WO2019159548A1 - 送信装置、受信装置、送信方法及び受信方法 - Google Patents

送信装置、受信装置、送信方法及び受信方法 Download PDF

Info

Publication number
WO2019159548A1
WO2019159548A1 PCT/JP2018/047814 JP2018047814W WO2019159548A1 WO 2019159548 A1 WO2019159548 A1 WO 2019159548A1 JP 2018047814 W JP2018047814 W JP 2018047814W WO 2019159548 A1 WO2019159548 A1 WO 2019159548A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
transmission
terminal
repetition
unit
Prior art date
Application number
PCT/JP2018/047814
Other languages
English (en)
French (fr)
Inventor
岩井 敬
哲矢 山本
知也 布目
智史 高田
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to US16/964,485 priority Critical patent/US11515966B2/en
Priority to JP2020500314A priority patent/JP7239552B2/ja
Publication of WO2019159548A1 publication Critical patent/WO2019159548A1/ja
Priority to US17/976,650 priority patent/US11923982B2/en
Priority to JP2023031077A priority patent/JP7474891B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to a transmission device, a reception device, a transmission method, and a reception method.
  • NR New Radio
  • URLLC Ultra-Reliable and Low Latency Communications
  • the receiving side can reduce the packet transmission error rate by synthesizing the repeated signals.
  • the transmission side can reduce delay by repeatedly transmitting packet data without waiting for feedback information including retransmission control information from the reception side. Note that repetition transmission can be applied to both an uplink data channel (PUSCH: Physical-Uplink-Shared Channel) and a downlink data channel (PDSCH: Physical-Downlink Shared Channel).
  • PUSCH Physical-Uplink-Shared Channel
  • PDSCH Physical-Downlink Shared Channel
  • Non-Patent Document 2 As shown in FIGS. 1A and 1B, different repetition transmission methods targeting URLLC are being studied.
  • Non-Patent Document 2 describes that the optimum repetition transmission method dynamically changes depending on the radio channel status or traffic volume of each terminal.
  • the delay Buffer budget (the remaining time from the initial packet transmission time (for example, timing #n) to the requested packet delay budget timing) is small. It is a suitable repetition transmission method. Specifically, in (a) of FIG. 1, the packet is repeatedly transmitted in continuous time (timing #n, # (n + 1)). Thus, by performing repetition transmission without an untransmitted section (gap section), the delay can be reduced. On the other hand, on the transmitting side, since the reception status cannot be sufficiently considered, excessive radio resource allocation may occur for the repetition data, and the utilization efficiency of radio resources may be reduced.
  • the repetition transmission method shown in FIG. 1 (b) is a repetition transmission method suitable for a case where the delay Buffergetbudget is large.
  • the packet is repeatedly transmitted in a non-continuous time including the gap section (timing #n, # (n + 2)).
  • the transmitting side can efficiently allocate radio resources to the second and subsequent repetition data. For example, if the packet decoding is OK (no error), the receiving side can use the feedback information to instruct to stop subsequent repetition transmission. If the packet decoding is NG (with an error), the receiving side can use the feedback information to instruct subsequent repetition transmission of frequency resource allocation necessary for packet decoding OK.
  • the Buffer budget of each terminal mentioned above varies in time depending on the packet scheduling timing. Therefore, it is necessary to consider a method for dynamically changing a repetition transmission method applied to each terminal.
  • One aspect of the present disclosure contributes to provision of a transmission device, a reception device, a transmission method, and a reception method that can appropriately change a repetition transmission method.
  • a transmission apparatus includes a determination circuit that determines a data repetition pattern for a terminal, and a transmission circuit that repeatedly transmits the data based on the repetition pattern. It is associated with control information notified to the terminal by signaling.
  • a receiving apparatus includes a determination circuit that determines a repetition pattern of data for a terminal, a reception circuit that receives the data that is repeatedly transmitted based on the repetition pattern, and the data that is repeatedly transmitted And the repetition pattern is associated with control information notified to the terminal by dynamic signaling.
  • a transmission method determines a data repetition pattern for a terminal, repeatedly transmits the data based on the repetition pattern, and the repetition pattern is notified to the terminal by dynamic signaling. Is associated with.
  • the reception method determines a repetition pattern of data for a terminal, receives the repeatedly transmitted data based on the repetition pattern, combines the repeatedly transmitted data, and the repetition
  • the pattern is associated with control information notified to the terminal by dynamic signaling.
  • the repetition transmission method can be dynamically changed appropriately.
  • Data channel allocation information (radio resource allocation information, MCS (Modulation and Coding Scheme), etc.) determined by the base station (called eNB or gNB) according to the radio channel status of the terminal (UE: UserUEEquipment), It is included in control information (DCI: Downlink Control Information), and is notified from the base station to the terminal using PDCCH (Physical Downlink Control Channel).
  • the repetition transmission method (repetition number or repetition pattern such as a gap interval) applied to the terminal by the base station may be transmitted from the base station to the terminal using the PDCCH included in the DCI.
  • PDCCH for URLLC (also called NR-PDCCH) requires a lower error rate in order to control URLLC packets that require high reliability.
  • NR-PDCCH In order to reduce the transmission error rate of NR-PDCCH, it is necessary to make the DCI format size notified by NR-PDCCH smaller.
  • a communication system includes a base station 100 and a terminal 200 that transmit / receive repetition data using a downlink data channel (PDSCH) and / or a repetition using an uplink data channel (PUSCH).
  • a base station 300 and a terminal 400 that transmit and receive data are provided.
  • One base station may have the configurations of both the base station 100 and the base station 300, or may have one of the configurations.
  • one terminal may have the configuration of both the terminal 200 and the terminal 400, or may have one of the configurations.
  • FIG. 2 is a block diagram illustrating a partial configuration of the base station 100 (that is, a transmission device) when the downlink data channel (PDSCH) according to the embodiment of the present disclosure is used.
  • repetition control section 103 determines a data repetition pattern for terminal 200 (receiving apparatus), and transmission section 109 repeatedly transmits data based on the repetition pattern.
  • FIG. 3 is a block diagram showing a partial configuration of terminal 200 (that is, a receiving device) when the downlink data channel (PDSCH) according to the embodiment of the present disclosure is used.
  • repetition control section 205 determines a data repetition pattern for terminal 200, and signal extraction section 203 receives (extracts) repeatedly transmitted data based on the repetition pattern.
  • the data combining / decoding unit 207 combines the repeatedly transmitted data.
  • the data repetition pattern is associated with control information notified to the terminal 200 by dynamic signaling (DCI).
  • DCI dynamic signaling
  • FIG. 4 is a block diagram illustrating a configuration of a part of the base station 300 (that is, the receiving device) when the uplink data channel (PUSCH) according to the embodiment of the present disclosure is used.
  • repetition control section 303 determines a data repetition pattern for terminal 400 (transmitting apparatus), and signal extraction section 309 receives the repeatedly transmitted data based on the repetition pattern. (Extraction), and the data synthesis / decoding unit 311 synthesizes the repeatedly transmitted data.
  • FIG. 5 is a block diagram illustrating a partial configuration of the terminal 400 (that is, a transmission device) when the uplink data channel (PUSCH) according to the embodiment of the present disclosure is used.
  • repetition control section 405 determines a data repetition pattern for terminal 400, and transmission section 410 repeatedly transmits data based on the repetition pattern.
  • the data repetition pattern is associated with control information notified to the terminal 400 by dynamic signaling (DCI).
  • DCI dynamic signaling
  • FIG. 6 is a block diagram illustrating a configuration example of the base station 100 when the downlink data channel (PDSCH) according to the present embodiment is used.
  • PDSCH downlink data channel
  • the base station 100 shown in FIG. 6 includes a scheduling unit 101, a control signal generation unit 102, a repetition control unit 103, a control signal encoding / modulation unit 104, a data encoding unit 105, a retransmission control unit 106, a data modulation unit 107, A radio resource allocation unit 108, a transmission unit 109, an antenna 110, a reception unit 111, a signal extraction unit 112, and a demodulation / decoding unit 113 are included.
  • Scheduling section 101 includes control signals for terminal 200 (also called PDCCH, NR-PDCCH, DL ⁇ ⁇ ⁇ ⁇ assignment), and predetermined packet transmission time units (TTI, slot, mini-slot, etc.) for the downlink data channel (also called PDSCH).
  • terminal 200 also called PDCCH, NR-PDCCH, DL ⁇ ⁇ ⁇ ⁇ assignment
  • predetermined packet transmission time units TTI, slot, mini-slot, etc.
  • PDSCH downlink data channel
  • radio resource allocation information frequency resource allocation information, time resource allocation information, terminal ID, reference signal information for data demodulation, modulation / coding method, etc.
  • Scheduling section 101 outputs the determined radio resource allocation information to control signal generation section 102, data encoding section 105, and radio resource allocation section 108.
  • the control signal generation unit 102 generates a control signal including control information (DCI) for scheduling the terminal 200.
  • the control information includes radio resource allocation information of the downlink data channel (also referred to as PDSCH) input from the scheduling unit 101.
  • the control signal generation unit 102 generates a control signal using a control information bit string configured in a format of a predetermined size, and outputs the control signal to the repetition control unit 103 and the control signal encoding / modulation unit 104.
  • the repetition control unit 103 uses the control information (DCI) included in the control signal input from the control signal generation unit 102 and repeats data signal radio resource allocation per TU for the terminal 200 based on a predetermined rule. A pattern (repetition pattern) is determined. The repetition control unit 103 outputs the determined repetition pattern to the radio resource allocation unit 108 and the retransmission control unit 106.
  • DCI control information
  • a pattern repetition pattern
  • the repetitive pattern is a repetitive pattern of radio resource allocation for each TU and includes “time domain repeat count (TU count)”, “frequency domain repeat count”, “transmission interval or untransmitted time (TU count) ) ”And“ RV order per TU ”.
  • the number of repetitions in the frequency domain indicates, for example, the number of repetitions of allocated frequency resources by adding a predetermined frequency offset (for example, X [PRB: Physical Resource Block]).
  • PRB Physical Resource Block
  • Control signal encoding / modulation section 104 modulates and encodes the bit string input from control signal generation section 102 and outputs the obtained symbol string to radio resource allocation section 108.
  • the data encoding unit 105 performs error correction encoding on the transmission data in accordance with the encoding method input from the scheduling unit 101, and outputs the encoded data signal to the retransmission control unit 106.
  • the retransmission control unit 106 holds the encoded data signal input from the data encoding unit 105 and outputs it to the data modulation unit 107 at the first (new) transmission. Further, retransmission control section 106 controls retained data based on the ACK / NACK result input from demodulation / decoding section 113 during retransmission. Specifically, when NACK is received, retransmission control section 106 outputs the corresponding retained data to data modulation section 107. On the other hand, when receiving the ACK, the retransmission control unit 106 discards the corresponding retained data and ends the downlink data transmission.
  • retransmission control section 106 outputs RV (Redundancy Version: ⁇ redundant bit pattern for error correction) data according to the number of transmission TUs as the encoded data output to data modulation section 107 during retransmission.
  • RV Redundancy Version: ⁇ redundant bit pattern for error correction
  • the receiving side in this case, terminal 200
  • RV Redundancy Version
  • the transmission process can be simplified, so that the delay time required for data transmission can be shortened.
  • the base station 100 determines the RV order applied in each terminal 200 or each cell, and notifies the terminal 200 by a higher layer notification or the like, so that the base station 100 and the terminal 200 recognize in advance. You may combine them.
  • the data modulation unit 107 modulates the data signal input from the retransmission control unit 106 with a predetermined modulation method input from the scheduling unit 101, and outputs the data modulation signal to the radio resource allocation unit 108.
  • Radio resource allocating section 108 maps the signals input from control signal encoding / modulating section 104 and data modulating section 107 as symbol sequences, respectively, to radio resources instructed from scheduling section 101 and repetition control section 103, The mapped signal is output to transmission section 109. Specifically, the radio resource allocation unit 108 transmits the data signal to the radio resource allocation information in the TU (Transmission unit) input from the scheduling unit 101 and the radio resource between the TUs input from the repetition control unit 103. A plurality of TU radio resources are allocated based on the repetition pattern of allocation.
  • Transmitting section 109 performs RF (Radio-Frequency) processing such as D / A (Digital-to-Analog) conversion and up-conversion on the signal input from radio resource allocating section 108, and terminal 200 via antenna 110 Send a wireless signal to RF (Radio-Frequency) processing such as D / A (Digital-to-Analog) conversion and up-conversion on the signal input from radio resource allocating section 108, and terminal 200 via antenna 110 Send a wireless signal to
  • RF Radio-Frequency
  • the receiving unit 111 performs RF processing such as down-conversion or A / D conversion on the uplink signal waveform transmitted from the terminal 200 received via the antenna 110, and receives the received signal after the RF processing as a signal.
  • the data is output to the extraction unit 112.
  • the signal extraction unit 112 extracts a radio resource part including a response signal for downlink data from the reception signal input from the reception unit 111 and outputs the radio resource part to the demodulation / decoding unit 113.
  • the demodulation / decoding unit 113 performs equalization, demodulation, and error correction decoding on the response signal input from the extraction unit 112, calculates ACK / NACK information of downlink data included in the response signal, and the retransmission control unit 106 Output to.
  • FIG. 7 is a block diagram showing a configuration example of the terminal 200 when the downlink data channel (PDSCH) according to the present embodiment is used.
  • PDSCH downlink data channel
  • a response signal generation unit 209, an encoding / modulation unit 210, a radio resource allocation unit 211, and a transmission unit 212 are included.
  • the receiving unit 202 receives the control signal and data signal transmitted from the base station 100 via the antenna 201, performs RF processing such as down-conversion or A / D conversion on the radio reception signal, and performs the RF processing after the RF processing.
  • the baseband reception signal is output to the signal extraction unit 203.
  • the signal extraction unit 203 extracts a signal portion including the control signal from the baseband reception signal input from the reception unit 202, and outputs the signal portion to the control signal demodulation / decoding unit 204. Further, the signal extraction unit 203 is based on the radio resource allocation information in the TU input from the control signal demodulation / decoding unit 204 and the repetition pattern of radio resource allocation between TUs input from the repetition control unit 205. The signal portion including the downlink data channel is extracted from the baseband received signal and output to the data demodulating unit 206.
  • control signal demodulation / decoding section 204 When the control signal demodulation / decoding section 204 blind-decodes the control signal input from the signal extraction section 203 and determines that the control signal is a control signal addressed to the own terminal, the control signal demodulation / decoding section 204 obtains radio resource allocation information in the TU of the downlink data channel The included control information (DCI) is output to the signal extraction unit 203, the data demodulation unit 206, and the repetition control unit 205.
  • DCI included control information
  • the repetition control unit 205 performs the same processing as the repetition control unit 103 included in the base station 100. That is, the repetition control unit 205 uses the control information (DCI) input from the control signal demodulation / decoding unit 204 to repeat the allocation of data signal radio resources between the TUs for the terminal 200 based on a predetermined rule. Determine the pattern. The repetition control unit 205 outputs the determined repetition pattern to the signal extraction unit 203 and the data synthesis decoding unit 207.
  • DCI control information
  • the data demodulating unit 206 demodulates the downlink data channel input from the signal extracting unit 203 based on the radio resource allocation information input from the control signal demodulating / decoding unit 204, and performs data combining decoding on the demodulated downlink data channel Output to the unit 207.
  • the data combining / decoding unit 207 combines the data input from the data demodulation unit 206 with repeated data between a plurality of TUs, decodes the combined data, and outputs the decoded downlink data to the error detection unit 208. .
  • the data synthesis decoding unit 207 obtains a coding gain by combining RV order (RV pattern for each TU) input from the repetition control unit 205. Further, in the case of retransmission data, the data combining / decoding unit 207 can improve reception quality by combining the data including the data at the previous transmission.
  • the error detection unit 208 performs error detection by CRC on the data input from the data decoding unit 207, determines either ACK (no error) or NACK (with error), and the determination result is a response signal generation unit To 209. Further, the error detection unit 208 acquires received data when there is no error in the data.
  • the response signal generation unit 209 generates a response signal (bit sequence) for the received downlink channel data based on the error detection result (ACK or NACK) input from the error detection unit 208, and sends the response signal (bit sequence) to the encoding / modulation unit 210. Output.
  • Encoding / modulating section 210 performs error correction encoding / modulation on the bit sequence input from response signal generating section 209 and outputs a symbol string to radio resource allocating section 211.
  • the radio resource allocation unit 211 maps the signal input as a symbol string from the encoding / modulation unit 210 to a predetermined radio resource, and outputs the mapped signal to the transmission unit 212.
  • the transmission unit 212 performs RF processing such as D / A conversion and up-conversion on the signal input from the radio resource allocation unit 211, and transmits the radio signal to the base station 100 via the antenna 201.
  • FIG. 8 is a block diagram showing a configuration example of the base station 300 when the uplink data channel (PUSCH) according to the present embodiment is used.
  • PUSCH uplink data channel
  • the scheduling unit 301, the control signal generation unit 302, the repetition control unit 303, the control signal encoding / modulation unit 304, the transmission unit 306, and the reception unit 308 are the scheduling unit 101 and the control signal generation unit of the base station 100 shown in FIG. 102, the repetition control unit 103, the control signal encoding / modulation unit 104, the transmission unit 109, and the reception unit 111.
  • scheduling section 301 determines radio resource allocation information within a predetermined TU of a control signal and an uplink data channel (also referred to as PUSCH) for terminal 400, and determines the determined radio resource allocation information as control signal generation section 302, The data is output to the signal extraction unit 309 and the data demodulation unit 310.
  • the scheduling unit 301 preferentially schedules retransmission data of the uplink data channel.
  • the control signal generation unit 302 generates control information (DCI) using the control information bit string configured in a predetermined size format using the radio resource allocation information input from the scheduling unit 301, and the repetition control unit 303. And output to the control signal encoding / modulating section 304.
  • DCI control information
  • the repetition control unit 303 uses the control information (DCI) input from the control signal generation unit 302 to determine a repetition pattern of data signal radio resource allocation per TU for the terminal 400 based on a predetermined rule. .
  • the repetition control unit 303 outputs the determined repetition pattern to the signal extraction unit 309 and the data synthesis decoding unit 311.
  • the control signal encoding / modulating section 304 modulates and encodes the bit string input from the control signal generating section, and outputs the obtained symbol string to the radio resource allocating section 305.
  • Radio resource allocating section 305 maps the signal input as a symbol string from control signal encoding / modulating section 304 to a predetermined radio resource, and outputs the mapped signal to transmitting section 306.
  • the transmission unit 306 performs RF (Radio Frequency) processing such as D / A- (Digital-to-Analog) conversion and up-conversion on the signal input from the radio resource assignment unit 305, and the terminal via the antenna 307.
  • RF Radio Frequency
  • D / A- Digital-to-Analog
  • a wireless signal is transmitted to 400.
  • the receiving unit 308 performs RF processing such as down-conversion or A / D conversion on the uplink signal waveform received from the antenna 307 and transmitted from the terminal 400, and extracts the received signal after the RF processing Output to the unit 309.
  • RF processing such as down-conversion or A / D conversion
  • the signal extraction unit 309, the data demodulation unit 310, the data synthesis decoding unit 311, and the error detection unit 312 are the same as the signal extraction unit 203, the data demodulation unit 206, the data synthesis decoding unit 207, and the error detection unit 208 of the terminal 200 shown in FIG. The same operation is performed.
  • the signal extraction unit 309 performs baseband transmission based on the radio resource allocation information in the TU input from the scheduling unit 301 and the repetition pattern of radio resource allocation between TUs input from the repetition control unit 303.
  • a signal part including the uplink data channel is extracted from the received signal and output to the data demodulating unit 310.
  • Data demodulating section 310 demodulates the uplink data channel input from signal extracting section 309 based on the radio resource allocation information input from scheduling section 301 and outputs the demodulated uplink data channel to data combining / decoding section 311 To do.
  • the data synthesis / decoding unit 311 synthesizes repeated data between a plurality of TUs for the data input from the data demodulation unit 310, decodes the synthesized data, and outputs the decoded downlink data to the error detection unit 312. .
  • the data combining / decoding unit 311 performs combining in consideration of RV order (RV pattern for each TU) input from the repetition control unit 303 to obtain a coding gain.
  • RV order RV pattern for each TU
  • the data synthesis / decoding unit 311 can improve reception quality by synthesizing data including the data at the previous transmission.
  • the error detection unit 312 performs error detection by CRC on the data input from the data synthesis decoding unit 311, determines either ACK or NACK, and outputs the determination result to the scheduling unit 301. Moreover, the error detection part 312 acquires reception data, when there is no error.
  • FIG. 9 is a block diagram illustrating a configuration example of the terminal 400 when the uplink data channel (PUSCH) according to the present embodiment is used.
  • PUSCH uplink data channel
  • a radio resource allocation unit 409 and a transmission unit 410 are included.
  • the reception unit 402, the signal extraction unit 403, the control signal demodulation / decoding unit 404, and the repetition control unit 405 are the reception unit 202, the signal extraction unit 203, the control signal demodulation / decoding unit 204 of the terminal 200 shown in FIG. The same operation as the repetition control unit 205 is performed.
  • the reception unit 402 receives the control signal and data signal transmitted from the base station 300 via the antenna 401, performs RF processing such as down-conversion or A / D conversion on the radio reception signal, and performs RF processing.
  • the subsequent baseband received signal is output to signal extraction section 403.
  • the signal extraction unit 403 extracts a signal portion including the control signal from the baseband reception signal input from the reception unit 402 and outputs the signal portion to the control signal demodulation / decoding unit 404.
  • control signal demodulation / decoding unit 404 When the control signal demodulation / decoding unit 404 performs blind decoding on the control signal input from the signal extraction unit 403 and determines that the control signal is destined for the terminal itself, the control signal demodulation / decoding unit 404 obtains the radio resource allocation information in the TU of the uplink data channel.
  • the included control information (DCI) is output to data coding section 406, data modulation section 408, repetition control section 405, and radio resource allocation section 409.
  • the repetition control unit 405 uses the control information (DCI) input from the control signal demodulation / decoding unit 404 to generate a repetitive pattern of data signal radio resource allocation between the TUs for the terminal 400 based on a predetermined rule. decide.
  • the repetition control unit 405 outputs the determined repetition pattern to the retransmission control unit 407 and the radio resource allocation unit 409.
  • the data encoding unit 406, the retransmission control unit 407, the data modulation unit 408, the radio resource allocation unit 409, and the transmission unit 410 are the data encoding unit 105, the retransmission control unit 106, and the data modulation unit 107 of the base station 100 shown in FIG. The same operation as that of the radio resource allocation unit 108 and the transmission unit 109 is performed.
  • the data encoding unit 406 performs error correction encoding on the transmission data in accordance with the encoding method included in the control information (DCI) input from the control signal demodulation / decoding unit 404, and the encoded data The signal is output to retransmission control section 407.
  • DCI control information
  • the retransmission control unit 407 holds the encoded data signal input from the data encoding unit 406 and outputs it to the data modulation unit 408 at the first (new) transmission. In addition, retransmission control section 407 outputs the held data at the time of initial transmission to data modulation section 408 during retransmission. Here, retransmission control section 407 outputs RV data corresponding to the number of transmission TUs as the encoded data to be output to data modulation section 408 at the time of retransmission.
  • the data modulation unit 408 modulates the data signal input from the retransmission control unit 407 with a predetermined modulation method indicated by the control information (DCI) from the control signal demodulation / decoding unit 404, and converts the data modulation signal to a radio resource.
  • the data is output to the allocation unit 409.
  • the radio resource allocation unit 409 uses the radio resource allocation information in the TU instructed by the control information (DCI) from the control signal demodulation / decoding unit 404, and the signal input from the data modulation unit 408 as a symbol string. Based on the repetition pattern of radio resource allocation between TUs instructed from the session control unit 405, radio resources of a plurality of TUs are allocated. Radio resource assignment section 409 outputs a signal mapped to the radio resource to transmission section 410.
  • DCI control information
  • the transmission unit 410 performs RF (Radio-Frequency) processing such as D / A (Digital-to-Analog) conversion and up-conversion on the signal input from the radio resource allocation unit 409, and performs a base station via the antenna 401.
  • RF Radio-Frequency
  • D / A Digital-to-Analog
  • a wireless signal is transmitted to 300.
  • FIG. 10 is a sequence diagram showing operations of base station 100 (FIG. 6) and terminal 200 (FIG. 7) (operations when a downlink data channel is used).
  • the base station 100 determines radio resource allocation information related to downlink resources for the terminal 200, and generates DCI (ST101). Then, base station 100, based on the radio resource allocation information included in DCI generated in ST101, repeat pattern of data (downlink data channel) for terminal 200 (that is, repeat pattern of data signal radio resource between TUs). Is determined (ST102).
  • base station 100 transmits PDCCH including DCI generated in ST101 to terminal 200 (ST103).
  • terminal 200 Upon receiving the PDCCH, terminal 200, based on the radio resource allocation information indicated in the DCI included in PDCCH, repeats the data repetition pattern for terminal 200 (that is, the radio resource for data signals between TUs) in the same manner as ST102. (Repetition pattern) is determined (ST104).
  • base station 100 repeatedly transmits data (PDSCH) based on the radio resource allocation information determined in ST101 and the repetition pattern determined in ST102 (ST105).
  • terminal 200 When receiving data (PDSCH) in ST105 based on the radio resource allocation information acquired in ST103 and the repetition pattern determined in ST104, terminal 200 combines and decodes the repeatedly transmitted data (ST106).
  • FIG. 11 is a sequence diagram showing operations of base station 300 (FIG. 8) and terminal 400 (FIG. 9) (operations when an uplink data channel is used).
  • Base station 300 determines radio resource allocation information related to uplink resources for terminal 400 and generates DCI (ST201). Then, base station 300, based on the radio resource allocation information included in DCI generated in ST201, repeat pattern of data (uplink data channel) for terminal 400 (that is, repeat pattern of radio resource for data signal between TUs). Is determined (ST202).
  • base station 300 transmits PDCCH including DCI generated in ST201 to terminal 400 (ST203).
  • terminal 400 Upon receiving the PDCCH, terminal 400, based on the radio resource allocation information indicated in the DCI included in PDCCH, repeats the data repetition pattern for terminal 400 (that is, the radio resource for data signals between TUs), as in ST202. (Repetition pattern) is determined (ST204).
  • terminal 400 repeatedly transmits data (PUSCH) based on the radio resource allocation information acquired in ST203 and the repetition pattern determined in ST204 (ST205).
  • terminal 400 when receiving data (PUSCH) based on the radio resource allocation information determined in ST201 and the repetition pattern determined in ST202, base station 300 combines and decodes the repeatedly transmitted data (ST206).
  • the repetition pattern is notified in association with the control information (radio resource allocation information) notified to the terminals 200 and 400 by the DCI.
  • the base stations 100 and 300 and the terminals 200 and 400 repeat the data signal radio resource allocation pattern between TUs based on control information that is explicitly or implicitly notified by the following DCI. To decide. (1) Frequency allocation bandwidth per TU (2) Number of transmission symbols per TU (3) Subcarrier spacing (SCS) (4) Uplink channel type (SUL (Supplementary uplink) or Non-SUL)
  • frequency allocation bandwidth per TU (specifically, Frequency domain resource assignment), number of transmission symbols per TU (specifically, Time domain resource assignment), uplink channel type (in detail, UL / SUL indicator ) Is a parameter that is explicitly notified by DCI (see, for example, Non-Patent Document 3).
  • the subcarrier interval is a parameter set from BWP allocation information (Bandwidth part indicator) included in DCI.
  • the SCS used for data is preset for each BWP. Therefore, the terminals 200 and 400 can implicitly grasp the SCS to be used based on the BWP instructed by the DCI. That is, it can be said that SCS is a parameter notified implicitly by DCI.
  • the frequency allocation bandwidth per TU, the number of transmission symbols per TU, the SCS, and the uplink channel type are all parameters that are explicitly or implicitly notified to the terminals 200 and 400 by the DCI. That is, the terminals 200 and 400 can dynamically change the repetitive pattern associated with these parameters by receiving the DCI.
  • the repetitive pattern determined by the repetition control units 103, 205, 303, and 405 includes any of the following information.
  • (1) Number of repetitions of time resource (2) Number of repetitions of frequency resource (including predetermined frequency interval and number of repetitions) (3) Transmission time interval or non-transmission section (4) RV order (RV pattern for each transmission TU)
  • the number of repetitions of the time resource indicates the number of repetitions in TU units.
  • a transmission time interval or a non-transmission interval indicates a time in TU units.
  • FIG. 12B by obtaining feedback information from the receiving side in the untransmitted section, radio resources for subsequent data transmission can be efficiently allocated.
  • the RV order of ⁇ 0, 0, 0, 0 ⁇ the same redundant bits are transmitted regardless of the number of transmissions, so transmission / reception processing can be simplified and delay can be reduced, but the combined coding gain is small.
  • the RV order of ⁇ 0, 2, 3, 1 ⁇ is used, different redundant bits are transmitted according to the number of transmissions, so that the coding gain after combining can be improved, but transmission / reception processing becomes complicated Therefore, the delay may increase.
  • RV order is not limited to ⁇ 0, 0, 0, ⁇ 0 ⁇ , ⁇ 0, 2, 3, 1 ⁇ , but may be other patterns.
  • the repetition pattern is determined according to the frequency allocation bandwidth per TU.
  • the packet size (Payload size) is the same, the smaller the frequency allocation bandwidth, the higher the coding rate and the lower the reception quality. Therefore, in the first specific example, the number of repetitions of the time resource (or frequency resource) is increased as the frequency allocation bandwidth is narrower.
  • the number of repetitions is set to 2.
  • the frequency allocation bandwidth per TU is equal to or less than a predetermined bandwidth (X [PRB])
  • the number of repetitions is set to 4. That is, when the frequency allocation bandwidth per TU is equal to or smaller than the predetermined bandwidth X, the frequency allocation bandwidth per TU is larger than the predetermined bandwidth X in order to improve reception quality by the combined gain by repetition.
  • the number of repetitions (4) greater than the number of repetitions (2) is set.
  • repetition control sections 103, 205, 303, and 405 can dynamically set a repetitive pattern according to the frequency allocation bandwidth set in terminals 200 and 400, and can prevent deterioration in reception quality.
  • the repetition pattern is uniquely derived based on the frequency allocation bandwidth included in the DCI. That is, the repetition pattern is implicitly notified to the terminals 200 and 400 by notification of the frequency allocation bandwidth. This eliminates the need for an explicit notification for the repetitive pattern, thereby preventing an increase in DCI size.
  • the predetermined threshold value (X in FIG. 14) is not limited to one, and a plurality of threshold values may be set, and the number of repetitions may be set to a larger value as the frequency allocation bandwidth is narrower. Also, the number of repetitions is not limited to 2 or 4, but may be other values.
  • the repetition pattern is determined according to the number of transmission symbols per TU.
  • the packet size (Payload size) is the same, the smaller the number of transmission symbols, the higher the coding rate and the lower the reception quality. Therefore, in specific example 2, the smaller the number of transmission symbols, the greater the number of repetitions of time resources (or frequency resources).
  • the number of repetitions is set to 2.
  • the number of repetitions is set to 4. That is, when the number of transmission symbols per TU is less than or equal to a predetermined number of symbols X, in order to improve reception quality by combining gain due to repetition, the repetition is performed when the number of transmission symbols per TU is greater than the predetermined number of symbols.
  • the number of repetitions (4) greater than the number (2) is set.
  • repetition control sections 103, 205, 303, and 405 can dynamically set a repetition pattern according to the number of transmission symbols set in terminals 200 and 400, and can prevent deterioration in reception quality.
  • the repetition pattern is uniquely derived based on the number of transmission symbols included in the DCI. That is, the repetition pattern is implicitly notified to terminals 200 and 400 by notification of the number of transmission symbols. This eliminates the need for an explicit notification for the repetitive pattern, thereby preventing an increase in DCI size.
  • the correspondence relationship between the number of transmission symbols and the repetition pattern (repetition number) shown in FIG. 15 is an example, and is not limited thereto.
  • the predetermined threshold value (X in FIG. 15) is not limited to one, and a plurality of threshold values may be set, and the number of repetitions may be set to a larger value as the number of transmission symbols is smaller.
  • the number of repetitions is not limited to 2 or 4, but may be other values.
  • the repetition pattern is determined according to the SCS used for the data channel.
  • the wider the SCS the shorter the 1 symbol length (the TU length becomes shorter). For this reason, the larger the SCS, the greater the number of repetitions or the transmission time interval without increasing the delay time.
  • the transmission side can obtain feedback information from the reception side in the non-transmission section, and can perform subsequent transmission efficiently.
  • the 1 symbol length becomes shorter as the SCS becomes wider. Therefore, the longer the SCS, the longer the transmission interval or the number of repetitions increases the delay time of repeatedly transmitted data. do not do.
  • the wider the SCS the longer the transmission time interval (TU number) may be set.
  • the transmission time interval may be defined to be longer as the SCS is wider. Accordingly, as shown in FIG. 19, the wider the SCS (that is, the shorter the 1 symbol length), the more untransmitted sections can be secured, and the transmission side reliably receives the feedback information from the reception side, Can be processed. That is, an appropriate timing for receiving feedback information can be set for each SCS.
  • the repetition control units 103, 205, 303, and 405 can dynamically set the repetition pattern according to the SCS set in the terminals 200 and 400, and can prevent the reception quality from deteriorating.
  • the repetitive pattern is uniquely derived based on the SCS that is implicitly calculated from the BWP information included in the DCI. That is, the repeated pattern is implicitly notified to the terminals 200 and 400 by the SCS notification based on the BWP information. This eliminates the need for an explicit notification for the repetitive pattern, thereby preventing an increase in DCI size.
  • RV order may be set according to the number of repetitions.
  • SCS 60 kHz
  • RV order ⁇ 0, 2, 3, 1 ⁇ used for transmission for the number of 4TUs is set. That is, the number of RVs included in RV order in each SCS is the same as the number of repetitions set for each SCS.
  • the number of repetitions and the RV order according to the SCS can be set, and deterioration of reception quality can be prevented.
  • the number of repetitions and the RV order are uniquely derived based on the SCS that is implicitly notified by the DCI, thereby preventing an increase in the DCI size.
  • the RV order may be set according to the SCS used for the data channel.
  • the wider the SCS the shorter the 1 symbol length, so the processing time until the next transmission becomes shorter. Therefore, for example, as shown in FIG. 22, an RV order having a smaller change in the RV pattern is set as the SCS is wider.
  • RVVorder ⁇ 0, 2, 3, 1 ⁇ with different RV patterns is set for each TU. Thereby, a coding gain is obtained.
  • the RV order is uniquely derived based on the SCS that is implicitly calculated from the BWP information included in the DCI. That is, the RV order is implicitly notified to the terminals 200 and 400 by the notification of the SCS. This eliminates the need for explicit notification for the RV order, thus preventing an increase in DCI size.
  • the correspondence relationship between the SCS and the repetition pattern (repetition number, transmission interval, RV order) shown in FIGS. 16 to 22 is an example, and is not limited thereto.
  • the value of SCS is not limited to 15 kHz, 30 kHz, and 60 kHz, but may be other values (for example, 120 kHz, 240 kHz).
  • the repetition pattern associated with the SCS may be at least one of the number of repetitions, the transmission time interval, and RV order.
  • the number of repetitions, the transmission interval, and the value of RV order are not limited to the values shown in FIGS. 16 to 22, but may be other values.
  • the repetition pattern associated with the SCS may be any one of the number of repetitions and the transmission time interval.
  • the repetition pattern is set according to the uplink channel type, specifically, whether the assigned uplink channel is SUL.
  • NR stipulates that a terminal that supports LTE and NR uses the LTE frequency band supplementarily in NR uplink transmission.
  • LTE Long Term Evolution
  • NR uses the LTE frequency band supplementarily in NR uplink transmission.
  • SUL Supplementallementuplink
  • the SUL that uses the LTE band has a lower carrier frequency than the Non-SUL that uses the NR band. Since the path loss is smaller as the carrier frequency is lower, higher reception quality can be expected with SUL than with Non-SUL.
  • the number of repetitions is set to 2
  • the uplink assigned to terminals 200 and 400 is When the channel type is non-SUL, the number of repetitions is set to 4. That is, when the uplink channel type is non-SUL, in order to improve the reception quality by the combined gain by repetition, the repetition number (4) is larger than the repetition number (2) when the uplink channel type is SUL. Is set.
  • the repetition control units 103, 205, 303, and 405 can dynamically set the repetition pattern according to the uplink channel type set in the terminals 200 and 400, and can prevent the reception quality from deteriorating.
  • the repetition pattern is uniquely derived based on the uplink channel type included in the DCI. That is, the repetition pattern is implicitly notified to terminals 200 and 400 by the notification of the uplink channel type. This eliminates the need for an explicit notification for the repetitive pattern, thereby preventing an increase in DCI size.
  • the correspondence relationship between the uplink channel type and the repetition pattern (repetition number) shown in FIG. 23 is an example, and is not limited thereto. That is, the number of repetitions is not limited to 2 or 4, but may be other values.
  • the repetitive pattern is associated with control information that is explicitly or implicitly notified to terminals 200 and 400 by DCI (dynamic signaling).
  • DCI dynamic signaling
  • the base stations 100 and 300 can dynamically control the repetition pattern for the terminals 200 and 400 based on the DCI notification. That is, the terminals 200 and 400 can dynamically change the repetition pattern for the terminals 200 and 400 based on the DCI notification from the base stations 100 and 300.
  • the repetitive pattern is implicitly notified to the terminals 200 and 400 by parameters other than the repetitive pattern (for example, radio resource allocation information). This eliminates the need for explicit signaling for notification of the repetition pattern during dynamic control of the repetition pattern.
  • the repetition transmission method can be dynamically changed appropriately, and the system performance can be improved.
  • the application of the present disclosure is not limited to URLLC.
  • one aspect of the present disclosure can be applied to repetition transmission for the purpose of improving coverage performance in mMTC, and similar effects can be obtained.
  • the DCI implicitly notifies the repetition pattern of data signal radio resource allocation between TUs may be added and combined with the example in the above embodiment.
  • the number of repetitions may be determined by including 1-bit information indicating a repetition pattern in DCI.
  • the repetition pattern (number of repetitions) candidates (1, 4) or (2, 8) are determined according to the frequency allocation bandwidth as in the specific example 1 (FIG. 14).
  • the number of repetitions is determined according to 1-bit information included in the DCI.
  • FIG. 24 is an example, and parameters for determining a repetitive pattern in combination with 1-bit DCI information are not limited to the frequency allocation bandwidth, but other parameters (number of transmission symbols, SCS, uplink channel type). ) Further, the repetition pattern is not limited to the number of repetitions, but may be other values (transmission interval, RV order).
  • a repetition pattern candidate for data signal radio resource allocation between TUs is determined, and a repetition pattern that is actually applied is You may be notified by DCI information from among candidates.
  • the candidate for the repetition pattern is ⁇ 1, 2, 4, 8 ⁇
  • the repetition pattern is Let the candidates be ⁇ 1,4,16,32 ⁇ .
  • the number of repetitions larger than SUL can be set.
  • the base stations 100 and 300 can select the optimum according to the radio channel conditions of the terminals 200 and 400 from the candidates.
  • the number of repetitions can be selected dynamically. Thereby, although the DCI size slightly increases (2 bits increase), it is possible to set an appropriate repetition pattern according to the radio channel conditions of the terminals 200 and 400.
  • the parameters associated with the repetition pattern candidates are not limited to the uplink channel type, but may be other parameters (frequency allocation bandwidth, number of transmission symbols, SCS). Further, the repetition pattern is not limited to the number of repetitions, but may be other values (transmission interval, RV order).
  • the base stations 100 and 300 may set the upper layer notification for each of the terminals 200 and 400. Thereby, the repeating pattern suitable for every terminal 200,400 can be set. Further, the relationship between the parameter and the repetitive pattern may be defined for each cell or by specifications. Thereby, the overhead of higher layer notification can be reduced.
  • the repetition pattern of data signal radio resource allocation between TUs may be determined according to the type of data waveform used by the terminals 200 and 400.
  • the data waveform is DFT-S-OFDM
  • PAPR Peak to Average Power Ratio
  • the reception performance is deteriorated as compared with the case where the data waveform is OFDM. Therefore, by setting the number of repetitions in the case of DFT-S-OFDM to be larger than the number of repetitions in the case of OFDM, it is possible to prevent degradation of reception quality in the case of DFT-S-OFDM.
  • the repetition pattern of data signal radio resource allocation between TUs may be determined according to the CP (Cyclic Prefix) type used by the terminals 200 and 400.
  • CP Cyclic Prefix
  • a cell using ECP Extended-CP
  • NCP Normal-CP
  • the data waveform type or CP type may be notified by DCI.
  • Control information for example, frequency allocation bandwidth per TU, notified explicitly or implicitly by DCI shown in FIGS. 14, 15, 17, 18, 20, 22 to 25
  • repetition pattern of data signal radio resource allocation between TUs for example, repetition number of time resource, repetition number of frequency resource, transmission time interval, RV order
  • the relationship is an example. Any of the correspondence relationships shown in FIGS. 14, 15, 17, 18, 20, and 22 to 25 may be combined.
  • the present disclosure can be realized by software, hardware, or software linked with hardware.
  • Each functional block used in the description of the above embodiment is partially or entirely realized as an LSI that is an integrated circuit, and each process described in the above embodiment may be partially or entirely performed. It may be controlled by one LSI or a combination of LSIs.
  • the LSI may be composed of individual chips, or may be composed of one chip so as to include a part or all of the functional blocks.
  • the LSI may include data input and output.
  • An LSI may be referred to as an IC, a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit, a general-purpose processor, or a dedicated processor.
  • an FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present disclosure may be implemented as digital processing or analog processing. Further, if integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. Biotechnology can be applied.
  • the present disclosure can be implemented in all kinds of apparatuses, devices, and systems (collectively referred to as communication apparatuses) having a communication function.
  • communication devices include telephones (cell phones, smartphones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital still / video cameras, etc.) ), Digital players (digital audio / video players, etc.), wearable devices (wearable cameras, smart watches, tracking devices, etc.), game consoles, digital book readers, telehealth telemedicine (remote health) Care / medicine prescription) devices, vehicles with communication functions or mobile transportation (cars, airplanes, ships, etc.), and combinations of the various devices described above.
  • Communication devices are not limited to those that are portable or movable, but any kind of devices, devices, systems, such as smart home devices (home appliances, lighting equipment, smart meters or non-portable or fixed) Measurement equipment, control panels, etc.), vending machines, and any other “things” that may exist on the IoT (Internet of Things) network.
  • smart home devices home appliances, lighting equipment, smart meters or non-portable or fixed
  • Measurement equipment control panels, etc.
  • vending machines and any other “things” that may exist on the IoT (Internet of Things) network.
  • Communication includes data communication by a combination of these in addition to data communication by a cellular system, a wireless LAN system, a communication satellite system, and the like.
  • the communication apparatus also includes devices such as a controller and a sensor that are connected to or connected to a communication device that performs the communication function described in the present disclosure.
  • devices such as a controller and a sensor that are connected to or connected to a communication device that performs the communication function described in the present disclosure.
  • a controller or a sensor that generates a control signal or a data signal used by a communication device that executes a communication function of the communication apparatus is included.
  • the communication apparatus includes infrastructure equipment such as a base station, an access point, and any other apparatus, device, or system that communicates with or controls the various non-limiting apparatuses described above. .
  • a transmitting apparatus includes a determination circuit that determines a repetition pattern of data for a terminal, and a transmission circuit that repeatedly transmits the data based on the repetition pattern. Is associated with the control information to be notified.
  • the repetition pattern includes at least the number of repetitions of the data, and the number of repetitions increases as the number of resources allocated to the terminal decreases.
  • the repetition pattern includes at least the number of repetitions of the data, and the repetition number increases as the subcarrier interval set in the terminal increases.
  • the repetition pattern further includes an RV order that indicates a transmission order of RVs, and the number of RVs included in the RV order in each subcarrier interval is set for each subcarrier interval. It is the same number as the number of repetitions.
  • the repetition pattern includes at least a transmission interval of the repeatedly transmitted data, and the transmission interval is longer as the subcarrier interval set in the terminal is wider.
  • the repetitive pattern includes at least an RV order indicating an RV transmission order, and the change in the RV pattern in the RV order is smaller as the subcarrier interval set in the terminal is wider.
  • the repetition pattern includes at least the number of repetitions of the data, and the number of repetitions is higher than that in the case where the uplink channel type set in the terminal is SUL (Supplementary uplink). There are more cases where the channel type is non-SUL.
  • a receiving apparatus includes a determination circuit that determines a repetition pattern of data for a terminal, a reception circuit that receives the repeatedly transmitted data based on the repetition pattern, and a decoding that combines the repeatedly transmitted data And the repetition pattern is associated with control information notified to the terminal by dynamic signaling.
  • the transmission method determines a data repetition pattern for a terminal, repeatedly transmits the data based on the repetition pattern, and the repetition pattern is associated with control information notified to the terminal by dynamic signaling. ing.
  • the reception method of the present disclosure determines a repetition pattern of data for a terminal, receives the repeatedly transmitted data based on the repetition pattern, combines the repeatedly transmitted data, and the repetition pattern is dynamic It is associated with control information notified to the terminal by signaling.
  • One embodiment of the present disclosure is useful for a mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

適切に、レピティション送信方法を動的に変更することができる基地局。基地局(100)において、レピティション制御部(103)は、端末(200)に対するデータの繰り返しパターン(レピティションパターン)を決定する。また、送信部(109)は、繰り返しパターンに基づいてデータを繰り返し送信(レピティション送信)する。ここで、データの繰り返しパターンは、ダイナミックシグナリングによって端末(200)に通知される制御情報に対応付けられている。

Description

送信装置、受信装置、送信方法及び受信方法
 本開示は、送信装置、受信装置、送信方法及び受信方法に関する。
 5Gの標準化において、LTE/LTE-Advancedとは必ずしも後方互換性を持たない新しい無線アクセス技術(NR:New Radio)が3GPPで議論されている。
 NRでは、5Gの要件の1つであるURLLC(Ultra-Reliable and Low Latency Communications:超高信頼低遅延)をターゲットとした技術検討が進められている。URLLCは、32バイトのパケットデータ量を10-5以下のパケット送信誤り率(99.999%以上のパケット送信成功率)の「高信頼」と、無線区間1ms以下の「低遅延」とを同時に満たすことが求められる(例えば、非特許文献1を参照)。
 上述したURLLCの要求条件を満たすために、所定時間単位(例えば、0.5ms slot単位(subcarrier spacing = 30kHz)、あるいは、0.25ms slot単位(subcarrier spacing = 60kHz))で生成されたパケットデータを繰り返し送信(レピティション送信)することが検討されている(例えば、非特許文献2を参照)。受信側は、レピティションされた信号を合成することでパケット送信誤り率を低減できる。また、送信側は、受信側からの再送制御情報が含まれるフィードバック情報を待たずに、パケットデータを繰り返し送信することで遅延が低減できる。なお、レピティション送信は、上りデータチャネル(PUSCH:Physical Uplink Shared Channel)、及び、下りデータチャネル(PDSCH:Physical Downlink Shared Channel)の双方に適用できる。
 非特許文献2では、図1の(a)、(b)に示すように、URLLCをターゲットとした異なるレピティション送信方法が検討されている。また、非特許文献2には、最適なレピティション送信方法は、各端末の無線チャネル状況又はトラフィック量等により動的に変わることが記載されている。
 例えば、図1の(a)に示すレピティション送信方法は、遅延のBuffer budget(初回パケット送信時(例えば、タイミング#n)から、要求されるパケットdelay budgetタイミングまでの残時間)が小さい場合に適したレピティション送信方法である。具体的には、図1の(a)では、連続時間(タイミング#n、#(n+1))でパケットが繰り返し送信される。このように未送信区間(ギャップ区間)無しでレピティション送信することで、遅延が低減できる。一方で、送信側では、受信状況が十分に考慮できないため、レピティションデータに対して過剰な無線リソース割当を行う場合が生じ、無線リソースの利用効率が低下する場合がある。
 図1の(b)に示すレピティション送信方法は、遅延のBuffer budgetが大きい場合に適したレピティション送信方法である。図1の(b)では、ギャップ区間を含めた非連続時間(タイミング#n、#(n+2))でパケットを繰り返し送信する。送信側は、ギャップ区間において受信側からフィードバック情報を受信することにより、2回目以降のレピティションデータに対して、効率的な無線リソース割当が可能となる。例えば、受信側は、パケット復号OK(誤り無し)であった場合には、フィードバック情報を用いて、以降のレピティション送信の停止を指示できる。また、受信側は、パケット復号NG(誤り有り)であった場合には、フィードバック情報を用いて、パケット復号OKとなるために必要な周波数リソース割当を以降のレピティション送信に指示できる。
 上述した各端末のBuffer budgetは、パケットのスケジューリングタイミングに依存して時間的に変動する。したがって、端末毎に適用するレピティション送信方法についても動的に変更する方法について検討する必要がある。
 本開示の一態様は、適切に、レピティション送信方法を動的に変更することができる送信装置、受信装置、送信方法及び受信方法の提供に資する。
 本開示の一態様に係る送信装置は、端末に対するデータの繰り返しパターンを決定する決定回路と、前記繰り返しパターンに基づいて前記データを繰り返し送信する送信回路と、を具備し、前記繰り返しパターンは、ダイナミックシグナリングによって前記端末に通知される制御情報に対応付けられている。
 本開示の一態様に係る受信装置は、端末に対するデータの繰り返しパターンを決定する決定回路と、前記繰り返しパターンに基づいて、繰り返し送信された前記データを受信する受信回路と、繰り返し送信された前記データを合成する復号回路と、を具備し、前記繰り返しパターンは、ダイナミックシグナリングによって前記端末に通知される制御情報に対応付けられている。
 本開示の一態様に係る送信方法は、端末に対するデータの繰り返しパターンを決定し、前記繰り返しパターンに基づいて前記データを繰り返し送信し、前記繰り返しパターンは、ダイナミックシグナリングによって前記端末に通知される制御情報に対応付けられている。
 本開示の一態様に係る受信方法は、端末に対するデータの繰り返しパターンを決定し、前記繰り返しパターンに基づいて、繰り返し送信された前記データを受信し、繰り返し送信された前記データを合成し、前記繰り返しパターンは、ダイナミックシグナリングによって前記端末に通知される制御情報に対応付けられている。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一態様によれば、適切に、レピティション送信方法を動的に変更することができる。
 本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
レピティション送信の一例を示す図 下りデータチャネルを用いる場合の基地局の一部の構成を示すブロック図 下りデータチャネルを用いる場合の端末の一部の構成を示すブロック図 上りデータチャネルを用いる場合の端末の一部の基地局の構成を示すブロック図 上りデータチャネルを用いる場合の端末の一部の構成を示すブロック図 下りデータチャネルを用いる場合の基地局の構成を示すブロック図 下りデータチャネルを用いる場合の端末の構成を示すブロック図 上りデータチャネルを用いる場合の基地局の構成を示すブロック図 上りデータチャネルを用いる場合の端末の構成を示すブロック図 基地局及び端末の下りデータチャネルを用いる際の動作例を示すシーケンス図 基地局及び端末の上りデータチャネルを用いる際の動作例を示すシーケンス図 時間リソースの繰り返し数、送信時間間隔(未送信区間)の一例を示す図 時間リソースの繰り返し数、送信時間間隔(未送信区間)の他の例を示す図 周波数リソースの繰り返し数の一例を示す図 周波数割当帯域幅と繰り返し数との対応関係の一例を示す図 送信シンボル数と繰り返し数との対応関係の一例を示す図 SCSに応じた繰り返しパターンの一例を示す図 SCSと繰り返しパターンとの対応関係の一例を示す図 SCSと繰り返しパターンとの対応関係の他の例を示す図 SCSに応じた繰り返しパターンの他の例を示す図 SCSと繰り返しパターンとの対応関係の他の例を示す図 SCSに応じた繰り返しパターンの他の例を示す図 SCSとRV orderとの対応関係の一例を示す図 上りチャネル種別と繰り返し数との対応関係の一例を示す図 シグナリング情報と、周波数割当帯域幅と繰り返し数との対応関係の一例を示す図 上りチャネル種別と繰り返し数の候補との対応関係の一例を示す図
 以下、本開示の実施の形態について図面を参照して詳細に説明する。
 基地局(eNB又はgNBと呼ばれる)が端末(UE:User Equipmentと呼ばれる)の無線チャネル状況に応じて決定したデータチャネルの割当情報(無線リソース割当情報、MCS(Modulation and Coding Scheme)等)は、制御情報(DCI:Downlink Control Information)に含まれ、PDCCH(Physical Downlink Control Channel)を用いて基地局から端末へ通知される。基地局が端末へ適用するレピティション送信方法(繰り返し数、又は、ギャップ区間等の繰り返しパターン)についても同様に、DCIに含めてPDCCHを用いて基地局から端末へ送信されることが考えられる。
 一方で、特にURLLC用のPDCCH(NR-PDCCHとも呼ばれる)では、高信頼性が求められるURLLC向けパケットを制御するため、さらに低い誤り率が要求される。NR-PDCCHの送信誤り率を低減させるためには、NR-PDCCHで通知するDCIフォーマットサイズをより小さくする必要がある。
 よって、端末の無線チャネル状況に応じた適切な繰り返しパターン(レピティション送信方法)を、少ない制御情報量で通知する必要がある。
 そこで、本開示の一態様では、端末の無線チャネル状況に応じた繰り返しパターンを、制御情報量の増加を抑えて動的に通知する方法について説明する。
 [通信システムの概要]
 本開示の一実施の形態に係る通信システムは、下りデータチャネル(PDSCH)を用いてレピティションデータを送受信する基地局100及び端末200、及び/又は、上りデータチャネル(PUSCH)を用いてレピティションデータを送受信する基地局300及び端末400を備える。なお、1つの基地局が、基地局100及び基地局300の双方の構成を有してもよく、何れか一方の構成を有してもよい。同様に、1つの端末が端末200及び端末400の双方の構成を有してもよく、何れか一方の構成を有してもよい。
 図2は本開示の実施の形態に係る下りデータチャネル(PDSCH)を用いる場合の基地局100(つまり、送信装置)の一部の構成を示すブロック図である。図2に示す基地局100において、レピティション制御部103は、端末200(受信装置)に対するデータの繰り返しパターンを決定し、送信部109は、繰り返しパターンに基づいてデータを繰り返し送信する。
 図3は本開示の実施の形態に係る下りデータチャネル(PDSCH)を用いる場合の端末200(つまり、受信装置)の一部の構成を示すブロック図である。図3に示す端末200において、レピティション制御部205は、端末200に対するデータの繰り返しパターンを決定し、信号抽出部203は、繰り返しパターンに基づいて、繰り返し送信されたデータを受信(抽出)し、データ合成復号部207は、繰り返し送信されたデータを合成する。
 図2及び図3において、データの繰り返しパターンは、ダイナミックシグナリング(DCI)によって端末200に通知される制御情報に対応付けられている。
 図4は本開示の実施の形態に係る上りデータチャネル(PUSCH)を用いる場合の基地局300(つまり、受信装置)の一部の構成を示すブロック図である。図4に示す基地局300において、レピティション制御部303は、端末400(送信装置)に対するデータの繰り返しパターンを決定し、信号抽出部309は、繰り返しパターンに基づいて、繰り返し送信されたデータを受信(抽出)し、データ合成復号部311は、繰り返し送信されたデータを合成する。
 図5は本開示の実施の形態に係る上りデータチャネル(PUSCH)を用いる場合の端末400(つまり、送信装置)の一部の構成を示すブロック図である。図5に示す端末400において、レピティション制御部405は、端末400に対するデータの繰り返しパターンを決定し、送信部410は、繰り返しパターンに基づいてデータを繰り返し送信する。
 図4及び図5において、データの繰り返しパターンは、ダイナミックシグナリング(DCI)によって端末400に通知される制御情報に対応付けられている。
 [基地局100の構成]
 図6は、本実施の形態に係る下りデータチャネル(PDSCH)を用いる場合の基地局100の構成例を示すブロック図である。
 図6に示す基地局100は、スケジューリング部101、制御信号生成部102、レピティション制御部103、制御信号符号化・変調部104、データ符号化部105、再送制御部106、データ変調部107、無線リソース割当部108、送信部109、アンテナ110、受信部111、信号抽出部112、復調・復号部113を含む。
 スケジューリング部101は、端末200に対する制御信号(PDCCH, NR-PDCCH, DL assignmentとも呼ばれる)、及び、下りデータチャネル(PDSCHとも呼ばれる)の所定のパケット送信時間単位(TTI, slot, mini-slot等。以下、「TU: Transmission Unit」と呼ぶ)における無線リソース割当情報(周波数リソース割当情報、時間リソース割当情報、端末ID、データ復調用参照信号情報、変調・符号化方法など)を決定する。スケジューリング部101は、決定した無線リソース割当情報を、制御信号生成部102、データ符号化部105、無線リソース割当部108へ出力する。
 制御信号生成部102は、端末200をスケジューリングするための制御情報(DCI)を含む制御信号を生成する。制御情報には、スケジューリング部101から入力される、下りデータチャネル(PDSCHとも呼ばれる)の無線リソース割当情報が含まれる。制御信号生成部102は、所定サイズのフォーマットで構成される制御情報ビット列を用いて制御信号を生成し、レピティション制御部103及び制御信号符号化・変調部104へ出力する。
 レピティション制御部103は、制御信号生成部102から入力される制御信号に含まれる制御情報(DCI)を用いて、所定のルールに基づき、端末200に対するTUあたりのデータ信号用無線リソース割当の繰り返しパターン(レピティションパターン)を決定する。レピティション制御部103は、決定した繰り返しパターンを、無線リソース割当部108及び再送制御部106へ出力する。
 ここで、繰り返しパターンとは、TU毎の無線リソース割当の繰り返しパターンであり、「時間領域の繰り返し数(TU数)」、「周波数領域の繰り返し数」、「送信間隔あるいは未送信時間(TU数)」、「TU毎のRV order」の少なくとも1つを含む。なお、周波数領域の繰り返し数とは、例えば、所定の周波数オフセット(例えば、X[PRB:Physical Resource Block])を加えて、割り当てる周波数リソースを繰り返す数を示す。例えば、スケジューリング部101において決定した周波数リソース割当がPRB#nであり、レピティション制御部103において決定した周波数領域の繰り返し数=2であった場合、基地局100は、PRB#nに割り当てるデータを、PRB#(X+n)にも割り当てる。
 なお、レピティション制御部103におけるTU当たりのデータ信号用無線リソース割当の繰り返しパターンの決定方法の詳細は後述する。
 制御信号符号化・変調部104は、制御信号生成部102から入力されるビット列を変調及び符号化して、得られたシンボル列を無線リソース割当部108へ出力する。
 データ符号化部105は、スケジューリング部101から入力される符号化方式に従って、送信データに対して誤り訂正符号化を施し、符号化後のデータ信号を再送制御部106へ出力する。
 再送制御部106は、初回(新規)送信時には、データ符号化部105から入力される符号化後のデータ信号を保持するとともに、データ変調部107へ出力する。また、再送制御部106は、再送時には、復調・復号部113から入力されるACK/NACK結果に基づいて、保持データを制御する。具体的には、再送制御部106は、NACKを受け取った場合、対応する保持データをデータ変調部107へ出力する。一方、再送制御部106は、ACKを受け取った場合、対応する保持データを破棄し、下りリンクデータの送信を終了する。
 ここで、再送制御部106は、再送時にデータ変調部107へ出力される符号化後のデータとして、送信TU数に応じたRV (Redundancy Version: 誤り訂正用の冗長ビットのパターン)のデータを出力する。例えば、送信TU数毎にRVが異なるRVパターン(RV order)を用いる場合、受信側(ここでは端末200)では、複数TUのデータを合成することで符号化利得が向上でき、受信品質が向上できる。また、送信TU数毎にRVが同じRV orderを用いる場合、送信処理が簡易化できるため、データ送信に要する遅延時間を短縮できる。なお、各端末200、又は、各セルで適用されるRV orderは基地局100が決定し、上位レイヤ通知等で端末200に通知することで、基地局100と端末200との間で予め認識を合わせてもよい。
 データ変調部107は、再送制御部106から入力されるデータ信号を、スケジューリング部101から入力された所定の変調方式で変調し、データ変調信号を無線リソース割当部108へ出力する。
 無線リソース割当部108は、制御信号符号化・変調部104及びデータ変調部107からそれぞれシンボル列として入力された信号を、スケジューリング部101及びレピティション制御部103から指示される無線リソースにマッピングし、マッピングされた信号を送信部109に出力する。詳細には、無線リソース割当部108は、データ信号を、スケジューリング部101から入力されるTU(Transmission unit)内の無線リソース割当情報、及び、レピティション制御部103から入力されるTU間の無線リソース割当の繰り返しパターンに基づいて、複数TUの無線リソースを割り当てる。
 送信部109は、無線リソース割当部108から入力される信号に対してD/A(Digital-to-Analog)変換、アップコンバート等のRF(Radio Frequency)処理を行い、アンテナ110を介して端末200に無線信号を送信する。
 受信部111は、アンテナ110を介して受信された、端末200から送信された上りリンクの信号波形に対してダウンコンバート又はA/D変換などのRF処理を行い、RF処理後の受信信号を信号抽出部112へ出力する。
 信号抽出部112は、受信部111から入力される受信信号から、下りデータに対する応答信号が含まれる無線リソース部分を抽出し、復調・復号部113に出力する。
 復調・復号部113は、抽出部112から入力される応答信号に対して等化、復調及び誤り訂正復号を行い、応答信号に含まれる下りデータのACK/NACK情報を算出し、再送制御部106に出力する。
 [端末200の構成]
 図7は、本実施の形態に係る下りデータチャネル(PDSCH)を用いる場合の端末200の構成例を示すブロック図である。
 図7に示す端末200は、アンテナ201、受信部202、信号抽出部203、制御信号復調・復号部204、レピティション制御部205、データ復調部206、データ合成復号部207、誤り検出部208、応答信号生成部209、符号化・変調部210、無線リソース割当部211、送信部212を含む。
 受信部202は、基地局100から送信された制御信号及びデータ信号をアンテナ201を介して受信し、無線受信信号に対してダウンコンバート又はA/D変換などのRF処理を行い、RF処理後のベースバンドの受信信号を信号抽出部203へ出力する。
 信号抽出部203は、受信部202から入力されたベースバンドの受信信号から制御信号が含まれる信号部分を抽出し、制御信号復調・復号部204へ出力する。また、信号抽出部203は、制御信号復調・復号部204から入力されるTU内の無線リソース割当情報、及び、レピティション制御部205から入力されるTU間の無線リソース割当の繰り返しパターンに基づいて、ベースバンドの受信信号から、下りデータチャネルが含まれる信号部分を抽出し、データ復調部206へ出力する。
 制御信号復調・復号部204は、信号抽出部203から入力される制御信号をブラインド復号して、自端末宛の制御信号であると判断した場合、下りデータチャネルのTU内の無線リソース割当情報を含む制御情報(DCI)を、信号抽出部203、データ復調部206及びレピティション制御部205へ出力する。
 レピティション制御部205は、基地局100が具備するレピティション制御部103と同様の処理を行う。つまり、レピティション制御部205は、制御信号復調・復号部204から入力される制御情報(DCI)を用いて、所定のルールに基づいて、端末200に対するTU間のデータ信号用無線リソース割当の繰り返しパターンを決定する。レピティション制御部205は、決定した繰り返しパターンを、信号抽出部203及びデータ合成復号部207へ出力する。
 データ復調部206は、制御信号復調・復号部204から入力される無線リソース割当情報に基づいて、信号抽出部203から入力される下りデータチャネルを復調し、復調後の下りデータチャネルをデータ合成復号部207へ出力する。
 データ合成復号部207は、データ復調部206から入力されるデータについて、複数TU間の繰り返しデータを合成し、合成後のデータを復号し、復号後の下りリンクデータを誤り検出部208へ出力する。ここで、データの合成時には、データ合成復号部207は、レピティション制御部205から入力されるRV order(TU毎のRVのパターン)を考慮して合成することで符号化利得が得られる。また、再送データの場合、データ合成復号部207は、前回送信時のデータを含めて合成することで、受信品質を向上できる。
 誤り検出部208は、データ復号部207から入力されるデータに対してCRCによる誤り検出を行い、ACK(誤り無し)又はNACK(誤り有り)のいずれかを判定し、判定結果を応答信号生成部209へ出力する。また、誤り検出部208は、データに誤りが無い場合は受信データを取得する。
 応答信号生成部209は、誤り検出部208から入力される誤り検出結果(ACK又はNACK)に基づいて、受信した下りチャネルデータに対する応答信号(ビット系列)を生成し、符号化・変調部210へ出力する。
 符号化・変調部210は、応答信号生成部209から入力されるビット系列に対して、誤り訂正符号化・変調し、シンボル列を無線リソース割当部211へ出力する。
 無線リソース割当部211は、符号化・変調部210からシンボル列として入力された信号を、所定の無線リソースにマッピングし、マッピングされた信号を送信部212に出力する。
 送信部212は、無線リソース割当部211から入力される信号に対してD/A変換及びアップコンバート等のRF処理を行い、アンテナ201を介して基地局100に無線信号を送信する。
 [基地局300の構成]
 図8は、本実施の形態に係る上りデータチャネル(PUSCH)を用いる場合の基地局300の構成例を示すブロック図である。
 図8に示す基地局300は、スケジューリング部301、制御信号生成部302、レピティション制御部303、制御信号符号化・変調部304、無線リソース割当部305、送信部306、アンテナ307、受信部308、信号抽出部309、データ復調部310、データ合成復号部311、誤り検出部312を含む。
 スケジューリング部301、制御信号生成部302、レピティション制御部303、制御信号符号化・変調部304、送信部306、受信部308は、図6に示す基地局100のスケジューリング部101、制御信号生成部102、レピティション制御部103、制御信号符号化・変調部104、送信部109、受信部111と同様の動作を行う。
 すなわち、スケジューリング部301は、端末400に対する、制御信号及び上りデータチャネル(PUSCHとも呼ばれる)の所定のTU内の無線リソース割当情報を決定し、決定した無線リソース割当情報を、制御信号生成部302、信号抽出部309、データ復調部310へ出力する。また、スケジューリング部301は、誤り検出部312から入力される、前回送信データの判定結果がNACKの場合、上りデータチャネルの再送データを優先的にスケジューリングする。
 制御信号生成部302は、スケジューリング部301から入力される無線リソース割当情報を用いて、所定サイズのフォーマットで構成される制御情報ビット列を用いて制御情報(DCI)を生成し、レピティション制御部303及び制御信号符号化・変調部304へ出力する。
 レピティション制御部303は、制御信号生成部302から入力される制御情報(DCI)を用いて、所定のルールに基づいて、端末400に対するTU当たりのデータ信号用無線リソース割当の繰り返しパターンを決定する。レピティション制御部303は、決定した繰り返しパターンを、信号抽出部309及びデータ合成復号部311へ出力する。
 制御信号符号化・変調部304は、制御信号生成部から入力されるビット列を変調及び符号化して、得られたシンボル列を無線リソース割当部305へ出力する。
 無線リソース割当部305は、制御信号符号化・変調部304からシンボル列として入力された信号を、所定の無線リソースにマッピングし、マッピングされた信号を送信部306に出力する。
 送信部306は、無線リソース割当部305から入力される信号に対して、D/A (Digital-to-Analog)変換、アップコンバート等のRF (Radio Frequency)処理を行い、アンテナ307を介して端末400に無線信号を送信する。
 受信部308は、アンテナ307を介して受信された、端末400から送信され上りリンクの信号波形に対してダウンコンバート又はA/D変換などのRF処理を行い、RF処理後の受信信号を信号抽出部309へ出力する。
 信号抽出部309、データ復調部310、データ合成復号部311、誤り検出部312は、図7に示す端末200の信号抽出部203、データ復調部206、データ合成復号部207、誤り検出部208と同様の動作を行う。
 すなわち、信号抽出部309は、スケジューリング部301から入力されるTU内の無線リソース割当情報、及び、レピティション制御部303から入力されるTU間の無線リソース割当の繰り返しパターンに基づいて、ベースバンドの受信信号から、上りデータチャネルが含まれる信号部分を抽出し、データ復調部310へ出力する。
 データ復調部310は、スケジューリング部301から入力される無線リソース割当情報に基づいて、信号抽出部309から入力される上りデータチャネルを復調し、復調後の上りデータチャネルをデータ合成復号部311へ出力する。
 データ合成復号部311は、データ復調部310から入力されるデータについて、複数TU間の繰り返しデータを合成し、合成後のデータを復号し、復号後の下りリンクデータを誤り検出部312へ出力する。ここで合成時には、データ合成復号部311は、レピティション制御部303から入力されるRV order(TU毎のRVのパターン)を考慮して合成することで符号化利得が得られる。また、データ合成復号部311は、再送データの場合、前回送信時のデータを含めて合成することで受信品質を向上できる。
 誤り検出部312は、データ合成復号部311から入力されるデータに対してCRCによる誤り検出を行い、ACK又はNACKのいずれかを判定し、判定結果をスケジューリング部301へ出力する。また、誤り検出部312は、誤りが無い場合は受信データを取得する。
 [端末400の構成]
 図9は、本実施の形態に係る上りデータチャネル(PUSCH)を用いる場合の端末400の構成例を示すブロック図である。
 図9に示す端末400は、アンテナ401、受信部402、信号抽出部403、制御信号復調・復号部404、レピティション制御部405、データ符号化部406、再送制御部407、データ変調部408、無線リソース割当部409、送信部410を含む。
 なお、受信部402、信号抽出部403、制御信号復調・復号部404、レピティション制御部405は、図7に示す端末200の受信部202、信号抽出部203、制御信号復調・復号部204、レピティション制御部205と同様の動作を行う。
 すなわち、受信部402は、基地局300から送信された制御信号及びデータ信号をアンテナ401を介して受信し、無線受信信号に対してダウンコンバート又はA/D変換などのRF処理を行い、RF処理後のベースバンドの受信信号を信号抽出部403へ出力する。
 信号抽出部403は、受信部402から入力されたベースバンドの受信信号から、制御信号が含まれる信号部分を抽出し、制御信号復調・復号部404へ出力する。
 制御信号復調・復号部404は、信号抽出部403から入力された制御信号をブラインド復号して、自端末宛の制御信号であると判断した場合、上りデータチャネルのTU内の無線リソース割当情報を含む制御情報(DCI)をデータ符号化部406、データ変調部408及びレピティション制御部405、無線リソース割当部409へ出力する。
 レピティション制御部405は、制御信号復調・復号部404から入力される制御情報(DCI)を用いて、所定のルールに基づいて、端末400に対するTU間のデータ信号用無線リソース割当の繰り返しパターンを決定する。レピティション制御部405は、決定した繰り返しパターンを、再送制御部407及び無線リソース割当部409へ出力する。
 データ符号化部406、再送制御部407、データ変調部408、無線リソース割当部409、送信部410は、図6に示す基地局100のデータ符号化部105、再送制御部106、データ変調部107、無線リソース割当部108、送信部109と同様の動作を行う。
 すなわち、データ符号化部406は、制御信号復調・復号部404から入力される制御情報(DCI)に含まれる符号化方式に従って、送信データに対して誤り訂正符号化を施し、符号化後のデータ信号を再送制御部407へ出力する。
 再送制御部407は、初回(新規)送信時には、データ符号化部406から入力される符号化後のデータ信号を保持するとともに、データ変調部408へ出力する。また、再送制御部407は、再送時には、保持した初回送信時のデータをデータ変調部408へ出力する。ここで、再送制御部407は、再送時にデータ変調部408へ出力する符号化後のデータとして、送信TU数に応じたRVのデータを出力する。
 データ変調部408は、再送制御部407から入力されるデータ信号を、制御信号復調・復号部404からの制御情報(DCI)で指示された所定の変調方式で変調し、データ変調信号を無線リソース割当部409へ出力する。
 無線リソース割当部409は、データ変調部408からシンボル列として入力された信号を、制御信号復調・復号部404からの制御情報(DCI)によって指示されたTU内の無線リソース割当情報、及び、レピティション制御部405から指示されたTU間の無線リソース割当の繰り返しパターンに基づいて、複数TUの無線リソースを割り当てる。無線リソース割当部409は、無線リソースにマッピングされた信号を送信部410に出力する。
 送信部410は、無線リソース割当部409から入力される信号に対してD/A(Digital-to-Analog)変換、アップコンバート等のRF(Radio Frequency)処理を行い、アンテナ401を介して基地局300に無線信号を送信する。
 [基地局及び端末の動作]
 以上の構成を有する基地局100,300及び端末200,400の動作について詳細に説明する。
 図10は基地局100(図6)及び端末200(図7)の動作(下りデータチャネルを用いる場合の動作)を示すシーケンス図である。
 基地局100は、端末200に対する下りリンクリソースに関する無線リソース割当情報を決定し、DCIを生成する(ST101)。そして、基地局100は、ST101で生成したDCIに含まれる無線リソース割当情報に基づいて、端末200に対するデータ(下りデータチャネル)の繰り返しパターン(つまり、TU間のデータ信号用無線リソースの繰り返しパターン)を決定する(ST102)。
 次に、基地局100は、ST101で生成したDCIを含むPDCCHを端末200へ送信する(ST103)。端末200は、PDCCHを受信すると、PDCCHに含まれるDCIに示される無線リソース割当情報に基づいて、ST102と同様にして、端末200に対するデータの繰り返しパターン(つまり、TU間のデータ信号用無線リソースの繰り返しパターン)を決定する(ST104)。
 そして、基地局100は、ST101で決定した無線リソース割当情報及びST102で決定した繰り返しパターンに基づいて、データ(PDSCH)を繰り返し送信する(ST105)。端末200は、ST105において、ST103で取得した無線リソース割当情報及びST104で決定した繰り返しパターンに基づいて、データ(PDSCH)を受信すると、繰り返し送信されたデータを合成し、復号する(ST106)。
 図11は基地局300(図8)及び端末400(図9)の動作(上りデータチャネルを用いる場合の動作)を示すシーケンス図である。
 基地局300は、端末400に対する上りリンクリソースに関する無線リソース割当情報を決定し、DCIを生成する(ST201)。そして、基地局300は、ST201で生成したDCIに含まれる無線リソース割当情報に基づいて、端末400に対するデータ(上りデータチャネル)の繰り返しパターン(つまり、TU間のデータ信号用無線リソースの繰り返しパターン)を決定する(ST202)。
 次に、基地局300は、ST201で生成したDCIを含むPDCCHを端末400へ送信する(ST203)。端末400は、PDCCHを受信すると、PDCCHに含まれるDCIに示される無線リソース割当情報に基づいて、ST202と同様にして、端末400に対するデータの繰り返しパターン(つまり、TU間のデータ信号用無線リソースの繰り返しパターン)を決定する(ST204)。
 そして、端末400は、ST203で取得した無線リソース割当情報及びST204で決定した繰り返しパターンに基づいて、データ(PUSCH)を繰り返し送信する(ST205)。基地局300は、ST205において、ST201で決定した無線リソース割当情報及びST202で決定した繰り返しパターンに基づいて、データ(PUSCH)を受信すると、繰り返し送信されたデータを合成し、復号する(ST206)。
 このように、繰り返しパターンは、DCIによって端末200,400に通知される制御情報(無線リソース割当情報)に対応付けて通知される。
 [レピティション制御方法]
 次に、基地局100,300及び端末200,400におけるレピティション制御部103,205,303,405による、TU間のデータ信号用無線リソース割当の繰り返しパターンの決定方法についてより詳細に説明する。
 <DCIによって通知される制御情報>
 以下の説明では、一例として、基地局100,300及び端末200,400は、下記のDCIによって明示的又は暗示的に通知される制御情報に基づいてTU間のデータ信号用無線リソース割当の繰り返しパターンを決定する。
 (1)TU当たりの周波数割当帯域幅
 (2)TU当たりの送信シンボル数
 (3)サブキャリア間隔(Subcarrier spacing: SCS)
 (4)上りチャネル種別(SUL(Supplementary uplink)又は、Non-SULの何れか)
 NRにおいて、TU当たりの周波数割当帯域幅(詳細には、Frequency domain resource assignment)、TU当たりの送信シンボル数(詳細には、Time domain resource assignment)、上りチャネル種別(詳細には、UL/SUL indicator)は、DCIによって明示的(explicit)に通知されるパラメータである(例えば、非特許文献3を参照)。
 一方、サブキャリア間隔(SCS)は、DCIに含まれるBWP割当情報(Bandwidth part indicator)から設定されるパラメータである。データに用いられるSCSは、BWP毎に予め設定されている。よって、端末200,400は、DCIで指示されたBWPに基づいて、使用するSCSを暗示的に把握できる。すなわち、SCSは、DCIによって暗示的(implicit)に通知されるパラメータであると云える。
 このように、TU当たりの周波数割当帯域幅、TU当たりの送信シンボル数、SCS、上りチャネル種別は何れもDCIによって明示的に又は暗示的に端末200,400へ通知されるパラメータである。すなわち、端末200,400は、DCIを受信することにより、これらのパラメータに対応付けられた繰り返しパターンを動的に変更できる。
 <繰り返しパターン>
 以下の説明では、一例として、レピティション制御部103,205,303,405において決定される繰り返しパターンは、下記の何れかの情報を含む。
 (1)時間リソースの繰り返し数
 (2)周波数リソースの繰り返し数(所定の周波数間隔と繰り返し数を含む)
 (3)送信時間間隔あるいは未送信区間
 (4)RV order (送信TU毎のRVパターン)
 ここで、図12A及び図12Bを用いて、時間リソースの繰り返し数、送信時間間隔あるいは未送信区間について説明する。
 図12A及び図12Bに示すように、時間リソースの繰り返し数は、TU単位の繰り返し数を示す。また、送信時間間隔あるいは未送信区間も同様にTU単位の時間を示す。図12Aは、時間リソースの繰り返し数=4[TU]、送信時間間隔=0[TU]の例を示す。また、図12Bは、時間リソースの繰り返し数=4[TU]、送信時間間隔=1[TU]の例を示す。図12Bには未送信区間があるのに対して、図12Aには未送信区間が無いので、図12Aは、図12Bと比較して遅延を低減できる。一方、図12Bでは、未送信区間において受信側からフィードバック情報を得ることで、それ以降のデータ送信への無線リソースを効率的に割り当てることができる。
 次に、図13を用いて、周波数リソースの繰り返し数について説明する。
 図13において、DCIで割り当てられたTU当たりの周波数割当帯域をPRB#1~PRB#3とした場合、所定の周波数オフセット(図13ではX[PRB])を加えた周波数リソースPRB#(X+1)~PRB#(X+3)においてデータの割り当てを繰り返す。周波数領域の繰り返し数が増える場合、さらに、周波数オフセットを加えた周波数リソースPRB#(2X+1)~PRB#(2X+3)においてデータの割り当てを繰り返す。受信側では、このように繰り返し割り当てられた帯域のデータを合成することで周波数ダイバーシチ利得を得ることができる。
 次に、RV orderについて説明する。
 RV orderは、所定のTU数の送信順に適用するRVパターンを示す。例えば、RVパターンが0~3まであり、送信TU数=4までのRV orderを定義する場合、{Tx1, Tx2, Tx3, Tx4}={0, 0, 0, 0}、{0, 2, 3, 1}のように定義する。{0, 0, 0, 0}のRV orderを用いると、送信回数によらず同じ冗長ビットが送信されるため、送受信処理を簡易化でき、遅延を低減できるが、合成後の符号化利得は小さい。一方、{0, 2, 3, 1}のRV orderを用いると、送信回数に応じて異なる冗長ビットがそれぞれ送信されるため、合成後の符号化利得を向上できるが、送受信処理が複雑になるため遅延が増加する可能性がある。
 なお、RV orderは、{0, 0, 0, 0}、{0, 2, 3, 1}に限らず、他のパターンでもよい。
 <繰り返しパターンの決定方法>
 次に、繰り返しパターンの決定方法の具体例について説明する。
 (具体例1:周波数割当帯域幅ベース)
 具体例1では、TU当たりの周波数割当帯域幅に応じて繰り返しパターンが決定される。
 パケットサイズ(Payload size)が同一であれば、周波数割当帯域幅が狭いほど、符号化率が上がり、受信品質が低下することが想定される。そこで、具体例1では、周波数割当帯域幅が狭いほど、時間リソース(又は周波数リソース)の繰り返し数を多くする。
 例えば、図14に示すように、TU当たりの周波数割当帯域幅(PRB数)が所定の帯域幅(X[PRB])より大きい場合は繰り返し数が2に設定される。一方、TU当たりの周波数割当帯域幅が所定の帯域幅(X[PRB])以下の場合は繰り返し数が4に設定される。すなわち、TU当たりの周波数割当帯域幅が所定の帯域幅X以下の場合には、レピティションによる合成利得により受信品質を向上させるために、TU当たりの周波数割当帯域幅が所定の帯域幅Xより大きい場合の繰り返し回数(2)よりも多い繰り返し数(4)が設定される。
 これにより、レピティション制御部103,205,303,405は、端末200,400に設定される周波数割当帯域幅に応じて、繰り返しパターンを動的に設定でき、受信品質の劣化を防止できる。
 また、繰り返しパターンは、DCIに含まれる周波数割当帯域幅に基づいて一意に導出される。つまり、繰り返しパターンは、周波数割当帯域幅の通知によって暗示的に端末200,400へ通知される。これにより、繰り返しパターンに対する明示的な通知が不要になるので、DCIサイズの増加を防止できる。
 なお、図14に示す周波数割当帯域幅と繰り返しパターン(繰り返し数)との対応関係は一例であって、これに限らない。例えば、所定の閾値(図14ではX)は1つに限らず、複数設定されてもよく、繰り返し数は、周波数割当帯域幅が狭いほど、大きい値に設定されればよい。また、繰り返し数は、2又は4に限らず、他の値でもよい。
 (具体例2:送信シンボル数ベース)
 具体例2では、TU当たりの送信シンボル数に応じて繰り返しパターンが決定される。
 具体例1と同様に、パケットサイズ(Payload size)が同一であれば、送信シンボル数が少ないほど符号化率が上がり、受信品質が低下することが想定される。そこで、具体例2では、送信シンボル数が少ないほど、時間リソース(又は周波数リソース)の繰り返し数を多くする。
 例えば、図15に示すように、TU当たりの送信シンボル数が所定のシンボル数(X[symbol])より多い場合は繰り返し数が2に設定される。一方、TU当たりの送信シンボル数が所定の送信シンボル数(X[symbol])以下の場合は繰り返し数が4に設定される。すなわち、TU当たりの送信シンボル数が所定のシンボル数X以下の場合には、レピティションによる合成利得により受信品質を向上させるために、TU当たりの送信シンボル数が所定のシンボル数より大きい場合の繰り返し数(2)よりも多い繰り返し数(4)が設定される。
 これにより、レピティション制御部103,205,303,405は、端末200,400に設定される送信シンボル数に応じて、繰り返しパターンを動的に設定でき、受信品質の劣化を防止できる。
 また、繰り返しパターンは、DCIに含まれる送信シンボル数に基づいて一意に導出される。つまり、繰り返しパターンは、送信シンボル数の通知によって暗示的に端末200,400へ通知される。これにより、繰り返しパターンに対する明示的な通知が不要になるので、DCIサイズの増加を防止できる。
 なお、図15に示す送信シンボル数と繰り返しパターン(繰り返し数)との対応関係は一例であって、これに限らない。例えば、所定の閾値(図15ではX)は1つに限らず、複数設定されてもよく、繰り返し数は、送信シンボル数が少ないほど、大きい値に設定されればよい。また、繰り返し数は、2又は4に限らず、他の値でもよい。
 (具体例3:サブキャリア間隔(SCS)ベース)
 具体例3では、データチャネルに使用されるSCSに応じて繰り返しパターンが決定される。
 図16に示すように、SCSが広いほど、1symbol長が短くなる(TU長が短くなる)。このため、SCSが広いほど、遅延時間を増加させることなく、繰り返し数又は送信時間間隔を増加させることができる。
 そこで、具体例3では、例えば、図17に示すように、SCS=30kHz, 60kHzの場合の送信間隔を、SCS=15kHzの場合の送信間隔より長くする。具体的には、SCS=30kHz, 60kHzの場合の送信間隔を1[TU]とし、SCS=15kHzの場合の送信間隔を0[TU]とする。すなわち、図16に示すように、SCS=15kHzの場合にはデータは連続するTUで送信され、SCS=30kHz、60kHzの場合にはデータは未送信区間(1TU)を空けた非連続のTUで送信される。
 よって、送信側は、SCS=30kHz, 60kHzの場合、未送信区間において受信側からフィードバック情報を得ることができ、それ以降の送信を効率的に行うことができる。
 また、図17に示すように、SCS= 60kHzの場合の繰り返し数を、SCS=15, 30kHzの場合の繰り返し数より多くしてもよい。具体的には、SCS=60kHzの場合の繰り返し数を4[TU]とし、SCS=15kHz、30kHzの場合の繰り返し数を2[TU]とする。これにより、SCS=60kHzの場合は、より大きな合成利得が得られる。
 なお、図16に示すように、SCSが広いほど1symbol長が短くなるので、SCSが広いほど、送信間隔を長くし、又は繰り返し数を多くしても、繰り返し送信されるデータの遅延時間は増加しない。
 また、SCSが広いほど、送信時間間隔(TU数)はより長く設定されてもよい。例えば、図18に示すように、SCSが広いほど、送信時間間隔が長くなるように定義してもよい。これにより、図19に示すように、SCSが広いほど(すなわち、1symbol長が短いほど)、より多くの未送信区間を確保でき、送信側は、受信側からのフィードバック情報を確実に受信し、処理することができる。すなわち、フィードバック情報を受信するために適切なタイミングがSCS毎に設定できる。
 これにより、レピティション制御部103,205,303,405は、端末200,400に設定されるSCSに応じて、繰り返しパターンを動的に設定でき、受信品質の劣化を防止できる。
 また、繰り返しパターンは、DCIに含まれるBWP情報から暗示的に算出されるSCSに基づいて一意に導出される。つまり、繰り返しパターンは、BWP情報に基づくSCSの通知によって暗示的に端末200,400へ通知される。これにより、繰り返しパターンに対する明示的な通知が不要になるので、DCIサイズの増加を防止できる。
 また、他の例として、繰り返し数に応じて、RV orderが設定されてもよい。
 例えば、図20に示すように、SCS=15kHz, 30kHzでは、繰り返し数=2TUが設定されるので、2TU数分の送信に用いるRV order ={0, 3}が設定される。一方、SCS=60kHzでは、繰り返し数=4TUが設定されるので、4TU数分の送信に用いるRV order ={0, 2, 3, 1}が設定される。すなわち、各SCSにおけるRV orderに含まれるRV数は、SCS毎に設定される繰り返し数と同数である。これにより、SCSに応じた繰り返し数とRV orderとを設定でき、受信品質の劣化を防止できる。また、上述したように、繰り返し数及びRV orderは、DCIによって暗示的に通知されるSCSに基づいて一意に導出されるので、DCIサイズの増加を防止できる。
 また、繰り返し数がSCSに依らず一定の場合でも、データチャネルに使用されるSCSに応じて、RV orderが設定されてもよい。
 例えば、図21に示すように、SCSが広いほど、1symbol長が短くなるため、次の送信までの処理時間が短くなる。そこで、例えば、図22に示すように、SCSが広いほど、RVのパターンの変化が少ないRV orderが設定される。
 具体的には、SCS=15kHzではTU当たりの時間が長く、処理時間に余裕があるため、TU毎にRVパターンが異なるRV order ={0, 2, 3, 1}が設定される。これにより、符号化利得が得られる。
 一方、SCS=60kHzではTU当たりの時間が短く、処理時間に余裕がないため、TU毎にRVパターンが同じRV order ={0, 0, 0, 0}(つまり、RVパターンが変化しないRV order)が設定される。これにより、遅延の増加を防止できる。
 また、SCS=30kHzでは、SCS=15kHzと比較してTU当たりの時間が短いため、SCS=15kHzの場合のRV orderよりもRVパターンの変化が少ないRV order ={0, 3, 0, 3}が設定される。換言すると、SCS=30kHzでは、SCS=60kHzと比較してTU当たりの時間が長いため、SCS=60kHzの場合のRV orderよりもRVパターンの変化が大きいRV order ={0, 3, 0, 3}が設定される。
 これにより、SCSに応じたRV orderが設定できるため、遅延増加及び受信品質の劣化を防止できる。また、RV orderは、DCIに含まれるBWP情報から暗示的に算出されるSCSに基づいて一意に導出される。つまり、RV orderは、SCSの通知によって暗示的に端末200,400へ通知される。これにより、RV orderに対する明示的な通知が不要になるので、DCIサイズの増加を防止できる。
 なお、図16~図22に示すSCSと繰り返しパターン(繰り返し数、送信間隔、RV order)との対応関係は一例であって、これに限らない。例えば、SCSの値は、15kHz、30kHz、60kHzに限らず、他の値(例えば、120kHz、240kHz)でもよい。また、SCSに対応付けられる繰り返しパターンは、繰り返し数、送信時間間隔及びRV orderのうちの少なくとも1つであればよい。また、繰り返し数、送信間隔及びRV orderの値は、図16~図22に示す値に限定されず、他の値でもよい。また、例えば、図17、図18において、SCSと対応付けられる繰り返しパターンは、繰り返し数及び送信時間間隔のうちの何れか一方でもよい。
 (具体例4:上りチャネル種別ベース)
 具体例4では、上りチャネル種別、詳細には割り当てられた上りチャネルがSULか否かに応じて繰り返しパターンが設定される。
 NRでは、LTEとNRとをサポートする端末が、NRの上り送信において、LTEの周波数帯域を補助的に用いることが規定されている。このNRの上り送信において、補助的に割り当てられる帯域を「SUL(Supplementary uplink)」と呼ぶ。
 LTE用の帯域を用いるSULは、NR用の帯域を用いるNon-SULと比較してキャリア周波数が低いことが想定される。キャリア周波数が低いほど、パスロスが小さいため、SULの方がNon-SULよりもより高い受信品質が期待できる。
 そこで、具体例4では、例えば、図23に示すように、端末200,400に割り当てられた上りチャネル種別がSULの場合には繰り返し数は2に設定され、端末200,400に割り当てられた上りチャネル種別がnon-SULの場合には繰り返し数は4に設定される。すなわち、上りチャネル種別がnon-SULの場合には、レピティションによる合成利得により受信品質を向上させるために、上りチャネル種別がSULの場合の繰り返し数(2)よりも多い繰り返し数(4)が設定される。
 これにより、レピティション制御部103,205,303,405は、端末200,400に設定される上りチャネル種別に応じて、繰り返しパターンを動的に設定でき、受信品質の劣化を防止できる。
 また、繰り返しパターンは、DCIに含まれる上りチャネル種別に基づいて一意に導出される。つまり、繰り返しパターンは、上りチャネル種別の通知によって暗示的に端末200,400へ通知される。これにより、繰り返しパターンに対する明示的な通知が不要になるので、DCIサイズの増加を防止できる。
 なお、図23に示す上りチャネル種別と繰り返しパターン(繰り返し数)との対応関係は一例であって、これに限らない。すなわち、繰り返し数は、2又は4に限らず、他の値でもよい。
 以上、具体例1-4についてそれぞれ説明した。
 このように、本実施の形態では、繰り返しパターンは、DCI(ダイナミックシグナリング)によって端末200,400に明示的に又は暗示的に通知される制御情報に対応付けられている。これにより、基地局100,300は、DCIの通知によって、端末200,400に対する繰り返しパターンを動的に制御することができる。すなわち、端末200,400は、基地局100,300からのDCIの通知によって、端末200,400に対する繰り返しパターンを動的に変更することができる。
 また、繰り返しパターンは、繰り返しパターン以外の他のパラメータ(例えば、無線リソース割当情報)によって暗示的に端末200,400へ通知される。これにより、繰り返しパターンの動的制御の際に、繰り返しパターンの通知のための明示的なシグナリングは不要となる。
 以上のように、本実施の形態によれば、適切に、レピティション送信方法を動的に変更することができ、システム性能を向上できる。
 以上、本開示の実施の形態について説明した。
 (1)なお、本開示の用途は、URLLCに限定されない。例えば、mMTCにおけるカバレッジ性能向上を目的としたレピティション送信にも本開示の一態様を適用でき、同様の効果を得ることができる。
 (2)また、上記実施の形態では、DCIによって、TU間のデータ信号用無線リソース割当の繰り返しパターンを暗示的に通知する場合について説明したが、これに限定されない。例えば、繰り返しパターンの指示に用いるDCI情報を追加し、上記実施の形態における例と組み合わせてもよい。例えば、図24に示すように、繰り返しパターンを指示する1ビットの情報をDCIに含めて、繰り返し数が決定されてもよい。具体的には、図24では、具体例1(図14)と同様に周波数割当帯域幅に応じて繰り返しパターン(繰り返し数)の候補(1, 4)又は(2, 8)が決定され、決定された候補の中から、DCIに含まれる1ビットの情報に応じて繰り返し数が決定される。
 これにより、DCIサイズがわずかに増加(1ビット増加)するものの、端末200の無線チャネル状況に応じたより適切な繰り返しパターンを設定できる。
 なお、図24は一例であって、1ビットのDCI情報と組み合わせて、繰り返しパターンを決定するためのパラメータは、周波数割当帯域幅に限らず、他のパラメータ(送信シンボル数、SCS、上りチャネル種別)でもよい。また、繰り返しパターンは、繰り返し数に限らず、他の値(送信間隔、RV order)でもよい。
 (3)また、DCIによって明示的又は暗示的に通知されるパラメータ(制御情報)に基づいて、TU間のデータ信号用無線リソース割当の繰り返しパターンの候補が決定され、実際に適用する繰り返しパターンは候補の中からDCI情報によって通知されてもよい。
 例えば、図25に示すように、上りチャネル種別がSULの場合、繰り返しパターン(繰り返し数)の候補を{1,2,4,8}とし、Non-SULの場合、繰り返しパターン(繰り返し数)の候補を{1,4,16,32}とする。上述したように、Non-SULは、SULよりも高いキャリア周波数を用いることが想定されるため、SULより大きい繰り返し数を設定可能とする。
 そして、図25の場合、繰り返しパターンの通知のために、DCIに2ビットを追加することで、基地局100,300は、候補の中から、端末200,400の無線チャネル状況に応じた最適な繰り返し数を動的に選択できる。これにより、DCIサイズがわずかに増加(2ビット増加)するものの、端末200,400の無線チャネル状況により応じた適切なレピティションパターンを設定できる。
 なお、図25は一例であって、繰り返しパターンの候補と対応付けられるパラメータは、上りチャネル種別に限らず、他のパラメータ(周波数割当帯域幅、送信シンボル数、SCS)でもよい。また、繰り返しパターンは、繰り返し数に限らず、他の値(送信間隔、RV order)でもよい。
 (4)上記実施の形態において説明した、DCIによって明示的又は暗示的に通知される制御情報と、TU間のデータ信号用無線リソース割当の繰り返しパターンとの関係(図14、図15、図17、図18、図20、図22-図25)は、端末200,400毎に基地局100,300が上位レイヤ通知で設定してもよい。これにより、端末200,400毎に適した繰り返しパターンが設定できる。また、上記パラメータと繰り返しパターンとの関係は、セル毎又はスペックによって規定されてもよい。これにより、上位レイヤ通知のオーバーヘッドが低減できる。
 (5)また、端末200,400が使用するデータ波形(waveform)の種別に応じて、TU間のデータ信号用無線リソース割当の繰り返しパターンが決定されてもよい。データ波形がDFT-S-OFDMの場合は、PAPR(Peak to Average Power Ratio)が低い利点があるが、データ波形がOFDMの場合と比較して受信性能が劣化する特徴がある。そこで、DFT-S-OFDMの場合の繰り返し数を、OFDMの場合の繰り返し数より多く設定することで、DFT-S-OFDMの場合の受信品質の劣化が防止できる。
 また、端末200,400が使用するCP(Cyclic Prefix)種別に応じて、TU間のデータ信号用無線リソース割当の繰り返しパターンが決定されてもよい。ECP(Extended CP)を用いるセルは、NCP(Normal CP)を用いるセルと比較して、セル半径が広いことが想定される。よって、CP種別がECPの場合の繰り返し数を、CP種別がNCPの場合の繰り返し数より多く設定することで、ECPを用いる場合の受信品質の劣化が防止できる。
 なお、データ波形の種別又はCP種別は、DCIによって通知されてもよい。
 (6)図14、図15、図17、図18、図20、図22-図25に示す、DCIによって明示的又は暗示的に通知される制御情報(例えば、TU当たりの周波数割当帯域幅、TU当たりの送信シンボル数、SCS、上りチャネル種別)と、TU間のデータ信号用無線リソース割当の繰り返しパターン(例えば、時間リソースの繰り返し数、周波数リソースの繰り返し数、送信時間間隔、RV order)との関係は、一例である。図14、図15、図17、図18、図20、図22-図25に示す対応関係の何れかを組み合わせてもよい。
 (7)本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。
 本開示の送信装置は、端末に対するデータの繰り返しパターンを決定する決定回路と、前記繰り返しパターンに基づいて前記データを繰り返し送信する送信回路と、を具備し、前記繰り返しパターンは、ダイナミックシグナリングによって前記端末に通知される制御情報に対応付けられている。
 本開示の送信装置において、前記繰り返しパターンは、少なくとも、前記データの繰り返し数を含み、前記端末に割り当てられたリソース数が少ないほど、前記繰り返し数は多い。
 本開示の送信装置において、前記端末に割り当てられた帯域幅が狭いほど、前記繰り返し数は多い。
 本開示の送信装置において、前記端末に割り当てられたシンボル数が少ないほど、前記繰り返し数は多い。
 本開示の送信装置において、前記繰り返しパターンは、少なくとも、前記データの繰り返し数を含み、前記端末に設定されたサブキャリア間隔が広いほど、前記繰り返し数は多い。
 本開示の送信装置において、前記繰り返しパターンは、さらに、RVの送信順序を表すRV orderを含み、各サブキャリア間隔における前記RV orderに含まれるRV数は、前記サブキャリア間隔毎に設定される前記繰り返し数と同数である。
 本開示の送信装置において、前記繰り返しパターンは、少なくとも、繰り返し送信される前記データの送信間隔を含み、前記端末に設定されたサブキャリア間隔が広いほど、前記送信間隔は長い。
 本開示の送信装置において、前記繰り返しパターンは、少なくとも、RVの送信順序を表すRV orderを含み、前記端末に設定されたサブキャリア間隔が広いほど、RV orderにおけるRVのパターンの変化が少ない。
 本開示の送信装置において、前記繰り返しパターンは、少なくとも、前記データの繰り返し数を含み、前記繰り返し数は、前記端末に設定された上りチャネル種別がSUL(Supplementary uplink)である場合よりも、前記上りチャネル種別がnon-SULである場合の方が多い。
 本開示の受信装置は、端末に対するデータの繰り返しパターンを決定する決定回路と、前記繰り返しパターンに基づいて、繰り返し送信された前記データを受信する受信回路と、繰り返し送信された前記データを合成する復号回路と、を具備し、前記繰り返しパターンは、ダイナミックシグナリングによって前記端末に通知される制御情報に対応付けられている。
 本開示の送信方法は、端末に対するデータの繰り返しパターンを決定し、前記繰り返しパターンに基づいて前記データを繰り返し送信し、前記繰り返しパターンは、ダイナミックシグナリングによって前記端末に通知される制御情報に対応付けられている。
 本開示の受信方法は、端末に対するデータの繰り返しパターンを決定し、前記繰り返しパターンに基づいて、繰り返し送信された前記データを受信し、繰り返し送信された前記データを合成し、前記繰り返しパターンは、ダイナミックシグナリングによって前記端末に通知される制御情報に対応付けられている。
 2018年2月16日出願の特願2018-025857の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示の一態様は、移動通信システムに有用である。
 100,300 基地局
 200,400 端末
 101,301 スケジューリング部
 102,302 制御信号生成部
 103,205,303,405 レピティション制御部
 104,304 制御信号符号化・変調部
 105,406 データ符号化部
 106,407 再送制御部
 107,408 データ変調部
 108,211,305,409 無線リソース割当部
 109,212,306,410 送信部
 110,201,307,401 アンテナ
 111,202,308,402 受信部
 112,203,309,403 信号抽出部
 113 復調・復号部
 204,404 制御信号復調・復号部
 206,310 データ復調部
 207,311 データ合成復号部
 208,312 誤り検出部
 209 応答信号生成部
 210 符号化・変調部

Claims (12)

  1.  端末に対するデータの繰り返しパターンを決定する決定回路と、
     前記繰り返しパターンに基づいて前記データを繰り返し送信する送信回路と、
     を具備し、
     前記繰り返しパターンは、ダイナミックシグナリングによって前記端末に通知される制御情報に対応付けられている、
     送信装置。
  2.  前記繰り返しパターンは、少なくとも、前記データの繰り返し数を含み、
     前記端末に割り当てられたリソース数が少ないほど、前記繰り返し数は多い、
     請求項1に記載の送信装置。
  3.  前記端末に割り当てられた帯域幅が狭いほど、前記繰り返し数は多い、
     請求項2に記載の送信装置。
  4.  前記端末に割り当てられたシンボル数が少ないほど、前記繰り返し数は多い、
     請求項2に記載の送信装置。
  5.  前記繰り返しパターンは、少なくとも、前記データの繰り返し数を含み、
     前記端末に設定されたサブキャリア間隔が広いほど、前記繰り返し数は多い、
     請求項1に記載の送信装置。
  6.  前記繰り返しパターンは、さらに、RVの送信順序を表すRV orderを含み、
     各サブキャリア間隔における前記RV orderに含まれるRV数は、前記サブキャリア間隔毎に設定される前記繰り返し数と同数である、
     請求項5に記載の送信装置。
  7.  前記繰り返しパターンは、少なくとも、繰り返し送信される前記データの送信間隔を含み、
     前記端末に設定されたサブキャリア間隔が広いほど、前記送信間隔は長い、
     請求項1に記載の送信装置。
  8.  前記繰り返しパターンは、少なくとも、RVの送信順序を表すRV orderを含み、
     前記端末に設定されたサブキャリア間隔が広いほど、RV orderにおけるRVのパターンの変化が少ない、
     請求項1に記載の送信装置。
  9.  前記繰り返しパターンは、少なくとも、前記データの繰り返し数を含み、
     前記繰り返し数は、前記端末に設定された上りチャネル種別がSUL(Supplementary uplink)である場合よりも、前記上りチャネル種別がnon-SULである場合の方が多い、
     請求項1に記載の送信装置。
  10.  端末に対するデータの繰り返しパターンを決定する決定回路と、
     前記繰り返しパターンに基づいて、繰り返し送信された前記データを受信する受信回路と、
     繰り返し送信された前記データを合成する復号回路と、
     を具備し、
     前記繰り返しパターンは、ダイナミックシグナリングによって前記端末に通知される制御情報に対応付けられている、
     受信装置。
  11.  端末に対するデータの繰り返しパターンを決定し、
     前記繰り返しパターンに基づいて前記データを繰り返し送信し、
     前記繰り返しパターンは、ダイナミックシグナリングによって前記端末に通知される制御情報に対応付けられている、
     送信方法。
  12.  端末に対するデータの繰り返しパターンを決定し、
     前記繰り返しパターンに基づいて、繰り返し送信された前記データを受信し、
     繰り返し送信された前記データを合成し、
     前記繰り返しパターンは、ダイナミックシグナリングによって前記端末に通知される制御情報に対応付けられている、
     受信方法。
PCT/JP2018/047814 2018-02-16 2018-12-26 送信装置、受信装置、送信方法及び受信方法 WO2019159548A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/964,485 US11515966B2 (en) 2018-02-16 2018-12-26 Transmission device, reception device, transmission method, and reception method
JP2020500314A JP7239552B2 (ja) 2018-02-16 2018-12-26 送信装置、受信装置、送信方法及び受信方法
US17/976,650 US11923982B2 (en) 2018-02-16 2022-10-28 Transmission device, reception device, transmission method, and reception method
JP2023031077A JP7474891B2 (ja) 2018-02-16 2023-03-01 端末装置、送信方法及び集積回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-025857 2018-02-16
JP2018025857 2018-02-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/964,485 A-371-Of-International US11515966B2 (en) 2018-02-16 2018-12-26 Transmission device, reception device, transmission method, and reception method
US17/976,650 Continuation US11923982B2 (en) 2018-02-16 2022-10-28 Transmission device, reception device, transmission method, and reception method

Publications (1)

Publication Number Publication Date
WO2019159548A1 true WO2019159548A1 (ja) 2019-08-22

Family

ID=67621003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047814 WO2019159548A1 (ja) 2018-02-16 2018-12-26 送信装置、受信装置、送信方法及び受信方法

Country Status (3)

Country Link
US (2) US11515966B2 (ja)
JP (2) JP7239552B2 (ja)
WO (1) WO2019159548A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018107921A1 (de) * 2018-04-04 2019-10-10 Osram Gmbh Betreiben einer Sendeeinrichtung in Verbindung mit einem Kommunikationsgerät
US11463223B2 (en) * 2019-09-30 2022-10-04 Sequans Communications S.A. Efficient decoding of repetition data

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113301A1 (ja) * 2008-03-12 2009-09-17 パナソニック株式会社 無線通信装置、無線通信システム及び無線通信方法
US20160269146A1 (en) * 2013-11-04 2016-09-15 Mediatek Singapore Pte. Ltd. Method for channel quality report
WO2016163505A1 (ja) * 2015-04-09 2016-10-13 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100981495B1 (ko) * 2005-10-12 2010-09-10 삼성전자주식회사 통신 시스템에서 데이터 송신 방법 및 장치
US8683284B2 (en) * 2007-09-25 2014-03-25 Samsung Electronics Co., Ltd. Receiving apparatus and method
US10965407B2 (en) * 2017-02-02 2021-03-30 Sharp Kabushiki Kaisha User equipments, base stations and communication methods
EP4236492A3 (en) * 2017-03-24 2023-09-20 Samsung Electronics Co., Ltd. Apparatus and method for semi-persistent scheduling and power control in wireless communication system
EP3689041A1 (en) * 2017-09-28 2020-08-05 Telefonaktiebolaget LM Ericsson (Publ) Radio synchronization technique
JP2019121951A (ja) 2018-01-09 2019-07-22 シャープ株式会社 基地局装置および端末装置
EP3512265B1 (en) * 2018-01-10 2022-05-11 Comcast Cable Communications LLC Power control for channel state information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113301A1 (ja) * 2008-03-12 2009-09-17 パナソニック株式会社 無線通信装置、無線通信システム及び無線通信方法
US20160269146A1 (en) * 2013-11-04 2016-09-15 Mediatek Singapore Pte. Ltd. Method for channel quality report
WO2016163505A1 (ja) * 2015-04-09 2016-10-13 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "On supporting ultra-reliability in a resource efficient way", 3GPP TSG RAN WG1 #91 R1-1719404, 2017, XP051369313 *
IWABUCHI, MASASHI ET AL.: "Outdoor transmission experiment on retransmission scheme for URLLC in 5G", PROCEEDINGS OF THE 2017 COMMUNICATIONS SOCIETY CONFERENCE OF IEICE, vol. 1, 2017, pages 308 *
LG ELECTRONICS: "Discussion on PDSCH transmission for MTC", 3GPP TSG-RAN WG1#82 R1-154235, August 2015 (2015-08-01), XP050992810, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_82/Docs/R1-154235.zip> *

Also Published As

Publication number Publication date
US11515966B2 (en) 2022-11-29
US11923982B2 (en) 2024-03-05
US20210036807A1 (en) 2021-02-04
US20230048062A1 (en) 2023-02-16
JP7239552B2 (ja) 2023-03-14
JP2023075199A (ja) 2023-05-30
JP7474891B2 (ja) 2024-04-25
JPWO2019159548A1 (ja) 2021-02-12

Similar Documents

Publication Publication Date Title
JP6456514B2 (ja) 基地局、端末、受信方法及び送信方法
CN110603774B (zh) 用于第5代(5g)新无线电接入技术(nr)的短pucch格式和调度请求(sr)传输
WO2017000291A1 (zh) 传输上行数据的方法和设备
JP6965925B2 (ja) 基地局装置、端末装置、無線通信システム、および通信方法
JP7474891B2 (ja) 端末装置、送信方法及び集積回路
US11038644B2 (en) Data communication method, network device, and terminal device
US10826653B2 (en) Base station, terminal, and communication method
JP2020504469A (ja) 端末、基地局及び通信方法
US11863478B2 (en) Base station, terminal, and communication method
JP2022516738A (ja) 通信デバイス、インフラストラクチャ機器および方法
JP2023130459A (ja) 基地局、通信方法及び集積回路
JP6703108B2 (ja) 通信方法、端末デバイス及びネットワークデバイス
US20230232373A1 (en) Method and device in nodes used for wireless communication
JP2023099023A (ja) 基地局、通信方法及び集積回路
WO2019215956A1 (ja) 端末及び送信方法
EP3895356A1 (en) Network access node and client device for indication of multiple data channels in a single control message
WO2021029124A1 (ja) 送信装置、受信装置、送信方法及び受信方法
JP7158538B2 (ja) 端末、通信方法及び集積回路
JPWO2020166179A1 (ja) 端末装置、通信方法及び集積回路
WO2018227752A1 (zh) 数据传输方法及相关设备
WO2017217182A1 (ja) 基地局、端末及び通信方法
RU2788968C2 (ru) Терминал связи и способ связи
WO2018171538A1 (zh) 数据传输方法、网络设备及终端设备
WO2022008357A1 (en) Communications device, infrastructure equipment and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500314

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906697

Country of ref document: EP

Kind code of ref document: A1