WO2019159402A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2019159402A1
WO2019159402A1 PCT/JP2018/032414 JP2018032414W WO2019159402A1 WO 2019159402 A1 WO2019159402 A1 WO 2019159402A1 JP 2018032414 W JP2018032414 W JP 2018032414W WO 2019159402 A1 WO2019159402 A1 WO 2019159402A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
air
exchange unit
panel
air conditioner
Prior art date
Application number
PCT/JP2018/032414
Other languages
French (fr)
Japanese (ja)
Inventor
円 上野
政貴 川村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2020500257A priority Critical patent/JPWO2019159402A1/en
Publication of WO2019159402A1 publication Critical patent/WO2019159402A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight

Definitions

  • the present invention relates to an air conditioner.
  • the room air conditioner indoor unit described in Patent Document 1 includes a heat exchanger and a fan.
  • the heat exchanger includes alternating tubes and fins. The refrigerant flowing through the tube exchanges heat with the air passing through the heat exchange section by the suction of the fan.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an air conditioner capable of effectively performing air rectification when air is sent to the outside through an air outlet.
  • the air conditioner includes a fan and a first heat exchange unit.
  • the fan sucks air and sends the sucked air to the outside through the air outlet.
  • a 1st heat exchange part is located downstream of the flow of the air rather than the fan, and performs heat exchange.
  • the first heat exchange unit includes a plurality of flat tubes, a first header tube, and a second header tube. Each of the plurality of flat tubes extends along the first direction, and the plurality of flat tubes are arranged along a second direction orthogonal to the first direction.
  • the first header pipe is connected to one end of the plurality of flat pipes in the first direction, and extends along a predetermined direction orthogonal to the first direction.
  • the second header pipe is connected to the other end of the plurality of flat pipes in the first direction and extends along the predetermined direction.
  • the first heat exchange unit faces the blower outlet.
  • an air conditioner that can effectively rectify air when air is sent to the outside through the air outlet.
  • FIG. 1 is a schematic cross-sectional view showing an air conditioner according to Embodiment 1.
  • FIG. It is a front view which shows the 1st heat exchange part of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a typical sectional view showing the state at the time of air conditioning of the air harmony machine concerning Embodiment 1.
  • It is typical sectional drawing which shows the air conditioner which concerns on Embodiment 2 of this invention.
  • FIG. It is typical sectional drawing which shows the air conditioner which concerns on Embodiment 3 of this invention.
  • the X axis and the Y axis are substantially parallel to the horizontal direction
  • the Z axis is substantially parallel to the vertical direction
  • the X axis, the Y axis, and the Z axis are orthogonal to each other.
  • the positive direction of the Z axis indicates the upward direction
  • the negative direction of the Z axis indicates the downward direction.
  • FIG. 1 is a perspective view showing an air conditioner 100.
  • the air conditioner 100 performs air conditioning.
  • the air conditioner 100 is an indoor unit. Therefore, the air conditioner 100 is installed indoors.
  • the air conditioner 100 is connected to the outdoor unit by piping. And a refrigerant
  • coolant circulates between the air conditioner 100 and an outdoor unit through piping.
  • the outdoor unit is installed outside the room.
  • the outdoor unit includes a fan, a compressor, a heat exchanger, and various components such as a four-way valve.
  • the air conditioner 100 includes a housing 1 and a panel 3.
  • the panel 3 is supported by the housing 1 so that the posture of the panel 3 can be changed with respect to the housing 1.
  • the panel 3 is substantially plate-shaped and is curved in a convex shape toward the housing 1.
  • the panel 3 has a cross-sectional arch shape.
  • FIG. 2 is a schematic cross-sectional view showing the air conditioner 100.
  • the casing 1 of the air conditioner 100 has an inlet 9 and an outlet 11.
  • the suction port 9 is located at the lower part of the housing 1 and opens toward the lower side of the housing 1.
  • the suction port 9 may be located at an upper portion of the housing 1 and open upward from the housing 1.
  • casing 1 may have the suction inlet 9 in both the lower part and upper part of a housing
  • the air outlet 11 opens in a direction different from the direction in which the suction port 9 is directed. In the first embodiment, the air outlet 11 opens toward the panel 3. In other words, the panel 3 is arrange
  • the air conditioner 100 further includes a fan 5 and a first heat exchange unit 7.
  • the fan 5 and the first heat exchange unit 7 are accommodated in the housing 1.
  • the fan 5 sucks the air A1 through the suction port 9 and sends out the sucked air A1 to the outside through the air outlet 11.
  • the fan 5 is a substantially cylindrical cross flow fan. Specifically, the fan 5 sends out the sucked air A ⁇ b> 1 toward the first heat exchange unit 7.
  • the 1st heat exchange part 7 rectifies
  • the first heat exchange unit 7 performs heat exchange. Specifically, the first heat exchange unit 7 exchanges thermal energy between air and the refrigerant.
  • the 1st heat exchange part 7 is a parallel flow type heat exchanger.
  • FIG. 3 is a front view showing the first heat exchange unit 7.
  • the first heat exchange unit 7 includes a plurality of flat tubes 21, a first header tube 23L, and a second header tube 23R.
  • Each of the plurality of flat tubes 21 extends along the first direction D1 and is aligned along the second direction D2.
  • the second direction D2 is orthogonal to the first direction D1.
  • Each of the plurality of flat tubes 21 has a plurality of refrigerant channels 21a.
  • the refrigerant flows through the refrigerant flow path 21a.
  • the plurality of refrigerant channels 21 a are arranged in a straight line in the width direction of the flat tubes 21 (hereinafter referred to as “width direction WD”).
  • the width direction WD of the flat tube 21 is a direction orthogonal to both the first direction D1 and the second direction D2.
  • the refrigerant flow path 21a extends along the first direction D1. Since FIG. 3 is a front view, the refrigerant flow path 21a does not appear in FIG.
  • the flat tube 21 has a pair of main surfaces 210 and a pair of curved surfaces 211.
  • the pair of main surfaces 210 face each other via the refrigerant flow path 21a and are orthogonal to the second direction D2.
  • the main surface 210 is a flat surface.
  • the pair of curved surfaces 211 oppose each other via the refrigerant flow path 21a.
  • the curved surface 211 is curved in a convex shape toward the outside of the flat tube 21.
  • the first header pipe 23L and the second header pipe 23R are arranged substantially in parallel.
  • the first header tube 23L is connected to one end of the plurality of flat tubes 21 in the first direction D1, and extends along the predetermined direction PD.
  • the predetermined direction PD is orthogonal to the first direction D1 and substantially parallel to the second direction D2.
  • the first header pipe 23L includes a refrigerant inflow portion 23a, a refrigerant outflow portion 23b, and a refrigerant flow path (not shown).
  • the refrigerant inflow portion 23a is disposed at one end of the first header pipe 23L in the predetermined direction PD.
  • the refrigerant outflow portion 23b is disposed at the other end portion in the predetermined direction PD of the first header pipe 23L.
  • the refrigerant flow path of the first header pipe 23L extends along the predetermined direction PD, and is connected to one end of the refrigerant flow path 21a of the flat pipe 21 in the first direction D1.
  • the second header tube 23R is connected to the other end of the plurality of flat tubes 21 in the first direction D1, and extends along the predetermined direction PD.
  • the second header pipe 23R has a refrigerant flow path (not shown).
  • the refrigerant flow path of the second header pipe 23R extends along the predetermined direction PD and is connected to the other end of the refrigerant flow path 21a of the flat pipe 21 in the first direction D1.
  • the refrigerant flowing in from the refrigerant inflow portion 23a flows through the refrigerant flow path of the first header pipe 23L, the refrigerant flow path 21a of the flat tube 21, and the refrigerant flow path of the second header pipe 23R, and flows out of the refrigerant outflow portion 23b. .
  • the first heat exchange unit 7 may further include a plurality of corrugated fins 25.
  • Each of the plurality of corrugated fins 25 is disposed between the flat tubes 21 adjacent to each other in the second direction D2.
  • Each of the plurality of corrugated fins 25 has a shape bent into a waveform.
  • the first heat exchange unit 7 is disposed between the fan 5 and the air outlet 11. Specifically, the first heat exchange unit 7 is located downstream of the air flow with respect to the fan 5. And the 1st heat exchange part 7 has faced the blower outlet 11. FIG. Therefore, when sending air out of the housing 1 through the air outlet 11, the plurality of flat tubes 21 can rectify the air. That is, each of the plurality of flat tubes 21 functions as a blade that rectifies air, and the plurality of flat tubes 21 functions as a louver. As a result, according to the first embodiment, the air conditioner 100 can effectively rectify the air when the air is sent to the outside through the air outlet 11. In particular, in Embodiment 1, the 1st heat exchange part 7 is suitable for the panel through the blower outlet 11. FIG.
  • the pair of main surfaces 210 of each of the plurality of flat tubes 21 rectifies the air A1 and sends the rectified air A2 toward the outlet 11.
  • the curved surface 211 located upstream of the air flow is curved in a convex shape toward the upstream of the air flow. Therefore, air can be effectively rectified by the flat tube 21 while reducing the flow resistance by the flat tube 21.
  • the first heat exchange unit 7 will be described in further detail with reference to FIGS. 2 and 3.
  • the 1st heat exchange part 7 is a parallel flow type heat exchanger of a side flow type. Accordingly, the first direction D1 in which the flat tube 21 extends is substantially parallel to the horizontal direction. That is, each of the plurality of flat tubes 21 extends in the horizontal direction. Therefore, according to the first embodiment, air can be rectified in the vertical direction (specifically, the vertical direction) by the plurality of flat tubes 21.
  • the flat tube 21 when the flat tube 21 is viewed from the first direction D1 (FIG. 3), the flat tube 21 is inclined with respect to the horizontal direction HD. Therefore, according to the first embodiment, the plurality of flat tubes 21 can rectify the air A1 and send out the air A2 in a direction inclined with respect to the horizontal direction HD. In addition, the flow resistance of the panel 3 to the air A2 can be reduced as compared with the case where the air A2 is sent in the horizontal direction HD and hits the panel 3.
  • the flat tube 21 is inclined toward the outlet 11 toward the lower side with respect to the horizontal direction HD. Therefore, the flat tube 21 can send out the air A2 in a direction inclined downward toward the outlet 11 with respect to the horizontal direction HD.
  • the inclination of the flat tube 21 is suitable for the air conditioner 100 during heating operation for sending warm air into the room. Further, part of the air A ⁇ b> 2 rectified by the plurality of flat tubes 21 is sent out downward of the panel 3 by the panel 3. Therefore, the room can be warmed more effectively.
  • the flat tube 21 is inclined toward the outlet 11 toward the lower side by an inclination angle ⁇ a with respect to the horizontal direction HD.
  • the inclination angle ⁇ a is preferably smaller than 45 degrees. This is because, for example, water droplets condensed by the flat tube 21 can be prevented from falling during the cooling operation, and the water droplets can be easily discharged along the corrugated fins 25.
  • the inclination angle ⁇ a is more preferably 5 degrees or more and 10 degrees or less. For example, water droplets condensed by the flat tube 21 can be effectively discharged along the corrugated fins 25 during cooling operation. Further, if the inclination angle ⁇ a is too large, for example, it may be difficult to send air upward during cooling operation.
  • the width direction WD of the flat tube 21 and the direction in which the first header tube 23L and the second header tube 23R extend are substantially orthogonal to each other.
  • the first header pipe 23L and the second header pipe 23R are viewed from the first direction D1 (FIG. 3)
  • the first header pipe 23L and the second header pipe 23R are directed downward with respect to the vertical direction VD.
  • the first header pipe 23L and the second header pipe 23R are inclined toward the air outlet 11 toward the lower side by the inclination angle ⁇ b with respect to the vertical direction VD.
  • the inclination angle ⁇ b is substantially the same as the inclination angle ⁇ a.
  • the panel 3 takes the attitude
  • the inclination angle ⁇ 1 of the flat tube 21 with respect to the vertical downward direction DD is the inclination of the panel 3 with respect to the vertical downward direction DD. It is larger than the angle ⁇ 2. Therefore, the air A2 sent out from the first heat exchange unit 7 can be effectively applied to the panel 3. As a result, air can be effectively sent out below the panel 3 by the panel 3 during the heating operation.
  • the inclination angle ⁇ 1 is, for example, the maximum angle that the panel 3 can take during heating operation.
  • the inclination angle ⁇ 1 is smaller than the inclination angle ⁇ 2, the amount of air that strikes the panel 3 decreases, and the amount of air that can be sent downward may decrease. Further, since the inclination angle ⁇ 1 is large, the flow path resistance against the air A1 by the flat tube 21 can be reduced.
  • the inclination angle ⁇ 2 is an acute angle
  • the air A2 sent out from the first heat exchange unit 7 can be applied to the panel 3 more effectively.
  • the panel 3 can more effectively send out the air A3 below the panel 3.
  • FIG. 4 is a schematic cross-sectional view showing a state of the air conditioner 100 during cooling.
  • the panel 3 takes a posture during cooling operation. That is, the panel 3 is inclined with respect to the vertical direction VD so that the upper end of the panel 3 is located on the side far from the air outlet 11 and the lower end of the panel 3 is located on the side closer to the air outlet 11. . Therefore, at the time of cooling operation, the panel 3 sends the air A2 sent from the blower outlet 11 through the first heat exchange unit 7 to the upper side of the panel 3. That is, the panel 3 changes the blowing direction of the air A ⁇ b> 2 sent out from the first heat exchange unit 7 and sends out the air A ⁇ b> 4 whose blowing direction has changed to the upper side of the panel 3.
  • the air A4 cooled during the cooling operation is placed above the panel 3 even though the flat tube 21 is inclined downward toward the blowout outlet 11 with respect to the horizontal direction HD. Can be sent out. That is, air can be sent out in an appropriate direction according to the operating state both during the cooling operation and during the heating operation (FIG. 2).
  • the inclination angle ⁇ 3 of the panel 3 with respect to the vertical upward direction UD is an acute angle. Therefore, the air A2 sent out from the first heat exchange unit 7 can be effectively applied to the panel 3. As a result, the air A4 can be effectively sent out above the panel 3 by the panel 3 during the cooling operation.
  • Embodiment 2 With reference to FIG.5 and FIG.6, the air conditioner 100A which concerns on Embodiment 2 of this invention is demonstrated.
  • the second embodiment is mainly different from the first embodiment in that the air conditioner 100A according to the second embodiment further includes a second heat exchange unit 31 in addition to the first heat exchange unit 7.
  • the points of the second embodiment different from the first embodiment will be mainly described.
  • FIG. 5 is a schematic cross-sectional view showing the air conditioner 100A.
  • the air conditioner 100 ⁇ / b> A further includes a second heat exchange unit 31 in addition to the configuration of the air conditioner 100 described with reference to FIG. 2.
  • the second heat exchange unit 31 performs heat exchange. Specifically, the second heat exchange unit 31 exchanges thermal energy between air and the refrigerant.
  • the 2nd heat exchange part 31 is a fin and tube type heat exchanger.
  • the second heat exchange unit 31 is accommodated in the housing 1.
  • the second heat exchange unit 31 is disposed between the fan 5 and the first heat exchange unit 7.
  • the second heat exchange unit 31 is located downstream of the air flow with respect to the fan 5.
  • the 1st heat exchange part 7 is located in the downstream of the flow of air rather than the 2nd heat exchange part 31.
  • the fan 5 sends out the air A1 sucked from the suction port 9 toward the first heat exchange unit 7 through the second heat exchange unit 31. Therefore, the air A ⁇ b> 1 passes through the second heat exchange unit 31 and flows into the first heat exchange unit 7. And the 1st heat exchange part 7 rectifies the air A1 which passed the 2nd heat exchange part 31, and sends out the rectified air A2 to the exterior of the housing
  • the first heat exchange unit 7 since the first heat exchange unit 7 is located downstream of the second heat exchange unit 31 in the air flow, the first heat exchange unit 7 is in the air flow more than the second heat exchange unit 31. Compared with the case where it is located upstream, air A2 can be sent out toward the blower outlet 11, suppressing the change of the flow of air A2 after rectification.
  • the 1st heat exchange part 7 when the 1st heat exchange part 7 is located in the upstream of the flow of air rather than the 2nd heat exchange part 31, the flow of the air A2 after rectification may change with the 2nd heat exchange part 31. obtain.
  • the air conditioner 100A includes two heat exchange units (the first heat exchange unit 7 and the second heat exchange unit 31), and therefore, compared with a case where one heat exchange unit is provided. Thus, heat exchange can be performed effectively.
  • FIG. 6 is a front view showing the second heat exchange unit 31.
  • the second heat exchange unit 31 includes a tube 33 and a plurality of flat fins 35.
  • Each of the plurality of fins 35 extends along the third direction D3 and is aligned along the fourth direction D4.
  • the fourth direction D4 is orthogonal to the third direction D3.
  • the third direction D3 and the first direction D1 (FIG. 3) are substantially orthogonal to each other.
  • the third direction D3 and the second direction D2 (FIG. 3) are substantially parallel to each other.
  • the fourth direction D4 and the first direction D1 (FIG. 3) are substantially parallel to each other. Therefore, in the second embodiment, the fourth direction D4 is substantially parallel to the horizontal direction.
  • the fin 35 When the fin 35 is viewed from the fourth direction D4 (FIG. 6), the fin 35 has a substantially rectangular shape.
  • the pipe 33 penetrates the plurality of fins in the fourth direction D4 and meanders.
  • the pipe 33 has a refrigerant flow path 33a.
  • the refrigerant flows through the refrigerant flow path 33a.
  • the refrigerant flow path 33 a meanders along the pipe 33.
  • the pipe 33 has a refrigerant inflow portion 33b and a refrigerant outflow portion 33c.
  • the refrigerant flowing in from the refrigerant inflow portion 33b flows through the refrigerant flow path 33a and flows out from the refrigerant outflow portion 33c.
  • the refrigerant outflow portion 33 c of the pipe 33 is connected to the refrigerant inflow portion 23 a (FIG. 3) of the first header pipe 23 ⁇ / b> L of the first heat exchange unit 7. Since FIG. 6 is a front view, the refrigerant flow path 33a does not appear in FIG.
  • the first heat exchange unit 7 and the second heat exchange unit 31 will be described with reference to FIG. As shown in FIG. 5, the 1st heat exchange part 7 and the 2nd heat exchange part 31 are arrange
  • the distance between the first heat exchange unit 7 and the second heat exchange unit 31, that is, the distance between the flat tube 21 and the fin 35, is that water droplets attached to the flat tube 21 move to the fin 35 due to surface tension. The distance that can be obtained. Further, since the flat tube 21 and the fins 35 are not in contact with each other, it is possible to suppress the generation of sound due to the contact between the flat tube 21 and the fins 35. The flat tube 21 and the fins 35 may be in contact with each other.
  • first heat exchange unit 7 and the second heat exchange unit 31 are arranged close to each other so as to be substantially parallel to each other, the first heat exchange unit 7 and the second heat exchange unit 31 are connected to the housing.
  • the work of fixing to the body 1 is easy. Furthermore, it is possible to suppress the generation of a useless space between the first heat exchange unit 7 and the second heat exchange unit 31, and it is possible to reduce the size of the air conditioner 100A.
  • the width W1 in the longitudinal direction of the flat tube 21 is greater than the width W2 in the short direction of the fin 35. Is also big. Therefore, the width W2 can be reduced and the flow resistance against the air A1 by the fins 35 can be reduced, and the width W1 can be increased to improve the rectification action on the air A1 by the flat tube 21.
  • Embodiment 3 With reference to FIG. 7, the air conditioner 100B which concerns on Embodiment 3 of this invention is demonstrated.
  • the third embodiment is mainly different from the first embodiment in that the flat tube 21 of the air conditioner 100B according to the third embodiment is inclined with respect to the first header tube 23L and the second header tube 23R.
  • the points of the third embodiment different from the first embodiment will be mainly described.
  • FIG. 7 is a schematic cross-sectional view showing the air conditioner 100B.
  • the first header pipe 23L and the second header pipe 23R extend along the predetermined direction PD.
  • the predetermined direction PD is orthogonal to the first direction D1 and substantially parallel to the vertical direction VD.
  • the flat tube 21 is inclined with respect to the first header tube 23L and the second header tube 23R.
  • the flat tube 21 is inclined with respect to the horizontal direction HD. More specifically, the flat tube 21 is inclined toward the outlet 11 toward the lower side with respect to the horizontal direction HD. More specifically, the flat tube 21 is inclined to the outlet 11 side downward by an inclination angle ⁇ a with respect to the horizontal direction HD.
  • the air A1 can be rectified by the flat tube 21 while facilitating the installation work of the first heat exchange unit 7 on the housing 1.
  • the air conditioner 100B may include the second heat exchange unit 31 illustrated in FIG.
  • the second heat exchange unit 31 is installed in the housing 1 such that the fins 35 extend along the vertical direction VD.
  • the flat tube 21 is inclined toward the outlet 11 toward the upper side with respect to the horizontal direction HD. May be. Therefore, the air A2 can be sent out in a direction inclined upward toward the air outlet 11 with respect to the horizontal direction HD.
  • the inclination of the flat tube 21 is suitable for the air conditioners 100, 100 ⁇ / b> A, 100 ⁇ / b> B during the cooling operation for sending cold air into the room.
  • a part of the air A ⁇ b> 2 rectified by the plurality of flat tubes 21 is sent out upward of the panel 3 by the panel 3. Therefore, the room can be cooled more effectively.
  • the flat tube 21 may be inclined toward the outlet 11 side upward by an inclination angle ⁇ a with respect to the horizontal direction HD.
  • the inclination angle ⁇ a is preferably smaller than 45 degrees. More preferably, the inclination angle ⁇ a is not less than 5 degrees and not more than 10 degrees.
  • the panel 3 may be flat without being curved.
  • the panel 3 may be curved in a convex shape in a direction away from the housing 1.
  • the flat tube 21 when the flat tube 21 is viewed from the front, the flat tube 21 may be inclined with respect to the horizontal direction. In this case, it is preferable that a drain outlet for discharging water droplets attached to the flat tube 21 is disposed on the inclined lower side of the flat tube 21. This is because water droplets easily flow toward the drain outlet.
  • “Front view” indicates that the flat tube 21 is viewed from a direction orthogonal to both the first direction D1 and the second direction D2, as shown in FIG.
  • the first heat exchange unit 7 may be a down flow type parallel flow heat exchanger.
  • the air can be rectified in the vertical direction (specifically, the vertical direction) by the plurality of corrugated fins 25.
  • air can be rectified in the horizontal direction (specifically, the left-right direction) by the plurality of flat tubes 21.
  • the first heat exchange unit 7 and the second heat exchange unit 31 may not be arranged substantially in parallel.
  • the second heat exchange unit 31 may be a parallel flow type heat exchanger similar to the first heat exchange unit 7 (for example, a side flow type parallel flow type heat exchanger).
  • the first heat exchange unit 7 may be located upstream of the second heat exchange unit 31 in the air flow.
  • the present invention provides an air conditioner and has industrial applicability.

Abstract

An air conditioner (100) comprises a fan (5) and a first heat exchange unit (7). The fan (5) sucks in air and sends the sucked air to the outside through an air outlet (11). The first heat exchange unit (7) is located downstream of the fan (5) in the flow of air and exchanges heat. The first heat exchange unit (7) includes a plurality of flat tubes (21), a first header pipe (23L), and a second header pipe (23R). Each of the plurality of flat tubes (21) extends along a first direction (D1), and the plurality of flat tubes (21) is arranged side by side along a second direction (D2) orthogonal to the first direction (D1). The first header pipe (23L) is connected to one ends of the plurality of flat pipes (21) in the first direction (D1) and extends along a predetermined direction (PD). The second header pipe (23R) is connected to the other ends of the plurality of flat pipes (21) in the first direction (D1) and extends along the predetermined direction (PD). The first heat exchange unit (7) faces the air outlet (11).

Description

空気調和機Air conditioner
 本発明は、空気調和機に関する。 The present invention relates to an air conditioner.
 特許文献1に記載されたルームエアコン用室内機は、熱交換器と、ファンとを備える。熱交換器は、交互に配置されるチューブとフィンとを含む。チューブを流れる冷媒は、ファンの吸入力によって熱交換部と交差して流通する空気と熱交換を行う。 The room air conditioner indoor unit described in Patent Document 1 includes a heat exchanger and a fan. The heat exchanger includes alternating tubes and fins. The refrigerant flowing through the tube exchanges heat with the air passing through the heat exchange section by the suction of the fan.
特許第2901338号公報Japanese Patent No. 2901338
 しかしながら、特許文献1に記載されたルームエアコン用室内機では、熱交換器は、ファンよりも空気の流れの上流に配置される。従って、熱交換器は、ファンによって吹出口を通して外部に空気を送り出す際に、空気の整流に寄与することができない。一方、ルームエアコン用室内機において外部に空気を送り出す際に、空気の整流を効果的に実現することが要望されている。 However, in the indoor unit for room air conditioner described in Patent Document 1, the heat exchanger is arranged upstream of the air flow than the fan. Therefore, the heat exchanger cannot contribute to air rectification when air is sent to the outside through the air outlet by the fan. On the other hand, when air is sent to the outside in an indoor unit for room air conditioners, it is desired to effectively realize air rectification.
 本発明は上記課題に鑑みてなされたものであり、その目的は、吹出口を通して外部に空気を送り出す際に、空気の整流を効果的に行うことのできる空気調和機を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an air conditioner capable of effectively performing air rectification when air is sent to the outside through an air outlet.
 本発明の一局面によれば、空気調和機は、ファンと、第1熱交換部とを備える。ファンは、空気を吸い込み、吸い込んだ前記空気を、吹出口を通して外部に送り出す。第1熱交換部は、前記ファンよりも、前記空気の流れの下流に位置し、熱交換を行う。前記第1熱交換部は、複数の扁平管と、第1ヘッダ管と、第2ヘッダ管とを含む。複数の扁平管の各々が第1方向に沿って延びており、複数の扁平管が前記第1方向に直交する第2方向に沿って並んでいる。第1ヘッダ管は、前記複数の扁平管の前記第1方向の一端に接続され、前記第1方向に直交する所定方向に沿って延びる。第2ヘッダ管は、前記複数の扁平管の前記第1方向の他端に接続され、前記所定方向に沿って延びる。前記第1熱交換部は、前記吹出口を向いている。 According to one aspect of the present invention, the air conditioner includes a fan and a first heat exchange unit. The fan sucks air and sends the sucked air to the outside through the air outlet. A 1st heat exchange part is located downstream of the flow of the air rather than the fan, and performs heat exchange. The first heat exchange unit includes a plurality of flat tubes, a first header tube, and a second header tube. Each of the plurality of flat tubes extends along the first direction, and the plurality of flat tubes are arranged along a second direction orthogonal to the first direction. The first header pipe is connected to one end of the plurality of flat pipes in the first direction, and extends along a predetermined direction orthogonal to the first direction. The second header pipe is connected to the other end of the plurality of flat pipes in the first direction and extends along the predetermined direction. The first heat exchange unit faces the blower outlet.
 本発明によれば、吹出口を通して外部に空気を送り出す際に、空気の整流を効果的に行うことのできる空気調和機を提供できる。 According to the present invention, it is possible to provide an air conditioner that can effectively rectify air when air is sent to the outside through the air outlet.
本発明の実施形態1に係る空気調和機を示す斜視図である。It is a perspective view which shows the air conditioner which concerns on Embodiment 1 of this invention. 実施形態1に係る空気調和機を示す模式的断面図である。1 is a schematic cross-sectional view showing an air conditioner according to Embodiment 1. FIG. 実施形態1に係る空気調和機の第1熱交換部を示す正面図である。It is a front view which shows the 1st heat exchange part of the air conditioner which concerns on Embodiment 1. FIG. 実施形態1に係る空気調和機の冷房時の状態を示す模式的断面図である。It is a typical sectional view showing the state at the time of air conditioning of the air harmony machine concerning Embodiment 1. 本発明の実施形態2に係る空気調和機を示す模式的断面図である。It is typical sectional drawing which shows the air conditioner which concerns on Embodiment 2 of this invention. 実施形態2に係る空気調和機の第2熱交換部を示す正面図である。It is a front view which shows the 2nd heat exchange part of the air conditioner which concerns on Embodiment 2. FIG. 本発明の実施形態3に係る空気調和機を示す模式的断面図である。It is typical sectional drawing which shows the air conditioner which concerns on Embodiment 3 of this invention.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、図中、同一または相当部分については同一の参照符号を付して説明を繰り返さない。また、実施形態において、X軸及びY軸は水平方向に略平行であり、Z軸は鉛直方向に略平行であり、X軸とY軸とZ軸とは互いに直交する。Z軸の正方向は上方向を示し、Z軸の負方向は下方向を示す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof is not repeated. In the embodiment, the X axis and the Y axis are substantially parallel to the horizontal direction, the Z axis is substantially parallel to the vertical direction, and the X axis, the Y axis, and the Z axis are orthogonal to each other. The positive direction of the Z axis indicates the upward direction, and the negative direction of the Z axis indicates the downward direction.
 (実施形態1)
 図1~図4を参照して、本発明の実施形態1に係る空気調和機100を説明する。まず、図1を参照して、空気調和機100を説明する。図1は、空気調和機100を示す斜視図である。空気調和機100は空気調和を行う。
(Embodiment 1)
An air conditioner 100 according to Embodiment 1 of the present invention will be described with reference to FIGS. First, the air conditioner 100 will be described with reference to FIG. FIG. 1 is a perspective view showing an air conditioner 100. The air conditioner 100 performs air conditioning.
 図1に示すように、空気調和機100は室内機である。従って、空気調和機100は室内に設置される。なお、空気調和機100は、配管によって室外機と接続される。そして、配管を通して、空気調和機100と室外機との間で冷媒が循環する。室外機は室外に設置される。室外機は、ファンと、圧縮機と、熱交換器と、四方弁のような各種部品とを備える。 As shown in FIG. 1, the air conditioner 100 is an indoor unit. Therefore, the air conditioner 100 is installed indoors. The air conditioner 100 is connected to the outdoor unit by piping. And a refrigerant | coolant circulates between the air conditioner 100 and an outdoor unit through piping. The outdoor unit is installed outside the room. The outdoor unit includes a fan, a compressor, a heat exchanger, and various components such as a four-way valve.
 空気調和機100は、筐体1と、パネル3とを備える。パネル3の姿勢が筐体1に対して変更可能なように、パネル3は筐体1に支持される。パネル3は、略板状であり、筐体1に向かって凸状に湾曲している。パネル3は、断面視弓状である。 The air conditioner 100 includes a housing 1 and a panel 3. The panel 3 is supported by the housing 1 so that the posture of the panel 3 can be changed with respect to the housing 1. The panel 3 is substantially plate-shaped and is curved in a convex shape toward the housing 1. The panel 3 has a cross-sectional arch shape.
 次に、図2を参照して、空気調和機100の内部構造を説明する。図2は、空気調和機100を示す模式的断面図である。図2に示すように、空気調和機100の筐体1は、吸入口9と、吹出口11とを有する。吸入口9は、筐体1の下部に位置し、筐体1の下方に向けて開口している。なお、吸入口9は、筐体1の上部に位置して、筐体1の上方に向けて開口していてもよい。また、筐体1は、筐体の下部と上部との双方に吸入口9を有していてもよい。吹出口11は、吸入口9の向いている方向と異なる方向に向けて開口している。実施形態1では、吹出口11は、パネル3に向けて開口している。換言すれば、パネル3は、吹出口11に面するように配置される。 Next, the internal structure of the air conditioner 100 will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view showing the air conditioner 100. As shown in FIG. 2, the casing 1 of the air conditioner 100 has an inlet 9 and an outlet 11. The suction port 9 is located at the lower part of the housing 1 and opens toward the lower side of the housing 1. Note that the suction port 9 may be located at an upper portion of the housing 1 and open upward from the housing 1. Moreover, the housing | casing 1 may have the suction inlet 9 in both the lower part and upper part of a housing | casing. The air outlet 11 opens in a direction different from the direction in which the suction port 9 is directed. In the first embodiment, the air outlet 11 opens toward the panel 3. In other words, the panel 3 is arrange | positioned so that the blower outlet 11 may be faced.
 空気調和機100は、ファン5と、第1熱交換部7とをさらに備える。ファン5及び第1熱交換部7は筐体1に収容される。ファン5は、吸入口9を通して、空気A1を吸い込み、吸い込んだ空気A1を、吹出口11を通して外部に送り出す。実施形態1では、ファン5は、略円柱状のクロスフローファンである。具体的には、ファン5は、吸い込んだ空気A1を第1熱交換部7に向けて送り出す。そして、第1熱交換部7は、ファン5の送り出した空気A1を整流して、整流後の空気A2を吹出口11から筐体1の外部に送り出す。実施形態1では、第1熱交換部7は、吹出口11を通して、空気A2をパネル3に向けて送り出す。 The air conditioner 100 further includes a fan 5 and a first heat exchange unit 7. The fan 5 and the first heat exchange unit 7 are accommodated in the housing 1. The fan 5 sucks the air A1 through the suction port 9 and sends out the sucked air A1 to the outside through the air outlet 11. In the first embodiment, the fan 5 is a substantially cylindrical cross flow fan. Specifically, the fan 5 sends out the sucked air A <b> 1 toward the first heat exchange unit 7. And the 1st heat exchange part 7 rectifies | straightens the air A1 which the fan 5 sent out, and sends out the rectified air A2 to the exterior of the housing | casing 1 from the blower outlet 11. FIG. In Embodiment 1, the 1st heat exchange part 7 sends out air A2 toward the panel 3 through the blower outlet 11. As shown in FIG.
 第1熱交換部7は熱交換を行う。具体的には、第1熱交換部7は、空気と冷媒との間で熱エネルギーを交換する。実施形態1では、第1熱交換部7はパラレルフロー型熱交換器である。 The first heat exchange unit 7 performs heat exchange. Specifically, the first heat exchange unit 7 exchanges thermal energy between air and the refrigerant. In Embodiment 1, the 1st heat exchange part 7 is a parallel flow type heat exchanger.
 次に、図2及び図3を参照して、第1熱交換部7を詳細に説明する。図3は、第1熱交換部7を示す正面図である。図2及び図3に示すように、第1熱交換部7は、複数の扁平管21と、第1ヘッダ管23Lと、第2ヘッダ管23Rとを含む。複数の扁平管21の各々は、第1方向D1に沿って延びており、第2方向D2に沿って並んでいる。第2方向D2は第1方向D1に直交する。 Next, the first heat exchange unit 7 will be described in detail with reference to FIGS. FIG. 3 is a front view showing the first heat exchange unit 7. As shown in FIGS. 2 and 3, the first heat exchange unit 7 includes a plurality of flat tubes 21, a first header tube 23L, and a second header tube 23R. Each of the plurality of flat tubes 21 extends along the first direction D1 and is aligned along the second direction D2. The second direction D2 is orthogonal to the first direction D1.
 複数の扁平管21の各々は、複数の冷媒流路21aを有する。冷媒は冷媒流路21aを流れる。複数の扁平管21の各々において、複数の冷媒流路21aは、扁平管21の幅方向(以下、「幅方向WD」と記載する。)に一直線に並んでいる。扁平管21の幅方向WDは、第1方向D1と第2方向D2との双方に直交する方向である。冷媒流路21aは、第1方向D1に沿って延びている。なお、図3は正面図であるため、冷媒流路21aは図3には表れていない。 Each of the plurality of flat tubes 21 has a plurality of refrigerant channels 21a. The refrigerant flows through the refrigerant flow path 21a. In each of the plurality of flat tubes 21, the plurality of refrigerant channels 21 a are arranged in a straight line in the width direction of the flat tubes 21 (hereinafter referred to as “width direction WD”). The width direction WD of the flat tube 21 is a direction orthogonal to both the first direction D1 and the second direction D2. The refrigerant flow path 21a extends along the first direction D1. Since FIG. 3 is a front view, the refrigerant flow path 21a does not appear in FIG.
 扁平管21は、一対の主面210と、一対の湾曲面211とを有する。一対の主面210は、冷媒流路21aを介して互いに対向し、第2方向D2に直交する。主面210は平坦面である。一対の湾曲面211は、冷媒流路21aを介して互いに対向する。湾曲面211は、扁平管21の外部に向かって凸状に湾曲している。 The flat tube 21 has a pair of main surfaces 210 and a pair of curved surfaces 211. The pair of main surfaces 210 face each other via the refrigerant flow path 21a and are orthogonal to the second direction D2. The main surface 210 is a flat surface. The pair of curved surfaces 211 oppose each other via the refrigerant flow path 21a. The curved surface 211 is curved in a convex shape toward the outside of the flat tube 21.
 第1ヘッダ管23Lと第2ヘッダ管23Rとは、実質的に平行に配置される。第1ヘッダ管23Lは、複数の扁平管21の第1方向D1の一端に接続され、所定方向PDに沿って延びる。実施形態1では、所定方向PDは、第1方向D1に直交し、第2方向D2と実質的に平行である。第1ヘッダ管23Lは、冷媒流入部23aと、冷媒流出部23bと、冷媒流路(不図示)とを有する。冷媒流入部23aは、第1ヘッダ管23Lの所定方向PDの一端部に配置される。冷媒流出部23bは、第1ヘッダ管23Lの所定方向PDの他端部に配置される。第1ヘッダ管23Lの冷媒流路は、所定方向PDに沿って延びており、扁平管21の冷媒流路21aの第1方向D1の一端と接続される。 The first header pipe 23L and the second header pipe 23R are arranged substantially in parallel. The first header tube 23L is connected to one end of the plurality of flat tubes 21 in the first direction D1, and extends along the predetermined direction PD. In the first embodiment, the predetermined direction PD is orthogonal to the first direction D1 and substantially parallel to the second direction D2. The first header pipe 23L includes a refrigerant inflow portion 23a, a refrigerant outflow portion 23b, and a refrigerant flow path (not shown). The refrigerant inflow portion 23a is disposed at one end of the first header pipe 23L in the predetermined direction PD. The refrigerant outflow portion 23b is disposed at the other end portion in the predetermined direction PD of the first header pipe 23L. The refrigerant flow path of the first header pipe 23L extends along the predetermined direction PD, and is connected to one end of the refrigerant flow path 21a of the flat pipe 21 in the first direction D1.
 第2ヘッダ管23Rは、複数の扁平管21の第1方向D1の他端に接続され、所定方向PDに沿って延びる。第2ヘッダ管23Rは冷媒流路(不図示)を有する。第2ヘッダ管23Rの冷媒流路は、所定方向PDに沿って延びており、扁平管21の冷媒流路21aの第1方向D1の他端と接続される。 The second header tube 23R is connected to the other end of the plurality of flat tubes 21 in the first direction D1, and extends along the predetermined direction PD. The second header pipe 23R has a refrigerant flow path (not shown). The refrigerant flow path of the second header pipe 23R extends along the predetermined direction PD and is connected to the other end of the refrigerant flow path 21a of the flat pipe 21 in the first direction D1.
 冷媒流入部23aから流入した冷媒は、第1ヘッダ管23Lの冷媒流路、扁平管21の冷媒流路21a、及び第2ヘッダ管23Rの冷媒流路を流れて、冷媒流出部23bから流出する。 The refrigerant flowing in from the refrigerant inflow portion 23a flows through the refrigerant flow path of the first header pipe 23L, the refrigerant flow path 21a of the flat tube 21, and the refrigerant flow path of the second header pipe 23R, and flows out of the refrigerant outflow portion 23b. .
 第1熱交換部7は、複数のコルゲートフィン25をさらに有していてもよい。複数のコルゲートフィン25の各々は、互いに第2方向D2に隣り合う扁平管21の間に配置される。複数のコルゲートフィン25の各々は、波形に折り曲げられた形状を有する。 The first heat exchange unit 7 may further include a plurality of corrugated fins 25. Each of the plurality of corrugated fins 25 is disposed between the flat tubes 21 adjacent to each other in the second direction D2. Each of the plurality of corrugated fins 25 has a shape bent into a waveform.
 図2に示すように、第1熱交換部7は、ファン5と吹出口11との間に配置される。具体的には、第1熱交換部7は、ファン5よりも、空気の流れの下流に位置する。そして、第1熱交換部7は、吹出口11を向いている。従って、吹出口11を通して筐体1の外部に空気を送り出す際に、複数の扁平管21は、空気を整流することができる。つまり、複数の扁平管21の各々は空気を整流する羽根として機能し、複数の扁平管21はルーバーとして機能する。その結果、実施形態1によれば、空気調和機100は、吹出口11を通して外部に空気を送り出す際に、空気の整流を効果的に行うことができる。特に、実施形態1では、第1熱交換部7は、吹出口11を通して、パネルに向いている。 As shown in FIG. 2, the first heat exchange unit 7 is disposed between the fan 5 and the air outlet 11. Specifically, the first heat exchange unit 7 is located downstream of the air flow with respect to the fan 5. And the 1st heat exchange part 7 has faced the blower outlet 11. FIG. Therefore, when sending air out of the housing 1 through the air outlet 11, the plurality of flat tubes 21 can rectify the air. That is, each of the plurality of flat tubes 21 functions as a blade that rectifies air, and the plurality of flat tubes 21 functions as a louver. As a result, according to the first embodiment, the air conditioner 100 can effectively rectify the air when the air is sent to the outside through the air outlet 11. In particular, in Embodiment 1, the 1st heat exchange part 7 is suitable for the panel through the blower outlet 11. FIG.
 具体的には、複数の扁平管21の各々の一対の主面210が、空気A1を整流して、整流後の空気A2を吹出口11に向けて送り出す。特に、扁平管21の一対の湾曲面211のうち、空気の流れの上流に位置する湾曲面211は、空気の流れの上流に向かって凸状に湾曲している。従って、扁平管21による流路抵抗を低減しつつ、扁平管21によって効果的に空気を整流できる。 Specifically, the pair of main surfaces 210 of each of the plurality of flat tubes 21 rectifies the air A1 and sends the rectified air A2 toward the outlet 11. In particular, of the pair of curved surfaces 211 of the flat tube 21, the curved surface 211 located upstream of the air flow is curved in a convex shape toward the upstream of the air flow. Therefore, air can be effectively rectified by the flat tube 21 while reducing the flow resistance by the flat tube 21.
 引き続き図2及び図3を参照して、第1熱交換部7をさらに詳細に説明する。図3に示すように、第1熱交換部7は、サイドフロータイプのパラレルフロー型熱交換器である。従って、扁平管21の延びる第1方向D1は水平方向と実質的に平行である。つまり、複数の扁平管21の各々は水平方向に沿って延びている。従って、実施形態1によれば、複数の扁平管21によって、垂直方向(具体的には、上下方向)に空気を整流できる。 The first heat exchange unit 7 will be described in further detail with reference to FIGS. 2 and 3. As shown in FIG. 3, the 1st heat exchange part 7 is a parallel flow type heat exchanger of a side flow type. Accordingly, the first direction D1 in which the flat tube 21 extends is substantially parallel to the horizontal direction. That is, each of the plurality of flat tubes 21 extends in the horizontal direction. Therefore, according to the first embodiment, air can be rectified in the vertical direction (specifically, the vertical direction) by the plurality of flat tubes 21.
 そして、図2に示すように、第1方向D1(図3)から扁平管21を見たときに、扁平管21は、水平方向HDに対して傾斜している。従って、実施形態1によれば、複数の扁平管21は、空気A1を整流して、水平方向HDに対して傾斜した方向に空気A2を送り出すことができる。また、空気A2が水平方向HDに送り出されてパネル3に当たる場合と比較して、パネル3による空気A2に対する流路抵抗を低減できる。 As shown in FIG. 2, when the flat tube 21 is viewed from the first direction D1 (FIG. 3), the flat tube 21 is inclined with respect to the horizontal direction HD. Therefore, according to the first embodiment, the plurality of flat tubes 21 can rectify the air A1 and send out the air A2 in a direction inclined with respect to the horizontal direction HD. In addition, the flow resistance of the panel 3 to the air A2 can be reduced as compared with the case where the air A2 is sent in the horizontal direction HD and hits the panel 3.
 実施形態1では、扁平管21は、水平方向HDに対して下方に向けて吹出口11側に傾斜している。従って、扁平管21は、水平方向HDに対して下方に向けて吹出口11側に傾斜した方向に、空気A2を送り出すことができる。その結果、扁平管21の傾斜は、暖かい空気を室内に送り出す暖房運転時の空気調和機100に好適である。さらに、複数の扁平管21によって整流された空気A2の一部は、パネル3によって、パネル3の下方に向けて送り出される。従って、室内を更に効果的に暖めることができる。 In Embodiment 1, the flat tube 21 is inclined toward the outlet 11 toward the lower side with respect to the horizontal direction HD. Therefore, the flat tube 21 can send out the air A2 in a direction inclined downward toward the outlet 11 with respect to the horizontal direction HD. As a result, the inclination of the flat tube 21 is suitable for the air conditioner 100 during heating operation for sending warm air into the room. Further, part of the air A <b> 2 rectified by the plurality of flat tubes 21 is sent out downward of the panel 3 by the panel 3. Therefore, the room can be warmed more effectively.
 具体的には、扁平管21は、水平方向HDに対して、傾斜角θaだけ下方に向けて吹出口11側に傾斜している。傾斜角θaは、45度よりも小さいことが好ましい。例えば、冷房運転時に、扁平管21によって凝縮した水滴が落下することを抑制でき、水滴をコルゲートフィン25に沿って排出し易いためである。また、傾斜角θaは、5度以上10度以下であることが更に好ましい。例えば、冷房運転時に、扁平管21によって凝縮した水滴をコルゲートフィン25に沿って効果的に排出できるからである。また、傾斜角θaが大きすぎると、例えば、冷房運転時に上方に向けて空気を送り出すことが難しくなる可能性があるからである。 Specifically, the flat tube 21 is inclined toward the outlet 11 toward the lower side by an inclination angle θa with respect to the horizontal direction HD. The inclination angle θa is preferably smaller than 45 degrees. This is because, for example, water droplets condensed by the flat tube 21 can be prevented from falling during the cooling operation, and the water droplets can be easily discharged along the corrugated fins 25. The inclination angle θa is more preferably 5 degrees or more and 10 degrees or less. For example, water droplets condensed by the flat tube 21 can be effectively discharged along the corrugated fins 25 during cooling operation. Further, if the inclination angle θa is too large, for example, it may be difficult to send air upward during cooling operation.
 ここで、実施形態1では、扁平管21の幅方向WDと、第1ヘッダ管23L及び第2ヘッダ管23Rの延びる方向(具体的には、所定方向PD)とは、実質的に直交している。従って、第1方向D1(図3)から第1ヘッダ管23L及び第2ヘッダ管23Rを見たときに、第1ヘッダ管23L及び第2ヘッダ管23Rは、鉛直方向VDに対して下方に向けて吹出口11側に傾斜している。具体的には、第1ヘッダ管23L及び第2ヘッダ管23Rは、鉛直方向VDに対して、傾斜角θbだけ下方に向けて吹出口11側に傾斜している。傾斜角θbは傾斜角θaと略同一である。 Here, in Embodiment 1, the width direction WD of the flat tube 21 and the direction in which the first header tube 23L and the second header tube 23R extend (specifically, the predetermined direction PD) are substantially orthogonal to each other. Yes. Accordingly, when the first header pipe 23L and the second header pipe 23R are viewed from the first direction D1 (FIG. 3), the first header pipe 23L and the second header pipe 23R are directed downward with respect to the vertical direction VD. And inclined toward the outlet 11. Specifically, the first header pipe 23L and the second header pipe 23R are inclined toward the air outlet 11 toward the lower side by the inclination angle θb with respect to the vertical direction VD. The inclination angle θb is substantially the same as the inclination angle θa.
 引き続き図2を参照して、パネル3と扁平管21との関係を説明する。図2に示すように、パネル3は、暖房運転時の姿勢をとっている。つまり、パネル3の上端部が吹出口11に近い側に位置するとともに、パネル3の下端部が吹出口11から遠い側に位置するように、パネル3は鉛直方向VDに対して傾斜している。従って、暖房運転時に、パネル3は、第1熱交換部7を通って吹出口11から送り出された空気A2をパネル3の下方に送り出す。つまり、パネル3は、第1熱交換部7から送り出された空気A2の送風方向を変化させて、送風方向の変化した空気A3をパネル3の下方に送り出す。 Next, the relationship between the panel 3 and the flat tube 21 will be described with reference to FIG. As shown in FIG. 2, the panel 3 takes the attitude | position at the time of heating operation. That is, the panel 3 is inclined with respect to the vertical direction VD so that the upper end portion of the panel 3 is located on the side closer to the air outlet 11 and the lower end portion of the panel 3 is located on the side farther from the air outlet 11. . Therefore, at the time of heating operation, the panel 3 sends out the air A2 sent out from the blower outlet 11 through the first heat exchange unit 7 to the lower side of the panel 3. That is, the panel 3 changes the blowing direction of the air A2 sent out from the first heat exchange unit 7 and sends out the air A3 whose blowing direction has changed to the lower side of the panel 3.
 そして、暖房運転時に、扁平管21及びパネル3を第1方向D1(図3)から見たときに、扁平管21の鉛直下方向DDに対する傾斜角θ1は、パネル3の鉛直下方向DDに対する傾斜角θ2よりも大きい。従って、第1熱交換部7から送り出された空気A2を効果的にパネル3に当てることができる。その結果、暖房運転時に、パネル3によって、空気をパネル3の下方に効果的に送り出すことができる。傾斜角θ1は、例えば、暖房運転時にパネル3の取り得る最大角度である。なお、傾斜角θ1が傾斜角θ2よりも小さいと、パネル3に当たる空気量が少なくなり、下方に送り出すことの可能な空気量が減少する可能性がある。また、傾斜角θ1が大きいため、扁平管21による空気A1に対する流路抵抗を低減できる。 When the flat tube 21 and the panel 3 are viewed from the first direction D1 (FIG. 3) during the heating operation, the inclination angle θ1 of the flat tube 21 with respect to the vertical downward direction DD is the inclination of the panel 3 with respect to the vertical downward direction DD. It is larger than the angle θ2. Therefore, the air A2 sent out from the first heat exchange unit 7 can be effectively applied to the panel 3. As a result, air can be effectively sent out below the panel 3 by the panel 3 during the heating operation. The inclination angle θ1 is, for example, the maximum angle that the panel 3 can take during heating operation. If the inclination angle θ1 is smaller than the inclination angle θ2, the amount of air that strikes the panel 3 decreases, and the amount of air that can be sent downward may decrease. Further, since the inclination angle θ1 is large, the flow path resistance against the air A1 by the flat tube 21 can be reduced.
 また、傾斜角θ2が鋭角であるため、第1熱交換部7から送り出された空気A2を更に効果的にパネル3に当てることができる。その結果、暖房運転時に、パネル3は、空気A3をパネル3の下方に更に効果的に送り出すことができる。 Further, since the inclination angle θ2 is an acute angle, the air A2 sent out from the first heat exchange unit 7 can be applied to the panel 3 more effectively. As a result, at the time of heating operation, the panel 3 can more effectively send out the air A3 below the panel 3.
 次に、図4を参照して、冷房運転時のパネル3を説明する。図4は、空気調和機100の冷房時の状態を示す模式的断面図である。図4に示すように、パネル3は、冷房運転時の姿勢をとっている。つまり、パネル3の上端部が吹出口11から遠い側に位置するとともに、パネル3の下端部が吹出口11に近い側に位置するように、パネル3は鉛直方向VDに対して傾斜している。従って、冷房運転時に、パネル3は、第1熱交換部7を通って吹出口11から送り出された空気A2をパネル3の上方に送り出す。つまり、パネル3は、第1熱交換部7から送り出された空気A2の送風方向を変化させて、送風方向の変化した空気A4をパネル3の上方に送り出す。 Next, the panel 3 during cooling operation will be described with reference to FIG. FIG. 4 is a schematic cross-sectional view showing a state of the air conditioner 100 during cooling. As shown in FIG. 4, the panel 3 takes a posture during cooling operation. That is, the panel 3 is inclined with respect to the vertical direction VD so that the upper end of the panel 3 is located on the side far from the air outlet 11 and the lower end of the panel 3 is located on the side closer to the air outlet 11. . Therefore, at the time of cooling operation, the panel 3 sends the air A2 sent from the blower outlet 11 through the first heat exchange unit 7 to the upper side of the panel 3. That is, the panel 3 changes the blowing direction of the air A <b> 2 sent out from the first heat exchange unit 7 and sends out the air A <b> 4 whose blowing direction has changed to the upper side of the panel 3.
 従って、実施形態1によれば、扁平管21が水平方向HDに対して下方に向けて吹出口11側に傾斜しているにも拘わらず、冷房運転時に冷えた空気A4をパネル3の上方に送り出すことができる。つまり、冷房運転時と暖房運転時(図2)との双方において、運転状態に応じた適切な方向に空気を送り出すことができる。 Therefore, according to the first embodiment, the air A4 cooled during the cooling operation is placed above the panel 3 even though the flat tube 21 is inclined downward toward the blowout outlet 11 with respect to the horizontal direction HD. Can be sent out. That is, air can be sent out in an appropriate direction according to the operating state both during the cooling operation and during the heating operation (FIG. 2).
 特に、冷房運転時に、パネル3を第1方向D1(図3)から見たときに、パネル3の鉛直上方向UDに対する傾斜角θ3は、鋭角である。従って、第1熱交換部7から送り出された空気A2を効果的にパネル3に当てることができる。その結果、冷房運転時に、パネル3によって、空気A4をパネル3の上方に効果的に送り出すことができる。 Particularly, when the panel 3 is viewed from the first direction D1 (FIG. 3) during the cooling operation, the inclination angle θ3 of the panel 3 with respect to the vertical upward direction UD is an acute angle. Therefore, the air A2 sent out from the first heat exchange unit 7 can be effectively applied to the panel 3. As a result, the air A4 can be effectively sent out above the panel 3 by the panel 3 during the cooling operation.
 (実施形態2)
 図5及び図6を参照して、本発明の実施形態2に係る空気調和機100Aを説明する。実施形態2に係る空気調和機100Aが第1熱交換部7に加えて第2熱交換部31をさらに備える点で、実施形態2は実施形態1と主に異なる。以下、実施形態2が実施形態1と異なる点を主に説明する。
(Embodiment 2)
With reference to FIG.5 and FIG.6, the air conditioner 100A which concerns on Embodiment 2 of this invention is demonstrated. The second embodiment is mainly different from the first embodiment in that the air conditioner 100A according to the second embodiment further includes a second heat exchange unit 31 in addition to the first heat exchange unit 7. Hereinafter, the points of the second embodiment different from the first embodiment will be mainly described.
 図5は、空気調和機100Aを示す模式的断面図である。図5に示すように、空気調和機100Aは、図2を参照して説明した空気調和機100の構成に加えて、第2熱交換部31をさらに備える。第2熱交換部31は熱交換を行う。具体的には、第2熱交換部31は、空気と冷媒との間で熱エネルギーを交換する。実施形態2では、第2熱交換部31はフィンアンドチューブ型熱交換器である。 FIG. 5 is a schematic cross-sectional view showing the air conditioner 100A. As shown in FIG. 5, the air conditioner 100 </ b> A further includes a second heat exchange unit 31 in addition to the configuration of the air conditioner 100 described with reference to FIG. 2. The second heat exchange unit 31 performs heat exchange. Specifically, the second heat exchange unit 31 exchanges thermal energy between air and the refrigerant. In Embodiment 2, the 2nd heat exchange part 31 is a fin and tube type heat exchanger.
 第2熱交換部31は筐体1に収容される。第2熱交換部31は、ファン5と第1熱交換部7との間に配置される。具体的には、第2熱交換部31は、ファン5よりも、空気の流れの下流に位置する。そして、第1熱交換部7は、第2熱交換部31よりも、空気の流れの下流に位置する。 The second heat exchange unit 31 is accommodated in the housing 1. The second heat exchange unit 31 is disposed between the fan 5 and the first heat exchange unit 7. Specifically, the second heat exchange unit 31 is located downstream of the air flow with respect to the fan 5. And the 1st heat exchange part 7 is located in the downstream of the flow of air rather than the 2nd heat exchange part 31. FIG.
 ファン5は、吸入口9から吸い込んだ空気A1を、第2熱交換部31を通して第1熱交換部7に向けて送り出す。従って、空気A1は、第2熱交換部31を通過して、第1熱交換部7に流入する。そして、第1熱交換部7は、第2熱交換部31を通過した空気A1を整流して、整流後の空気A2を吹出口11から筐体1の外部に送り出す。 The fan 5 sends out the air A1 sucked from the suction port 9 toward the first heat exchange unit 7 through the second heat exchange unit 31. Therefore, the air A <b> 1 passes through the second heat exchange unit 31 and flows into the first heat exchange unit 7. And the 1st heat exchange part 7 rectifies the air A1 which passed the 2nd heat exchange part 31, and sends out the rectified air A2 to the exterior of the housing | casing 1 from the blower outlet 11. FIG.
 実施形態2によれば、第1熱交換部7が第2熱交換部31よりも空気の流れの下流に位置するため、第1熱交換部7が第2熱交換部31よりも空気の流れの上流に位置する場合と比較して、整流後の空気A2の流れが変化することを抑制しつつ、空気A2を吹出口11に向けて送り出すことができる。なお、第1熱交換部7が第2熱交換部31よりも空気の流れの上流に位置する場合は、整流後の空気A2の流れが、第2熱交換部31によって変化する可能性があり得る。 According to the second embodiment, since the first heat exchange unit 7 is located downstream of the second heat exchange unit 31 in the air flow, the first heat exchange unit 7 is in the air flow more than the second heat exchange unit 31. Compared with the case where it is located upstream, air A2 can be sent out toward the blower outlet 11, suppressing the change of the flow of air A2 after rectification. In addition, when the 1st heat exchange part 7 is located in the upstream of the flow of air rather than the 2nd heat exchange part 31, the flow of the air A2 after rectification may change with the 2nd heat exchange part 31. obtain.
 また、実施形態2によれば、空気調和機100Aは2つの熱交換部(第1熱交換部7及び第2熱交換部31)を備えているため、1つの熱交換部を備える場合と比較して、効果的に熱交換を行うことができる。 In addition, according to the second embodiment, the air conditioner 100A includes two heat exchange units (the first heat exchange unit 7 and the second heat exchange unit 31), and therefore, compared with a case where one heat exchange unit is provided. Thus, heat exchange can be performed effectively.
 次に、図5及び図6を参照して、第2熱交換部31を詳細に説明する。図6は、第2熱交換部31を示す正面図である。図5及び図6に示すように、第2熱交換部31は、管33と、平板状の複数のフィン35とを含む。複数のフィン35の各々は、第3方向D3に沿って延びており、第4方向D4に沿って並んでいる。第4方向D4は、第3方向D3に直交する。第3方向D3と第1方向D1(図3)とは、互いに実質的に直交する。第3方向D3と第2方向D2(図3)とは、互いに実質的に平行である。第4方向D4と第1方向D1(図3)とは、互いに実質的に平行である。従って、実施形態2では、第4方向D4は、水平方向と実質的に平行である。フィン35を第4方向D4(図6)から見たときに、フィン35は略矩形状である。 Next, the second heat exchange unit 31 will be described in detail with reference to FIGS. 5 and 6. FIG. 6 is a front view showing the second heat exchange unit 31. As shown in FIGS. 5 and 6, the second heat exchange unit 31 includes a tube 33 and a plurality of flat fins 35. Each of the plurality of fins 35 extends along the third direction D3 and is aligned along the fourth direction D4. The fourth direction D4 is orthogonal to the third direction D3. The third direction D3 and the first direction D1 (FIG. 3) are substantially orthogonal to each other. The third direction D3 and the second direction D2 (FIG. 3) are substantially parallel to each other. The fourth direction D4 and the first direction D1 (FIG. 3) are substantially parallel to each other. Therefore, in the second embodiment, the fourth direction D4 is substantially parallel to the horizontal direction. When the fin 35 is viewed from the fourth direction D4 (FIG. 6), the fin 35 has a substantially rectangular shape.
 管33は、複数のフィンを第4方向D4に貫通し、蛇行している。管33は、冷媒流路33aを有する。冷媒は冷媒流路33aを流れる。冷媒流路33aは、管33に沿って蛇行している。管33は、冷媒流入部33bと、冷媒流出部33cとを有する。冷媒流入部33bから流入した冷媒は、冷媒流路33aを流れて、冷媒流出部33cから流出する。実施形態2では、管33の冷媒流出部33cは、第1熱交換部7の第1ヘッダ管23Lの冷媒流入部23a(図3)に接続される。なお、図6は正面図であるため、冷媒流路33aは図6には表れていない。 The pipe 33 penetrates the plurality of fins in the fourth direction D4 and meanders. The pipe 33 has a refrigerant flow path 33a. The refrigerant flows through the refrigerant flow path 33a. The refrigerant flow path 33 a meanders along the pipe 33. The pipe 33 has a refrigerant inflow portion 33b and a refrigerant outflow portion 33c. The refrigerant flowing in from the refrigerant inflow portion 33b flows through the refrigerant flow path 33a and flows out from the refrigerant outflow portion 33c. In the second embodiment, the refrigerant outflow portion 33 c of the pipe 33 is connected to the refrigerant inflow portion 23 a (FIG. 3) of the first header pipe 23 </ b> L of the first heat exchange unit 7. Since FIG. 6 is a front view, the refrigerant flow path 33a does not appear in FIG.
 引き続き図5を参照して、第1熱交換部7及び第2熱交換部31を説明する。図5に示すように、第1熱交換部7と第2熱交換部31とは、互いに対向して配置される。第1熱交換部7と第2熱交換部31とは、互いに実質的に平行になるように近接して配置される。従って、実施形態2によれば、例えば、冷房運転時に、扁平管21によって凝縮された水滴が、表面張力によってフィン35に移動するため、水滴をフィン35によって円滑に排出できる。ここで、第1熱交換部7と第2熱交換部31との距離、つまり、扁平管21とフィン35との距離は、表面張力によって、扁平管21に付着した水滴がフィン35に移動し得ることの可能な距離である。また、扁平管21とフィン35とが接触していないため、扁平管21とフィン35との接触に起因する音の発生を抑制できる。なお、扁平管21とフィン35とが接触していてもよい。 The first heat exchange unit 7 and the second heat exchange unit 31 will be described with reference to FIG. As shown in FIG. 5, the 1st heat exchange part 7 and the 2nd heat exchange part 31 are arrange | positioned facing each other. The first heat exchange unit 7 and the second heat exchange unit 31 are arranged close to each other so as to be substantially parallel to each other. Therefore, according to the second embodiment, for example, during the cooling operation, the water droplets condensed by the flat tube 21 move to the fins 35 due to the surface tension, so that the water droplets can be smoothly discharged by the fins 35. Here, the distance between the first heat exchange unit 7 and the second heat exchange unit 31, that is, the distance between the flat tube 21 and the fin 35, is that water droplets attached to the flat tube 21 move to the fin 35 due to surface tension. The distance that can be obtained. Further, since the flat tube 21 and the fins 35 are not in contact with each other, it is possible to suppress the generation of sound due to the contact between the flat tube 21 and the fins 35. The flat tube 21 and the fins 35 may be in contact with each other.
 また、第1熱交換部7と第2熱交換部31とが互いに実質的に平行になるように近接して配置されるため、第1熱交換部7と第2熱交換部31とを筐体1に固定する作業が容易である。さらに、第1熱交換部7と第2熱交換部31との間に無駄な空間が生じることを抑制できて、空気調和機100Aの小型化を実現できる。 Further, since the first heat exchange unit 7 and the second heat exchange unit 31 are arranged close to each other so as to be substantially parallel to each other, the first heat exchange unit 7 and the second heat exchange unit 31 are connected to the housing. The work of fixing to the body 1 is easy. Furthermore, it is possible to suppress the generation of a useless space between the first heat exchange unit 7 and the second heat exchange unit 31, and it is possible to reduce the size of the air conditioner 100A.
 さらに、実施形態2では、扁平管21とフィン35とを第1方向D1(図3)から見たときに、扁平管21の長手方向の幅W1は、フィン35の短手方向の幅W2よりも大きい。従って、幅W2を小さくして、フィン35による空気A1に対する流路抵抗を低減しつつ、幅W1を大きくして、扁平管21による空気A1に対する整流作用を向上できる。 Furthermore, in Embodiment 2, when the flat tube 21 and the fin 35 are viewed from the first direction D1 (FIG. 3), the width W1 in the longitudinal direction of the flat tube 21 is greater than the width W2 in the short direction of the fin 35. Is also big. Therefore, the width W2 can be reduced and the flow resistance against the air A1 by the fins 35 can be reduced, and the width W1 can be increased to improve the rectification action on the air A1 by the flat tube 21.
 (実施形態3)
 図7を参照して、本発明の実施形態3に係る空気調和機100Bを説明する。実施形態3に係る空気調和機100Bの扁平管21が第1ヘッダ管23L及び第2ヘッダ管23Rに対して傾斜している点で、実施形態3は実施形態1と主に異なる。以下、実施形態3が実施形態1と異なる点を主に説明する。
(Embodiment 3)
With reference to FIG. 7, the air conditioner 100B which concerns on Embodiment 3 of this invention is demonstrated. The third embodiment is mainly different from the first embodiment in that the flat tube 21 of the air conditioner 100B according to the third embodiment is inclined with respect to the first header tube 23L and the second header tube 23R. Hereinafter, the points of the third embodiment different from the first embodiment will be mainly described.
 図7は、空気調和機100Bを示す模式的断面図である。図7に示すように、第1ヘッダ管23L及び第2ヘッダ管23Rは、所定方向PDに沿って延びている。実施形態3では、所定方向PDは、第1方向D1に直交し、鉛直方向VDと実質的に平行である。そして、第1方向D1(図3)から扁平管21を見たときに、扁平管21は、第1ヘッダ管23L及び第2ヘッダ管23Rに対して傾斜している。具体的には、実施形態1と同様に、扁平管21は、水平方向HDに対して傾斜している。更に具体的には、扁平管21は、水平方向HDに対して下方に向けて吹出口11側に傾斜している。更に具体的には、扁平管21は、水平方向HDに対して、傾斜角θaだけ下方に向けて吹出口11側に傾斜している。 FIG. 7 is a schematic cross-sectional view showing the air conditioner 100B. As shown in FIG. 7, the first header pipe 23L and the second header pipe 23R extend along the predetermined direction PD. In the third embodiment, the predetermined direction PD is orthogonal to the first direction D1 and substantially parallel to the vertical direction VD. When the flat tube 21 is viewed from the first direction D1 (FIG. 3), the flat tube 21 is inclined with respect to the first header tube 23L and the second header tube 23R. Specifically, as in the first embodiment, the flat tube 21 is inclined with respect to the horizontal direction HD. More specifically, the flat tube 21 is inclined toward the outlet 11 toward the lower side with respect to the horizontal direction HD. More specifically, the flat tube 21 is inclined to the outlet 11 side downward by an inclination angle θa with respect to the horizontal direction HD.
 実施形態3によれば、第1ヘッダ管23L及び第2ヘッダ管23Rが鉛直方向VD(所定方向PD)に沿って延びつつ、扁平管21だけが傾斜している。従って、第1熱交換部7の筐体1への設置作業を容易にしつつ、扁平管21によって空気A1を整流できる。 According to the third embodiment, only the flat tube 21 is inclined while the first header tube 23L and the second header tube 23R extend along the vertical direction VD (predetermined direction PD). Therefore, the air A1 can be rectified by the flat tube 21 while facilitating the installation work of the first heat exchange unit 7 on the housing 1.
 なお、空気調和機100Bは図5に示す第2熱交換部31を備えていてもよい。この場合、フィン35が鉛直方向VDに沿って延びるように、第2熱交換部31が筐体1に設置される。 In addition, the air conditioner 100B may include the second heat exchange unit 31 illustrated in FIG. In this case, the second heat exchange unit 31 is installed in the housing 1 such that the fins 35 extend along the vertical direction VD.
 以上、図面を参照しながら本発明の実施形態について説明した。但し、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である(例えば、下記に示す(1)~(4))。また、上記の実施形態に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明の形成が可能である。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の厚み、長さ、個数、間隔等は、図面作成の都合上から実際とは異なる場合もある。また、上記の実施形態で示す各構成要素の材質、形状、寸法等は一例であって、特に限定されるものではなく、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能である。 The embodiments of the present invention have been described above with reference to the drawings. However, the present invention is not limited to the above-described embodiment, and can be implemented in various modes without departing from the gist thereof (for example, (1) to (4) shown below). In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined. In order to facilitate understanding, the drawings schematically show each component as a main component, and the thickness, length, number, interval, etc. of each component shown in the drawings are actual for convenience of drawing. May be different. In addition, the material, shape, dimensions, and the like of each component shown in the above embodiment are merely examples, and are not particularly limited, and various changes can be made without departing from the effects of the present invention. is there.
 (1)図2、図5、及び図7を参照して説明した実施形態1~実施形態3において、扁平管21は、水平方向HDに対して上方に向けて吹出口11側に傾斜していてもよい。従って、水平方向HDに対して上方に向けて吹出口11側に傾斜した方向に、空気A2を送り出すことができる。その結果、扁平管21の傾斜は、冷たい空気を室内に送り出す冷房運転時の空気調和機100、100A、100Bに好適である。さらに、図4に示すような冷房運転時の状態では、複数の扁平管21によって整流された空気A2の一部は、パネル3によって、パネル3の上方に向けて送り出される。従って、室内を更に効果的に冷やすことができる。 (1) In the first to third embodiments described with reference to FIG. 2, FIG. 5, and FIG. 7, the flat tube 21 is inclined toward the outlet 11 toward the upper side with respect to the horizontal direction HD. May be. Therefore, the air A2 can be sent out in a direction inclined upward toward the air outlet 11 with respect to the horizontal direction HD. As a result, the inclination of the flat tube 21 is suitable for the air conditioners 100, 100 </ b> A, 100 </ b> B during the cooling operation for sending cold air into the room. Further, in the state during the cooling operation as shown in FIG. 4, a part of the air A <b> 2 rectified by the plurality of flat tubes 21 is sent out upward of the panel 3 by the panel 3. Therefore, the room can be cooled more effectively.
 具体的には、扁平管21は、水平方向HDに対して、傾斜角θaだけ上方に向けて吹出口11側に傾斜していてもよい。傾斜角θaは、45度よりも小さいことが好ましい。傾斜角θaは、5度以上10度以下であることが更に好ましい。 Specifically, the flat tube 21 may be inclined toward the outlet 11 side upward by an inclination angle θa with respect to the horizontal direction HD. The inclination angle θa is preferably smaller than 45 degrees. More preferably, the inclination angle θa is not less than 5 degrees and not more than 10 degrees.
 (2)図2、図5、及び図7を参照して説明した実施形態1~実施形態3において、パネル3は、湾曲することなく、平板状であってもよい。また、パネル3は、筐体1から離れる方向に向かって凸状に湾曲していてもよい。 (2) In the first to third embodiments described with reference to FIGS. 2, 5, and 7, the panel 3 may be flat without being curved. The panel 3 may be curved in a convex shape in a direction away from the housing 1.
 また、扁平管21を正面視したときに、扁平管21が水平方向に対して傾斜していてもよい。この場合、扁平管21に付着した水滴を排出するための排水口が、扁平管21の傾斜している下方側に配置されることが好ましい。水滴が排水口に向かって流れ易いからである。「正面視」は、図3に示すように、第1方向D1と第2方向D2との双方に直交する方向から扁平管21を見ることを示す。 Further, when the flat tube 21 is viewed from the front, the flat tube 21 may be inclined with respect to the horizontal direction. In this case, it is preferable that a drain outlet for discharging water droplets attached to the flat tube 21 is disposed on the inclined lower side of the flat tube 21. This is because water droplets easily flow toward the drain outlet. “Front view” indicates that the flat tube 21 is viewed from a direction orthogonal to both the first direction D1 and the second direction D2, as shown in FIG.
 (3)図2、図5、及び図7を参照して説明した実施形態1~実施形態3において、第1熱交換部7は、ダウンフロータイプのパラレルフロー型熱交換器であってもよい。この場合は、例えば、複数のコルゲートフィン25によって、垂直方向(具体的には、上下方向)に空気を整流できる。なお、例えば、複数の扁平管21によって、水平方向(具体的には、左右方向)に空気を整流することも可能である。 (3) In the first to third embodiments described with reference to FIG. 2, FIG. 5, and FIG. 7, the first heat exchange unit 7 may be a down flow type parallel flow heat exchanger. . In this case, for example, the air can be rectified in the vertical direction (specifically, the vertical direction) by the plurality of corrugated fins 25. For example, air can be rectified in the horizontal direction (specifically, the left-right direction) by the plurality of flat tubes 21.
 (4)図5を参照して説明した実施形態2において、第1熱交換部7と第2熱交換部31とは、略平行に配置されていなくてもよい。第2熱交換部31は、第1熱交換部7と同様のパラレルフロー型熱交換器(例えば、サイドフロータイプのパラレルフロー型熱交換器)であってもよい。第1熱交換部7は、第2熱交換部31よりも、空気の流れの上流に位置していてもよい。 (4) In the second embodiment described with reference to FIG. 5, the first heat exchange unit 7 and the second heat exchange unit 31 may not be arranged substantially in parallel. The second heat exchange unit 31 may be a parallel flow type heat exchanger similar to the first heat exchange unit 7 (for example, a side flow type parallel flow type heat exchanger). The first heat exchange unit 7 may be located upstream of the second heat exchange unit 31 in the air flow.
 本発明は、空気調和機を提供するものであり、産業上の利用可能性を有する。 The present invention provides an air conditioner and has industrial applicability.
 3  パネル
 5  ファン
 7  第1熱交換部
 11  吹出口
 21  扁平管
 23L  第1ヘッダ管
 23R  第2ヘッダ管
 31  第2熱交換部
 33  管
 35  フィン
 100、100A、100B  空気調和機
3 Panel 5 Fan 7 1st heat exchange part 11 Air outlet 21 Flat tube 23L 1st header pipe 23R 2nd header pipe 31 2nd heat exchange part 33 Pipe 35 Fin 100, 100A, 100B Air conditioner

Claims (7)

  1.  空気を吸い込み、吸い込んだ前記空気を、吹出口を通して外部に送り出すファンと、
     前記ファンよりも、前記空気の流れの下流に位置し、熱交換を行う第1熱交換部と
     を備え、
     前記第1熱交換部は、
     各々が第1方向に沿って延びており、前記第1方向に直交する第2方向に沿って並んでいる複数の扁平管と、
     前記複数の扁平管の前記第1方向の一端に接続され、前記第1方向に直交する所定方向に沿って延びる第1ヘッダ管と、
     前記複数の扁平管の前記第1方向の他端に接続され、前記所定方向に沿って延びる第2ヘッダ管と
     を含み、
     前記第1熱交換部は、前記吹出口を向いている、空気調和機。
    A fan that sucks air and sends the sucked air to the outside through an air outlet;
    A first heat exchange unit that is located downstream of the air flow and performs heat exchange with respect to the fan;
    The first heat exchange unit is
    A plurality of flat tubes each extending along a first direction and arranged along a second direction orthogonal to the first direction;
    A first header pipe connected to one end of the plurality of flat tubes in the first direction and extending along a predetermined direction orthogonal to the first direction;
    A second header pipe connected to the other end in the first direction of the plurality of flat tubes and extending along the predetermined direction;
    The first heat exchange unit is an air conditioner facing the air outlet.
  2.  前記第1方向は、水平方向と実質的に平行である、請求項1に記載の空気調和機。 The air conditioner according to claim 1, wherein the first direction is substantially parallel to the horizontal direction.
  3.  前記第1方向から前記扁平管を見たときに、前記扁平管は、水平方向に対して傾斜している、請求項2に記載の空気調和機。 The air conditioner according to claim 2, wherein when the flat tube is viewed from the first direction, the flat tube is inclined with respect to a horizontal direction.
  4.  前記吹出口に面するように配置されるパネルをさらに備え、
     前記第1熱交換部は、前記パネルに向いており、
     暖房運転時に、前記扁平管及び前記パネルを前記第1方向から見たときに、前記扁平管の鉛直下方向に対する傾斜角は、前記パネルの鉛直下方向に対する傾斜角よりも大きい、請求項2又は請求項3に記載の空気調和機。
    It further comprises a panel arranged to face the air outlet,
    The first heat exchanging portion is facing the panel,
    The angle of inclination of the flat tube with respect to the vertical downward direction when the flat tube and the panel are viewed from the first direction during heating operation is greater than the inclination angle of the panel with respect to the vertical downward direction. The air conditioner according to claim 3.
  5.  前記吹出口に面するように配置されるパネルをさらに備え、
     前記第1熱交換部は、前記パネルを向いており、
     冷房運転時に、前記パネルは、前記第1熱交換部を通って前記吹出口から送り出された前記空気を前記パネルの上方に送り出す、請求項2から請求項4のいずれか1項に記載の空気調和機。
    It further comprises a panel arranged to face the air outlet,
    The first heat exchange part faces the panel,
    The air according to any one of claims 2 to 4, wherein, during cooling operation, the panel sends out the air sent from the outlet through the first heat exchange unit to the upper side of the panel. Harmony machine.
  6.  前記ファンよりも、前記空気の流れの下流に位置し、熱交換を行う第2熱交換部をさらに備え、
     前記第2熱交換部は、
     各々が第3方向に沿って延びており、前記第3方向に直交する第4方向に沿って並んでいる平板状の複数のフィンと、
     前記複数のフィンを前記第4方向に貫通し、蛇行している管と
     を含み、
     前記第1方向と前記第3方向とは、互いに実質的に直交し、
     前記第1熱交換部は、前記第2熱交換部よりも、前記空気の流れの下流に位置する、請求項2から請求項5のいずれか1項に記載の空気調和機。
    A second heat exchanging unit that is located downstream of the air flow and performs heat exchange with respect to the fan;
    The second heat exchange unit is
    A plurality of plate-like fins each extending along a third direction and arranged along a fourth direction orthogonal to the third direction;
    A plurality of fins penetrating in the fourth direction and meandering, and
    The first direction and the third direction are substantially perpendicular to each other,
    The air conditioner according to any one of claims 2 to 5, wherein the first heat exchange unit is located downstream of the air flow with respect to the second heat exchange unit.
  7.  前記扁平管と前記フィンとを前記第1方向から見たときに、前記扁平管の長手方向の幅は、前記フィンの短手方向の幅よりも大きい、請求項6に記載の空気調和機。 The air conditioner according to claim 6, wherein when the flat tube and the fin are viewed from the first direction, a width of the flat tube in a longitudinal direction is larger than a width of the fin in a short direction.
PCT/JP2018/032414 2018-02-13 2018-08-31 Air conditioner WO2019159402A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020500257A JPWO2019159402A1 (en) 2018-02-13 2018-08-31 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018023088 2018-02-13
JP2018-023088 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019159402A1 true WO2019159402A1 (en) 2019-08-22

Family

ID=67621002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032414 WO2019159402A1 (en) 2018-02-13 2018-08-31 Air conditioner

Country Status (2)

Country Link
JP (1) JPWO2019159402A1 (en)
WO (1) WO2019159402A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017478A1 (en) * 2010-08-04 2012-02-09 三菱電機株式会社 Indoor unit for air conditioner and air conditioner
JP2016038192A (en) * 2014-08-11 2016-03-22 東芝キヤリア株式会社 Parallel flow type heat exchanger and air conditioner
JP2016142457A (en) * 2015-02-03 2016-08-08 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP2018044681A (en) * 2016-09-12 2018-03-22 ダイキン工業株式会社 Heat exchange unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017478A1 (en) * 2010-08-04 2012-02-09 三菱電機株式会社 Indoor unit for air conditioner and air conditioner
JP2016038192A (en) * 2014-08-11 2016-03-22 東芝キヤリア株式会社 Parallel flow type heat exchanger and air conditioner
JP2016142457A (en) * 2015-02-03 2016-08-08 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP2018044681A (en) * 2016-09-12 2018-03-22 ダイキン工業株式会社 Heat exchange unit

Also Published As

Publication number Publication date
JPWO2019159402A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
EP2119995B1 (en) Heat exchanger
JP6223596B2 (en) Air conditioner indoor unit
JP5079857B2 (en) Air conditioner indoor unit
US11175053B2 (en) Heat exchanger, refrigeration cycle device, and air-conditioning apparatus
WO2017135442A1 (en) Heat exchanger
JP6370399B2 (en) Air conditioner indoor unit
JP5081881B2 (en) Air conditioner
WO2019159402A1 (en) Air conditioner
JP6997722B2 (en) Heat exchanger and air conditioner
JP6624851B2 (en) Air conditioner and its indoor unit
JP6771321B2 (en) Indoor unit of air conditioner
JP6379352B2 (en) Finned tube heat exchanger
JP5476789B2 (en) Heat exchanger
JP6486718B2 (en) Heat exchanger
CN219976589U (en) Heat exchanger and air conditioner
WO2019167312A1 (en) Heat exchanger
CN102679793A (en) Heat exchanger fin
WO2022054406A1 (en) Heat exchanger and air conditioning apparatus
JP7190579B2 (en) Fin used in heat exchanger, heat exchanger having fins, and refrigeration cycle device having heat exchanger
JP7006376B2 (en) Heat exchanger
JP6230852B2 (en) Air conditioner and heat exchanger for air conditioner
JP2008215758A (en) Heat exchanger
JP2008249299A (en) Fin tube type heat exchanger and air conditioner
JP2021113634A (en) Heat exchanger
JPWO2019180764A1 (en) Indoor unit and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500257

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906296

Country of ref document: EP

Kind code of ref document: A1