0L/minの照射量で活性ガスを患部に照射する場合、1日1回~5回、毎回10秒~10分、1日~30日間、等の照射条件が、治癒を促進する観点から好ましい。 When the active gas is irradiated for the purpose of promoting the healing of trauma and abnormalities, the irradiation frequency, the number of irradiations and the irradiation period are not particularly limited. For example, when irradiating the affected area with an active gas at an irradiation dose of 1 L / min to 5.0 L / min, irradiation conditions such as once to five times a day, 10 seconds to 10 minutes each time, and 1 to 30 days are set. From the viewpoint of promoting healing.
本実施形態の活性ガス照射装置100は、特に口腔内用治療器具、歯科用治療器具として有用である。また、本実施形態の活性ガス照射装置100は、動物治療用器具(例えば、ヒトを除く動物の口腔内を治療するための治療装置)としても好適である。 The active gas irradiation device 100 of the present embodiment is particularly useful as an intraoral therapeutic instrument and a dental therapeutic instrument. Moreover, the active gas irradiation apparatus 100 of this embodiment is also suitable as an animal treatment instrument (for example, a treatment apparatus for treating the oral cavity of an animal other than a human).
ところで、本願発明者は、活性ガス照射装置100による治療時に、治療対象者(動物)の治療対象部位やその近傍(以下、「治療対象部位など」という。)にノズル11の先端部が接触すると、治療対象者の身体的な負担が生じることを見出した。例えば、治療対象者としての動物に無麻酔で治療を実施する場合であって、動物が予期せぬ動きをするとき(一例として、犬に使用する場合であって、プラズマや活性ガスの照射に犬が驚いたとき)等に、ノズル11の先端部が治療対象部位などに接触する可能性が高くなる。ノズル11の先端部が治療対象部位などに接触すると、その部位がノズル11の先端部で傷つくことがある。 By the way, the inventor of the present application makes contact with the tip of the nozzle 11 in the vicinity of the treatment subject (animal) of the treatment subject (animal) or the vicinity thereof (hereinafter referred to as “treatment subject portion”) during the treatment with the active gas irradiation device 100. It was found that a physical burden on the subject of treatment occurs. For example, when an animal as a treatment target is treated without anesthesia and the animal moves unexpectedly (for example, when used for a dog and is irradiated with plasma or active gas) When the dog is surprised), the possibility that the tip of the nozzle 11 comes into contact with the treatment target site or the like increases. When the tip of the nozzle 11 comes into contact with a treatment target site or the like, the site may be damaged at the tip of the nozzle 11.
そこで、本実施形態に係る活性ガス照射装置100では、ノズル11の先端部の硬さが0度以上60度以下である。したがって、例えば、ノズル11の先端部の硬さが60度よりも大きい場合などに比べて、ノズルの先端部が硬すぎることがない。これにより、仮にノズル11の先端部が治療対象者の治療対象部位などに接触したとしても、治療対象者の身体的な負担を軽減することができる。
尚、前記「先端部」とは、ノズル11において、管軸O2方向の最先端から5mm以内の領域を意味する。ノズル11に関して、この先端部以外の領域の硬さは、上記先端部の硬さと同じであっても異なっていてもよい。例えば、前記先端部の硬さが低い領域が大きすぎると容易に変形しすぎて却って操作性の低下を招く恐れもあるため、ノズル11の先端部以外の領域の硬さを前記先端部の硬さより高く設定することも本発明の好ましい態様の一つである。また、ノズル11において、最先端から5mm以内の領域(先端部)を最も柔らかくして、先端部以外の領域の硬さを、本体管1の覆う部分に応じて、2段階、3段階等のように、先端部から離れるに従って段階的に硬くしてもよい。
Therefore, in the active gas irradiation device 100 according to the present embodiment, the hardness of the tip portion of the nozzle 11 is not less than 0 degrees and not more than 60 degrees. Therefore, for example, compared to a case where the hardness of the tip of the nozzle 11 is greater than 60 degrees, the tip of the nozzle is not too hard. Thereby, even if the front-end | tip part of the nozzle 11 contacts the treatment object site | part etc. of a treatment subject, the physical burden of a treatment subject can be reduced.
The “tip portion” means a region within 5 mm from the tip of the nozzle 11 in the direction of the tube axis O2. Regarding the nozzle 11, the hardness of the region other than the tip portion may be the same as or different from the hardness of the tip portion. For example, if the region where the hardness of the tip is low is too large, the tip 11 may be deformed too easily and the operability may be reduced. Setting higher than this is also one of the preferred embodiments of the present invention. Further, in the nozzle 11, the region (tip portion) within 5 mm from the most advanced is made softest, and the hardness of the region other than the tip portion is set in two steps, three steps, etc. according to the portion covered by the main body tube 1. Thus, it may be hardened stepwise as it moves away from the tip.
カバー13が、ノズル11の先端部を形成している。したがって、仮にノズル11の先端部が治療対象部位などに接触し、ノズル11の先端部が汚染されたとしても、その汚染をカバー13に留まらせることができる。これにより、本体管1の汚染を抑制することができる。また、例えば、カバー13を交換すること等により、ノズル11から汚染を除去することができる。
なお、このように、カバー13がノズル11の先端部を形成している場合、カバー13の硬さは、10度以上40度以下であることが好ましい。カバー13の硬さが10度以上であれば、カバー13(ノズル11の先端部)が軟らかすぎることがなく、安定して、かつ均一に治療対象者の治療対象部位にプラズマを照射することができる。カバー13の硬さが40度以上であれば、カバー13(ノズル11の先端部)が硬すぎることがない。これにより、仮にカバー13(ノズル11の先端部)が治療対象者の治療対象部位などに接触したとしても、治療対象者の身体的な負担を軽減することができる。。
The cover 13 forms the tip of the nozzle 11. Therefore, even if the tip portion of the nozzle 11 comes into contact with the treatment target site and the like and the tip portion of the nozzle 11 is contaminated, the contamination can remain in the cover 13. Thereby, contamination of the main body pipe | tube 1 can be suppressed. Further, for example, contamination can be removed from the nozzle 11 by replacing the cover 13 or the like.
In addition, when the cover 13 forms the tip of the nozzle 11 as described above, the hardness of the cover 13 is preferably 10 degrees or more and 40 degrees or less. If the hardness of the cover 13 is 10 degrees or more, the cover 13 (the tip of the nozzle 11) is not too soft, and the treatment target site of the treatment subject can be irradiated with plasma stably and uniformly. it can. If the hardness of the cover 13 is 40 degrees or more, the cover 13 (the tip portion of the nozzle 11) will not be too hard. Thereby, even if the cover 13 (tip portion of the nozzle 11) comes into contact with the treatment target site of the treatment subject, the physical burden on the treatment subject can be reduced. .
また、本実施形態のように、カバー13が、絶縁性の材料によって形成されている場合、後述するように、絶縁性のカバー13により、漏電を抑制することができる。すなわち、仮にプラズマ発生部12において本体管1に至るような漏電が生じたとしても、絶縁性のカバー13によって、その漏電した電気が治療対象者に伝達されることを抑制することができる。 Moreover, when the cover 13 is formed of an insulating material as in the present embodiment, the leakage can be suppressed by the insulating cover 13 as described later. That is, even if an electrical leakage that reaches the main body tube 1 occurs in the plasma generator 12, the insulating cover 13 can suppress the transmission of the electrical leakage to the treatment subject.
本体管1が金属により形成されている。したがって、本体管1がプラズマや活性ガスを長期間にわたって安定して通過させることができる。
カバー13が樹脂により形成されている。したがって、例えば、カバー13の軽量化や低コスト化などを図り易くすることができる。
The main body tube 1 is made of metal. Therefore, the main body tube 1 can pass the plasma and the active gas stably over a long period of time.
The cover 13 is made of resin. Therefore, for example, it is possible to easily reduce the weight and cost of the cover 13.
図6に示すように、カバー13の先端部が、本体管1の先端部(先端面1d)に対して突出している。したがって、例えば、カバー13の先端部を治療対象部位に突き当てて使用することで、治療対象者の身体的な負担を軽減しつつ、本体管1の先端部から治療対象部位に至るまでの距離(以下、「照射距離L3」という。)を安定して確保することができる。なお、活性ガス照射装置100では、照射距離L3に応じて、例えば、治療効果に寄与する活性種の濃度が変化する。そのため、前述のように照射距離L3を安定して確保することで、良好な治療効果が期待される。なお、照射距離L3は、治療効果が得られる距離と同じが、その距離よりも短い距離であることが好ましい。治療効果が得られる距離は、活性種の寿命から規定される。また、カバー13の先端部(ノズル11の先端部)が治療対象者の治療対象部位などに接触した際に、治療対象者に対する衝撃を緩和するためには、照射距離L3は、0.5mm以上であることが好ましい。プラズマや活性ガスが治療対象者の治療対象部位に到達した際に失活しないためには、照射距離L3は、活性種の寿命によって規定される上限値以下であることが好ましい。 As shown in FIG. 6, the front end portion of the cover 13 protrudes from the front end portion (the front end surface 1 d) of the main body tube 1. Therefore, for example, the distance from the distal end portion of the main body tube 1 to the treatment target portion while reducing the physical burden on the treatment subject by using the tip portion of the cover 13 against the treatment target portion. (Hereinafter referred to as “irradiation distance L3”) can be secured stably. In the active gas irradiation device 100, for example, the concentration of the active species that contributes to the therapeutic effect changes according to the irradiation distance L3. Therefore, a favorable therapeutic effect is expected by securing the irradiation distance L3 stably as described above. The irradiation distance L3 is the same as the distance at which the therapeutic effect is obtained, but is preferably shorter than that distance. The distance at which a therapeutic effect is obtained is defined from the lifetime of the active species. Further, when the tip of the cover 13 (tip of the nozzle 11) comes into contact with the treatment target site of the treatment subject, the irradiation distance L3 is 0.5 mm or more in order to reduce the impact on the treatment subject. It is preferable that In order not to be deactivated when plasma or active gas reaches the treatment target site of the treatment subject, the irradiation distance L3 is preferably equal to or less than the upper limit value defined by the lifetime of the active species.
ノズル11が、カウリング2に着脱自在に装着されている。したがって、仮にノズル11の先端部が治療対象部位などに接触し、ノズル11の先端部が汚染されたとしても、例えば、ノズル11を交換すること等により、汚染を除去することができる。 A nozzle 11 is detachably attached to the cowling 2. Therefore, even if the tip of the nozzle 11 comes into contact with the treatment target site and the like and the tip of the nozzle 11 is contaminated, the contamination can be removed by, for example, replacing the nozzle 11.
<他の実施形態>
なお、本発明は、上記の実施形態に限定するものではない。
<Other embodiments>
In addition, this invention is not limited to said embodiment.
例えば、図7から図11に示すような第1変形例から第5変形例に係る活性ガス照射装置110、120、130、140、150の各構成を採用してもよい。なお、第1変形例から第5変形例に係る活性ガス照射装置110、120、130、140、150では、前記実施形態における構成要素と同一の部分については同一の符号を付し、その説明を省略し、異なる点についてのみ説明する。 For example, you may employ | adopt each structure of the active gas irradiation apparatus 110,120,130,140,150 which concerns on a 1st modification as shown in FIGS. In addition, in the active gas irradiation apparatuses 110, 120, 130, 140, and 150 according to the first to fifth modifications, the same reference numerals are given to the same parts as the components in the embodiment, and the description thereof will be given. Omitted and only the differences will be described.
図7に示す第1変形例に係る活性ガス照射装置110のように、カバー13の先端部が、本体管1の先端部に対して突出していなくてもよい。
図8に示す第2変形例に係る活性ガス照射装置120のように、ヘッドカバー14がなくてもよい。この場合であっても、ノズル11の先端部から与える可能性が有る治療対象者に対する負担を軽減することが可能で、かつ、低コスト化を図ることができる。一方、上記実施形態に係る活性ガス照射装置100や第1変形例に係る活性ガス照射装置110のように、ヘッドカバー14がある場合には、例えば、ヘッドカバー14を絶縁性の材料によって形成することで、ヘッド部2aからの漏電の対策すること等ができる。
As in the active gas irradiation device 110 according to the first modification shown in FIG. 7, the tip of the cover 13 may not protrude from the tip of the main body tube 1.
The head cover 14 may not be provided like the active gas irradiation device 120 according to the second modification shown in FIG. Even in this case, it is possible to reduce the burden on the treatment subject who may be given from the tip of the nozzle 11 and to reduce the cost. On the other hand, when there is a head cover 14 like the active gas irradiation apparatus 100 according to the above embodiment or the active gas irradiation apparatus 110 according to the first modification, for example, the head cover 14 is formed of an insulating material. It is possible to take measures against electric leakage from the head portion 2a.
図9に示す第3変形例に係る活性ガス照射装置130のように、カバー13がなくてもよい。この変形例では、ノズル11が、本体管1のみによって形成されている。本体管1は、前記実施形態の活性ガス照射装置100におけるカバー13と同様の材料により形成されており、本体管1を形成する材料の硬さは、0度以上60度以下である。 Like the active gas irradiation apparatus 130 according to the third modification shown in FIG. 9, the cover 13 may not be provided. In this modification, the nozzle 11 is formed only by the main body tube 1. The main body tube 1 is formed of the same material as that of the cover 13 in the active gas irradiation apparatus 100 of the above-described embodiment, and the hardness of the material forming the main body tube 1 is not less than 0 degrees and not more than 60 degrees.
図10に示す第4変形例に係る活性ガス照射装置140のように、カバー13の先端部に、圧抜き部(開口部)141が形成されていてもよい。圧抜き部141は、本体管1を通してカバー13の先端部内に供給されるガス(活性ガス)を外部に逃がす。圧抜き部141は、カバー13の先端部を貫通している。図10に示す第4変形例に係る活性ガス照射装置140では、圧抜き部141は、前方に向けて開口していない。また、図11に示す第5変形例に係る活性ガス照射装置150のように、カバー13の先端部に、圧抜き部151が形成されていてもよい。圧抜き部151は、本体管1を通してカバー13の先端部内に供給されるガス(活性ガス)を外部に逃がす。圧抜き部151は、カバー13の先端部を貫通している。図11に示す第5変形例に係る活性ガス照射装置130では、圧抜き部151は、前方に向けて開口しており、カバー13の先端開口縁に切り欠き状に形成されている。
これらの場合、カバー13の先端部に圧抜き部141、151が形成されている。したがって、カバー13の先端部を治療対象部位に突き当てて使用するときに、カバー13の先端部の内圧が活性ガスにより過度に上昇するのを抑えることができる。これにより、カバー13の先端部を治療対象部位に突き当てて使用し続けることが可能になり、照射距離L3を確実に安定して確保することができる。
As in the active gas irradiation apparatus 140 according to the fourth modification shown in FIG. 10, a pressure relief part (opening part) 141 may be formed at the tip of the cover 13. The pressure release portion 141 allows gas (active gas) supplied through the main body tube 1 and into the tip portion of the cover 13 to escape to the outside. The pressure release portion 141 passes through the tip of the cover 13. In the active gas irradiation device 140 according to the fourth modification shown in FIG. 10, the pressure release portion 141 does not open toward the front. Moreover, the pressure release part 151 may be formed in the front-end | tip part of the cover 13, like the active gas irradiation apparatus 150 which concerns on the 5th modification shown in FIG. The pressure release portion 151 allows gas (active gas) supplied through the main body tube 1 and into the tip portion of the cover 13 to escape to the outside. The pressure release portion 151 passes through the tip portion of the cover 13. In the active gas irradiation device 130 according to the fifth modification shown in FIG. 11, the pressure release portion 151 is opened forward, and is formed in a cutout shape at the front opening edge of the cover 13.
In these cases, pressure release portions 141 and 151 are formed at the tip of the cover 13. Therefore, when the front end portion of the cover 13 is used while being abutted against the treatment target site, it is possible to suppress the internal pressure of the front end portion of the cover 13 from excessively rising due to the active gas. Thereby, it becomes possible to keep using the front-end | tip part of the cover 13 against a treatment object site | part, and can ensure the irradiation distance L3 reliably stably.
操作スイッチ9が、上記の実施形態と異なっていてもよい。例えば、照射器具10に操作スイッチ9を設けることに代えて、供給ユニット20に足踏みペダルを設けてもよい。この場合、足踏みペダルを操作部とし、例えば、使用者が足踏みペダルを踏んだときに、供給源70からプラズマ発生用ガスをプラズマ発生部12に供給する構成を採用すること等ができる。
報知部80や検出部15がなくてもよい。
The operation switch 9 may be different from that in the above embodiment. For example, instead of providing the operation switch 9 in the irradiation instrument 10, a foot pedal may be provided in the supply unit 20. In this case, it is possible to adopt a configuration in which the step pedal is used as the operation unit and, for example, the plasma generation gas is supplied from the supply source 70 to the plasma generation unit 12 when the user steps on the step pedal.
The notification unit 80 and the detection unit 15 may be omitted.
上述の本実施形態の内部電極4の形状は、ねじ状である。しかしながら、内部電極は、外部電極との間にプラズマを発生できれば、内部電極の形状は限定されない。
内部電極は、表面に凹凸を有してもよいし、表面に凹凸を有しなくてもよい。内部電極としては、外周面に凹凸を有する形状が好ましい。
例えば、内部電極の形状は、コイル状でもよいし、外周面に突起、穴、貫通孔が複数形成された棒形状又は筒形状でもよい。内部電極の断面形状は、特に限定されず、例えば、真円形、楕円形等の円形、四角形、六角形等の多角形を例示できる。
The shape of the internal electrode 4 of this embodiment described above is a screw shape. However, the shape of the internal electrode is not limited as long as plasma can be generated between the internal electrode and the external electrode.
The internal electrode may have irregularities on the surface or may not have irregularities on the surface. As an internal electrode, the shape which has an unevenness | corrugation in an outer peripheral surface is preferable.
For example, the shape of the internal electrode may be a coil shape, or may be a rod shape or a cylindrical shape in which a plurality of protrusions, holes, and through holes are formed on the outer peripheral surface. The cross-sectional shape of the internal electrode is not particularly limited, and examples thereof include a circle such as a perfect circle and an ellipse, and a polygon such as a quadrangle and a hexagon.
その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。 In addition, it is possible to appropriately replace the constituent elements in the embodiment with known constituent elements without departing from the spirit of the present invention, and the above-described modified examples may be appropriately combined.
1   本体管
11  ノズル
12  プラズマ発生部
13  カバー
100、110、120、130、140、150  活性ガス照射装置(プラズマ式治療装置)
DESCRIPTION OF SYMBOLS 1 Main body pipe | tube 11 Nozzle 12 Plasma generation part 13 Cover 100,110,120,130,140,150 Active gas irradiation apparatus (plasma type treatment apparatus)

Claims (7)

  1. プラズマ発生部と、
    前記プラズマ発生部にて発生したプラズマ及び前記プラズマによって生じる活性ガスの少なくとも一方を吐出するノズルと、を備え、
    前記ノズルの先端部の硬さ(JIS K 6253に規定されるタイプAデュロメータにより測定される硬さ)は、0度以上60度以下であるプラズマ式治療装置。
    A plasma generator;
    A nozzle that discharges at least one of the plasma generated in the plasma generation unit and the active gas generated by the plasma,
    The plasma type treatment apparatus in which the hardness of the tip of the nozzle (hardness measured by a type A durometer defined in JIS K 6253) is 0 degree or more and 60 degrees or less.
  2. 前記ノズルは、
    前記プラズマ及び前記活性ガスの少なくとも一方が通過する本体管と、
    前記本体管を覆うカバーと、を備え、
    前記カバーは、JIS K 6253に規定されるタイプAデュロメータにより測定される硬さが0度以上60度以下であり、かつ前記ノズルの先端部を形成している請求項1に記載のプラズマ式治療装置。
    The nozzle is
    A main body tube through which at least one of the plasma and the active gas passes;
    A cover that covers the main body tube,
    2. The plasma type treatment according to claim 1, wherein the cover has a hardness measured by a type A durometer specified in JIS K 6253 of 0 degrees or more and 60 degrees or less and forms a tip portion of the nozzle. apparatus.
  3. 前記本体管は、金属により形成され、
    前記カバーは、樹脂により形成されている請求項2に記載のプラズマ式治療装置。
    The main body tube is made of metal,
    The plasma treatment apparatus according to claim 2, wherein the cover is made of resin.
  4. 前記カバーの先端部は、前記本体管の先端部に対して突出している請求項2または3に記載のプラズマ式治療装置。 The plasma therapy apparatus according to claim 2 or 3, wherein a distal end portion of the cover protrudes with respect to a distal end portion of the main body tube.
  5. 前記カバーの先端部には、前記本体管を通して前記カバーの先端部内に供給されるガスを外部に逃がす圧抜き部が形成されている請求項4に記載のプラズマ式治療装置。 The plasma type treatment apparatus according to claim 4, wherein a pressure relief portion for releasing gas supplied into the distal end portion of the cover through the main body tube to the outside is formed at the distal end portion of the cover.
  6. 内部に前記プラズマ発生部が配置され、前記ノズルが着脱自在に装着される筐体を更に備えている請求項1から5のいずれか1項に記載のプラズマ式治療装置。 The plasma treatment apparatus according to any one of claims 1 to 5, further comprising a housing in which the plasma generation unit is disposed and the nozzle is detachably mounted.
  7. プラズマ発生部と、
    前記プラズマ発生部にて発生したプラズマ及び前記プラズマによって生じる活性ガスの少なくとも一方を吐出するノズルと、を備え、
    前記ノズルが、前記プラズマ及び前記活性ガスの少なくとも一方が通過する本体管を備えるプラズマ式治療装置において、前記本体管を覆うカバーであって、
    前記カバーは、JIS K 6253に規定されるタイプAデュロメータにより測定される硬さが0度以上60度以下であり、かつ前記ノズルの先端部を形成しているプラズマ式治療装置用のカバー。
    A plasma generator;
    A nozzle that discharges at least one of the plasma generated in the plasma generation unit and the active gas generated by the plasma,
    In the plasma treatment apparatus comprising a main body tube through which at least one of the plasma and the active gas passes, the nozzle is a cover that covers the main body tube,
    The cover is a cover for a plasma type treatment apparatus having a hardness measured by a type A durometer defined in JIS K 6253 of 0 degrees or more and 60 degrees or less and forming a tip portion of the nozzle.
PCT/JP2019/005938 2018-02-16 2019-02-18 Plasma therapy apparatus and cover for plasma therapy apparatus WO2019160151A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019572322A JP6916317B2 (en) 2018-02-16 2019-02-18 Covers for plasma treatment devices and plasma treatment devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018026052 2018-02-16
JP2018-026052 2018-11-30

Publications (1)

Publication Number Publication Date
WO2019160151A1 true WO2019160151A1 (en) 2019-08-22

Family

ID=67619004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005938 WO2019160151A1 (en) 2018-02-16 2019-02-18 Plasma therapy apparatus and cover for plasma therapy apparatus

Country Status (2)

Country Link
JP (1) JP6916317B2 (en)
WO (1) WO2019160151A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013629A1 (en) * 2021-08-02 2023-02-09 積水化学工業株式会社 Plasma treatment device, irradiation instrument, and irradiation nozzle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11123562A (en) * 1997-10-15 1999-05-11 Komatsu Ltd Outside cap for arc spot welding and welding torch using the same
JP2010147168A (en) * 2008-12-17 2010-07-01 Sekisui Chem Co Ltd Plasma processing apparatus
JP2016501099A (en) * 2012-12-17 2016-01-18 アメリカン イーグル インストラメンツ インコーポレイテッドAmerican Eagle Instruments, Inc. Discharge cleaning device and method
JP2017035281A (en) * 2015-08-10 2017-02-16 長田電機工業株式会社 Handpiece for plasma irradiation device
KR20180015055A (en) * 2016-08-02 2018-02-12 주식회사 피글 Tooth whitening apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10314189A (en) * 1997-05-16 1998-12-02 Tsukasa Odagiri Mouth washing device
US5967779A (en) * 1997-10-17 1999-10-19 Dentsply Research & Development Corp. Abrasion hand piece for use with abrasion system
JP2007167088A (en) * 2005-12-19 2007-07-05 Sunstar Inc Oral cavity washer
JP2014207956A (en) * 2013-03-29 2014-11-06 株式会社ダイゾー Ejection product for cleansing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11123562A (en) * 1997-10-15 1999-05-11 Komatsu Ltd Outside cap for arc spot welding and welding torch using the same
JP2010147168A (en) * 2008-12-17 2010-07-01 Sekisui Chem Co Ltd Plasma processing apparatus
JP2016501099A (en) * 2012-12-17 2016-01-18 アメリカン イーグル インストラメンツ インコーポレイテッドAmerican Eagle Instruments, Inc. Discharge cleaning device and method
JP2017035281A (en) * 2015-08-10 2017-02-16 長田電機工業株式会社 Handpiece for plasma irradiation device
KR20180015055A (en) * 2016-08-02 2018-02-12 주식회사 피글 Tooth whitening apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013629A1 (en) * 2021-08-02 2023-02-09 積水化学工業株式会社 Plasma treatment device, irradiation instrument, and irradiation nozzle

Also Published As

Publication number Publication date
JPWO2019160151A1 (en) 2021-02-04
JP6916317B2 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
JP6677855B2 (en) Active gas irradiation apparatus and method for treating animals other than humans
WO2019160151A1 (en) Plasma therapy apparatus and cover for plasma therapy apparatus
JP6936190B2 (en) Plasma treatment device
JP7032273B2 (en) Plasma irradiation device
WO2019093375A1 (en) Plasma-type treatment device
JP6915139B1 (en) Irradiation equipment, plasma irradiation equipment
JP2020149953A (en) Plasma device
JP6912674B2 (en) Plasma irradiation device
WO2021187513A1 (en) Holding member, irradiation instrument, and plasma device
JP7088791B2 (en) Plasma treatment device
JP2020000405A (en) Plasma therapeutic device
JP7016779B2 (en) Plasma treatment device
JPWO2019093388A1 (en) Plasma treatment device
JP2020010770A (en) Plasma irradiation device
JP6916362B1 (en) Holding member, irradiation device and plasma device
JP7000523B1 (en) Plasma equipment
WO2021215170A1 (en) Lighting instrument and plasma device
JP2020030996A (en) Plasma radiation device and nozzle washing device
JP2023142440A (en) Prevention method of erosion or ulcer, treatment method of disease, irradiation gas for erosion or ulcer prevention and generation method of irradiation gas for erosion or ulcer prevention
JP2020039495A (en) Plasma type therapy apparatus
JP2020039673A (en) Plasma type therapy apparatus
JP2020155260A (en) Plasma device
JP2020028384A (en) Plasma type therapeutic device
JP2019216954A (en) Plasma treatment device
JP2020000822A (en) Plasma therapeutic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019572322

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754887

Country of ref document: EP

Kind code of ref document: A1