WO2019159931A1 - Composite retardation film, polarization film using same, liquid crystal panel, and image display device - Google Patents

Composite retardation film, polarization film using same, liquid crystal panel, and image display device Download PDF

Info

Publication number
WO2019159931A1
WO2019159931A1 PCT/JP2019/004993 JP2019004993W WO2019159931A1 WO 2019159931 A1 WO2019159931 A1 WO 2019159931A1 JP 2019004993 W JP2019004993 W JP 2019004993W WO 2019159931 A1 WO2019159931 A1 WO 2019159931A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
retardation
liquid crystal
polarizing film
composite
Prior art date
Application number
PCT/JP2019/004993
Other languages
French (fr)
Japanese (ja)
Inventor
中村 大輔
田中 興一
小間 徳夫
Original Assignee
日本化薬株式会社
株式会社ポラテクノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社, 株式会社ポラテクノ filed Critical 日本化薬株式会社
Priority to JP2020500502A priority Critical patent/JPWO2019159931A1/en
Publication of WO2019159931A1 publication Critical patent/WO2019159931A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a composite retardation film useful for an image display device, a polarizing film using the same, a liquid crystal panel, and an image display device.
  • Image display devices such as liquid crystal display devices (LCDs) and organic EL display devices (OLEDs) are characterized by low power consumption and space saving, and their applications are expanding year by year, such as televisions, personal computers, smartphones, and car navigation systems.
  • the LCD has a plurality of modes depending on the alignment method by the electric field of the liquid crystal.
  • viewing angle characteristics in which the color and contrast of the display image change depending on the viewing angle.
  • various improvement methods using retardation films have been proposed.
  • a retardation film in which a discotic liquid crystal is hybrid-aligned is converted into a TN cell and a polarized light.
  • VA vertical alignment
  • IPS in-plane switching
  • a method of combining two retardation films called a positive C plate and an A plate and arranging them between an IPS cell and a polarizing film is used.
  • the IPS system is used in televisions, in-vehicle displays, and the like because the viewing angle characteristics are superior to others.
  • the conventional technology has not been sufficient to improve the viewing angle characteristics.
  • the present invention relates to a composite retardation film that realizes an image display device capable of clearly displaying a display image with a wide viewing angle, and a polarizing film, a liquid crystal panel, and an image display device using the same, and particularly an IPS liquid crystal display.
  • An object is to provide an apparatus.
  • a composite retardation film comprising a first retardation layer and a second retardation layer, In the first retardation layer, the refractive index nx 1 in the slow axis direction in the plane, the refractive index ny 1 in the fast axis direction orthogonal to the slow axis in the plane, and the refractive index nz 1 in the thickness direction are as follows: Formulas (1) and (2): nx 1 > ny 1 ⁇ nz 1 (1) 1.0 ⁇ (nx 1 -nz 1) / (nx 1 -ny 1) ⁇ 1.4 (2) And an in-plane retardation value Re 1 (450) at a wavelength of 450 nm and an in-plane retardation value Re 1 (550) at a wavelength of 550 nm are expressed by the following formula (3): 0.7 ⁇ Re 1 (450) / Re 1 (550) ⁇ 1.0 (3)
  • a polarizing film with a composite retardation film comprising the polarizing film and the composite retardation film according to Invention 1, A polarizing film, a first retardation layer, and a second retardation layer are laminated in this order, and a slow retardation axis of the first retardation layer and an absorption axis of the polarizing film are orthogonal to each other. Polarizing film with film.
  • a polarizing film with a composite retardation film comprising the polarizing film and the composite retardation film according to Invention 1, A composite retardation film in which a polarizing film, a second retardation layer, and a first retardation layer are laminated in this order, and the slow axis of the first retardation layer and the absorption axis of the polarizing film are parallel Attached polarizing film.
  • the polarizing film has a polarizing element and a pair of protective films sandwiching the polarizing element,
  • the in-plane retardation value Rep at 550 nm of at least one protective film of the pair of protective films is 0 nm or more and 10 nm or less, and the thickness direction retardation value Rthp of the protective film at 550 nm is ⁇ 20 nm or more and 20 nm or less.
  • a liquid crystal panel comprising a liquid crystal cell, a polarizing film with a composite retardation film according to Invention 2, and a second polarizing film, A liquid crystal cell comprising a liquid crystal layer comprising liquid crystal molecules aligned in a homogeneous arrangement in the absence of an electric field;
  • the polarizing film with a composite retardation film is disposed so as to be adjacent to one surface of the liquid crystal cell, and the second retardation layer, the first retardation layer, and the first polarizing film are laminated in order from the liquid crystal cell side.
  • the second polarizing film has an absorption axis orthogonal to the absorption axis of the first polarizing film, and is disposed on the other surface side of the liquid crystal cell; A liquid crystal panel in which the alignment direction of the liquid crystal molecules of the liquid crystal cell is parallel to the absorption axis of the second polarizing film.
  • a liquid crystal panel comprising a liquid crystal cell, the polarizing film with a composite retardation film according to Invention 3, and a second polarizing film, A liquid crystal cell comprising a liquid crystal layer comprising liquid crystal molecules aligned in a homogeneous arrangement in the absence of an electric field;
  • the polarizing film with a composite retardation film is disposed so as to be adjacent to one surface of the liquid crystal cell, and the first retardation layer, the second retardation layer, and the first polarizing film are laminated in order from the liquid crystal cell side.
  • the second polarizing film has an absorption axis orthogonal to the absorption axis of the first polarizing film, and is disposed on the other surface side of the liquid crystal cell; A liquid crystal panel in which the alignment direction of the liquid crystal molecules of the liquid crystal cell is parallel to the absorption axis of the second polarizing film.
  • An image display comprising the composite retardation film according to Invention 1, the polarizing film with the composite retardation film according to any one of Inventions 2 to 4, or the liquid crystal panel according to Invention 5 or Invention 6. apparatus.
  • the present invention can provide a composite retardation film that realizes an image display device capable of clearly displaying a display image with a wide viewing angle, and a polarizing film, a liquid crystal panel, and an image display device using the same.
  • the composite retardation film 1 As shown in FIG. 1, the composite retardation film 1 according to one embodiment of the present invention includes a first retardation layer 2 and a second retardation layer 3.
  • the phase difference layers such as the first phase difference layer 2 and the second phase difference layer 3 have a refractive index nx in the slow axis direction in the plane as in the phase difference layer 4 shown in FIG. At least one of the refractive index ny in the fast axis direction orthogonal to the refractive index nz in the thickness direction is different from the others.
  • the “slow axis” means a direction in which the refractive index becomes maximum in the plane.
  • the measurement wavelength of the refractive index is 550 nm unless otherwise specified.
  • the refractive index can be measured by an Atago multi-wavelength Abbe refractometer DR-M2.
  • the first retardation layer 2 has a refractive index nx 1 in the slow axis direction in the plane, a refractive index ny 1 in the fast axis direction orthogonal to the slow axis in the plane, and a refractive index nz 1 in the thickness direction. , Nx 1 > ny 1 ⁇ nz 1 is satisfied. Further, the first retardation layer 2 has an in-plane retardation value Re 1 (550) represented by (nx 1 -ny 1 ) ⁇ d 1 at a wavelength of 550 nm, preferably 100 nm or more, 170 nm or less, more preferably 110 nm or more.
  • Re ( ⁇ ) and Rth ( ⁇ ) represent an in-plane retardation value (Re) and a thickness direction retardation value (Rth) at a wavelength ⁇ , respectively.
  • Re 1 and Rth 1 represent the retardation value of the first retardation layer 2
  • Re 2 and Rth 2 represent the retardation value of the second retardation layer 3.
  • Re and Rth can be measured using an automatic birefringence measuring instrument (KOBRA-21ADH manufactured by Oji Scientific Instruments).
  • the ratio Re 1 (450) / Re (550) between the in-plane retardation value Re (450) at a wavelength of 450 nm and the in-plane retardation value Re 1 (550) at a wavelength of 550 nm is 0. 0.7 or more and less than 1.0, preferably 0.7 or more and 0.9 or less, more preferably 0.7 or more and 0.8 or less.
  • This difference in phase difference value at each wavelength is called chromatic dispersion, and is an index for determining how much phase difference is given to polarized light of each wavelength.
  • the Nz coefficient represented by the following formula (2 ′) is 1.0 or more and 1.4 or less, preferably 1.0 or more and 1.3 or less, more preferably 1 It is about 0.0 or more and 1.2 or less.
  • Nz (nx 1 -nz 1) / (nx 1 -ny 1) (2 ')
  • the Nz coefficient is an index that represents the degree of change between the retardation value in the front direction of the retardation film and the retardation value when tilted, and is an index that determines the viewing angle characteristics in the oblique direction.
  • the first retardation layer 2 is not particularly limited as long as it has the above-described optical characteristics.
  • cycloolefin polymers such as polycarbonate and derivatives thereof, polyethylene terephthalate, polyethersulfone, norbornene derivatives, acrylic polymers, and cellulose derivatives.
  • a film obtained by uniaxially or biaxially stretching a plastic film such as a liquid crystal film in which a liquid crystalline compound is aligned so as to generate a phase difference in the nx or ny direction with respect to the film surface.
  • a film include Pure Ace WR (manufactured by Teijin Limited) and films formed from polymerizable liquid crystalline compounds described in JP-A Nos. 2002-267838 and 2010-31223. Can be mentioned.
  • the second retardation layer 3 is characterized in that the in-plane average refractive index no and the refractive index ne in the thickness direction satisfy a relationship of ne ⁇ no> 0.
  • the in-plane average refractive index no is obtained from the formula: (nx 2 + ny 2 ) from the refractive index nx 2 in the slow axis direction in the plane and the refractive index ny 2 in the fast axis direction orthogonal to the slow axis in the plane. It is indicated by / 2.
  • Refractive index in the thickness direction ne is also referred to as a nz 2.
  • the second retardation layer 3 has a thickness direction retardation value Rth 2 (550) indicated by (no-ne) ⁇ d 2 at a wavelength of 550 nm, preferably ⁇ 150 nm or more, ⁇ 60 nm or less, more preferably ⁇ 140 nm. As described above, it is about ⁇ 70 nm or less (d 2 is the thickness of the second retardation layer 3). Further, the second retardation layer 3 has a ratio Rth 2 (450) / Rth 2 (550) of a thickness direction retardation value Rth 2 (450) to Rth 2 (550) at a wavelength of 450 nm of 0.7 or more. It is less than 15, preferably 0.7 or more and 1.10 or less.
  • the second retardation layer 3 is not particularly limited as long as it has the above-described optical characteristics.
  • polycarbonate and derivatives thereof cycloolefin polymers such as polyethylene terephthalate, polyethersulfone, norbornene derivatives, acrylic polymers, cellulose derivatives, etc.
  • liquid crystalline compound oriented in the thickness direction used for forming the second retardation layer 3 examples include a thermotropic liquid crystalline compound exhibiting liquid crystallinity in a certain temperature range and a liquid crystalline property in a specific concentration range of a certain solution.
  • examples thereof include lyotropic liquid crystalline compounds.
  • a thermotropic liquid crystalline compound can be used by mixing a plurality of liquid crystalline compounds in order to exhibit liquid crystallinity over a wide temperature range.
  • These liquid crystalline compounds are preferably compounds that are polymerized or cross-linked by electron beam, ultraviolet rays or heat in order to fix the alignment state.
  • Such a liquid crystalline compound is preferably a compound having a polymerizable group such as a (meth) acryloyl group, an epoxy group or a vinyl group, or a compound having a crosslinkable functional group such as an amino group or a hydroxyl group.
  • a polymerizable compound examples include compounds described in WO97 / 44703 and WO98 / 00475. These compounds can be aligned in the thickness direction by using a vertical alignment film.
  • the second retardation layer 3 can be obtained by polymerizing or crosslinking these compounds with an electron beam or in the presence of a polymerization initiator or a crosslinking agent while maintaining the alignment state by ultraviolet rays or heat.
  • the composite retardation film 1 can be obtained by laminating the first retardation layer 2 and the second retardation layer 3.
  • the means for laminating the retardation layer a method of bonding each retardation film with an adhesive or an adhesive, a vertical alignment film on the first retardation layer 2, and a first alignment layer on the first retardation layer 2.
  • Examples include a method of forming the two phase difference layer 3. Therefore, an adhesive layer or an adhesive layer may exist between the first retardation layer 2 and the second retardation layer 3, or a vertical alignment film may exist.
  • a pressure-sensitive adhesive layer, an adhesive layer, or a vertical alignment film is present, it is desirable that these layers have a substantially zero retardation value.
  • an adhesive used for an adhesive layer Nippon Kayaku Co., Ltd. PTR5000 is mentioned, for example.
  • Examples of the adhesive used for the adhesive layer include Z-200 manufactured by Nippon Synthetic Chemical.
  • An example of the vertical alignment film is HSPA-601 manufactured by Nissan Chemical Industries.
  • the composite phase difference film 1 has good viewing angle characteristics by satisfying the following formulas (6) and (7).
  • Rth 1 (550) and Rth 2 (550) are obtained by the following formulas (8) and (9).
  • Rth 1 (550) ⁇ (nx 1 + ny 1 ) / 2-nz 1 ⁇ ⁇ d 1 (8)
  • Equation (6) represents the optimal relationship between the retardation value in the front direction and the retardation value in the thickness direction of the first retardation layer.
  • Formula (7) shows the optimal range of the sum total of the retardation values in the thickness direction of the first and second retardation layers.
  • the composite retardation film according to the present invention has the above-mentioned wavelength dispersion characteristic, the Nz coefficient represented by the formula (2 ′) is within the above range, and satisfies the formula (6), It is a composite phase difference film which combined the said 2nd phase difference layer which has the said wavelength dispersion characteristic, and satisfy
  • the polarizing film with a composite retardation film includes a polarizing film and the composite retardation film.
  • FIG. 3 is a schematic view showing one embodiment of a polarizing film with a composite retardation film.
  • the polarizing film 7 with a composite phase difference film is a laminated body by which the polarizing film 5, the 1st phase difference layer 2, and the 2nd phase difference layer 3 were laminated
  • the laminate is arranged so that the slow axis (nx direction) of the first retardation layer 2 and the absorption axis 6 of the polarizing film 5 are orthogonal to each other.
  • orthogonal means substantially orthogonal, for example, an angle formed by two straight lines or planes is more preferably within a range of less than 90 ° ⁇ 2 °. Indicates a range of less than 90 ° ⁇ 1 °.
  • Parallel means almost parallel, and the angle formed by two two straight lines or planes is within a range of less than 0 ° ⁇ 2 °, more preferably within a range of less than 0 ° ⁇ 1 °. Point to.
  • the method of bonding using an adhesive or an adhesive agent, or forming the composite phase difference film 1 on the protective film of the polarizing film 5 is carried out. Methods and the like.
  • the first retardation layer 2 and the second position can be obtained by aligning the polymerizable liquid crystalline compound using the alignment film on the protective film.
  • the method of forming the phase difference layer 3 is mentioned.
  • a pressure sensitive adhesive layer, an adhesive layer, or the like may exist between the polarizing film 5 and the first retardation film 2 of the composite retardation film 1.
  • optically isotropic layers such as a urethane resin layer and an acrylic resin layer may be present.
  • the polarizing film 5 is not particularly limited.
  • a polyvinyl alcohol film impregnated with a water-soluble dichroic dye and / or a dichroic dye such as polyiodine ions is uniaxially stretched in a boric acid hot water bath.
  • a polarizing element obtained by uniaxial stretching of a polarizing element or a polyvinyl alcohol film and then forming a polyene structure by a dehydration reaction, or a solution containing a dichroic dye is applied on a protective film to obtain a two-color coating.
  • Examples thereof include a polarizing element obtained by orienting a neutral dye, a protective film-integrated polarizing element obtained by providing a polyvinyl alcohol layer on a protective film, uniaxially stretching with the protective film, and then impregnating the dichroic dye.
  • the polarizing film 5 preferably includes a polarizing element having a polarizing function and a protective film for protecting the polarizing element.
  • the protective film may be disposed only on one surface of the polarizing element, or the two protective films may be disposed on both surfaces of the polarizing element so as to sandwich the polarizing element.
  • FIG. 4 illustrates a polarizing film 5 including a polarizing element 9 and two protective layers 10 provided on both surfaces of the polarizing element.
  • the protective film is not particularly limited as long as it is a film having high transparency, excellent adhesion to the polarizing element, and suitable strength to protect the polarizing element.
  • a triacetyl cellulose film, a cycloolefin polymer film And acrylic resin film for example, a triacetyl cellulose film, a cycloolefin polymer film And acrylic resin film.
  • the in-plane retardation value Rep (550) at 550 nm of the protective film is preferably 0 nm or more and 10 nm or less, more preferably 0 nm or more and 5 nm or less, and further preferably 0 nm or more and 3 nm or less. Further, the protective film has an in-plane average refractive index nop, a thickness direction refractive index nep, and a thickness dp.
  • the thickness direction retardation value Rthp at 550 nm represented by (nop-nep) ⁇ dp.
  • (550) is preferably ⁇ 20 nm or more and 20 nm or less, more preferably ⁇ 10 nm or more and 10 nm or less, and further preferably ⁇ 5 nm or more and 5 nm or less.
  • the thickness of the protective film is preferably 80 ⁇ m or less, more preferably 60 ⁇ m or less, and still more preferably 40 ⁇ m or less.
  • FIG. 5 is a schematic view showing another embodiment of a polarizing film with a composite retardation film.
  • a polarizing film 8 with a composite retardation film shown in FIG. 5 is a laminate in which a polarizing film 5, a second retardation layer 3, and a first retardation layer 2 are laminated in this order.
  • the laminate is arranged such that the slow axis (nx direction) of the first retardation layer 2 and the absorption axis 6 of the polarizing film 5 are parallel.
  • the same components as those shown in FIG. 3 are denoted by the same reference numerals.
  • An image display device includes the composite retardation film or the polarizing film with the composite retardation film.
  • the image display device is, for example, a liquid crystal display device (LCD) or an organic EL display device (OLED), preferably an LCD, and particularly preferably an IPS LCD.
  • the liquid crystal display device is particularly preferably used for an in-vehicle display device.
  • the image display device according to the present invention is extremely useful for improving the display characteristics of the image display device by including the composite retardation film or the polarizing film with the composite retardation film. Specifically, since the image display device of the present invention includes the composite retardation film or the polarizing film with the composite retardation film, the light leakage in the oblique direction and the color shift amount can be reduced, and excellent viewing angle characteristics. Can be expressed.
  • the liquid crystal display device 18 includes a polarizing film 7 with a composite retardation film, a liquid crystal cell 11, a second polarizing film 12, and a backlight unit 16 in this order. . That is, the polarizing film 7 with a composite retardation film is disposed on one surface of the liquid crystal cell 11, and the second polarizing film 12 is disposed on the other surface. A backlight unit 16 is disposed on the surface of the second polarizing film 12 opposite to the surface on which the liquid crystal cell 11 is disposed.
  • the first polarizing film 5 is disposed so as to be adjacent to one surface of the first retardation layer 2, and is adjacent to the other surface of the first retardation layer 2.
  • Two phase difference layers 3 are arranged.
  • the first polarizing film 5 and the first retardation layer 2 are arranged so that the slow axis (nx direction) of the first retardation layer 2 and the absorption axis 6 of the polarizing film 5 are orthogonal to each other.
  • the second retardation layer 3 is disposed adjacent to the liquid crystal cell 11.
  • adjacent means that two layers or elements such as a film may be arranged in direct contact with each other and an optically ineffective layer such as an adhesive layer is interposed between them. It may be arranged via.
  • the polarizing film included in the polarizing film 7 with the composite retardation film is referred to as the first polarizing film 5, and a polarizing film different from the polarizing film included in the polarizing film 7 with the composite retardation film is used as the first polarizing film 5.
  • This is referred to as a dipolarizing film 12.
  • the polarizing film 7 with a composite retardation film, the liquid crystal cell 11, and the second polarizing film 12 constitute a liquid crystal panel 15.
  • a liquid crystal display device 18 can be obtained by combining the liquid crystal panel 15 and the backlight unit 16.
  • the liquid crystal cell 11 is a liquid crystal cell (IPS cell or FFS cell) including a liquid crystal layer including liquid crystal molecules aligned in a homogeneous arrangement in the absence of an electric field. It arrange
  • the second polarizing film 12 and the liquid crystal cell 11 are bonded together with, for example, an adhesive.
  • an adhesive for example, it is preferable to use an acrylic adhesive PTR5000 manufactured by Nippon Kayaku Co., Ltd.
  • the second polarizing film 12 a polarizing film similar to that described for the first polarizing film 5 can be used.
  • liquid crystal cell 11 examples include a vertical alignment nematic (VA) type and a bend nematic type (OCB) in addition to an in-plane switching (IPS and FFS) type, and an in-plane switching type is preferable.
  • VA vertical alignment nematic
  • OBC bend nematic type
  • IPS and FFS in-plane switching
  • IPS and FFS in-plane switching type
  • the backlight unit 16 Although it does not specifically limit as the backlight unit 16,
  • a prism sheet or the like can be used as necessary.
  • FIG. 8 is a schematic view showing another embodiment of the liquid crystal display device.
  • the image display device 19 shown in FIG. 8 is a laminate in which the polarizing film 8 with a composite retardation film, the liquid crystal cell 11, the second retardation film 12, and the backlight unit 16 are laminated in this order.
  • the same components as those shown in FIG. 6 are denoted by the same reference numerals.
  • the polarizing film 8 with a composite retardation film, the liquid crystal cell 11, and the second polarizing film 12 constitute a liquid crystal panel 17.
  • a liquid crystal display device 19 can be obtained by combining the liquid crystal panel 17 and the backlight unit 16.
  • the first polarizing film 5 is disposed so as to be adjacent to one surface of the second retardation layer 3, and is adjacent to the other surface of the second retardation layer 3.
  • the phase difference layer 2 is disposed.
  • the 1st polarizing film 5 and the 1st phase difference layer 2 are arrange
  • the first retardation layer 2 of the polarizing film 8 with the composite retardation film is disposed adjacently.
  • a second polarizing film 12 is disposed on the other surface of the liquid crystal cell 11.
  • the second polarizing film 12 is arranged so that the absorption axis 14 is orthogonal to the absorption axis 6 of the first polarizing film 5. Furthermore, it arrange
  • the organic EL display device includes a combination of the above polarizing film with a composite retardation film and an organic EL panel.
  • Examples 1 and 2 and Reference Examples 1 to 5 Composite retardation film
  • a first retardation layer and a second retardation layer having Nz coefficients and retardation values shown in Tables 1 and 2 were laminated to obtain a composite retardation film.
  • the above nx 1 , ny 1 and nz 1 of the first phase difference phase are shown in the following Table A, and the above nx 2 , ny 2 and nz 2 of the second retardation layer are shown in the following Table B, respectively.
  • the polarizing film was laminated on the composite retardation film in the order of polarizing film / first retardation layer / second retardation layer to obtain a polarizing film with a composite retardation film having the structure shown in FIG.
  • a polarizing film JET-12 manufactured by Polatechno
  • Table 3 shows the optical properties of the polarizing film.
  • Liquid crystal display device A transmissive liquid crystal display device having the structure shown in FIG. 6 was constructed using the above polarizing film with a composite retardation film.
  • the liquid crystal layer of the liquid crystal cell was ZLI-4792 (manufactured by Merck), and the thickness of the liquid crystal layer was 3.8 ⁇ m.
  • As the second polarizing film JET-12 (manufactured by Polatechno) was used.
  • An LED light source was used as the backlight unit.
  • the transmission type liquid crystal display device and the liquid crystal cell were set to a dark state (black display), and the viewing angle dependency of transmittance and luminance at wavelengths of 450 nm, 550 nm, and 650 nm was calculated, and the results were compared.
  • the viewing angle was calculated using an LCD master manufactured by Shintec Co., Ltd., and the transmittance and luminance at an inclination angle of 40 ° and an azimuth angle of 40 ° were calculated as representative examples of the viewing angle required for in-vehicle use.
  • the inclination angle 40 ° represents an angle inclined by 40 ° from the direction perpendicular to the plane to the plane direction, and the azimuth angle is counterclockwise in the plane of the polarizing film 5 from the absorption axis 6 of the polarizing film 5. This represents the angle rotated around 40 °.
  • Table 4 The results are shown in Table 4.
  • the liquid crystal display device using the polarizing film with the composite retardation film of Example 1 or 2 has a luminance when viewed from an oblique direction as compared with the liquid crystal display devices of Reference Examples 1 to 5. Is low, light leakage is suppressed, and viewing angle dependency is improved.
  • the luminance in the oblique viewing direction is high in Reference Example 1 in which Rth 2 (450) / Rth 2 (550) of the second retardation layer exceeds 1.15.
  • coloring is generated by increasing the transmittance at 450 nm and 650 nm.
  • the liquid crystal display devices of Examples 1 and 2 were able to clearly display display images with a wide viewing angle even in a bright state (white display).
  • the liquid crystal display device manufactured using the same material as in Examples 1 and 2 and having the structure shown in FIG. 8 also has a clear display image with a wide viewing angle in both the dark state (black display) and the bright state (white display). I was able to see it.
  • the present invention can provide a composite retardation film that realizes an image display device capable of clearly displaying a display image with a wide viewing angle, a polarizing film using the same, a liquid crystal panel, and an image display device.

Abstract

Provided is a composite retardation film provided with: a first retardation layer having a phase difference value in a specific range and an Nz coefficient; and a second retardation layer.

Description

複合位相差フィルム並びにこれを用いた偏光フィルム、液晶パネル、および画像表示装置Composite retardation film, polarizing film using the same, liquid crystal panel, and image display device
 本発明は、画像表示装置に有益な複合位相差フィルム並びにこれを用いた偏光フィルム、液晶パネル、および画像表示装置に関する。 The present invention relates to a composite retardation film useful for an image display device, a polarizing film using the same, a liquid crystal panel, and an image display device.
 液晶表示装置(LCD)や有機EL表示装置(OLED)などの画像表示装置は、低消費電力、省スペースを特徴として、テレビやパソコン、スマートフォン、カーナビ等年々その用途が広がっている。LCDには液晶の電界による配向方法により、複数のモードがあるが、共通の課題として、見る角度によって、表示画像の色やコントラストが変化してしまう、いわゆる視野角特性の問題がある。この課題に対して、種々の位相差フィルムを用いた改善方法が提案されており、例えば、ツイステッドネマチック(TN)方式の場合は、ディスコティック液晶をハイブリッド配向させた位相差フィルムをTNセルと偏光フィルムとの間に配置する方法や、垂直配向(VA)方式の場合は、ネガティブCプレートと呼ばれる位相差フィルムをVAセルと偏光フィルムとの間に配置する方法や、インプレーンスイッチング(IPS)方式の場合は、例えば特許文献1~6のように、ポジティブCプレートとAプレートと呼ばれる2つの位相差フィルムを組み合わせてIPSセルと偏光フィルムとの間に配置する方法等が用いられている。これらのモードの中でもIPS方式は視野角特性が他よりも優れていることからテレビや車載ディスプレイ等へ用いられているが、従来の技術では、視野角特性に対する改善は不十分であった。 Image display devices such as liquid crystal display devices (LCDs) and organic EL display devices (OLEDs) are characterized by low power consumption and space saving, and their applications are expanding year by year, such as televisions, personal computers, smartphones, and car navigation systems. The LCD has a plurality of modes depending on the alignment method by the electric field of the liquid crystal. However, as a common problem, there is a problem of so-called viewing angle characteristics in which the color and contrast of the display image change depending on the viewing angle. In order to solve this problem, various improvement methods using retardation films have been proposed. For example, in the case of a twisted nematic (TN) system, a retardation film in which a discotic liquid crystal is hybrid-aligned is converted into a TN cell and a polarized light. In the case of a vertical alignment (VA) method, a method of arranging a retardation film called a negative C plate between a VA cell and a polarizing film, or in-plane switching (IPS) method. In this case, for example, as in Patent Documents 1 to 6, a method of combining two retardation films called a positive C plate and an A plate and arranging them between an IPS cell and a polarizing film is used. Among these modes, the IPS system is used in televisions, in-vehicle displays, and the like because the viewing angle characteristics are superior to others. However, the conventional technology has not been sufficient to improve the viewing angle characteristics.
特開平11-133408号公報Japanese Patent Laid-Open No. 11-133408 特開2006-178401号公報JP 2006-178401 A 特表2006-520008号公報Special Table 2006-520008 特開2010-186200号公報JP 2010-186200 A 特開2012-185509号公報JP 2012-185509 A 特開2015-187746号公報Japanese Patent Laying-Open No. 2015-187746
 本発明は、広い視野角で表示画像を鮮明に見ることができる画像表示装置を実現する複合位相差フィルム、並びにこれを用いた偏光フィルム、液晶パネル、および画像表示装置、特にIPS方式の液晶表示装置を提供することを目的とする。 The present invention relates to a composite retardation film that realizes an image display device capable of clearly displaying a display image with a wide viewing angle, and a polarizing film, a liquid crystal panel, and an image display device using the same, and particularly an IPS liquid crystal display. An object is to provide an apparatus.
 本発明者らは上記課題を解決すべく、鋭意検討を行った。その結果、特定の範囲の位相差値およびNz係数(=(nx-nz)/(nx-ny))を有する第一位相差層と第二位相差層とを備える複合位相差フィルムを画像表示装置、特にIPS方式のLCDへ用いることにより、視野角特性が改善され、上記目的を達成できることを新規に見出し、本発明の完成に至った。 The present inventors have intensively studied to solve the above problems. As a result, the phase difference values and the Nz coefficient of a particular range (= (nx 1 -nz 1) / (nx 1 -ny 1)) first retardation layer and the composite phase difference and a second retardation layer having By using the film for an image display device, particularly an IPS LCD, the viewing angle characteristics are improved and the above object can be achieved, and the present invention has been completed.
 すなわち、本発明は、以下の発明1~7に関する。
[発明1] 第一位相差層と第二位相差層とを備える複合位相差フィルムであって、
 第一位相差層において、面内で遅相軸方向の屈折率nx、遅相軸と面内で直交する進相軸方向の屈折率ny、及び厚さ方向の屈折率nzが下記式(1)及び(2):
    nx1>ny1≧nz1   (1)
    1.0≦(nx1-nz1)/(nx1-ny1)≦1.4   (2)
 を満たし、かつ、波長450nmでの面内位相差値Re(450)と波長550nmでの面内位相差値Re(550)が下記式(3):
    0.7≦Re1(450)/Re1(550)<1.0   (3)
 を満たし、
 第二位相差層において、面内平均屈折率noと、厚さ方向屈折率neが下記式(4):
    ne-no>0   (4)
 を満たし、かつ、波長450nmでの厚み方向位相差値Rth(450)と波長550nmでの厚み方向位相差値Rth(550)が下記式(5):
    0.7≦Rth2(450)/Rth2(550)<1.15   (5)
を満たし、
 第一位相差層における、波長550nmでの面内位相差Re(550)、波長550nmでの厚み方向位相差Rth(550)、及び第二位相差層の波長550nmでの厚み方向位相差Rth(550)が、下記式(6)および(7):
    150nm≦Re1(550)+60(Rth1(550)/Re1(550))≦190nm   (6)
    -50nm≦Rth1(550)+Rth2(550)≦10nm   (7)
を満たす、複合位相差フィルム。
[発明2] 偏光フィルムと発明1に記載の複合位相差フィルムとを含む複合位相差フィルム付偏光フィルムであって、
 偏光フィルム、第一位相差層、および第二位相差層がこの順に積層されており、かつ、第一位相差層の遅相軸と偏光フィルムの吸収軸とが直交している、複合位相差フィルム付偏光フィルム。
[発明3] 偏光フィルムと発明1に記載の複合位相差フィルムとを含む複合位相差フィルム付偏光フィルムであって、
 偏光フィルム、第二位相差層、および第一位相差層がこの順に積層されており、かつ、第一位相差層の遅相軸と偏光フィルムの吸収軸とが平行である、複合位相差フィルム付偏光フィルム。
[発明4] 偏光フィルムが、偏光素子と、偏光素子を挟持する一対の保護膜とを有し、
 一対の保護膜の少なくとも一方の保護膜の550nmにおける面内位相差値Repが0nm以上10nm以下であり、該保護膜の550nmにおける厚み方向位相差値Rthpが-20nm以上20nm以下である発明2または発明3に記載の複合位相差フィルム付偏光フィルム。
[発明5] 液晶セルと、発明2に記載の複合位相差フィルム付偏光フィルムと、第二偏光フィルムとを備えた液晶パネルであって、
 液晶セルが、電界が存在しない状態でホモジニアス配列に配向させた液晶分子を含む液晶層を備え、
 複合位相差フィルム付偏光フィルムが液晶セルの一方の面に隣接するように配置され、液晶セル側から順に、第二位相差層と、第一位相差層と、第一偏光フィルムとが積層され、
 第二偏光フィルムが第一偏光フィルムの吸収軸と直交する吸収軸を有し、液晶セルの他方の面側に配置され、
 液晶セルの液晶分子の配向方向が第二偏光フィルムの吸収軸と平行である、液晶パネル。
[発明6] 液晶セルと、発明3に記載の複合位相差フィルム付偏光フィルムと、第二偏光フィルムとを備えた液晶パネルであって、
 液晶セルが、電界が存在しない状態でホモジニアス配列に配向させた液晶分子を含む液晶層を備え、
 複合位相差フィルム付偏光フィルムが液晶セルの一方の面に隣接するように配置され、液晶セル側から順に、第一位相差層と、第二位相差層と、第一偏光フィルムとが積層され、
 第二偏光フィルムが第一偏光フィルムの吸収軸と直交する吸収軸を有し、液晶セルの他方の面側に配置され、
 液晶セルの液晶分子の配向方向が第二偏光フィルムの吸収軸と平行である、液晶パネル。
[発明7] 発明1に記載の複合位相差フィルム、または発明2~4のいずれか1項に記載の複合位相差フィルム付偏光フィルム、または発明5もしくは発明6に記載の液晶パネルを備える画像表示装置。
That is, the present invention relates to the following inventions 1 to 7.
[Invention 1] A composite retardation film comprising a first retardation layer and a second retardation layer,
In the first retardation layer, the refractive index nx 1 in the slow axis direction in the plane, the refractive index ny 1 in the fast axis direction orthogonal to the slow axis in the plane, and the refractive index nz 1 in the thickness direction are as follows: Formulas (1) and (2):
nx 1 > ny 1 ≧ nz 1 (1)
1.0 ≦ (nx 1 -nz 1) / (nx 1 -ny 1) ≦ 1.4 (2)
And an in-plane retardation value Re 1 (450) at a wavelength of 450 nm and an in-plane retardation value Re 1 (550) at a wavelength of 550 nm are expressed by the following formula (3):
0.7 ≦ Re 1 (450) / Re 1 (550) <1.0 (3)
The filling,
In the second retardation layer, the in-plane average refractive index no and the thickness direction refractive index ne are the following formula (4):
ne-no> 0 (4)
And a thickness direction retardation value Rth 2 (450) at a wavelength of 450 nm and a thickness direction retardation value Rth 2 (550) at a wavelength of 550 nm are expressed by the following formula (5):
0.7 ≦ Rth 2 (450) / Rth 2 (550) <1.15 (5)
The filling,
In the first retardation layer, in-plane retardation Re 1 at a wavelength 550nm (550), the thickness direction retardation Rth 1 (550) at a wavelength of 550nm, and the thickness direction retardation at a wavelength 550nm of the second retardation layer Rth 2 (550) is represented by the following formulas (6) and (7):
150nm ≦ Re 1 (550) +60 (Rth 1 (550) / Re 1 (550)) ≦ 190nm (6)
-50nm ≦ Rth 1 (550) + Rth 2 (550) ≦ 10nm (7)
Satisfying the composite retardation film.
[Invention 2] A polarizing film with a composite retardation film comprising the polarizing film and the composite retardation film according to Invention 1,
A polarizing film, a first retardation layer, and a second retardation layer are laminated in this order, and a slow retardation axis of the first retardation layer and an absorption axis of the polarizing film are orthogonal to each other. Polarizing film with film.
[Invention 3] A polarizing film with a composite retardation film comprising the polarizing film and the composite retardation film according to Invention 1,
A composite retardation film in which a polarizing film, a second retardation layer, and a first retardation layer are laminated in this order, and the slow axis of the first retardation layer and the absorption axis of the polarizing film are parallel Attached polarizing film.
[Invention 4] The polarizing film has a polarizing element and a pair of protective films sandwiching the polarizing element,
The in-plane retardation value Rep at 550 nm of at least one protective film of the pair of protective films is 0 nm or more and 10 nm or less, and the thickness direction retardation value Rthp of the protective film at 550 nm is −20 nm or more and 20 nm or less. The polarizing film with a composite retardation film according to a third aspect.
[Invention 5] A liquid crystal panel comprising a liquid crystal cell, a polarizing film with a composite retardation film according to Invention 2, and a second polarizing film,
A liquid crystal cell comprising a liquid crystal layer comprising liquid crystal molecules aligned in a homogeneous arrangement in the absence of an electric field;
The polarizing film with a composite retardation film is disposed so as to be adjacent to one surface of the liquid crystal cell, and the second retardation layer, the first retardation layer, and the first polarizing film are laminated in order from the liquid crystal cell side. ,
The second polarizing film has an absorption axis orthogonal to the absorption axis of the first polarizing film, and is disposed on the other surface side of the liquid crystal cell;
A liquid crystal panel in which the alignment direction of the liquid crystal molecules of the liquid crystal cell is parallel to the absorption axis of the second polarizing film.
[Invention 6] A liquid crystal panel comprising a liquid crystal cell, the polarizing film with a composite retardation film according to Invention 3, and a second polarizing film,
A liquid crystal cell comprising a liquid crystal layer comprising liquid crystal molecules aligned in a homogeneous arrangement in the absence of an electric field;
The polarizing film with a composite retardation film is disposed so as to be adjacent to one surface of the liquid crystal cell, and the first retardation layer, the second retardation layer, and the first polarizing film are laminated in order from the liquid crystal cell side. ,
The second polarizing film has an absorption axis orthogonal to the absorption axis of the first polarizing film, and is disposed on the other surface side of the liquid crystal cell;
A liquid crystal panel in which the alignment direction of the liquid crystal molecules of the liquid crystal cell is parallel to the absorption axis of the second polarizing film.
[Invention 7] An image display comprising the composite retardation film according to Invention 1, the polarizing film with the composite retardation film according to any one of Inventions 2 to 4, or the liquid crystal panel according to Invention 5 or Invention 6. apparatus.
 本発明は、広い視野角で表示画像を鮮明に見ることができる画像表示装置を実現する複合位相差フィルム、並びにこれを用いた偏光フィルム、液晶パネル、および画像表示装置を提供することができる。 The present invention can provide a composite retardation film that realizes an image display device capable of clearly displaying a display image with a wide viewing angle, and a polarizing film, a liquid crystal panel, and an image display device using the same.
本発明の1つの実施形態に係る複合位相差フィルムを示す概略断面図である。It is a schematic sectional drawing which shows the composite phase difference film which concerns on one Embodiment of this invention. 位相差層の概略図である。It is the schematic of a phase difference layer. 本発明の1つの実施形態に係る複合位相差フィルム付偏光フィルムを示す概略図である。It is the schematic which shows the polarizing film with a composite phase difference film which concerns on one Embodiment of this invention. 偏光フィルムの一形態を示す概略断面図である。It is a schematic sectional drawing which shows one form of a polarizing film. 本発明の他の実施形態に係る複合位相差フィルム付偏光フィルムを示す概略図である。It is the schematic which shows the polarizing film with a composite phase difference film which concerns on other embodiment of this invention. 本発明の1つの実施形態に係る液晶表示装置を示す概略図である。1 is a schematic view showing a liquid crystal display device according to one embodiment of the present invention. 本発明の1つの実施形態に係る液晶パネルを示す概略断面図である。It is a schematic sectional drawing which shows the liquid crystal panel which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る液晶表示装置を示す概略図である。It is the schematic which shows the liquid crystal display device which concerns on other embodiment of this invention.
 以下、本発明の実施形態について図面を参照して説明する。
[複合位相差フィルム]
 図1に示すように、本発明の1つの実施形態に係る複合位相差フィルム1は、第一位相差層2と第二位相差層3とを備える。
Embodiments of the present invention will be described below with reference to the drawings.
[Composite retardation film]
As shown in FIG. 1, the composite retardation film 1 according to one embodiment of the present invention includes a first retardation layer 2 and a second retardation layer 3.
 第一位相差層2および第二位相差層3等の位相差層は、図2に示す位相差層4のように面内で遅相軸方向の屈折率nx、遅相軸と面内で直交する進相軸方向の屈折率ny、および厚さ方向の屈折率nzのうち少なくとも1つが他とは異なる屈折率である。ここで、「遅相軸」は、面内で屈折率が最大となる方向を意味する。また、本願の明細書および特許請求の範囲において、屈折率の測定波長は特に指定がない限り、550nmである。屈折率は、アタゴ社製多波長アッベ屈折計DR-M2により測定することができる。 The phase difference layers such as the first phase difference layer 2 and the second phase difference layer 3 have a refractive index nx in the slow axis direction in the plane as in the phase difference layer 4 shown in FIG. At least one of the refractive index ny in the fast axis direction orthogonal to the refractive index nz in the thickness direction is different from the others. Here, the “slow axis” means a direction in which the refractive index becomes maximum in the plane. In the specification and claims of the present application, the measurement wavelength of the refractive index is 550 nm unless otherwise specified. The refractive index can be measured by an Atago multi-wavelength Abbe refractometer DR-M2.
 第一位相差層2は、面内で遅相軸方向の屈折率nx、遅相軸と面内で直交する進相軸方向の屈折率ny、および厚さ方向の屈折率nzが、nx>ny≧nzの関係を満たしていることを特徴とする。さらに、第一位相差層2は、波長550nmにおける(nx-ny)・dで示される面内位相差値Re(550)が好ましくは100nm以上、170nm以下、より好ましくは110nm以上、160nm以下程度である(dは第一位相差層2の厚さを表す)。なお、本願明細書および特許請求の範囲において、Re(λ)、Rth(λ)は、波長λにおける面内位相差値(Re)、厚み方向の位相差値(Rth)を各々表す。ReおよびRthは第一位相差層2の位相差値を表し、ReおよびRthは第二位相差層3の位相差値を表す。また、本願明細書および特許請求の範囲において、位相差値の測定波長の指定がない場合は、波長550nmでの値を示す。ReおよびRthは、自動複屈折率測定器(王子計測機器社製 KOBRA-21ADH)を用いて測定することができる。 The first retardation layer 2 has a refractive index nx 1 in the slow axis direction in the plane, a refractive index ny 1 in the fast axis direction orthogonal to the slow axis in the plane, and a refractive index nz 1 in the thickness direction. , Nx 1 > ny 1 ≧ nz 1 is satisfied. Further, the first retardation layer 2 has an in-plane retardation value Re 1 (550) represented by (nx 1 -ny 1 ) · d 1 at a wavelength of 550 nm, preferably 100 nm or more, 170 nm or less, more preferably 110 nm or more. , About 160 nm or less (d 1 represents the thickness of the first retardation layer 2). In the present specification and claims, Re (λ) and Rth (λ) represent an in-plane retardation value (Re) and a thickness direction retardation value (Rth) at a wavelength λ, respectively. Re 1 and Rth 1 represent the retardation value of the first retardation layer 2, and Re 2 and Rth 2 represent the retardation value of the second retardation layer 3. Further, in the present specification and claims, when there is no designation of the measurement wavelength of the phase difference value, a value at a wavelength of 550 nm is shown. Re and Rth can be measured using an automatic birefringence measuring instrument (KOBRA-21ADH manufactured by Oji Scientific Instruments).
 第一位相差層2は、波長450nmでの面内位相差値Re(450)と波長550nmでの面内位相差値Re(550)の比Re(450)/Re(550)が0.7以上1.0未満、好ましくは0.7以上0.9以下、より好ましくは0.7以上0.8以下である。この波長における位相差値の違いは波長分散と呼ばれ、各波長の偏光に対してどの程度の位相差を与えるかを決める指標となる。 In the first retardation layer 2, the ratio Re 1 (450) / Re (550) between the in-plane retardation value Re (450) at a wavelength of 450 nm and the in-plane retardation value Re 1 (550) at a wavelength of 550 nm is 0. 0.7 or more and less than 1.0, preferably 0.7 or more and 0.9 or less, more preferably 0.7 or more and 0.8 or less. This difference in phase difference value at each wavelength is called chromatic dispersion, and is an index for determining how much phase difference is given to polarized light of each wavelength.
 第一位相差層2は、下記式(2’)で示されるNz係数が1.0以上、1.4以下であり、好ましくは1.0以上、1.3以下であり、より好ましくは1.0以上、1.2以下程度である。
 
    Nz=(nx1-nz1)/(nx1-ny1)   (2')
 
 Nz係数は、位相差フィルムの正面方向の位相差値と傾斜した際の位相差値の変化の度合いを表す指標であり、斜め方向における視野角特性を決める指標となる。
In the first retardation layer 2, the Nz coefficient represented by the following formula (2 ′) is 1.0 or more and 1.4 or less, preferably 1.0 or more and 1.3 or less, more preferably 1 It is about 0.0 or more and 1.2 or less.

Nz = (nx 1 -nz 1) / (nx 1 -ny 1) (2 ')

The Nz coefficient is an index that represents the degree of change between the retardation value in the front direction of the retardation film and the retardation value when tilted, and is an index that determines the viewing angle characteristics in the oblique direction.
 第一位相差層2としては、上記の光学特性を有する限り特に限定されないが、例えば、ポリカーボネートおよびその誘導体、ポリエチレンテレフタレート、ポリエーテルサルフォン、ノルボルネン誘導体等のシクロオレフィンポリマー、アクリルポリマー、並びにセルロース誘導体等のプラスチックフィルムを一軸または二軸延伸してなるフィルムや、フィルム面に対してnxまたはny方向に位相差を発生するように液晶性化合物が配向した液晶フィルム等が挙げられる。そのようなフィルムとしては、例えば、ピュアエースWR(帝人社製)、および、特開2002-267838号公報や特開2010-31223号公報に記載の重合性液晶性化合物から形成されるフィルム等が挙げられる。 The first retardation layer 2 is not particularly limited as long as it has the above-described optical characteristics. For example, cycloolefin polymers such as polycarbonate and derivatives thereof, polyethylene terephthalate, polyethersulfone, norbornene derivatives, acrylic polymers, and cellulose derivatives. Examples thereof include a film obtained by uniaxially or biaxially stretching a plastic film such as a liquid crystal film in which a liquid crystalline compound is aligned so as to generate a phase difference in the nx or ny direction with respect to the film surface. Examples of such a film include Pure Ace WR (manufactured by Teijin Limited) and films formed from polymerizable liquid crystalline compounds described in JP-A Nos. 2002-267838 and 2010-31223. Can be mentioned.
 第二位相差層3は、面内平均屈折率noおよび厚さ方向の屈折率neが、ne-no>0の関係を満たしていることを特徴とする。面内平均屈折率noは、面内で遅相軸方向の屈折率nxおよび遅相軸と面内で直交する進相軸方向の屈折率nyをから、式:(nx+ny)/2で示される。厚さ方向の屈折率neはnzとも称する。第二位相差層3は、波長550nmにおける(no-ne)・dで示される厚み方向の位相差値Rth(550)が、好ましくは-150nm以上、-60nm以下、より好ましくは-140nm以上、-70nm以下程度である(dでは第二位相差層3の厚さ)。さらに、第二位相差層3は、波長450nmでの厚み方向位相差値Rth(450)とRth(550)の比Rth(450)/Rth(550)が0.7以上1.15未満、好ましくは0.7以上、1.10以下である。 The second retardation layer 3 is characterized in that the in-plane average refractive index no and the refractive index ne in the thickness direction satisfy a relationship of ne−no> 0. The in-plane average refractive index no is obtained from the formula: (nx 2 + ny 2 ) from the refractive index nx 2 in the slow axis direction in the plane and the refractive index ny 2 in the fast axis direction orthogonal to the slow axis in the plane. It is indicated by / 2. Refractive index in the thickness direction ne is also referred to as a nz 2. The second retardation layer 3 has a thickness direction retardation value Rth 2 (550) indicated by (no-ne) · d 2 at a wavelength of 550 nm, preferably −150 nm or more, −60 nm or less, more preferably −140 nm. As described above, it is about −70 nm or less (d 2 is the thickness of the second retardation layer 3). Further, the second retardation layer 3 has a ratio Rth 2 (450) / Rth 2 (550) of a thickness direction retardation value Rth 2 (450) to Rth 2 (550) at a wavelength of 450 nm of 0.7 or more. It is less than 15, preferably 0.7 or more and 1.10 or less.
 第二位相差層3としては、上記の光学特性を有する限り特に限定されないが、例えば、ポリカーボネートおよびその誘導体、ポリエチレンテレフタレート、ポリエーテルサルフォン、ノルボルネン誘導体等のシクロオレフィンポリマー、アクリルポリマー、セルロース誘導体等のプラスチックフィルムを面方向に二軸延伸し、さらに厚さ方向に延伸した位相差フィルムや、厚さ方向に配向させた液晶性化合物からなるフィルム等が挙げられる。 The second retardation layer 3 is not particularly limited as long as it has the above-described optical characteristics. For example, polycarbonate and derivatives thereof, cycloolefin polymers such as polyethylene terephthalate, polyethersulfone, norbornene derivatives, acrylic polymers, cellulose derivatives, etc. And a retardation film obtained by biaxially stretching the plastic film in the plane direction and further stretching in the thickness direction, and a film made of a liquid crystalline compound oriented in the thickness direction.
 第二位相差層3の形成に用いられる厚さ方向に配向する液晶性化合物としては、例えば、ある温度範囲において液晶性を示すサーモトロピック液晶性化合物やある溶液の特定の濃度範囲で液晶性を示すリオトロピック液晶性化合物等が挙げられる。特に、サーモトロピック液晶性化合物は広い温度範囲で液晶性を示すことができるようにするために複数の液晶性化合物を混合して用いることもできる。これらの液晶性化合物は、配向状態を固定するために、電子線、紫外線あるいは熱により重合もしくは架橋するような化合物であることが好ましい。そのような液晶性化合物は、(メタ)アクリロイル基やエポキシ基、ビニル基などの重合性基を有する化合物、またはアミノ基やヒドロキシル基等の架橋性官能基を有する化合物であることが好ましく、そのような重合性化合物としては、例えばWO97/44703号やWO98/00475号に記載の化合物等が挙げられる。これらの化合物は、垂直配向膜を用いることで、厚さ方向に配向させることができる。これらの化合物を電子線によって、あるいは重合開始剤または架橋剤の存在下で紫外線や熱等によって配向状態を保持したまま重合または架橋させることにより第二位相差層3を得ることができる。 Examples of the liquid crystalline compound oriented in the thickness direction used for forming the second retardation layer 3 include a thermotropic liquid crystalline compound exhibiting liquid crystallinity in a certain temperature range and a liquid crystalline property in a specific concentration range of a certain solution. Examples thereof include lyotropic liquid crystalline compounds. In particular, a thermotropic liquid crystalline compound can be used by mixing a plurality of liquid crystalline compounds in order to exhibit liquid crystallinity over a wide temperature range. These liquid crystalline compounds are preferably compounds that are polymerized or cross-linked by electron beam, ultraviolet rays or heat in order to fix the alignment state. Such a liquid crystalline compound is preferably a compound having a polymerizable group such as a (meth) acryloyl group, an epoxy group or a vinyl group, or a compound having a crosslinkable functional group such as an amino group or a hydroxyl group. Examples of such a polymerizable compound include compounds described in WO97 / 44703 and WO98 / 00475. These compounds can be aligned in the thickness direction by using a vertical alignment film. The second retardation layer 3 can be obtained by polymerizing or crosslinking these compounds with an electron beam or in the presence of a polymerization initiator or a crosslinking agent while maintaining the alignment state by ultraviolet rays or heat.
 複合位相差フィルム1は、第一位相差層2と第二位相差層3とを積層することにより得ることができる。位相差層を積層する手段には特に制限は無く、それぞれの位相差膜を粘着剤や接着剤により貼り合せる方法や、第一位相差層2上に垂直配向膜を設けて、その上に第二位相差層3を形成する方法等が挙げられる。よって、第一位相差層2と第二位相差層3との間には、粘着剤層または接着剤層が存在していてもよく、あるいは、垂直配向膜が存在していてもよい。粘着剤層、接着剤層、または垂直配向膜が存在する場合には、これらの層は実質的に位相差値がゼロであることが望ましい。粘着剤層に用いる粘着剤としては、例えば日本化薬社製のPTR5000が挙げられる。接着剤層に用いる接着剤としては、例えば日本合成化学社製のZ-200が挙げられる。垂直配向膜としては、例えば日産化学工業社製のHSPA-601が挙げられる。 The composite retardation film 1 can be obtained by laminating the first retardation layer 2 and the second retardation layer 3. There is no particular limitation on the means for laminating the retardation layer, a method of bonding each retardation film with an adhesive or an adhesive, a vertical alignment film on the first retardation layer 2, and a first alignment layer on the first retardation layer 2. Examples include a method of forming the two phase difference layer 3. Therefore, an adhesive layer or an adhesive layer may exist between the first retardation layer 2 and the second retardation layer 3, or a vertical alignment film may exist. When a pressure-sensitive adhesive layer, an adhesive layer, or a vertical alignment film is present, it is desirable that these layers have a substantially zero retardation value. As an adhesive used for an adhesive layer, Nippon Kayaku Co., Ltd. PTR5000 is mentioned, for example. Examples of the adhesive used for the adhesive layer include Z-200 manufactured by Nippon Synthetic Chemical. An example of the vertical alignment film is HSPA-601 manufactured by Nissan Chemical Industries.
 複合位相差フィルム1は、下記式(6)および(7)を満たすことにより、視野角特性が良好となる。
    150nm≦Re1(550)+60(Rth1(550)/Re1(550))≦190nm   (6)
    -50nm≦Rth1(550)+Rth2(550)≦-10nm   (7)
 
 ここで、Rth(550)およびRth(550)は、下記式(8)および(9)により求められる。
 
    Rth1(550)={(nx1+ny1)/2-nz1}・d1   (8)
    Rth2(550)=(no-ne)・d2={(nx2+ny2)/2-nz2}・d2   (9)
The composite phase difference film 1 has good viewing angle characteristics by satisfying the following formulas (6) and (7).
150nm ≦ Re 1 (550) +60 (Rth 1 (550) / Re 1 (550)) ≦ 190nm (6)
-50nm ≦ Rth 1 (550) + Rth 2 (550) ≦ -10nm (7)

Here, Rth 1 (550) and Rth 2 (550) are obtained by the following formulas (8) and (9).

Rth 1 (550) = {(nx 1 + ny 1 ) / 2-nz 1 } ・ d 1 (8)
Rth 2 (550) = (no-ne) ・ d 2 = {(nx 2 + ny 2 ) / 2-nz 2 } ・ d 2 (9)
 式(6)は、第一位相差層の持つ、正面方向の位相差値と厚さ方向の位相差値の最適な関係を表している。一方、式(7)は、第一および第二位相差層の厚さ方向の位相差値の総和の最適な範囲を示している。本発明に係る複合位相差フィルムは、上記波長分散特性を有し、式(2’)で示されるNz係数が上記範囲内であり、かつ、式(6)を満たす第一位相差層と、上記波長分散特性を有し、かつ式(7)を満たす第二位相差層とを組み合わせた複合位相差フィルムである。この複合位相差フィルムを用いることにより、画像表示装置、特にIPS方式の画像表示装置の斜めから見た際の光漏れおよび色づきを抑制し、いわゆる視野角特性を大幅に向上することができる。 Equation (6) represents the optimal relationship between the retardation value in the front direction and the retardation value in the thickness direction of the first retardation layer. On the other hand, Formula (7) shows the optimal range of the sum total of the retardation values in the thickness direction of the first and second retardation layers. The composite retardation film according to the present invention has the above-mentioned wavelength dispersion characteristic, the Nz coefficient represented by the formula (2 ′) is within the above range, and satisfies the formula (6), It is a composite phase difference film which combined the said 2nd phase difference layer which has the said wavelength dispersion characteristic, and satisfy | fills Formula (7). By using this composite retardation film, it is possible to suppress light leakage and coloring when viewed obliquely from an image display device, particularly an IPS image display device, and to greatly improve the so-called viewing angle characteristics.
[複合位相差フィルム付偏光フィルム]
 複合位相差フィルム付偏光フィルムは、偏光フィルムと、上記複合位相差フィルムとを含む。図3は、複合位相差フィルム付偏光フィルムの1つの実施形態を示す概略図である。図3に示されるように、複合位相差フィルム付偏光フィルム7は、偏光フィルム5、第一位相差層2、および第二位相差層3がこの順に積層された積層体である。当該積層体は、第一位相差層2の遅相軸(nx方向)と偏光フィルム5の吸収軸6とが直交するように配置されている。ここで、本願の明細書および特許請求の範囲において、「直交」は、ほぼ直交であること意味し、例えば、2つの直線または平面のなす角度が90°±2゜未満の範囲内、より好ましくは90°±1°未満の範囲内であることを指す。「平行」は、ほぼ平行であることを意味し、2つの2つの直線または平面のなす角度が0°±2゜未満の範囲内、より好ましくは0°±1°未満の範囲内であることを指す。
[Polarized film with composite retardation film]
The polarizing film with a composite retardation film includes a polarizing film and the composite retardation film. FIG. 3 is a schematic view showing one embodiment of a polarizing film with a composite retardation film. As FIG. 3 shows, the polarizing film 7 with a composite phase difference film is a laminated body by which the polarizing film 5, the 1st phase difference layer 2, and the 2nd phase difference layer 3 were laminated | stacked in this order. The laminate is arranged so that the slow axis (nx direction) of the first retardation layer 2 and the absorption axis 6 of the polarizing film 5 are orthogonal to each other. Here, in the specification and claims of the present application, “orthogonal” means substantially orthogonal, for example, an angle formed by two straight lines or planes is more preferably within a range of less than 90 ° ± 2 °. Indicates a range of less than 90 ° ± 1 °. “Parallel” means almost parallel, and the angle formed by two two straight lines or planes is within a range of less than 0 ° ± 2 °, more preferably within a range of less than 0 ° ± 1 °. Point to.
 偏光フィルム5と複合位相差フィルム1とを積層する方法に特に制限はないが、粘着剤や接着剤を用いて貼り合せる方法や、偏光フィルム5の保護膜上に複合位相差フィルム1を形成する方法等が挙げられる。
 偏光フィルム5の保護膜上に複合位相差フィルム1を形成する方法としては、保護膜上に配向膜を用いて重合性液晶性化合物を配向させることで、第一位相差層2および第二位相差層3を形成する方法が挙げられる。
 積層に粘着剤や接着剤を用いる場合は、偏光フィルム5と、複合位相差フィルム1の第一位相差フィルム2との間には、粘着剤層および接着剤層等が存在していてもよく、この他にウレタン樹脂層およびアクリル樹脂層等の光学的に等方性な層が存在していてもよい。
Although there is no restriction | limiting in particular in the method of laminating | stacking the polarizing film 5 and the composite phase difference film 1, The method of bonding using an adhesive or an adhesive agent, or forming the composite phase difference film 1 on the protective film of the polarizing film 5 is carried out. Methods and the like.
As a method of forming the composite retardation film 1 on the protective film of the polarizing film 5, the first retardation layer 2 and the second position can be obtained by aligning the polymerizable liquid crystalline compound using the alignment film on the protective film. The method of forming the phase difference layer 3 is mentioned.
When a pressure sensitive adhesive or an adhesive is used for lamination, a pressure sensitive adhesive layer, an adhesive layer, or the like may exist between the polarizing film 5 and the first retardation film 2 of the composite retardation film 1. In addition, optically isotropic layers such as a urethane resin layer and an acrylic resin layer may be present.
 偏光フィルム5としては、特に制限はないが、例えば、水溶性の二色性染料および/または多ヨウ素イオン等の二色性色素を含浸させたポリビニルアルコールフィルムをホウ酸温水浴中で一軸延伸することにより得られる偏光素子や、ポリビニルアルコールフィルムを一軸延伸し、次いで脱水反応により、ポリエン構造を形成させて得られる偏光素子や、保護膜上に二色性色素を含む溶液を塗布して二色性色素を配向させて得られる偏光素子や、保護膜上にポリビニルアルコール層を設け、保護膜と共に一軸延伸後、二色性色素を含浸させて得られる保護膜一体型偏光素子等が挙げられる。 The polarizing film 5 is not particularly limited. For example, a polyvinyl alcohol film impregnated with a water-soluble dichroic dye and / or a dichroic dye such as polyiodine ions is uniaxially stretched in a boric acid hot water bath. A polarizing element obtained by uniaxial stretching of a polarizing element or a polyvinyl alcohol film and then forming a polyene structure by a dehydration reaction, or a solution containing a dichroic dye is applied on a protective film to obtain a two-color coating. Examples thereof include a polarizing element obtained by orienting a neutral dye, a protective film-integrated polarizing element obtained by providing a polyvinyl alcohol layer on a protective film, uniaxially stretching with the protective film, and then impregnating the dichroic dye.
 偏光フィルム5は、偏光機能を有する偏光素子と、偏光素子を保護するための保護膜とを含むことが好ましい。保護膜は、偏光素子の片面のみに配置されていてもよく、2枚の保護膜が偏光素子を挟持するように偏光素子の両面に配置されていてもよい。図4には、偏光素子9と、偏光素子の両面に設けられた2枚の保護層10を備える偏光フィルム5が例示されている。 The polarizing film 5 preferably includes a polarizing element having a polarizing function and a protective film for protecting the polarizing element. The protective film may be disposed only on one surface of the polarizing element, or the two protective films may be disposed on both surfaces of the polarizing element so as to sandwich the polarizing element. FIG. 4 illustrates a polarizing film 5 including a polarizing element 9 and two protective layers 10 provided on both surfaces of the polarizing element.
 保護膜としては、透明性が高く、偏光素子との接着性に優れ、偏光素子を保護できるだけの適度な強度があるフィルムであれば特に制限は無く、例えば、トリアセチルセルロースフィルム、シクロオレフィンポリマーフィルム、およびアクリル樹脂フィルムなどが挙げられる。 The protective film is not particularly limited as long as it is a film having high transparency, excellent adhesion to the polarizing element, and suitable strength to protect the polarizing element. For example, a triacetyl cellulose film, a cycloolefin polymer film And acrylic resin film.
 保護膜の、550nmにおける面内位相差値Rep(550)は、好ましくは0nm以上、10nm以下、より好ましくは0nm以上、5nm以下、さらに好ましくは0nm以上、3nm以下である。また、保護膜は、面内平均屈折率をnop、厚さ方向の屈折率をnep、厚さをdpとしたとき、(nop-nep)・dpで示される550nmにおける厚み方向の位相差値Rthp(550)は、好ましくは-20nm以上、20nm以下、より好ましくは-10nm以上、10nm以下、さらに好ましくは-5nm以上、5nm以下である。保護膜の厚みは、好ましくは80μm以下、より好ましくは60μm以下、さらに好ましくは40μm以下である。 The in-plane retardation value Rep (550) at 550 nm of the protective film is preferably 0 nm or more and 10 nm or less, more preferably 0 nm or more and 5 nm or less, and further preferably 0 nm or more and 3 nm or less. Further, the protective film has an in-plane average refractive index nop, a thickness direction refractive index nep, and a thickness dp. The thickness direction retardation value Rthp at 550 nm represented by (nop-nep) · dp. (550) is preferably −20 nm or more and 20 nm or less, more preferably −10 nm or more and 10 nm or less, and further preferably −5 nm or more and 5 nm or less. The thickness of the protective film is preferably 80 μm or less, more preferably 60 μm or less, and still more preferably 40 μm or less.
 図5は、複合位相差フィルム付偏光フィルムの他の実施形態を示す概略図である。図5に示す複合体位相差フィルム付偏光フィルム8は、偏光フィルム5、第二位相差層3、および第一位相差層2がこの順に積層された積層体である。当該積層体は、第一位相差層2の遅相軸(nx方向)と偏光フィルム5の吸収軸6とが平行であるように配置されている。図5において、図3に示すのと同様の構成要素は同一の符号で示されている。 FIG. 5 is a schematic view showing another embodiment of a polarizing film with a composite retardation film. A polarizing film 8 with a composite retardation film shown in FIG. 5 is a laminate in which a polarizing film 5, a second retardation layer 3, and a first retardation layer 2 are laminated in this order. The laminate is arranged such that the slow axis (nx direction) of the first retardation layer 2 and the absorption axis 6 of the polarizing film 5 are parallel. In FIG. 5, the same components as those shown in FIG. 3 are denoted by the same reference numerals.
[画像表示装置]
 画像表示装置は、上記の複合位相差フィルムまたは複合位相差フィルム付偏光フィルムを備えることを特徴とする。画像表示装置は、例えば、液晶表示装置(LCD)や有機EL表示装置(OLED)であり、好ましくはLCDであり、特に好ましくはIPS方式のLCDである。液晶表示装置は、特に車載用表示装置に好適に用いられる。
 本発明に係る画像表示装置は、上記の複合位相差フィルムまたは複合位相差フィルム付偏光フィルムを備えることにより、画像表示装置の表示特性向上に極めて有用である。具体的には、本発明の画像表示装置は、複合位相差フィルムまたは複合位相差フィルム付偏光フィルムを備えるため、斜め方向の光漏れおよびカラーシフト量を低減することができ、優れた視野角特性を発現することができる。
[Image display device]
An image display device includes the composite retardation film or the polarizing film with the composite retardation film. The image display device is, for example, a liquid crystal display device (LCD) or an organic EL display device (OLED), preferably an LCD, and particularly preferably an IPS LCD. The liquid crystal display device is particularly preferably used for an in-vehicle display device.
The image display device according to the present invention is extremely useful for improving the display characteristics of the image display device by including the composite retardation film or the polarizing film with the composite retardation film. Specifically, since the image display device of the present invention includes the composite retardation film or the polarizing film with the composite retardation film, the light leakage in the oblique direction and the color shift amount can be reduced, and excellent viewing angle characteristics. Can be expressed.
(液晶表示装置)
 以下に、画像表示装置の好ましい例として、液晶表示装置について説明する。
 図6に示すように、本発明の1つの実施形態に係る液晶表示装置18は、複合位相差フィルム付偏光フィルム7、液晶セル11、第二偏光フィルム12、およびバックライトユニット16をこの順に備える。すなわち、液晶セル11の一方の面に複合位相差フィルム付偏光フィルム7が配置され、他方の面に第二偏光フィルム12が配置される。第二偏光フィルム12の液晶セル11が配置されている面と反対側の面には、バックライトユニット16が配置される。複合位相差フィルム付偏光フィルム7においては、第一偏光フィルム5が第一位相差層2の一方の面と隣接するように配置され、第一位相差層2の他方の面に隣接して第二位相差層3が配置される。本実施形態において第一偏光フィルム5及び第一位相差層2は、第一位相差層2の遅相軸(nx方向)と偏光フィルム5の吸収軸6とが直交するように配置されている。第二位相差層3は液晶セル11に隣接して配置される。本願明細書および特許請求の範囲において、「隣接」は、2つの層またはフィルム等の要素が、直接接して配置されていてもよく、粘着層等の光学的に影響がほとんどない層を間に介して配置されていてもよいことを表す。なお、図6において、区別のため、複合位相差フィルム付偏光フィルム7が有する偏光フィルムを第一偏光フィルム5とし、複合位相差フィルム付偏光フィルム7が有する偏光フィルムとは別の偏光フィルムを第二偏光フィルム12と指称する。図7に示すように、複合位相差フィルム付偏光フィルム7、液晶セル11、および第二偏光フィルム12は、液晶パネル15を構成する。液晶パネル15とバックライトユニット16を組み合わせることで、液晶表示装置18を得ることができる。
(Liquid crystal display device)
Hereinafter, a liquid crystal display device will be described as a preferred example of the image display device.
As shown in FIG. 6, the liquid crystal display device 18 according to one embodiment of the present invention includes a polarizing film 7 with a composite retardation film, a liquid crystal cell 11, a second polarizing film 12, and a backlight unit 16 in this order. . That is, the polarizing film 7 with a composite retardation film is disposed on one surface of the liquid crystal cell 11, and the second polarizing film 12 is disposed on the other surface. A backlight unit 16 is disposed on the surface of the second polarizing film 12 opposite to the surface on which the liquid crystal cell 11 is disposed. In the polarizing film 7 with a composite retardation film, the first polarizing film 5 is disposed so as to be adjacent to one surface of the first retardation layer 2, and is adjacent to the other surface of the first retardation layer 2. Two phase difference layers 3 are arranged. In the present embodiment, the first polarizing film 5 and the first retardation layer 2 are arranged so that the slow axis (nx direction) of the first retardation layer 2 and the absorption axis 6 of the polarizing film 5 are orthogonal to each other. . The second retardation layer 3 is disposed adjacent to the liquid crystal cell 11. In the specification and claims of the present application, “adjacent” means that two layers or elements such as a film may be arranged in direct contact with each other and an optically ineffective layer such as an adhesive layer is interposed between them. It may be arranged via. In FIG. 6, for the purpose of distinction, the polarizing film included in the polarizing film 7 with the composite retardation film is referred to as the first polarizing film 5, and a polarizing film different from the polarizing film included in the polarizing film 7 with the composite retardation film is used as the first polarizing film 5. This is referred to as a dipolarizing film 12. As shown in FIG. 7, the polarizing film 7 with a composite retardation film, the liquid crystal cell 11, and the second polarizing film 12 constitute a liquid crystal panel 15. A liquid crystal display device 18 can be obtained by combining the liquid crystal panel 15 and the backlight unit 16.
 液晶表示装置18において、液晶セル11は、電界が存在しない状態でホモジニアス配列に配向させた液晶分子を含む液晶層を備える液晶セル(IPSセルまたはFFSセル)である。液晶セル11の液晶分子の配向方向13が第二偏光フィルム12の吸収軸14と実質的に平行であるように配置される。また、第二偏光フィルム12の吸収軸14が第一偏光フィルム5の吸収軸6と直交するように配置される。 In the liquid crystal display device 18, the liquid crystal cell 11 is a liquid crystal cell (IPS cell or FFS cell) including a liquid crystal layer including liquid crystal molecules aligned in a homogeneous arrangement in the absence of an electric field. It arrange | positions so that the orientation direction 13 of the liquid crystal molecule of the liquid crystal cell 11 may be substantially parallel to the absorption axis 14 of the second polarizing film 12. Further, the absorption axis 14 of the second polarizing film 12 is disposed so as to be orthogonal to the absorption axis 6 of the first polarizing film 5.
 第二偏光フィルム12と液晶セル11とは、例えば、粘着剤で貼り合わされる。粘着剤としては、例えば、日本化薬社製のアクリル系粘着剤PTR5000を用いることが好適である。 The second polarizing film 12 and the liquid crystal cell 11 are bonded together with, for example, an adhesive. As the adhesive, for example, it is preferable to use an acrylic adhesive PTR5000 manufactured by Nippon Kayaku Co., Ltd.
 第二偏光フィルム12としては、第一偏光フィルム5について説明したものと同様の偏光フィルムを用いることができる。 As the second polarizing film 12, a polarizing film similar to that described for the first polarizing film 5 can be used.
 液晶セル11としては、例えば、インプレーンスイッチング(IPSおよびFFS)型の他にも、垂直配向ネマチック(VA)型、ベンドネマチック型(OCB)が挙げられるが、好ましくはインプレーンスイッチング型である。 Examples of the liquid crystal cell 11 include a vertical alignment nematic (VA) type and a bend nematic type (OCB) in addition to an in-plane switching (IPS and FFS) type, and an in-plane switching type is preferable.
 バックライトユニット16としては、特に限定されないが、例えば、光源となるバックライト、発光面へ光を反射させるための反射フィルム、発光面の輝度を均一化する拡散フィルム、光を集光するためのプリズムシート等を必要に応じて用いることができる。 Although it does not specifically limit as the backlight unit 16, For example, the backlight used as a light source, the reflective film for reflecting light to a light emission surface, the diffusion film which equalizes the brightness | luminance of a light emission surface, For condensing light A prism sheet or the like can be used as necessary.
 図8は、液晶表示装置の他の実施形態を示す概略図である。図8に示す画像表示装置19は、複合位相差フィルム付偏光フィルム8、液晶セル11、第二位相差フィルム12、およびバックライトユニット16がこの順に積層された積層体である。図8においては、図6に示すのと同様の構成要素は同一の符号で示されている。複合位相差フィルム付偏光フィルム8、液晶セル11、および第二偏光フィルム12は、液晶パネル17を構成する。液晶パネル17とバックライトユニット16を組み合わせることで、液晶表示装置19を得ることができる。 FIG. 8 is a schematic view showing another embodiment of the liquid crystal display device. The image display device 19 shown in FIG. 8 is a laminate in which the polarizing film 8 with a composite retardation film, the liquid crystal cell 11, the second retardation film 12, and the backlight unit 16 are laminated in this order. In FIG. 8, the same components as those shown in FIG. 6 are denoted by the same reference numerals. The polarizing film 8 with a composite retardation film, the liquid crystal cell 11, and the second polarizing film 12 constitute a liquid crystal panel 17. A liquid crystal display device 19 can be obtained by combining the liquid crystal panel 17 and the backlight unit 16.
 複合位相差フィルム付偏光フィルム8において第一偏光フィルム5が第二位相差層3の一方の面と隣接するように配置され、第二位相差層3の他方の面に隣接して第一位相差層2が配置される。本実施形態において第一偏光フィルム5及び第一位相差層2は、第一位相差層2の遅相軸(nx方向)と偏光フィルム5の吸収軸6とが平行であるように配置されている。液晶セル11の一方の面には、複合位相差フィルム付偏光フィルム8の第一位相差層2が隣接して配置される。液晶セル11のもう一方の面には第二偏光フィルム12が配置される。第二偏光フィルム12は、その吸収軸14が第一偏光フィルム5の吸収軸6と直交するように配置される。さらに、液晶セル11の液晶分子の配向方向13が第二偏光フィルム12の吸収軸14と平行であるように配置される。 In the polarizing film 8 with a composite retardation film, the first polarizing film 5 is disposed so as to be adjacent to one surface of the second retardation layer 3, and is adjacent to the other surface of the second retardation layer 3. The phase difference layer 2 is disposed. In this embodiment, the 1st polarizing film 5 and the 1st phase difference layer 2 are arrange | positioned so that the slow axis (nx direction) of the 1st phase difference layer 2 and the absorption axis 6 of the polarizing film 5 may be parallel. Yes. On one surface of the liquid crystal cell 11, the first retardation layer 2 of the polarizing film 8 with the composite retardation film is disposed adjacently. A second polarizing film 12 is disposed on the other surface of the liquid crystal cell 11. The second polarizing film 12 is arranged so that the absorption axis 14 is orthogonal to the absorption axis 6 of the first polarizing film 5. Furthermore, it arrange | positions so that the orientation direction 13 of the liquid crystal molecule of the liquid crystal cell 11 may be parallel to the absorption axis 14 of the second polarizing film 12.
(有機EL表示装置)
 有機EL表示装置は、上記の複合位相差フィルム付偏光フィルムと、有機ELパネルとの組み合わせを備える。
(Organic EL display device)
The organic EL display device includes a combination of the above polarizing film with a composite retardation film and an organic EL panel.
 ここまで本発明の実施形態について述べたが、本発明は以上の実施形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形および変更が可能である。 The embodiment of the present invention has been described so far, but the present invention is not limited to the above embodiment, and various modifications and changes can be made based on the technical idea of the present invention.
 以下、実施例により、本発明を具体的に説明するが、本発明はこれら実施例によって限定されない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
[実施例1、2および参考例1~5]
(複合位相差フィルム)
 表1および2に示すNz係数および位相差値を有する第一位相差層および第二位相差層を積層して複合位相差フィルムとした。第一位相差相の上記nx、ny、nzを下記表A、第二位相差層の上記nx、ny、nzを下記表Bにそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
[Examples 1 and 2 and Reference Examples 1 to 5]
(Composite retardation film)
A first retardation layer and a second retardation layer having Nz coefficients and retardation values shown in Tables 1 and 2 were laminated to obtain a composite retardation film. The above nx 1 , ny 1 and nz 1 of the first phase difference phase are shown in the following Table A, and the above nx 2 , ny 2 and nz 2 of the second retardation layer are shown in the following Table B, respectively.
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
(複合位相差フィルム付偏光フィルム)
 偏光フィルムを複合位相差フィルムに、偏光フィルム/第一位相差層/第二位相差層の順になるように積層して、図3に示す構造を有する複合位相差フィルム付偏光フィルムとした。偏光フィルムとしては、偏光フィルムJET-12(ポラテクノ社製)を用いた。当該偏光フィルムの光学特性を表3に示す。
(Polarized film with composite retardation film)
The polarizing film was laminated on the composite retardation film in the order of polarizing film / first retardation layer / second retardation layer to obtain a polarizing film with a composite retardation film having the structure shown in FIG. As the polarizing film, a polarizing film JET-12 (manufactured by Polatechno) was used. Table 3 shows the optical properties of the polarizing film.
(液晶表示装置)
 上記の複合位相差フィルム付偏光フィルムを用いて、図6に示す構造を有する透過型液晶表示装置を構成した。液晶セルの液晶層はZLI-4792(メルク社製)とし、その液晶層厚は3.8μmとした。第二偏光フィルムとしてはJET-12(ポラテクノ社製)を用いた。バックライトユニットとしてはLED光源を用いた。
(Liquid crystal display device)
A transmissive liquid crystal display device having the structure shown in FIG. 6 was constructed using the above polarizing film with a composite retardation film. The liquid crystal layer of the liquid crystal cell was ZLI-4792 (manufactured by Merck), and the thickness of the liquid crystal layer was 3.8 μm. As the second polarizing film, JET-12 (manufactured by Polatechno) was used. An LED light source was used as the backlight unit.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[視野角の評価]
 透過型液晶表示装置および液晶セルを暗状態(黒表示)とし、450nm、550nm、および650nmの波長における透過率および輝度の視角依存性を計算し、結果を比較した。視野角の計算を、シンテック社製のLCDmasterを用いて実施し、車載用に要求される視野角の代表例として、傾斜角度40°、方位角度40°での透過率および輝度を計算した。ここで、傾斜角度40°は、平面と垂直な方向から平面の方向に40°傾斜させた角度を表し、方位角度は、偏光フィルム5の吸収軸6から、偏光フィルム5の面内において反時計まわりに40°回転させた角度を表す。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000006
[Evaluation of viewing angle]
The transmission type liquid crystal display device and the liquid crystal cell were set to a dark state (black display), and the viewing angle dependency of transmittance and luminance at wavelengths of 450 nm, 550 nm, and 650 nm was calculated, and the results were compared. The viewing angle was calculated using an LCD master manufactured by Shintec Co., Ltd., and the transmittance and luminance at an inclination angle of 40 ° and an azimuth angle of 40 ° were calculated as representative examples of the viewing angle required for in-vehicle use. Here, the inclination angle 40 ° represents an angle inclined by 40 ° from the direction perpendicular to the plane to the plane direction, and the azimuth angle is counterclockwise in the plane of the polarizing film 5 from the absorption axis 6 of the polarizing film 5. This represents the angle rotated around 40 °. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000006
 表4に示される結果から、実施例1または2の複合位相差フィルム付偏光フィルムを用いた液晶表示装置は、参考例1~5の液晶表示装置と比べると、斜め方向から見た際の輝度が低く、光漏れが抑えられ、視野角依存性が改善されていることが分かる。
 実施例1と参考例1の比較により、第二位相差層のRth(450)/Rth(550)が1.15を超えた参考例1において、斜め視野方向の輝度が高くなっているとともに、450nmおよび650nmの透過率が高くなることによって色付きが発生している。
 実施例2と参考例2の比較により、Nz係数が1.4よりも大きい参考例2において、参考例1と同様に斜め視野方向の輝度が高くなっているとともに、450nmおよび650nmの透過率が高くなることによって色付きが発生している。
 参考例2と参考例3の比較により、Re(450)/Re(550)が1未満ではなかった参考例3において、斜め視野方向の輝度がさらに高くなっているとともに、450nmの透過率がさらに高くなっていた。
 参考例2と、参考例4および5との比較により、式(6)または式(7)を満たさない参考例4および参考例5において斜め視野方向の輝度がさらに高くなっているとともに、550nmおよび650nmの透過率が高くなることによって色付きが発生することが確認された。
From the results shown in Table 4, the liquid crystal display device using the polarizing film with the composite retardation film of Example 1 or 2 has a luminance when viewed from an oblique direction as compared with the liquid crystal display devices of Reference Examples 1 to 5. Is low, light leakage is suppressed, and viewing angle dependency is improved.
As a result of comparison between Example 1 and Reference Example 1, the luminance in the oblique viewing direction is high in Reference Example 1 in which Rth 2 (450) / Rth 2 (550) of the second retardation layer exceeds 1.15. At the same time, coloring is generated by increasing the transmittance at 450 nm and 650 nm.
As a result of comparison between Example 2 and Reference Example 2, in Reference Example 2 in which the Nz coefficient is larger than 1.4, the luminance in the oblique viewing direction is high as in Reference Example 1, and the transmittances at 450 nm and 650 nm are high. Coloring occurs due to the increase.
In Reference Example 3 in which Re 1 (450) / Re 1 (550) was not less than 1 by comparison between Reference Example 2 and Reference Example 3, the luminance in the oblique viewing direction was further increased and the transmittance at 450 nm was obtained. Was even higher.
As a result of comparison between Reference Example 2 and Reference Examples 4 and 5, in Reference Example 4 and Reference Example 5 that do not satisfy Formula (6) or Formula (7), the luminance in the oblique viewing direction is further increased and 550 nm and It was confirmed that coloring occurs when the transmittance at 650 nm is increased.
 実施例1および2の液晶表示装置は、明状態(白表示)でも広い視野角で表示画像を鮮明に見ることができた。 The liquid crystal display devices of Examples 1 and 2 were able to clearly display display images with a wide viewing angle even in a bright state (white display).
 実施例1および2と同じ材料を用いて作製された、図8に示す構造を有する液晶表示装置もまた、暗状態(黒表示)でも明状態(白表示)でも広い視野角で表示画像を鮮明に見ることができた。 The liquid crystal display device manufactured using the same material as in Examples 1 and 2 and having the structure shown in FIG. 8 also has a clear display image with a wide viewing angle in both the dark state (black display) and the bright state (white display). I was able to see it.
 本発明は、広い視野角で表示画像を鮮明に見ることができる画像表示装置を実現する複合位相差フィルム並びにこれを用いた偏光フィルム、液晶パネル、および画像表示装置を提供することができる。 The present invention can provide a composite retardation film that realizes an image display device capable of clearly displaying a display image with a wide viewing angle, a polarizing film using the same, a liquid crystal panel, and an image display device.
1     複合位相差フィルム
2     第一位相差層
3     第二位相差層
4     位相差層
5     偏光フィルム
6     偏光フィルムの吸収軸
7、8   複合位相差フィルム付偏光フィルム
9     偏光素子
10    保護層
11    液晶セル
12    第二偏光フィルム
13    液晶分子の配向方向
14    第二偏光フィルムの吸収軸
15、17 液晶パネル
16    バックライトユニット
18、19 液晶表示装置
DESCRIPTION OF SYMBOLS 1 Composite phase difference film 2 1st phase difference layer 3 2nd phase difference layer 4 Phase difference layer 5 Polarizing film 6 Absorption axis | shaft 7 of a polarizing film, 8 Polarizing film 9 with a composite phase difference film Polarizing element 10 Protective layer 11 Liquid crystal cell 12 Second polarizing film 13 Orientation direction 14 of liquid crystal molecules Absorption axes 15 and 17 of second polarizing film Liquid crystal panel 16 Backlight units 18 and 19 Liquid crystal display device

Claims (7)

  1.  第一位相差層と第二位相差層とを備える複合位相差フィルムであって、
     第一位相差層において、面内で遅相軸方向の屈折率nx、遅相軸と面内で直交する進相軸方向の屈折率ny、及び厚さ方向の屈折率nzが下記式(1)及び(2):
        nx1>ny1≧nz1   (1)
        1.0≦(nx1-nz1)/(nx1-ny1)≦1.4   (2)
     を満たし、かつ、波長450nmでの面内位相差値Re(450)と波長550nmでの面内位相差値Re(550)が下記式(3):
        0.7≦Re1(450)/Re1(550)<1.0   (3)
     を満たし、
     第二位相差層において、面内平均屈折率noと、厚さ方向屈折率neが下記式(4):
        ne-no>0   (4)
     を満たし、かつ、波長450nmでの厚み方向位相差値Rth(450)と波長550nmでの厚み方向位相差値Rth(550)が下記式(5):
        0.7≦Rth2(450)/Rth2(550)<1.15   (5)
    を満たし、
     第一位相差層における、波長550nmでの面内位相差Re(550)、波長550nmでの厚み方向位相差Rth(550)、及び第二位相差層の波長550nmでの厚み方向位相差Rth(550)が、下記式(6)および(7):
        150nm≦Re1(550)+60(Rth1(550)/Re1(550))≦190nm   (6)
        -50nm≦Rth1(550)+Rth2(550)≦10nm   (7)
    を満たす、複合位相差フィルム。
    A composite retardation film comprising a first retardation layer and a second retardation layer,
    In the first retardation layer, the refractive index nx 1 in the slow axis direction in the plane, the refractive index ny 1 in the fast axis direction orthogonal to the slow axis in the plane, and the refractive index nz 1 in the thickness direction are as follows: Formulas (1) and (2):
    nx 1 > ny 1 ≧ nz 1 (1)
    1.0 ≦ (nx 1 -nz 1) / (nx 1 -ny 1) ≦ 1.4 (2)
    And an in-plane retardation value Re 1 (450) at a wavelength of 450 nm and an in-plane retardation value Re 1 (550) at a wavelength of 550 nm are expressed by the following formula (3):
    0.7 ≦ Re 1 (450) / Re 1 (550) <1.0 (3)
    The filling,
    In the second retardation layer, the in-plane average refractive index no and the thickness direction refractive index ne are the following formula (4):
    ne-no> 0 (4)
    And a thickness direction retardation value Rth 2 (450) at a wavelength of 450 nm and a thickness direction retardation value Rth 2 (550) at a wavelength of 550 nm are expressed by the following formula (5):
    0.7 ≦ Rth 2 (450) / Rth 2 (550) <1.15 (5)
    The filling,
    In-plane retardation Re 1 (550) at a wavelength of 550 nm, a thickness direction retardation Rth 1 (550) at a wavelength of 550 nm, and a thickness direction retardation of the second retardation layer at a wavelength of 550 nm in the first retardation layer. Rth 2 (550) is represented by the following formulas (6) and (7):
    150nm ≦ Re 1 (550) +60 (Rth 1 (550) / Re 1 (550)) ≦ 190nm (6)
    -50nm ≦ Rth 1 (550) + Rth 2 (550) ≦ 10nm (7)
    Satisfying the composite retardation film.
  2.  偏光フィルムと請求項1に記載の複合位相差フィルムとを含む複合位相差フィルム付偏光フィルムであって、
     偏光フィルム、第一位相差層、および第二位相差層がこの順に積層されており、かつ、第一位相差層の遅相軸と偏光フィルムの吸収軸とが直交している、複合位相差フィルム付偏光フィルム。
    A polarizing film with a composite retardation film comprising the polarizing film and the composite retardation film according to claim 1,
    A polarizing film, a first retardation layer, and a second retardation layer are laminated in this order, and a slow retardation axis of the first retardation layer and an absorption axis of the polarizing film are orthogonal to each other. Polarizing film with film.
  3.  偏光フィルムと請求項1に記載の複合位相差フィルムとを含む複合位相差フィルム付偏光フィルムであって、
     偏光フィルム、第二位相差層、および第一位相差層がこの順に積層されており、かつ、第一位相差層の遅相軸と偏光フィルムの吸収軸とが平行である、複合位相差フィルム付偏光フィルム。
    A polarizing film with a composite retardation film comprising the polarizing film and the composite retardation film according to claim 1,
    A composite retardation film in which a polarizing film, a second retardation layer, and a first retardation layer are laminated in this order, and the slow axis of the first retardation layer and the absorption axis of the polarizing film are parallel Attached polarizing film.
  4.  偏光フィルムが、偏光素子と、偏光素子を挟持する一対の保護膜とを有し、
     一対の保護膜の少なくとも一方の保護膜の550nmにおける面内位相差値Repが0nm以上10nm以下であり、該保護膜の550nmにおける厚み方向位相差値Rthpが-20nm以上20nm以下である請求項2または請求項3に記載の複合位相差フィルム付偏光フィルム。
    The polarizing film has a polarizing element and a pair of protective films sandwiching the polarizing element,
    3. The in-plane retardation value Rep at 550 nm of at least one protective film of the pair of protective films is from 0 nm to 10 nm, and the thickness direction retardation value Rthp at 550 nm of the protective film is from −20 nm to 20 nm. Or the polarizing film with a composite phase difference film of Claim 3.
  5.  液晶セルと、請求項2に記載の複合位相差フィルム付偏光フィルムと、第二偏光フィルムとを備えた液晶パネルであって、
     液晶セルが、電界が存在しない状態でホモジニアス配列に配向させた液晶分子を含む液晶層を備え、
     複合位相差フィルム付偏光フィルムが液晶セルの一方の面に隣接するように配置され、液晶セル側から順に、第二位相差層と、第一位相差層と、第一偏光フィルムとが積層され、
     第二偏光フィルムが第一偏光フィルムの吸収軸と直交する吸収軸を有し、液晶セルの他方の面側に配置され、
     液晶セルの液晶分子の配向方向が第二偏光フィルムの吸収軸と平行である、液晶パネル。
    A liquid crystal panel comprising: a liquid crystal cell; a polarizing film with a composite retardation film according to claim 2; and a second polarizing film,
    A liquid crystal cell comprising a liquid crystal layer comprising liquid crystal molecules aligned in a homogeneous arrangement in the absence of an electric field;
    The polarizing film with a composite retardation film is disposed so as to be adjacent to one surface of the liquid crystal cell, and the second retardation layer, the first retardation layer, and the first polarizing film are laminated in order from the liquid crystal cell side. ,
    The second polarizing film has an absorption axis orthogonal to the absorption axis of the first polarizing film, and is disposed on the other surface side of the liquid crystal cell;
    A liquid crystal panel in which the alignment direction of the liquid crystal molecules of the liquid crystal cell is parallel to the absorption axis of the second polarizing film.
  6.  液晶セルと、請求項3に記載の複合位相差フィルム付偏光フィルムと、第二偏光フィルムとを備えた液晶パネルであって、
     液晶セルが、電界が存在しない状態でホモジニアス配列に配向させた液晶分子を含む液晶層を備え、
     複合位相差フィルム付偏光フィルムが液晶セルの一方の面に隣接するように配置され、液晶セル側から順に、第一位相差層と、第二位相差層と、第一偏光フィルムとが積層され、
     第二偏光フィルムが第一偏光フィルムの吸収軸と直交する吸収軸を有し、液晶セルの他方の面側に配置され、
     液晶セルの液晶分子の配向方向が第二偏光フィルムの吸収軸と平行である、液晶パネル。
    A liquid crystal panel comprising a liquid crystal cell, the polarizing film with a composite retardation film according to claim 3, and a second polarizing film,
    A liquid crystal cell comprising a liquid crystal layer comprising liquid crystal molecules aligned in a homogeneous arrangement in the absence of an electric field;
    The polarizing film with a composite retardation film is disposed so as to be adjacent to one surface of the liquid crystal cell, and the first retardation layer, the second retardation layer, and the first polarizing film are laminated in order from the liquid crystal cell side. ,
    The second polarizing film has an absorption axis orthogonal to the absorption axis of the first polarizing film, and is disposed on the other surface side of the liquid crystal cell;
    A liquid crystal panel in which the alignment direction of liquid crystal molecules of the liquid crystal cell is parallel to the absorption axis of the second polarizing film.
  7.  請求項1に記載の複合位相差フィルム、または請求項2~4のいずれか1項に記載の複合位相差フィルム付偏光フィルム、または請求項5もしくは請求項6に記載の液晶パネルを備える画像表示装置。 An image display comprising the composite retardation film according to claim 1, the polarizing film with the composite retardation film according to any one of claims 2 to 4, or the liquid crystal panel according to claim 5 or 6. apparatus.
PCT/JP2019/004993 2018-02-15 2019-02-13 Composite retardation film, polarization film using same, liquid crystal panel, and image display device WO2019159931A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020500502A JPWO2019159931A1 (en) 2018-02-15 2019-02-13 Composite retardation film and polarizing film using it, liquid crystal panel, and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018024657 2018-02-15
JP2018-024657 2018-02-15

Publications (1)

Publication Number Publication Date
WO2019159931A1 true WO2019159931A1 (en) 2019-08-22

Family

ID=67618609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004993 WO2019159931A1 (en) 2018-02-15 2019-02-13 Composite retardation film, polarization film using same, liquid crystal panel, and image display device

Country Status (3)

Country Link
JP (1) JPWO2019159931A1 (en)
TW (1) TW201938364A (en)
WO (1) WO2019159931A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133408A (en) * 1997-10-24 1999-05-21 Nec Corp Horizontal electric field type liquid crystal display device
JP2013050482A (en) * 2011-08-30 2013-03-14 Fujifilm Corp Optical laminated film, and polarizing plate and liquid crystal display device using the same
JP2015200861A (en) * 2013-09-11 2015-11-12 富士フイルム株式会社 Optically anisotropic layer and production method of the same, laminate and production method of laminate, polarizing plate, liquid crystal display device, and organic electroluminescence display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133408A (en) * 1997-10-24 1999-05-21 Nec Corp Horizontal electric field type liquid crystal display device
JP2013050482A (en) * 2011-08-30 2013-03-14 Fujifilm Corp Optical laminated film, and polarizing plate and liquid crystal display device using the same
JP2015200861A (en) * 2013-09-11 2015-11-12 富士フイルム株式会社 Optically anisotropic layer and production method of the same, laminate and production method of laminate, polarizing plate, liquid crystal display device, and organic electroluminescence display device

Also Published As

Publication number Publication date
JPWO2019159931A1 (en) 2021-02-12
TW201938364A (en) 2019-10-01

Similar Documents

Publication Publication Date Title
JP5330529B2 (en) Liquid crystal display
JP4792545B2 (en) Liquid crystal display
US8179508B2 (en) Liquid crystal display device having first and second polarizers and first and second birefringent layers
US20040066482A1 (en) Optical film,polarizing film using the optical film, and method of improving visibility angle of polarizing film
WO2010087058A1 (en) Liquid crystal display apparatus
US20110051062A1 (en) Method for producing liquid crystal display device, and liquid crystal display device
JP5259824B2 (en) Liquid crystal display
EP2024766B1 (en) Integrated o film for improving viewing angle of tn-lcd, and polarizer plate and tn-lcd including the same
JP5508427B2 (en) Liquid crystal display
US7064798B2 (en) Translucent reflective liquid crystal display
WO2012133137A1 (en) Liquid crystal display device
JPWO2018151295A1 (en) Liquid crystal display
KR20190138598A (en) Laminate and liquid crystal display comprising the same
KR20080114729A (en) Composite polarizing plate with wide field of view and liquid crystal display
KR102513842B1 (en) Polarizing Plate
WO2010001920A1 (en) Liquid crystal display device
JP2002090530A (en) Composite optical retardation plate, optical compensation polarizing plate and liquid crystal display device
WO2019239794A1 (en) Liquid crystal panel and liquid crystal display device
WO2019159931A1 (en) Composite retardation film, polarization film using same, liquid crystal panel, and image display device
WO2012133155A1 (en) Liquid crystal display device
JP4401511B2 (en) Composite retardation plate, optical compensation polarizing plate, and liquid crystal display device
WO2012105428A1 (en) Liquid crystal display device
CN116931316A (en) Liquid crystal display device having a light shielding layer
WO2012133141A1 (en) Liquid crystal display device
WO2012133140A1 (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500502

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754976

Country of ref document: EP

Kind code of ref document: A1