WO2019160015A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2019160015A1
WO2019160015A1 PCT/JP2019/005281 JP2019005281W WO2019160015A1 WO 2019160015 A1 WO2019160015 A1 WO 2019160015A1 JP 2019005281 W JP2019005281 W JP 2019005281W WO 2019160015 A1 WO2019160015 A1 WO 2019160015A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
voltage
type mos
signal line
signal
Prior art date
Application number
PCT/JP2019/005281
Other languages
French (fr)
Japanese (ja)
Inventor
春敏 長友
Original Assignee
株式会社吉川システック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社吉川システック filed Critical 株式会社吉川システック
Priority to CN201980012774.7A priority Critical patent/CN111712911A/en
Publication of WO2019160015A1 publication Critical patent/WO2019160015A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8236Combination of enhancement and depletion transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a technology for protecting a semiconductor device from reverse engineering.
  • Patent Documents 1 to 9 Various methods for preventing reverse engineering have been proposed (see, for example, Patent Documents 1 to 9).
  • In order to prevent reverse engineering for example, by modifying the transistor characteristics and connection information by devising the wiring layer or using a diffusion layer or bulk below the wiring layer, just reading the wiring layer Proposals have been made to prevent functions from being reproduced.
  • Patent Document 1 a semiconductor device is reproduced by reverse engineering by using a transistor with a gate in a floating state and generating a signal using a difference in output voltage due to variation in transistor characteristics. Techniques that make this difficult are proposed.
  • Patent Document 1 Since the gate is in a floating state, a wasteful consumption current flows from the power supply voltage to the ground, and when noise occurs due to crosstalk or the like, voltage fluctuation occurs and the operation and current consumption are not stable.
  • the output voltage generated by a plurality of transistors is not a binarized voltage but a continuous analog amount, a comparator that receives the output requires high-precision analog characteristics, which increases current consumption and size. . Due to such current consumption and size restrictions, there are restrictions on the number of chips that can be mounted on one chip. Another method for preventing reverse engineering requires a special process, which increases the process development period and cost.
  • An object of the present invention is to provide a semiconductor device that makes it difficult to reproduce the semiconductor device by reverse engineering.
  • the semiconductor device is connected in series between a signal line for supplying a first voltage and a signal line for supplying a second voltage lower than the first voltage, and each gate has a predetermined value.
  • a plurality of first signal output circuits that output a voltage at a connection point of the first transistor and the second transistor;
  • a third transistor and a fourth transistor are connected in series between a signal line supplying a first voltage and a signal line supplying the second voltage, and a predetermined voltage is supplied to each gate.
  • the third transistor has different characteristics with the same layout as the first transistor
  • the fourth transistor has different characteristics with the same layout as the second transistor
  • Serial and outputs the third transistor and the voltage at the connection point of said fourth transistor characterized in that it comprises a plurality of second signal output circuit.
  • FIG. 1A is a diagram illustrating an example of a semiconductor device according to the first embodiment.
  • FIG. 1B is a diagram illustrating an example of the semiconductor device according to the first embodiment.
  • FIG. 2A is a diagram illustrating an example of a semiconductor device according to the second embodiment.
  • FIG. 2B is a diagram illustrating an example of a semiconductor device according to the second embodiment.
  • FIG. 3A is a diagram illustrating an example of a semiconductor device according to the third embodiment.
  • FIG. 3B is a diagram illustrating an example of a semiconductor device according to the third embodiment.
  • FIG. 4A is a diagram illustrating an example of a semiconductor device according to the fourth embodiment.
  • FIG. 4B is a diagram illustrating an example of a semiconductor device according to the fourth embodiment.
  • FIG. 4A is a diagram illustrating an example of a semiconductor device according to the fourth embodiment.
  • FIG. 5A is a diagram illustrating an example of a semiconductor device according to the fifth embodiment.
  • FIG. 5B is a diagram illustrating an example of a semiconductor device according to the fifth embodiment.
  • FIG. 6A is a diagram illustrating an example of a semiconductor device according to the sixth embodiment.
  • FIG. 6B is a diagram illustrating an example of a semiconductor device according to the sixth embodiment.
  • FIG. 7A is a diagram illustrating an example of a semiconductor device according to the seventh embodiment.
  • FIG. 7B is a diagram illustrating an example of a semiconductor device according to the seventh embodiment.
  • FIG. 8 is a diagram illustrating an application example of the semiconductor device according to the present embodiment.
  • the semiconductor device according to the first embodiment includes a plurality of signal output circuits as shown in FIGS. 1A and 1B.
  • 1A and 1B are diagrams illustrating an example of a signal output circuit included in the semiconductor device according to the first embodiment.
  • the first signal output circuit shown in FIG. 1A includes N-type MOS transistors MN101, MN102, MN103, MN104, and an amplifier unit 11.
  • Two N-type MOS transistors MN101 and MN102 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND.
  • the voltage at the connection point of the two N-type MOS transistors MN101 and MN102 is output as the signal SINA.
  • the N-type MOS transistors MN101 and MN102 have gates connected to a signal line that supplies the power supply voltage VDD, and back gates connected to a signal line that supplies the reference voltage GND.
  • Two N-type MOS transistors MN103 and MN104 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND.
  • the voltage at the connection point between the two N-type MOS transistors MN103 and MN104 is output as the signal SINB.
  • the N-type MOS transistors MN103 and MN104 have their gates connected to a signal line that supplies the power supply voltage VDD, and their back gates connected to a signal line that supplies the reference voltage GND.
  • the signal SINA is input to the input terminal INA, and the signal SINB is input to the input terminal INB. Based on the input signal SINA and the voltage of the signal SINB, the amplifying unit 11 outputs a signal “1” at the power supply voltage VDD level or a signal “0” at the reference voltage GND level as the output signal SOUT from the output terminal OUT. Output.
  • the function of the amplifying unit 11 is realized by a level shifter (level shift circuit) having P-type MOS transistors MP11 and MP12 and N-type MOS transistors MN11 and MN12. By using a level shifter (level shift circuit) as the amplifying unit 11, it is possible to prevent an excessive through current from flowing, and to reduce current consumption.
  • the P-type MOS transistor MP11 and the N-type MOS transistor MN11 are connected in series in this order from the signal line supplying the power supply voltage VDD. Connected to.
  • the P-type MOS transistor MP12 and the N-type MOS transistor MN12 are arranged in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND. Connected in series.
  • the signal SINA is input to the gate of the N-type MOS transistor MN11, and the signal SINB is input to the gate of the N-type MOS transistor MN12.
  • the gate of the P-type MOS transistor MP11 is connected to the connection point between the P-type MOS transistor MP12 and the N-type MOS transistor MN12, and the gate of the P-type MOS transistor MP12 is connected to the P-type MOS transistor MP11 and the N-type MOS transistor MN11. Connected to the connection point.
  • the voltage at the connection point between the P-type MOS transistor MP12 and the N-type MOS transistor MN12 is output as the output signal SOUT.
  • the threshold voltages of the N-type MOS transistors MN101 and MN104 are the same voltage and are higher than the power supply voltage VDD.
  • the threshold voltages of the N-type MOS transistors MN102 and MN103 are the same voltage, which is a general (standard) threshold voltage (for example, about +0.5 V).
  • Transistor threshold voltage control is realized by channel implant doping control that changes the doping amount for the channel, gate oxide film thickness control that changes the gate oxide thickness, and back gate voltage control that uses the back gate effect. Is possible. Note that in the drawing, (HVT) is added to indicate that the transistor has a high threshold voltage (the same applies to the following embodiments).
  • the layout of the two N-type MOS transistors MN101 and MN102 and the layout of the two N-type MOS transistors MN103 and MN104 have the same shape including the wirings related to them. That is, the layout and wiring shape of the N-type MOS transistors MN101 and MN103 are the same, and the layout and wiring shape of the N-type MOS transistors MN102 and MN104 are the same.
  • the gate lengths and gate widths of the N-type MOS transistors MN101 and MN103 are the same, and the gate lengths and gate widths of the N-type MOS transistors MN102 and MN104 are the same.
  • the layouts and wiring shapes of the N-type MOS transistors MN101 and MN103 are the same, it is indistinguishable in terms of which transistor has a threshold higher than the power supply voltage VDD.
  • the layouts and wiring shapes of the N-type MOS transistors MN102 and MN104 are the same, it cannot be distinguished in terms of which transistor has a threshold value higher than the power supply voltage VDD.
  • the N-type MOS transistors MN101 and MN104 having a threshold voltage higher than the power supply voltage VDD are turned off, and the N-type having a general (standard) threshold voltage is set.
  • the MOS transistors MN102 and MN103 are turned on. Therefore, the voltage at the connection point of the N-type MOS transistors MN101 and MN102 (signal SINA) is substantially the reference voltage GND, and the voltage at the connection point of the N-type MOS transistors MN103 and MN104 (signal SINB) is N from the power supply voltage VDD.
  • the threshold voltage VTH of the type MOS transistor MN103 is lower (VDD ⁇ VTH).
  • the circuit shown in FIG. 1A outputs a signal of “0” at the reference voltage GND level as the output signal SOUT.
  • the second signal output circuit shown in FIG. 1B includes N-type MOS transistors MN105, MN106, MN107, MN108, and an amplifying unit 11.
  • the same components as those shown in FIG. 1A are denoted by the same reference numerals, and redundant description is omitted.
  • Two N-type MOS transistors MN105 and MN106 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND.
  • the voltage at the connection point of the two N-type MOS transistors MN105 and MN106 is output as the signal SINA.
  • the N-type MOS transistors MN105 and MN106 have gates connected to a signal line that supplies the power supply voltage VDD, and back gates connected to a signal line that supplies the reference voltage GND.
  • Two N-type MOS transistors MN107 and MN108 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND.
  • the voltage at the connection point between the two N-type MOS transistors MN107 and MN108 is output as the signal SINB.
  • the N-type MOS transistors MN107 and MN108 have gates connected to a signal line that supplies a power supply voltage VDD, and back gates connected to a signal line that supplies a reference voltage GND.
  • the threshold voltages of the N-type MOS transistors MN106 and MN107 are the same voltage and are higher than the power supply voltage VDD.
  • the threshold voltages of the N-type MOS transistors MN105 and MN108 are the same voltage and are general (standard) threshold voltages. That is, for each of the two N-type MOS transistors that output the signal SINA and the two N-type MOS transistors that output the signal SINB, the arrangement of the transistors is changed, and a circuit configuration that outputs the signals SINA and SINB is obtained. This is the reverse of that shown in FIG. 1A.
  • the layout of the two N-type MOS transistors MN105 and MN106 and the layout of the two N-type MOS transistors MN107 and MN108 have the same shape including the wirings related to them.
  • N-type MOS transistors MN105 and MN107 have the same layout and wiring shapes, and N-type MOS transistors MN106 and MN108 have the same layout and wiring shapes. Therefore, in the N-type MOS transistors MN105 and MN107, it is not apparent from the outside whether the transistor having a threshold value higher than the power supply voltage VDD is present. It is indistinguishable in terms of which transistor has a high threshold.
  • the N-type MOS transistors MN106 and MN107 having a threshold voltage higher than the power supply voltage VDD are turned off, and the N-type having a general (standard) threshold voltage is applied.
  • the MOS transistors MN105 and MN108 are turned on. Accordingly, the voltage (signal SINA) at the connection point of the N-type MOS transistors MN105 and MN106 is lower than the power supply voltage VDD by the threshold value VTH of the N-type MOS transistor MN105 (VDD ⁇ VTH), and the N-type MOS transistors MN107,
  • the voltage (signal SINB) at the connection point of the MN 108 is substantially the reference voltage GND.
  • the circuit shown in FIG. 1B outputs a signal of “1” at the power supply voltage VDD level as the output signal SOUT.
  • transistors having different characteristics are used, the layout and wiring shape are the same, but two signal output circuits that realize different functions are used, and output signals are output in accordance with signals from the two signal output circuits.
  • the level of is determined. As a result, the operation cannot be reproduced simply by reading the circuit diagram from the layout, and the reproduction of the semiconductor device by reverse engineering can be made difficult.
  • the size can be realized by 8 transistors equivalent to a 4-input NAND, and a large number of signal output circuits are mounted in an automatic placement and wiring area on a semiconductor chip. be able to.
  • a large number of signal output circuits in this embodiment are mounted on a semiconductor chip, it is necessary to identify all functions (output states) of these signal output circuits when performing reverse engineering. In the method used, it is very difficult and unrealistic to analyze all the signal output circuits mounted.
  • the semiconductor device includes two N-type MOS transistors connected in series between the signal line that supplies the power supply voltage VDD and the signal line that supplies the reference voltage GND in the first embodiment. Two P-type MOS transistors are provided.
  • the semiconductor device according to the second embodiment has a plurality of signal output circuits as shown in FIGS. 2A and 2B.
  • 2A and 2B are diagrams illustrating examples of signal output circuits included in the semiconductor device according to the second embodiment.
  • the first signal output circuit shown in FIG. 2A includes P-type MOS transistors MP201, MP202, MP203, MP204, and an amplifying unit 21.
  • Two P-type MOS transistors MP201 and MP202 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND.
  • the voltage at the connection point of the two P-type MOS transistors MP201 and MP202 is output as the signal SINA.
  • the gate is connected to a signal line that supplies a reference voltage GND, and the back gate is connected to a signal line that supplies a power supply voltage VDD.
  • Two P-type MOS transistors MP203 and MP204 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND.
  • the voltage at the connection point between the two P-type MOS transistors MP203 and MP204 is output as the signal SINB.
  • the gate is connected to a signal line that supplies the reference voltage GND, and the back gate is connected to a signal line that supplies the power supply voltage VDD.
  • the signal SINA is input to the input terminal INA
  • the signal SINB is input to the input terminal INB.
  • the amplifying unit 21 Based on the input signal SINA and the voltage of the signal SINB, the amplifying unit 21 outputs a signal “1” at the power supply voltage VDD level or a signal “0” at the reference voltage GND level as the output signal SOUT from the output terminal OUT. Output.
  • the function of the amplifying unit 21 is realized by a level shifter (level shift circuit) having P-type MOS transistors MP21 and MP22 and N-type MOS transistors MN21 and MN22.
  • the P-type MOS transistor MP21 and the N-type MOS transistor MN21 are connected in series in this order from the signal line supplying the power supply voltage VDD. Connected to.
  • the P-type MOS transistor MP22 and the N-type MOS transistor MN22 are arranged in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND. Connected in series.
  • the signal SINA is input to the gate of the P-type MOS transistor MP21, and the signal SINB is input to the gate of the P-type MOS transistor MP22.
  • the gate of the N-type MOS transistor MN21 is connected to the connection point between the P-type MOS transistor MP22 and the N-type MOS transistor MN22, and the gate of the N-type MOS transistor MN22 is connected between the P-type MOS transistor MP21 and the N-type MOS transistor MN21. Connected to the connection point.
  • the voltage at the connection point between the P-type MOS transistor MP22 and the N-type MOS transistor MN22 is output as the output signal SOUT.
  • the threshold voltages of the P-type MOS transistors MP201 and MP204 are the same voltage, which is lower than the value of (reference voltage GND ⁇ power supply voltage VDD). Further, the threshold voltages of the P-type MOS transistors MP202 and MP203 are the same voltage, and are general (standard) threshold voltages. Control of the threshold voltage of the transistor can be realized by channel implant doping control, gate oxide film thickness control, back gate voltage control, and the like, as in the first embodiment.
  • the layout of the two P-type MOS transistors MP201 and MP202 and the layout of the two P-type MOS transistors MP203 and MP204 have the same shape including the wirings related to them. That is, the layout and wiring shape of the P-type MOS transistors MP201 and MP203 are the same, and the layout and wiring shape of the P-type MOS transistors MP202 and MP204 are the same.
  • the P-type MOS transistors MP201 and MP203 have the same gate length and gate width
  • the P-type MOS transistors MP202 and MP204 have the same gate length and gate width.
  • the P-type MOS transistors MP201 and MP204 having a threshold voltage lower than the value of (reference voltage GND ⁇ power supply voltage VDD) are turned off, and the general (standard) ) P-type MOS transistors MP202 and MP203 having a threshold voltage are turned on. Therefore, the voltage (signal SINA) at the connection point between the P-type MOS transistors MP201 and MP202 becomes (GND +
  • the voltage (signal SINB) at the connection point of the transistors MP203 and MP204 is substantially the power supply voltage VDD.
  • the circuit shown in FIG. 2A outputs a signal of “0” at the reference voltage GND level as the output signal SOUT.
  • the second signal output circuit shown in FIG. 2B includes P-type MOS transistors MP205, MP206, MP207, MP208, and an amplifying unit 21.
  • the same components as those shown in FIG. 2A are denoted by the same reference numerals, and redundant description is omitted.
  • Two P-type MOS transistors MP205 and MP206 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND.
  • the voltage at the connection point between the two P-type MOS transistors MP205 and MP206 is output as the signal SINA.
  • the gates are connected to a signal line that supplies the reference voltage GND, and the back gates are connected to a signal line that supplies the power supply voltage VDD.
  • Two P-type MOS transistors MP207 and MP208 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND.
  • the voltage at the connection point between the two P-type MOS transistors MP207 and MP208 is output as the signal SINB.
  • the gates are connected to a signal line that supplies the reference voltage GND, and the back gates are connected to the signal line that supplies the power supply voltage VDD.
  • the threshold voltages of the P-type MOS transistors MP206 and MP207 are the same voltage, and are lower than the value of (reference voltage GND ⁇ power supply voltage VDD). Further, the threshold voltages of the P-type MOS transistors MP205 and MP208 are the same voltage, and are general (standard) threshold voltages. That is, for each of the two P-type MOS transistors that output the signal SINA and the two P-type MOS transistors that output the signal SINB, the arrangement of the transistors is changed, and a circuit configuration that outputs the signals SINA and SINB is obtained. This is the reverse of that shown in FIG. 2A.
  • the layout of the two P-type MOS transistors MP205 and MP206 and the layout of the two P-type MOS transistors MP207 and MP208 have the same shape including the wirings related to them.
  • the layout and wiring shape of the P-type MOS transistors MP205 and MP207 are the same, and the layout and wiring shape of the P-type MOS transistors MP206 and MP208 are the same.
  • the P-type MOS transistors MP206 and MP207 having a threshold voltage lower than the value of (reference voltage GND ⁇ power supply voltage VDD) are turned off.
  • P-type MOS transistors MP205 and MP208 having a threshold voltage are turned on. Therefore, the voltage at the connection point of the P-type MOS transistors MP205 and MP206 (signal SINA) is substantially the power supply voltage VDD, and the voltage at the connection point of the P-type MOS transistors MP207 and MP208 (signal SINB) is P from the reference voltage GND. (GND +
  • the circuit shown in FIG. 2B outputs a signal of “1” at the power supply voltage VDD level as the output signal SOUT.
  • the semiconductor device according to the third embodiment has a plurality of signal output circuits as shown in FIGS. 3A and 3B.
  • 3A and 3B are diagrams illustrating examples of signal output circuits included in the semiconductor device according to the third embodiment.
  • the first signal output circuit shown in FIG. 3A includes N-type MOS transistors MN301, MN302, MN303, MN304, MN305, and an amplifier unit 11.
  • the N-type transistor MN305 is a transistor having a general (standard) threshold voltage, and is connected between a signal line that supplies the power supply voltage VDD and a signal line that supplies a voltage lower than the power supply voltage VDD. At the same time, the gate is connected to a signal line for supplying the power supply voltage VDD. That is, the N-type transistor MN305 is diode-connected to the signal line that supplies the power supply voltage VDD. Therefore, the voltage of the signal line that supplies a voltage lower than the power supply voltage VDD is lower than the power supply voltage VDD by the threshold voltage VTH of the N-type transistor MN305 (VDD ⁇ VTH).
  • the N-type MOS transistors MN301, MN302, MN303, MN304 and the amplification unit 11 are the same as the N-type MOS transistors MN101, MN102, MN103, MN104 and the amplification unit 11 shown in FIG. 1A, respectively.
  • the two N-type MOS transistors MN301 and MN302 are connected in series between a signal line that supplies a voltage (VDD-VTH) and a signal line that supplies a reference voltage GND.
  • the two N-type MOS transistors MN303 and MN304 are connected in series between a signal line that supplies a voltage (VDD ⁇ VTH) and a signal line that supplies a reference voltage GND.
  • the gates of the N-type MOS transistors MN301, MN302, MN303, and MN304 are connected to a signal line that supplies a voltage (VDD-VTH).
  • the N-type MOS transistors MN301 and MN304 are turned off, and the N-type MOS transistors MN302 and MN303 are turned on. Therefore, the voltage (signal SINA) at the connection point of the N-type MOS transistors MN301 and MN302 is substantially the reference voltage GND, and the voltage (signal SINB) at the connection point of the N-type MOS transistors MN303 and MN304 is the voltage (VDD ⁇ VTH). ) Lower than the threshold voltage VTH of the N-type MOS transistor MN303 (VDD ⁇ 2VTH). Therefore, the circuit shown in FIG. 3A outputs a signal of “0” at the reference voltage GND level as the output signal SOUT.
  • the second signal output circuit shown in FIG. 3B includes N-type MOS transistors MN306, MN307, MN308, MN309, MN310, and the amplifying unit 11.
  • the N-type transistor MN310 is a transistor having a general (standard) threshold voltage, and is connected between a signal line that supplies the power supply voltage VDD and a signal line that supplies a voltage lower than the power supply voltage VDD. At the same time, the gate is connected to a signal line for supplying the power supply voltage VDD. That is, the N-type transistor MN310 is diode-connected to the signal line that supplies the power supply voltage VDD. Accordingly, the voltage of the signal line that supplies a voltage lower than the power supply voltage VDD is lower than the power supply voltage VDD by the threshold voltage VTH of the N-type transistor MN310 (VDD ⁇ VTH).
  • the N-type MOS transistors MN306, MN307, MN308, and MN309 and the amplifying unit 11 are the same as the N-type MOS transistors MN105, MN106, MN107, MN108, and the amplifying unit 11 shown in FIG. 1B, respectively.
  • the two N-type MOS transistors MN306 and MN307 are connected in series between a signal line that supplies a voltage (VDD-VTH) and a signal line that supplies a reference voltage GND.
  • the two N-type MOS transistors MN308 and MN309 are connected in series between a signal line that supplies a voltage (VDD ⁇ VTH) and a signal line that supplies a reference voltage GND.
  • the gates of the N-type MOS transistors MN306, MN307, MN308, and MN309 are connected to a signal line that supplies a voltage (VDD-VTH).
  • the N-type MOS transistors MN307 and MN308 are turned off, and the N-type MOS transistors MN306 and MN309 are turned on. Therefore, the voltage (signal SINA) at the connection point of the N-type MOS transistors MN306 and MN307 is lower than the voltage (VDD ⁇ VTH) by the threshold VTH of the N-type MOS transistor MN306 (VDD ⁇ 2VTH), and the N-type MOS
  • the voltage (signal SINB) at the connection point of the transistors MN308 and MN309 is substantially the reference voltage GND. Therefore, the circuit shown in FIG. 3B outputs a signal of “1” at the power supply voltage VDD level as the output signal SOUT.
  • a diode-connected N-type MOS transistor is provided on the power supply voltage VDD side, and a signal line for supplying a voltage lower than the power supply voltage VDD obtained by the N-type MOS transistor and a signal line for supplying the reference voltage GND are provided.
  • the third embodiment in which two N-type MOS transistors are connected in series with each other, the same effect as in the first embodiment can be obtained, and the reproduction of the semiconductor device by reverse engineering can be made difficult. .
  • the third embodiment is equivalent to lowering the power supply voltage in the first embodiment, power consumption can be reduced.
  • the semiconductor device according to the fourth embodiment has a plurality of signal output circuits as shown in FIGS. 4A and 4B.
  • 4A and 4B are diagrams illustrating examples of signal output circuits included in the semiconductor device according to the fourth embodiment.
  • the first signal output circuit shown in FIG. 4A includes N-type MOS transistors MN401, MN402, MN403, and MN404, and an amplifier unit 11.
  • the N-type MOS transistors MN401, MN402, MN403, and MN404 and the amplification unit 11 are the same as the N-type MOS transistors MN101, MN102, MN103, MN104, and the amplification unit 11 shown in FIG. 1A, respectively.
  • the gate of the N-type MOS transistor MN401 is connected to the signal line that supplies the voltage VDD
  • the gate of the N-type MOS transistor MN402 is connected to the connection point of the two N-type MOS transistors MN401 and MN402.
  • the gate of the N-type MOS transistor MN403 is connected to a signal line that supplies the voltage VDD
  • the gate of the N-type MOS transistor MN404 is connected to the connection point of the two N-type MOS transistors MN403 and MN404. That is, each of the N-type MOS transistors MN401, MN402, MN403, and MN404 is diode-connected.
  • the N-type MOS transistors MN401 and MN404 are turned off, and the N-type MOS transistors MN402 and MN403 are turned on. Therefore, the voltage (signal SINA) at the connection point of the N-type MOS transistors MN401 and MN402 is higher than the reference voltage GND by the threshold VTH of the N-type MOS transistor MN402 (GND + VTH), and the N-type MOS transistors MN403 and MN404
  • the voltage at the connection point (signal SINB) is lower than the power supply voltage VDD by the threshold value VTH of the N-type MOS transistor MN403 (VDD ⁇ VTH). Therefore, the circuit shown in FIG. 4A outputs a signal of “0” at the reference voltage GND level as the output signal SOUT.
  • the second signal output circuit shown in FIG. 4B includes N-type MOS transistors MN405, MN406, MN407, MN408, and an amplifying unit 11.
  • the N-type MOS transistors MN405, MN406, MN407, MN408 and the amplifying unit 11 are the same as the N-type MOS transistors MN105, MN106, MN107, MN108 and the amplifying unit 11 shown in FIG. 1B, respectively.
  • the gate of the N-type MOS transistor MN405 is connected to the signal line that supplies the voltage VDD
  • the gate of the N-type MOS transistor MN406 is connected to the connection point of the two N-type MOS transistors MN405 and MN406.
  • the gate of the N-type MOS transistor MN407 is connected to a signal line that supplies the voltage VDD
  • the gate of the N-type MOS transistor MN408 is connected to a connection point between the two N-type MOS transistors MN407 and MN408. That is, each of the N-type MOS transistors MN405, MN406, MN407, and MN408 is diode-connected.
  • the N-type MOS transistors MN406 and MN407 are turned off, and the N-type MOS transistors MN405 and MN408 are turned on. Therefore, the voltage (signal SINA) at the connection point of the N-type MOS transistors MN405 and MN406 is lower than the power supply voltage VDD by the threshold value VTH of the N-type MOS transistor MN405 (VDD ⁇ VTH), and the N-type MOS transistors MN407,
  • the voltage at the connection point of MN408 (signal SINB) is higher than the reference voltage GND by the threshold value VTH of the N-type MOS transistor MN408 (GND + VTH). Therefore, the circuit shown in FIG. 4B outputs a “1” signal at the power supply voltage VDD level as the output signal SOUT.
  • the same effects as those of the first embodiment can be obtained, making it difficult to reproduce the semiconductor device by reverse engineering and reducing the power consumption.
  • the semiconductor device according to the fifth embodiment has a plurality of signal output circuits as shown in FIGS. 5A and 5B.
  • 5A and 5B are diagrams illustrating examples of signal output circuits included in the semiconductor device according to the fifth embodiment.
  • the first signal output circuit shown in FIG. 5A includes a depletion type N-type MOS transistor MN501 and an enhancement type N-type MOS transistor MN502.
  • N-type MOS transistors MN501 and MN502 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND.
  • the voltage at the connection point of the type MOS transistors MN501 and MN502 is output as the output signal SOUT.
  • the gate of the N-type MOS transistor MN501 is connected to the connection point of the N-type MOS transistors MN501 and MN502, and the gate of the N-type MOS transistor MN502 is connected to a signal line that supplies the reference voltage GND. That is, the N-type MOS transistors MN501 and MN502 are diode-connected. Further, the back gates of the N-type MOS transistors MN501 and MN502 are connected to a signal line for supplying the reference voltage GND.
  • the depletion type N-type MOS transistor MN501 is turned on, and the enhancement type N-type MOS transistor MN502 is turned off. Therefore, the circuit shown in FIG. 5A outputs a signal “1” at the power supply voltage VDD level as the output signal SOUT.
  • the second signal output circuit shown in FIG. 5B includes an enhancement type N-type MOS transistor MN503 and a depletion type N-type MOS transistor MN504.
  • the N-type MOS transistor MN503 has the same layout and wiring shape as the N-type MOS transistor MN501
  • the N-type MOS transistor MN504 has the same layout and wiring shape as the N-type MOS transistor MN502.
  • N-type MOS transistors MN503 and MN504 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND.
  • the voltage at the connection point of the type MOS transistors MN503 and MN504 is output as the output signal SOUT.
  • the gate of the N-type MOS transistor MN503 is connected to the connection point of the N-type MOS transistors MN503 and MN504, and the gate of the N-type MOS transistor MN504 is connected to a signal line that supplies the reference voltage GND. That is, the N-type MOS transistors MN503 and MN504 are diode-connected. Further, the back gates of the N-type MOS transistors MN503 and MN504 are connected to a signal line that supplies the reference voltage GND.
  • the depletion type N-type MOS transistor MN504 is turned on, and the enhancement type N-type MOS transistor MN503 is turned off. Therefore, the circuit shown in FIG. 5B outputs a signal of “0” at the reference voltage GND level as the output signal SOUT.
  • the voltage at the connection point of the N-type MOS transistors MN501 and MN502 and the voltage at the connection point of the N-type MOS transistors MN503 and MN504 are the power supply voltage VDD level or Since it becomes the reference voltage GND level, an amplifying unit is unnecessary.
  • the signal output circuit included in the semiconductor device according to the fifth embodiment has fewer transistors than the signal output circuit shown in FIGS. 1A and 1B, and does not require an amplifier. The required area can be reduced, and a larger number of signal output circuits can be mounted in the automatic placement and wiring area on the semiconductor chip. Therefore, the reproduction of the semiconductor device by reverse engineering can be made more difficult. In addition, since almost no current flows, power consumption can be reduced.
  • the semiconductor device according to the sixth embodiment has a plurality of signal output circuits as shown in FIGS. 6A and 6B.
  • 6A and 6B are diagrams illustrating examples of signal output circuits included in the semiconductor device according to the sixth embodiment.
  • the first signal output circuit shown in FIG. 6A includes a depletion type P-type MOS transistor MP601 and an enhancement type P-type MOS transistor MP602.
  • P-type MOS transistors MP601 and MP602 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND.
  • the voltage at the connection point of the type MOS transistors MP601 and MP602 is output as the output signal SOUT.
  • the gate of the P-type MOS transistor MP601 is connected to the signal line that supplies the power supply voltage VDD
  • the gate of the P-type MOS transistor MP602 is connected to the connection point of the P-type MOS transistors MP601 and MP602. That is, the P-type MOS transistors MP601 and MP602 are diode-connected.
  • the back gates of the P-type MOS transistors MP601 and MP602 are connected to a signal line that supplies the power supply voltage VDD.
  • the depletion type P-type MOS transistor MP601 is turned on, and the enhancement type P-type MOS transistor MP602 is turned off. Therefore, the circuit shown in FIG. 6A outputs a signal of “1” at the power supply voltage VDD level as the output signal SOUT.
  • the second signal output circuit shown in FIG. 6B includes an enhancement type P-type MOS transistor MP603 and a depletion type P-type MOS transistor MP604.
  • the P-type MOS transistor MP603 has the same layout and wiring shape as the P-type MOS transistor MP601
  • the P-type MOS transistor MP604 has the same layout and wiring shape as the P-type MOS transistor MP602.
  • P-type MOS transistors MP603 and MP604 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND.
  • the voltage at the connection point of the type MOS transistors MP603 and MP604 is output as the output signal SOUT.
  • the gate of the P-type MOS transistor MP603 is connected to the signal line that supplies the power supply voltage VDD
  • the gate of the P-type MOS transistor MP604 is connected to the connection point of the P-type MOS transistors MP603 and MP604. That is, the P-type MOS transistors MP603 and MP604 are diode-connected.
  • the back gates of the P-type MOS transistors MP603 and MP604 are connected to a signal line that supplies the power supply voltage VDD.
  • the depletion type P-type MOS transistor MP604 is turned on, and the enhancement type P-type MOS transistor MP603 is turned off. Therefore, the circuit shown in FIG. 6B outputs a signal of “0” at the reference voltage GND level as the output signal SOUT. Also in the sixth embodiment, the voltage at the connection point of the P-type MOS transistors MP601 and MP602 and the voltage at the connection point of the P-type MOS transistors MP603 and MP604 are at the power supply voltage VDD level or the reference voltage GND level. An amplifying unit is unnecessary.
  • the same effect as that of the fifth embodiment can be obtained, and it is difficult to reproduce a semiconductor device by reverse engineering. And power consumption can be reduced.
  • the semiconductor device according to the seventh embodiment has a plurality of signal output circuits as shown in FIGS. 7A and 7B.
  • 7A and 7B are diagrams illustrating examples of signal output circuits included in the semiconductor device according to the seventh embodiment.
  • the first signal output circuit shown in FIG. 7A includes a P-type MOS transistor MP701 and an N-type MOS transistor MN701.
  • the P-type MOS transistor MP701 and the N-type MOS transistor MN701 have different withstand voltages, and in the example shown in FIG. 7A, the N-type MOS transistor MN701 is a high withstand voltage transistor.
  • the P-type MOS transistor MP701 and the N-type MOS transistor MN701 are connected in series in this order from the signal line supplying the power supply voltage VDD. And a voltage at a connection point between the P-type MOS transistor MP701 and the N-type MOS transistor MN701 is output as the output signal SOUT.
  • the gate is connected to the signal line that supplies the reference voltage GND, and the back gate is connected to the signal line that supplies the power supply voltage VDD.
  • the N-type MOS transistor MN701 has a gate connected to a signal line that supplies the power supply voltage VDD, and a back gate connected to a signal line that supplies the reference voltage GND.
  • the circuit shown in FIG. 7A outputs a signal having a high voltage VH close to the power supply voltage VDD as the output signal SOUT.
  • the second signal output circuit shown in FIG. 7B includes a P-type MOS transistor MP702 and an N-type MOS transistor MN702.
  • the P-type MOS transistor MP702 and the N-type MOS transistor MN702 have different withstand voltages.
  • the P-type MOS transistor MP702 is a high withstand voltage transistor.
  • the P-type MOS transistor MP702 has the same layout and wiring shape as the P-type MOS transistor MP701
  • the N-type MOS transistor MN702 has the same layout and wiring shape as the N-type MOS transistor MN701.
  • the P-type MOS transistor MP702 and the N-type MOS transistor MN702 are connected in series in this order from the signal line side supplying the power supply voltage VDD. And a voltage at a connection point between the P-type MOS transistor MP702 and the N-type MOS transistor MN702 is output as the output signal SOUT.
  • the P-type MOS transistor MP702 has a gate connected to a signal line that supplies the reference voltage GND, and a back gate connected to a signal line that supplies the power supply voltage VDD.
  • the N-type MOS transistor MN702 has a gate connected to a signal line that supplies the power supply voltage VDD, and a back gate connected to a signal line that supplies the reference voltage GND.
  • the circuit shown in FIG. 7B outputs a signal having a low voltage VL close to the reference voltage GND as the output signal SOUT.
  • the signal output circuit according to the seventh embodiment has a small number of transistors, and a larger number of signal output circuits can be mounted in the automatic placement and wiring area on the semiconductor chip. Therefore, the reproduction of the semiconductor device by reverse engineering can be made more difficult.
  • FIG. 8 is a diagram illustrating an application example of the semiconductor device in the present embodiment.
  • reference numeral 100 denotes a semiconductor chip including the semiconductor device according to the present embodiment.
  • outputs of a plurality of signal output circuits 120 are connected to a logic processing circuit unit 110 that performs various logic processes.
  • the logic processing circuit unit 110 performs a part or all of the logic processing using the output of the signal output circuit 120, so that the relationship between the input and output in the logic processing circuit unit 110 is the output state of the signal output circuit 120. Also depends.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

This semiconductor device includes: a plurality of first signal output circuits that each have a first transistor (MN101, MN105) and a second transistor (MN102, MN106) each having a gate to which a predetermined voltage is supplied, the first transistor and the second transistor being connected in series between a signal line for supplying a power supply voltage and a signal line for supplying a reference voltage, and that output a voltage at a connection point between the two transistors; and a plurality of second signal output terminals that each have a third transistor (MN103, MN107) and a fourth transistor (MN104, MN108) each having a gate to which a predetermined voltage is supplied, the third transistor and the fourth transistor being connected in series between a signal line for supplying a power supply voltage and a signal line for supplying a reference voltage, and that output a voltage at a connection point between the two transistors, wherein the third transistor and the first transistor are the same in layout and different in properties, and the fourth transistor and the second transistor are the same in layout and different in properties.

Description

半導体装置Semiconductor device
 本発明は、半導体装置に関し、詳しくはリバースエンジニアリングからの半導体装置の保護技術に関する。 The present invention relates to a semiconductor device, and more particularly to a technology for protecting a semiconductor device from reverse engineering.
 近年、半導体装置の不当なリバースエンジニアリングが増えてきている。リバースエンジニアリングの手法として、半導体装置が実装されたチップ表面からの光学的解析だけでなく、配線層を1層ずつ剥離して撮影し、得られた画像を重ね合わせ、ソフトウェアツールで配線情報を抽出し回路図を再現する技術も用いられている。 In recent years, unjust reverse engineering of semiconductor devices has increased. As a reverse engineering technique, not only optical analysis from the chip surface on which the semiconductor device is mounted, but also by separating and shooting the wiring layers one by one, overlaying the obtained images, and extracting wiring information with a software tool A technique for reproducing the circuit diagram is also used.
 リバースエンジニアリングを防止するための様々な方法が提案されている(例えば、特許文献1~9参照)。リバースエンジニアリングを防ぐために、例えば配線層に工夫を施したり、配線層よりも下層にある拡散層やバルクを利用したりすることにより、トランジスタの特性や接続情報を変えて、配線層を読み取るだけでは機能を再現できないようにする方法が提案されている。また、例えば、特許文献1には、ゲートをフローティング状態にしてトランジスタを使用し、トランジスタの特性ばらつきによる出力電圧の差を利用して信号を生成することで、リバースエンジニアリングによって半導体装置を再現することを困難にする技術が提案されている。 Various methods for preventing reverse engineering have been proposed (see, for example, Patent Documents 1 to 9). In order to prevent reverse engineering, for example, by modifying the transistor characteristics and connection information by devising the wiring layer or using a diffusion layer or bulk below the wiring layer, just reading the wiring layer Proposals have been made to prevent functions from being reproduced. Further, for example, in Patent Document 1, a semiconductor device is reproduced by reverse engineering by using a transistor with a gate in a floating state and generating a signal using a difference in output voltage due to variation in transistor characteristics. Techniques that make this difficult are proposed.
 しかしながら、前述した特許文献1に記載の技術では、以下のような問題がある。ゲートがフローティング状態であるために、電源電圧からグランドへ無駄な消費電流が流れるとともに、クロストーク等でノイズが入ると電圧変動が起こって動作や消費電流が安定しない。また、複数のトランジスタによって発生する出力電圧は、2値化された電圧ではなく連続したアナログ量になるため、それを受けるコンパレータには高精度のアナログ特性が要求され、消費電流やサイズが大きくなる。このような消費電流やサイズの制約によって、1チップ上に搭載できる個数に制約が発生する。また、リバースエンジニアリングを防止する他の方法においては、特殊なプロセスが必要になり、プロセス開発期間やコストが増加するといった問題がある。 However, the technique described in Patent Document 1 described above has the following problems. Since the gate is in a floating state, a wasteful consumption current flows from the power supply voltage to the ground, and when noise occurs due to crosstalk or the like, voltage fluctuation occurs and the operation and current consumption are not stable. In addition, since the output voltage generated by a plurality of transistors is not a binarized voltage but a continuous analog amount, a comparator that receives the output requires high-precision analog characteristics, which increases current consumption and size. . Due to such current consumption and size restrictions, there are restrictions on the number of chips that can be mounted on one chip. Another method for preventing reverse engineering requires a special process, which increases the process development period and cost.
米国特許第9437555号明細書U.S. Pat. No. 9433755 特開平6-163539号公報JP-A-6-163539 特開平9-92727号公報JP-A-9-92727 米国特許第6117762号明細書US Pat. No. 6,117,762 米国特許第6979606号明細書US Pat. No. 6,796,606 米国特許第7128271号明細書US Pat. No. 7,128,271 米国特許第9337156号明細書U.S. Pat. No. 9,337,156 特表2004-518273号公報JP-T-2004-518273 特開2014-135386号公報JP 2014-135386 A
 本発明の目的は、リバースエンジニアリングによる半導体装置の再現を困難にする半導体装置を提供することである。 An object of the present invention is to provide a semiconductor device that makes it difficult to reproduce the semiconductor device by reverse engineering.
 本発明に係る半導体装置は、第1の電圧を供給する信号線と前記第1の電圧より低い第2の電圧を供給する信号線との間に直列に接続されるとともに、それぞれのゲートに所定の電圧が供給される第1のトランジスタ及び第2のトランジスタを有し、前記第1のトランジスタと前記第2のトランジスタの接続点の電圧を出力する、複数の第1の信号出力回路と、前記第1の電圧を供給する信号線と前記第2の電圧を供給する信号線との間に直列に接続されるとともに、それぞれのゲートに所定の電圧が供給される第3のトランジスタ及び第4のトランジスタを有し、前記第3のトランジスタは前記第1のトランジスタと同じレイアウトで特性が異なり、前記第4のトランジスタは前記第2のトランジスタと同じレイアウトで特性が異なり、前記第3のトランジスタと前記第4のトランジスタの接続点の電圧を出力する、複数の第2の信号出力回路とを含むことを特徴とする。 The semiconductor device according to the present invention is connected in series between a signal line for supplying a first voltage and a signal line for supplying a second voltage lower than the first voltage, and each gate has a predetermined value. A plurality of first signal output circuits that output a voltage at a connection point of the first transistor and the second transistor; A third transistor and a fourth transistor are connected in series between a signal line supplying a first voltage and a signal line supplying the second voltage, and a predetermined voltage is supplied to each gate. The third transistor has different characteristics with the same layout as the first transistor, the fourth transistor has different characteristics with the same layout as the second transistor, Serial and outputs the third transistor and the voltage at the connection point of said fourth transistor, characterized in that it comprises a plurality of second signal output circuit.
 本発明によれば、リバースエンジニアリングによる半導体装置の再現を困難にする半導体装置を提供することができる。 According to the present invention, it is possible to provide a semiconductor device that makes it difficult to reproduce the semiconductor device by reverse engineering.
図1Aは、第1の実施形態における半導体装置の例を示す図である。FIG. 1A is a diagram illustrating an example of a semiconductor device according to the first embodiment. 図1Bは、第1の実施形態における半導体装置の例を示す図である。FIG. 1B is a diagram illustrating an example of the semiconductor device according to the first embodiment. 図2Aは、第2の実施形態における半導体装置の例を示す図である。FIG. 2A is a diagram illustrating an example of a semiconductor device according to the second embodiment. 図2Bは、第2の実施形態における半導体装置の例を示す図である。FIG. 2B is a diagram illustrating an example of a semiconductor device according to the second embodiment. 図3Aは、第3の実施形態における半導体装置の例を示す図である。FIG. 3A is a diagram illustrating an example of a semiconductor device according to the third embodiment. 図3Bは、第3の実施形態における半導体装置の例を示す図である。FIG. 3B is a diagram illustrating an example of a semiconductor device according to the third embodiment. 図4Aは、第4の実施形態における半導体装置の例を示す図である。FIG. 4A is a diagram illustrating an example of a semiconductor device according to the fourth embodiment. 図4Bは、第4の実施形態における半導体装置の例を示す図である。FIG. 4B is a diagram illustrating an example of a semiconductor device according to the fourth embodiment. 図5Aは、第5の実施形態における半導体装置の例を示す図である。FIG. 5A is a diagram illustrating an example of a semiconductor device according to the fifth embodiment. 図5Bは、第5の実施形態における半導体装置の例を示す図である。FIG. 5B is a diagram illustrating an example of a semiconductor device according to the fifth embodiment. 図6Aは、第6の実施形態における半導体装置の例を示す図である。FIG. 6A is a diagram illustrating an example of a semiconductor device according to the sixth embodiment. 図6Bは、第6の実施形態における半導体装置の例を示す図である。FIG. 6B is a diagram illustrating an example of a semiconductor device according to the sixth embodiment. 図7Aは、第7の実施形態における半導体装置の例を示す図である。FIG. 7A is a diagram illustrating an example of a semiconductor device according to the seventh embodiment. 図7Bは、第7の実施形態における半導体装置の例を示す図である。FIG. 7B is a diagram illustrating an example of a semiconductor device according to the seventh embodiment. 図8は、本実施形態における半導体装置の適用例を示す図である。FIG. 8 is a diagram illustrating an application example of the semiconductor device according to the present embodiment.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1の実施形態)
 本発明の第1の実施形態について説明する。第1の実施形態における半導体装置は、図1A及び図1Bに示すような信号出力回路を複数有する。図1A及び図1Bは、第1の実施形態における半導体装置が有する信号出力回路の例を示す図である。図1Aに示す第1の信号出力回路は、N型MOSトランジスタMN101、MN102、MN103、MN104、及び増幅部11を有する。
(First embodiment)
A first embodiment of the present invention will be described. The semiconductor device according to the first embodiment includes a plurality of signal output circuits as shown in FIGS. 1A and 1B. 1A and 1B are diagrams illustrating an example of a signal output circuit included in the semiconductor device according to the first embodiment. The first signal output circuit shown in FIG. 1A includes N-type MOS transistors MN101, MN102, MN103, MN104, and an amplifier unit 11.
 電源電圧VDDを供給する信号線と基準電圧GNDを供給する信号線との間に、電源電圧VDDを供給する信号線側から2つのN型MOSトランジスタMN101、MN102が、この順で直列に接続され、2つのN型MOSトランジスタMN101、MN102の接続点の電圧が信号SINAとして出力される。N型MOSトランジスタMN101、MN102は、ゲートが電源電圧VDDを供給する信号線に接続され、バックゲートが基準電圧GNDを供給する信号線に接続される。 Two N-type MOS transistors MN101 and MN102 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND. The voltage at the connection point of the two N-type MOS transistors MN101 and MN102 is output as the signal SINA. The N-type MOS transistors MN101 and MN102 have gates connected to a signal line that supplies the power supply voltage VDD, and back gates connected to a signal line that supplies the reference voltage GND.
 また、電源電圧VDDを供給する信号線と基準電圧GNDを供給する信号線との間に、電源電圧VDDを供給する信号線側から2つのN型MOSトランジスタMN103、MN104が、この順で直列に接続され、2つのN型MOSトランジスタMN103、MN104の接続点の電圧が信号SINBとして出力される。N型MOSトランジスタMN103、MN104は、ゲートが電源電圧VDDを供給する信号線に接続され、バックゲートが基準電圧GNDを供給する信号線に接続される。 Two N-type MOS transistors MN103 and MN104 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND. The voltage at the connection point between the two N-type MOS transistors MN103 and MN104 is output as the signal SINB. The N-type MOS transistors MN103 and MN104 have their gates connected to a signal line that supplies the power supply voltage VDD, and their back gates connected to a signal line that supplies the reference voltage GND.
 増幅部11は、入力端子INAに信号SINAが入力されるとともに、入力端子INBに信号SINBが入力される。増幅部11は、入力される信号SINA及び信号SINBの電圧に基づいて、出力端子OUTから出力信号SOUTとして、電源電圧VDDレベルの‘1’の信号又は基準電圧GNDレベルの‘0’の信号を出力する。本実施形態では一例として、P型MOSトランジスタMP11、MP12及びN型MOSトランジスタMN11、MN12を有するレベルシフタ(レベルシフト回路)により増幅部11の機能を実現する。増幅部11としてレベルシフタ(レベルシフト回路)を用いることで余計な貫通電流が流れることを防止することができ、消費電流を低減することができる。 In the amplifying unit 11, the signal SINA is input to the input terminal INA, and the signal SINB is input to the input terminal INB. Based on the input signal SINA and the voltage of the signal SINB, the amplifying unit 11 outputs a signal “1” at the power supply voltage VDD level or a signal “0” at the reference voltage GND level as the output signal SOUT from the output terminal OUT. Output. In this embodiment, as an example, the function of the amplifying unit 11 is realized by a level shifter (level shift circuit) having P-type MOS transistors MP11 and MP12 and N-type MOS transistors MN11 and MN12. By using a level shifter (level shift circuit) as the amplifying unit 11, it is possible to prevent an excessive through current from flowing, and to reduce current consumption.
 電源電圧VDDを供給する信号線と基準電圧GNDを供給する信号線との間に、電源電圧VDDを供給する信号線側からP型MOSトランジスタMP11とN型MOSトランジスタMN11とが、この順で直列に接続される。また、電源電圧VDDを供給する信号線と基準電圧GNDを供給する信号線との間に、電源電圧VDDを供給する信号線側からP型MOSトランジスタMP12とN型MOSトランジスタMN12とが、この順で直列に接続される。 Between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND, the P-type MOS transistor MP11 and the N-type MOS transistor MN11 are connected in series in this order from the signal line supplying the power supply voltage VDD. Connected to. The P-type MOS transistor MP12 and the N-type MOS transistor MN12 are arranged in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND. Connected in series.
 N型MOSトランジスタMN11のゲートには信号SINAが入力され、N型MOSトランジスタMN12のゲートには信号SINBが入力される。また、P型MOSトランジスタMP11のゲートがP型MOSトランジスタMP12とN型MOSトランジスタMN12との接続点に接続され、P型MOSトランジスタMP12のゲートがP型MOSトランジスタMP11とN型MOSトランジスタMN11との接続点に接続される。P型MOSトランジスタMP12とN型MOSトランジスタMN12との接続点の電圧が出力信号SOUTとして出力される。 The signal SINA is input to the gate of the N-type MOS transistor MN11, and the signal SINB is input to the gate of the N-type MOS transistor MN12. The gate of the P-type MOS transistor MP11 is connected to the connection point between the P-type MOS transistor MP12 and the N-type MOS transistor MN12, and the gate of the P-type MOS transistor MP12 is connected to the P-type MOS transistor MP11 and the N-type MOS transistor MN11. Connected to the connection point. The voltage at the connection point between the P-type MOS transistor MP12 and the N-type MOS transistor MN12 is output as the output signal SOUT.
 ここで、N型MOSトランジスタMN101、MN104のしきい値電圧は、同じ電圧とし、電源電圧VDDよりも高い値である。また、N型MOSトランジスタMN102、MN103のしきい値電圧は、同じ電圧とし、一般的(標準的)なしきい値電圧(例えば+0.5V程度)である。トランジスタのしきい値電圧の制御は、チャネルに対するドープ量を変えるチャネルインプラントドーピング制御、ゲート酸化膜の厚さを変えるゲート酸化膜厚制御、バックゲート効果を利用するためのバックゲート電圧制御等により実現することが可能である。なお、図示において、(HVT)を付記して記載したものが高いしきい値電圧を持つトランジスタであることを示す(以下の実施形態においても同様)。 Here, the threshold voltages of the N-type MOS transistors MN101 and MN104 are the same voltage and are higher than the power supply voltage VDD. In addition, the threshold voltages of the N-type MOS transistors MN102 and MN103 are the same voltage, which is a general (standard) threshold voltage (for example, about +0.5 V). Transistor threshold voltage control is realized by channel implant doping control that changes the doping amount for the channel, gate oxide film thickness control that changes the gate oxide thickness, and back gate voltage control that uses the back gate effect. Is possible. Note that in the drawing, (HVT) is added to indicate that the transistor has a high threshold voltage (the same applies to the following embodiments).
 また、2つのN型MOSトランジスタMN101、MN102のレイアウトと、2つのN型MOSトランジスタMN103、MN104のレイアウトとは、それらに係る配線も含めて同じ形状になっている。すなわち、N型MOSトランジスタMN101、MN103のレイアウト及び配線の形状が同じであり、N型MOSトランジスタMN102、MN104のレイアウト及び配線の形状が同じである。例えば、N型MOSトランジスタMN101、MN103のゲート長及びゲート幅は同じであり、N型MOSトランジスタMN102、MN104のゲート長及びゲート幅は同じである。 Further, the layout of the two N-type MOS transistors MN101 and MN102 and the layout of the two N-type MOS transistors MN103 and MN104 have the same shape including the wirings related to them. That is, the layout and wiring shape of the N-type MOS transistors MN101 and MN103 are the same, and the layout and wiring shape of the N-type MOS transistors MN102 and MN104 are the same. For example, the gate lengths and gate widths of the N-type MOS transistors MN101 and MN103 are the same, and the gate lengths and gate widths of the N-type MOS transistors MN102 and MN104 are the same.
 このようにN型MOSトランジスタMN101、MN103のレイアウト及び配線の形状を同じにしているため、電源電圧VDDよりも高いしきい値のトランジスタがどちらであるかは外見上では区別がつかない。同様に、N型MOSトランジスタMN102、MN104のレイアウト及び配線の形状を同じにしているため、電源電圧VDDよりも高いしきい値のトランジスタがどちらであるかは外見上では区別がつかない。 As described above, since the layouts and wiring shapes of the N-type MOS transistors MN101 and MN103 are the same, it is indistinguishable in terms of which transistor has a threshold higher than the power supply voltage VDD. Similarly, since the layouts and wiring shapes of the N-type MOS transistors MN102 and MN104 are the same, it cannot be distinguished in terms of which transistor has a threshold value higher than the power supply voltage VDD.
 図1Aに示したように接続された回路では、電源電圧VDDよりも高いしきい値電圧のN型MOSトランジスタMN101、MN104はオフ状態になり、一般的(標準的)なしきい値電圧のN型MOSトランジスタMN102、MN103はオン状態になる。したがって、N型MOSトランジスタMN101、MN102の接続点の電圧(信号SINA)は、ほぼ基準電圧GNDになり、N型MOSトランジスタMN103、MN104の接続点の電圧(信号SINB)は、電源電圧VDDよりN型MOSトランジスタMN103のしきい値VTH分低い(VDD-VTH)になる。 In the circuit connected as shown in FIG. 1A, the N-type MOS transistors MN101 and MN104 having a threshold voltage higher than the power supply voltage VDD are turned off, and the N-type having a general (standard) threshold voltage is set. The MOS transistors MN102 and MN103 are turned on. Therefore, the voltage at the connection point of the N-type MOS transistors MN101 and MN102 (signal SINA) is substantially the reference voltage GND, and the voltage at the connection point of the N-type MOS transistors MN103 and MN104 (signal SINB) is N from the power supply voltage VDD. The threshold voltage VTH of the type MOS transistor MN103 is lower (VDD−VTH).
 このとき、増幅部(レベルシフタ)11では、P型MOSトランジスタMP11及びN型MOSトランジスタMN12はオン状態になり、P型MOSトランジスタMP12及びN型MOSトランジスタMN11はオフ状態になる。したがって、図1Aに示した回路は、出力信号SOUTとして、基準電圧GNDレベルの‘0’の信号を出力する。 At this time, in the amplification unit (level shifter) 11, the P-type MOS transistor MP11 and the N-type MOS transistor MN12 are turned on, and the P-type MOS transistor MP12 and the N-type MOS transistor MN11 are turned off. Accordingly, the circuit shown in FIG. 1A outputs a signal of “0” at the reference voltage GND level as the output signal SOUT.
 次に、図1Bに示す第2の信号出力回路は、N型MOSトランジスタMN105、MN106、MN107、MN108、及び増幅部11を有する。なお、図1Bにおいて、図1Aに示した構成要素と同一の構成要素には同一の符号を付し、重複する説明は省略する。 Next, the second signal output circuit shown in FIG. 1B includes N-type MOS transistors MN105, MN106, MN107, MN108, and an amplifying unit 11. In FIG. 1B, the same components as those shown in FIG. 1A are denoted by the same reference numerals, and redundant description is omitted.
 電源電圧VDDを供給する信号線と基準電圧GNDを供給する信号線との間に、電源電圧VDDを供給する信号線側から2つのN型MOSトランジスタMN105、MN106が、この順で直列に接続され、2つのN型MOSトランジスタMN105、MN106の接続点の電圧が信号SINAとして出力される。N型MOSトランジスタMN105、MN106は、ゲートが電源電圧VDDを供給する信号線に接続され、バックゲートが基準電圧GNDを供給する信号線に接続される。 Two N-type MOS transistors MN105 and MN106 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND. The voltage at the connection point of the two N-type MOS transistors MN105 and MN106 is output as the signal SINA. The N-type MOS transistors MN105 and MN106 have gates connected to a signal line that supplies the power supply voltage VDD, and back gates connected to a signal line that supplies the reference voltage GND.
 また、電源電圧VDDを供給する信号線と基準電圧GNDを供給する信号線との間に、電源電圧VDDを供給する信号線側から2つのN型MOSトランジスタMN107、MN108が、この順で直列に接続され、2つのN型MOSトランジスタMN107、MN108の接続点の電圧が信号SINBとして出力される。N型MOSトランジスタMN107、MN108は、ゲートが電源電圧VDDを供給する信号線に接続され、バックゲートが基準電圧GNDを供給する信号線に接続される。 Two N-type MOS transistors MN107 and MN108 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND. The voltage at the connection point between the two N-type MOS transistors MN107 and MN108 is output as the signal SINB. The N-type MOS transistors MN107 and MN108 have gates connected to a signal line that supplies a power supply voltage VDD, and back gates connected to a signal line that supplies a reference voltage GND.
 ここで、N型MOSトランジスタMN106、MN107のしきい値電圧は、同じ電圧とし、電源電圧VDDよりも高い値である。また、N型MOSトランジスタMN105、MN108のしきい値電圧は、同じ電圧とし、一般的(標準的)なしきい値電圧である。すなわち、信号SINAを出力する2つのN型MOSトランジスタ、及び信号SINBを出力する2つのN型MOSトランジスタのそれぞれについて、トランジスタの配置を入れ替えたものであり、信号SINA、SINBを出力する回路構成が、図1Aに示したものとは逆になっている。 Here, the threshold voltages of the N-type MOS transistors MN106 and MN107 are the same voltage and are higher than the power supply voltage VDD. In addition, the threshold voltages of the N-type MOS transistors MN105 and MN108 are the same voltage and are general (standard) threshold voltages. That is, for each of the two N-type MOS transistors that output the signal SINA and the two N-type MOS transistors that output the signal SINB, the arrangement of the transistors is changed, and a circuit configuration that outputs the signals SINA and SINB is obtained. This is the reverse of that shown in FIG. 1A.
 なお、2つのN型MOSトランジスタMN105、MN106のレイアウトと、2つのN型MOSトランジスタMN107、MN108のレイアウトとは、それらに係る配線も含めて同じ形状になっている。N型MOSトランジスタMN105、MN107のレイアウト及び配線の形状が同じであり、N型MOSトランジスタMN106、MN108のレイアウト及び配線の形状が同じである。したがって、N型MOSトランジスタMN105、MN107において、電源電圧VDDよりも高いしきい値のトランジスタがどちらであるかは外見上では区別がつかず、N型MOSトランジスタMN106、MN108において、電源電圧VDDよりも高いしきい値のトランジスタがどちらであるかは外見上では区別がつかない。 Note that the layout of the two N-type MOS transistors MN105 and MN106 and the layout of the two N-type MOS transistors MN107 and MN108 have the same shape including the wirings related to them. N-type MOS transistors MN105 and MN107 have the same layout and wiring shapes, and N-type MOS transistors MN106 and MN108 have the same layout and wiring shapes. Therefore, in the N-type MOS transistors MN105 and MN107, it is not apparent from the outside whether the transistor having a threshold value higher than the power supply voltage VDD is present. It is indistinguishable in terms of which transistor has a high threshold.
 図1Bに示したように接続された回路では、電源電圧VDDよりも高いしきい値電圧のN型MOSトランジスタMN106、MN107はオフ状態になり、一般的(標準的)なしきい値電圧のN型MOSトランジスタMN105、MN108はオン状態になる。したがって、N型MOSトランジスタMN105、MN106の接続点の電圧(信号SINA)は、電源電圧VDDよりN型MOSトランジスタMN105のしきい値VTH分低い(VDD-VTH)になり、N型MOSトランジスタMN107、MN108の接続点の電圧(信号SINB)は、ほぼ基準電圧GNDになる。 In the circuit connected as shown in FIG. 1B, the N-type MOS transistors MN106 and MN107 having a threshold voltage higher than the power supply voltage VDD are turned off, and the N-type having a general (standard) threshold voltage is applied. The MOS transistors MN105 and MN108 are turned on. Accordingly, the voltage (signal SINA) at the connection point of the N-type MOS transistors MN105 and MN106 is lower than the power supply voltage VDD by the threshold value VTH of the N-type MOS transistor MN105 (VDD−VTH), and the N-type MOS transistors MN107, The voltage (signal SINB) at the connection point of the MN 108 is substantially the reference voltage GND.
 このとき、増幅部(レベルシフタ)11では、P型MOSトランジスタMP11及びN型MOSトランジスタMN12はオフ状態になり、P型MOSトランジスタMP12及びN型MOSトランジスタMN11はオン状態になる。したがって、図1Bに示した回路は、出力信号SOUTとして、電源電圧VDDレベルの‘1’の信号を出力する。 At this time, in the amplifying unit (level shifter) 11, the P-type MOS transistor MP11 and the N-type MOS transistor MN12 are turned off, and the P-type MOS transistor MP12 and the N-type MOS transistor MN11 are turned on. Therefore, the circuit shown in FIG. 1B outputs a signal of “1” at the power supply voltage VDD level as the output signal SOUT.
 以上のように、特性の異なるトランジスタを用い、レイアウト及び配線の形状は同じであるが、異なる機能を実現する2つの信号出力回路を用い、その2つの信号出力回路からの信号に応じて出力信号のレベルが決まる。これにより、レイアウトから回路図を読み取るだけでは動作を再現することができず、リバースエンジニアリングによる半導体装置の再現を困難にすることができる。 As described above, transistors having different characteristics are used, the layout and wiring shape are the same, but two signal output circuits that realize different functions are used, and output signals are output in accordance with signals from the two signal output circuits. The level of is determined. As a result, the operation cannot be reproduced simply by reading the circuit diagram from the layout, and the reproduction of the semiconductor device by reverse engineering can be made difficult.
 また、図1A及び図1Bに示したように、サイズは4入力NANDと同等の8トランジスタで実現することができ、半導体チップ上の自動配置配線エリアの中に多数個の信号出力回路を搭載することができる。本実施形態における信号出力回路を半導体チップ上に多数個搭載した場合、リバースエンジニアリングする際には、これらの信号出力回路のすべての機能(出力状態)を判明する必要があるが、FIBやプローブを用いた手法では、搭載されたすべての信号出力回路について解析するのは非常に困難であり現実的ではない。 Further, as shown in FIGS. 1A and 1B, the size can be realized by 8 transistors equivalent to a 4-input NAND, and a large number of signal output circuits are mounted in an automatic placement and wiring area on a semiconductor chip. be able to. When a large number of signal output circuits in this embodiment are mounted on a semiconductor chip, it is necessary to identify all functions (output states) of these signal output circuits when performing reverse engineering. In the method used, it is very difficult and unrealistic to analyze all the signal output circuits mounted.
 仮に、1層ずつ剥離して撮影することにより自動配置配線エリアでのトランジスタレベルでの回路図が判明したとしても各信号出力回路の出力状態が不明となる。各信号出力回路の出力状態を判明する方法として、すべての信号出力回路のそれぞれに‘0’又は‘1’の出力を割り当ててシミュレーションを実行し推定することが考えられるが、信号出力回路の数の2のべき乗通りのシミュレーションを実行する必要がある。例えば、本実施形態における信号出力回路を100個搭載した場合には、2100=1.26×1030という天文学的な数字となり、シミュレーションにより推定することは非常に困難であり、リバースエンジニアリングによる半導体装置の再現を困難にすることができる。 Even if the circuit diagram at the transistor level in the automatic placement and routing area is found by separating and photographing one layer at a time, the output state of each signal output circuit is unknown. As a method for determining the output state of each signal output circuit, it is conceivable to assign a “0” or “1” output to each of the signal output circuits and perform a simulation to estimate the number. It is necessary to execute a simulation as a power of 2. For example, when 100 signal output circuits according to the present embodiment are mounted, an astronomical number of 2 100 = 1.26 × 10 30, which is very difficult to estimate by simulation, and is a semiconductor by reverse engineering. The reproduction of the apparatus can be made difficult.
(第2の実施形態)
 次に、本発明の第2の実施形態について説明する。第2の実施形態における半導体装置は、第1の実施形態において電源電圧VDDを供給する信号線と基準電圧GNDを供給する信号線との間に直列に接続される2つのN型MOSトランジスタを、2つのP型MOSトランジスタとしたものである。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. The semiconductor device according to the second embodiment includes two N-type MOS transistors connected in series between the signal line that supplies the power supply voltage VDD and the signal line that supplies the reference voltage GND in the first embodiment. Two P-type MOS transistors are provided.
 第2の実施形態における半導体装置は、図2A及び図2Bに示すような信号出力回路を複数有する。図2A及び図2Bは、第2の実施形態における半導体装置が有する信号出力回路の例を示す図である。図2Aに示す第1の信号出力回路は、P型MOSトランジスタMP201、MP202、MP203、MP204、及び増幅部21を有する。 The semiconductor device according to the second embodiment has a plurality of signal output circuits as shown in FIGS. 2A and 2B. 2A and 2B are diagrams illustrating examples of signal output circuits included in the semiconductor device according to the second embodiment. The first signal output circuit shown in FIG. 2A includes P-type MOS transistors MP201, MP202, MP203, MP204, and an amplifying unit 21.
 電源電圧VDDを供給する信号線と基準電圧GNDを供給する信号線との間に、電源電圧VDDを供給する信号線側から2つのP型MOSトランジスタMP201、MP202が、この順で直列に接続され、2つのP型MOSトランジスタMP201、MP202の接続点の電圧が信号SINAとして出力される。P型MOSトランジスタMP201、MP202は、ゲートが基準電圧GNDを供給する信号線に接続され、バックゲートが電源電圧VDDを供給する信号線に接続される。 Two P-type MOS transistors MP201 and MP202 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND. The voltage at the connection point of the two P-type MOS transistors MP201 and MP202 is output as the signal SINA. In the P-type MOS transistors MP201 and MP202, the gate is connected to a signal line that supplies a reference voltage GND, and the back gate is connected to a signal line that supplies a power supply voltage VDD.
 また、電源電圧VDDを供給する信号線と基準電圧GNDを供給する信号線との間に、電源電圧VDDを供給する信号線側から2つのP型MOSトランジスタMP203、MP204が、この順で直列に接続され、2つのP型MOSトランジスタMP203、MP204の接続点の電圧が信号SINBとして出力される。P型MOSトランジスタMP203、MP204は、ゲートが基準電圧GNDを供給する信号線に接続され、バックゲートが電源電圧VDDを供給する信号線に接続される。 Two P-type MOS transistors MP203 and MP204 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND. The voltage at the connection point between the two P-type MOS transistors MP203 and MP204 is output as the signal SINB. In the P-type MOS transistors MP203 and MP204, the gate is connected to a signal line that supplies the reference voltage GND, and the back gate is connected to a signal line that supplies the power supply voltage VDD.
 増幅部21は、入力端子INAに信号SINAが入力されるとともに、入力端子INBに信号SINBが入力される。増幅部21は、入力される信号SINA及び信号SINBの電圧に基づいて、出力端子OUTから出力信号SOUTとして、電源電圧VDDレベルの‘1’の信号又は基準電圧GNDレベルの‘0’の信号を出力する。本実施形態では一例として、P型MOSトランジスタMP21、MP22及びN型MOSトランジスタMN21、MN22を有するレベルシフタ(レベルシフト回路)により増幅部21の機能を実現する。 In the amplifying unit 21, the signal SINA is input to the input terminal INA, and the signal SINB is input to the input terminal INB. Based on the input signal SINA and the voltage of the signal SINB, the amplifying unit 21 outputs a signal “1” at the power supply voltage VDD level or a signal “0” at the reference voltage GND level as the output signal SOUT from the output terminal OUT. Output. In this embodiment, as an example, the function of the amplifying unit 21 is realized by a level shifter (level shift circuit) having P-type MOS transistors MP21 and MP22 and N-type MOS transistors MN21 and MN22.
 電源電圧VDDを供給する信号線と基準電圧GNDを供給する信号線との間に、電源電圧VDDを供給する信号線側からP型MOSトランジスタMP21とN型MOSトランジスタMN21とが、この順で直列に接続される。また、電源電圧VDDを供給する信号線と基準電圧GNDを供給する信号線との間に、電源電圧VDDを供給する信号線側からP型MOSトランジスタMP22とN型MOSトランジスタMN22とが、この順で直列に接続される。 Between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND, the P-type MOS transistor MP21 and the N-type MOS transistor MN21 are connected in series in this order from the signal line supplying the power supply voltage VDD. Connected to. The P-type MOS transistor MP22 and the N-type MOS transistor MN22 are arranged in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND. Connected in series.
 P型MOSトランジスタMP21のゲートには信号SINAが入力され、P型MOSトランジスタMP22のゲートには信号SINBが入力される。また、N型MOSトランジスタMN21のゲートがP型MOSトランジスタMP22とN型MOSトランジスタMN22との接続点に接続され、N型MOSトランジスタMN22のゲートがP型MOSトランジスタMP21とN型MOSトランジスタMN21との接続点に接続される。P型MOSトランジスタMP22とN型MOSトランジスタMN22との接続点の電圧が出力信号SOUTとして出力される。 The signal SINA is input to the gate of the P-type MOS transistor MP21, and the signal SINB is input to the gate of the P-type MOS transistor MP22. The gate of the N-type MOS transistor MN21 is connected to the connection point between the P-type MOS transistor MP22 and the N-type MOS transistor MN22, and the gate of the N-type MOS transistor MN22 is connected between the P-type MOS transistor MP21 and the N-type MOS transistor MN21. Connected to the connection point. The voltage at the connection point between the P-type MOS transistor MP22 and the N-type MOS transistor MN22 is output as the output signal SOUT.
 ここで、P型MOSトランジスタMP201、MP204のしきい値電圧は、同じ電圧とし、(基準電圧GND-電源電圧VDD)の値よりも低い値である。また、P型MOSトランジスタMP202、MP203のしきい値電圧は、同じ電圧とし、一般的(標準的)なしきい値電圧である。トランジスタのしきい値電圧の制御は、第1の実施形態と同様に、チャネルインプラントドーピング制御、ゲート酸化膜厚制御、バックゲート電圧制御等により実現することが可能である。 Here, the threshold voltages of the P-type MOS transistors MP201 and MP204 are the same voltage, which is lower than the value of (reference voltage GND−power supply voltage VDD). Further, the threshold voltages of the P-type MOS transistors MP202 and MP203 are the same voltage, and are general (standard) threshold voltages. Control of the threshold voltage of the transistor can be realized by channel implant doping control, gate oxide film thickness control, back gate voltage control, and the like, as in the first embodiment.
 また、2つのP型MOSトランジスタMP201、MP202のレイアウトと、2つのP型MOSトランジスタMP203、MP204のレイアウトとは、それらに係る配線も含めて同じ形状になっている。すなわち、P型MOSトランジスタMP201、MP203のレイアウト及び配線の形状が同じであり、P型MOSトランジスタMP202、MP204のレイアウト及び配線の形状が同じである。例えば、P型MOSトランジスタMP201、MP203のゲート長及びゲート幅は同じであり、P型MOSトランジスタMP202、MP204のゲート長及びゲート幅は同じである。 Further, the layout of the two P-type MOS transistors MP201 and MP202 and the layout of the two P-type MOS transistors MP203 and MP204 have the same shape including the wirings related to them. That is, the layout and wiring shape of the P-type MOS transistors MP201 and MP203 are the same, and the layout and wiring shape of the P-type MOS transistors MP202 and MP204 are the same. For example, the P-type MOS transistors MP201 and MP203 have the same gate length and gate width, and the P-type MOS transistors MP202 and MP204 have the same gate length and gate width.
 このようにP型MOSトランジスタMP201、MP203のレイアウト及び配線の形状を同じにしているため、(基準電圧GND-電源電圧VDD)の値よりも低いしきい値のトランジスタがどちらであるかは外見上では区別がつかない。同様に、P型MOSトランジスタMP202、MP204のレイアウト及び配線の形状を同じにしているため、(基準電圧GND-電源電圧VDD)の値よりも低いしきい値のトランジスタがどちらであるかは外見上では区別がつかない。 Since the layouts and wiring shapes of the P-type MOS transistors MP201 and MP203 are made the same in this way, it is apparent which of the transistors has a threshold value lower than the value of (reference voltage GND−power supply voltage VDD). Then I can't distinguish. Similarly, since the layouts and wiring shapes of the P-type MOS transistors MP202 and MP204 are the same, it is apparent from which one of the transistors whose threshold value is lower than the value of (reference voltage GND−power supply voltage VDD). Then I can't distinguish.
 図2Aに示したように接続された回路では、(基準電圧GND-電源電圧VDD)の値よりも低いしきい値電圧のP型MOSトランジスタMP201、MP204はオフ状態になり、一般的(標準的)なしきい値電圧のP型MOSトランジスタMP202、MP203はオン状態になる。したがって、P型MOSトランジスタMP201、MP202の接続点の電圧(信号SINA)は、基準電圧GNDよりP型MOSトランジスタMP202のしきい値VTHの絶対値分高い(GND+|VTH|)となり、P型MOSトランジスタMP203、MP204の接続点の電圧(信号SINB)は、ほぼ電源電圧VDDになる。 In the circuit connected as shown in FIG. 2A, the P-type MOS transistors MP201 and MP204 having a threshold voltage lower than the value of (reference voltage GND−power supply voltage VDD) are turned off, and the general (standard) ) P-type MOS transistors MP202 and MP203 having a threshold voltage are turned on. Therefore, the voltage (signal SINA) at the connection point between the P-type MOS transistors MP201 and MP202 becomes (GND + | VTH |) higher than the reference voltage GND by the absolute value of the threshold value VTH of the P-type MOS transistor MP202. The voltage (signal SINB) at the connection point of the transistors MP203 and MP204 is substantially the power supply voltage VDD.
 このとき、増幅部(レベルシフタ)21では、P型MOSトランジスタMP21及びN型MOSトランジスタMN22はオン状態になり、P型MOSトランジスタMP22及びN型MOSトランジスタMN21はオフ状態になる。したがって、図2Aに示した回路は、出力信号SOUTとして、基準電圧GNDレベルの‘0’の信号を出力する。 At this time, in the amplification unit (level shifter) 21, the P-type MOS transistor MP21 and the N-type MOS transistor MN22 are turned on, and the P-type MOS transistor MP22 and the N-type MOS transistor MN21 are turned off. Therefore, the circuit shown in FIG. 2A outputs a signal of “0” at the reference voltage GND level as the output signal SOUT.
 次に、図2Bに示す第2の信号出力回路は、P型MOSトランジスタMP205、MP206、MP207、MP208、及び増幅部21を有する。なお、図2Bにおいて、図2Aに示した構成要素と同一の構成要素には同一の符号を付し、重複する説明は省略する。 Next, the second signal output circuit shown in FIG. 2B includes P-type MOS transistors MP205, MP206, MP207, MP208, and an amplifying unit 21. In FIG. 2B, the same components as those shown in FIG. 2A are denoted by the same reference numerals, and redundant description is omitted.
 電源電圧VDDを供給する信号線と基準電圧GNDを供給する信号線との間に、電源電圧VDDを供給する信号線側から2つのP型MOSトランジスタMP205、MP206が、この順で直列に接続され、2つのP型MOSトランジスタMP205、MP206の接続点の電圧が信号SINAとして出力される。P型MOSトランジスタMP205、MP206は、ゲートが基準電圧GNDを供給する信号線に接続され、バックゲートが電源電圧VDDを供給する信号線に接続される。 Two P-type MOS transistors MP205 and MP206 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND. The voltage at the connection point between the two P-type MOS transistors MP205 and MP206 is output as the signal SINA. In the P-type MOS transistors MP205 and MP206, the gates are connected to a signal line that supplies the reference voltage GND, and the back gates are connected to a signal line that supplies the power supply voltage VDD.
 また、電源電圧VDDを供給する信号線と基準電圧GNDを供給する信号線との間に、電源電圧VDDを供給する信号線側から2つのP型MOSトランジスタMP207、MP208が、この順で直列に接続され、2つのP型MOSトランジスタMP207、MP208の接続点の電圧が信号SINBとして出力される。P型MOSトランジスタMP207、MP208は、ゲートが基準電圧GNDを供給する信号線に接続され、バックゲートが電源電圧VDDを供給する信号線に接続される。 Two P-type MOS transistors MP207 and MP208 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND. The voltage at the connection point between the two P-type MOS transistors MP207 and MP208 is output as the signal SINB. In the P-type MOS transistors MP207 and MP208, the gates are connected to a signal line that supplies the reference voltage GND, and the back gates are connected to the signal line that supplies the power supply voltage VDD.
 ここで、P型MOSトランジスタMP206、MP207のしきい値電圧は、同じ電圧とし、(基準電圧GND-電源電圧VDD)の値よりも低い値である。また、P型MOSトランジスタMP205、MP208のしきい値電圧は、同じ電圧とし、一般的(標準的)なしきい値電圧である。すなわち、信号SINAを出力する2つのP型MOSトランジスタ、及び信号SINBを出力する2つのP型MOSトランジスタのそれぞれについて、トランジスタの配置を入れ替えたものであり、信号SINA、SINBを出力する回路構成が、図2Aに示したものとは逆になっている。 Here, the threshold voltages of the P-type MOS transistors MP206 and MP207 are the same voltage, and are lower than the value of (reference voltage GND−power supply voltage VDD). Further, the threshold voltages of the P-type MOS transistors MP205 and MP208 are the same voltage, and are general (standard) threshold voltages. That is, for each of the two P-type MOS transistors that output the signal SINA and the two P-type MOS transistors that output the signal SINB, the arrangement of the transistors is changed, and a circuit configuration that outputs the signals SINA and SINB is obtained. This is the reverse of that shown in FIG. 2A.
 なお、2つのP型MOSトランジスタMP205、MP206のレイアウトと、2つのP型MOSトランジスタMP207、MP208のレイアウトとは、それらに係る配線も含めて同じ形状になっている。P型MOSトランジスタMP205、MP207のレイアウト及び配線の形状が同じであり、P型MOSトランジスタMP206、MP208のレイアウト及び配線の形状が同じである。したがって、P型MOSトランジスタMP205、MP207において、(基準電圧GND-電源電圧VDD)の値よりも低いしきい値のトランジスタがどちらであるかは外見上では区別がつかず、P型MOSトランジスタMP206、MP208において、(基準電圧GND-電源電圧VDD)の値よりも低いしきい値のトランジスタがどちらであるかは外見上では区別がつかない。 Note that the layout of the two P-type MOS transistors MP205 and MP206 and the layout of the two P-type MOS transistors MP207 and MP208 have the same shape including the wirings related to them. The layout and wiring shape of the P-type MOS transistors MP205 and MP207 are the same, and the layout and wiring shape of the P-type MOS transistors MP206 and MP208 are the same. Therefore, in the P-type MOS transistors MP205 and MP207, which transistor has a threshold value lower than the value of (reference voltage GND−power supply voltage VDD) cannot be distinguished in appearance, and the P-type MOS transistors MP206, In MP208, it is indistinguishable from the outside whether the transistor has a threshold value lower than the value of (reference voltage GND−power supply voltage VDD).
 図2Bに示したように接続された回路では、(基準電圧GND-電源電圧VDD)の値よりも低いしきい値電圧のP型MOSトランジスタMP206、MP207はオフ状態になり、一般的(標準的)なしきい値電圧のP型MOSトランジスタMP205、MP208はオン状態になる。したがって、P型MOSトランジスタMP205、MP206の接続点の電圧(信号SINA)は、ほぼ電源電圧VDDになり、P型MOSトランジスタMP207、MP208の接続点の電圧(信号SINB)は、基準電圧GNDよりP型MOSトランジスタMP208のしきい値VTHの絶対値分高い(GND+|VTH|)になる。 In the circuit connected as shown in FIG. 2B, the P-type MOS transistors MP206 and MP207 having a threshold voltage lower than the value of (reference voltage GND−power supply voltage VDD) are turned off. ) P-type MOS transistors MP205 and MP208 having a threshold voltage are turned on. Therefore, the voltage at the connection point of the P-type MOS transistors MP205 and MP206 (signal SINA) is substantially the power supply voltage VDD, and the voltage at the connection point of the P-type MOS transistors MP207 and MP208 (signal SINB) is P from the reference voltage GND. (GND + | VTH |) which is higher by the absolute value of the threshold value VTH of the MOS transistor MP208.
 このとき、増幅部(レベルシフタ)21では、P型MOSトランジスタMP21及びN型MOSトランジスタMN22はオフ状態になり、P型MOSトランジスタMP22及びN型MOSトランジスタMN21はオン状態になる。したがって、図2Bに示した回路は、出力信号SOUTとして、電源電圧VDDレベルの‘1’の信号を出力する。 At this time, in the amplification unit (level shifter) 21, the P-type MOS transistor MP21 and the N-type MOS transistor MN22 are turned off, and the P-type MOS transistor MP22 and the N-type MOS transistor MN21 are turned on. Therefore, the circuit shown in FIG. 2B outputs a signal of “1” at the power supply voltage VDD level as the output signal SOUT.
 以上のように、N型MOSトランジスタに替えてP型MOSトランジスタを用いた第2の実施形態においても、第1の実施形態と同様の効果が得られ、リバースエンジニアリングによる半導体装置の再現を困難にすることができる。 As described above, also in the second embodiment using the P-type MOS transistor instead of the N-type MOS transistor, the same effect as the first embodiment can be obtained, and the reproduction of the semiconductor device by reverse engineering is difficult. can do.
(第3の実施形態)
 次に、本発明の第3の実施形態について説明する。第3の実施形態は、第1の実施形態において電源電圧VDDを供給する信号線と基準電圧GNDを供給する信号線との間に直列に接続される2つのN型MOSトランジスタを、電源電圧VDDよりも低い電圧を供給する信号線と基準電圧GNDを供給する信号線との間に直列に接続するようにしたものである。
(Third embodiment)
Next, a third embodiment of the present invention will be described. In the third embodiment, two N-type MOS transistors connected in series between the signal line for supplying the power supply voltage VDD and the signal line for supplying the reference voltage GND in the first embodiment are replaced with the power supply voltage VDD. The signal line supplying a lower voltage and the signal line supplying the reference voltage GND are connected in series.
 第3の実施形態における半導体装置は、図3A及び図3Bに示すような信号出力回路を複数有する。図3A及び図3Bは、第3の実施形態における半導体装置が有する信号出力回路の例を示す図である。図3Aに示す第1の信号出力回路は、N型MOSトランジスタMN301、MN302、MN303、MN304、MN305及び増幅部11を有する。 The semiconductor device according to the third embodiment has a plurality of signal output circuits as shown in FIGS. 3A and 3B. 3A and 3B are diagrams illustrating examples of signal output circuits included in the semiconductor device according to the third embodiment. The first signal output circuit shown in FIG. 3A includes N-type MOS transistors MN301, MN302, MN303, MN304, MN305, and an amplifier unit 11.
 N型トランジスタMN305は、一般的(標準的)なしきい値電圧を持つトランジスタであり、電源電圧VDDを供給する信号線と電源電圧VDDよりも低い電圧を供給する信号線との間に接続されるとともに、ゲートが電源電圧VDDを供給する信号線に接続される。すなわち、N型トランジスタMN305は、電源電圧VDDを供給する信号線に対してダイオード接続されている。したがって、電源電圧VDDよりも低い電圧を供給する信号線の電圧は、電源電圧VDDよりもN型トランジスタMN305のしきい値電圧VTH分低い(VDD-VTH)となる。 The N-type transistor MN305 is a transistor having a general (standard) threshold voltage, and is connected between a signal line that supplies the power supply voltage VDD and a signal line that supplies a voltage lower than the power supply voltage VDD. At the same time, the gate is connected to a signal line for supplying the power supply voltage VDD. That is, the N-type transistor MN305 is diode-connected to the signal line that supplies the power supply voltage VDD. Therefore, the voltage of the signal line that supplies a voltage lower than the power supply voltage VDD is lower than the power supply voltage VDD by the threshold voltage VTH of the N-type transistor MN305 (VDD−VTH).
 N型MOSトランジスタMN301、MN302、MN303、MN304及び増幅部11は、図1Aに示したN型MOSトランジスタMN101、MN102、MN103、MN104及び増幅部11とそれぞれ同様である。 The N-type MOS transistors MN301, MN302, MN303, MN304 and the amplification unit 11 are the same as the N-type MOS transistors MN101, MN102, MN103, MN104 and the amplification unit 11 shown in FIG. 1A, respectively.
 ただし、本実施形態では、2つのN型MOSトランジスタMN301、MN302は、電圧(VDD-VTH)を供給する信号線と基準電圧GNDを供給する信号線との間に直列に接続される。同様に、2つのN型MOSトランジスタMN303、MN304は、電圧(VDD-VTH)を供給する信号線と基準電圧GNDを供給する信号線との間に直列に接続される。また、N型MOSトランジスタMN301、MN302、MN303、MN304のゲートは、電圧(VDD-VTH)を供給する信号線に接続される。 However, in this embodiment, the two N-type MOS transistors MN301 and MN302 are connected in series between a signal line that supplies a voltage (VDD-VTH) and a signal line that supplies a reference voltage GND. Similarly, the two N-type MOS transistors MN303 and MN304 are connected in series between a signal line that supplies a voltage (VDD−VTH) and a signal line that supplies a reference voltage GND. The gates of the N-type MOS transistors MN301, MN302, MN303, and MN304 are connected to a signal line that supplies a voltage (VDD-VTH).
 図3Aに示したように接続された回路では、N型MOSトランジスタMN301、MN304はオフ状態になり、N型MOSトランジスタMN302、MN303はオン状態になる。したがって、N型MOSトランジスタMN301、MN302の接続点の電圧(信号SINA)は、ほぼ基準電圧GNDになり、N型MOSトランジスタMN303、MN304の接続点の電圧(信号SINB)は、電圧(VDD-VTH)よりN型MOSトランジスタMN303のしきい値VTH分低い(VDD-2VTH)になる。したがって、図3Aに示した回路は、出力信号SOUTとして、基準電圧GNDレベルの‘0’の信号を出力する。 In the circuit connected as shown in FIG. 3A, the N-type MOS transistors MN301 and MN304 are turned off, and the N-type MOS transistors MN302 and MN303 are turned on. Therefore, the voltage (signal SINA) at the connection point of the N-type MOS transistors MN301 and MN302 is substantially the reference voltage GND, and the voltage (signal SINB) at the connection point of the N-type MOS transistors MN303 and MN304 is the voltage (VDD−VTH). ) Lower than the threshold voltage VTH of the N-type MOS transistor MN303 (VDD−2VTH). Therefore, the circuit shown in FIG. 3A outputs a signal of “0” at the reference voltage GND level as the output signal SOUT.
 次に、図3Bに示す第2の信号出力回路は、N型MOSトランジスタMN306、MN307、MN308、MN309、MN310、及び増幅部11を有する。 Next, the second signal output circuit shown in FIG. 3B includes N-type MOS transistors MN306, MN307, MN308, MN309, MN310, and the amplifying unit 11.
 N型トランジスタMN310は、一般的(標準的)なしきい値電圧を持つトランジスタであり、電源電圧VDDを供給する信号線と電源電圧VDDよりも低い電圧を供給する信号線との間に接続されるとともに、ゲートが電源電圧VDDを供給する信号線に接続される。すなわち、N型トランジスタMN310は、電源電圧VDDを供給する信号線に対してダイオード接続されている。したがって、電源電圧VDDよりも低い電圧を供給する信号線の電圧は、電源電圧VDDよりもN型トランジスタMN310のしきい値電圧VTH分低い(VDD-VTH)となる。 The N-type transistor MN310 is a transistor having a general (standard) threshold voltage, and is connected between a signal line that supplies the power supply voltage VDD and a signal line that supplies a voltage lower than the power supply voltage VDD. At the same time, the gate is connected to a signal line for supplying the power supply voltage VDD. That is, the N-type transistor MN310 is diode-connected to the signal line that supplies the power supply voltage VDD. Accordingly, the voltage of the signal line that supplies a voltage lower than the power supply voltage VDD is lower than the power supply voltage VDD by the threshold voltage VTH of the N-type transistor MN310 (VDD−VTH).
 N型MOSトランジスタMN306、MN307、MN308、MN309及び増幅部11は、図1Bに示したN型MOSトランジスタMN105、MN106、MN107、MN108及び増幅部11とそれぞれ同様である。 The N-type MOS transistors MN306, MN307, MN308, and MN309 and the amplifying unit 11 are the same as the N-type MOS transistors MN105, MN106, MN107, MN108, and the amplifying unit 11 shown in FIG. 1B, respectively.
 ただし、本実施形態では、2つのN型MOSトランジスタMN306、MN307は、電圧(VDD-VTH)を供給する信号線と基準電圧GNDを供給する信号線との間に直列に接続される。同様に、2つのN型MOSトランジスタMN308、MN309は、電圧(VDD-VTH)を供給する信号線と基準電圧GNDを供給する信号線との間に直列に接続される。また、N型MOSトランジスタMN306、MN307、MN308、MN309のゲートは、電圧(VDD-VTH)を供給する信号線に接続される。 However, in this embodiment, the two N-type MOS transistors MN306 and MN307 are connected in series between a signal line that supplies a voltage (VDD-VTH) and a signal line that supplies a reference voltage GND. Similarly, the two N-type MOS transistors MN308 and MN309 are connected in series between a signal line that supplies a voltage (VDD−VTH) and a signal line that supplies a reference voltage GND. The gates of the N-type MOS transistors MN306, MN307, MN308, and MN309 are connected to a signal line that supplies a voltage (VDD-VTH).
 図3Bに示したように接続された回路では、N型MOSトランジスタMN307、MN308はオフ状態になり、N型MOSトランジスタMN306、MN309はオン状態になる。したがって、N型MOSトランジスタMN306、MN307の接続点の電圧(信号SINA)は、電圧(VDD-VTH)よりN型MOSトランジスタMN306のしきい値VTH分低い(VDD-2VTH)になり、N型MOSトランジスタMN308、MN309の接続点の電圧(信号SINB)は、ほぼ基準電圧GNDになる。したがって、図3Bに示した回路は、出力信号SOUTとして、電源電圧VDDレベルの‘1’の信号を出力する。 In the circuit connected as shown in FIG. 3B, the N-type MOS transistors MN307 and MN308 are turned off, and the N-type MOS transistors MN306 and MN309 are turned on. Therefore, the voltage (signal SINA) at the connection point of the N-type MOS transistors MN306 and MN307 is lower than the voltage (VDD−VTH) by the threshold VTH of the N-type MOS transistor MN306 (VDD−2VTH), and the N-type MOS The voltage (signal SINB) at the connection point of the transistors MN308 and MN309 is substantially the reference voltage GND. Therefore, the circuit shown in FIG. 3B outputs a signal of “1” at the power supply voltage VDD level as the output signal SOUT.
 以上のように、電源電圧VDD側にダイオード接続されたN型MOSトランジスタを設け、このN型MOSトランジスタにより得られる電源電圧VDDよりも低い電圧を供給する信号線と基準電圧GNDを供給する信号線との間に2つのN型MOSトランジスタを直列に接続する第3の実施形態においても、第1の実施形態と同様の効果が得られ、リバースエンジニアリングによる半導体装置の再現を困難にすることができる。また、第3の実施形態は、第1の実施形態において電源電圧を下げているのと同等であるので、消費電力を低減することができる。 As described above, a diode-connected N-type MOS transistor is provided on the power supply voltage VDD side, and a signal line for supplying a voltage lower than the power supply voltage VDD obtained by the N-type MOS transistor and a signal line for supplying the reference voltage GND are provided. In the third embodiment in which two N-type MOS transistors are connected in series with each other, the same effect as in the first embodiment can be obtained, and the reproduction of the semiconductor device by reverse engineering can be made difficult. . Moreover, since the third embodiment is equivalent to lowering the power supply voltage in the first embodiment, power consumption can be reduced.
(第4の実施形態)
 次に、本発明の第4の実施形態について説明する。
 第4の実施形態における半導体装置は、図4A及び図4Bに示すような信号出力回路を複数有する。図4A及び図4Bは、第4の実施形態における半導体装置が有する信号出力回路の例を示す図である。図4Aに示す第1の信号出力回路は、N型MOSトランジスタMN401、MN402、MN403、MN404及び増幅部11を有する。N型MOSトランジスタMN401、MN402、MN403、MN404及び増幅部11は、図1Aに示したN型MOSトランジスタMN101、MN102、MN103、MN104及び増幅部11とそれぞれ同様である。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described.
The semiconductor device according to the fourth embodiment has a plurality of signal output circuits as shown in FIGS. 4A and 4B. 4A and 4B are diagrams illustrating examples of signal output circuits included in the semiconductor device according to the fourth embodiment. The first signal output circuit shown in FIG. 4A includes N-type MOS transistors MN401, MN402, MN403, and MN404, and an amplifier unit 11. The N-type MOS transistors MN401, MN402, MN403, and MN404 and the amplification unit 11 are the same as the N-type MOS transistors MN101, MN102, MN103, MN104, and the amplification unit 11 shown in FIG. 1A, respectively.
 ただし、本実施形態では、N型MOSトランジスタMN401のゲートが電圧VDDを供給する信号線に接続され、N型MOSトランジスタMN402のゲートが2つのN型MOSトランジスタMN401、MN402の接続点に接続される。また、N型MOSトランジスタMN403のゲートが電圧VDDを供給する信号線に接続され、N型MOSトランジスタMN404のゲートが2つのN型MOSトランジスタMN403、MN404の接続点に接続される。つまり、N型MOSトランジスタMN401、MN402、MN403、MN404のそれぞれはダイオード接続されている。 However, in this embodiment, the gate of the N-type MOS transistor MN401 is connected to the signal line that supplies the voltage VDD, and the gate of the N-type MOS transistor MN402 is connected to the connection point of the two N-type MOS transistors MN401 and MN402. . The gate of the N-type MOS transistor MN403 is connected to a signal line that supplies the voltage VDD, and the gate of the N-type MOS transistor MN404 is connected to the connection point of the two N-type MOS transistors MN403 and MN404. That is, each of the N-type MOS transistors MN401, MN402, MN403, and MN404 is diode-connected.
 図4Aに示したように接続された回路では、N型MOSトランジスタMN401、MN404はオフ状態になり、N型MOSトランジスタMN402、MN403はオン状態になる。したがって、N型MOSトランジスタMN401、MN402の接続点の電圧(信号SINA)は、基準電圧GNDよりN型MOSトランジスタMN402のしきい値VTH分高い(GND+VTH)になり、N型MOSトランジスタMN403、MN404の接続点の電圧(信号SINB)は、電源電圧VDDよりN型MOSトランジスタMN403のしきい値VTH分低い(VDD-VTH)になる。したがって、図4Aに示した回路は、出力信号SOUTとして、基準電圧GNDレベルの‘0’の信号を出力する。 In the circuit connected as shown in FIG. 4A, the N-type MOS transistors MN401 and MN404 are turned off, and the N-type MOS transistors MN402 and MN403 are turned on. Therefore, the voltage (signal SINA) at the connection point of the N-type MOS transistors MN401 and MN402 is higher than the reference voltage GND by the threshold VTH of the N-type MOS transistor MN402 (GND + VTH), and the N-type MOS transistors MN403 and MN404 The voltage at the connection point (signal SINB) is lower than the power supply voltage VDD by the threshold value VTH of the N-type MOS transistor MN403 (VDD−VTH). Therefore, the circuit shown in FIG. 4A outputs a signal of “0” at the reference voltage GND level as the output signal SOUT.
 次に、図4Bに示す第2の信号出力回路は、N型MOSトランジスタMN405、MN406、MN407、MN408、及び増幅部11を有する。N型MOSトランジスタMN405、MN406、MN407、MN408及び増幅部11は、図1Bに示したN型MOSトランジスタMN105、MN106、MN107、MN108及び増幅部11とそれぞれ同様である。 Next, the second signal output circuit shown in FIG. 4B includes N-type MOS transistors MN405, MN406, MN407, MN408, and an amplifying unit 11. The N-type MOS transistors MN405, MN406, MN407, MN408 and the amplifying unit 11 are the same as the N-type MOS transistors MN105, MN106, MN107, MN108 and the amplifying unit 11 shown in FIG. 1B, respectively.
 ただし、本実施形態では、N型MOSトランジスタMN405のゲートが電圧VDDを供給する信号線に接続され、N型MOSトランジスタMN406のゲートが2つのN型MOSトランジスタMN405、MN406の接続点に接続される。また、N型MOSトランジスタMN407のゲートが電圧VDDを供給する信号線に接続され、N型MOSトランジスタMN408のゲートが2つのN型MOSトランジスタMN407、MN408の接続点に接続される。つまり、N型MOSトランジスタMN405、MN406、MN407、MN408のそれぞれはダイオード接続されている。 However, in this embodiment, the gate of the N-type MOS transistor MN405 is connected to the signal line that supplies the voltage VDD, and the gate of the N-type MOS transistor MN406 is connected to the connection point of the two N-type MOS transistors MN405 and MN406. . The gate of the N-type MOS transistor MN407 is connected to a signal line that supplies the voltage VDD, and the gate of the N-type MOS transistor MN408 is connected to a connection point between the two N-type MOS transistors MN407 and MN408. That is, each of the N-type MOS transistors MN405, MN406, MN407, and MN408 is diode-connected.
 図4Bに示したように接続された回路では、N型MOSトランジスタMN406、MN407はオフ状態になり、N型MOSトランジスタMN405、MN408はオン状態になる。したがって、N型MOSトランジスタMN405、MN406の接続点の電圧(信号SINA)は、電源電圧VDDよりN型MOSトランジスタMN405のしきい値VTH分低い(VDD-VTH)になり、N型MOSトランジスタMN407、MN408の接続点の電圧(信号SINB)は、基準電圧GNDよりN型MOSトランジスタMN408のしきい値VTH分高い(GND+VTH)になる。したがって、図4Bに示した回路は、出力信号SOUTとして、電源電圧VDDレベルの‘1’の信号を出力する。 In the circuit connected as shown in FIG. 4B, the N-type MOS transistors MN406 and MN407 are turned off, and the N-type MOS transistors MN405 and MN408 are turned on. Therefore, the voltage (signal SINA) at the connection point of the N-type MOS transistors MN405 and MN406 is lower than the power supply voltage VDD by the threshold value VTH of the N-type MOS transistor MN405 (VDD−VTH), and the N-type MOS transistors MN407, The voltage at the connection point of MN408 (signal SINB) is higher than the reference voltage GND by the threshold value VTH of the N-type MOS transistor MN408 (GND + VTH). Therefore, the circuit shown in FIG. 4B outputs a “1” signal at the power supply voltage VDD level as the output signal SOUT.
 以上説明した第4の実施形態によれば、第1の実施形態と同様の効果が得られ、リバースエンジニアリングによる半導体装置の再現を困難にすることができるとともに、消費電力を低減することができる。 According to the fourth embodiment described above, the same effects as those of the first embodiment can be obtained, making it difficult to reproduce the semiconductor device by reverse engineering and reducing the power consumption.
 なお、前述した第3の実施形態及び第4の実施形態では、N型MOSトランジスタを用いた例を示したが、P型MOSトランジスタを用いて実現することも可能である。この場合には、第2の実施形態に準じて接続を変更すればよく、リバースエンジニアリングによる半導体装置の再現を困難にすることができるとともに、消費電力を低減することができるという同様の効果が得られる。 In the third embodiment and the fourth embodiment described above, an example using an N-type MOS transistor has been shown, but it can also be realized using a P-type MOS transistor. In this case, it is only necessary to change the connection according to the second embodiment, and it is possible to make it difficult to reproduce the semiconductor device by reverse engineering and to reduce the power consumption. It is done.
(第5の実施形態)
 次に、本発明の第5の実施形態について説明する。
 第5の実施形態における半導体装置は、図5A及び図5Bに示すような信号出力回路を複数有する。図5A及び図5Bは、第5の実施形態における半導体装置が有する信号出力回路の例を示す図である。図5Aに示す第1の信号出力回路は、デプレッション型のN型MOSトランジスタMN501と、エンハンスメント型のN型MOSトランジスタMN502とを有する。
(Fifth embodiment)
Next, a fifth embodiment of the present invention will be described.
The semiconductor device according to the fifth embodiment has a plurality of signal output circuits as shown in FIGS. 5A and 5B. 5A and 5B are diagrams illustrating examples of signal output circuits included in the semiconductor device according to the fifth embodiment. The first signal output circuit shown in FIG. 5A includes a depletion type N-type MOS transistor MN501 and an enhancement type N-type MOS transistor MN502.
 電源電圧VDDを供給する信号線と基準電圧GNDを供給する信号線との間に、電源電圧VDDを供給する信号線側からN型MOSトランジスタMN501、MN502が、この順で直列に接続され、N型MOSトランジスタMN501、MN502の接続点の電圧が出力信号SOUTとして出力される。N型MOSトランジスタMN501のゲートがN型MOSトランジスタMN501、MN502の接続点に接続され、N型MOSトランジスタMN502のゲートが基準電圧GNDを供給する信号線に接続される。すなわち、N型MOSトランジスタMN501、MN502はダイオード接続されている。また、N型MOSトランジスタMN501、MN502のバックゲートが基準電圧GNDを供給する信号線に接続される。 N-type MOS transistors MN501 and MN502 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND. The voltage at the connection point of the type MOS transistors MN501 and MN502 is output as the output signal SOUT. The gate of the N-type MOS transistor MN501 is connected to the connection point of the N-type MOS transistors MN501 and MN502, and the gate of the N-type MOS transistor MN502 is connected to a signal line that supplies the reference voltage GND. That is, the N-type MOS transistors MN501 and MN502 are diode-connected. Further, the back gates of the N-type MOS transistors MN501 and MN502 are connected to a signal line for supplying the reference voltage GND.
 図5Aに示したように接続された回路では、デプレッション型のN型MOSトランジスタMN501がオン状態になり、エンハンスメント型のN型MOSトランジスタMN502がオフ状態となる。したがって、図5Aに示した回路は、出力信号SOUTとして、電源電圧VDDレベルの‘1’の信号を出力する。 In the circuit connected as shown in FIG. 5A, the depletion type N-type MOS transistor MN501 is turned on, and the enhancement type N-type MOS transistor MN502 is turned off. Therefore, the circuit shown in FIG. 5A outputs a signal “1” at the power supply voltage VDD level as the output signal SOUT.
 次に、図5Bに示す第2の信号出力回路は、エンハンスメント型のN型MOSトランジスタMN503と、デプレッション型のN型MOSトランジスタMN504とを有する。ここで、N型MOSトランジスタMN503は、N型MOSトランジスタMN501とレイアウト及び配線の形状が同じであり、N型MOSトランジスタMN504は、N型MOSトランジスタMN502とレイアウト及び配線の形状が同じである。 Next, the second signal output circuit shown in FIG. 5B includes an enhancement type N-type MOS transistor MN503 and a depletion type N-type MOS transistor MN504. Here, the N-type MOS transistor MN503 has the same layout and wiring shape as the N-type MOS transistor MN501, and the N-type MOS transistor MN504 has the same layout and wiring shape as the N-type MOS transistor MN502.
 電源電圧VDDを供給する信号線と基準電圧GNDを供給する信号線との間に、電源電圧VDDを供給する信号線側からN型MOSトランジスタMN503、MN504が、この順で直列に接続され、N型MOSトランジスタMN503、MN504の接続点の電圧が出力信号SOUTとして出力される。N型MOSトランジスタMN503のゲートがN型MOSトランジスタMN503、MN504の接続点に接続され、N型MOSトランジスタMN504のゲートが基準電圧GNDを供給する信号線に接続される。すなわち、N型MOSトランジスタMN503、MN504はダイオード接続されている。また、N型MOSトランジスタMN503、MN504のバックゲートが基準電圧GNDを供給する信号線に接続される。 N-type MOS transistors MN503 and MN504 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND. The voltage at the connection point of the type MOS transistors MN503 and MN504 is output as the output signal SOUT. The gate of the N-type MOS transistor MN503 is connected to the connection point of the N-type MOS transistors MN503 and MN504, and the gate of the N-type MOS transistor MN504 is connected to a signal line that supplies the reference voltage GND. That is, the N-type MOS transistors MN503 and MN504 are diode-connected. Further, the back gates of the N-type MOS transistors MN503 and MN504 are connected to a signal line that supplies the reference voltage GND.
 図5Bに示した回路では、デプレッション型のN型MOSトランジスタMN504がオン状態になり、エンハンスメント型のN型MOSトランジスタMN503がオフ状態となる。したがって、図5Bに示した回路は、出力信号SOUTとして、基準電圧GNDレベルの‘0’の信号を出力する。なお、第5の実施形態における半導体装置が有する信号出力回路では、N型MOSトランジスタMN501、MN502の接続点の電圧、及びN型MOSトランジスタMN503、MN504の接続点の電圧は、電源電圧VDDレベル又は基準電圧GNDレベルになるので増幅部は不要である。 In the circuit shown in FIG. 5B, the depletion type N-type MOS transistor MN504 is turned on, and the enhancement type N-type MOS transistor MN503 is turned off. Therefore, the circuit shown in FIG. 5B outputs a signal of “0” at the reference voltage GND level as the output signal SOUT. In the signal output circuit included in the semiconductor device according to the fifth embodiment, the voltage at the connection point of the N-type MOS transistors MN501 and MN502 and the voltage at the connection point of the N-type MOS transistors MN503 and MN504 are the power supply voltage VDD level or Since it becomes the reference voltage GND level, an amplifying unit is unnecessary.
 以上のように、レイアウト及び配線の形状は同じであるが特性の異なるトランジスタを用いることで、レイアウトから回路図を読み取るだけでは動作を再現することができず、リバースエンジニアリングによる半導体装置の再現を困難にすることができる。また、第5の実施形態における半導体装置が有する信号出力回路は、図1A及び図1Bに示したような信号出力回路と比較して構成するトランジスタ数が少なく増幅部も不要であるので、実装に要する面積を小さくすることができ、半導体チップ上の自動配置配線エリアの中に、より多数の信号出力回路を搭載することが可能となる。したがって、リバースエンジニアリングによる半導体装置の再現をさらに困難にすることができる。また、電流もほとんど流れないので消費電力も低減することができる。 As described above, by using transistors with the same layout and wiring shape but different characteristics, the operation cannot be reproduced simply by reading the circuit diagram from the layout, and it is difficult to reproduce the semiconductor device by reverse engineering. Can be. Further, the signal output circuit included in the semiconductor device according to the fifth embodiment has fewer transistors than the signal output circuit shown in FIGS. 1A and 1B, and does not require an amplifier. The required area can be reduced, and a larger number of signal output circuits can be mounted in the automatic placement and wiring area on the semiconductor chip. Therefore, the reproduction of the semiconductor device by reverse engineering can be made more difficult. In addition, since almost no current flows, power consumption can be reduced.
(第6の実施形態)
 次に、本発明の第6の実施形態について説明する。第6の実施形態は、第5の実施形態におけるN型MOSトランジスタに替えてP型MOSトランジスタを用いるものである。
(Sixth embodiment)
Next, a sixth embodiment of the present invention will be described. In the sixth embodiment, a P-type MOS transistor is used in place of the N-type MOS transistor in the fifth embodiment.
 第6の実施形態における半導体装置は、図6A及び図6Bに示すような信号出力回路を複数有する。図6A及び図6Bは、第6の実施形態における半導体装置が有する信号出力回路の例を示す図である。図6Aに示す第1の信号出力回路は、デプレッション型のP型MOSトランジスタMP601と、エンハンスメント型のP型MOSトランジスタMP602とを有する。 The semiconductor device according to the sixth embodiment has a plurality of signal output circuits as shown in FIGS. 6A and 6B. 6A and 6B are diagrams illustrating examples of signal output circuits included in the semiconductor device according to the sixth embodiment. The first signal output circuit shown in FIG. 6A includes a depletion type P-type MOS transistor MP601 and an enhancement type P-type MOS transistor MP602.
 電源電圧VDDを供給する信号線と基準電圧GNDを供給する信号線との間に、電源電圧VDDを供給する信号線側からP型MOSトランジスタMP601、MP602が、この順で直列に接続され、P型MOSトランジスタMP601、MP602の接続点の電圧が出力信号SOUTとして出力される。P型MOSトランジスタMP601のゲートが電源電圧VDDを供給する信号線に接続され、P型MOSトランジスタMP602のゲートがP型MOSトランジスタMP601、MP602の接続点に接続される。すなわち、P型MOSトランジスタMP601、MP602はダイオード接続されている。また、P型MOSトランジスタMP601、MP602のバックゲートが電源電圧VDDを供給する信号線に接続される。 P-type MOS transistors MP601 and MP602 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND. The voltage at the connection point of the type MOS transistors MP601 and MP602 is output as the output signal SOUT. The gate of the P-type MOS transistor MP601 is connected to the signal line that supplies the power supply voltage VDD, and the gate of the P-type MOS transistor MP602 is connected to the connection point of the P-type MOS transistors MP601 and MP602. That is, the P-type MOS transistors MP601 and MP602 are diode-connected. The back gates of the P-type MOS transistors MP601 and MP602 are connected to a signal line that supplies the power supply voltage VDD.
 図6Aに示したように接続された回路では、デプレッション型のP型MOSトランジスタMP601がオン状態になり、エンハンスメント型のP型MOSトランジスタMP602がオフ状態となる。したがって、図6Aに示した回路は、出力信号SOUTとして、電源電圧VDDレベルの‘1’の信号を出力する。 In the circuit connected as shown in FIG. 6A, the depletion type P-type MOS transistor MP601 is turned on, and the enhancement type P-type MOS transistor MP602 is turned off. Therefore, the circuit shown in FIG. 6A outputs a signal of “1” at the power supply voltage VDD level as the output signal SOUT.
 次に、図6Bに示す第2の信号出力回路は、エンハンスメント型のP型MOSトランジスタMP603と、デプレッション型のP型MOSトランジスタMP604とを有する。ここで、P型MOSトランジスタMP603は、P型MOSトランジスタMP601とレイアウト及び配線の形状が同じであり、P型MOSトランジスタMP604は、P型MOSトランジスタMP602とレイアウト及び配線の形状が同じである。 Next, the second signal output circuit shown in FIG. 6B includes an enhancement type P-type MOS transistor MP603 and a depletion type P-type MOS transistor MP604. Here, the P-type MOS transistor MP603 has the same layout and wiring shape as the P-type MOS transistor MP601, and the P-type MOS transistor MP604 has the same layout and wiring shape as the P-type MOS transistor MP602.
 電源電圧VDDを供給する信号線と基準電圧GNDを供給する信号線との間に、電源電圧VDDを供給する信号線側からP型MOSトランジスタMP603、MP604が、この順で直列に接続され、P型MOSトランジスタMP603、MP604の接続点の電圧が出力信号SOUTとして出力される。P型MOSトランジスタMP603のゲートが電源電圧VDDを供給する信号線に接続され、P型MOSトランジスタMP604のゲートがP型MOSトランジスタMP603、MP604の接続点に接続される。すなわち、P型MOSトランジスタMP603、MP604はダイオード接続されている。また、P型MOSトランジスタMP603、MP604のバックゲートが電源電圧VDDを供給する信号線に接続される。 P-type MOS transistors MP603 and MP604 are connected in series in this order from the signal line supplying the power supply voltage VDD between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND. The voltage at the connection point of the type MOS transistors MP603 and MP604 is output as the output signal SOUT. The gate of the P-type MOS transistor MP603 is connected to the signal line that supplies the power supply voltage VDD, and the gate of the P-type MOS transistor MP604 is connected to the connection point of the P-type MOS transistors MP603 and MP604. That is, the P-type MOS transistors MP603 and MP604 are diode-connected. The back gates of the P-type MOS transistors MP603 and MP604 are connected to a signal line that supplies the power supply voltage VDD.
 図6Bに示したように接続された回路では、デプレッション型のP型MOSトランジスタMP604がオン状態になり、エンハンスメント型のP型MOSトランジスタMP603がオフ状態となる。したがって、図6Bに示した回路は、出力信号SOUTとして、基準電圧GNDレベルの‘0’の信号を出力する。なお、第6の実施形態においても、P型MOSトランジスタMP601、MP602の接続点の電圧、及びP型MOSトランジスタMP603、MP604の接続点の電圧は、電源電圧VDDレベル又は基準電圧GNDレベルになるので増幅部は不要である。 In the circuit connected as shown in FIG. 6B, the depletion type P-type MOS transistor MP604 is turned on, and the enhancement type P-type MOS transistor MP603 is turned off. Therefore, the circuit shown in FIG. 6B outputs a signal of “0” at the reference voltage GND level as the output signal SOUT. Also in the sixth embodiment, the voltage at the connection point of the P-type MOS transistors MP601 and MP602 and the voltage at the connection point of the P-type MOS transistors MP603 and MP604 are at the power supply voltage VDD level or the reference voltage GND level. An amplifying unit is unnecessary.
 以上のように、N型MOSトランジスタに替えてP型MOSトランジスタを用いた第6の実施形態においても、第5の実施形態と同様の効果が得られ、リバースエンジニアリングによる半導体装置の再現を困難にすることができ、また消費電力も低減することができる。 As described above, in the sixth embodiment using a P-type MOS transistor instead of an N-type MOS transistor, the same effect as that of the fifth embodiment can be obtained, and it is difficult to reproduce a semiconductor device by reverse engineering. And power consumption can be reduced.
(第7の実施形態)
 次に、本発明の第7の実施形態について説明する。
 第7の実施形態における半導体装置は、図7A及び図7Bに示すような信号出力回路を複数有する。図7A及び図7Bは、第7の実施形態における半導体装置が有する信号出力回路の例を示す図である。図7Aに示す第1の信号出力回路は、P型MOSトランジスタMP701と、N型MOSトランジスタMN701とを有する。ここで、P型MOSトランジスタMP701とN型MOSトランジスタMN701とは耐圧が異なっており、図7Aに示す例ではN型MOSトランジスタMN701が高耐圧のトランジスタであるとする。
(Seventh embodiment)
Next, a seventh embodiment of the present invention will be described.
The semiconductor device according to the seventh embodiment has a plurality of signal output circuits as shown in FIGS. 7A and 7B. 7A and 7B are diagrams illustrating examples of signal output circuits included in the semiconductor device according to the seventh embodiment. The first signal output circuit shown in FIG. 7A includes a P-type MOS transistor MP701 and an N-type MOS transistor MN701. Here, the P-type MOS transistor MP701 and the N-type MOS transistor MN701 have different withstand voltages, and in the example shown in FIG. 7A, the N-type MOS transistor MN701 is a high withstand voltage transistor.
 電源電圧VDDを供給する信号線と基準電圧GNDを供給する信号線との間に、電源電圧VDDを供給する信号線側からP型MOSトランジスタMP701とN型MOSトランジスタMN701とが、この順で直列に接続され、P型MOSトランジスタMP701とN型MOSトランジスタMN701との接続点の電圧が出力信号SOUTとして出力される。P型MOSトランジスタMP701は、ゲートが基準電圧GNDを供給する信号線に接続され、バックゲートが電源電圧VDDを供給する信号線に接続される。また、N型MOSトランジスタMN701は、ゲートが電源電圧VDDを供給する信号線に接続され、バックゲートが基準電圧GNDを供給する信号線に接続される。図7Aに示した回路は、出力信号SOUTとして電源電圧VDDに近い高い電圧VHの信号を出力する。 Between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND, the P-type MOS transistor MP701 and the N-type MOS transistor MN701 are connected in series in this order from the signal line supplying the power supply voltage VDD. And a voltage at a connection point between the P-type MOS transistor MP701 and the N-type MOS transistor MN701 is output as the output signal SOUT. In the P-type MOS transistor MP701, the gate is connected to the signal line that supplies the reference voltage GND, and the back gate is connected to the signal line that supplies the power supply voltage VDD. The N-type MOS transistor MN701 has a gate connected to a signal line that supplies the power supply voltage VDD, and a back gate connected to a signal line that supplies the reference voltage GND. The circuit shown in FIG. 7A outputs a signal having a high voltage VH close to the power supply voltage VDD as the output signal SOUT.
 次に、図7Bに示す第2の信号出力回路は、P型MOSトランジスタMP702と、N型MOSトランジスタMN702とを有する。P型MOSトランジスタMP702とN型MOSトランジスタMN702とは耐圧が異なっており、図7Aに示した例とは逆に、図7Bに示す例ではP型MOSトランジスタMP702が高耐圧のトランジスタであるとする。ここで、P型MOSトランジスタMP702は、P型MOSトランジスタMP701とレイアウト及び配線の形状が同じであり、N型MOSトランジスタMN702は、N型MOSトランジスタMN701とレイアウト及び配線の形状が同じである。 Next, the second signal output circuit shown in FIG. 7B includes a P-type MOS transistor MP702 and an N-type MOS transistor MN702. The P-type MOS transistor MP702 and the N-type MOS transistor MN702 have different withstand voltages. In contrast to the example shown in FIG. 7A, in the example shown in FIG. 7B, the P-type MOS transistor MP702 is a high withstand voltage transistor. . Here, the P-type MOS transistor MP702 has the same layout and wiring shape as the P-type MOS transistor MP701, and the N-type MOS transistor MN702 has the same layout and wiring shape as the N-type MOS transistor MN701.
 電源電圧VDDを供給する信号線と基準電圧GNDを供給する信号線との間に、電源電圧VDDを供給する信号線側からP型MOSトランジスタMP702とN型MOSトランジスタMN702とが、この順で直列に接続され、P型MOSトランジスタMP702とN型MOSトランジスタMN702との接続点の電圧が出力信号SOUTとして出力される。P型MOSトランジスタMP702は、ゲートが基準電圧GNDを供給する信号線に接続され、バックゲートが電源電圧VDDを供給する信号線に接続される。また、N型MOSトランジスタMN702は、ゲートが電源電圧VDDを供給する信号線に接続され、バックゲートが基準電圧GNDを供給する信号線に接続される。図7Bに示した回路は、出力信号SOUTとして基準電圧GNDに近い低い電圧VLの信号を出力する。 Between the signal line supplying the power supply voltage VDD and the signal line supplying the reference voltage GND, the P-type MOS transistor MP702 and the N-type MOS transistor MN702 are connected in series in this order from the signal line side supplying the power supply voltage VDD. And a voltage at a connection point between the P-type MOS transistor MP702 and the N-type MOS transistor MN702 is output as the output signal SOUT. The P-type MOS transistor MP702 has a gate connected to a signal line that supplies the reference voltage GND, and a back gate connected to a signal line that supplies the power supply voltage VDD. The N-type MOS transistor MN702 has a gate connected to a signal line that supplies the power supply voltage VDD, and a back gate connected to a signal line that supplies the reference voltage GND. The circuit shown in FIG. 7B outputs a signal having a low voltage VL close to the reference voltage GND as the output signal SOUT.
 以上のように、レイアウト及び配線の形状は同じであるが耐圧が異なるトランジスタを用いることで、レイアウトから回路図を読み取るだけでは動作を再現することができず、リバースエンジニアリングによる半導体装置の再現を困難にすることができる。また、第7の実施形態における信号出力回路は、構成するトランジスタ数が少なく、半導体チップ上の自動配置配線エリアの中に、より多数の信号出力回路を搭載することが可能となる。したがって、リバースエンジニアリングによる半導体装置の再現をさらに困難にすることができる。 As described above, by using transistors with the same layout and wiring shapes but different breakdown voltages, the operation cannot be reproduced simply by reading the circuit diagram from the layout, and it is difficult to reproduce the semiconductor device by reverse engineering. Can be. Further, the signal output circuit according to the seventh embodiment has a small number of transistors, and a larger number of signal output circuits can be mounted in the automatic placement and wiring area on the semiconductor chip. Therefore, the reproduction of the semiconductor device by reverse engineering can be made more difficult.
 なお、前述した第1~第7の実施形態を適宜組み合わせた実施形態も可能であり、それらの実施形態も本発明の実施形態に含まれる。 It should be noted that embodiments in which the first to seventh embodiments described above are appropriately combined are possible, and these embodiments are also included in the embodiments of the present invention.
(その他の実施形態)
 図8は、本実施形態における半導体装置の適用例を示す図である。図8において、100は、本実施形態における半導体装置を含む半導体チップである。半導体チップ100において、各種の論理処理を行う論理処理回路部110に対して、複数個の信号出力回路120の出力が接続される。論理処理回路部110は、信号出力回路120の出力を用いて一部又は全部の論理処理を行うことで、論理処理回路部110における入力と出力との関係は、信号出力回路120の出力状態にも依存する。前述したように、リバースエンジニアリングにより本実施形態における信号出力回路120の出力状態を判明することは困難であり、論理処理回路部110における入力と出力との関係を解析することも困難となり、半導体チップの不正コピー等を防止することが可能となる。
(Other embodiments)
FIG. 8 is a diagram illustrating an application example of the semiconductor device in the present embodiment. In FIG. 8, reference numeral 100 denotes a semiconductor chip including the semiconductor device according to the present embodiment. In the semiconductor chip 100, outputs of a plurality of signal output circuits 120 are connected to a logic processing circuit unit 110 that performs various logic processes. The logic processing circuit unit 110 performs a part or all of the logic processing using the output of the signal output circuit 120, so that the relationship between the input and output in the logic processing circuit unit 110 is the output state of the signal output circuit 120. Also depends. As described above, it is difficult to determine the output state of the signal output circuit 120 in this embodiment by reverse engineering, and it becomes difficult to analyze the relationship between the input and output in the logic processing circuit unit 110, and the semiconductor chip. It is possible to prevent unauthorized copying of the file.
 なお、前記実施形態は、何れも本発明を実施するにあたっての具体化のほんの一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。 Note that each of the above-described embodiments is merely an example of implementation in carrying out the present invention, and the technical scope of the present invention should not be construed in a limited manner. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.
 これらの半導体装置によれば、リバースエンジニアリングによる半導体装置の再現を困難にすることができる。 According to these semiconductor devices, it is difficult to reproduce the semiconductor device by reverse engineering.

Claims (8)

  1.  第1の電圧を供給する信号線と前記第1の電圧より低い第2の電圧を供給する信号線との間に直列に接続されるとともに、それぞれのゲートに所定の電圧が供給される第1のトランジスタ及び第2のトランジスタを有し、前記第1のトランジスタと前記第2のトランジスタの接続点の電圧を出力する、複数の第1の信号出力回路と、
     前記第1の電圧を供給する信号線と前記第2の電圧を供給する信号線との間に直列に接続されるとともに、それぞれのゲートに所定の電圧が供給される第3のトランジスタ及び第4のトランジスタを有し、前記第3のトランジスタは前記第1のトランジスタと同じレイアウトで特性が異なり、前記第4のトランジスタは前記第2のトランジスタと同じレイアウトで特性が異なり、前記第3のトランジスタと前記第4のトランジスタの接続点の電圧を出力する、複数の第2の信号出力回路とを含むことを特徴とする半導体装置。
    A first line is connected in series between a signal line for supplying a first voltage and a signal line for supplying a second voltage lower than the first voltage, and a predetermined voltage is supplied to each gate. A plurality of first signal output circuits that output a voltage at a connection point between the first transistor and the second transistor;
    A third transistor and a fourth transistor are connected in series between the signal line supplying the first voltage and the signal line supplying the second voltage, and a predetermined voltage is supplied to each gate. The third transistor has the same layout and different characteristics as the first transistor, the fourth transistor has the same layout and different characteristics as the second transistor, and the third transistor differs from the third transistor in characteristics. And a plurality of second signal output circuits for outputting a voltage at a connection point of the fourth transistor.
  2.  前記第1のトランジスタ及び前記第3のトランジスタが前記第1の電圧を供給する信号線に接続されており、前記第1のトランジスタと前記第3のトランジスタとはしきい値電圧が異なり、前記第2のトランジスタと前記第4のトランジスタとはしきい値電圧が異なることを特徴とするを請求項1記載の半導体装置。 The first transistor and the third transistor are connected to a signal line that supplies the first voltage, and the first transistor and the third transistor have different threshold voltages, and the first transistor 2. The semiconductor device according to claim 1, wherein the second transistor and the fourth transistor have different threshold voltages.
  3.  前記第1の電圧は電源電圧であり、
     前記第2の電圧は基準電圧であり、
     前記第1のトランジスタのしきい値電圧が前記電源電圧より高く、前記第1のトランジスタ及び前記第2のトランジスタが、ゲートが前記第1の電圧を供給する信号線に接続されるN型トランジスタである前記第1の信号出力回路と、
     前記第4のトランジスタのしきい値電圧が前記電源電圧より高く、前記第3のトランジスタ及び前記第4のトランジスタが、ゲートが前記第1の電圧を供給する信号線に接続されるN型トランジスタである前記第2の信号出力回路とを含むことを特徴とする請求項2記載の半導体装置。
    The first voltage is a power supply voltage;
    The second voltage is a reference voltage;
    The threshold voltage of the first transistor is higher than the power supply voltage, and the first transistor and the second transistor are N-type transistors whose gates are connected to a signal line that supplies the first voltage. The first signal output circuit;
    The threshold voltage of the fourth transistor is higher than the power supply voltage, and the third transistor and the fourth transistor are N-type transistors whose gates are connected to a signal line that supplies the first voltage. The semiconductor device according to claim 2, further comprising: the second signal output circuit.
  4.  前記第1の電圧を供給する信号線と第3の電圧を供給する信号線との間にダイオード接続されたN型トランジスタを有し、
     前記第1のトランジスタ及び前記第2のトランジスタが前記第3の電圧を供給する信号線と前記第2の電圧を供給する信号線との間に直列に接続され、
     前記第3のトランジスタ及び前記第4のトランジスタが前記第3の電圧を供給する信号線と前記第2の電圧を供給する信号線との間に直列に接続されることを特徴とする請求項2又は3記載の半導体装置。
    An N-type transistor diode-connected between the signal line supplying the first voltage and the signal line supplying the third voltage;
    The first transistor and the second transistor are connected in series between a signal line supplying the third voltage and a signal line supplying the second voltage;
    3. The third transistor and the fourth transistor are connected in series between a signal line that supplies the third voltage and a signal line that supplies the second voltage. Or the semiconductor device of 3.
  5.  前記第1の電圧は電源電圧であり、
     前記第2の電圧は基準電圧であり、
     前記第1のトランジスタのしきい値電圧が(前記第2の電圧-前記第1の電圧)の値より低く、前記第1のトランジスタ及び前記第2のトランジスタが、ゲートが前記第2の電圧を供給する信号線に接続されるP型トランジスタである前記第1の信号出力回路と、
     前記第4のトランジスタのしきい値電圧が(前記第2の電圧-前記第1の電圧)の値より低く、前記第3のトランジスタ及び前記第4のトランジスタが、ゲートが前記第2の電圧を供給する信号線に接続されるP型トランジスタである前記第2の信号出力回路とを含むことを特徴とする請求項2~4の何れか1項に記載の半導体装置。
    The first voltage is a power supply voltage;
    The second voltage is a reference voltage;
    The threshold voltage of the first transistor is lower than the value of (the second voltage minus the first voltage), and the gates of the first transistor and the second transistor have the second voltage. The first signal output circuit which is a P-type transistor connected to a signal line to be supplied;
    The threshold voltage of the fourth transistor is lower than the value of (the second voltage minus the first voltage), and the third transistor and the fourth transistor have their gates set to the second voltage. 5. The semiconductor device according to claim 2, further comprising: a second signal output circuit which is a P-type transistor connected to a signal line to be supplied.
  6.  前記第1のトランジスタ及び前記第2のトランジスタのそれぞれがダイオード接続された前記第1の信号出力回路と、
     前記第3のトランジスタ及び前記第4のトランジスタのそれぞれがダイオード接続された前記第2の信号出力回路とを含むことを特徴とする請求項2~5の何れか1項に記載の半導体装置。
    The first signal output circuit in which each of the first transistor and the second transistor is diode-connected;
    6. The semiconductor device according to claim 2, further comprising: the second signal output circuit in which each of the third transistor and the fourth transistor is diode-connected.
  7.  前記第1のトランジスタがデプレッション型であり、前記第2のトランジスタがエンハンスメント型である前記第1の信号出力回路と、
     前記第3のトランジスタがエンハンスメント型であり、前記第4のトランジスタがデプレッション型である前記第2の信号出力回路とを含むことを特徴とする請求項2~6の何れか1項に記載の半導体装置。
    The first signal output circuit, wherein the first transistor is a depletion type, and the second transistor is an enhancement type;
    7. The semiconductor according to claim 2, further comprising: the second signal output circuit, wherein the third transistor is an enhancement type and the fourth transistor is a depletion type. apparatus.
  8.  前記第1のトランジスタが高耐圧のトランジスタであり、前記第2のトランジスタが前記第1のトランジスタより耐圧が低い低耐圧のトランジスタである前記第1の信号出力回路と、
     前記第3のトランジスタが前記低耐圧のトランジスタであり、前記第4のトランジスタが前記高耐圧のトランジスタである前記第2の信号出力回路とを含むことを特徴とする請求項2~7の何れか1項に記載の半導体装置。
    The first signal output circuit, wherein the first transistor is a high-breakdown-voltage transistor, and the second transistor is a low-breakdown-voltage transistor whose breakdown voltage is lower than that of the first transistor;
    8. The second signal output circuit, wherein the third transistor is the low breakdown voltage transistor and the fourth transistor is the high breakdown voltage transistor. 2. A semiconductor device according to item 1.
PCT/JP2019/005281 2018-02-15 2019-02-14 Semiconductor device WO2019160015A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980012774.7A CN111712911A (en) 2018-02-15 2019-02-14 Semiconductor device with a plurality of semiconductor chips

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018025191A JP7109755B2 (en) 2018-02-15 2018-02-15 semiconductor equipment
JP2018-025191 2018-02-15

Publications (1)

Publication Number Publication Date
WO2019160015A1 true WO2019160015A1 (en) 2019-08-22

Family

ID=67619406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005281 WO2019160015A1 (en) 2018-02-15 2019-02-14 Semiconductor device

Country Status (3)

Country Link
JP (1) JP7109755B2 (en)
CN (1) CN111712911A (en)
WO (1) WO2019160015A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205148A (en) * 1996-01-24 1997-08-05 Toshiba Corp Semiconductor integrated circuit device
US7242063B1 (en) * 2004-06-29 2007-07-10 Hrl Laboratories, Llc Symmetric non-intrusive and covert technique to render a transistor permanently non-operable
JP2011258957A (en) * 2002-11-22 2011-12-22 Hrl Laboratories Llc Use of silicon block process step to camouflage false transistor
JP2017191926A (en) * 2016-04-13 2017-10-19 イーメモリー テクノロジー インコーポレイテッド Semiconductor apparatus with fake functionality

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3322357B2 (en) * 1992-09-25 2002-09-09 株式会社リコー Constant voltage generator
JPH0779561A (en) * 1993-09-10 1995-03-20 Sony Corp Step-up power supply and booster circuit
JP3022815B2 (en) * 1997-07-24 2000-03-21 日本電気アイシーマイコンシステム株式会社 Intermediate potential generation circuit
JP3423957B2 (en) * 1999-11-25 2003-07-07 Necエレクトロニクス株式会社 Step-down circuit
US7605633B2 (en) * 2007-03-20 2009-10-20 Kabushiki Kaisha Toshiba Level shift circuit which improved the blake down voltage
JP5537099B2 (en) * 2009-09-08 2014-07-02 ルネサスエレクトロニクス株式会社 Semiconductor device
US20120313664A1 (en) * 2011-06-07 2012-12-13 Static Control Components, Inc. Semiconductor Device Having Features to Prevent Reverse Engineering
US9287879B2 (en) * 2011-06-07 2016-03-15 Verisiti, Inc. Semiconductor device having features to prevent reverse engineering
US20150071434A1 (en) * 2011-06-07 2015-03-12 Static Control Components, Inc. Secure Semiconductor Device Having Features to Prevent Reverse Engineering
MX348002B (en) * 2013-01-11 2017-01-05 Verisiti Inc Semiconductor device having features to prevent reverse engineering.
JP6030741B2 (en) * 2015-12-04 2016-11-24 ルネサスエレクトロニクス株式会社 Level shift circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205148A (en) * 1996-01-24 1997-08-05 Toshiba Corp Semiconductor integrated circuit device
JP2011258957A (en) * 2002-11-22 2011-12-22 Hrl Laboratories Llc Use of silicon block process step to camouflage false transistor
US7242063B1 (en) * 2004-06-29 2007-07-10 Hrl Laboratories, Llc Symmetric non-intrusive and covert technique to render a transistor permanently non-operable
JP2017191926A (en) * 2016-04-13 2017-10-19 イーメモリー テクノロジー インコーポレイテッド Semiconductor apparatus with fake functionality

Also Published As

Publication number Publication date
JP2019140354A (en) 2019-08-22
JP7109755B2 (en) 2022-08-01
CN111712911A (en) 2020-09-25

Similar Documents

Publication Publication Date Title
US10224922B1 (en) Biasing cascode transistor of an output buffer circuit for operation over a wide range of supply voltages
US6844750B2 (en) Current mirror based multi-channel leakage current monitor circuit and method
US9298250B2 (en) Reconfigurable circuit to emulate system critical paths
US6593792B2 (en) Buffer circuit block and design method of semiconductor integrated circuit by using the same
US10437275B2 (en) Current reference circuit and semiconductor integrated circuit including the same
JP2004179268A (en) Semiconductor integrated circuit and its manufacturing method
US8183898B2 (en) Apparatus for supplying voltage free noise and method of operation the same
JP4241657B2 (en) Semiconductor integrated circuit
US20060208772A1 (en) Semiconductor integrated circuit and noise-reduction method thereof
US20070046337A1 (en) Comparator circuit and semiconductor apparatus
JP3216925B2 (en) Semiconductor integrated circuit
JP2006140228A (en) Mos transistor circuit
KR100300687B1 (en) Semiconductor integrated circuit
WO2019160015A1 (en) Semiconductor device
US6005406A (en) Test device and method facilitating aggressive circuit design
US5739702A (en) Bus hold circuit
JP3883114B2 (en) Semiconductor device
US7873921B2 (en) Structure for a voltage detection circuit in an integrated circuit and method of generating a trigger flag signal
US7191425B1 (en) Method and apparatus for inserting extra tracks during library architecture migration
US9437258B2 (en) Data readout circuit of a storage device for read-out operation for preventing erroneous writing into a data storage element and reading out of the data correctly
JP3567160B2 (en) Semiconductor integrated circuit
US5539331A (en) Field programmable gate array having transmission gates and semiconductor integrated circuit for programming connection of wires
JP6835573B2 (en) Voltage adjustment circuit and voltage adjustment method
JP2009124537A (en) Schmitt circuit
JP3255158B2 (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754027

Country of ref document: EP

Kind code of ref document: A1