WO2019159847A1 - Method for manufacturing core member, and core member - Google Patents
Method for manufacturing core member, and core member Download PDFInfo
- Publication number
- WO2019159847A1 WO2019159847A1 PCT/JP2019/004683 JP2019004683W WO2019159847A1 WO 2019159847 A1 WO2019159847 A1 WO 2019159847A1 JP 2019004683 W JP2019004683 W JP 2019004683W WO 2019159847 A1 WO2019159847 A1 WO 2019159847A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core member
- stator core
- steel plate
- stator
- manufacturing
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/18—Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
Definitions
- the manufacturing method applied when the stator core member 32 is punched from the steel plate 50 has been described.
- the manufacturing method of the above embodiment may be applied when punching out the disk-shaped rotor core member constituting the rotor core.
- the manufacturing method of the above embodiment may be applied.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture Of Motors, Generators (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
[Problem] To provide a method for manufacturing a disk-shaped core member with which it is possible to improve roundness. [Solution] This method for manufacturing a core member is for manufacturing a disk-shaped stator core member 32 which constitutes a cylindrical stator core 31. This method for manufacturing a core member includes: a core member forming step for leaving, as a connecting section 52 on a steel plate 50, a section of the outer peripheral side of the stator core member 32 not requiring outer diameter dimensional accuracy, while forming, on the steel plate 50 by punching, a section of the outer peripheral side of the stator core member 32 requiring outer diameter dimensional accuracy and excluding the connecting section 52; and, after the core member forming step, a core member separating step for separating the stator core member 32 from the steel plate 50 by cutting off the connecting section 52.
Description
本発明は、コア部材製造方法及びコア部材に関する。
The present invention relates to a core member manufacturing method and a core member.
モータのコア部材製造方法として、プレス装置等によって鋼板を固定子コアまたは回転子コアの形状に打ち抜く方法が知られている。このように鋼板から打ち抜かれた固定子コアまたは回転子コアは、厚み方向に複数枚積層される。
As a motor core member manufacturing method, a method is known in which a steel plate is punched into a stator core or rotor core shape by a press device or the like. Thus, a plurality of stator cores or rotor cores punched from the steel plate are laminated in the thickness direction. *
上述のようなコア部材の製造方法として、例えば特許文献1に開示される回転電機用固定子鉄芯板の製造方法が知られている。この回転電機用固定子鉄心板の製造方法は、第1の工程で、鉄芯板における中心孔を打ち抜き形成し、次なる第2工程で、前記鉄芯板における外枠部の外形に沿ったスリットを打ち抜き形成する。
As a method for manufacturing the core member as described above, for example, a method for manufacturing a stator iron core plate for a rotating electrical machine disclosed in Patent Document 1 is known. In this method of manufacturing a stator iron core plate for a rotating electrical machine, the center hole in the iron core plate is formed by punching in the first step, and the outer frame portion of the iron core plate is aligned in the next second step. A slit is formed by punching. *
これにより、前記第2工程に続く各加工工程で生じる内部応力や加工歪が、前記スリットによって効果的に吸収される。よって、前記特許文献1に開示される製造方法によって、寸法精度の高い固定子鉄芯板が得られる。
Thereby, the internal stress and the process distortion which arise in each process process following the said 2nd process are absorbed effectively by the said slit. Therefore, a stator iron core plate with high dimensional accuracy can be obtained by the manufacturing method disclosed in Patent Document 1. *
また、上述のようなコア部材の製造方法として、例えば特許文献2に開示されるモータの固定子鉄心の製造方法が知られている。この固定子鉄心の製造方法では、固定子材料から打ち抜き線に沿って打ち抜かれた単体コアを積層することにより、固定子鉄心を形成する。また、前記固定子鉄心の製造方法では、前記固定子材料に対して前記打ち抜き線上にスリットを設けた後に、前記固定子材料から前記単体コアの内径中心を打ち抜く。前記固定子鉄心の製造方法によって、前記スリット同士の間には、打ち抜かれていない非打抜部が形成される。
As a method for manufacturing the core member as described above, for example, a method for manufacturing a stator core of a motor disclosed in Patent Document 2 is known. In this stator core manufacturing method, a stator core is formed by laminating a single core punched from a stator material along a punching line. In the stator core manufacturing method, a slit is provided on the punching line for the stator material, and then the inner diameter center of the single core is punched from the stator material. By the manufacturing method of the stator core, a non-punched portion that is not punched is formed between the slits. *
前記固定子材料に前記非打抜部を設けることにより、前記固定子材料から前記単体コアの内径部を打ち抜く際に、前記スリットの開口を抑制して前記固定子材料の剛性を補強することができる。これにより、前記単体コアの内径部の真円度を効果的に高めることができる。
By providing the non-punched portion in the stator material, when the inner diameter portion of the single core is punched from the stator material, the opening of the slit is suppressed and the rigidity of the stator material is reinforced. it can. Thereby, the roundness of the inner diameter portion of the single core can be effectively increased.
インナーロータ型のモータの場合、一般的に、円筒状の固定子コアは、モータのケーシング内に配置される。そのため、前記固定子コアの外径は、前記ケーシングの内面に対して高い寸法精度が要求される。また、前記固定子内に配置される円柱状の回転子コアの外径も、高い寸法精度が要求される。同様に、アウターロータ側のモータの場合も、円柱状の固定子コアの外径及び円筒状の回転子コアの外径は、それぞれ、高い寸法精度が要求される。
In the case of an inner rotor type motor, generally, a cylindrical stator core is disposed in a casing of the motor. Therefore, the outer diameter of the stator core is required to have high dimensional accuracy with respect to the inner surface of the casing. Further, the outer diameter of the cylindrical rotor core disposed in the stator is also required to have high dimensional accuracy. Similarly, in the case of a motor on the outer rotor side, high dimensional accuracy is required for the outer diameter of the cylindrical stator core and the outer diameter of the cylindrical rotor core. *
ところで、鋼板からコアを構成するコア部材を打ち抜く場合、打ち抜きの際に前記鋼板に伸びが生じる。前記鋼板は、一般的に圧延によって形成されるため、圧延方向によって材料特性が異なる。そのため、前記鋼板から外形が円形状である円盤状のコア部材を打ち抜いた場合、該コア部材の外形は楕円状になる。すなわち、円盤状のコア部材は、鋼板からの打ち抜きによって真円度が低下しやすい。
By the way, when the core member which comprises a core is punched from a steel plate, the said steel plate will elongate in the case of punching. Since the steel sheet is generally formed by rolling, the material properties differ depending on the rolling direction. Therefore, when a disk-shaped core member having a circular outer shape is punched from the steel plate, the outer shape of the core member becomes elliptical. That is, the roundness of the disk-shaped core member is likely to be reduced by punching from the steel plate. *
上述の特許文献1、2に開示されている製造方法によって得られる固定子コアの外形は、矩形状である。また、前記固定子コアの外形は、上述の円盤状のコア部材のように高い寸法精度が要求されない。さらに、上述の特許文献1、2に開示されている製造方法では、コア部材の中心孔などの寸法精度を向上するために鋼板にスリットが形成される。そのため、上述の特許文献1、2に開示されている製造方法では、外形が円形状のコア部材の真円度を確保することが難しい。
The outer shape of the stator core obtained by the manufacturing method disclosed in Patent Documents 1 and 2 is a rectangular shape. Further, the outer shape of the stator core does not require high dimensional accuracy like the above-described disk-shaped core member. Furthermore, in the manufacturing methods disclosed in Patent Documents 1 and 2 described above, slits are formed in the steel sheet in order to improve the dimensional accuracy of the center hole of the core member. Therefore, in the manufacturing methods disclosed in Patent Documents 1 and 2 described above, it is difficult to ensure the roundness of the core member having a circular outer shape. *
本発明の目的は、真円度を向上可能な円盤状のコア部材の製造方法を提供することにある。
The objective of this invention is providing the manufacturing method of the disk shaped core member which can improve roundness.
本発明の一実施形態に係るコア部材製造方法は、円柱状または円筒状のコアを構成する円盤状のコア部材の製造方法である。このコア部材製造方法は、前記コア部材の外周側のうち外径寸法の精度が不要な部分を、鋼板に接続部として残しつつ、前記コア部材の外周側のうち前記接続部以外で外径寸法の精度が必要な部分を、前記鋼板に打ち抜きによって形成するコア部材形成工程と、前記コア部材形成工程の後に、前記接続部を切断することにより、前記コア部材を前記鋼板から切り離すコア部材分離工程と、を有する。
The core member manufacturing method which concerns on one Embodiment of this invention is a manufacturing method of the disk shaped core member which comprises a columnar or cylindrical core. In this core member manufacturing method, the outer diameter side of the core member is not connected to the outer peripheral side of the core member, and the outer diameter dimension of the outer peripheral side of the core member is other than the connecting portion while leaving a portion that does not require accuracy of the outer diameter dimension. A core member forming step for forming a portion that requires accuracy of the steel sheet by punching, and a core member separating step for cutting the core member from the steel plate by cutting the connecting portion after the core member forming step. And having.
本発明の一実施形態に係るコア部材製造方法によれば、円盤状のコア部材の真円度を向上することができる。
According to the core member manufacturing method according to an embodiment of the present invention, the roundness of the disk-shaped core member can be improved.
以下、図面を参照し、本発明の実施の形態を詳しく説明する。なお、図中の同一または相当部分については同一の符号を付してその説明は繰り返さない。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表していない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected about the same or an equivalent part in a figure, and the description is not repeated. Moreover, the dimension of the structural member in each figure does not faithfully represent the actual dimension of the structural member, the dimensional ratio of each structural member, or the like. *
なお、以下の説明では、平面視で固定子コアの中心から外周側に延びる方向を「径方向」、固定子コアの外周に沿う方向を「周方向」、とそれぞれ称する。ただし、この方向の定義により、本発明に係るモータの使用時の向きを限定する意図はない。
In the following description, the direction extending from the center of the stator core to the outer peripheral side in plan view is referred to as “radial direction”, and the direction along the outer periphery of the stator core is referred to as “circumferential direction”. However, the definition of this direction is not intended to limit the direction of use of the motor according to the present invention. *
また、以下の説明において、“固定”、“接続”及び“取り付ける”等(以下、固定等)の表現は、部材同士が直接、固定等されている場合だけでなく、他の部材を介して固定等されている場合も含む。すなわち、以下の説明において、固定等の表現には、部材同士の直接的及び間接的な固定等の意味が含まれる。
In the following description, the expressions “fixed”, “connected”, “attached”, etc. (hereinafter “fixed”, etc.) are not only used when the members are directly fixed, but also via other members. This includes cases where they are fixed. That is, in the following description, expressions such as fixation include the meanings of direct and indirect fixation between members. *
(モータの構成) 図1に、本発明の実施形態に係る固定子コア31を備えたモータ1の概略構成を示す。モータ1は、回転子2と、固定子3と、ハウジング4とを備える。回転子2は、固定子3に対して、中心軸Pを中心として回転する。本実施形態では、モータ1は、筒状の固定子3内に、回転子2が中心軸Pを中心として回転可能に配置された、いわゆるインナーロータ型のモータである。
(Configuration of Motor) FIG. 1 shows a schematic configuration of the motor 1 including the stator core 31 according to the embodiment of the present invention. The motor 1 includes a rotor 2, a stator 3, and a housing 4. The rotor 2 rotates about the central axis P with respect to the stator 3. In the present embodiment, the motor 1 is a so-called inner rotor type motor in which a rotor 2 is disposed in a cylindrical stator 3 so as to be rotatable about a central axis P. *
回転子2は、シャフト20と、回転子コア21と、マグネット22とを備える。回転子2は、固定子3の径方向内側に配置され、固定子3に対して回転可能である。
The rotor 2 includes a shaft 20, a rotor core 21, and a magnet 22. The rotor 2 is arranged on the radially inner side of the stator 3 and is rotatable with respect to the stator 3. *
本実施形態では、回転子コア21は、中心軸Pに沿って延びる円筒状である。回転子コア21は、所定の形状に形成された電磁鋼板を、厚み方向に複数枚、積層することによって構成される。
In the present embodiment, the rotor core 21 has a cylindrical shape extending along the central axis P. The rotor core 21 is configured by laminating a plurality of electromagnetic steel plates formed in a predetermined shape in the thickness direction. *
回転子コア21には、中心軸Pに沿って延びるシャフト20が軸方向に貫通した状態で固定される。これにより、回転子コア21は、シャフト20とともに回転する。また、本実施形態では、回転子コア21内には、周方向に所定の間隔で複数のマグネット22が配置される。なお、マグネット22は、回転子コア21の外周面上に配置されてもよい。
A shaft 20 extending along the central axis P is fixed to the rotor core 21 in a state of penetrating in the axial direction. Thereby, the rotor core 21 rotates together with the shaft 20. In the present embodiment, a plurality of magnets 22 are disposed in the rotor core 21 at predetermined intervals in the circumferential direction. The magnet 22 may be disposed on the outer peripheral surface of the rotor core 21. *
固定子3は、ハウジング4内に収容される。本実施形態では、固定子3は、筒状であり、径方向内側に回転子2が配置される。すなわち、固定子3は、回転子2に対して径方向に対向して配置される。回転子2は、固定子3の径方向内側に中心軸Pを中心として回転可能に配置される。
The stator 3 is accommodated in the housing 4. In the present embodiment, the stator 3 has a cylindrical shape, and the rotor 2 is disposed on the radially inner side. That is, the stator 3 is arranged to face the rotor 2 in the radial direction. The rotor 2 is disposed on the radially inner side of the stator 3 so as to be rotatable about the central axis P. *
固定子3は、固定子コア31(コア)と、図示しない固定子コイルとを備える。本実施形態では、固定子コア31は、軸方向に延びる円筒状である。固定子コア31は、所定の形状に形成され且つ厚み方向に積層された複数枚の円盤状の固定子コア部材32(コア部材)を有する。
The stator 3 includes a stator core 31 (core) and a stator coil (not shown). In the present embodiment, the stator core 31 has a cylindrical shape extending in the axial direction. The stator core 31 has a plurality of disk-shaped stator core members 32 (core members) formed in a predetermined shape and stacked in the thickness direction. *
固定子コア31は、筒状のヨーク31aと、ヨーク31aから径方向内側に延びる複数のティース31bとを有する。図2に示す例では、固定子コア31は、12個のティース31bを有する。固定子コア31は、円筒状のケーシング4内に収納される。図示しない固定子コイルは、固定子コア31のティース31bに装着された絶縁材料(例えば、絶縁性の樹脂材料)からなる図示しないブラケット上に巻かれる。
The stator core 31 has a cylindrical yoke 31a and a plurality of teeth 31b extending radially inward from the yoke 31a. In the example illustrated in FIG. 2, the stator core 31 includes twelve teeth 31 b. The stator core 31 is accommodated in the cylindrical casing 4. A stator coil (not shown) is wound on a bracket (not shown) made of an insulating material (for example, an insulating resin material) attached to the teeth 31b of the stator core 31. *
図2は、固定子コア部材32の概略構成を示す平面図である。図3は、固定子コア部材32における図2のA部を矢印方向から見た図である。すなわち、図3は、固定子コア部材32の一部を径方向外方から見た図である。
FIG. 2 is a plan view showing a schematic configuration of the stator core member 32. FIG. 3 is a view of portion A of FIG. 2 in the stator core member 32 as seen from the direction of the arrow. That is, FIG. 3 is a view of a part of the stator core member 32 as viewed from the outside in the radial direction. *
図2に示すように、固定子コア部材32は、円環状の板状部材である。固定子コア部材32は、固定子コア31のヨーク31aを構成する円環状のヨーク部32aと、固定子コア31のティース31bを構成する複数のティース部32bとを有する。各ティース部32bは、ヨーク部32から径方向内側に延びる。
As shown in FIG. 2, the stator core member 32 is an annular plate member. The stator core member 32 includes an annular yoke portion 32 a that constitutes the yoke 31 a of the stator core 31 and a plurality of tooth portions 32 b that constitute the teeth 31 b of the stator core 31. Each tooth portion 32 b extends radially inward from the yoke portion 32. *
なお、図2に示すように、複数のティース部32bのうち一部は、厚み方向に積層された複数の固定子コア部材32を互いにかしめて固定するためのかしめ部32cを有する。
As shown in FIG. 2, some of the plurality of teeth 32 b have caulking portions 32 c for caulking and fixing the plurality of stator core members 32 stacked in the thickness direction. *
固定子コア部材32は、ヨーク部32aの外周側に、外周の一部を構成する円弧部33(打ち抜き部)と、固定子コア31がケーシング4内に配置された状態でケーシング4の図示しない位置決め部材が位置付けられる凹部34(接続切断部)とを有する。
The stator core member 32 is not shown in the casing 4 in a state where the arc portion 33 (punching portion) constituting a part of the outer periphery and the stator core 31 are disposed in the casing 4 on the outer periphery side of the yoke portion 32a. And a recess 34 (connection cutting portion) in which the positioning member is positioned. *
凹部34は、固定子コア部材32の外周側に周方向に所定の間隔で位置する。円弧部33は、凹部34同士の間に位置する。すなわち、円弧部33及び凹部34は、固定子コア部材32の外周側に、周方向に交互に位置する。
The recesses 34 are positioned at predetermined intervals in the circumferential direction on the outer peripheral side of the stator core member 32. The arc portion 33 is located between the recess portions 34. That is, the arc portions 33 and the recesses 34 are alternately positioned in the circumferential direction on the outer peripheral side of the stator core member 32. *
上述のように固定子コア31のヨーク31aはケーシング4内に配置されるため、固定子コア部材32におけるヨーク部32aの円弧部33の外径寸法は、寸法精度が要求される。よって、固定子コア部材32の円弧部33は、外径寸法の精度が必要な部分である。一方、固定子コア部材32の凹部34は、円弧部33に比べて、外径寸法の精度を要求されない。
Since the yoke 31a of the stator core 31 is disposed in the casing 4 as described above, the outer diameter of the arc portion 33 of the yoke portion 32a in the stator core member 32 requires dimensional accuracy. Therefore, the arc portion 33 of the stator core member 32 is a portion that requires the accuracy of the outer diameter. On the other hand, the concave portion 34 of the stator core member 32 is not required to have a higher accuracy in outer diameter than the arc portion 33. *
なお、外形寸法の精度が必要な部分は、固定子コア部材32のうち、モータ1の性能上、鋼板から固定子コア部材32を打ち抜いた場合に外形の真円度が要求される部分である。外形寸法の精度が不要な部分は、固定子コア部材32のうち、モータ1の性能上、鋼板から固定子コア部材32を打ち抜いた場合に外形の真円度が要求されない部分である。
In addition, the part which needs the precision of an external dimension is a part from which the roundness of an external shape is requested | required when the stator core member 32 is punched out from a steel plate on the performance of the motor 1 among the stator core members 32. . The portion that does not require the accuracy of the outer dimensions is a portion of the stator core member 32 that does not require the roundness of the outer shape when the stator core member 32 is punched from the steel plate due to the performance of the motor 1. *
詳しくは後述するように、固定子コア部材32の製造工程において、固定子コア部材32の円弧部33は、鋼板に凹部34よりも先に打ち抜きによって形成される。そのため、図3に示すように、固定子コア部材32の円弧部33の加工面35である外周面は、鋼板に対する打ち抜き方向(図3の矢印方向)に順に、せん断面35a及び破断面35bを有する。これは、後述するように、鋼板にスリットを打ち抜いて固定子コア部材32の円弧部33を形成するため、打ち抜きの際に鋼板側に残る円弧部33の加工面35には、打ち抜き加工の前期にせん断面35aが形成された後、打ち抜き加工の後期に破断面35bが形成されるからである。
As will be described in detail later, in the manufacturing process of the stator core member 32, the arc portion 33 of the stator core member 32 is formed by punching the steel plate before the recess 34. Therefore, as shown in FIG. 3, the outer peripheral surface, which is the processed surface 35 of the arc portion 33 of the stator core member 32, has a shear surface 35a and a fracture surface 35b in order in the punching direction with respect to the steel plate (the arrow direction in FIG. 3). Have. This is because, as will be described later, since the arc portion 33 of the stator core member 32 is formed by punching a slit in the steel plate, the processed surface 35 of the arc portion 33 remaining on the steel plate side at the time of punching is formed in the first half of the punching process. This is because the fracture surface 35b is formed later in the punching process after the shear surface 35a is formed. *
一方、凹部34は、後述するように、円弧部33が形成された後に、鋼板から固定子コア部材32を分離させる際に形成される。そのため、図3に示すように、凹部34の加工面36である外周面は、鋼板に対する打ち抜き方向(図3の矢印方向)に順に、破断面36b及びせん断面36aを有する。これは、後述するように、凹部34を打ち抜く際に、固定子コア部材32がパンチによって打ち抜かれるため、凹部34の加工面36には、ダイによって打ち抜き加工の前期にせん断面36aが形成された後、打ち抜き加
工の後期に破断面36bが形成されるからである。 On the other hand, theconcave portion 34 is formed when the stator core member 32 is separated from the steel plate after the arc portion 33 is formed, as will be described later. Therefore, as shown in FIG. 3, the outer peripheral surface which is the processed surface 36 of the recessed part 34 has the fracture surface 36b and the shear surface 36a in order in the punching direction (arrow direction of FIG. 3) with respect to a steel plate. As will be described later, since the stator core member 32 is punched by punching when the recess 34 is punched, a shear surface 36a is formed on the processing surface 36 of the recess 34 by the die in the first stage of punching. This is because the fracture surface 36b is formed later in the punching process.
工の後期に破断面36bが形成されるからである。 On the other hand, the
ここで、円弧部33は、固定子コア部材32の外周側のうち外径寸法の精度が必要な部分の加工面35に、鋼板50からの打ち抜き方向に順に、せん断面35a及び破断面35bを有する打ち抜き部である。また、凹部34は、固定子コア部材32の外周側のうち外径寸法の精度が不要な部分の加工面36に、前記打ち抜き方向に順に、破断面36b及びせん断面36aを有する接続切断部である。
Here, the arc portion 33 has a shear surface 35a and a fracture surface 35b in order in the punching direction from the steel plate 50 on the processed surface 35 of the outer peripheral side of the stator core member 32 that requires the accuracy of the outer diameter. It is the punching part which has. The concave portion 34 is a connection cutting portion having a fracture surface 36b and a shear surface 36a in order in the punching direction on the processing surface 36 of the outer peripheral side of the stator core member 32 where the accuracy of the outer diameter dimension is unnecessary. is there. *
なお、せん断面35a,36aは、工具が鋼板に食い込んだ際に、せん断歪みが生じた面が前記工具によってバニシングされた面である。破断面35b,36bは、工具によって鋼板を打ち抜く際に、クラックを生じて破断することにより、結晶粒面が現れた面である。
Note that the shear surfaces 35a and 36a are surfaces in which a shear strain is burned by the tool when the tool bites into the steel plate. The fracture surfaces 35b and 36b are surfaces on which crystal grain surfaces appear by cracking when a steel plate is punched out with a tool. *
(固定子コア部材の製造方法) 次に、固定子コア部材32の製造方法を、図4から図9を用いて説明する。図4は、固定子コア部材32の製造方法の概略を示すフローである。図5は、鋼板50に複数のスリット51が形成された状態を示す平面図である。図6は、鋼板50に固定子コア部材32が形成された状態を示す平面図である。図7は、鋼板50から固定子コア部材32を分離させる様子を示す平面図である。図8及び図9は、パンチT1及びダイT2を用いて鋼板50を打ち抜く場合の様子を模式的に示す断面図である。
(Manufacturing Method of Stator Core Member) Next, a manufacturing method of the stator core member 32 will be described with reference to FIGS. FIG. 4 is a flowchart showing an outline of a method for manufacturing the stator core member 32. FIG. 5 is a plan view showing a state in which a plurality of slits 51 are formed in the steel plate 50. FIG. 6 is a plan view showing a state where the stator core member 32 is formed on the steel plate 50. FIG. 7 is a plan view showing a state in which the stator core member 32 is separated from the steel plate 50. 8 and 9 are cross-sectional views schematically showing a state in which the steel plate 50 is punched out using the punch T1 and the die T2. *
なお、図5から図7において、鋼板50は、平面視で正方形状の板部材である。しかしながら、鋼板50は、帯状の部材であってもよい。
5 to 7, the steel plate 50 is a square plate member in plan view. However, the steel plate 50 may be a strip-shaped member. *
まず、図5に示すように、鋼板50に対して、固定子コア部材32の外周側に位置する複数の円弧部33を形成するための複数のスリット51を、打ち抜きによって形成する。この工程が、図4におけるスリット形成工程(ステップS1)である。すなわち、鋼板50から、径方向に所定の幅を有する円弧状の部材を打ち抜くことにより、鋼板50に、周方向に並ぶ複数の円弧状のスリット51が形成される。これにより、鋼板50には、円弧状のスリット51の周方向において、スリット51同士の間に接続部52がそれぞれ形成される。すなわち、鋼板50において、複数のスリット51及び複数の接続部52は、周方向に交互に並んで位置する。本実施形態では、図5に示すように、接続部52は、固定子コア部材32のヨーク部32aの外周側で、且つ、ティース部32bに対して径方向外方に位置する。
First, as shown in FIG. 5, a plurality of slits 51 for forming a plurality of arc portions 33 located on the outer peripheral side of the stator core member 32 are formed in the steel plate 50 by punching. This step is the slit forming step (step S1) in FIG. That is, a plurality of arc-shaped slits 51 arranged in the circumferential direction are formed in the steel plate 50 by punching an arc-shaped member having a predetermined width in the radial direction from the steel plate 50. Thereby, the connection part 52 is formed in the steel plate 50 between the slits 51 in the circumferential direction of the arc-shaped slit 51, respectively. That is, in the steel plate 50, the plurality of slits 51 and the plurality of connection portions 52 are alternately arranged in the circumferential direction. In the present embodiment, as shown in FIG. 5, the connection portion 52 is located on the outer peripheral side of the yoke portion 32 a of the stator core member 32 and radially outward with respect to the tooth portion 32 b. *
なお、鋼板50において、複数のスリット51によって囲まれた領域が固定子コア部材32を構成する。
In the steel plate 50, a region surrounded by the plurality of slits 51 constitutes the stator core member 32. *
上述のように鋼板50に打ち抜きによってスリット51を形成することにより、スリット51の内周側が、固定子コア部材32の円弧部33の外周側を構成する。鋼板50にスリット51を形成する際に打ち抜かれる部材は、パンチによって打ち抜かれる。一方、鋼板50のうち固定子コア部材32を構成する部分は、ダイ上に残る。
By forming the slit 51 by punching the steel plate 50 as described above, the inner peripheral side of the slit 51 constitutes the outer peripheral side of the arc portion 33 of the stator core member 32. A member that is punched when the slit 51 is formed in the steel plate 50 is punched by a punch. On the other hand, the part which comprises the stator core member 32 among the steel plates 50 remains on the die. *
上述のように、鋼板50に複数のスリット51を打ち抜きによって形成することにより、固定子コア部材32のうち外径寸法の精度が不要な部分を、鋼板50に接続部52として残しつつ、固定子コア部材32のうち接続部52以外で外径寸法の精度が必要な部分を、鋼板50に打ち抜きによって形成することができる。前記スリット形成工程が、コア部材形成工程に対応する。
As described above, by forming the plurality of slits 51 in the steel plate 50 by punching, the stator core member 32 is left with a portion that does not require the accuracy of the outer diameter dimension as the connection portion 52 in the steel plate 50, and the stator. A portion of the core member 32 other than the connection portion 52 that requires the accuracy of the outer diameter can be formed in the steel plate 50 by punching. The slit forming step corresponds to the core member forming step. *
ここで、パンチT1及びダイT2を用いて鋼板50を打ち抜く際には、図8及び図9に示すようにパンチT1がダイT2に近づくことにより、鋼板50のうちパンチT1及びダイT2によって挟まれた部分を破断させる。なお、パンチT1がダイT2に近づく方向が、打ち抜き方向(図8及び図9における白抜き矢印方向)である。
Here, when the steel plate 50 is punched using the punch T1 and the die T2, the punch T1 approaches the die T2 as shown in FIGS. 8 and 9, so that the steel plate 50 is sandwiched between the punch T1 and the die T2. The broken part is broken. The direction in which the punch T1 approaches the die T2 is the punching direction (the direction of the white arrow in FIGS. 8 and 9). *
図8に示すように、パンチT1及びダイT2を用いて鋼板50を打ち抜く際に、まず、鋼板50には、パンチT1及びダイT2によって、せん断面D2a,D1aが形成される。打ち抜き加工において、せん断面D2a,D1aが形成される時期が、打ち抜き加工の前期である。その後、パンチT1がダイT2にさらに近づくことにより、図9に示すように、パンチT1によって部材M1が打ち抜かれる一方、ダイT2上には、部材M2が残る。このとき、破断面D2b,D1bが形成される。打ち抜き加工において、破断面D2b,D1bが形成される時期が、打ち抜き加工の後期である。
As shown in FIG. 8, when the steel plate 50 is punched using the punch T1 and the die T2, first, the shear surfaces D2a and D1a are formed on the steel plate 50 by the punch T1 and the die T2. In the punching process, the time when the shear surfaces D2a and D1a are formed is the first half of the punching process. Thereafter, as the punch T1 further approaches the die T2, as shown in FIG. 9, the member M1 is punched out by the punch T1, while the member M2 remains on the die T2. At this time, fracture surfaces D2b and D1b are formed. In the punching process, the time when the fracture surfaces D2b and D1b are formed is the latter stage of the punching process. *
そのため、図9に示すように、ダイT2上に残る部材M2の加工面D2には、打ち抜き方向(図中の白抜き矢印方向)に順に、せん断面D2a及び破断面D2bが形成される。一方、パンチT1によって打ち抜かれる部材M1の加工面D1には、打ち抜き方向に順に、破断面D1b及びせん断面D1aが形成される。
Therefore, as shown in FIG. 9, a shear surface D2a and a fracture surface D2b are formed in order in the punching direction (the direction of the white arrow in the figure) on the processed surface D2 of the member M2 remaining on the die T2. On the other hand, a fracture surface D1b and a shear surface D1a are formed in order in the punching direction on the processed surface D1 of the member M1 punched by the punch T1. *
よって、上述のように鋼板50に打ち抜きによってスリット51を形成した場合、固定子コア部材32の円弧部33の外周側に位置する加工面35は、図9における加工面D2に相当し、打ち抜き方向に順に、せん断面35a及び破断面35bを有する。
Therefore, when the slit 51 is formed by punching the steel plate 50 as described above, the processing surface 35 located on the outer peripheral side of the arc portion 33 of the stator core member 32 corresponds to the processing surface D2 in FIG. , In order, have a shear surface 35a and a fracture surface 35b. *
鋼板50に複数のスリット51を形成した後、図6に示すように、鋼板50に打ち抜きによってヨーク部32a及び複数のティース部32bを形成する。この工程が、図4におけるスロット打ち抜き工程(ステップS2)である。
After forming the plurality of slits 51 in the steel plate 50, as shown in FIG. 6, the yoke portion 32a and the plurality of teeth portions 32b are formed in the steel plate 50 by punching. This process is the slot punching process (step S2) in FIG. *
その後、図7に示すように、スリット51同士の間に位置する接続部52を打ち抜くことにより、固定子コア部材32のヨーク部32aの外周側に凹部34を形成するとともに、鋼板50から固定子コア部材32を分離させる。なお、図7では、接続部52の打ち抜き部分を破線で示す。接続部52を打ち抜くことにより、鋼板50から固定子コア部材32を分離させる工程が、図4における接続部分離工程(ステップS3)である。
Thereafter, as shown in FIG. 7, the connecting portion 52 located between the slits 51 is punched out to form a recess 34 on the outer peripheral side of the yoke portion 32 a of the stator core member 32, and the steel plate 50 to the stator. The core member 32 is separated. In FIG. 7, the punched portion of the connecting portion 52 is indicated by a broken line. The step of separating the stator core member 32 from the steel plate 50 by punching the connection portion 52 is the connection portion separation step (step S3) in FIG. *
上述のように、鋼板50に複数のスリット51を打ち抜きによって形成した後、接続部52を切断することにより、固定子コア材32を鋼板50から切り離す。前記接続部分離工程が、コア部材分離工程に対応する。
As described above, after forming the plurality of slits 51 in the steel plate 50 by punching, the stator core material 32 is separated from the steel plate 50 by cutting the connecting portion 52. The connection part separation step corresponds to a core member separation step. *
なお、上述のように接続部52を打ち抜く際、固定子コア部材32がパンチによって打ち抜かれるため、凹部34の外周側に位置する加工面36は、図8における加工面D1に相当し、打ち抜き方向に順に、破断面36b及びせん断面36aを有する。
Since the stator core member 32 is punched by punching when the connection portion 52 is punched as described above, the processing surface 36 located on the outer peripheral side of the recess 34 corresponds to the processing surface D1 in FIG. In order, it has the fracture surface 36b and the shearing surface 36a. *
上述のように、鋼板50から固定子コア部材32を打ち抜く際に、まず、鋼板50に複数のスリット51を形成した後、接続部52を打ち抜くことにより、固定子コア部材の外形全体を一度に打ち抜く場合に比べて、スリット51によって形成される固定子コア部材32の円弧部33の寸法精度を向上できる。
As described above, when the stator core member 32 is punched from the steel plate 50, first, after forming the plurality of slits 51 in the steel plate 50, the entire outer shape of the stator core member is formed at a time by punching the connection portion 52. Compared to the case of punching, the dimensional accuracy of the arc portion 33 of the stator core member 32 formed by the slit 51 can be improved. *
すなわち、固定子コア部材の外形全体を打ち抜きによって形成する場合には、打ち抜きの際の伸びによって、固定子コア部材は楕円状になる。一方、上述のように、固定子コア部材32の外形寸法の精度が不要な部分を接続部52として残しつつ、固定子コア部材32の外形寸法の精度が必要な部分を、打ち抜きによって形成することにより、固定子コア部材32の外形寸法の精度が必要な部分において伸びが生じることを抑制できる。
That is, when the entire outer shape of the stator core member is formed by punching, the stator core member becomes elliptical due to the elongation at the time of punching. On the other hand, as described above, the portion requiring the accuracy of the outer dimension of the stator core member 32 is formed by punching while leaving the portion that does not need the accuracy of the outer dimension of the stator core member 32 as the connecting portion 52. Thereby, it can suppress that elongation arises in the part for which the precision of the external dimension of the stator core member 32 is required. *
これにより、固定子コア部材32において、円弧部33の必要な寸法精度を確保できる。そして、固定子コア部材32を鋼板50から分離させる際に、スリット51同士の間に位置し且つ円弧部33に比べて高い寸法精度が要求されない接続部52を切断することにより、固定子コア部材の外形を一度に打ち抜く場合に比べて、固定子コア部材32の寸法精度を向上できる。
Thereby, in the stator core member 32, the required dimensional accuracy of the circular arc part 33 is securable. Then, when separating the stator core member 32 from the steel sheet 50, the stator core member is cut by cutting the connecting portion 52 that is located between the slits 51 and does not require high dimensional accuracy compared to the arc portion 33. The dimensional accuracy of the stator core member 32 can be improved as compared with the case of punching out the outer shape at once. *
したがって、上述の固定子コア部材32の製造方法によって、鋼板50から打ち抜く際に固定子コア部材32が楕円状になることを防止できるため、固定子コア部材32の真円度を向上できる。
Therefore, since the stator core member 32 can be prevented from becoming elliptical when punched from the steel plate 50 by the above-described method for manufacturing the stator core member 32, the roundness of the stator core member 32 can be improved. *
本実施形態では、固定子コア31は、ケーシング4内に収容される。このように固定子コア31を構成し且つケーシング4内に収容される固定コア部材32は、外周側の少なくとも一部の外形寸法の精度が必要である。上述の製造方法によって、外径寸法の精度が高い固定子コア部材が得られる。
In the present embodiment, the stator core 31 is accommodated in the casing 4. Thus, the fixed core member 32 that constitutes the stator core 31 and is accommodated in the casing 4 needs accuracy of at least a part of the outer dimension on the outer peripheral side. By the manufacturing method described above, a stator core member having a high accuracy of the outer diameter can be obtained. *
(その他の実施形態) 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
Other Embodiments Although the embodiments of the present invention have been described above, the above-described embodiments are merely examples for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and the above-described embodiment can be appropriately modified and implemented without departing from the spirit of the invention. *
前記実施形態では、鋼板50にスリット51を形成することにより、固定子コア部材32の円弧部33の外周側を形成する。しかしながら、鋼板を固定子コア部材の円弧部の形状で厚み方向に打ち抜いた後、該打ち抜いた部分を元の位置に戻す、いわゆるプッシュバック加工によって、前記固定子コア部材の円弧部を形成してもよい。
In the embodiment, the outer peripheral side of the arc portion 33 of the stator core member 32 is formed by forming the slit 51 in the steel plate 50. However, after punching the steel plate in the thickness direction in the shape of the arc part of the stator core member, the arc part of the stator core member is formed by a so-called pushback process in which the punched part is returned to the original position. Also good. *
前記実施形態では、鋼板50に複数のスリット51を形成した後に、ティース部32b及びヨーク部32aを形成する。しかしながら、鋼板50にティース部32b及びヨーク部32aを形成した後に、鋼板50に複数のスリット51を形成してもよい。
In the said embodiment, after forming the some slit 51 in the steel plate 50, the teeth part 32b and the yoke part 32a are formed. However, a plurality of slits 51 may be formed in the steel plate 50 after the teeth portion 32 b and the yoke portion 32 a are formed in the steel plate 50. *
前記実施形態では、鋼板50から固定子コア部材32を打ち抜く場合に適用される製造方法について説明した。しかしながら、前記実施形態の製造方法は、回転子コアを構成する円盤状の回転子コア部材を打ち抜く際に適用してもよい。例えば、シャフト20が貫通する回転子コアの貫通孔を形成する際に、前記実施形態の製造方法を適用してもよい。
In the embodiment, the manufacturing method applied when the stator core member 32 is punched from the steel plate 50 has been described. However, the manufacturing method of the above embodiment may be applied when punching out the disk-shaped rotor core member constituting the rotor core. For example, when the through hole of the rotor core through which the shaft 20 passes is formed, the manufacturing method of the above embodiment may be applied. *
前記実施形態では、モータ1は、筒状の固定子3内に、回転子2が中心軸Pを中心として回転可能に配置された、いわゆるインナーロータ型のモータである。しかしながら、モータは、筒状の回転子内に、円柱状の固定子が配置された、いわゆるアウターロータ型のモータであってもよい。この場合にも、固定子コアを構成する固定子コア部材、及び、回転子コアを構成する回転子コア部材の少なくとも一方に、前記実施形態の製造方法を適用することができる。
In the above embodiment, the motor 1 is a so-called inner rotor type motor in which the rotor 2 is disposed in the cylindrical stator 3 so as to be rotatable about the central axis P. However, the motor may be a so-called outer rotor type motor in which a cylindrical stator is disposed in a cylindrical rotor. Also in this case, the manufacturing method of the above-described embodiment can be applied to at least one of the stator core member constituting the stator core and the rotor core member constituting the rotor core. *
前記実施形態では、モータは、いわゆる永久磁石モータである。永久磁石モータでは、回転子がマグネットを有する。しかしながら、モータ1は、誘導機、リラクタンスモータ、スイッチドリラクタンスモータ、巻線界磁型モータなどのマグネットを有さないモータであってもよい。
In the embodiment, the motor is a so-called permanent magnet motor. In the permanent magnet motor, the rotor has a magnet. However, the motor 1 may be a motor that does not have a magnet, such as an induction machine, a reluctance motor, a switched reluctance motor, or a wound field type motor.
本発明は、厚み方向に積層されることによって固定子コアを構成する円盤状の固定子コア部材の製造方法に適用可能である。
The present invention is applicable to a method of manufacturing a disk-shaped stator core member that constitutes a stator core by being laminated in the thickness direction.
1 モータ2 回転子3 固定子4 ハウジング20 シャフト21 回転子コア22 マグネット31 固定子コア(コア)31a ヨーク31b ティース32 固定子コア部材(コア部材)32a ヨーク部32b ティース部32c かしめ部33 円弧部(打ち抜き部)35a、36a、D1a、D2a せん断面35b、36b、D1b、D2b 破断面34 凹部(接続切断部)35、36 加工面50 鋼板51 スリット52 接続部P 中心軸D1、D2 加工面T1 パンチT2 ダイM1 パンチによって打ち抜かれる部材M2 ダイ上に残る部材
DESCRIPTION OF SYMBOLS 1 Motor 2 Rotor 3 Stator 4 Housing 20 Shaft 21 Rotor core 22 Magnet 31 Stator core (core) 31a Yoke 31b Teeth 32 Stator core member (core member) 32a Yoke part 32b Teeth part 32c Caulking part 33 Arc part (Punched portions) 35a, 36a, D1a, D2a Shear surfaces 35b, 36b, D1b, D2b Fracture surface 34, Recessed portion (connection cutting portion) 35, 36 Work surface 50 Steel plate 51 Slit 52 Connection portion P Center axis D1, D2 Work surface T1 Punch T2 Die M1 Member punched by punch M2 Member remaining on die
Claims (5)
- 円柱状または円筒状のコアを構成する円盤状のコア部材の製造方法であって、 前記コア部材の外周側のうち外径寸法の精度が不要な部分を、鋼板に接続部として残しつつ、前記コア部材の外周側のうち前記接続部以外で外径寸法の精度が必要な部分を、前記鋼板に打ち抜きによって形成するコア部材形成工程と、 前記コア部材形成工程の後に、前記接続部を切断することにより、前記コア部材を前記鋼板から切り離すコア部材分離工程と、を有する、コア部材製造方法。 A method of manufacturing a disk-shaped core member constituting a columnar or cylindrical core, wherein a portion of the outer peripheral side of the core member that does not require accuracy of an outer diameter dimension is left as a connection portion on a steel plate, A core member forming step of forming a portion of the outer peripheral side of the core member that requires outside diameter accuracy other than the connecting portion by punching the steel sheet, and the connecting portion is cut after the core member forming step. And a core member separation step of separating the core member from the steel plate.
- 請求項1に記載のコア部材製造方法において、 前記コア部材形成工程は、前記鋼板を打ち抜くことにより、前記鋼板に、前記コア部材の外周側のうち外径寸法の精度が必要な部分に沿ってスリットを形成する、コア部材製造方法。 2. The core member manufacturing method according to claim 1, wherein in the core member forming step, the steel plate is punched out, along the portion of the outer peripheral side of the core member that requires accuracy of the outer diameter dimension. The core member manufacturing method which forms a slit.
- 請求項1または2に記載のコア部材製造方法において、 前記コア部材は、固定子コアを構成する固定子コア部材である、コア部材製造方法。 The core member manufacturing method according to claim 1 or 2, wherein the core member is a stator core member constituting a stator core.
- 鋼板から打ち抜かれた後、複数枚積層される円盤状のコア部材であって、 外周側のうち外径寸法の精度が必要な部分の加工面に、前記鋼板からの打ち抜き方向に順に、せん断面及び破断面を有する打ち抜き部と、 前記外周側のうち外径寸法の精度が不要な部分の加工面に、前記打ち抜き方向に順に、破断面及びせん断面を有する接続切断部と、を有する、コア部材。 A disk-shaped core member, which is laminated after being punched from a steel plate, and has a sheared surface in order in the direction of punching from the steel plate on the processed surface of the outer peripheral side where accuracy of the outer diameter is required And a punched part having a fractured surface, and a connecting cut part having a fractured surface and a shearing surface in order in the punching direction on the processed surface of the outer peripheral side where the accuracy of the outer diameter dimension is unnecessary Element.
- 請求項4に記載のコア部材において、 固定子コアを構成する固定子コア部材であり、ケーシング内に収容される、コア部材。 The core member according to claim 4, wherein the core member is a stator core member that constitutes a stator core and is accommodated in a casing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980012928.2A CN111742472A (en) | 2018-02-13 | 2019-02-08 | Method for manufacturing core component and core component |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018022889 | 2018-02-13 | ||
JP2018-022889 | 2018-02-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019159847A1 true WO2019159847A1 (en) | 2019-08-22 |
Family
ID=67618526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/004683 WO2019159847A1 (en) | 2018-02-13 | 2019-02-08 | Method for manufacturing core member, and core member |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111742472A (en) |
WO (1) | WO2019159847A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023162996A1 (en) * | 2022-02-25 | 2023-08-31 | ニデック株式会社 | Stator core manufacturing method and stator core |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04117153A (en) * | 1990-09-04 | 1992-04-17 | Mitsui High Tec Inc | Manufacture of laminated core |
JP2005086929A (en) * | 2003-09-10 | 2005-03-31 | Aisin Aw Co Ltd | Method of blanking and shaping single layer for stacked iron core |
JP2016131479A (en) * | 2015-01-09 | 2016-07-21 | 三菱電機株式会社 | Stator iron core, stator, and rotary electric machine, and manufacturing method for circular steel plate |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS631347A (en) * | 1986-06-19 | 1988-01-06 | Mitsui Haitetsuku:Kk | Manufacture of stator core plate for rotary electric machine |
JP2005198361A (en) * | 2003-12-26 | 2005-07-21 | Shinano Kenshi Co Ltd | Method and device for manufacturing stator iron core of motor |
-
2019
- 2019-02-08 WO PCT/JP2019/004683 patent/WO2019159847A1/en active Application Filing
- 2019-02-08 CN CN201980012928.2A patent/CN111742472A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04117153A (en) * | 1990-09-04 | 1992-04-17 | Mitsui High Tec Inc | Manufacture of laminated core |
JP2005086929A (en) * | 2003-09-10 | 2005-03-31 | Aisin Aw Co Ltd | Method of blanking and shaping single layer for stacked iron core |
JP2016131479A (en) * | 2015-01-09 | 2016-07-21 | 三菱電機株式会社 | Stator iron core, stator, and rotary electric machine, and manufacturing method for circular steel plate |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023162996A1 (en) * | 2022-02-25 | 2023-08-31 | ニデック株式会社 | Stator core manufacturing method and stator core |
Also Published As
Publication number | Publication date |
---|---|
CN111742472A (en) | 2020-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10594177B2 (en) | Rotary electric machine and rotor core manufacturing method | |
US6967424B2 (en) | Rotor assembly and stator assembly for an electrical machine | |
JP6305651B1 (en) | Permanent magnet type synchronous machine and method of manufacturing stator of permanent magnet type synchronous machine | |
WO2011125199A1 (en) | Layered iron core of rotary electrical machine | |
US20140062245A1 (en) | Rotor for rotating electric machine | |
US10985637B2 (en) | Laminated core manufacturing method | |
US10720805B2 (en) | Embedded permanent magnet type rotating electric machine with permanent magnet rotor having magnet holes and central bridge | |
JP6798572B2 (en) | Manufacturing method of stator, rotary electric machine, steel plate, and manufacturing method of stator | |
JP6179496B2 (en) | Rotor and rotating machine | |
JP7047847B2 (en) | Stator core manufacturing method, motor with stator core manufacturing method, stator core manufacturing equipment and laminated member manufacturing method | |
CN109687656B (en) | Method for manufacturing core of rotating electrical machine and core of rotating electrical machine | |
WO2019159847A1 (en) | Method for manufacturing core member, and core member | |
JP2003284269A (en) | Rotary electric machine with divided stator structure | |
JP2020096411A (en) | Rotor and production method of arc-like magnets for rotor | |
JP7067563B2 (en) | Manufacturing method of steel sheet laminate and molded steel plate laminate | |
JP6508102B2 (en) | Rotating electrical machine and method of manufacturing split stator steel plate | |
JP6045638B2 (en) | Manufacturing method of laminated iron core | |
CN114342215B (en) | Stator for rotating electric machine, method for manufacturing same, rotating electric machine, and method for manufacturing same | |
WO2023182257A1 (en) | Stator core manufacturing method, stator core, and motor | |
WO2023182256A1 (en) | Stator core manufacturing method, stator core, and motor | |
WO2023162996A1 (en) | Stator core manufacturing method and stator core | |
TW201639272A (en) | Stator core and stator for rotary electric machine, and rotary electric machine | |
CN111033982B (en) | Stator core manufacturing method | |
CN110720169A (en) | Rotor structure of motor | |
US20220166295A1 (en) | Stator core plate manufacturing method, stator core plate, stator core, and mold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19753698 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19753698 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |