WO2019160017A1 - Filter device and gas analyzing system - Google Patents

Filter device and gas analyzing system Download PDF

Info

Publication number
WO2019160017A1
WO2019160017A1 PCT/JP2019/005288 JP2019005288W WO2019160017A1 WO 2019160017 A1 WO2019160017 A1 WO 2019160017A1 JP 2019005288 W JP2019005288 W JP 2019005288W WO 2019160017 A1 WO2019160017 A1 WO 2019160017A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
valve
gas
flange
dust
Prior art date
Application number
PCT/JP2019/005288
Other languages
French (fr)
Japanese (ja)
Inventor
岡本 直樹
晃 楢崎
Original Assignee
三菱重工環境・化学エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工環境・化学エンジニアリング株式会社 filed Critical 三菱重工環境・化学エンジニアリング株式会社
Priority to SG11202006815PA priority Critical patent/SG11202006815PA/en
Priority to CN201980010508.0A priority patent/CN111656158B/en
Publication of WO2019160017A1 publication Critical patent/WO2019160017A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state

Definitions

  • the present invention relates to a filter device and a gas analysis system.
  • Exhaust gas generated in incinerators contains harmful components (dioxins, mercury, etc.). Therefore, a technique is known in which exhaust gas is directly sampled from a duct, the content of harmful substances is continuously analyzed, and combustion in the furnace is controlled according to the analysis result.
  • Patent Document 1 the mercury concentration in the exhaust gas is analyzed as upstream as possible, and when the concentration is larger than a predetermined value, the concentration is reduced by spraying activated carbon or the like, and the exhaust gas is not discharged while the mercury concentration remains high.
  • Technology is disclosed. In this technique, since the exhaust gas from the incinerator contains a lot of soot, pretreatment for removing soot is performed by a soot filter. When the filter is clogged with dust, backwashing is performed to eliminate the clogging.
  • Patent Document 2 discloses a technique for measuring the concentration of harmful substances in exhaust gas with a measuring device.
  • the technique disclosed in Patent Document 2 in view of the presence of harmful components and a large amount of dust, the sampled exhaust gas is discharged into the furnace, and two dust collection pipes with built-in filters are installed in parallel. Is also going.
  • the present invention provides a filter device and a gas analysis system that can prevent clogging of a filter at a low cost.
  • the filter device includes a gas inlet through which the dust-containing gas is introduced, a gas outlet through which the dust-containing gas introduced from the gas inlet is discharged, and a filter.
  • the control device opens the first valve and closes the second valve, and when the clogging of the filter proceeds or when a predetermined time elapses, The valve is closed and the second valve is opened.
  • the first valve when the clogging of a part of the filter proceeds by opening the first valve, the first valve is closed. Therefore, the flow of the dust-containing gas passing through a part of the filter is stopped, so that further accumulation of the soot dust into a part of the filter and the entry of the dust into a part of the surface layer of the filter can be stopped. That is, the progress of the filter clogging can be stopped. Furthermore, while continuing filtering using the other part of the filter different from the part of the filter, the dust accumulated in a part of the filter is removed by the flow of the dust-containing gas from the gas inlet to the gas outlet. can do. That is, the filter can be self-cleaned. Thereby, clogging of the filter can be prevented at low cost without adding a device such as a backwash device.
  • the filter device further includes a turbulent flow generating section that changes the gas flow of the dust-containing gas introduced from the gas inlet into a turbulent flow
  • the filter has a cylindrical shape
  • the gas inlet includes
  • the dust-containing gas is arranged to be introduced into the inner peripheral side of the filter
  • the turbulent flow generation unit is configured to change the gas flow into a spiral shape, or to generate a turbulence other than the spiral shape.
  • the filter portion is disposed on an outer peripheral side of the inner cylinder main body, an inner cylinder having a cylindrical punching metal, and a first flange provided at one end of the punching metal.
  • a first pipe having a first pipe main body, a fourth flange provided at the other end of the first pipe main body and connected to the first flange, a second pipe main body, and the second pipe Provided at one end of the pipe body and in contact with the third flange.
  • a second pipe having a fifth flange wherein the filter is a cylindrical filter cloth disposed along an inner periphery of the punching metal, and the first outlet is the
  • the outer cylinder is disposed at a position corresponding to the first chamber
  • the second discharge port is disposed at a position corresponding to the second chamber of the outer cylinder
  • the first flange and the second flange are O
  • the first flange and the fourth flange are connected via an O-ring or gasket and sandwiching the filter cloth
  • the third flange and the fifth flange are connected via an O-ring or a gasket. It may be connected via a gasket and sandwiching the filter cloth.
  • the assembly and maintenance of the filter unit are facilitated. That is, the inner cylinder is provided with a flange only at one end, and the other is not provided with a flange. Therefore, it is possible to easily assemble the filter part having the first chamber and the second chamber by inserting the punching metal into the outer cylinder with the partition part attached to the outer peripheral surface of the punching metal. Moreover, a filter cloth can be fixed by inserting
  • the filter device further includes a vibrator that vibrates the outer cylinder, and a flexible pipe disposed in the gas inlet, the gas outlet, the first outlet, and the second outlet,
  • the control device may drive the vibrator when the clogging of the filter progresses or when a predetermined time has elapsed.
  • a gas analysis system includes any one of the above filter devices, a duct through which the dust-containing gas flows, an intake port disposed in the duct, the intake port, and the A booster blower that is disposed between the gas inlet and sends the dust-containing gas from the intake port to the gas inlet, and a gas analyzer connected to the downstream side of the first valve and the second valve; A return line for returning the dust-containing gas discharged from the gas discharge port to the duct.
  • a filter device that can self-clean the filter is used. Therefore, it is not necessary to stop the gas analysis system and perform filter cleaning. Accordingly, not only gas analysis can be performed at a desired timing, but also gas analysis can be performed continuously.
  • the filtering of the part is stopped and filtering is started from another part different from the part. .
  • the filter can be self-cleaned while continuously performing the filtering. Accordingly, the filter can be prevented from being clogged at a low cost without continuously adding a device such as a backwash device, and continuous filtering can be performed.
  • the gas analysis system is a system that analyzes the content of harmful components (dioxin, mercury, etc.) contained in exhaust gas (dust-containing gas) generated in equipment such as an incinerator using a gas analyzer.
  • the exhaust gas is sampled directly from the duct through which the exhaust gas flows.
  • the gas analysis system includes a filter device that removes dust contained in the exhaust gas introduced into the gas analyzer.
  • the gas analysis system 50 of the present embodiment includes an intake port 52 disposed in a duct 51 through which the exhaust gas EG flows, and a filter device that removes soot and dust from the exhaust gas EG captured from the intake port 52. 1 and a gas analyzer 53 for analyzing the exhaust gas EG from which the dust is removed by the filter device 1.
  • the exhaust gas EG is introduced into the filter device 1 through the intake port 52. A part of the exhaust gas EG introduced into the filter device 1 is analyzed by the gas analyzer 53, and the other exhaust gas EG is returned to the duct 51.
  • the gas analysis system 50 is provided in an exhaust gas treatment device that removes harmful substances such as hydrogen chloride and sulfur oxide contained in the exhaust gas EG discharged from the incinerator. Specifically, it is provided in a duct 51 between a temperature reducing tower that lowers the exhaust gas temperature and a dust collector such as a bag filter that collects dust. By providing the gas analysis system 50 at this position, it becomes possible to analyze the gas without separately providing a device for cooling the exhaust gas EG.
  • the gas analysis system 50 is not limited to the above position, and can be attached to various locations.
  • the gas analysis system 50 of the present embodiment includes two systems of filter devices 1A and 1B, but the filter device 1 may be one system or three or more systems. By providing two or more systems of filter devices 1, the continuous operability and maintainability of the system can be improved.
  • the intake port 52 and the filter device 1 are connected via an intake line 54.
  • the intake line 54 is provided with a solenoid valve 55 and a booster blower 56.
  • the solenoid valve 55 By opening the solenoid valve 55, the exhaust gas EG can be taken into the take-in line 54.
  • the taken-in exhaust gas EG is boosted by the booster blower 56 and sent to the filter device 1.
  • the intake 52 is opened in the duct 51 toward the downstream side of the exhaust gas EG.
  • the intake line 54 is branched into two systems on the downstream side of the booster blower 56.
  • the intake line 54 branches into a first intake line 54a connected to one filter device 1A and a second intake line 54b connected to the other filter device 1B.
  • a first intake valve 45a is provided in the first intake line 54a.
  • a second intake valve 45b is provided in the second intake line 54b.
  • the filter device 1 includes a gas inlet 3 for introducing exhaust gas EG, a gas outlet 4 for discharging the exhaust gas EG introduced from the gas inlet 3 as it is, a filter 5 for filtering soot, and a filter 5 for filtering the exhaust gas EG.
  • the filter part 2 which has the discharge port (the 1st discharge port 6, the 2nd discharge port 7, and the 3rd discharge port 8) discharged through.
  • the filter device 1 includes a first valve 9 for opening and closing the first discharge port 6, a second valve 10 for opening and closing the second discharge port 7, a third valve 11 for opening and closing the third discharge port 8, and a control device 12. And an analysis line 13 that connects the first valve 9, the second valve 10, and the downstream side of the third valve 11 to the gas analyzer 53.
  • the analysis line 13 is provided in each valve, and is integrated into one on the downstream side.
  • the analysis line 13 is provided with a pump 14 having a function of sucking the exhaust gas EG flowing through the filter device 1.
  • the pump 14 may be built in a gas analyzer 53 described later.
  • the exhaust gas EG that has passed through the gas analyzer 53 is returned to the duct 51 via the second return line 58.
  • the return port at the downstream end of the second return line 58 opens toward the downstream side of the exhaust gas EG.
  • the filter device 1 includes a differential pressure gauge 15 that measures a differential pressure between the pressure of the exhaust gas EG flowing through the intake line 54 and the pressure of the exhaust gas EG flowing through the analysis line 13.
  • the differential pressure gauge 15 and the control device 12 are electrically connected. That is, the differential pressure measured by the differential pressure gauge 15 is input to the control device 12.
  • the control device 12 and the first valve 9, the second valve 10, and the third valve 11 are electrically connected.
  • the control device 12 is electrically connected to the electromagnetic valve 55, the booster blower 56, the first intake valve 45 a, the second intake valve 45 b, the pump 14, and the gas analyzer 53.
  • the control device 12 includes a first valve 9, a second valve 10, a third valve 11, an electromagnetic valve 55, a booster blower 56, a first intake valve 45 a, a second intake valve 45 b, a pump 14, and a gas analyzer 53. Is appropriately controlled to analyze the exhaust gas EG.
  • the filter device 1 is connected to the first pipe 17 connected to the intake line 54, the filter unit 2 connected to the downstream side of the first pipe 17, and the downstream side of the filter unit 2.
  • the first pipe 17 is a pipe connected to the downstream side of the intake line 54.
  • the first pipe 17 includes a tubular first pipe main body 18 and a first pipe flange 19 (fourth flange) provided at an end of the first pipe main body 18 and protruding radially outward. .
  • the first pipe 17 and the intake line 54 are connected via the flexible pipe 23.
  • the flexible tube 23 is a flexible joint, and is formed of, for example, a fluororesin.
  • the material for forming the flexible tube 23 is not limited to a fluororesin, and a material having pressure resistance, heat resistance and flexibility such as a metal hose or rubber may be employed.
  • the first piping 17 is provided with a turbulent flow generation unit 25.
  • the turbulent flow generation unit 25 is a part that changes the gas flow of the exhaust gas EG flowing in via the intake line 54 into turbulent flow.
  • the exhaust gas EG flowing in via the intake line 54 is in a state close to a laminar flow, but changes to turbulent flow by passing through the turbulent flow generation unit 25.
  • the turbulent flow generating unit 25 of the present embodiment is an orifice arranged in the first pipe 17.
  • the turbulent flow generating portion 25 includes a main body portion 26 that is a plate-like member whose main surface is orthogonal to the extending direction of the first pipe 17, and a hole portion 27 formed at the center of the main body portion 26. And have.
  • the hole 27 is circular and is formed at the center of the main body 26.
  • the shape, position, and number of the holes 27 are not limited to this, and for example, a plurality of rectangular holes may be formed.
  • turbulent flow generation unit 25 is provided on the upstream side of the filter unit 2, it is not necessary to provide the turbulent flow generation unit 25 in the first pipe 17 and may be provided independently from the first pipe 17.
  • the second pipe 20 is a pipe connected to the upstream side of the return line 57.
  • the second pipe 20 includes a second pipe main body 21 and a second pipe flange 22 (fifth flange) that is provided at an end of the second pipe main body 21 and protrudes radially outward. Similar to the flexible pipe 23, the second pipe main body 21 is formed of a flexible material.
  • the filter unit 2 includes a cylindrical inner tube 28, a cylindrical filter 5 disposed on the inner peripheral side of the inner tube 28, an outer tube 31 disposed on the outer peripheral side of the inner tube 28, and the filter unit 2. And a partition portion 35 that partitions into a plurality of chambers.
  • the inner cylinder 28 and the outer cylinder 31 are arranged coaxially.
  • the inner cylinder 28 has a cylindrical punching metal cylinder 29 and an inner cylinder flange 30 (first flange) provided at one end of the punching metal cylinder 29.
  • the punching metal cylinder 29 is formed of punching metal in which a plurality of through holes 43 are regularly formed. A flange is not provided at the other end of the punching metal cylinder 29.
  • the filter 5 is a tubular filtering member.
  • the filter 5 can be formed by a filter cloth, for example.
  • the filter cloth is formed of, for example, a woven cloth or a non-woven cloth woven with glass fibers or fibers formed of a resin such as PTFE.
  • the filter 5 is formed to be sufficiently longer than the inner cylinder 28. Both ends of the filter 5 have a shape that expands toward the end.
  • the partition part 35 is a member that partitions the cylindrical space between the inner cylinder 28 and the outer cylinder 31 in the extending direction of the filter 5.
  • the partition portion 35 is an annular member formed so as to be in airtight contact with the outer peripheral surface 28 a of the inner cylinder 28 and the inner peripheral surface 31 a of the outer cylinder 31.
  • the partition part 35 can be formed by PTFE, for example.
  • the filter part 2 of the present embodiment has two partition parts 35. As a result, the space is partitioned into a first chamber 36, a second chamber 37, and a third chamber 38.
  • the outer cylinder 31 includes a cylindrical outer cylinder main body 32, an upstream outer cylinder flange 33 (second flange) provided at one end of the outer cylinder main body 32, and the other end of the outer cylinder main body 32. And a downstream-side outer cylinder flange 34 (third flange) provided.
  • a first discharge port 6 is provided at a location corresponding to the first chamber 36 of the outer cylinder main body 32.
  • the first outlet 6 is connected to the gas analyzer 53 via the first analysis line 13a.
  • a flexible tube 40 is interposed between the first analysis line 13 a and the first discharge port 6.
  • the first valve 9 is provided on the first analysis line 13a.
  • a second discharge port 7 is provided at a location corresponding to the second chamber 37 of the outer cylinder main body 32.
  • the second outlet 7 is connected to the gas analyzer 53 via the second analysis line 13b.
  • a flexible tube 40 is interposed between the second analysis line 13 b and the second discharge port 7.
  • the second valve 10 is provided on the second analysis line 13b.
  • a third discharge port 8 is provided at a location corresponding to the third chamber 38 of the outer cylinder main body 32.
  • the third outlet 8 is connected to the gas analyzer 53 via the third analysis line 13c.
  • a flexible tube 40 is interposed between the third analysis line 13 c and the third discharge port 8.
  • a flexible pipe is interposed between the filter unit 2 and the pipe connected to the filter unit 2.
  • the flexible tube 23 is provided between the filter unit 2 and the intake line 54.
  • the 2nd piping 20 which functions as a flexible pipe is provided.
  • a flexible tube 40 is provided between the filter unit 2 and the analysis line 13.
  • a vibrator 44 that vibrates the outer cylinder 31 is attached to the outer cylinder 31.
  • the vibrator 44 for example, a device including a motor and a weight attached to a shaft of the motor can be employed.
  • the vibrator 44 is electrically connected to the control device 12 and is driven by the control device 12.
  • the vibrator 44 is attached to the outer peripheral surface of the outer cylinder main body 32. When the vibrator 44 is driven, the filter 5 can be vibrated via the outer cylinder 31.
  • the partition portion 35 is wound around the outer peripheral surface of the inner cylinder 28.
  • the partition portion 35 is disposed at a position where the first chamber 36, the second chamber 37, and the third chamber 38 have substantially the same size in the length direction of the inner cylinder 28.
  • the cylindrical filter 5 is inserted into the inner cylinder 28 from the inner cylinder flange 30 side.
  • both ends of the filter 5 are spread outward in the radial direction of the inner cylinder 28 over the entire circumference.
  • the inner cylinder flange 30 and the first piping flange 19 are connected with the filter 5 being sandwiched between the inner cylinder flange 30 and the first piping flange 19.
  • the downstream outer cylinder flange 34 of the filter unit 2 and the second pipe flange 22 of the second pipe 20 are fastened by fastening members 47 such as bolts and nuts.
  • a sealing device such as an O-ring 46 (or a gasket) is disposed between the downstream outer cylinder flange 34 and the second piping flange 22.
  • the downstream outer cylinder flange 34 and the second piping flange 22 are connected by sandwiching the filter 5 between the downstream outer cylinder flange 34 and the second piping flange 22.
  • the control device 12 first performs control to open only one of the first valve 9, the second valve 10, and the third valve 11, for example, the first valve 9. That is, control is performed to open only one of the plurality of valves.
  • the control device 12 controls to open only a valve that is different from the valve that has already been opened, for example, the second valve 10. I do. That is, when the differential pressure is greater than or equal to a predetermined value, control is performed to open only a valve that is different from the valve that is currently open. In other words, when the differential pressure becomes equal to or greater than the predetermined value and the filter 5 is considered to be clogged, control for changing the valve to be opened is performed.
  • the differential pressure is maintained while the first valve 9 is open.
  • a predetermined value for example, only the second valve 10 is opened and the first valve 9 is closed.
  • the differential pressure becomes a predetermined value or more with the second valve 10 opened, only the third valve 11 other than the first and second valves opened so far is opened.
  • the second valve 10 is changed so as to be closed.
  • the differential pressure becomes a predetermined value or more with the third valve 11 being opened, all the valves from the first valve to the third valve have been opened once. It repeats from the first valve 9. That is, only the first valve 9 is opened and the third valve 11 is closed.
  • the valves to be opened are sequentially changed in the order of the first valve, the second valve, and the third valve.
  • the order of valve opening is not limited to this, and it is possible to design appropriately such that the valve is opened in the order of the first valve, the third valve, and the second valve.
  • the timing of switching the valves is not strict, and for example, there may be a timing at which all the valves are closed.
  • valve filter apparatus 1 is provided with the three valves of the 1st valve 9, the 2nd valve 10, and the 3rd valve 11 here, the number of valves is not restricted to three, two, Or four or more may be sufficient. Even in that case, if the differential pressure in the filter in the room corresponding to the valve that is currently opened becomes equal to or greater than a predetermined value, the valve is closed and another valve is opened. Filtering continues with another room filter.
  • the gas analysis system 50 one of the two filter devices 1A and 1B is used, and the filter device 1 used periodically is changed, or a different filter device 1 is used during maintenance. To do.
  • the control method of the gas analysis system 50 is to open the electromagnetic valve 55 and to open the exhaust gas introduction step S1 for starting the booster blower 56 and to open only one of the three valves.
  • the other two valves are closed, a first valve opening step S2, a differential pressure determination step S3 for determining whether or not the differential pressure measured by the differential pressure gauge 15 is equal to or greater than a predetermined value, and a valve different from the one valve Whether or not the differential pressure measured by the differential pressure gauge 15 is greater than or equal to a predetermined value, the valve changing step (second valve opening step) S4 in which only one valve is opened and the other two valves are closed.
  • the control device 12 opens the electromagnetic valve 55 and the first intake valve 45a and starts the booster blower 56.
  • the exhaust gas EG is introduced into the filter device 1 through the intake port 52, the intake line 54, and the intake line 54a.
  • the control device 12 opens only the first valve 9 among the first valve 9, the second valve 10, and the third valve 11. The valve 11 is closed.
  • the intake line 54 the exhaust gas EG is boosted and sent to the filter device 1 by the booster blower 56, and the exhaust gas EG is sucked in by the pump 14 in the analysis line 13.
  • the exhaust gas EG flows into the first chamber 36, and at that time, dust is removed by a part of the filter 5 corresponding to the first chamber 36.
  • the exhaust gas EG from which the dust is removed is introduced into the gas analyzer 53.
  • the gas analyzer 53 analyzes the content of harmful components in the introduced exhaust gas EG.
  • the control device 12 determines whether or not the differential pressure between the pressure of the exhaust gas EG flowing through the intake line 54 measured by the differential pressure gauge 15 and the pressure of the exhaust gas EG flowing through the analysis line 13 is greater than or equal to a predetermined value. Determine whether. If the differential pressure is smaller than the predetermined value (No), the analysis is continued without changing the valve to be opened. When the differential pressure is greater than or equal to a predetermined value (Yes), that is, when clogging of the filter 5 is proceeding, the process proceeds to a valve changing step (second valve opening step) S4, and a valve different from the first valve 9 For example, only the second valve 10 is opened and the first valve 9 is closed.
  • the exhaust gas EG flows into the second chamber 37 by the booster blower 56 and the pump 14. At that time, dust is removed by a part of the filter 5 corresponding to the second chamber 37.
  • the control device 12 continues the analysis without changing the valve to be opened.
  • the process proceeds to the valve changing step (third valve opening step) S6, and only the valve different from the first valve 9 and the second valve 10, that is, the third valve 11 is opened. The second valve 10 is closed.
  • the exhaust gas EG flows into the third chamber 38 by the booster blower 56 and the pump 14. At that time, dust is removed by a part of the filter 5 corresponding to the third chamber 38.
  • the differential pressure determination step S7 as in the differential pressure determination steps S3 and S5, when the differential pressure is smaller than a predetermined value (No), the control device 12 continues the analysis without changing the valve to be opened.
  • the differential pressure is greater than or equal to a predetermined value (Yes)
  • the process proceeds to the first valve opening step S2.
  • the exhaust gas EG is discharged from the first discharge port 6 through the filter corresponding to the first chamber 36, that is, the part 5 a of the filter 5, and sent to the gas analyzer 53.
  • the second valve 10 is opened, the exhaust gas EG is discharged from the second discharge port 7 via the other part 5 b different from the part 5 a of the filter 5 and sent to the gas analyzer 53.
  • the other portion 5 b is a filter corresponding to the second chamber 37 and is a part of the filter 5.
  • the exhaust gas EG is discharged from the third outlet 8 via the other part 5 c different from the part 5 a and the other part 5 b of the filter 5 to the gas analyzer 53.
  • the other portion 5 c is a filter corresponding to the third chamber 38 and is a part of the filter 5. That is, the part of the filter 5 used for filtration is changed by switching the valve to be opened.
  • the valve to be opened is switched by the control device 12.
  • the filter corresponding to one of the first chamber 36, the second chamber 37, and the third chamber 38 in which filtering is performed (a part of the filter 5 where filtering is performed).
  • the filtering at the location can be stopped.
  • filtering can be performed with a filter corresponding to another room (a part of the filter 5).
  • the filter corresponding to the one room (a part of the filter 5) is filtered by switching a valve connected to the analysis line 13, and the suction force of the pump 14 does not reach. For this reason, the dust accumulated or clogged in the part can be easily blown off by the pressurized flow of the gas EG from the gas inlet 3 toward the gas outlet 4. That is, the filter can be self-cleaned without requiring a special device such as a backwash device.
  • the exhaust gas EG changes to turbulent flow by passing through the turbulent flow generation unit 25.
  • the turbulent exhaust gas EG flows on the inner surface of the filter 5, dust accumulated on the filter 5 and dust that has entered the surface layer of the filter 5 can be easily blown off.
  • the vibrator 44 is driven by the control device 12, and the filter 5 vibrates via the outer cylinder 31. Thereby, the dust accumulated on the filter 5 and the dust which entered the surface layer of the filter 5 can be shaken off.
  • the valve is controlled based on the differential pressure measured by the differential pressure gauge 15, but the present invention is not limited to this.
  • the valve that opens when a predetermined time has elapsed may be changed. That is, the control may be performed to switch the valves that are sequentially opened without referring to the differential pressure between the pressure of the exhaust gas EG flowing through the intake line 54 and the pressure of the exhaust gas EG flowing through the analysis line 13. According to such a configuration, the filter 5 can be self-cleaned without providing the differential pressure gauge 15.
  • the number of chambers is not restricted to this, A partition is A plurality of chambers may be formed by the portion 35. In that case, discharge ports (first discharge port 6, second discharge port 7, third discharge port 8, etc.) and valves (first valve 9, second valve 10, third valve 11, etc.) corresponding to each chamber ) Is arranged.
  • the turbulent flow generation unit 25 is an orifice.
  • the present invention is not limited to this. For example, as in the first modification shown in FIG.
  • the turbulent flow generation unit 25 may be used as a vortex flow generation mechanism to change the gas flow in a spiral shape.
  • the turbulent flow generation unit 25 ⁇ / b> B of the first modification includes a columnar member 41 formed so as to close the pipe, and a spiral groove 42 formed on the outer peripheral surface of the columnar member 41.
  • the gas flow that has passed through the turbulent flow generating portion 25B becomes a vortex flow by passing between the spiral groove 42 and the inner peripheral surface of the first pipe 17.
  • the turbulent flow generation unit 25 may be configured as in the second modification shown in FIG.
  • the turbulent flow generation unit 25C of the second modification includes a columnar member 41 that closes the first pipe 17, and a plurality of through holes 43 that penetrate between the one surface 41a and the other surface 41b of the columnar member 41. Have.
  • Each through-hole 43 is formed to be inclined with respect to the axial direction of the pipe so that the gas flow becomes a vortex.
  • the filtering of the part is stopped and filtering is started from another part different from the part. .
  • the filter can be self-cleaned while continuously performing the filtering. Accordingly, the filter can be prevented from being clogged at a low cost without continuously adding a device such as a backwash device, and continuous filtering can be performed.

Abstract

A filter device (1) comprises: a filter unit (2) provided with a gas introduction opening (3) into which dust-containing gas (EG) is introduced, a gas discharge opening (4) for discharging the dust-containing gas (EG) without modification, a first discharge opening (6) for discharging the dust-containing gas (EG) through a portion of a filter (5), and a second discharge opening (7) for discharging the dust-containing gas (EG) through another portion of the filter (5); and a control device (12) which controls opening and closing of a first valve (9) for opening and closing the first discharge opening (6), and a second valve (10) for opening and closing the second discharge opening (7). The control device (12) closes the first valve (9) and opens the second valve (10) in a predetermined case.

Description

フィルタ装置及びガス分析システムFilter device and gas analysis system
 本発明は、フィルタ装置及びガス分析システムに関する。
 本願は、2018年2月15日に日本に出願された特願2018-025180号について優先権を主張し、その内容をここに援用する。
The present invention relates to a filter device and a gas analysis system.
This application claims priority on Japanese Patent Application No. 2018-025180 filed in Japan on February 15, 2018, the contents of which are incorporated herein by reference.
 焼却炉等で発生する排ガスは有害成分(ダイオキシン、水銀等)を含有している。そのため、排ガスをダクトから直接的にサンプリングして、有害物質の含有量を連続的に分析し、分析結果に応じて炉内燃焼等を制御する技術が知られている。 Exhaust gas generated in incinerators contains harmful components (dioxins, mercury, etc.). Therefore, a technique is known in which exhaust gas is directly sampled from a duct, the content of harmful substances is continuously analyzed, and combustion in the furnace is controlled according to the analysis result.
 特許文献1には、排ガス中の水銀濃度をできるだけ上流で分析し、濃度が所定値より大きい場合に活性炭を噴霧する等して濃度低減を図り、水銀濃度が高いままで排ガスを排出しないための技術が開示されている。
 この技術においては、焼却炉の排ガスは煤塵が多く含まれるため、煤塵フィルタで煤塵を除去する前処理を行っている。そして、煤塵でフィルタが目詰まりした場合には、逆洗を行って目詰まりを解消させている。
In Patent Document 1, the mercury concentration in the exhaust gas is analyzed as upstream as possible, and when the concentration is larger than a predetermined value, the concentration is reduced by spraying activated carbon or the like, and the exhaust gas is not discharged while the mercury concentration remains high. Technology is disclosed.
In this technique, since the exhaust gas from the incinerator contains a lot of soot, pretreatment for removing soot is performed by a soot filter. When the filter is clogged with dust, backwashing is performed to eliminate the clogging.
 また、特許文献2には、排ガス中の有害物質の濃度を測定装置で計測する技術が開示されている。特許文献2に開示の技術では、有害成分があることや煤塵が多いことに鑑み、サンプリングした排ガスを炉内へ排出するとともに、フィルタ内蔵の集塵管路を並列に2系統設置し、逆洗も行っている。 Patent Document 2 discloses a technique for measuring the concentration of harmful substances in exhaust gas with a measuring device. In the technique disclosed in Patent Document 2, in view of the presence of harmful components and a large amount of dust, the sampled exhaust gas is discharged into the furnace, and two dust collection pipes with built-in filters are installed in parallel. Is also going.
特開2017-205761号公報JP 2017-205761 A 特開2003-121319号公報JP 2003-121319 A
 ところで、上記2つの技術では、長時間の分析を行うには、フィルタの目詰まりを解消するための逆洗装置が必要である。その結果、イニシャルコストやメンテナンスコストが大きくなるという課題がある。 By the way, in the above two techniques, in order to perform analysis for a long time, a backwash device for eliminating clogging of the filter is necessary. As a result, there is a problem that initial cost and maintenance cost increase.
 この発明は、低コストでフィルタの目詰まりを防止することができるフィルタ装置及びガス分析システムを提供する。 The present invention provides a filter device and a gas analysis system that can prevent clogging of a filter at a low cost.
 本発明の第一の態様によれば、フィルタ装置は、煤塵含有ガスが導入されるガス導入口と、前記ガス導入口から導入された前記煤塵含有ガスをそのまま排出するガス排出口と、フィルタと、前記煤塵含有ガスを前記フィルタの一部を介して排出する第一排出口と、前記煤塵含有ガスを前記フィルタの一部とは異なる前記フィルタの他部を介して排出する第二排出口と、を備えたフィルタ部と、前記第一排出口を開閉する第一弁と、前記第二排出口を開閉する第二弁と、前記第一弁及び前記第二弁を開閉制御する制御装置と、を有し、前記制御装置は、前記第一弁を開弁し且つ前記第二弁を閉弁し、前記フィルタの目詰まりが進行した場合、または所定時間が経過した場合に、前記第一弁を閉弁し且つ前記第二弁を開弁する。 According to the first aspect of the present invention, the filter device includes a gas inlet through which the dust-containing gas is introduced, a gas outlet through which the dust-containing gas introduced from the gas inlet is discharged, and a filter. A first discharge port for discharging the dust-containing gas through a part of the filter; and a second discharge port for discharging the dust-containing gas through another part of the filter different from a part of the filter; A first valve that opens and closes the first outlet, a second valve that opens and closes the second outlet, and a control device that controls the opening and closing of the first valve and the second valve. The control device opens the first valve and closes the second valve, and when the clogging of the filter proceeds or when a predetermined time elapses, The valve is closed and the second valve is opened.
 このような構成によれば、第一弁を開弁することでフィルタの一部の目詰まりが進行した場合に、第一弁が閉弁される。そのため、当該フィルタの一部を通過する煤塵含有ガスの流れが止まり、当該フィルタの一部へのそれ以上の煤塵の堆積や当該フィルタの一部の表層への煤塵の入り込みを止めることができる。すなわち、フィルタの目詰まりの進行を止めることができる。さらに、上記フィルタの一部とは異なるフィルタの他部を用いたフィルタリングを継続しながら、ガス導入口からガス排出口に向かう煤塵含有ガスの流れによって、当該フィルタの一部に堆積した煤塵を除去することができる。すなわち、フィルタのセルフクリーニングが可能となる。
 これにより、逆洗装置などの装置を付加することなく、低コストでフィルタの目詰まりを防止することができる。
According to such a configuration, when the clogging of a part of the filter proceeds by opening the first valve, the first valve is closed. Therefore, the flow of the dust-containing gas passing through a part of the filter is stopped, so that further accumulation of the soot dust into a part of the filter and the entry of the dust into a part of the surface layer of the filter can be stopped. That is, the progress of the filter clogging can be stopped. Furthermore, while continuing filtering using the other part of the filter different from the part of the filter, the dust accumulated in a part of the filter is removed by the flow of the dust-containing gas from the gas inlet to the gas outlet. can do. That is, the filter can be self-cleaned.
Thereby, clogging of the filter can be prevented at low cost without adding a device such as a backwash device.
 上記フィルタ装置は、前記ガス導入口から導入される前記煤塵含有ガスのガス流を乱流に変化させる乱流発生部をさらに有し、前記フィルタは、筒状をなし、前記ガス導入口は、前記フィルタの内周側に前記煤塵含有ガスを導入するように配置され、前記乱流発生部は、前記ガス流を螺旋状に変化させる渦流発生機構、又は前記ガス流を前記螺旋状以外の乱流に変化させるオリフィスを有してよい。 The filter device further includes a turbulent flow generating section that changes the gas flow of the dust-containing gas introduced from the gas inlet into a turbulent flow, the filter has a cylindrical shape, and the gas inlet includes The dust-containing gas is arranged to be introduced into the inner peripheral side of the filter, and the turbulent flow generation unit is configured to change the gas flow into a spiral shape, or to generate a turbulence other than the spiral shape. There may be an orifice that changes the flow.
 このような構成によれば、ガス流を螺旋状の乱流に変化させるか、又は、螺旋状以外の乱流に変化させることによって、フィルタに堆積した煤塵やフィルタの表層に入りこんだ煤塵にガス流が効果的に当たる。その結果、フィルタに堆積等した煤塵を吹き飛ばすことができる。すなわち、フィルタのセルフクリーニングをより効果的に行うことができる。 According to such a configuration, by changing the gas flow to a spiral turbulent flow, or changing to a turbulent flow other than a spiral, gas is applied to the dust accumulated on the filter or the dust that has entered the surface of the filter. The flow hits effectively. As a result, the dust accumulated on the filter can be blown off. That is, the filter can be more effectively self-cleaned.
 上記フィルタ装置において、前記フィルタ部は、筒状のパンチングメタルと、前記パンチングメタルの一方の端部に設けられた第一フランジと、を有する内筒と、前記内筒本体の外周側に配置された筒状の外筒本体と、前記外筒本体の一方の端部に設けられて前記第一フランジと接続される第二フランジと、前記外筒本体の他方の端部に設けられて前記ガス排出口をなす第三フランジと、を有する外筒と、前記パンチングメタルの外周面と前記外筒の内周面との間を気密に仕切って第一室及び第二室を形成する仕切部と、第一配管本体と、前記第一配管本体の他方の端部に設けられて前記第一フランジと接続される第四フランジと、を有する第一配管と、第二配管本体と、前記第二配管本体の一方の端部に設けられて前記第三フランジと接続される第五フランジと、を有する第二配管と、を有し、前記フィルタは、前記パンチングメタルの内周に沿って配置された筒状の濾布であり、前記第一排出口は、前記外筒の前記第一室に対応する位置に配置され、前記第二排出口は、前記外筒の前記第二室に対応する位置に配置され、前記第一フランジと前記第二フランジは、Oリングまたはガスケットを介して接続され、前記第一フランジと前記第四フランジは、Oリングまたはガスケットを介し且つ前記濾布を挟み込んで接続され、前記第三フランジと前記第五フランジは、Oリングまたはガスケットを介し且つ前記濾布を挟み込んで接続されてよい。 In the filter device, the filter portion is disposed on an outer peripheral side of the inner cylinder main body, an inner cylinder having a cylindrical punching metal, and a first flange provided at one end of the punching metal. A cylindrical outer cylinder main body, a second flange provided at one end of the outer cylinder main body and connected to the first flange, and a gas provided at the other end of the outer cylinder main body An outer cylinder having a third flange that forms a discharge port; and a partition portion that hermetically partitions between an outer peripheral surface of the punching metal and an inner peripheral surface of the outer cylinder to form a first chamber and a second chamber; A first pipe having a first pipe main body, a fourth flange provided at the other end of the first pipe main body and connected to the first flange, a second pipe main body, and the second pipe Provided at one end of the pipe body and in contact with the third flange. A second pipe having a fifth flange, wherein the filter is a cylindrical filter cloth disposed along an inner periphery of the punching metal, and the first outlet is the The outer cylinder is disposed at a position corresponding to the first chamber, the second discharge port is disposed at a position corresponding to the second chamber of the outer cylinder, and the first flange and the second flange are O The first flange and the fourth flange are connected via an O-ring or gasket and sandwiching the filter cloth, and the third flange and the fifth flange are connected via an O-ring or a gasket. It may be connected via a gasket and sandwiching the filter cloth.
 このような構成によれば、フィルタ部の組み立て、及びメンテナンスが容易となる。すなわち、内筒は、一方の端部にのみフランジを備え、他方にはフランジを備えていない。そのため、パンチングメタルの外周面に仕切部を取り付けた状態でパンチングメタルを外筒に挿入し、第一室及び第二室を有するフィルタ部を容易に組み立てることができる。
 また、フランジ間に挟み込むことによって、濾布を固定することができる。
According to such a configuration, the assembly and maintenance of the filter unit are facilitated. That is, the inner cylinder is provided with a flange only at one end, and the other is not provided with a flange. Therefore, it is possible to easily assemble the filter part having the first chamber and the second chamber by inserting the punching metal into the outer cylinder with the partition part attached to the outer peripheral surface of the punching metal.
Moreover, a filter cloth can be fixed by inserting | pinching between flanges.
 上記フィルタ装置において、前記外筒を振動させるバイブレータと、前記ガス導入口、前記ガス排出口、前記第一排出口、及び前記第二排出口に配置されたフレキシブル管と、をさらに有し、前記制御装置は、フィルタの目詰まりが進行した場合、または所定時間が経過した場合に、前記バイブレータを駆動してよい。
 この構成により、フィルタ装置に接続された他の配管や機器へのバイブレータの振動の伝達を回避または低減しつつ、フィルタ装置のフィルタを振動させてフィルタに堆積した煤塵等を振り落すことができる。そのため、フィルタのセルフクリーニングをさらに効果的に行うことができる。
The filter device further includes a vibrator that vibrates the outer cylinder, and a flexible pipe disposed in the gas inlet, the gas outlet, the first outlet, and the second outlet, The control device may drive the vibrator when the clogging of the filter progresses or when a predetermined time has elapsed.
With this configuration, dust or the like accumulated on the filter can be shaken off by vibrating the filter of the filter device while avoiding or reducing transmission of the vibration of the vibrator to other pipes or devices connected to the filter device. Therefore, the self-cleaning of the filter can be performed more effectively.
 本発明の第二の態様によれば、ガス分析システムは、上記いずれかのフィルタ装置と、前記煤塵含有ガスが流れるダクトと、前記ダクトに配置された取込口と、前記取込口と前記ガス導入口との間に配置され、前記取込口から前記ガス導入口へ前記煤塵含有ガスを送り込む昇圧ブロアと、前記第一弁及び前記第二弁の下流側に接続されたガス分析計と、前記ガス排出口から排出された前記煤塵含有ガスを前記ダクトへ返送する返送ラインと、を有する。
 このようなガス分析システムによれば、フィルタをセルフクリーニングできるフィルタ装置が使用される。そのため、ガス分析システムを停止してフィルタ清掃を行う必要がない。従って、所望のタイミングでガス分析できるのみならず、連続的にガス分析を行うことができる。
According to a second aspect of the present invention, a gas analysis system includes any one of the above filter devices, a duct through which the dust-containing gas flows, an intake port disposed in the duct, the intake port, and the A booster blower that is disposed between the gas inlet and sends the dust-containing gas from the intake port to the gas inlet, and a gas analyzer connected to the downstream side of the first valve and the second valve; A return line for returning the dust-containing gas discharged from the gas discharge port to the duct.
According to such a gas analysis system, a filter device that can self-clean the filter is used. Therefore, it is not necessary to stop the gas analysis system and perform filter cleaning. Accordingly, not only gas analysis can be performed at a desired timing, but also gas analysis can be performed continuously.
 本発明によれば、フィルタリングしているフィルタの一部に煤塵が堆積等して目詰まりが進行した場合に、当該一部のフィルタリングを止めて当該一部と異なる他部からフィルタリングが開始される。その結果、当該一部へのそれ以上の煤塵の堆積等を止めるとともに、ガス導入口からガス排出口に向かう煤塵含有ガスの流れによって当該一部に堆積した煤塵等を除去することができる。すなわち、フィルタリングを継続的に行いながら、フィルタのセルフクリーニングが可能となる。
 これにより、逆洗装置などの装置を付加することなく、低コストでフィルタの目詰まりを防止し、継続して連続的にフィルタリングを行うことができる。
According to the present invention, when clogging progresses due to accumulation of dust or the like on a part of the filter being filtered, the filtering of the part is stopped and filtering is started from another part different from the part. . As a result, it is possible to stop further accumulation of dust and the like on the part, and to remove dust and the like accumulated on the part by the flow of the dust-containing gas from the gas inlet to the gas outlet. That is, the filter can be self-cleaned while continuously performing the filtering.
Accordingly, the filter can be prevented from being clogged at a low cost without continuously adding a device such as a backwash device, and continuous filtering can be performed.
本発明の実施形態のガス分析システムの概略図である。It is the schematic of the gas analysis system of embodiment of this invention. 本発明の実施形態のフィルタ装置の断面図である。It is sectional drawing of the filter apparatus of embodiment of this invention. 本発明の実施形態の乱流発生部の斜視図である。It is a perspective view of the turbulent flow generation part of the embodiment of the present invention. 本発明の実施形態のフィルタ装置の組み立て方法を説明する図であって、内筒の外周面に仕切部を巻き付ける様子を示す図である。It is a figure explaining the assembly method of the filter apparatus of embodiment of this invention, Comprising: It is a figure which shows a mode that a partition part is wound around the outer peripheral surface of an inner cylinder. 本発明の実施形態のフィルタ装置の組み立て方法を説明する図であって、フィルタが挿入された内筒を外筒の内周側に挿入する様子を示す図である。It is a figure explaining the assembly method of the filter apparatus of embodiment of this invention, Comprising: It is a figure which shows a mode that the inner cylinder in which the filter was inserted is inserted in the inner peripheral side of an outer cylinder. 本発明の実施形態のガス分析システムの制御方法を説明するフローチャートである。It is a flowchart explaining the control method of the gas analysis system of embodiment of this invention. 本発明の実施形態の第一の変形例の乱流発生部の斜視図である。It is a perspective view of the turbulent flow generation part of the 1st modification of an embodiment of the present invention. 本発明の実施形態の第二の変形例の乱流発生部の斜視図である。It is a perspective view of the turbulent flow generation part of the 2nd modification of an embodiment of the present invention.
 以下、本発明の実施形態のフィルタ装置、及びフィルタ装置を備えるガス分析システムについて図面を参照して詳細に説明する。
 ガス分析システムは、例えば、焼却炉などの設備で発生する排ガス(煤塵含有ガス)に含まれる有害成分(ダイオキシン、水銀など)の含有量を、ガス分析計を用いて分析するシステムである。排ガスは、排ガスが流れるダクトから直接サンプリングされる。ガス分析システムは、ガス分析計に導入される排ガスに含まれる煤塵を除去するフィルタ装置を備えている。
Hereinafter, a filter device according to an embodiment of the present invention and a gas analysis system including the filter device will be described in detail with reference to the drawings.
The gas analysis system is a system that analyzes the content of harmful components (dioxin, mercury, etc.) contained in exhaust gas (dust-containing gas) generated in equipment such as an incinerator using a gas analyzer. The exhaust gas is sampled directly from the duct through which the exhaust gas flows. The gas analysis system includes a filter device that removes dust contained in the exhaust gas introduced into the gas analyzer.
 図1に示すように、本実施形態のガス分析システム50は、排ガスEGが流れるダクト51に配置された取込口52と、取込口52から取り込まれた排ガスEGから煤塵を除去するフィルタ装置1と、フィルタ装置1にて煤塵が取り除かれた排ガスEGを分析するガス分析計53と、を備えている。
 排ガスEGは、取込口52を介してフィルタ装置1に導入される。フィルタ装置1に導入された排ガスEGの一部は、ガス分析計53によって分析され、それ以外の排ガスEGは、ダクト51に戻される。
As shown in FIG. 1, the gas analysis system 50 of the present embodiment includes an intake port 52 disposed in a duct 51 through which the exhaust gas EG flows, and a filter device that removes soot and dust from the exhaust gas EG captured from the intake port 52. 1 and a gas analyzer 53 for analyzing the exhaust gas EG from which the dust is removed by the filter device 1.
The exhaust gas EG is introduced into the filter device 1 through the intake port 52. A part of the exhaust gas EG introduced into the filter device 1 is analyzed by the gas analyzer 53, and the other exhaust gas EG is returned to the duct 51.
 ガス分析システム50は、焼却炉から排出される排ガスEGに含まれる塩化水素や硫黄酸化物などの有害物質を除去する排ガス処理装置に設けられている。具体的には、排ガス温度を低下させる減温塔と、煤塵を集塵するバグフィルタなどの集塵装置との間のダクト51に設けられている。ガス分析システム50をこの位置に設けることによって、排ガスEGを冷却する装置を別途設けることなくガスの分析が可能となる。ガス分析システム50は上記位置に限らず、様々な箇所に取り付けることができる。 The gas analysis system 50 is provided in an exhaust gas treatment device that removes harmful substances such as hydrogen chloride and sulfur oxide contained in the exhaust gas EG discharged from the incinerator. Specifically, it is provided in a duct 51 between a temperature reducing tower that lowers the exhaust gas temperature and a dust collector such as a bag filter that collects dust. By providing the gas analysis system 50 at this position, it becomes possible to analyze the gas without separately providing a device for cooling the exhaust gas EG. The gas analysis system 50 is not limited to the above position, and can be attached to various locations.
 本実施形態のガス分析システム50は、2系統のフィルタ装置1A、1Bを有しているが、フィルタ装置1は1系統でもよいし、3系統以上でもよい。2系統以上のフィルタ装置1を設けることによって、システムの連続運転性とメンテナンス性を向上させることができる。 The gas analysis system 50 of the present embodiment includes two systems of filter devices 1A and 1B, but the filter device 1 may be one system or three or more systems. By providing two or more systems of filter devices 1, the continuous operability and maintainability of the system can be improved.
 取込口52とフィルタ装置1とは、取込ライン54を介して接続されている。取込ライン54には、電磁弁55と昇圧ブロア56が設けられている。電磁弁55を開弁することによって、排ガスEGを取込ライン54に取り込むことができる。取り込まれた排ガスEGは昇圧ブロア56によって昇圧されて、フィルタ装置1に送り込まれる。 The intake port 52 and the filter device 1 are connected via an intake line 54. The intake line 54 is provided with a solenoid valve 55 and a booster blower 56. By opening the solenoid valve 55, the exhaust gas EG can be taken into the take-in line 54. The taken-in exhaust gas EG is boosted by the booster blower 56 and sent to the filter device 1.
 取込口52は、ダクト51内で、排ガスEGの下流側を向いて開口している。取込ライン54は、昇圧ブロア56の下流側で2系統に分岐している。取込ライン54は、一方のフィルタ装置1Aと接続される第一取込ライン54aと、他方のフィルタ装置1Bと接続される第二取込ライン54bとに分岐している。 The intake 52 is opened in the duct 51 toward the downstream side of the exhaust gas EG. The intake line 54 is branched into two systems on the downstream side of the booster blower 56. The intake line 54 branches into a first intake line 54a connected to one filter device 1A and a second intake line 54b connected to the other filter device 1B.
 第一取込ライン54aには、第一取込弁45aが設けられている。第二取込ライン54bには、第二取込弁45bが設けられている。第一取込弁45aと第二取込弁45bを操作することで、排ガスEGが導入されるフィルタ装置1を選択することができる。
 フィルタ装置1の下流側とダクト51とは、返送ライン57によって接続されている。返送ライン57の下流側の端部の返送口59は、排ガスEGが流れ込まないよう、排ガスEGの下流側を向いて開口している。
A first intake valve 45a is provided in the first intake line 54a. A second intake valve 45b is provided in the second intake line 54b. By operating the first intake valve 45a and the second intake valve 45b, the filter device 1 into which the exhaust gas EG is introduced can be selected.
The downstream side of the filter device 1 and the duct 51 are connected by a return line 57. The return port 59 at the downstream end of the return line 57 opens toward the downstream side of the exhaust gas EG so that the exhaust gas EG does not flow in.
 フィルタ装置1は、排ガスEGを導入するガス導入口3と、ガス導入口3から導入された排ガスEGをそのまま排出するガス排出口4と、煤塵を濾過するフィルタ5と、排ガスEGをフィルタ5を介して排出する排出口(第一排出口6、第二排出口7、及び第三排出口8)と、を有するフィルタ部2を有している。 The filter device 1 includes a gas inlet 3 for introducing exhaust gas EG, a gas outlet 4 for discharging the exhaust gas EG introduced from the gas inlet 3 as it is, a filter 5 for filtering soot, and a filter 5 for filtering the exhaust gas EG. The filter part 2 which has the discharge port (the 1st discharge port 6, the 2nd discharge port 7, and the 3rd discharge port 8) discharged through.
 フィルタ装置1は、第一排出口6を開閉する第一弁9と、第二排出口7を開閉する第二弁10と、第三排出口8を開閉する第三弁11と、制御装置12と、第一弁9、第二弁10、及び第三弁11の下流側とガス分析計53とを接続する分析ライン13と、を有している。分析ライン13は、各々の弁に設けられており、下流側で1つにまとめられている。 The filter device 1 includes a first valve 9 for opening and closing the first discharge port 6, a second valve 10 for opening and closing the second discharge port 7, a third valve 11 for opening and closing the third discharge port 8, and a control device 12. And an analysis line 13 that connects the first valve 9, the second valve 10, and the downstream side of the third valve 11 to the gas analyzer 53. The analysis line 13 is provided in each valve, and is integrated into one on the downstream side.
 分析ライン13には、フィルタ装置1を流れる排ガスEGを吸引する機能を有するポンプ14が設けられている。ポンプ14は、後述のガス分析計53に内蔵されてもよい。ガス分析計53を経た排ガスEGは、第二返送ライン58を介してダクト51に返送される。第二返送ライン58の下流側の端部の返送口は、排ガスEGの下流側を向いて開口している。 The analysis line 13 is provided with a pump 14 having a function of sucking the exhaust gas EG flowing through the filter device 1. The pump 14 may be built in a gas analyzer 53 described later. The exhaust gas EG that has passed through the gas analyzer 53 is returned to the duct 51 via the second return line 58. The return port at the downstream end of the second return line 58 opens toward the downstream side of the exhaust gas EG.
 フィルタ装置1は、取込ライン54を流れる排ガスEGの圧力と、分析ライン13を流れる排ガスEGの圧力との差圧を計測する差圧計15を有している。差圧計15と制御装置12とは、電気的に接続されている。即ち、差圧計15で計測された差圧は、制御装置12に入力される。
 制御装置12と、第一弁9、第二弁10及び第三弁11とは、電気的に接続されている。また、制御装置12は、電磁弁55、昇圧ブロア56、第一取込弁45a、第二取込弁45b、ポンプ14、及びガス分析計53と電気的に接続されている。制御装置12は、第一弁9、第二弁10、第三弁11、電磁弁55、昇圧ブロア56、第一取込弁45a、第二取込弁45b、ポンプ14、及びガス分析計53を適宜制御して、排ガスEGの分析を実施する。
The filter device 1 includes a differential pressure gauge 15 that measures a differential pressure between the pressure of the exhaust gas EG flowing through the intake line 54 and the pressure of the exhaust gas EG flowing through the analysis line 13. The differential pressure gauge 15 and the control device 12 are electrically connected. That is, the differential pressure measured by the differential pressure gauge 15 is input to the control device 12.
The control device 12 and the first valve 9, the second valve 10, and the third valve 11 are electrically connected. The control device 12 is electrically connected to the electromagnetic valve 55, the booster blower 56, the first intake valve 45 a, the second intake valve 45 b, the pump 14, and the gas analyzer 53. The control device 12 includes a first valve 9, a second valve 10, a third valve 11, an electromagnetic valve 55, a booster blower 56, a first intake valve 45 a, a second intake valve 45 b, a pump 14, and a gas analyzer 53. Is appropriately controlled to analyze the exhaust gas EG.
 次に、フィルタ装置1の詳細構造について説明する。
 図2に示すように、フィルタ装置1は、取込ライン54に接続された第一配管17と、第一配管17の下流側に接続されたフィルタ部2と、フィルタ部2の下流側に接続された第二配管20と、を有している。
 第一配管17は、取込ライン54の下流側に接続されている配管である。第一配管17は、管状の第一配管本体18と、第一配管本体18の端部に設けられて径方向外側に突出する第一配管フランジ19(第四フランジ)と、を有している。
Next, the detailed structure of the filter device 1 will be described.
As shown in FIG. 2, the filter device 1 is connected to the first pipe 17 connected to the intake line 54, the filter unit 2 connected to the downstream side of the first pipe 17, and the downstream side of the filter unit 2. Second piping 20.
The first pipe 17 is a pipe connected to the downstream side of the intake line 54. The first pipe 17 includes a tubular first pipe main body 18 and a first pipe flange 19 (fourth flange) provided at an end of the first pipe main body 18 and protruding radially outward. .
 第一配管17と取込ライン54とは、フレキシブル管23を介して接続されている。フレキシブル管23は、可撓性を有する継手であって、例えば、フッ素樹脂によって形成されている。フレキシブル管23を形成する材料としては、フッ素樹脂に限ることはなく、メタルホース、ゴムなどで耐圧性、耐熱性かつ柔軟性を有する材料の採用も可能である。 The first pipe 17 and the intake line 54 are connected via the flexible pipe 23. The flexible tube 23 is a flexible joint, and is formed of, for example, a fluororesin. The material for forming the flexible tube 23 is not limited to a fluororesin, and a material having pressure resistance, heat resistance and flexibility such as a metal hose or rubber may be employed.
 第一配管17には、乱流発生部25が設けられている。乱流発生部25は、取込ライン54を介して流入する排ガスEGのガス流を乱流に変化させる部位である。取込ライン54を介して流入する排ガスEGは、層流に近い状態であるが、乱流発生部25を通過することによって乱流に変化する。 The first piping 17 is provided with a turbulent flow generation unit 25. The turbulent flow generation unit 25 is a part that changes the gas flow of the exhaust gas EG flowing in via the intake line 54 into turbulent flow. The exhaust gas EG flowing in via the intake line 54 is in a state close to a laminar flow, but changes to turbulent flow by passing through the turbulent flow generation unit 25.
 本実施形態の乱流発生部25は、第一配管17に配置されたオリフィスである。図3に示すように、乱流発生部25は、主面が第一配管17の延在方向と直交する板状部材である本体部26と、本体部26の中心に形成された孔部27と、を有している。孔部27は、円形であり、本体部26の中心に形成されている。孔部27の形状、位置、及び数はこれに限ることはなく、例えば、矩形状の孔を複数形成してもよい。 The turbulent flow generating unit 25 of the present embodiment is an orifice arranged in the first pipe 17. As shown in FIG. 3, the turbulent flow generating portion 25 includes a main body portion 26 that is a plate-like member whose main surface is orthogonal to the extending direction of the first pipe 17, and a hole portion 27 formed at the center of the main body portion 26. And have. The hole 27 is circular and is formed at the center of the main body 26. The shape, position, and number of the holes 27 are not limited to this, and for example, a plurality of rectangular holes may be formed.
 また、乱流発生部25は、フィルタ部2の上流側に設けられていれば、第一配管17に設ける必要はなく、第一配管17から独立して設けてもよい。 Further, if the turbulent flow generation unit 25 is provided on the upstream side of the filter unit 2, it is not necessary to provide the turbulent flow generation unit 25 in the first pipe 17 and may be provided independently from the first pipe 17.
 第二配管20は、返送ライン57の上流側に接続されている配管である。第二配管20は、第二配管本体21と、第二配管本体21の端部に設けられて径方向外側に突出する第二配管フランジ22(第五フランジ)と、を有している。第二配管本体21は、フレキシブル管23と同様に、可撓性を有する材料によって形成されている。 The second pipe 20 is a pipe connected to the upstream side of the return line 57. The second pipe 20 includes a second pipe main body 21 and a second pipe flange 22 (fifth flange) that is provided at an end of the second pipe main body 21 and protrudes radially outward. Similar to the flexible pipe 23, the second pipe main body 21 is formed of a flexible material.
 フィルタ部2は、円筒形状の内筒28と、内筒28の内周側に配置された円筒状のフィルタ5と、内筒28の外周側に配置された外筒31と、フィルタ部2を複数の室に仕切る仕切部35と、を有している。内筒28と外筒31とは、同軸状に配置されている。 The filter unit 2 includes a cylindrical inner tube 28, a cylindrical filter 5 disposed on the inner peripheral side of the inner tube 28, an outer tube 31 disposed on the outer peripheral side of the inner tube 28, and the filter unit 2. And a partition portion 35 that partitions into a plurality of chambers. The inner cylinder 28 and the outer cylinder 31 are arranged coaxially.
 内筒28は、筒状のパンチングメタル筒29と、パンチングメタル筒29の一方の端部に設けられた内筒フランジ30(第一フランジ)と、を有している。パンチングメタル筒29は、複数の貫通孔43が規則的に形成されているパンチングメタルによって形成されている。パンチングメタル筒29の他方の端部には、フランジは設けられていない。 The inner cylinder 28 has a cylindrical punching metal cylinder 29 and an inner cylinder flange 30 (first flange) provided at one end of the punching metal cylinder 29. The punching metal cylinder 29 is formed of punching metal in which a plurality of through holes 43 are regularly formed. A flange is not provided at the other end of the punching metal cylinder 29.
 フィルタ5は、筒状をなしている濾過部材である。フィルタ5は、例えば、濾布によって形成することができる。濾布は、例えば、ガラス繊維や、PTFEなどの樹脂によって形成された繊維を織り込んだ織布や、不織布によって形成されている。
 フィルタ5は、内筒28よりも十分長くなるように形成されている。フィルタ5の両端部は、端部に向かうにしたがって広がる形状をなしている。
The filter 5 is a tubular filtering member. The filter 5 can be formed by a filter cloth, for example. The filter cloth is formed of, for example, a woven cloth or a non-woven cloth woven with glass fibers or fibers formed of a resin such as PTFE.
The filter 5 is formed to be sufficiently longer than the inner cylinder 28. Both ends of the filter 5 have a shape that expands toward the end.
 仕切部35は、内筒28と外筒31との間の円筒形状の空間をフィルタ5の延在方向で仕切る部材である。仕切部35は、内筒28の外周面28aと外筒31の内周面31aとに気密に接触するように形成された環状の部材である。仕切部35は、例えば、PTFEによって形成することができる。
 本実施形態のフィルタ部2は、2つの仕切部35を有している。これにより、空間は、第一室36と、第二室37と、第三室38とに仕切られる。
The partition part 35 is a member that partitions the cylindrical space between the inner cylinder 28 and the outer cylinder 31 in the extending direction of the filter 5. The partition portion 35 is an annular member formed so as to be in airtight contact with the outer peripheral surface 28 a of the inner cylinder 28 and the inner peripheral surface 31 a of the outer cylinder 31. The partition part 35 can be formed by PTFE, for example.
The filter part 2 of the present embodiment has two partition parts 35. As a result, the space is partitioned into a first chamber 36, a second chamber 37, and a third chamber 38.
 外筒31は、筒状の外筒本体32と、外筒本体32の一方の端部に設けられた上流側外筒フランジ33(第二フランジ)と、外筒本体32の他方の端部に設けられた下流側外筒フランジ34(第三フランジ)と、を有している。 The outer cylinder 31 includes a cylindrical outer cylinder main body 32, an upstream outer cylinder flange 33 (second flange) provided at one end of the outer cylinder main body 32, and the other end of the outer cylinder main body 32. And a downstream-side outer cylinder flange 34 (third flange) provided.
 外筒本体32の第一室36に対応する箇所には、第一排出口6が設けられている。第一排出口6は、第一分析ライン13aを介してガス分析計53と接続されている。第一分析ライン13aと第一排出口6との間には、フレキシブル管40が介在している。第一弁9は、第一分析ライン13a上に設けられている。
 外筒本体32の第二室37に対応する箇所には、第二排出口7が設けられている。第二排出口7は、第二分析ライン13bを介してガス分析計53と接続されている。第二分析ライン13bと第二排出口7との間には、フレキシブル管40が介在している。第二弁10は、第二分析ライン13b上に設けられている。
 外筒本体32の第三室38に対応する箇所には、第三排出口8が設けられている。第三排出口8は、第三分析ライン13cを介してガス分析計53と接続されている。第三分析ライン13cと第三排出口8との間には、フレキシブル管40が介在している。第三弁11は、第三分析ライン13c上に設けられている。
A first discharge port 6 is provided at a location corresponding to the first chamber 36 of the outer cylinder main body 32. The first outlet 6 is connected to the gas analyzer 53 via the first analysis line 13a. A flexible tube 40 is interposed between the first analysis line 13 a and the first discharge port 6. The first valve 9 is provided on the first analysis line 13a.
A second discharge port 7 is provided at a location corresponding to the second chamber 37 of the outer cylinder main body 32. The second outlet 7 is connected to the gas analyzer 53 via the second analysis line 13b. A flexible tube 40 is interposed between the second analysis line 13 b and the second discharge port 7. The second valve 10 is provided on the second analysis line 13b.
A third discharge port 8 is provided at a location corresponding to the third chamber 38 of the outer cylinder main body 32. The third outlet 8 is connected to the gas analyzer 53 via the third analysis line 13c. A flexible tube 40 is interposed between the third analysis line 13 c and the third discharge port 8. The third valve 11 is provided on the third analysis line 13c.
 上記したように、フィルタ部2と、フィルタ部2に接続される配管との間には、フレキシブル管が介在している。具体的には、フィルタ部2と取込ライン54との間には、フレキシブル管23が設けられている。フィルタ部2と返送ライン57との間には、フレキシブル管として機能する第二配管20が設けられている。フィルタ部2と分析ライン13との間には、フレキシブル管40が設けられている。 As described above, a flexible pipe is interposed between the filter unit 2 and the pipe connected to the filter unit 2. Specifically, the flexible tube 23 is provided between the filter unit 2 and the intake line 54. Between the filter part 2 and the return line 57, the 2nd piping 20 which functions as a flexible pipe is provided. A flexible tube 40 is provided between the filter unit 2 and the analysis line 13.
 外筒31には、外筒31を振動させるバイブレータ44が取り付けられている。バイブレータ44は、例えば、モータと、モータのシャフトに取り付けられた錘とからなる装置を採用することができる。バイブレータ44は制御装置12と電気的に接続され、制御装置12により駆動される。バイブレータ44は、外筒本体32の外周面に取り付けられている。バイブレータ44が駆動することによって、外筒31を介してフィルタ5を振動させることができる。 A vibrator 44 that vibrates the outer cylinder 31 is attached to the outer cylinder 31. As the vibrator 44, for example, a device including a motor and a weight attached to a shaft of the motor can be employed. The vibrator 44 is electrically connected to the control device 12 and is driven by the control device 12. The vibrator 44 is attached to the outer peripheral surface of the outer cylinder main body 32. When the vibrator 44 is driven, the filter 5 can be vibrated via the outer cylinder 31.
 ここで、フィルタ装置1の組み立て方法について説明する。
(1)まず、図4に示すように、内筒28の外周面に仕切部35が巻き付けられる。仕切部35は、内筒28の長さ方向で、第一室36と第二室37と第三室38とが略同じ大きさとなるような位置に配置される。
(2)次いで、図5に示すように、筒状のフィルタ5が内筒フランジ30側から内筒28の内側に挿入される。次いで、フィルタ5の両端部が全周にわたって内筒28の径方向外側に広げられる。
Here, a method for assembling the filter device 1 will be described.
(1) First, as shown in FIG. 4, the partition portion 35 is wound around the outer peripheral surface of the inner cylinder 28. The partition portion 35 is disposed at a position where the first chamber 36, the second chamber 37, and the third chamber 38 have substantially the same size in the length direction of the inner cylinder 28.
(2) Next, as shown in FIG. 5, the cylindrical filter 5 is inserted into the inner cylinder 28 from the inner cylinder flange 30 side. Next, both ends of the filter 5 are spread outward in the radial direction of the inner cylinder 28 over the entire circumference.
(3)次いで、図5に示すように、内筒28の外周面にOリング46(又はガスケット)などのシール装置が挿入された後、内筒28が外筒31の径方向内側に挿入される。次いで、フィルタ5の端部が、外筒31の外側に引き出される。
(4)次いで、図2に示すように、フィルタ部2の内筒フランジ30及び上流側外筒フランジ33と、第一配管17の第一配管フランジ19とがボルト及びナットなどの締結部材47で締結される。この際、内筒フランジ30と第一配管フランジ19との間にOリング46(又はガスケット)などのシール装置が配置される。また、内筒フランジ30と第一配管フランジ19とは、内筒フランジ30と第一配管フランジ19との間にフィルタ5を挟み込んで接続される。
(5)次いで、図2に示すように、フィルタ部2の下流側外筒フランジ34と、第二配管20の第二配管フランジ22とがボルト及びナットなどの締結部材47で締結される。この際、下流側外筒フランジ34と第二配管フランジ22との間にOリング46(又はガスケット)などのシール装置が配置される。また、下流側外筒フランジ34と第二配管フランジ22とは、下流側外筒フランジ34と第二配管フランジ22との間に、フィルタ5を挟み込んで接続される。
(3) Next, as shown in FIG. 5, after a sealing device such as an O-ring 46 (or gasket) is inserted into the outer peripheral surface of the inner cylinder 28, the inner cylinder 28 is inserted radially inward of the outer cylinder 31. The Next, the end portion of the filter 5 is drawn to the outside of the outer cylinder 31.
(4) Next, as shown in FIG. 2, the inner cylinder flange 30 and the upstream outer cylinder flange 33 of the filter portion 2 and the first pipe flange 19 of the first pipe 17 are fastening members 47 such as bolts and nuts. It is concluded. At this time, a sealing device such as an O-ring 46 (or gasket) is disposed between the inner cylinder flange 30 and the first piping flange 19. The inner cylinder flange 30 and the first piping flange 19 are connected with the filter 5 being sandwiched between the inner cylinder flange 30 and the first piping flange 19.
(5) Next, as shown in FIG. 2, the downstream outer cylinder flange 34 of the filter unit 2 and the second pipe flange 22 of the second pipe 20 are fastened by fastening members 47 such as bolts and nuts. At this time, a sealing device such as an O-ring 46 (or a gasket) is disposed between the downstream outer cylinder flange 34 and the second piping flange 22. Further, the downstream outer cylinder flange 34 and the second piping flange 22 are connected by sandwiching the filter 5 between the downstream outer cylinder flange 34 and the second piping flange 22.
 以上の組み立て方法が実施され、さらに外筒31にバイブレータ44が取り付けられることによって、図2に示すようなフィルタ装置1が完成する。 The above assembly method is performed, and the vibrator 44 is attached to the outer cylinder 31, whereby the filter device 1 as shown in FIG. 2 is completed.
 制御装置12は、まず、第一弁9、第二弁10、及び第三弁11のうち一つの弁、例えば、第一弁9のみを開弁する制御を行う。即ち、複数の弁のうち、一つの弁のみを開弁する制御が行われる。
 次に、制御装置12は、差圧計15によって計測された差圧が所定値以上であった場合に、すでに開弁していた弁と異なる弁、例えば、第二弁10のみを開弁する制御を行う。即ち、差圧が所定値以上であった場合に、その時点で開弁している弁とは異なる弁のみを開弁する制御が行われる。換言すれば、差圧が所定値以上となり、フィルタ5の目詰まりが進行しているとみなされる場合に、開弁する弁を変更する制御が行われる。
The control device 12 first performs control to open only one of the first valve 9, the second valve 10, and the third valve 11, for example, the first valve 9. That is, control is performed to open only one of the plurality of valves.
Next, when the differential pressure measured by the differential pressure gauge 15 is equal to or greater than a predetermined value, the control device 12 controls to open only a valve that is different from the valve that has already been opened, for example, the second valve 10. I do. That is, when the differential pressure is greater than or equal to a predetermined value, control is performed to open only a valve that is different from the valve that is currently open. In other words, when the differential pressure becomes equal to or greater than the predetermined value and the filter 5 is considered to be clogged, control for changing the valve to be opened is performed.
 本実施形態のフィルタ装置1のように、第一弁9、第二弁10、及び第三弁11の三つの弁を有する構成では、第一弁9が開弁している状態で、差圧が所定値以上になった場合、例えば、第二弁10のみが開弁され、第一弁9が閉弁されるように変更される。また、第二弁10が開弁している状態で、差圧が所定値以上になった場合、これまでに開弁した第一部及び第二弁以外の第三弁11のみが開弁され、第二弁10が閉弁されるように変更される。さらに、第三弁11が開弁している状態で、差圧が所定値以上になった場合、第一弁から第三弁の全ての弁が一度は開弁したので、再び開弁手順が第一弁9から繰り返される。すなわち、第一弁9のみが開弁され、第三弁11が閉弁されるように変更する。このように、現時点で開弁している弁に対応する部屋のフィルタにおける差圧が所定値以上になった場合、当該弁を閉じ、別の弁を開弁して別の部屋のフィルタを用いてフィルタリングが継続される。本実施形態では、開弁する弁は、第一弁、第二弁、第三弁の順で、順次変更される。しかしながら、開弁の順番はこれに限定されることなく、第一弁、第三弁、第二弁の順で開弁されるなど、適宜設計可能である。
 ここで、弁の切り替えのタイミングは厳密なものではなく、例えば、全ての弁が閉弁するタイミングがあってよい。
 なお、ここでは、弁フィルタ装置1は、第一弁9、第二弁10、及び第三弁11の三つの弁を備えているが、弁の数は、三つに限らず、二つ、または四つ以上であってもよい。その場合も、上記と同様に動作し、現時点で開弁している弁に対応する部屋のフィルタにおける差圧が所定値以上になった場合、当該弁を閉じ、別の弁を開弁して別の部屋のフィルタを用いてフィルタリングが継続される。
In the configuration having the three valves of the first valve 9, the second valve 10, and the third valve 11, as in the filter device 1 of the present embodiment, the differential pressure is maintained while the first valve 9 is open. When becomes more than a predetermined value, for example, only the second valve 10 is opened and the first valve 9 is closed. Further, when the differential pressure becomes a predetermined value or more with the second valve 10 opened, only the third valve 11 other than the first and second valves opened so far is opened. The second valve 10 is changed so as to be closed. Further, when the differential pressure becomes a predetermined value or more with the third valve 11 being opened, all the valves from the first valve to the third valve have been opened once. It repeats from the first valve 9. That is, only the first valve 9 is opened and the third valve 11 is closed. Thus, when the differential pressure in the filter in the room corresponding to the valve that is currently opened becomes equal to or greater than the predetermined value, the valve is closed and another valve is opened to use the filter in another room. Filtering continues. In the present embodiment, the valves to be opened are sequentially changed in the order of the first valve, the second valve, and the third valve. However, the order of valve opening is not limited to this, and it is possible to design appropriately such that the valve is opened in the order of the first valve, the third valve, and the second valve.
Here, the timing of switching the valves is not strict, and for example, there may be a timing at which all the valves are closed.
In addition, although the valve filter apparatus 1 is provided with the three valves of the 1st valve 9, the 2nd valve 10, and the 3rd valve 11 here, the number of valves is not restricted to three, two, Or four or more may be sufficient. Even in that case, if the differential pressure in the filter in the room corresponding to the valve that is currently opened becomes equal to or greater than a predetermined value, the valve is closed and another valve is opened. Filtering continues with another room filter.
 次に、ガス分析システム50の制御方法について説明する。なお、ガス分析システム50では、2つのフィルタ装置1A、1Bのうち、一方のフィルタ装置1Aが使用され、定期的に使用するフィルタ装置1が変更されたり、メンテナンス時に異なるフィルタ装置1が使用されたりする。 Next, a control method of the gas analysis system 50 will be described. In the gas analysis system 50, one of the two filter devices 1A and 1B is used, and the filter device 1 used periodically is changed, or a different filter device 1 is used during maintenance. To do.
 図6に示すように、ガス分析システム50の制御方法は、電磁弁55を開弁するとともに、昇圧ブロア56を始動する排ガス導入工程S1と、3つの弁のうち一の弁のみを開弁し、他の2つの弁は閉弁する第一開弁工程S2と、差圧計15によって計測された差圧が所定値以上か否かを判定する差圧判定工程S3と、一の弁と異なる弁のうち1つの弁のみを開弁し、他の2つの弁は閉弁する弁変更工程(第二開弁工程)S4と、差圧計15によって計測された差圧が所定値以上か否かを判定する差圧判定工程S5と、3つの弁のうち第一及び第二開弁工程で開弁していない1つの弁を開弁し、他の2つの弁は閉弁する弁変更工程(第三開弁工程)S6と、差圧計15によって計測された差圧が所定値以上か否かを判定する差圧判定工程S7とを有している。 As shown in FIG. 6, the control method of the gas analysis system 50 is to open the electromagnetic valve 55 and to open the exhaust gas introduction step S1 for starting the booster blower 56 and to open only one of the three valves. The other two valves are closed, a first valve opening step S2, a differential pressure determination step S3 for determining whether or not the differential pressure measured by the differential pressure gauge 15 is equal to or greater than a predetermined value, and a valve different from the one valve Whether or not the differential pressure measured by the differential pressure gauge 15 is greater than or equal to a predetermined value, the valve changing step (second valve opening step) S4 in which only one valve is opened and the other two valves are closed. A differential pressure determination step S5 for determining, and a valve changing step (first step) in which one of the three valves that has not been opened in the first and second valve opening steps is opened and the other two valves are closed. (Three valve opening step) S6 and a differential pressure determination step S7 for determining whether or not the differential pressure measured by the differential pressure gauge 15 is equal to or greater than a predetermined value The has.
 以下にフィルタ装置1としてフィルタ装置1Aを使用した各工程について説明する。説明は省略するがフィルタ装置1Bを使用した場合も同様である。
 排ガス導入工程S1では、制御装置12は、電磁弁55及び第一取込弁45aを開弁するとともに、昇圧ブロア56を始動する。これにより、取込口52及び取込ライン54と取込ライン54aを介して排ガスEGがフィルタ装置1に導入される。
 第一開弁工程S2では、制御装置12は、第一弁9、第二弁10、及び第三弁11のうち、例えば、第一弁9のみを開弁し、第二弁10と第三弁11は閉弁する。取込ライン54では昇圧ブロア56で排ガスEGがフィルタ装置1に昇圧されて送り込まれるとともに、分析ライン13では排ガスEGがポンプ14により吸引されている。そのため、排ガスEGは、第一室36に流入し、その際、第一室36に対応するフィルタ5の一部によって煤塵が除去される。煤塵が除去された排ガスEGはガス分析計53に導入される。ガス分析計53は、導入された排ガスEGの有害成分の含有量を分析する。
Each process using the filter device 1A as the filter device 1 will be described below. Although the description is omitted, the same applies when the filter device 1B is used.
In the exhaust gas introduction step S1, the control device 12 opens the electromagnetic valve 55 and the first intake valve 45a and starts the booster blower 56. Thus, the exhaust gas EG is introduced into the filter device 1 through the intake port 52, the intake line 54, and the intake line 54a.
In the first valve opening step S <b> 2, the control device 12 opens only the first valve 9 among the first valve 9, the second valve 10, and the third valve 11. The valve 11 is closed. In the intake line 54, the exhaust gas EG is boosted and sent to the filter device 1 by the booster blower 56, and the exhaust gas EG is sucked in by the pump 14 in the analysis line 13. Therefore, the exhaust gas EG flows into the first chamber 36, and at that time, dust is removed by a part of the filter 5 corresponding to the first chamber 36. The exhaust gas EG from which the dust is removed is introduced into the gas analyzer 53. The gas analyzer 53 analyzes the content of harmful components in the introduced exhaust gas EG.
 差圧判定工程S3では、制御装置12は、差圧計15によって計測された取込ライン54を流れる排ガスEGの圧力と、分析ライン13を流れる排ガスEGの圧力との差圧が所定値以上か否かを判定する。差圧が所定値より小さい場合(No)、開弁する弁を変更することなく、分析が続行される。
 差圧が所定値以上である場合(Yes)、即ち、フィルタ5の目詰まりが進行している場合、弁変更工程(第二開弁工程)S4に進んで、第一弁9とは異なる弁、例えば第二弁10のみが開弁され、第一弁9が閉弁される。先述の第一弁9の開弁の場合と同様、昇圧ブロア56とポンプ14により、排ガスEGは、第二室37に流入する。その際、第二室37に対応するフィルタ5の一部によって煤塵が除去される。
 差圧判定工程S5では、差圧判定工程S3と同様、差圧が所定値より小さい場合(No)、制御装置12は、開弁する弁を変更することなく、分析を続行する。差圧が所定値以上である場合(Yes)、弁変更工程(第三開弁工程)S6に進んで、第一弁9と第二弁10とは異なる弁、すなわち第三弁11のみが開弁され、第二弁10が閉弁される。先述の第一弁9の開弁の場合と同様、昇圧ブロア56とポンプ14により、排ガスEGは、第三室38に流入する。その際、第三室38に対応するフィルタ5の一部によって煤塵が除去される。
 差圧判定工程S7では、差圧判定工程S3、S5と同様、差圧が所定値より小さい場合(No)、制御装置12は、開弁する弁を変更することなく、分析を続行する。差圧が所定値以上である場合(Yes)、第一開弁工程S2に進む。
In the differential pressure determination step S3, the control device 12 determines whether or not the differential pressure between the pressure of the exhaust gas EG flowing through the intake line 54 measured by the differential pressure gauge 15 and the pressure of the exhaust gas EG flowing through the analysis line 13 is greater than or equal to a predetermined value. Determine whether. If the differential pressure is smaller than the predetermined value (No), the analysis is continued without changing the valve to be opened.
When the differential pressure is greater than or equal to a predetermined value (Yes), that is, when clogging of the filter 5 is proceeding, the process proceeds to a valve changing step (second valve opening step) S4, and a valve different from the first valve 9 For example, only the second valve 10 is opened and the first valve 9 is closed. As in the case of opening the first valve 9 described above, the exhaust gas EG flows into the second chamber 37 by the booster blower 56 and the pump 14. At that time, dust is removed by a part of the filter 5 corresponding to the second chamber 37.
In the differential pressure determination step S5, as in the differential pressure determination step S3, when the differential pressure is smaller than a predetermined value (No), the control device 12 continues the analysis without changing the valve to be opened. When the differential pressure is equal to or greater than the predetermined value (Yes), the process proceeds to the valve changing step (third valve opening step) S6, and only the valve different from the first valve 9 and the second valve 10, that is, the third valve 11 is opened. The second valve 10 is closed. As in the case of opening the first valve 9 described above, the exhaust gas EG flows into the third chamber 38 by the booster blower 56 and the pump 14. At that time, dust is removed by a part of the filter 5 corresponding to the third chamber 38.
In the differential pressure determination step S7, as in the differential pressure determination steps S3 and S5, when the differential pressure is smaller than a predetermined value (No), the control device 12 continues the analysis without changing the valve to be opened. When the differential pressure is greater than or equal to a predetermined value (Yes), the process proceeds to the first valve opening step S2.
 次に、本実施形態のフィルタ装置1の作用について説明する。
 第一弁9が開弁されることによって、排ガスEGが第一室36に対応するフィルタ、すなわちフィルタ5の一部5aを介して第一排出口6から排出されてガス分析計53に送られる。また、第二弁10が開弁されることによって、排ガスEGがフィルタ5の一部5aとは異なる他部5bを介して第二排出口7から排出されてガス分析計53に送られる。他部5bは、第二室37に対応するフィルタであり、フィルタ5の一部である。さらに、第三弁11が開弁されることによって、排ガスEGがフィルタ5の一部5a、他部5bとは異なる他部5cを介して第三排出口8から排出されてガス分析計53に送られる。他部5cは、第三室38に対応するフィルタであり、フィルタ5の一部である。即ち、開弁する弁を切り替えることによって、濾過に使用されるフィルタ5の部位が変更される。
Next, the operation of the filter device 1 of the present embodiment will be described.
By opening the first valve 9, the exhaust gas EG is discharged from the first discharge port 6 through the filter corresponding to the first chamber 36, that is, the part 5 a of the filter 5, and sent to the gas analyzer 53. . Further, when the second valve 10 is opened, the exhaust gas EG is discharged from the second discharge port 7 via the other part 5 b different from the part 5 a of the filter 5 and sent to the gas analyzer 53. The other portion 5 b is a filter corresponding to the second chamber 37 and is a part of the filter 5. Further, when the third valve 11 is opened, the exhaust gas EG is discharged from the third outlet 8 via the other part 5 c different from the part 5 a and the other part 5 b of the filter 5 to the gas analyzer 53. Sent. The other portion 5 c is a filter corresponding to the third chamber 38 and is a part of the filter 5. That is, the part of the filter 5 used for filtration is changed by switching the valve to be opened.
 制御装置12によって、開弁される弁が切り替えられる。これにより、第一室36、第二室37、第三室38のうちフィルタリングが行われている一つの部屋に対応するフィルタ(フィルタ5の一部であり、フィルタリングが行われている箇所)において、煤塵がフィルタ5の奥深くに入り込む前に、当該箇所でのフィルタリングを止めることができる。さらに、別の部屋に対応するフィルタ(フィルタ5の一部)で、フィルタリングを行うことができる。上記一つの部屋に対応するフィルタ(フィルタ5の一部)は、分析ライン13に接続される弁が切り替えられることでフィルタリングが止められ、ポンプ14の吸引力が及ばない。このため、当該一部に堆積または目詰まりした煤塵は、ガス導入口3からガス排出口4に向かうガスEGの昇圧された流れによって、容易に吹き飛ばすことができる。すなわち、逆洗装置など特別な装置を要することなく、フィルタのセルフクリーニングが可能となる。 The valve to be opened is switched by the control device 12. Thereby, in the filter corresponding to one of the first chamber 36, the second chamber 37, and the third chamber 38 in which filtering is performed (a part of the filter 5 where filtering is performed). Before the dust enters the depth of the filter 5, the filtering at the location can be stopped. Furthermore, filtering can be performed with a filter corresponding to another room (a part of the filter 5). The filter corresponding to the one room (a part of the filter 5) is filtered by switching a valve connected to the analysis line 13, and the suction force of the pump 14 does not reach. For this reason, the dust accumulated or clogged in the part can be easily blown off by the pressurized flow of the gas EG from the gas inlet 3 toward the gas outlet 4. That is, the filter can be self-cleaned without requiring a special device such as a backwash device.
 また、排ガスEGは、乱流発生部25を通過することによって、乱流に変化する。乱流となった排ガスEGがフィルタ5の内面上を流れることによって、フィルタ5上に堆積した煤塵やフィルタ5の表層に入り込んだ煤塵を容易に吹き飛ばすことができる。
 また、制御装置12によってバイブレータ44が駆動されて、外筒31を介してフィルタ5が振動する。これにより、フィルタ5上に堆積した煤塵やフィルタ5の表層に入り込んだ煤塵を振るい落とすことができる。
Further, the exhaust gas EG changes to turbulent flow by passing through the turbulent flow generation unit 25. As the turbulent exhaust gas EG flows on the inner surface of the filter 5, dust accumulated on the filter 5 and dust that has entered the surface layer of the filter 5 can be easily blown off.
Further, the vibrator 44 is driven by the control device 12, and the filter 5 vibrates via the outer cylinder 31. Thereby, the dust accumulated on the filter 5 and the dust which entered the surface layer of the filter 5 can be shaken off.
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 なお、上記実施形態では、差圧計15によって計測された差圧に基づいて弁の制御を行う構成としたが、これに限ることはない。例えば、所定時間が経過した場合に開弁する弁を変更してもよい。即ち、取込ライン54を流れる排ガスEGの圧力と、分析ライン13を流れる排ガスEGの圧力との間の差圧を参照することなく、順次開弁する弁を切り替える制御を行ってもよい。このような構成によれば、差圧計15を設けることなく、フィルタ5のセルフクリーニングが可能となる。
As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the concrete structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.
In the above embodiment, the valve is controlled based on the differential pressure measured by the differential pressure gauge 15, but the present invention is not limited to this. For example, the valve that opens when a predetermined time has elapsed may be changed. That is, the control may be performed to switch the valves that are sequentially opened without referring to the differential pressure between the pressure of the exhaust gas EG flowing through the intake line 54 and the pressure of the exhaust gas EG flowing through the analysis line 13. According to such a configuration, the filter 5 can be self-cleaned without providing the differential pressure gauge 15.
 また、上記実施形態では、仕切部35によって3つの室(第一室36、第二室37、第三室38)を形成する構成としたが、室の数はこれに限ることはなく、仕切部35によって複数の室が形成されていればよい。その場合、各室に対応する排出口(第一排出口6、第二排出口7、第三排出口8、など)及び弁(第一弁9、第二弁10、第三弁11、など)が配置される。
 なお、上記実施形態では、乱流発生部25をオリフィスとしたが、これに限ることはない。例えば、図7に示す第一変形例のように乱流発生部25を渦流発生機構として、ガス流を螺旋状に変化させてもよい。第一変形例の乱流発生部25Bは、配管を閉塞するように形成された円柱部材41と、円柱部材41の外周面に形成された螺旋状の溝42と、を有している。乱流発生部25Bを通過したガス流は、螺旋状の溝42と第一配管17の内周面との間を通過することによって、渦流となる。
Moreover, in the said embodiment, although it was set as the structure which forms three chambers (1st chamber 36, 2nd chamber 37, 3rd chamber 38) by the partition part 35, the number of chambers is not restricted to this, A partition is A plurality of chambers may be formed by the portion 35. In that case, discharge ports (first discharge port 6, second discharge port 7, third discharge port 8, etc.) and valves (first valve 9, second valve 10, third valve 11, etc.) corresponding to each chamber ) Is arranged.
In the above-described embodiment, the turbulent flow generation unit 25 is an orifice. However, the present invention is not limited to this. For example, as in the first modification shown in FIG. 7, the turbulent flow generation unit 25 may be used as a vortex flow generation mechanism to change the gas flow in a spiral shape. The turbulent flow generation unit 25 </ b> B of the first modification includes a columnar member 41 formed so as to close the pipe, and a spiral groove 42 formed on the outer peripheral surface of the columnar member 41. The gas flow that has passed through the turbulent flow generating portion 25B becomes a vortex flow by passing between the spiral groove 42 and the inner peripheral surface of the first pipe 17.
 また、乱流発生部25を、図8に示す第二変形例のような形態としてもよい。第二変形例の乱流発生部25Cは、第一配管17を閉塞するような円柱部材41と、円柱部材41の一面41aと他面41bとの間を貫通する複数の貫通孔43と、を有している。各々の貫通孔43は、ガス流が渦流となるように、配管の軸線方向に対して傾斜するように形成されている。 Further, the turbulent flow generation unit 25 may be configured as in the second modification shown in FIG. The turbulent flow generation unit 25C of the second modification includes a columnar member 41 that closes the first pipe 17, and a plurality of through holes 43 that penetrate between the one surface 41a and the other surface 41b of the columnar member 41. Have. Each through-hole 43 is formed to be inclined with respect to the axial direction of the pipe so that the gas flow becomes a vortex.
 本発明によれば、フィルタリングしているフィルタの一部に煤塵が堆積等して目詰まりが進行した場合に、当該一部のフィルタリングを止めて当該一部と異なる他部からフィルタリングが開始される。その結果、当該一部へのそれ以上の煤塵の堆積等を止めるとともに、ガス導入口からガス排出口に向かう煤塵含有ガスの流れによって当該一部に堆積した煤塵等を除去することができる。すなわち、フィルタリングを継続的に行いながら、フィルタのセルフクリーニングが可能となる。
 これにより、逆洗装置などの装置を付加することなく、低コストでフィルタの目詰まりを防止し、継続して連続的にフィルタリングを行うことができる。
According to the present invention, when clogging progresses due to accumulation of dust or the like on a part of the filter being filtered, the filtering of the part is stopped and filtering is started from another part different from the part. . As a result, it is possible to stop further accumulation of dust and the like on the part, and to remove dust and the like accumulated on the part by the flow of the dust-containing gas from the gas inlet to the gas outlet. That is, the filter can be self-cleaned while continuously performing the filtering.
Accordingly, the filter can be prevented from being clogged at a low cost without continuously adding a device such as a backwash device, and continuous filtering can be performed.
 1 フィルタ装置
 2 フィルタ部
 3 ガス導入口
 4 ガス排出口
 5 フィルタ
 6 第一排出口
 7 第二排出口
 8 第三排出口
 9 第一弁
 10 第二弁
 11 第三弁
 12 制御装置
 13 分析ライン
 13a 第一分析ライン
 13b 第二分析ライン
 13c 第三分析ライン
 14 ポンプ
 15 差圧計
 17 第一配管
 18 第一配管本体
 19 第一配管フランジ(第四フランジ)
 20 第二配管
 21 第二配管本体
 22 第二配管フランジ(第五フランジ)
 23 フレキシブル管
 25 乱流発生部
 26 本体部
 27 孔部
 28 内筒
 29 パンチングメタル筒
 30 内筒フランジ(第一フランジ)
 31 外筒
 32 外筒本体
 33 上流側外筒フランジ(第二フランジ)
 34 下流側外筒フランジ(第三フランジ)
 35 仕切部
 36 第一室
 37 第二室
 38 第三室
 40 フレキシブル管
 41 円柱部材
 42 溝
 43 貫通孔
 44 バイブレータ
 45a 第一取込弁
 45b 第二取込弁
 50 ガス分析システム
 51 ダクト
 52 取込口
 53 ガス分析計
 54 取込ライン
 54a 第一取込ライン
 54b 第二取込ライン
 55 電磁弁
 56 昇圧ブロア
 57 返送ライン
 58 第二返送ライン
 EG 排ガス
DESCRIPTION OF SYMBOLS 1 Filter apparatus 2 Filter part 3 Gas introduction port 4 Gas discharge port 5 Filter 6 1st discharge port 7 2nd discharge port 8 3rd discharge port 9 1st valve 10 2nd valve 11 3rd valve 12 Control apparatus 13 Analysis line 13a First analysis line 13b Second analysis line 13c Third analysis line 14 Pump 15 Differential pressure gauge 17 First piping 18 First piping main body 19 First piping flange (fourth flange)
20 Second piping 21 Second piping body 22 Second piping flange (fifth flange)
23 flexible pipe 25 turbulent flow generation part 26 body part 27 hole part 28 inner cylinder 29 punching metal cylinder 30 inner cylinder flange (first flange)
31 Outer cylinder 32 Outer cylinder body 33 Upstream outer cylinder flange (second flange)
34 Downstream outer cylinder flange (third flange)
35 partitioning section 36 first chamber 37 second chamber 38 third chamber 40 flexible pipe 41 cylindrical member 42 groove 43 through hole 44 vibrator 45a first intake valve 45b second intake valve 50 gas analysis system 51 duct 52 intake port 53 Gas Analyzer 54 Intake Line 54a First Intake Line 54b Second Intake Line 55 Solenoid Valve 56 Booster Blower 57 Return Line 58 Second Return Line EG Exhaust Gas

Claims (5)

  1.  煤塵含有ガスが導入されるガス導入口と、前記ガス導入口から導入された前記煤塵含有ガスをそのまま排出するガス排出口と、フィルタと、前記煤塵含有ガスを前記フィルタの一部を介して排出する第一排出口と、前記煤塵含有ガスを前記フィルタの一部とは異なる前記フィルタの他部を介して排出する第二排出口と、を備えたフィルタ部と、
     前記第一排出口を開閉する第一弁と、
     前記第二排出口を開閉する第二弁と、
     前記第一弁及び前記第二弁を開閉制御する制御装置と、を有し、
     前記制御装置は、前記第一弁を開弁し且つ前記第二弁を閉弁し、前記フィルタの目詰まりが進行した場合、または所定時間が経過した場合に、前記第一弁を閉弁し且つ前記第二弁を開弁するフィルタ装置。
    A gas inlet through which dust-containing gas is introduced, a gas outlet through which the dust-containing gas introduced from the gas inlet is directly discharged, a filter, and the dust-containing gas are discharged through a part of the filter. A first exhaust port, and a second exhaust port for discharging the dust-containing gas through another part of the filter different from a part of the filter, and a filter unit,
    A first valve that opens and closes the first outlet;
    A second valve that opens and closes the second outlet;
    A control device for controlling the opening and closing of the first valve and the second valve,
    The control device opens the first valve and closes the second valve, and closes the first valve when the filter is clogged or when a predetermined time has elapsed. And a filter device for opening the second valve.
  2.  前記ガス導入口から導入される前記煤塵含有ガスのガス流を乱流に変化させる乱流発生部をさらに有し、
     前記フィルタは、筒状をなし、
     前記ガス導入口は、前記フィルタの内周側に前記煤塵含有ガスを導入するように配置され、
     前記乱流発生部は、前記ガス流を螺旋状に変化させる渦流発生機構、又は前記ガス流を前記螺旋状以外の乱流に変化させるオリフィスを有する請求項1に記載のフィルタ装置。
    A turbulent flow generating section that changes the gas flow of the dust-containing gas introduced from the gas inlet to turbulent flow;
    The filter has a cylindrical shape,
    The gas inlet is arranged to introduce the dust-containing gas to the inner peripheral side of the filter,
    2. The filter device according to claim 1, wherein the turbulent flow generation unit includes a vortex flow generating mechanism that changes the gas flow in a spiral shape or an orifice that changes the gas flow into a turbulent flow other than the spiral shape.
  3.  前記フィルタ部は、
     筒状のパンチングメタルと、前記パンチングメタルの一方の端部に設けられた第一フランジと、を有する内筒と、
     前記内筒の外周側に配置された筒状の外筒本体と、前記外筒本体の一方の端部に設けられて前記第一フランジと接続される第二フランジと、前記外筒本体の他方の端部に設けられて前記ガス排出口をなす第三フランジと、を有する外筒と、
     前記パンチングメタルの外周面と前記外筒の内周面との間を気密に仕切って第一室及び第二室を形成する仕切部と、
     第一配管本体と、前記第一配管本体の他方の端部に設けられて前記第一フランジと接続される第四フランジと、を有する第一配管と、
     第二配管本体と、前記第二配管本体の一方の端部に設けられて前記第三フランジと接続される第五フランジと、を有する第二配管と、を有し、
     前記フィルタは、前記パンチングメタルの内周に沿って配置された筒状の濾布であり、
     前記第一排出口は、前記外筒の前記第一室に対応する位置に配置され、
     前記第二排出口は、前記外筒の前記第二室に対応する位置に配置され、
     前記第一フランジと前記第二フランジは、Oリングまたはガスケットを介して接続され、
     前記第一フランジと前記第四フランジは、Oリングまたはガスケットを介し且つ前記濾布を挟み込んで接続され、
     前記第三フランジと前記第五フランジは、Oリングまたはガスケットを介し且つ前記濾布を挟み込んで接続される請求項2に記載のフィルタ装置。
    The filter unit is
    An inner cylinder having a cylindrical punching metal and a first flange provided at one end of the punching metal;
    A cylindrical outer cylinder main body disposed on the outer peripheral side of the inner cylinder; a second flange provided at one end of the outer cylinder main body and connected to the first flange; and the other of the outer cylinder main bodies A third flange that is provided at the end of the gas and forms the gas discharge port, and an outer cylinder,
    A partition part that hermetically partitions between the outer peripheral surface of the punching metal and the inner peripheral surface of the outer cylinder to form a first chamber and a second chamber;
    A first pipe having a first pipe main body and a fourth flange provided at the other end of the first pipe main body and connected to the first flange;
    A second pipe having a second pipe main body and a fifth flange provided at one end of the second pipe main body and connected to the third flange;
    The filter is a cylindrical filter cloth disposed along the inner periphery of the punching metal,
    The first discharge port is disposed at a position corresponding to the first chamber of the outer cylinder,
    The second discharge port is disposed at a position corresponding to the second chamber of the outer cylinder,
    The first flange and the second flange are connected via an O-ring or a gasket,
    The first flange and the fourth flange are connected via an O-ring or gasket and sandwiching the filter cloth,
    The filter device according to claim 2, wherein the third flange and the fifth flange are connected via an O-ring or a gasket and sandwiching the filter cloth.
  4.  前記外筒を振動させるバイブレータと、
     前記ガス導入口、前記ガス排出口、前記第一排出口、及び前記第二排出口に配置されたフレキシブル管と、をさらに有し、
     前記制御装置は、フィルタの目詰まりが進行した場合、または所定時間が経過した場合に、前記バイブレータを駆動する請求項3に記載のフィルタ装置。
    A vibrator for vibrating the outer cylinder;
    A flexible pipe disposed at the gas inlet, the gas outlet, the first outlet, and the second outlet;
    The said control apparatus is a filter apparatus of Claim 3 which drives the said vibrator when clogging of a filter progresses or when predetermined time passes.
  5.  請求項1から請求項4のいずれか一項に記載のフィルタ装置と、
     前記煤塵含有ガスが流れるダクトと、
     前記ダクトに配置された取込口と、
     前記取込口と前記ガス導入口との間に配置され、前記取込口から前記ガス導入口へ前記煤塵含有ガスを送り込む昇圧ブロアと、
     前記第一弁及び前記第二弁の下流側に接続されたガス分析計と、
     前記ガス排出口から排出された前記煤塵含有ガスを前記ダクトへ返送する返送ラインと、
    を有するガス分析システム。
    The filter device according to any one of claims 1 to 4,
    A duct through which the dust-containing gas flows;
    An intake port disposed in the duct;
    A pressure increasing blower that is disposed between the intake port and the gas inlet port, and sends the dust-containing gas from the intake port to the gas inlet port;
    A gas analyzer connected downstream of the first valve and the second valve;
    A return line for returning the dust-containing gas discharged from the gas discharge port to the duct;
    Having a gas analysis system.
PCT/JP2019/005288 2018-02-15 2019-02-14 Filter device and gas analyzing system WO2019160017A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11202006815PA SG11202006815PA (en) 2018-02-15 2019-02-14 Filter device and gas analyzing system
CN201980010508.0A CN111656158B (en) 2018-02-15 2019-02-14 Filter device and gas analysis system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018025180A JP6439187B1 (en) 2018-02-15 2018-02-15 Filter device and gas analysis system
JP2018-025180 2018-02-15

Publications (1)

Publication Number Publication Date
WO2019160017A1 true WO2019160017A1 (en) 2019-08-22

Family

ID=64668535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005288 WO2019160017A1 (en) 2018-02-15 2019-02-14 Filter device and gas analyzing system

Country Status (4)

Country Link
JP (1) JP6439187B1 (en)
CN (1) CN111656158B (en)
SG (1) SG11202006815PA (en)
WO (1) WO2019160017A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021039996A1 (en) * 2019-08-29 2021-03-04
CN115586046A (en) * 2022-12-09 2023-01-10 沈阳市中正检测技术有限公司 Atmospheric sampler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573028A (en) * 1980-06-09 1982-01-08 Nippon Kokan Kk <Nkk> Dry gas sampling method
US4912985A (en) * 1988-08-23 1990-04-03 The Babcock & Wilcox Company Gas sampling system for reactive gas-solid mixtures
JPH07128205A (en) * 1993-11-05 1995-05-19 Kubota Corp Sample collecting device for particulate substances in engine exhaust
JP2001188042A (en) * 1999-12-28 2001-07-10 Ishikawajima Harima Heavy Ind Co Ltd Sulfuric acid gas densitometer
JP2003028766A (en) * 2001-07-13 2003-01-29 Ishikawajima Harima Heavy Ind Co Ltd Gas bleeding device
US7569093B2 (en) * 2005-05-04 2009-08-04 American Air Liquide, Inc. Filtering particulate materials in continuous emission monitoring systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059947A (en) * 1983-09-09 1985-04-06 Toshiba Corp Slot insulator inserting method of rotary electric machine
AT408955B (en) * 2000-09-28 2002-04-25 Va Tech Wabag Gmbh MEMBRANE FILTER SYSTEM AND METHOD FOR FILTERING
WO2015029567A1 (en) * 2013-08-26 2015-03-05 日本碍子株式会社 Exhaust processing device and containing device
CN204246905U (en) * 2014-12-01 2015-04-08 吉首大学 Novel vibrating filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573028A (en) * 1980-06-09 1982-01-08 Nippon Kokan Kk <Nkk> Dry gas sampling method
US4912985A (en) * 1988-08-23 1990-04-03 The Babcock & Wilcox Company Gas sampling system for reactive gas-solid mixtures
JPH07128205A (en) * 1993-11-05 1995-05-19 Kubota Corp Sample collecting device for particulate substances in engine exhaust
JP2001188042A (en) * 1999-12-28 2001-07-10 Ishikawajima Harima Heavy Ind Co Ltd Sulfuric acid gas densitometer
JP2003028766A (en) * 2001-07-13 2003-01-29 Ishikawajima Harima Heavy Ind Co Ltd Gas bleeding device
US7569093B2 (en) * 2005-05-04 2009-08-04 American Air Liquide, Inc. Filtering particulate materials in continuous emission monitoring systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021039996A1 (en) * 2019-08-29 2021-03-04
WO2021039996A1 (en) * 2019-08-29 2021-03-04 京セラ株式会社 Gas supply and discharge adaptor and gas detection device
CN115586046A (en) * 2022-12-09 2023-01-10 沈阳市中正检测技术有限公司 Atmospheric sampler

Also Published As

Publication number Publication date
JP6439187B1 (en) 2018-12-19
JP2019138878A (en) 2019-08-22
CN111656158A (en) 2020-09-11
SG11202006815PA (en) 2020-08-28
CN111656158B (en) 2021-07-27

Similar Documents

Publication Publication Date Title
US10688430B2 (en) Cleanable filter
US8051948B2 (en) Silencer apparatus with disposable silencer cartridge unit
JP4921367B2 (en) System and method for removing contaminants
WO2019160017A1 (en) Filter device and gas analyzing system
KR101994915B1 (en) An exhaust gas purifying system and a device therein
JP2006242192A (en) Device and method for cleaning exhaust post-treatment device
JP6702650B2 (en) Fibrous filter system and method for cleaning the fibrous filter system
KR860007456A (en) Method and apparatus for removing solid particles in diesel engine exhaust
US20130192180A1 (en) Filter assembly
JP2023501887A (en) Filter device and method for cleaning filter element of filter device
US20080017031A1 (en) Gas Filtration System and Filter Cleaning Method
CN110354601B (en) Treatment method of industrial air pollutants
JP6114438B1 (en) Exhaust gas treatment equipment
KR101769801B1 (en) Apparatus for reducing contamination for diesel engine
KR200388724Y1 (en) Air purifier
RU2002118744A (en) The method of filtering air and device for its implementation
JP2012202327A (en) Equipment housing facilities, and ventilation method thereof
UA78883C2 (en) Sectional bag filter for gas treating
KR200225151Y1 (en) Low Noise Air Purifier
CN215930258U (en) Air renewing device and refrigerator
RU2333031C1 (en) Sleeve filter
RU2170845C1 (en) Air cleaner
JP2005171770A (en) Air cleaner with evacuator valve
JP2022118743A (en) Filter cleaner
RU19773U1 (en) HOSE FILTER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754770

Country of ref document: EP

Kind code of ref document: A1