WO2019159446A1 - 通信装置及び通信方法 - Google Patents

通信装置及び通信方法 Download PDF

Info

Publication number
WO2019159446A1
WO2019159446A1 PCT/JP2018/041279 JP2018041279W WO2019159446A1 WO 2019159446 A1 WO2019159446 A1 WO 2019159446A1 JP 2018041279 W JP2018041279 W JP 2018041279W WO 2019159446 A1 WO2019159446 A1 WO 2019159446A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
communication operation
data
circuit
time
Prior art date
Application number
PCT/JP2018/041279
Other languages
English (en)
French (fr)
Inventor
哲也 矢端
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Publication of WO2019159446A1 publication Critical patent/WO2019159446A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the present invention relates to a communication device and a communication method.
  • a technology relating to a communication operation in which two types of communication operations coexist (hereinafter sometimes referred to as “coexistence operation”) has been put into practical use.
  • coexistence operation a technology relating to a communication operation in which two types of communication operations coexist
  • stream distribution according to the first wireless communication standard a data transmission / reception method that sequentially reproduces transmitted audio data and moving image data in real time
  • real-time performance corresponding to voice calls, and the like are required.
  • Specific communication operation hereinafter, also referred to as “real-time operation”
  • normal operation for performing normal data transmission / reception other than stream distribution and voice call according to the second wireless communication standard are executed simultaneously. be able to.
  • the packet loss in the first communication operation can be reduced by changing the time distribution between the first communication operation and the second communication operation and extending the execution period of the first communication operation. Although it can be reduced, there is a problem that the execution period of the second communication operation is shortened.
  • an ACK acknowledgenowledgment
  • an increase in data retransmission also causes a decrease in communication efficiency of the second communication operation and an increase in useless power consumption of the second communication circuit 12 and the opposite terminal 3.
  • the present invention has been made in view of the above problems, and when performing the coexistence operation of the first communication operation and the second communication operation, the packet loss in the first communication operation is reduced, and An object is to suppress an increase in retransmission of data in the second communication operation.
  • a communication apparatus includes a first communication circuit that executes a first communication operation according to a first wireless communication standard, and a second wireless communication standard that differs from the first wireless communication standard.
  • a second communication circuit that executes a communication operation; and a control circuit that controls the first communication operation and the second communication operation, wherein the first communication circuit is real-time in the first communication operation.
  • the control circuit is capable of executing a coexistence operation in which the first communication operation and the second communication operation are alternately performed in a time division manner.
  • the second communication circuit, and when performing the coexistence operation, the first communication operation and the second communication operation are performed based on the presence or absence of the specific communication operation in the first communication operation. Change the time allocation with the communication operation Both in accordance with the change of the time allocation, changing the procedure of transmitting data in said second communication operation.
  • the packet loss in the first communication operation is reduced, and the second communication operation is performed.
  • An increase in data retransmissions in can be suppressed.
  • the communication device 1 according to the present embodiment is a communication device that can alternately execute a communication operation based on the first wireless communication standard and a communication operation based on the second wireless communication standard in a time division manner.
  • FIG. 1 is a diagram illustrating an example of a hardware configuration of the communication device 1.
  • the communication device 1 in FIG. 1 includes a first communication circuit 11, a second communication circuit 12, a control circuit 13, an antenna 14, and a switch circuit 15.
  • the first communication circuit 11 is a circuit that executes a communication operation with the opposite terminal 2 that is a communication partner in accordance with the first wireless communication standard.
  • a communication operation performed by the first communication circuit 11 is referred to as a first communication operation.
  • the first wireless communication standard may be any wireless communication standard capable of executing a real-time operation (a specific communication operation that requires real-time performance corresponding to stream delivery or voice call).
  • the first wireless communication standard is, for example, Bluetooth (registered trademark), Wi-Fi (registered trademark), WiMAX (registered trademark), or LTE, but is not limited thereto.
  • the opposite terminal 2 can be any communication device capable of communicating according to the first wireless communication standard.
  • the second communication circuit 12 is a circuit that executes a communication operation with the opposite terminal 3 that is a communication partner in accordance with the second wireless communication standard.
  • the communication operation performed by the second communication circuit 12 is referred to as a second communication operation.
  • the second wireless communication standard can be an arbitrary wireless communication standard that is capable of continuous transmission and sequential transmission of packetized data and is different from the first wireless communication standard. Continuous transmission here refers to a transmission procedure for transmitting a plurality of data without waiting for a reply of an affirmative response (hereinafter also referred to as an ACK).
  • a transmission procedure called burst transfer for collectively receiving ACKs returned for a plurality of data is included.
  • Sequential transmission is a transmission procedure in which each time one data is transmitted, the next data is transmitted after waiting for reception of an ACK returned for the data. With sequential transmission, it is possible to reduce the possibility that the ACK cannot be received when the execution period of the communication operation is short, and to suppress an increase in data retransmission.
  • the default value of the data transmission procedure by the second communication circuit 12 is set to continuous transmission.
  • the second wireless communication standard is, for example, Bluetooth, Wi-Fi, or WiMAX, but is not limited thereto. Further, the opposite terminal 3 can be any communication device capable of communicating according to the second wireless communication standard.
  • the control circuit 13 is a circuit that controls the first communication operation by the first communication circuit 11 and the second communication operation by the second communication circuit 12, respectively.
  • the control circuit 13 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a connection interface for connecting to the first communication circuit 11 and the second communication circuit 12, and a flash memory.
  • An auxiliary storage device is provided.
  • the function of the control circuit 13 is realized by the CPU executing a program stored in the ROM or the like on the RAM. The operation of the control circuit 13 will be described later.
  • the antenna 14 is connected to the first communication circuit 11 or the second communication circuit 12 via the switch circuit 15, and transmits and receives radio signals. That is, the antenna 14 is shared by the first communication circuit 11 and the second communication circuit 12.
  • the switch circuit 15 connects the antenna 14 to the first communication circuit 11 or the second communication circuit 12. Switching of connection by the switch circuit 15 is controlled by the control circuit 13.
  • the hardware configuration of the communication device 1 is not limited to the example of FIG.
  • the first communication circuit 11 and the second communication circuit 12 are independent communication modules, but the first communication circuit 11 and the second communication circuit 12 are integrated. It may be a communication module.
  • the first communication circuit 11 and the second communication circuit 12 may be communication circuits such as cognitive radio whose functions are defined by software.
  • the first communication circuit 11 and the second communication circuit 12 are controlled by one control circuit 13, but the first communication circuit 11 and the second communication circuit 12 are The functions of the control circuit 13 may be realized by being controlled by two independent control circuits and by the cooperation of the two control circuits.
  • the real-time operation refers to a specific communication operation that is executed in the first communication operation and requires real-time performance corresponding to stream delivery or voice call.
  • the normal operation is a communication operation other than the above-described specific communication operation that is executed in the first communication operation. Scanning operations using, reception of ACK corresponding to transmitted data, return of ACK corresponding to received data, and the like.
  • the first wireless communication standard is assumed to be a wireless LAN standard such as Wi-Fi
  • the second wireless communication standard is assumed to be Bluetooth.
  • the first communication operation may be referred to as “WLAN” and the second communication operation may be referred to as “BT”.
  • FIG. 2 is a timing chart illustrating an example of a communication operation of the communication device 1 when the first communication operation is a normal operation.
  • the communication device 1 can perform a coexistence operation in which a first communication operation (WLAN) and a second communication operation (BT) are alternately performed in a time division during a period T. .
  • WLAN first communication operation
  • BT second communication operation
  • the first communication operation is performed prior to the second communication operation, but the order may be reversed.
  • the first communication operation and the second communication operation are executed during the execution periods T1 and T2 set by the control circuit 13, respectively.
  • default values are set in advance, and are set to default values in the initial state and normal operation. In the example of FIG. 2, it is assumed that the default values of the execution periods T1 and T2 are equal, but the default values of the execution periods T1 and T2 are not limited to this.
  • the second communication operation continuous transmission and sequential transmission of data from the second communication circuit 12 to the opposite terminal 3 are possible, and continuous transmission of data is executed in the initial state and normal operation. Is set.
  • the second communication circuit 12 continuously transmits five data and then receives five ACKs corresponding to each of these data.
  • the number of data continuously transmitted is It is not limited to this.
  • the number of data continuously transmitted is controlled by the control circuit 13.
  • the control circuit 13 requests the opposite terminal 3 to change the window size or changes the data size (MSS: MaximumMaxSegment Size) transmitted by the second communication circuit 12 to continuously transmit data. You can control the number.
  • FIG. 3 is a flowchart illustrating an example of the coexistence operation for one cycle of the communication device 1 when the first communication operation is a normal operation. It is assumed that the second communication operation is being executed at the start of FIG.
  • the control circuit 13 controls the second communication operation until the start time of the first communication operation arrives (step S101: NO).
  • the control circuit 13 causes the second communication circuit 12 to stop the second communication operation (step S102) and controls the switch circuit 15,
  • the antenna 14 is connected to the first communication circuit 11 (step S103), and the first communication circuit 11 is caused to start the first communication operation (step S104).
  • the control circuit 13 sets the execution period T1 (execution period of the first communication operation) to a default value.
  • the first communication circuit 11 performs the first communication operation during the execution period T1. Specifically, the first communication circuit 11 wirelessly transmits data input from the control circuit 13 via the antenna 14 and inputs data received wirelessly via the antenna 14 to the control circuit 13. To do.
  • control circuit 13 controls the first communication operation until the start time of the second communication operation arrives (step S105: NO).
  • the control circuit 13 causes the first communication circuit 11 to stop the first communication operation (step S106) and controls the switch circuit 15,
  • the antenna 14 is connected to the second communication circuit 12 (step S107), and the second communication circuit 12 is caused to start the second communication operation (step S108).
  • the control circuit 13 sets the execution period T2 (execution period of the second communication operation) and the data size to be transmitted in the second communication operation to default values.
  • the second communication circuit 12 executes the second communication operation by the BT during the execution period T2.
  • the second communication circuit 12 continuously transmits data input from the control circuit 13 wirelessly via the antenna 14 and controls data including ACK received wirelessly via the antenna 14. Input to the circuit 13.
  • a series of operations from step S101 to step S108 are repeated.
  • FIG. 4 is a timing chart illustrating an example of the communication operation of the communication device 1 when the first communication operation is a real-time operation.
  • the real-time operation of the communication device 1 is a communication operation corresponding to stream delivery or voice call.
  • the execution period T1 is set longer than the default value.
  • the execution period of the real-time operation in the first communication operation can be secured longer than that in the normal operation, thereby reducing packet loss and suppressing sound skipping in stream delivery or voice call by the first communication operation. can do.
  • the execution period T2 is set shorter than the default value in the real-time operation. That is, in the real-time operation, the ratio of the execution period T1 to the execution period T2 is larger than the initial state (ratio when the execution periods T1 and T2 are default values), and the ratio of the execution period T2 to the execution period T1 is smaller than the initial state.
  • the time distribution of the execution periods T1 and T2 (time distribution between the first communication operation and the second communication operation) is set.
  • FIG. 5 is a sequence diagram illustrating an example of normal operation of the communication device 1.
  • the second communication circuit 12 of the communication device 1 can continuously transmit data d1 to d5 and receive ACK1 to ACK5 corresponding to each data during the execution period T2. Accordingly, the data d1 to d5 are not retransmitted in the next execution period T2.
  • FIG. 6 is a sequence diagram showing an example of normal operation of the communication apparatus 1 when the execution period T2 is shortened.
  • the second communication circuit 12 of the communication device 1 cannot receive ACK3 to ACK5 during the execution period T2. Therefore, data d4 to d5 are retransmitted in the next execution period T2.
  • the second communication circuit 12 continuously transmits data, if the execution period T2 is shortened, ACKs that cannot be received by the second communication circuit 12 increase, and data retransmission increases.
  • the increase in data retransmission by the second communication circuit 12 causes a decrease in communication efficiency of the second communication operation and an increase in useless power consumption of the communication device 1 and the opposite terminal 3.
  • the data transmission procedure in the second communication operation is switched from continuous transmission to sequential transmission. That is, during the execution period T2, the second communication circuit 12 receives an ACK corresponding to the data every time one piece of data is transmitted.
  • FIG. 7 is a sequence diagram illustrating an example of the real-time operation of the communication device 1.
  • the communication device 1 second communication circuit 12
  • the data d4 is retransmitted during the next execution period T2.
  • the second communication circuit 12 since the second communication circuit 12 transmits data one by one, the number of ACKs that cannot be received during the execution period T2 is one or less, and the number of retransmitted data is also one or less. In this way, when the execution period T2 is short, the data transmission procedure in the second communication operation is sequentially transmitted, thereby reducing the possibility that the ACK cannot be received, and retransmitting the data in the second communication operation. Can be suppressed.
  • the real-time operation of the communication device 1 is the same as the normal operation except for the set values of the execution periods T1 and T2 and the data transmission procedure by the second communication circuit 12, and thus the description thereof is omitted.
  • FIG. 8 is a flowchart showing an example of the operation at the time of switching the operation of the communication apparatus 1. It is assumed that the normal operation is being executed at the start of FIG.
  • step S201 When the real-time operation starts in the first communication operation (step S201: YES), the control circuit 13 makes the execution period T1 longer than the default value and makes the execution period T2 shorter than the default value (step S202). That is, the control circuit 13 changes the time distribution of the execution periods T1 and T2 so that the ratio of the execution period T1 to the execution period T2 is greater than the initial state in accordance with the start of the real-time operation. Further, the control circuit 13 switches the data transmission procedure in the second communication operation from continuous transmission to sequential transmission in accordance with the change in the time distribution of the execution periods T1 and T2 (step S203). Then, stream distribution or voice call is started. Thereafter, the communication device 1 continues the real-time operation until the stream distribution or the voice call is finished (step S204: NO).
  • step S204 When the real-time operation ends in the first communication operation (step S204: YES), the control circuit 13 returns the setting to the initial state (step S205). That is, the control circuit 13 sets the execution periods T1 and T2 to default values, and returns the data transmission procedure in the second communication operation from sequential transmission to continuous transmission. Then, normal operation is started. Thereafter, the communication device 1 continues normal operation until real-time operation is started again.
  • the control circuit 13 performs the coexistence operation in which the first communication operation and the second communication operation are alternately performed in a time division manner, as the first communication circuit and the second communication circuit. Can be executed.
  • the control circuit 13 executes the coexistence operation, the ratio of the execution period T1 to the execution period T2 based on the presence or absence of a real-time operation (specific communication operation that requires real-time performance) in the first communication operation. That is, the time distribution of the execution periods T1 and T2 (time distribution between the first communication operation and the second communication operation) is changed.
  • the execution period T1 can be optimized for the real-time operation, and the packet loss in the first communication operation can be reduced.
  • the second communication circuit 12 can change the data transmission procedure in the second communication operation, and the control circuit 13 performs the first communication when executing the coexistence operation. Based on the presence or absence of real-time operation in the operation, the time distribution of the execution periods T1 and T2 is changed, and the data transmission procedure in the second communication operation is changed in accordance with the change of the time distribution of the execution periods T1 and T2. . Thereby, the data transmission procedure in the second communication operation can be optimized in accordance with the change in the time distribution between the execution periods T1 and T2. As a result, when performing the coexistence operation of the first communication operation and the second communication operation, the packet loss in the first communication operation is reduced, and the data retransmission in the second communication operation is increased.
  • the real-time operation that is a specific communication operation is a communication operation corresponding to stream delivery or voice call.
  • packet loss causes skipping, so real-time performance is particularly severe from the viewpoint of preventing skipping.
  • the real-time operation is a communication operation corresponding to stream delivery or voice call, the above-described effects are particularly remarkable.
  • the data transmission procedure in the second communication operation includes continuous transmission for transmitting a plurality of data without waiting for a reply of ACK (acknowledgment) and each time one data is transmitted.
  • continuous transmission it is possible to improve the communication efficiency of the second communication operation by reducing the time for waiting for the ACK when the execution period T2 is long.
  • sequential transmission when the execution period T2 is short, it is possible to reduce the possibility that the ACK returned from the opposite terminal 3 cannot be received, thereby suppressing an increase in data retransmission. Therefore, the control circuit 13 switches the data transmission procedure in the second communication operation from one of continuous transmission and sequential transmission to the other in accordance with the change in the time distribution of the execution periods T1 and T2.
  • the data transmission procedure in the second communication operation can be easily optimized in accordance with the change in the time distribution between the execution periods T1 and T2.
  • the control circuit 13 when the control circuit 13 executes the coexistence operation, the ratio of the execution period T1 to the execution period T2 is higher than the initial state in accordance with the start of the real-time operation in the first communication operation.
  • the time distribution of the execution periods T1 and T2 is changed so as to increase. Thereby, it becomes easy to secure the time required for the real-time operation, and the packet loss in the first communication operation can be easily reduced.
  • the control circuit 13 switches the data transmission procedure in the second communication operation from continuous transmission to sequential transmission in accordance with the change in the time distribution of the execution periods T1 and T2.
  • the control circuit 13 returns the time distribution of the execution periods T1 and T2 to the intended state in accordance with the end of the real-time operation, and returns the data transmission procedure in the second communication operation from sequential transmission to continuous transmission.
  • the control circuit 13 may change the transmission timing from the second communication circuit 12 in the execution period T2 for each execution period T2.
  • the control circuit 13 stores the transmission timing from the second communication circuit 12 in each execution period T2 and the ACK reception availability corresponding to each transmission timing in association with each other, and stores the corresponding ACK.
  • a transmission timing with a high reception probability may be preferentially selected as a transmission timing in the second communication operation. By selecting the transmission timing in this way, it is possible to improve the ACK reception probability in the second communication operation. That is, retransmission of data from the second communication circuit 12 can be further suppressed.
  • the communication device 1 describes a communication method when the second communication circuit 12 communicates with a plurality of opposed terminals 3. Note that the hardware configuration, normal operation, and real-time operation of the communication device 1 are the same as those in the first embodiment, and thus description thereof is omitted.
  • FIG. 9 is a sequence diagram illustrating an example of the real-time operation of the communication device 1.
  • the second communication circuit 12 of the communication device 1 communicates with two opposing terminals 3A and 3B and transmits data in the order of the opposing terminals 3A and 3B.
  • the second communication circuit 12 can always receive ACK from the opposite terminal 3A as shown in FIG. There is a possibility that one of the ACKs from 3B cannot be received. In other words, data retransmission to the opposite terminal 3A does not occur, but data retransmission to the opposite terminal 3B can occur.
  • the transmission order of data to the plurality of opposing terminals 3 in the second communication operation (which of the opposing terminals 3A and 3B transmits data first) is fixed in the above-described order, data retransmission Is always performed on the opposite terminal 3B
  • the communication efficiency between the second communication circuit 12 and the opposite terminal 3B is higher than the communication efficiency between the second communication circuit 12 and the opposite terminal 3A. descend. That is, the communication efficiency of the opposing terminals 3A and 3B is biased according to the transmission order of data from the second communication circuit 12. This is the same when there are three or more opposing terminals 3 with which the second communication circuit 12 communicates.
  • the control circuit 13 changes the transmission order of data by the second communication circuit 12 every time the second communication operation is executed.
  • the control circuit 13 may change the transmission order at random or may change the transmission order according to a predetermined rule.
  • a method of changing the next transmission order of the i-th counter terminal 3 whose transmission order is the current one to the (i + 1) th is conceivable.
  • the next transmission order of the opposite terminal 3 whose transmission order is the last may be the first.
  • FIG. 10 is a flowchart illustrating an example of an operation when the operation of the communication apparatus 1 is switched.
  • the flowchart in FIG. 10 corresponds to a process in which step S206 is added between step S203 and step S204 in the flowchart in FIG. It is assumed that the normal operation is being executed at the start of FIG.
  • Step S201 When a voice call is started as the first communication operation during execution of the normal operation (step S201: YES), the control circuit 13 makes the execution period T1 longer than the default value and makes the execution period T2 shorter than the default value (Ste S202). That is, the control circuit 13 sets the execution period T1 to a time longer than the default value, and sets the execution period T2 to a period shorter than the default value.
  • the control circuit 13 switches the data transmission procedure (continuous transmission or sequential transmission) by the second communication circuit 12 from continuous transmission to sequential transmission (step S203). Further, the control circuit 13 sets the transmission order of data to the plurality of opposing terminals 3 (which of the two opposing terminals 3A and 3B transmits data first) different from the previous transmission order. (Step S206). Thereby, a real-time operation is started. Thereafter, the communication device 1 continues the real-time operation until the stream distribution or the voice call is finished (step S204: NO).
  • step S204 When the real-time operation ends in the first communication operation (step S204: YES), the control circuit 13 returns the setting to the initial state (step S205). That is, the control circuit 13 sets the execution periods T1 and T2 to default values, and returns the data transmission procedure in the second communication operation from sequential transmission to continuous transmission. Thereby, normal operation is started. Thereafter, the communication device 1 continues normal operation until real-time operation is started again.
  • the control circuit 13 when the coexistence operation is performed, the control circuit 13 has an initial ratio of the execution period T1 to the execution period T2 in accordance with the start of the real-time operation in the first communication operation.
  • the time distribution of the execution periods T1 and T2 is changed so as to be larger than the state, and the data transmission procedure in the second communication operation is sequentially transmitted from the continuous transmission according to the change of the time distribution of the execution periods T1 and T2.
  • the order of transmission to the plurality of opposing terminals 3 (which of the opposing terminals 3A and 3B transmits data first) is changed. Thereby, the bias of the communication efficiency between the some opposing terminals 3 can be suppressed, and the communication efficiency of each opposing terminal 3 can be averaged.
  • Communication device 2 Opposing terminals 3, 3A, 3B: Opposing terminal 11: First communication circuit 12: Second communication circuit 13: Control circuit 14: Antenna 15: Switch circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Telephone Function (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一実施形態に係る通信装置は、第1の無線通信規格により第1の通信動作を実行する第1通信回路と、第2の無線通信規格により第2の通信動作を実行する第2通信回路と、前記第1の通信動作及び第2の通信動作を制御する制御回路と、を備え、前記制御回路は、前記第1通信回路及び前記第2通信回路に、前記第1の通信動作と前記第2の通信動作とを時分割で交互に実行させる共存動作を実行可能であり、前記共存動作を実行する際に、前記第1の通信動作における前記特定の通信動作の有無に基づいて、前記第1の通信動作と前記第2の通信動作との時間配分を変化させると共に、前記時間配分の変化に合わせて、前記第2の通信動作におけるデータの送信手順を変化させる。

Description

通信装置及び通信方法
 本発明は、通信装置及び通信方法に関する。
 近年、第1の無線通信規格による第1の通信動作と、第1の無線通信規格とは異なる第2の無線通信規格による第2の通信動作と、を時分割で交互に実行することにより、2種類の通信動作を共存させる通信動作(以下「共存動作」と称する場合もある。)に関する技術が実用化されている。当該技術を利用することにより、例えば、第1の無線通信規格によるストリーム配信(送信された音声データや動画データを順次リアルタイムで再生するデータ送受信方法)や音声通話等に対応したリアルタイム性を要求される特定の通信動作(以下「リアルタイム動作」と称する場合もある。)と、第2の無線通信規格によるストリーム配信や音声通話以外の通常のデータの送受信等を行う通常動作と、を同時に実行することができる。
特開2010-535461号公報
 しかしながら、従来の通信方法では、第1の通信動作と第2の通信動作との共存動作を実行した時には、第1の通信動作又は第2の通信動作を単独で実行した時と比較して、各通信動作の実行期間が制限されるため、各通信動作において十分な時間が確保できず、パケットロスが発生することがあった。特に、第1の通信動作がストリーム配信又は音声通話等に対応したリアルタイム動作である場合、パケットロスは音飛びの原因となり、問題がさらに顕著になる。このような場合には、第1の通信動作と第2の通信動作との時間配分を変更して、第1の通信動作の実行期間を長くすることにより、第1の通信動作におけるパケットロスを減らすことはできるものの、第2の通信動作の実行期間が短くなるという問題があった。特に、第2の通信動作において、データ(セグメント)の連続送信が行われている場合、第2の通信動作の実行期間が短くなると、複数の送信データに対応するACK(肯定応答)が受信できなくなり、データの再送が増加するおそれがあった。データの再送の増加は、第2の通信動作の通信効率の低下や、第2通信回路12及び対向端末3の無駄な消費電力の増大の原因にもなる。
 本発明は、上記の課題に鑑みてなされたものであり、第1の通信動作と第2の通信動作との共存動作を実行する際に、第1の通信動作におけるパケットロスを低減し、かつ、第2の通信動作におけるデータの再送の増加を抑制することを目的とする。
 一実施形態に係る通信装置は、第1の無線通信規格により第1の通信動作を実行する第1通信回路と、前記第1の無線通信規格とは異なる第2の無線通信規格により第2の通信動作を実行する第2通信回路と、前記第1の通信動作及び第2の通信動作を制御する制御回路と、を備え、前記第1通信回路は、前記第1の通信動作において、リアルタイム性を要求される特定の通信動作を実行可能であり、前記制御回路は、前記第1の通信動作と前記第2の通信動作とを時分割で交互に実行する共存動作を、前記第1通信回路及び前記第2通信回路に実行させることができ、前記共存動作を実行する際に、前記第1の通信動作における前記特定の通信動作の有無に基づいて、前記第1の通信動作と前記第2の通信動作との時間配分を変化させると共に、前記時間配分の変化に合わせて、前記第2の通信動作におけるデータの送信手順を変化させる。
 本発明の各実施形態によれば、第1の通信動作と第2の通信動作との共存動作を実行する際に、第1の通信動作におけるパケットロスを低減し、かつ、第2の通信動作におけるデータの再送の増加を抑制することができる。
通信装置のハードウェア構成の一例を示す図。 通信装置の通常動作の一例を示すタイミングチャート。 通信装置の1周期分の通常動作の一例を示すフローチャート。 通信装置のリアルタイム動作の一例を示すタイミングチャート。 通信装置の通常動作の一例を示すシーケンス図。 実行期間T2が短い場合の通信装置の通常動作の一例を示すシーケンス図。 通信装置のリアルタイム動作の一例を示すシーケンス図。 通信装置の動作切替時の動作の一例を示すフローチャート。 通信装置のリアルタイム動作の一例を示すシーケンス図。 通信装置の動作切替時の動作の一例を示すフローチャート。
 以下、本発明の各実施形態について、添付の図面を参照しながら説明する。なお、各実施形態に係る明細書及び図面の記載に関して、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重畳した説明を省略する。
<第1実施形態>
 第1実施形態に係る通信装置1について、図1~図8を参照して説明する。本実施形態に係る通信装置1は、第1の無線通信規格による通信動作と、第2の無線通信規格による通信動作と、を時分割で交互に実行可能な通信装置である。
 まず、通信装置1のハードウェア構成について説明する。図1は、通信装置1のハードウェア構成の一例を示す図である。図1の通信装置1は、第1通信回路11と、第2通信回路12と、制御回路13と、アンテナ14と、スイッチ回路15と、を備える。
 第1通信回路11は、第1の無線通信規格により通信相手となる対向端末2との間で通信動作を実行する回路である。第1通信回路11が実行する通信動作を第1の通信動作と称する。第1の無線通信規格は、リアルタイム動作(ストリーム配信又は音声通話等に対応したリアルタイム性を要求される特定の通信動作)を実行可能な任意の無線通信規格で有り得る。第1の無線通信規格は、例えば、Bluetooth(登録商標)、Wi-Fi(登録商標)、WiMAX(登録商標)、又はLTEであるが、これに限られない。また、対向端末2は、第1の無線通信規格により通信可能な任意の通信装置で有り得る。
 第2通信回路12は、第2の無線通信規格により通信相手となる対向端末3との間で通信動作を実行する回路である。第2通信回路12が実行する通信動作を第2の通信動作と称する。第2の無線通信規格は、パケット化されたデータの連続送信と順次送信とが可能な、第1の無線通信規格とは異なる任意の無線通信規格で有り得る。ここでいう連続送信とは、肯定応答(以下、ACKと称する場合もある)の返信を待つことなく複数のデータを送信する送信手順のことであり、複数のデータを連続で送信した後、当該複数のデータに対して返信されるACKをまとめて受信するバースト転送と呼ばれる送信手順等が含まれる。連続送信では、通信動作の実行期間が長い時には、データ送信のたびにACKの返信を待つ必要がなくなるので、ACKの返信を待つ時間を短縮して、通信効率を向上させることができる。順次送信とは、1つのデータを送信するたびに、当該データに対して返信されるACKの受信を待ってから、次のデータを送信する送信手順のことである。順次送信では、通信動作の実行期間が短い時に、ACKを受信できなくなる可能性を低下させて、データの再送の増加を抑制することができる。第2通信回路12によるデータの送信手順のデフォルト値は、連続送信に設定される。第2の無線通信規格は、例えば、Bluetooth、Wi-Fi、又はWiMAXであるが、これに限られない。また、対向端末3は、第2の無線通信規格により通信可能な任意の通信装置で有り得る。
 制御回路13は、第1通信回路11による第1の通信動作と、第2通信回路12による第2の通信動作と、をそれぞれ制御する回路である。制御回路13は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、第1通信回路11及び第2通信回路12と接続するための接続インタフェース、及びフラッシュメモリ等の補助記憶装置を備える。CPUがROM等に記憶されたプログラムをRAM上で実行することにより、制御回路13の機能が実現される。制御回路13の動作については後述する。
 アンテナ14は、第1通信回路11又は第2通信回路12に、スイッチ回路15を介して接続され、無線信号を送受信する。すなわち、アンテナ14は、第1通信回路11及び第2通信回路12に共用される。
 スイッチ回路15は、アンテナ14を第1通信回路11又は第2通信回路12に接続する。スイッチ回路15による接続の切り替えは、制御回路13により制御される。
 なお、通信装置1のハードウェア構成は図1の例に限られない。例えば、図1の例では、第1通信回路11及び第2通信回路12がそれぞれ独立した通信モジュールである場合を想定しているが、第1通信回路11及び第2通信回路12は、一体化された通信モジュールであってもよい。また、第1通信回路11及び第2通信回路12は、それぞれの機能がソフトウェア上で規定されるコグニティブ無線のような通信回路であってもよい。また、図1の例では、1つの制御回路13により、第1通信回路11及び第2通信回路12が制御される場合を想定しているが、第1通信回路11及び第2通信回路12は、それぞれ独立した2つの制御回路により制御され、2つの制御回路が連携することにより、制御回路13の機能が実現されてもよい。
 次に、通信装置1の通常動作及びリアルタイム動作についてそれぞれ説明する。以下の説明では、リアルタイム動作は、第1の通信動作において実行される、ストリーム配信又は音声通話に対応したリアルタイム性を要求される特定の通信動作のことである。また、以下の説明では、通常動作は、第1の通信動作において実行される、上記の特定の通信動作以外の通信動作のことであり、リアルタイム性を要求されない通常のデータの送受信や、ビーコン信号を用いたスキャン動作や、送信したデータに対応するACKの受信や、受信したデータに対応するACKの返信等が含まれる。以下、第1の無線通信規格はWi-Fi等の無線LAN規格、第2の無線通信規格はBluetoothであるものとする。また、以下、第1の通信動作のことを「WLAN」と称し、第2の通信動作のことを「BT」と称する場合もある。
 まず、通信装置1の通常動作について説明する。図2は、第1の通信動作が通常動作である場合の、通信装置1の通信動作の一例を示すタイミングチャートである。
 図2に示すように、通信装置1は、周期Tの間に、第1の通信動作(WLAN)と第2の通信動作(BT)とを時分割で交互に実行する共存動作が可能である。図2の例では、第1の通信動作が第2の通信動作より先に実行されているが、順番は逆でもよい。
 第1の通信動作及び第2の通信動作は、制御回路13により設定された実行期間T1,T2の間、それぞれ実行される。実行期間T1,T2は、デフォルト値を予め設定されており、初期状態や通常動作の場合、デフォルト値に設定される。図2の例では、実行期間T1,T2のデフォルト値が等しい場合を想定しているが、実行期間T1,T2のデフォルト値はこれに限られない。
 また、第2の通信動作では、第2通信回路12から対向端末3にデータの連続送信と順次送信とが可能であり、初期状態や通常動作の場合、データの連続送信が実行されるように設定されている。図2の例では、第2通信回路12が5つのデータを連続送信した後、これらの各データにそれぞれ対応する5つのACKを受信する場合を想定しているが、連続送信されるデータ数はこれに限られない。連続送信されるデータ数は、制御回路13により制御される。例えば、制御回路13は、対向端末3にウィンドウサイズの変更を要求したり、第2通信回路12が送信するデータサイズ(MSS:Maximum Segment Size)を変更したりすることにより、連続送信されるデータ数を制御できる。
 図3は、第1の通信動作が通常動作である場合の、通信装置1の1周期分の共存動作の一例を示すフローチャートである。図3の開始時点で、第2の通信動作が実行中であるものとする。
 制御回路13は、第1の通信動作の開始時刻が到来するまで、第2の通信動作を制御する(ステップS101:NO)。第1の通信動作の開始時刻が到来すると(ステップS101のYES)、制御回路13は、第2通信回路12に第2の通信動作を停止させ(ステップS102)、スイッチ回路15を制御して、アンテナ14を第1通信回路11に接続し(ステップS103)、第1通信回路11に第1の通信動作を開始させる(ステップS104)。この際、制御回路13は、実行期間T1(第1の通信動作の実行期間)をデフォルト値に設定する。以降、第1通信回路11は、実行期間T1の間、第1の通信動作を実行する。具体的には、第1通信回路11は、制御回路13から入力されたデータ等を、アンテナ14を介して無線で送信し、アンテナ14を介して無線で受信したデータ等を制御回路13に入力する。
 その後、制御回路13は、第2の通信動作の開始時刻が到来するまで、第1の通信動作を制御する(ステップS105:NO)。第2の通信動作の開始時刻が到来すると(ステップS105のYES)、制御回路13は、第1通信回路11に第1の通信動作を停止させ(ステップS106)、スイッチ回路15を制御して、アンテナ14を第2通信回路12に接続し(ステップS107)、第2通信回路12に第2の通信動作を開始させる(ステップS108)。この際、制御回路13は、実行期間T2(第2の通信動作の実行期間)及び第2の通信動作において送信するデータサイズをデフォルト値に設定する。以降、第2通信回路12は、実行期間T2の間、BTによる第2の通信動作を実行する。具体的には、第2通信回路12は、制御回路13から入力されたデータ等を、アンテナ14を介して無線で連続送信し、アンテナ14を介して無線で受信したACKを含むデータ等を制御回路13に入力する。なお、共存動作が継続される場合には、ステップS101からステップS108までの一連の動作が繰り返されるものとする。
 次に、通信装置1のリアルタイム動作について説明する。図4は、第1の通信動作がリアルタイム動作である場合の、通信装置1の通信動作の一例を示すタイミングチャートである。以下、通信装置1のリアルタイム動作は、ストリーム配信又は音声通話に対応した通信動作であるものとする。
 図4に示すように、第1の通信動作においてリアルタイム動作が実行される時には、実行期間T1がデフォルト値より長く設定される。これにより、第1の通信動作におけるリアルタイム動作の実行期間を、通常動作の場合に比べて長く確保できるため、パケットロスを低減し、第1の通信動作によるストリーム配信又は音声通話における音飛びを抑制することができる。
 一方、通常動作及びリアルタイム動作の周期Tは同じであるため、リアルタイム動作では、実行期間T2がデフォルト値より短く設定される。すなわち、リアルタイム動作では、実行期間T2に対する実行期間T1の比率が初期状態(実行期間T1,T2がデフォルト値の時の比率)より大きくなり、実行期間T1に対する実行期間T2の比率が初期状態より小さくなるように、実行期間T1,T2の時間配分(第1の通信動作と第2の通信動作との時間配分)が設定される。これにより、第2通信回路12がデータを連続送信する場合、第2通信回路12からのデータを対向端末3が正しく受信できたにもかかわらず、対向端末3から返信された複数のACKを第2通信回路12が受信できず、データの再送が増加するおそれがある。
 ここで、実行期間T2とデータの再送との関係について具体的に説明する。図5は、通信装置1の通常動作の一例を示すシーケンス図である。図5の例では、通信装置1の第2通信回路12は、実行期間T2の間に、データd1~d5を連続送信し、各データに対応するACK1~ACK5を受信することができる。したがって、次の実行期間T2において、データd1~d5は再送されない。
 これに対して、図6は、実行期間T2を短くした場合の通信装置1の通常動作の一例を示すシーケンス図である。図6の例では、実行期間T2が短縮されたことにより、通信装置1の第2通信回路12は、実行期間T2の間に、ACK3~ACK5を受信できない。このため、次の実行期間T2において、データd4~d5が再送される。
 このように、第2通信回路12がデータを連続送信する場合、実行期間T2を短くすると、第2通信回路12が受信できないACKが増加し、データの再送が増加する。第2通信回路12によるデータの再送の増加は、第2の通信動作の通信効率の低下や、通信装置1及び対向端末3の無駄な消費電力の増大の原因となる。
 そこで、本実施形態において、リアルタイム動作では、図4に示すように、第2の通信動作におけるデータの送信手順は、連続送信から順次送信に切り替わる。すなわち、実行期間T2の間、第2通信回路12は、1つのデータを送信するたびに当該データに対応するACKを受信する。
 図7は、通信装置1のリアルタイム動作の一例を示すシーケンス図である。図7の例では、通信装置1(第2通信回路12)は、実行期間T2の間にACK4を受信できないため、次の実行期間T2において、データd4が再送される。しかしながら、図7の例では、第2通信回路12は、データを1つずつ送信するため、実行期間T2の間に受信できないACKは1つ以下となり、再送されるデータも1つ以下となる。このように、実行期間T2が短い時には、第2の通信動作におけるデータの送信手順を順次送信とすることにより、ACKを受信できなくなる可能性を低下させて、第2の通信動作におけるデータの再送の増加を抑制することができる。
 なお、通信装置1のリアルタイム動作は、実行期間T1,T2の設定値及び第2通信回路12によるデータの送信手順を除き、通常動作と同一であるため、説明を省略する。
 続いて、通信装置1の動作切替時(通常動作とリアルタイム動作との切替時)の動作について説明する。図8は、通信装置1の動作切替時の動作の一例を示すフローチャートである。図8の開始時点で、通常動作が実行中であるものとする。
 第1の通信動作においてリアルタイム動作が開始すると(ステップS201:YES)、制御回路13は、実行期間T1をデフォルト値より長くし、実行期間T2をデフォルト値より短くする(ステップS202)。すなわち、制御回路13は、リアルタイム動作の開始に合わせて、実行期間T2に対する実行期間T1の比率が初期状態よりも大きくなるように、実行期間T1,T2の時間配分を変化させる。また、制御回路13は、実行期間T1,T2の時間配分を変化に合わせて、第2の通信動作におけるデータの送信手順を、連続送信から順次送信に切り替える(ステップS203)。そして、ストリーム配信又は音声通話が開始される。以降、ストリーム配信又は音声通話が終了するまで(ステップS204:NO)、通信装置1はリアルタイム動作を継続する。
 第1の通信動作においてリアルタイム動作が終了すると(ステップS204:YES)、制御回路13は、設定を初期状態に戻す(ステップS205)。すなわち、制御回路13は、実行期間T1,T2をデフォルト値に設定し、第2の通信動作におけるデータの送信手順を順次送信から連続送信に戻す。そして、通常動作が開始される。以降、再びリアルタイム動作が開始するまで、通信装置1は通常動作を継続する。
 以上説明した通り、本実施形態によれば、制御回路13は、第1の通信動作と第2の通信動作とを時分割で交互に実行する共存動作を、第1通信回路及び第2通信回路に実行させることができる。そして、制御回路13は、共存動作を実行する際に、第1の通信動作におけるリアルタイム動作(リアルタイム性を要求される特定の通信動作)の有無に基づいて、実行期間T2に対する実行期間T1の比率、すなわち、実行期間T1,T2の時間配分(第1の通信動作と第2の通信動作との時間配分)を変化させる。これにより、リアルタイム動作に対して実行期間T1を最適化することができ、第1の通信動作におけるパケットロスを低減することができる。
 また、本実施形態によれば、第2通信回路12は、第2の通信動作において、データの送信手順を変更可能であり、制御回路13は、共存動作を実行する際に、第1の通信動作におけるリアルタイム動作の有無に基づいて、実行期間T1,T2の時間配分を変化させると共に、実行期間T1,T2の時間配分の変化に合わせて、第2の通信動作におけるデータの送信手順を変化させる。これにより、実行期間T1,T2の時間配分の変化に合わせて、第2の通信動作におけるデータの送信手順を最適化することができる。その結果、第1の通信動作と第2の通信動作との共存動作を実行する際に、第1の通信動作におけるパケットロスを低減し、かつ、第2の通信動作におけるデータの再送の増加を抑制することができる。そして、第2の通信動作におけるデータの再送の増加を抑制することにより、第2の通信動作の通信効率の低下や、第2通信回路12及び対向端末3の無駄な消費電力の増大を抑制することもできる。
 また、本実施形態によれば、特定の通信動作となるリアルタイム動作は、ストリーム配信又は音声通話に対応した通信動作である。ストリーム配信又は音声通話では、パケットロスが音飛びの原因となるので、音飛び防止等の観点からリアルタイム性が特に厳しく要求される。そのため、リアルタイム動作がストリーム配信又は音声通話に対応した通信動作である場合には、前述した効果が特に顕著になる。
 また、本実施形態によれば、第2の通信動作におけるデータの送信手順は、ACK(肯定応答)の返信を待つことなく複数のデータを送信する連続送信と、1つのデータを送信するたびにACKの返信を待つ順次送信と、を含み、連続送信では、実行期間T2が長い時に、ACKの返信を待つ時間を短縮して、第2の通信動作の通信効率を向上させることができる。一方、順次送信では、実行期間T2が短い時に、対向端末3から返信されたACKを受信できなくなる可能性を低下させて、データの再送の増加を抑制することができる。そのため、制御回路13が、実行期間T1,T2の時間配分の変化に合わせて、第2の通信動作におけるデータの送信手順を、連続送信と順次送信とのうちの一方から他方に切り替えることにより、実行期間T1,T2の時間配分の変化に合わせて、容易に第2の通信動作におけるデータの送信手順を最適化することができる。
 また、本実施形態によれば、制御回路13は、共存動作を実行する際に、第1の通信動作におけるリアルタイム動作の開始に合わせて、実行期間T2に対する実行期間T1の比率が初期状態よりも大きくなるように、実行期間T1,T2の時間配分を変化させる。これにより、リアルタイム動作に要する時間を確保し易くなり、第1の通信動作でのパケットロスを容易に低減できる。また、制御回路13は、上記の実行期間T1,T2の時間配分の変化に合わせて、第2の通信動作におけるデータの送信手順を連続送信から順次送信に切り替える。これにより、実行期間T1,T2の時間配分の変化に伴い実行期間T2が減少した時に、第2通信回路12が対向端末3から返信された複数のACKを受信できなくなる可能性を低下させ、第2の通信動作におけるデータの再送の増加を抑制することができる。また、制御回路13は、リアルタイム動作の終了に合わせて、実行期間T1,T2の時間配分を所期状態に戻すと共に、第2の通信動作におけるデータの送信手順を順次送信から連続送信に戻す。これにより、第2の通信動作のスループットが低下する期間を、第1の通信動作においてリアルタイム動作を実行する期間に限定することができ、効率良く通信を行うことができる。
 なお、リアルタイム動作において、制御回路13は、実行期間T2における第2通信回路12からの送信タイミングを、実行期間T2ごとに変化させてもかまわない。このような動作を前述した動作と組み合わせることで、持続的にACKを受信できなくなる状態を避けることができ、第2の通信動作におけるACKの受信確率を向上させることができる。すなわち、第2通信回路12からのデータの再送をさらに抑制することができる。
 また、リアルタイム動作において、制御回路13は、各実行期間T2における第2通信回路12からの送信タイミングと、各送信タイミングに対応するACKの受信可否と、を対応付けて記憶し、対応するACKの受信確率が高い送信タイミングを、第2の通信動作における送信タイミングとして優先的に選択してもよい。このように送信タイミングを選択することにより、第2の通信動作におけるACKの受信確率を向上させることができる。すなわち、第2通信回路12からのデータの再送をさらに抑制することができる。
<第2実施形態>
 第2実施形態に係る通信装置1について、図9及び図10を参照して説明する。本実施形態では、通信装置1は、第2通信回路12が複数の対向端末3と通信する場合の通信方法について説明する。なお、通信装置1のハードウェア構成、通常動作、及びリアルタイム動作は、第1実施形態と同様であるため説明を省略する。
 図9は、通信装置1のリアルタイム動作の一例を示すシーケンス図である。図9の例では、通信装置1の第2通信回路12が、2つの対向端末3A,3Bと通信し、対向端末3A,3Bの順序でデータを送信する場合を想定している。第2通信回路12がこのような順序でデータを送信する場合、図9に示すように、第2通信回路12は、対向端末3AからのACKを常に受信可能であるのに対して、対向端末3BからのACKの1つを受信できないおそれがある。すなわち、対向端末3Aへのデータの再送は発生しないのに対して、対向端末3Bへのデータの再送は発生し得る。
 第2の通信動作におけるデータの複数の対向端末3への送信順序(対向端末3A,3Bのうちのどちらに先にデータを送信するか)が前述した順序に固定されている場合、データの再送は常に対向端末3Bに対して行われることになるため、第2通信回路12と対向端末3Bとの間の通信効率が、第2通信回路12と対向端末3Aとの間の通信効率に比べて低下する。すなわち、対向端末3A,3Bの通信効率に、第2通信回路12からのデータの送信順序に応じた偏りが生じる。これは、第2通信回路12が通信する対向端末3が3つ以上の場合も同様である。
 本実施形態では、このような通信効率の偏りを抑制するために、制御回路13は、第2の通信動作を実行するたびに、第2通信回路12によるデータの送信順序を変更する。制御回路13は、送信順序をランダムに変更してもよいし、所定の規則に従って送信順序を変更してもよい。後者の変更方法として、例えば、今回の送信順序がi番目の対向端末3の次回の送信順序を(i+1)番目に変更する方法が考えられる。この変更方法の場合、今回の送信順序が最後の対向端末3の次回の送信順序は1番目にすればよい。
 以下、本実施形態における通信装置1の動作切替時の動作について説明する。図10は、通信装置1の動作切替時の動作の一例を示すフローチャートである。図10のフローチャートは、図8のフローチャートにおけるステップS203とステップS204との間に、ステップS206を追加したものに相当する。図10の開始時点で、通常動作が実行中であるものとする。
 通常動作の実行中に、第1の通信動作として音声通話が開始すると(ステップS201:YES)、制御回路13は、実行期間T1をデフォルト値より長くし、実行期間T2をデフォルト値より短くする(ステップS202)。すなわち、制御回路13は、実行期間T1をデフォルト値より長い時間に設定し、実行期間T2をデフォルト値より短い期間に設定する。また、制御回路13は、第2通信回路12によるデータの送信手順(連続送信か順次送信か)を連続送信から順次送信に切り替える(ステップS203)。さらに、制御回路13は、複数の対向端末3へのデータの送信順序(2つの対向端末3A,3Bのうちのどちらに先にデータを送信するか)を、前回の送信順序とは異なる送信順序に変更する(ステップS206)。これにより、リアルタイム動作が開始される。以降、ストリーム配信又は音声通話が終了するまで(ステップS204:NO)、通信装置1はリアルタイム動作を継続する。
 第1の通信動作においてリアルタイム動作が終了すると(ステップS204:YES)、制御回路13は、設定を初期状態に戻す(ステップS205)。すなわち、制御回路13は、実行期間T1,T2をデフォルト値に設定し、第2の通信動作におけるデータの送信手順を順次送信から連続送信に戻す。これにより、通常動作が開始される。以降、再びリアルタイム動作が開始するまで、通信装置1は通常動作を継続する。
 以上説明した通り、本実施形態によれば、制御回路13は、共存動作を実行する際に、第1の通信動作におけるリアルタイム動作の開始に合わせて、実行期間T2に対する実行期間T1の比率が初期状態よりも大きくなるように、実行期間T1,T2の時間配分を変化させ、実行期間T1,T2の時間配分の変化に合わせて、第2の通信動作におけるデータの送信手順を連続送信から順次送信に切り替えると共に、複数の対向端末3への送信順序(対向端末3A,3Bのうちのどちらに先にデータを送信するか)を変化させる。これにより、複数の対向端末3の間での通信効率の偏りを抑制し、各対向端末3の通信効率を平均化することができる。
 なお、上記実施形態に挙げた構成等に、その他の要素との組み合わせ等、ここで示した構成に本発明が限定されるものではない。これらの点に関しては、本発明の趣旨を逸脱しない範囲で変更可能であり、その応用形態に応じて適切に定めることができる。
 また、本国際出願は、2018年2月19日に出願した日本国特許出願第2018-027173号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。
1:通信装置
2:対向端末
3,3A,3B:対向端末
11:第1通信回路
12:第2通信回路
13:制御回路
14:アンテナ
15:スイッチ回路

Claims (10)

  1.  第1の無線通信規格により第1の通信動作を実行する第1通信回路と、
     前記第1の無線通信規格とは異なる第2の無線通信規格により第2の通信動作を実行する第2通信回路と、
     前記第1の通信動作及び第2の通信動作を制御する制御回路と、
    を備え、
     前記第1通信回路は、前記第1の通信動作において、リアルタイム性を要求される特定の通信動作を実行可能であり、
     前記制御回路は、
     前記第1の通信動作と前記第2の通信動作とを時分割で交互に実行する共存動作を、前記第1通信回路及び前記第2通信回路に実行させることができ、
     前記共存動作を実行する際に、前記第1の通信動作における前記特定の通信動作の有無に基づいて、前記第1の通信動作と前記第2の通信動作との時間配分を変化させると共に、
     前記時間配分の変化に合わせて、前記第2の通信動作におけるデータの送信手順を変化させる
    通信装置。
  2.  前記特定の通信動作は、ストリーム配信又は音声通話に対応した通信動作である
    請求項1に記載の通信装置。
  3.  前記データの送信手順は、肯定応答の返信を待つことなく複数の前記データを送信する連続送信と、1つの前記データを送信するたびに前記肯定応答の返信を待つ順次送信と、を含み、
     前記制御回路は、前記時間配分の変化に合わせて、前記データの送信手順を、前記連続送信と前記順次送信とのうちの一方から他方に切り替える
    請求項1又は請求項2に記載の通信装置。
  4.  前記制御回路は、
     前記特定の通信動作の開始に合わせて、前記第2の通信動作の実行期間に対する前記第1の通信動作の実行期間の比率が初期状態よりも大きくなるように前記時間配分を変化させると共に、前記時間配分の変化に合わせて、前記データの送信手順を、前記連続送信から前記順次送信に切り替え、
     前記特定の通信動作の終了に合わせて、前記時間配分を前記初期状態に戻すと共に、前記データの送信手順を、前記順次送信から前記連続送信に戻す
    請求項3に記載の通信装置。
  5.  前記第2通信回路は、前記第2の通信動作において、複数の対向端末に対して前記データを送信可能で有り、
     前記制御回路は、前記時間配分の変化に合わせて、前記データの送信手順を変化させると共に、前記複数の対向端末への送信順序を変化させる
    請求項4に記載の通信装置。
  6.  第1の無線通信規格により第1の通信動作を実行する第1通信回路と、
     前記第1の無線通信規格とは異なる第2の無線通信規格により第2の通信動作を実行する第2通信回路と、
     前記第1の通信動作及び第2の通信動作を制御する制御回路と、
    を備えた通信装置の通信方法であって、
     前記第1通信回路は、前記第1の通信動作において、リアルタイム性を要求される特定の通信動作を実行可能であり、
     前記制御回路は、
     前記第1の通信動作と前記第2の通信動作とを時分割で交互に実行する共存動作を、前記第1通信回路及び前記第2通信回路に実行させることができ、
     前記共存動作を実行する際に、前記第1の通信動作における前記特定の通信動作の有無に基づいて、前記第1の通信動作と前記第2の通信動作との時間配分を変化させると共に、
     前記時間配分の変化に合わせて、前記第2の通信動作におけるデータの送信手順を変化させる
    通信方法。
  7.  前記特定の通信動作は、ストリーム配信又は音声通話に対応した通信動作である
    請求項6に記載の通信方法。
  8.  前記データの送信手順は、肯定応答の返信を待つことなく複数の前記データを送信する連続送信と、1つの前記データを送信するたびに前記肯定応答の返信を待つ順次送信と、を含み、
     前記制御回路は、前記時間配分の変化に合わせて、前記データの送信手順を、前記連続送信と前記順次送信とのうちの一方から他方に切り替える
    請求項6又は請求項7に記載の通信方法。
  9.  前記制御回路は、
     前記特定の通信動作の開始に合わせて、前記第2の通信動作の実行期間に対する前記第1の通信動作の実行期間の比率が初期状態よりも大きくなるように前記時間配分を変化させると共に、前記時間配分の変化に合わせて、前記データの送信手順を、前記連続送信から前記順次送信に切り替え、
     前記特定の通信動作の終了に合わせて、前記時間配分を前記初期状態に戻すと共に、前記データの送信手順を、前記順次送信から前記連続送信に戻す
    請求項8に記載の通信方法。
  10.  前記第2通信回路は、前記第2の通信動作において、複数の対向端末に対して前記データを送信可能で有り、
     前記制御回路は、前記時間配分の変化に合わせて、前記データの送信手順を変化させると共に、前記複数の対向端末への送信順序を変化させる
    請求項9に記載の通信方法。
PCT/JP2018/041279 2018-02-19 2018-11-07 通信装置及び通信方法 WO2019159446A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018027173A JP2021064818A (ja) 2018-02-19 2018-02-19 通信装置及び通信方法
JP2018-027173 2018-02-19

Publications (1)

Publication Number Publication Date
WO2019159446A1 true WO2019159446A1 (ja) 2019-08-22

Family

ID=67619023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041279 WO2019159446A1 (ja) 2018-02-19 2018-11-07 通信装置及び通信方法

Country Status (2)

Country Link
JP (1) JP2021064818A (ja)
WO (1) WO2019159446A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11331927A (ja) * 1998-05-12 1999-11-30 Ntt Mobil Commun Network Inc 時分割通信方式の移動通信システムにおける無線チャネルアクセス方法、その方法を使用する基地局及び移動局
US20150024687A1 (en) * 2013-07-22 2015-01-22 Qualcomm Incorporated Systems and methods for coexistence between multiple wireless networks
JP2015508958A (ja) * 2012-01-26 2015-03-23 インターデイジタル パテント ホールディングス インコーポレイテッド Lte共存のための動的パラメータ調整

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11331927A (ja) * 1998-05-12 1999-11-30 Ntt Mobil Commun Network Inc 時分割通信方式の移動通信システムにおける無線チャネルアクセス方法、その方法を使用する基地局及び移動局
JP2015508958A (ja) * 2012-01-26 2015-03-23 インターデイジタル パテント ホールディングス インコーポレイテッド Lte共存のための動的パラメータ調整
US20150024687A1 (en) * 2013-07-22 2015-01-22 Qualcomm Incorporated Systems and methods for coexistence between multiple wireless networks

Also Published As

Publication number Publication date
JP2021064818A (ja) 2021-04-22

Similar Documents

Publication Publication Date Title
US10237193B2 (en) Prioritizing short-range wireless packets for time-sensitive applications
US20190089652A1 (en) Mobile communication system, base station, mobile station, and power-saving transmission and reception method used in them
US8406205B2 (en) Apparatus and method for channel reservation in wireless communication systems
TWI405490B (zh) 處理上鏈路共享通道傳輸的方法及通訊裝置
US20170094677A1 (en) Wi-Fi and Bluetooth Coexistence
US8848676B1 (en) Apparatus and method for coexistent wireless and bluetooth communication employing interruption of arbitration requests to allocate use of a shared antenna
WO2011158467A1 (ja) データ送信装置及びデータ送信方法
CN102656820A (zh) 用于提供具有减小的反馈延迟的通信方案的方法和装置
WO2019159447A1 (ja) 通信装置及び通信方法
WO2019167349A1 (ja) 通信装置及び通信方法
WO2019159446A1 (ja) 通信装置及び通信方法
JP5201498B2 (ja) 無線通信装置及び無線通信方法
US20220294583A1 (en) Enhanced multi-link operation switching mechanisms
WO2022205174A1 (zh) 一种控制定时器的方法及装置、终端设备
US20180239729A1 (en) Increasing media agnostic universal serial bus (ma usb) throughput using multiple parallel tcp connections
JP2020027997A (ja) 通信装置及び通信方法
CN118476314A (zh) 一种无线通信方法及装置、通信设备
JP4634135B2 (ja) 無線通信端末装置及びそのプログラム
TWI674809B (zh) 訊框交換方法
US11329786B2 (en) Communication apparatus, method of controlling communication apparatus, and non-transitory computer-readable storage medium
US20240251347A1 (en) Robustness and power saving for a stereo voice back channel in an extended personal area network
WO2024109556A1 (zh) 一种通信方法及装置
US20240214127A1 (en) Method for data transmission, terminal device, and computer storage medium
JP2019220865A (ja) 通信装置及び通信方法
CN118339919A (zh) 用于在多条链路上实现具有twt的emlsr操作的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP