WO2019158056A1 - 无线通信方法、网络设备、终端设备及可读存储介质 - Google Patents

无线通信方法、网络设备、终端设备及可读存储介质 Download PDF

Info

Publication number
WO2019158056A1
WO2019158056A1 PCT/CN2019/074879 CN2019074879W WO2019158056A1 WO 2019158056 A1 WO2019158056 A1 WO 2019158056A1 CN 2019074879 W CN2019074879 W CN 2019074879W WO 2019158056 A1 WO2019158056 A1 WO 2019158056A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
terminal device
transmission
processing
network device
Prior art date
Application number
PCT/CN2019/074879
Other languages
English (en)
French (fr)
Inventor
冯淑兰
张兴炜
王轶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19754420.8A priority Critical patent/EP3748887B1/en
Publication of WO2019158056A1 publication Critical patent/WO2019158056A1/zh
Priority to US16/992,903 priority patent/US11483097B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present application relates to the field of communications, and in particular, to a wireless communication method, a network device, a terminal device, and a computer readable storage medium.
  • a network device such as a base station
  • a terminal device usually adopt a hybrid automatic repeat request (HARQ) mechanism to improve communication reliability.
  • HARQ hybrid automatic repeat request
  • the network device and the terminal device communication process sometimes have an out-of-HARQ order.
  • the network device sends the first physical uplink shared channel (PDSCH) and the second PDSCH to the terminal device. If the data in the second PDSCH belongs to the data corresponding to the emergency service, the network device may A PDSCH and a second PDSCH are scheduled, so that the terminal device preferentially feeds back the HARQ information of the second PDSCH.
  • the scheduling manner of the first PDSCH and the second PDSCH is an out-of-order HARQ scheduling.
  • the network device can learn whether the terminal device correctly receives the data corresponding to the PDSCH based on the HARQ mechanism. However, in the out-of-order HARQ scheduling scenario, only the receiving state of the data corresponding to the PDSCH is not conducive to the network device to make a correct scheduling policy.
  • the present application provides a wireless communication method, a network device, a terminal device, and a computer readable storage medium, which facilitates a network device to make a correct scheduling policy in an out-of-order HARQ scheduling scenario.
  • a wireless communication method is applied to a network device, including: transmitting, to a terminal device, a first PDSCH and a second PDSCH, where a sending time of the first PDSCH is earlier than a sending time of the second PDSCH, where The receiving time of the HARQ information corresponding to the first PDSCH is later than the receiving time of the HARQ information of the second PDSCH; determining whether the transmission of the second PDSCH causes the processing of the first PDSCH by the terminal device to be interrupted; The transmission of the second PDSCH may cause the terminal device to interrupt the processing of the first PDSCH, and determine that the first data corresponding to the first PDSCH is not successfully received.
  • the network device actively determines whether the transmission of the second PDSCH causes the processing of the first PDSCH to be transmitted to be interrupted, which is beneficial to the network device to make the correct Scheduling strategy.
  • the method for wireless communication further includes: transmitting, to the terminal device, first retransmission data, where the first retransmission data is retransmission data that can be independently decoded.
  • the independently decodable transmission data is retransmitted to the terminal device, which is advantageous for improving the reliability of the transmission.
  • the first retransmission data is the same data as the initial transmission data corresponding to the first PDSCH.
  • determining whether the transmission of the second PDSCH causes the processing of the first PDSCH by the terminal device is interrupted, including: according to capability information of the terminal device, and corresponding to the first PDSCH And the transmission mode corresponding to the second PDSCH, determining whether the transmission of the second PDSCH causes the processing of the first PDSCH by the terminal device to be interrupted, wherein the capability information of the terminal device includes the following information. At least one of: a downlink data processing delay of the terminal device, and a number of PDSCHs that the terminal device can simultaneously process.
  • the wireless communication method further includes: receiving the capability information sent by the terminal device.
  • determining, according to the capability information of the terminal device, the transmission mode corresponding to the first PDSCH, and the transmission mode corresponding to the second PDSCH, whether the transmission of the second PDSCH causes the terminal The process of the first PDSCH is interrupted, and the processing of the first PDSCH is determined according to the capability information of the terminal device, the transmission mode corresponding to the first PDSCH, and the transmission mode corresponding to the second PDSCH.
  • the method for wireless communication further includes: if the transmission of the second PDSCH does not cause the processing of the first PDSCH by the terminal device to be interrupted, and the HARQ information corresponding to the first PDSCH is The NACK sends the second retransmission data corresponding to the first PDSCH to the terminal device, where the second retransmission data is incremental redundancy data corresponding to the first PDSCH.
  • the data may be transmitted according to the normal retransmission procedure in combination with the HARQ information of the terminal device.
  • the sending, by the terminal device, the first retransmission data corresponding to the first PDSCH includes: not receiving the HARQ information corresponding to the first PDSCH, and directly sending the first retransmission to the terminal device data.
  • the network device can select not to receive the HARQ information of the first PDSCH on the basis of actively determining that the first PDSCH is not correctly received, thereby saving the receiving resources.
  • the sending, by the terminal device, the first retransmission data corresponding to the first PDSCH includes: sending the first retransmission data to the terminal device at a target time, the target time is no later than the The reception time of the HARQ information corresponding to the first PDSCH.
  • the network device can select to transmit retransmission data to the terminal device before the predefined reception of the HARQ information, thereby improving the transmission efficiency, on the basis of actively determining that the first PDSCH is not correctly received. Reduce the transmission delay.
  • the method for wireless communication further includes: determining whether the second PDSCH is an emergency service; and scheduling the latest start processing time of the second PDSCH if the second PDSCH is a non-emergency service The processing end time is later than the first PDSCH.
  • the method for wireless communication further includes: determining a processing end time of the first PDSCH, determining whether the second PDSCH is an emergency service; and scheduling, where the second PDSCH is a non-emergency service, The latest start processing time of the second PDSCH is later than the processing end time of the first PDSCH.
  • the network device may actively determine the scheduling time of the second PDSCH to avoid a situation in which the terminal device interrupts the first PDSCH.
  • the method for wireless communication further includes: discarding data corresponding to the first PDSCH, and rescheduling the first PDSCH to the terminal device.
  • a second aspect provides a wireless communication method for a terminal device, including: receiving, by a network device, a first PDSCH and a second PDSCH, where a reception time of the first PDSCH is earlier than a reception time of the second PDSCH, where The sending time of the HARQ information corresponding to the first PDSCH is later than the sending time of the HARQ information of the second PDSCH; determining whether the transmission of the second PDSCH causes the processing procedure of the first PDSCH by the network device to be interrupted; if it is determined The transmission of the second PDSCH may cause the processing of the first PDSCH by the network device to be interrupted, and the processing of the first data corresponding to the first PDSCH is interrupted.
  • the terminal device actively determines whether the transmission of the second PDSCH causes the processing of the first PDSCH to be transmitted to be interrupted, which is beneficial to the terminal device to make the correct Scheduling strategy.
  • the method for wireless communication further includes: receiving, by the network device, first retransmission data, where the first retransmission data is retransmission data that can be independently decoded.
  • the first retransmission data is the same data as the initial data packet corresponding to the first PDSCH.
  • determining whether the transmission of the second PDSCH causes the processing of the first PDSCH to be interrupted including: according to capability information of the terminal device, and a transmission manner corresponding to the first PDSCH And determining, by the transmission mode corresponding to the second PDSCH, whether the transmission of the second PDSCH causes the processing of the first PDSCH to be interrupted, where the capability information of the terminal device includes at least one of the following information: The downlink data processing delay of the terminal device and the number of PDSCHs that the terminal device can process simultaneously.
  • the method for wireless communication further includes: transmitting capability information of the terminal device to the network device.
  • the method for wireless communication further includes: if the transmission of the second PDSCH does not cause the processing of the first PDSCH to be interrupted, and the HARQ information corresponding to the first PDSCH is NACK, The network device receives the second retransmission data corresponding to the first PDSCH, where the second retransmission data is incremental redundancy data corresponding to the first PDSCH.
  • the method for wireless communication further includes determining that the HARQ information corresponding to the first PDSCH is not ACK information if the transmission of the second PDSCH does not cause the processing of the first PDSCH to be interrupted.
  • the method for wireless communication further includes: determining that the HARQ information corresponding to the first PDSCH is not ACK information, if the transmission of the second PDSCH does not cause the processing of the first PDSCH to be interrupted, The NACK information is transmitted at the transmission time of the HARQ information corresponding to the first PDSCH.
  • the method for wireless communication further includes: determining that the HARQ information corresponding to the first PDSCH is not ACK information, if the transmission of the second PDSCH does not cause the processing of the first PDSCH to be interrupted, The HARQ information is not transmitted at the transmission time of the HARQ information corresponding to the first PDSCH to save transmission resources.
  • a device which is a chip in a network device or a network device, comprising a processing unit and a transceiver unit for performing the method according to the above first aspect or the implementation of any of the first aspects .
  • the processing unit may be a processor
  • the transceiver unit may be a transceiver, the transceiver including a radio frequency circuit
  • the network device further includes a storage unit, and the storage unit may be a memory.
  • the processing unit may be a processor, the transceiver unit may be an input/output interface, a pin or a circuit on the chip, etc.; the processing unit may perform a computer execution of the storage unit storage
  • the instruction unit may alternatively be a storage unit (for example, a register, a cache, etc.) in the chip, or may be a storage unit outside the chip in the network device (for example, a read-only memory (read- Only memory, ROM)) or other types of static storage devices (eg, random access memory (RAM)) that can store static information and instructions.
  • the processor mentioned in any of the above may be a central processing unit (CPU), a microprocessor or an application specific integrated circuit (ASIC), or may be one or more for controlling An integrated circuit for program execution of a signalling method in any of the possible implementations.
  • a device which is a chip in a terminal device or a terminal device, comprising a processing unit and a transceiver unit for performing the method according to the second aspect or the implementation of any of the second aspect .
  • the processing unit may be a processor
  • the transceiver unit may be a transceiver, the transceiver including a radio frequency circuit
  • the terminal device further includes a storage unit, and the storage unit may be a memory.
  • the processing unit may be a processor, the transceiver unit may be an input/output interface, a pin or a circuit on the chip, etc.; the processing unit may perform computer execution of the storage unit storage
  • the instruction unit may alternatively be a storage unit (for example, a register, a cache, etc.) in the chip, or may be a storage unit located outside the chip in the terminal device (for example, a read-only memory (read- Only memory, ROM)) or other types of static storage devices (eg, random access memory (RAM)) that can store static information and instructions.
  • the processor mentioned in any of the above may be a central processing unit (CPU), a microprocessor or an application specific integrated circuit (ASIC), or may be one or more for controlling An integrated circuit for program execution of a signalling method in any of the possible implementations.
  • a network device comprising: a processor and a transceiver, configured to perform the method of any one of the foregoing first aspect or the first aspect.
  • a terminal device comprising: a processor and a transceiver, configured to perform the method according to any one of the foregoing second aspect or the second aspect.
  • a seventh aspect a computer readable storage medium for storing computer software instructions, comprising the method of performing the first aspect or the implementation of any of the first aspects, The program designed.
  • a computer readable storage medium for storing computer software instructions, comprising the method of any one of the second aspect or the second aspect described above The program designed.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform any of the first aspect or the first aspect Said method.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform any one of the second aspect or the second aspect Said method.
  • a chip comprising a processor and a memory for storing a computer program for calling and running the computer program from a memory, the computer program for implementing the method of the above aspects .
  • a communication system comprising the network device of the above third or fifth aspect, and the terminal device of the above fourth or sixth aspect.
  • FIG. 1 is a wireless communication system 100 to which an embodiment of the present application is applied.
  • FIG. 2 is a schematic diagram of a method for wireless communication provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a manner in which a terminal device processes a PDSCH for out-of-order HARQ scheduling according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of another wireless communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of another network device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of another terminal device provided by an embodiment of the present application.
  • FIG. 1 is a wireless communication system 100 to which an embodiment of the present application is applied.
  • the wireless communication system 100 can include a network device 110.
  • Network device 110 may be a device that communicates with terminal device 120.
  • Network device 110 may provide communication coverage for a particular geographic area and may communicate with terminal device 120 located within the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the wireless communication system 100 may include multiple network devices and may include other numbers of terminals within the coverage of each network device. This example does not limit this.
  • the wireless communication system 100 may further include other network entities, such as a network controller, a mobility management entity, and the like.
  • network entities such as a network controller, a mobility management entity, and the like.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • TDD LTE Time Division Duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G future fifth generation
  • 5G fifth generation
  • NR new radio
  • the terminal device in the embodiment of the present application may refer to a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless device.
  • Communication device user agent or user device.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, where the network device may be a global system of mobile communication (GSM) system or code division multiple access (CDMA).
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • the node B, eNB or eNodeB) may also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a future.
  • the network device in the 5G network or the network device in the PLMN network in the future is not limited in this embodiment.
  • the network device and the terminal device are taken as an example to describe the scheduling process of the PDSCH in detail.
  • the HARQ retransmission technique combines forward error correction (FEC) and automatic repeat-request (ARQ) to improve the reliability of communication.
  • FEC forward error correction
  • ARQ automatic repeat-request
  • the network device sends a data packet to the terminal device, the data packet is FEC encoded and modulated by the physical layer, and then sent to the antenna port for transmission. After the data packet arrives at the terminal device, it is demodulated and decoded through the physical layer of the terminal device, and the decoding result is fed back to the transmitting end. Generally, the network device determines whether the data is correctly received according to the HARQ information fed back by the terminal device.
  • the terminal device If the terminal device can correctly receive the data packet, it sends an acknowledgement (ACK) message to the network device, and if the terminal device cannot correctly receive the data packet, sends a negative acknowledgement (NACK) message to the network device. After receiving the NACK sent by the terminal device, the network device resends the data packet.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the network device scheduling terminal device receives the first PDSCH and the second PDSCH.
  • the first PDSCH and the second PDSCH are simply referred to as D1 and D2 hereinafter.
  • D1 and D2 are simply referred to as D1 and D2 hereinafter.
  • D1 is scheduled and transmitted before D2.
  • the feedback time of HARQ information of D2 is not earlier than the feedback time of HARQ information of D1.
  • This scheduling is called sequential scheduling.
  • D2 is an emergency service.
  • the network device may schedule the feedback time of the HARQ information of the D2 to be earlier than the feedback time of the HARQ information of the D1. Out of order HARQ scheduling.
  • the network device can learn whether the terminal device correctly receives the data corresponding to the PDSCH based on the HARQ mechanism. However, in the out-of-order HARQ scheduling scenario, only the receiving state of the data corresponding to the PDSCH is not conducive to the network device to make a correct scheduling policy.
  • the embodiment of the present application provides a wireless communication method, which is beneficial for a network device to make a correct scheduling policy in an out-of-order HARQ scheduling scenario.
  • FIG. 2 is a schematic flowchart of a method for wireless communication provided by an embodiment of the present application.
  • the method of Figure 2 includes steps 210-230, which are described in detail below.
  • the network device sends the first PDSCH and the second PDSCH to the terminal device, where the sending time of the first PDSCH is earlier than the sending time of the second PDSCH, and the receiving time of the HARQ information corresponding to the first PDSCH is later than the second.
  • the reception time of the HARQ information of the PDSCH That is to say, the scheduling of the first PDSCH and the second PDSCH by the network device is out-of-order HARQ scheduling.
  • the network device can have a wireless resource scheduling function.
  • the network device may be, for example, a base station, a cell, or other types of network nodes and relay nodes having scheduling functions, and the network device may also be a relay terminal having a scheduling function.
  • the network device can also be a chip system.
  • step 220 the network device determines whether the transmission of the second PDSCH may cause the processing of the first PDSCH by the terminal device to be interrupted.
  • the processing procedure of the terminal device to the first PDSCH may include at least one of a process of receiving data corresponding to the first PDSCH, a demodulation process of the first PDSCH, and a decoding process of the first PDSCH.
  • step 230 if the network device determines that the transmission of the second PDSCH causes the processing of the first PDSCH by the terminal device to be interrupted, the network device determines that the first data corresponding to the first PDSCH is not successfully received.
  • the network device actively determines whether the transmission of the second PDSCH causes the processing of the first PDSCH to be transmitted to be interrupted, which is beneficial for the network device to make the correct Scheduling strategy.
  • the following description will be made by simply referring to the first PDSCH and the second PDSCH as D1 and D2.
  • the terminal device finds that it is necessary to process the more urgent data D2 in the process of processing the data of D1, the terminal device interrupts the processing of D1 and proceeds to the processing of D2. Since the processing of D1 is interrupted, the data of D1 may not be completely received, so the terminal device feeds back the HARQ information of D1 to the network device as NACK. The network device sends the retransmission data to the terminal device according to the NACK information fed back by the terminal device.
  • the network device schedules D1 and D2 to the terminal device, and may send D1 and D2 to the terminal device at the same time, or may send D1 and D2 to the terminal device.
  • Incremental redundancy is a kind of HARQ retransmission technology.
  • the IR technology transmits additional information bits (bits) and a part of redundant bits during the first transmission, and transmits additional information through retransmission. Redundant bit. If the first transmission is not successfully decoded, the channel coding rate can be reduced by retransmitting more redundant bits, thereby improving the decoding success rate. If the redundant bit added with retransmission still cannot be decoded normally, it will be retransmitted again. As the number of retransmissions increases, redundant bits accumulate and the channel coding rate decreases, so that a better decoding effect can be obtained. Normally, the first transmitted data packet can be independently decoded, but the retransmitted data packet may only transmit fewer redundant bits, and the retransmission data packet alone cannot be independently decoded.
  • the retransmission data packet sent by the network device may be a data packet that cannot be self-decoded.
  • the terminal cannot correctly decode and continues to feed back the NACK, so that the network device continues to retransmit. This process continues until the number of retransmissions reaches a certain number of times, and the high-level data retransmission or discard is initiated. data.
  • the use of incremental redundancy retransmission technology results in data loss, increased data transmission delay, and wasted transmission resources.
  • the network device may make some reasonable decisions according to the pre-judgment, thereby avoiding unnecessary retransmission and reducing The waste of transmission resources and the increase of transmission delay.
  • the network device may choose to discard the transmission data of D1, re-schedule D1, and send the initial transmission data of D1 to the terminal device.
  • the network device determines that the terminal device sends the first retransmission data of the D1 to the terminal device after interrupting the D1, where the first retransmission data is retransmitted data that can be independently decoded.
  • the terminal device can avoid the data packet that cannot be independently decoded and cannot be correctly decoded, and will continue to feed back the NACK, resulting in an increase in transmission delay and a waste of transmission resources.
  • the network device determines that the terminal device may interrupt the D1, and may choose not to receive the HARQ information of the D1, that is, does not receive the ACK/NACK feedback information of the D1, and directly adopts the HARQ information of the D1 as the NACK. Processing is performed to send the first retransmission data to the terminal device. In this way, it is possible to save the network device from receiving the HARQ resources of D1, thereby being able to reduce the transmission power.
  • the network device does not receive the HARQ information of the D1, and may indicate that the terminal device does not send the HARQ information for a predetermined time, or the terminal device may send the HARQ information, but the network device does not receive the HARQ information for a predetermined time.
  • the network device may choose to send the first retransmission data to the terminal device at the target time, where the target time is not later than the receiving time of the HARQ information corresponding to D1. That is to say, the network device sends the first retransmission data to the terminal device in advance, so that the transmission delay can be reduced.
  • the network device after determining that the first data corresponding to D1 is not successfully received, the network device sends the first retransmission data to the terminal device.
  • the first retransmission data is retransmission data that can be independently decoded.
  • the first retransmission data is the same data as the initial transmission packet corresponding to D1.
  • the network device may determine whether the scheduled transmission is the initial transmission data of D1, and if it is the initial transmission data, the network device sends the retransmission data that can be independently decoded to the terminal device. If the data is initially transmitted, that is, if the retransmitted data packet is scheduled, the network device may send the first retransmission data to the terminal device, or may re-schedule according to the normal retransmission process to the terminal. The device sends retransmitted data (such as incremental redundant data).
  • the method for determining whether the transmission of the D2 by the network device causes the terminal device to interrupt the processing of the D1 is not specifically limited.
  • the network device determines, according to the capability information of the terminal device, the transmission mode corresponding to D1, and the transmission mode corresponding to D2, whether the transmission of D2 causes the processing of the terminal device to D1 to be interrupted.
  • the transmission mode corresponding to D1 includes: an end position of D1, an end position of a last demodulation reference signal (DMRS) of D1, a start transmission position of HARQ information corresponding to D1, and a sub-portion of D1.
  • the transmission mode corresponding to D2 includes: the end position of D2, the end position of the last DMRS of D2, the start transmission position of HARQ information corresponding to D2, and the subcarrier spacing of D2.
  • the capability information may be obtained by the network device according to the provisions of the protocol.
  • the capability information may be capability information reported by the terminal device to the network device.
  • the capability information may include at least one of the following information: a downlink data processing delay of the terminal device, and a number of PDSCHs that the terminal device can simultaneously process.
  • the downlink data processing delay of the terminal device refers to the earliest possible transmission of the HARQ information corresponding to the PDSCH from the end of the last orthogonal frequency division multiplexing (OFDM) symbol reception of one PDSCH.
  • the HARQ information includes ACK/NACK information fed back by the terminal device.
  • the time interval from the end of the last OFDM symbol reception of one PDSCH to the start time of transmitting the ACK/NACK signal is greater than or equal to the downlink data processing delay of the terminal device.
  • the downlink data processing delay of the terminal device including the processing delay of the terminal device under different scheduling conditions.
  • the scheduling condition includes at least one of the following conditions: a subcarrier spacing of the PDSCH; a DMRS of the PDSCH, eg, the PDSCH has only a pre-demodulation reference signal, or the PDSCH includes an additional reference signal in addition to the pre-demodulation reference signal; Whether the data to be transmitted is the initial transmission data or the retransmission data; the type of the PDSCH, the type of the PDSCH may be, for example, type A or type B, where the time domain length of the PDSCH of the TYPE A is greater than or equal to 7 OFDM symbols, and the time domain of the PDSCH of the TYPE B The length is less than 7 OFDM symbols; the resource mapping mode of the PDSCH, for example, the resource mapping manner of the PDSCH is a pre-time domain post-frequency domain mapping, or a pre-frequency domain post-time domain mapping.
  • the downlink data processing delay size under different scheduling conditions is exemplified.
  • the downlink data processing delay can be expressed as N1 OFDM symbols, where N1 is a positive integer (N1: from the perspective of the terminal device, the reception from the NR-PDSCH ends The earliest possible transmission time to the corresponding ACK/NACK is defined as the number of OFDM symbols required for the terminal device to process).
  • N1 is a positive integer
  • N1 from the perspective of the terminal device, the reception from the NR-PDSCH ends
  • the earliest possible transmission time to the corresponding ACK/NACK is defined as the number of OFDM symbols required for the terminal device to process).
  • Table 1 The downlink data processing delay size under different scheduling conditions is shown in Table 1 below.
  • the transmission time of the ACK/NACK corresponding to the PDSCH to be scheduled by the network device is greater than or equal to (N1+TA) symbol.
  • TA denotes timing advanced, for example, may refer to an uplink timing advance of the terminal device with respect to downlink transmission.
  • TA can be measured in units of symbols, or it can be measured in absolute time or in sample rate. We measure here in units of symbols.
  • K1*L+(X_3- TA)-X_2 is greater than or equal to N1.
  • the number of PDSCHs that the terminal device can process simultaneously can be the number of PDSCHs that the terminal can process simultaneously under different transmission conditions.
  • the number of PDSCHs that the terminal device can simultaneously process under different transmission conditions may include at least one of the following information: the number of PDSCHs that can be simultaneously processed on each carrier; the number of PDSCHs that can be simultaneously processed by each band band; The number of PDSCHs that can be processed simultaneously at high or low frequencies; the total number of PDSCHs that the terminal device can handle simultaneously; the terminal device can simultaneously process the number of PDSCHs of different sizes. For example, for a data packet larger than 100k, the terminal device can process 1 PDSCH simultaneously; for a data packet less than or equal to 100k, the terminal device can process 2 PDSCHs simultaneously.
  • the PDSCH may be, for example, a unicast PDSCH, a multicast PDSCH, or a broadcast PDSCH.
  • the number of PDSCHs that can be simultaneously processed by the terminal device may be, for example, the number of unicast PDSCHs that can be simultaneously processed on each carrier, or the number of unicast or broadcast PDSCHs that can be simultaneously processed on each carrier. Make specific limits.
  • the manner in which the network device determines whether the transmission of the D2 causes the terminal device to interrupt the processing of the D1 is not specifically limited.
  • the network device may determine the difference between the feedback time of D2 and the feedback time of D1.
  • it may be determined according to whether the latest start processing time of D2 is earlier than the processing end time of D1. In other words, it can be determined according to whether the processing time of D1 is later than the earliest starting processing time of D2. If the number of unicast PDSCHs that the terminal device can simultaneously process on each carrier is limited, for example, 1, and if the latest start processing time of D2 is earlier than the processing end time of D1, the network device may determine feedback from the terminal device. The signal will not be an ACK.
  • the embodiment of the present application does not specifically limit the manner of determining whether the processing time of D1 is later than the earliest starting processing time of D2.
  • whether or not the latest start processing time of D2 is later than the processing end time of D1 can be determined as follows.
  • the judgment method is as follows, the first symbol of D1 is used as the symbol 0, and the subsequent symbol is sequentially numbered.
  • the first symbol of the ACK/NACK corresponding to the transmission D1 is the symbol X1_3;
  • the first symbol of the ACK/NACK corresponding to the transmission D2 is the symbol X2_3;
  • the network device retransmits the initial transmission data or the data that can be self-decoded to the terminal device. If D1 is retransmitting data, the network device may send initial transmission data or data that can be self-decoded to the terminal device, or may perform rescheduling according to a normal retransmission procedure to transmit incremental redundancy data.
  • the network device sends the second retransmission data corresponding to D1 to the terminal device, where
  • the double-pass data is incremental redundant data corresponding to D1.
  • N1_1' N1_1 + (X1_2 - X1_1)
  • N1_2' N1_2+ (X2_2 - X2_1).
  • Case 1 The processing of D2 will cause the processing of D1 to be interrupted.
  • the latest start processing time of D2 is earlier than the processing end time of D1, that is, the processing end time of D1 to D2 feedback ACK/NACK is less than the time required to process D2. Therefore, the processing of D2 will cause the processing of D1 to be interrupted.
  • Case 2 The processing of D2 does not cause the processing of D1 to be interrupted.
  • the latest start processing time of D2 is later than the processing end time of D1, that is, the processing end time of D1 to D2 feedback ACK/NACK is longer than the time required to process D2. Therefore, the processing of D2 does not cause the processing of D1 to be interrupted.
  • the network device may take measures to avoid out-of-order HARQ scheduling.
  • the network device may choose to notify the terminal device whether to discard D1 or D2.
  • the network device may predetermine the capability information of the terminal device, and if the terminal device has limited processing capability, determine whether the priority of the previously scheduled D1 is higher or the priority of the post-scheduled D2 is higher. If the priority of the previously scheduled D1 is high, the configuration information is sent to the terminal device to instruct the terminal device to preferentially process the data of D1, and the data of D2 is processed only after the data processing of D1 is completed.
  • the network device may determine the transmission mode of the D2 according to the capability of the terminal device. For example, the network device can reserve enough time for D2 feedback to avoid an interrupted scenario. For example, if the network device determines that D2 is a non-emergency service, the transmission mode of D2 may be determined such that the latest start time of D2 is later than the processing end time of D1. Wherein, the network device can determine whether the time reserved for the feedback of D2 is sufficient according to the method described above. For example, X2_3>X1_1+(X1_2-X1_1+N1_1)+TA+(X2_2-X2_1+N1_2).
  • the network device may take the following simplified conditions to determine if D2 will interrupt D1.
  • the network device may default D1 to be interrupted.
  • FIG. 4 is a schematic flowchart of another wireless communication method provided by an embodiment of the present application.
  • the method of Figure 4 includes steps 410-430, which are described in detail below with respect to steps 410-430, respectively.
  • the terminal device receives the first PDSCH and the second PDSCH from the network device, where the receiving time of the first PDSCH is earlier than the receiving time of the second PDSCH, and the sending time of the HARQ information corresponding to the first PDSCH is later than the The transmission time of the HARQ information of the second PDSCH.
  • step 420 the terminal device determines whether the transmission of the second PDSCH may cause the processing of the first PDSCH by the terminal device to be interrupted.
  • step 430 if the terminal device determines that the transmission of the second PDSCH causes the processing of the first PDSCH by the terminal device to be interrupted, the terminal device interrupts the processing of the first data corresponding to the first PDSCH.
  • the terminal device actively determines whether the transmission of the second PDSCH causes the processing of the first PDSCH to be transmitted to be interrupted, which is beneficial to the terminal device to make the correct Scheduling strategy.
  • the network device actively determines whether the transmission of the second PDSCH causes the processing of the first PDSCH to be interrupted according to the scheduling manner of the first PDSCH and the second PDSCH, to determine whether the first PDSCH is successfully received, so that the communication manner is more flexible.
  • the terminal device may receive the first retransmission data or the new first PDSCH sent by the network device, where the first retransmission data is retransmitted data that can be independently decoded.
  • the first retransmission data may be the same data as the initial transmission data corresponding to the first PDSCH.
  • the terminal device may choose to discard the first PDSCH of the current scheduling, thereby saving resources. Then, the first retransmission data sent by the network device is received for demodulation and decoding operations.
  • the terminal device may select, according to its own capability information, a state when the first PDSCH is interrupted after the first PDSCH is interrupted, and continue processing of the first PDSCH after the second PDSCH process ends.
  • the terminal device may determine that the HARQ information corresponding to the first PDSCH is NACK information, and further transmit the NACK information on the HARQ information transmission resource corresponding to the first PDSCH.
  • the terminal device may choose not to send an ACK/NACK signal corresponding to the first PDSCH to save transmission resources.
  • the method for determining whether the transmission of the second PDSCH by the terminal device causes the terminal device to interrupt the processing process of the first PDSCH is not specifically limited.
  • the terminal device determines, according to the capability information of the terminal device, the transmission mode corresponding to the first PDSCH, and the transmission mode corresponding to the second PDSCH, whether the transmission of the second PDSCH causes the terminal device to process the first PDSCH. Was interrupted.
  • the terminal device receives the scheduled scheduling signaling of the second PDSCH after processing the first scheduled PDSCH. If out-of-order HARQ scheduling occurs, the terminal device determines whether the terminal device interrupts the processing of the previously scheduled data first PDSCH due to receiving the more urgently fed data second PDSCH scheduled later. If so, the processing of D1 is interrupted; if no interrupt is required, the data of the buffer D2 waits for the end of the D1 data processing to perform the processing of D2.
  • the terminal device may also send its own capability information to the network device.
  • the transmission mode corresponding to the first PDSCH includes at least one of the following information: an end position of the first PDSCH, an end position of the last DMRS of the first PDSCH, and a start transmission of the HARQ information corresponding to the first PDSCH.
  • the transmission mode corresponding to the second PDSCH includes at least one of the following information: an end position of the second PDSCH, an end position of the last DMRS of the second PDSCH, a start transmission position of the HARQ information corresponding to the second PDSCH, and a second Subcarrier spacing of the PDSCH.
  • the capability information may include at least one of the following information: a downlink data processing delay of the terminal device, and a number of PDSCHs that the terminal device can simultaneously process.
  • the downlink data processing delay of the terminal device refers to the generation time of the HARQ information corresponding to the PDSCH from the end of the last OFDM symbol reception of one PDSCH to the terminal equipment.
  • the HARQ information includes ACK/NACK information fed back by the terminal device.
  • the time interval from the end of the last OFDM symbol reception of a PDSCH to the transmission of the ACK/NACK signal by the terminal device is greater than or equal to the downlink data processing delay of the terminal device.
  • the downlink data processing delay of the terminal device including the processing delay of the terminal device under different scheduling conditions.
  • the scheduling condition includes at least one of the following conditions: a subcarrier spacing of the PDSCH; a DMRS of the PDSCH, eg, the PDSCH only has a demodulation reference signal, or the PDSCH further includes an additional reference signal; whether the transmitted data is an initial transmission data or a retransmission data ; type of PDSCH.
  • the type of the PDSCH may be type A or type B, where the time domain length of the PDSCH of the TYPE A is greater than or equal to 7 OFDM symbols, and the time domain length of the PDSCH of the TYPE B is less than 7 OFDM symbols.
  • the downlink data processing delay size under different scheduling conditions is exemplified.
  • the downlink data processing delay can be expressed as N1 OFDM symbols, where N1 is a positive integer.
  • the downlink data processing delay size under different scheduling conditions is shown in Table 1 below.
  • the time from the end of receiving the PDSCH to the start of transmission of the ACK/NACK by the terminal device is greater than or equal to the (N1+TA) symbol.
  • TA represents timing advanced, timing advance, TA is m symbols, and m is a positive integer.
  • TA refers to the uplink timing advance of the terminal device relative to the downlink transmission.
  • K1*L+(X_3-TA)-X_2 is greater than or equal to N1.
  • the number of PDSCHs that the terminal device can process simultaneously can be the number of PDSCHs that the terminal can process simultaneously under different transmission conditions.
  • the number of PDSCHs that the terminal device can simultaneously process under different transmission conditions includes at least one of the following information terminals: the number of PDSCHs that can be simultaneously processed on each carrier; the number of PDSCHs that can be simultaneously processed by each band band; The number of PDSCHs that can be processed simultaneously by frequency or low frequency; the total number of PDSCHs that the terminal equipment can handle simultaneously; the terminal equipment can simultaneously process the number of PDSCHs of different sizes. For example, for a data packet larger than 100k, the terminal device can process 1 PDSCH simultaneously; for a data packet less than or equal to 100k, the terminal device can process 2 PDSCHs simultaneously.
  • the PDSCH may be, for example, a unicast PDSCH or a multicast PDSCH, which is not specifically limited in this application.
  • the manner in which the terminal device determines whether the transmission of the second PDSCH may cause the terminal device to interrupt the processing process of the first PDSCH is not specifically limited.
  • the terminal device may determine the difference between the feedback time of the second PDSCH and the feedback time of the first PDSCH.
  • the terminal device may determine whether the latest start processing time of the second PDSCH is earlier than the processing end time of the first PDSCH. In other words, the terminal device can determine whether the processing end time of the first PDSCH is later than the earliest starting processing time of the second PDSCH. If the latest start processing time of the second PDSCH is earlier than the processing end time of the first PDSCH, the terminal device may determine the process of interrupting the first PDSCH.
  • the terminal device may determine based on the PDSCH processing capability of the terminal device and whether the latest start processing time of the second PDSCH is earlier than the processing end time of the first PDSCH. If the number of unicast PDSCHs that the terminal device can process simultaneously is limited, for example, 1, and if the latest start processing time of the second PDSCH is earlier than the processing end time of the first PDSCH, the terminal device may determine to interrupt the first PDSCH process.
  • the manner in which the processing end time of the first PDSCH is later than the earliest start processing time of the second PDSCH is not specifically limited.
  • whether the latest start processing time of the second PDSCH is later than the processing end time of the first PDSCH may be determined according to the following method.
  • the first PDSCH and the second PDSCH are simply referred to as D1 and D2 hereinafter.
  • the judgment method is as follows, the first symbol of D1 is used as the symbol 0, and the subsequent symbol is sequentially numbered.
  • the first symbol of the ACK/NACK corresponding to the transmission D1 is the symbol X1_3;
  • the first symbol of the ACK/NACK corresponding to the transmission D2 is the symbol X2_3;
  • the PDSCH is used to carry the data information sent by the network device to the terminal device, and the physical downlink control channel (PDCCH) is used to carry the control signaling sent by the network device to the terminal device, and the physical uplink is adopted.
  • a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH) is used to carry an acknowledgment signal ACK/NACK for whether the data carried by the PDSCH is successfully received.
  • the network device determines a transmission mode of the downlink data and a resource carried by the feedback signal for the downlink data, and transmits the downlink control signaling to the terminal device, where the downlink data is transmitted.
  • the time-frequency resource, the modulation mode, the coding mode, and the resource mapping mode of the downlink data, and the bearer resource of the feedback signal for the downlink data includes a time-frequency resource of the feedback signal ACK/NACK.
  • the time-frequency resource of the ACK/NACK may be directly specified in the control signaling sent by the network device, or may be obtained according to a certain rule, or part of the resource information is specified by the control signaling, and part of the resource information is according to Predefined rules are obtained.
  • the terminal device first receives the downlink control signaling, so as to obtain the transmission mode of the PDSCH that needs to be received by itself, and then receives the corresponding PDSCH according to the defined transmission mode, and decodes the data block or the transmission block carried on the PDSCH (transmission) Block, TB), and according to the decoding result, generate a corresponding ACK or NACK signal, and then transmit a corresponding ACK/NACK signal on the ACK/NACK transmission resource according to the determined ACK/NACK transmission mode.
  • the time interval between the receiving of the PDSCH and the sending of the ACK/NACK by the terminal device is greater than or equal to the processing delay of the terminal device processing the PDSCH data.
  • FIG. 5 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 500 includes a first sending unit 510, a first determining unit 520, and a second determining unit 530.
  • the transceiver unit 510 is configured to send the first PDSCH and the second PDSCH, where the sending time of the first PDSCH is earlier than the sending time of the second PDSCH, and the receiving time of the HARQ information corresponding to the first PDSCH is later than the HARQ information of the second PDSCH. Receiving time;
  • the processing unit 520 is configured to determine whether the transmission of the second PDSCH may cause the processing procedure of the terminal device to the first PDSCH to be interrupted;
  • the processing unit 520 is further configured to: determine that the first data corresponding to the first PDSCH is not successfully received if it is determined that the transmission of the second PDSCH causes the processing procedure of the first PDSCH to be interrupted by the terminal device.
  • the network device in the out-of-order HARQ scheduling scenario, actively determines whether the transmission of the second PDSCH causes the processing of the first PDSCH to be transmitted to be interrupted, which is beneficial to the network device to make the correct Scheduling strategy.
  • the network device further includes: a transceiver unit 510, configured to send the first retransmission data to the terminal device, where the first retransmission data is retransmission data that can be independently decoded.
  • the first retransmission data may be the same data as the initial transmission data corresponding to the first PDSCH.
  • the processing unit 520 is further configured to: determine, according to the capability information of the terminal device, the transmission mode corresponding to the first PDSCH and the transmission mode corresponding to the second PDSCH, the second PDSCH Whether the transmission of the terminal device is interrupted by the processing of the first PDSCH by the terminal device, where the capability information of the terminal device includes at least one of the following information: a downlink data processing delay of the terminal device, The number of PDSCHs that the terminal device can process simultaneously.
  • the transceiver unit 510 is further configured to receive capability information sent by the terminal device.
  • the processing unit 520 is further configured to: determine, according to the capability information of the terminal device, the transmission mode corresponding to the first PDSCH and the transmission mode corresponding to the second PDSCH, the processing end time of the first PDSCH and the second PDSCH.
  • the relationship of the processing start time is the latest; in the case where the processing end time of the first PDSCH is later than the latest start processing time of the second PDSCH, determining that the transmission of the second PDSCH causes the processing of the first PDSCH to be interrupted.
  • the transmission mode corresponding to the first PDSCH includes at least one of the following information: an end position of the first PDSCH, an end position of a last demodulation reference signal of the first PDSCH, and HARQ information corresponding to the first PDSCH.
  • the transmission mode corresponding to the second PDSCH includes at least one of the following information: an end position of the second PDSCH, an end position of the last demodulation reference signal of the second PDSCH, and a start transmission position of the HARQ information corresponding to the second PDSCH. , the subcarrier spacing of the second PDSCH.
  • the transceiver unit 510 is further configured to send the first retransmission data directly to the terminal device without receiving the HARQ information corresponding to the first PDSCH.
  • the transceiver unit 510 is further configured to send the first retransmission data to the terminal device at the target time, and the target time is not later than the receiving time of the HARQ information corresponding to the first PDSCH.
  • the processing unit 520 is further configured to: determine, according to the service type of the second PDSCH, a transmission mode of the second PDSCH; and determine, in a case where the service type of the second PDSCH is a non-emergency service, a transmission mode of the second PDSCH So that the latest start processing time of the second PDSCH is later than the processing end time of the first PDSCH.
  • the embodiment of the present application further provides a network device 600.
  • the network device 600 includes a processor 610, a memory 620 and a transceiver 630.
  • the memory 620 is for storing instructions, and the processor 610 and the transceiver 630 are configured to execute instructions stored by the memory 620.
  • network device 500 shown in FIG. 5 or the network device 600 shown in FIG. 6 may be used to perform related operations or processes in the foregoing method embodiments, and operations of various units in the network device 500 or the network device 600 and/or The functions are respectively implemented in order to implement the corresponding processes in the foregoing method embodiments, and are not described herein for brevity.
  • FIG. 7 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 700 includes a transceiver unit 710 and a processing unit 720.
  • the transceiver unit 710 is configured to receive the first PDSCH and the second PDSCH from the network device, where the receiving time of the first PDSCH is earlier than the receiving time of the second PDSCH, and the sending time of the HARQ information corresponding to the first PDSCH is later than the second PDSCH. The time at which the HARQ information is sent;
  • the processing unit 720 is configured to determine whether the transmission of the second PDSCH may cause the processing procedure of the terminal device to the first PDSCH to be interrupted;
  • the processing unit 720 is further configured to interrupt the processing of the first data corresponding to the first PDSCH in the case that it is determined that the transmission of the second PDSCH causes the processing of the first PDSCH to be interrupted by the terminal device.
  • the terminal device in the out-of-order HARQ scheduling scenario, actively determines whether the transmission of the second PDSCH causes the processing of the first PDSCH to be transmitted to be interrupted, which is beneficial to the terminal device to make a correct scheduling. Strategy.
  • the transceiver unit 710 is further configured to receive the first retransmission data sent by the network device, where the first retransmission data is retransmitted data that can be independently decoded.
  • the first retransmission data may be the same data as the initial transmission data corresponding to the first PDSCH.
  • the processing unit 720 is further configured to: determine, according to the capability information of the terminal device, the transmission mode corresponding to the first PDSCH, and the transmission mode corresponding to the second PDSCH, whether the transmission of the second PDSCH may cause the terminal device to
  • the processing of the first PDSCH is interrupted, wherein the capability information of the terminal device includes at least one of the following information: a downlink data processing delay of the terminal device, and a number of PDSCHs that the terminal device can simultaneously process.
  • the transceiver unit 710 is further configured to: send the capability information of the terminal device to the network device.
  • the processing unit 720 is further configured to: determine, according to the capability information of the terminal device, and the transmission mode corresponding to the first PDSCH and the second PDSCH, the processing end time of the first PDSCH and the latest start processing of the second PDSCH. Relationship of time; in the case where the processing end time of the first PDSCH is later than the latest start processing time of the second PDSCH, determining that the transmission of the second PDSCH causes the processing of the first PDSCH to be interrupted.
  • the transmission mode corresponding to the first PDSCH includes at least one of the following information: an end position of the first PDSCH, an end position of a last demodulation reference signal of the first PDSCH, and HARQ information corresponding to the first PDSCH.
  • the transmission mode corresponding to the second PDSCH includes at least one of the following information: an end position of the second PDSCH, an end position of the last demodulation reference signal of the second PDSCH, and a start transmission position of the HARQ information corresponding to the second PDSCH. , the subcarrier spacing of the second PDSCH.
  • the embodiment of the present application further provides a terminal device 800.
  • the terminal device 800 includes a processor 88, a memory 820 and a transceiver 830.
  • the memory 820 is used to store instructions that are used by the processor 88 and the transceiver 830 to execute instructions stored by the memory 820.
  • terminal device 700 shown in FIG. 7 or the terminal device 800 shown in FIG. 8 can be used to perform the operations or processes related to the foregoing method embodiments, and the operations of the respective units in the terminal device 700 or the terminal device 800 and/or The functions are respectively implemented in order to implement the corresponding processes in the foregoing method embodiments, and are not described herein for brevity.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线通信方法、网络设备、终端设备及计算机可读存储介质。该方法包括:网络设备向终端设备发送第一PDSCH和第二PDSCH,其中,网络设备对第一PDSCH和第二PDSCH的调度为乱序HARQ调度;网络设备确定第二PDSCH的传输是否会导致终端设备对第一PDSCH的处理过程被中断;如果网络设备确定第二PDSCH的传输会导致终端设备对第一PDSCH的处理过程被中断,则确定第一PDSCH所对应的数据未被成功接收。根据本申请提供的技术方案,在乱序HARQ调度场景下,网络设备主动判断第二PDSCH的传输是否会引起在先传输的第一PDSCH的处理过程被中断,有利于网络设备做出正确的调度策略。

Description

无线通信方法、网络设备、终端设备及可读存储介质
本申请要求于2018年02月13日提交中国专利局、申请号为201810150951.5、申请名称为“无线通信方法、网络设备、终端设备及可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及一种无线通信方法、网络设备、终端设备及计算机可读存储介质。
背景技术
在无线通信系统中,网络设备(如基站)和终端设备通常采用混合自动反馈重传请求(hybrid automatic repeat request,HARQ)机制进行来提升通信的可靠性。
网络设备与终端设备通信过程有时会出现乱序HARQ调度(out-of-HARQ order)。以网络设备向终端设备先后发送第一物理上行共享信道(physical downlink shared channel,PDSCH)和第二PDSCH为例,如果第二PDSCH中的数据属于紧急业务对应的数据,则网络设备可能会对第一PDSCH和第二PDSCH进行调度,使得终端设备优先反馈第二PDSCH的HARQ信息,此时,第一PDSCH和第二PDSCH的调度方式即为一种乱序HARQ调度。
网络设备基于HARQ机制能够获知终端设备是否正确接收PDSCH对应的数据,但在乱序HARQ调度场景中,仅获知PDSCH对应的数据的接收状态不利于网络设备做出正确的调度策略。
发明内容
本申请提供一种无线通信方法、网络设备、终端设备及计算机可读存储介质,有利于网络设备在乱序HARQ调度场景下做出正确的调度策略。
第一方面,提供了一种应用于网络设备的无线通信方法,包括:向终端设备发送第一PDSCH和第二PDSCH,其中该第一PDSCH的发送时间早于该第二PDSCH的发送时间,该第一PDSCH对应的HARQ信息的接收时间晚于该第二PDSCH的HARQ信息的接收时间;确定该第二PDSCH的传输是否会导致该终端设备对该第一PDSCH的处理过程被中断;在确定该第二PDSCH的传输会导致该终端设备对该第一PDSCH的处理过程被中断的情况下,确定该第一PDSCH所对应的第一数据未被成功接收。
根据本申请提供的无线通信方法,在乱序HARQ调度场景下,网络设备主动判断第二PDSCH的传输是否会引起在先传输的第一PDSCH的处理过程被中断,有利于网络设备做出正确的调度策略。
在一种可能的实现方式中,该无线通信方法还包括:向该终端设备发送第一重传数据, 该第一重传数据为能够独立译码的重传数据。
在确定该第二PDSCH的传输会导致该终端设备对该第一PDSCH的处理过程被中断的情况下,向终端设备重传可独立译码的传输数据,有利于提高传输的可靠性。
在一种可能的实现方式中,该第一重传数据为与该第一PDSCH对应的初始传输数据相同的数据。
在一种可能的实现方式中,确定该第二PDSCH的传输是否会导致该终端设备对该第一PDSCH的处理过程被中断,包括:根据该终端设备的能力信息,及该第一PDSCH所对应的传输方式和该第二PDSCH所对应的传输方式,确定该第二PDSCH的传输是否会导致该终端设备对该第一PDSCH的处理过程被中断,其中,该终端设备的能力信息包括以下信息中的至少一种:该终端设备的下行数据处理时延、该终端设备能够同时处理的PDSCH的数量。
在一种可能的实现方式中,在根据该终端设备的能力信息,及该第一PDSCH所对应的传输方式和该第二PDSCH所对应的传输方式,确定该第二PDSCH的传输是否会导致该终端设备对该第一PDSCH的处理过程被中断之前,该无线通信方法还包括:接收该终端设备发送的该能力信息。
在一种可能的实现方式中,根据该终端设备的能力信息,及该第一PDSCH所对应的传输方式和该第二PDSCH所对应的传输方式,确定该第二PDSCH的传输是否会导致该终端设备对该第一PDSCH的处理过程被中断,包括:根据该终端设备的能力信息,及该第一PDSCH所对应的传输方式和该第二PDSCH所对应的传输方式,确定该第一PDSCH的处理结束时间与该第二PDSCH的最晚开始处理时间的关系;在该第一PDSCH的处理结束时间晚于该第二PDSCH的最晚开始处理时间的情况下,确定该第二PDSCH的传输会导致该第一PDSCH的处理过程被中断。
在一种可能的实现方式中,该无线通信方法还包括:如果该第二PDSCH的传输不会导致该终端设备对该第一PDSCH的处理过程被中断,且该第一PDSCH对应的HARQ信息为NACK,向该终端设备发送该第一PDSCH对应的第二重传数据,该第二重传数据为该第一PDSCH对应的增量冗余数据。
根据本申请提供的无线通信方法,如果网络设备确定第一PDSCH没有被中断,可以结合终端设备的HARQ信息,按照正常的重传流程发送数据。
在一种可能的实现方式中,向该终端设备发送该第一PDSCH对应的第一重传数据,包括:不接收该第一PDSCH对应的HARQ信息,直接向该终端设备发送该第一重传数据。
根据本申请提供的无线通信方法,网络设备能够在主动地确定第一PDSCH没有正确接收的基础上,选择不接收第一PDSCH的HARQ信息,从而能够节省接收资源。
在一种可能的实现方式中,向该终端设备发送该第一PDSCH对应的第一重传数据,包括:在目标时间向该终端设备发送该第一重传数据,该目标时间不晚于该第一PDSCH对应的HARQ信息的接收时间。
根据本申请提供的无线通信方法,网络设备能够在主动地确定第一PDSCH没有正确接收的基础上,选择在预定义的接收HARQ信息之前,向终端设备发送重传数据,从而能够提高传输效率,减小传输时延。
在一种可能的实现方式中,该无线通信方法还包括:确定该第二PDSCH是否为紧急 业务;在该第二PDSCH为非紧急业务的情况下,调度该第二PDSCH的最晚开始处理时间晚于该第一PDSCH的处理结束时间。
在一种可能的实现方式中,该无线通信方法还包括:确定该第一PDSCH的处理结束时间,确定该第二PDSCH是否为紧急业务;在该第二PDSCH为非紧急业务的情况下,调度该第二PDSCH的最晚开始处理时间晚于该第一PDSCH的处理结束时间。
根据本申请提供的无线通信方法,网络设备如果确定第二PDSCH为非紧急业务,可以主动地去确定第二PDSCH的调度时间,以避免发生终端设备中断第一PDSCH的情况。
在一种可能的实现方式中,该无线通信方法还包括:丢弃该第一PDSCH所对应的数据,重新向该终端设备调度该第一PDSCH。
第二方面,提供了一种应用于终端设备的无线通信方法,包括:从网络设备接收第一PDSCH和第二PDSCH,其中该第一PDSCH的接收时间早于该第二PDSCH的接收时间,该第一PDSCH对应的HARQ信息的发送时间晚于该第二PDSCH的HARQ信息的发送时间;确定该第二PDSCH的传输是否会导致该网络设备对该第一PDSCH的处理过程被中断;如果确定该第二PDSCH的传输会导致该网络设备对该第一PDSCH的处理过程被中断,中断该第一PDSCH所对应的第一数据的处理。
根据本申请提供的无线通信方法,在乱序HARQ调度场景下,终端设备主动判断第二PDSCH的传输是否会引起在先传输的第一PDSCH的处理过程被中断,有利于终端设备做出正确的调度策略。
在一种可能的实现方式中,该无线通信方法还包括:接收该网络设备发送的第一重传数据,该第一重传数据为能够独立译码的重传数据。
在一种可能的实现方式中,该第一重传数据为与该第一PDSCH对应的初始数据包相同的数据。
在一种可能的实现方式中,确定该第二PDSCH的传输是否会导致对该第一PDSCH的处理过程被中断,包括:根据该终端设备的能力信息,及该第一PDSCH所对应的传输方式和该第二PDSCH所对应的传输方式,确定该第二PDSCH的传输是否会导致对该第一PDSCH的处理过程被中断,其中,该终端设备的能力信息包括以下信息中的至少一种:该终端设备的下行数据处理时延、该终端设备能够同时处理的PDSCH的数量。
在一种可能的实现方式中,该无线通信方法还包括:向该网络设备发送该终端设备的能力信息。
在一种可能的实现方式中,根据该终端设备的能力信息,及该第一PDSCH所对应的传输方式和该第二PDSCH所对应的传输方式,确定该第二PDSCH的传输是否会导致对该第一PDSCH的处理过程被中断,包括:根据该终端设备的能力信息,及该第一PDSCH所对应的传输方式和该第二PDSCH所对应的传输方式,确定该第一PDSCH的处理结束时间与该第二PDSCH的最晚开始处理时间的关系;在该第一PDSCH的处理结束时间晚于该第二PDSCH的最晚开始处理时间的情况下,确定该第二PDSCH的传输会导致该第一PDSCH的处理过程被中断。
在一种可能的实现方式中,该无线通信方法还包括:如果该第二PDSCH的传输不会导致对该第一PDSCH的处理过程被中断,且该第一PDSCH对应的HARQ信息为NACK,从该网络设备接收该第一PDSCH对应的第二重传数据,该第二重传数据为该第一PDSCH 对应的增量冗余数据。
在一种可能的实现方式中,该无线通信方法还包括:如果该第二PDSCH的传输不会导致对该第一PDSCH的处理过程被中断,确定该第一PDSCH对应的HARQ信息不是ACK信息。
在一种可能的实现方式中,该无线通信方法还包括:如果该第二PDSCH的传输不会导致对该第一PDSCH的处理过程被中断,确定该第一PDSCH对应的HARQ信息不是ACK信息,在该第一PDSCH所对应的HARQ信息的发送时间,发送NACK信息。
在一种可能的实现方式中,该无线通信方法还包括:如果该第二PDSCH的传输不会导致对该第一PDSCH的处理过程被中断,确定该第一PDSCH对应的HARQ信息不是ACK信息,在该第一PDSCH所对应的HARQ信息的发送时间,不发送HARQ信息,以节省传输资源。
第三方面,提供了一种装置,该装置是网络设备或网络设备内的芯片,包括用于执行上述第一方面或第一方面中任一种实现方式所述的方法的处理单元和收发单元。当该装置为网络设备时,该处理单元可以是处理器,该收发单元可以是收发器,该收发器包括射频电路;可选地,该网络设备还包括存储单元,该存储单元可以是存储器。当该装置为网络设备内的芯片时,该处理单元可以是处理器,该收发单元可以是该芯片上的输入/输出接口、管脚或电路等;该处理单元可执行存储单元存储的计算机执行指令,可选地,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该网络设备内的位于该芯片外部的存储单元(例如,只读存储器(read-only memory,ROM))或可存储静态信息和指令的其他类型的静态存储设备(例如,随机存取存储器(random access memory,RAM))等。上述任一处提到的处理器可以是一个中央处理器(central processing unit,CPU)、微处理器或专用集成电路(application specific integrated circuit,ASIC),也可以是一个或多个用于控制第一方面任意可能的实现方式中的信号发送方法的程序执行的集成电路。
第四方面,提供了一种装置,该装置是终端设备或终端设备内的芯片,包括用于执行上述第二方面或第二方面中任一种实现方式所述的方法的处理单元和收发单元。当该装置为终端设备时,该处理单元可以是处理器,该收发单元可以是收发器,该收发器包括射频电路;可选地,该终端设备还包括存储单元,该存储单元可以是存储器。当该装置为终端设备内的芯片时,该处理单元可以是处理器,该收发单元可以是该芯片上的输入/输出接口、管脚或电路等;该处理单元可执行存储单元存储的计算机执行指令,可选地,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该终端设备内的位于该芯片外部的存储单元(例如,只读存储器(read-only memory,ROM))或可存储静态信息和指令的其他类型的静态存储设备(例如,随机存取存储器(random access memory,RAM))等。上述任一处提到的处理器可以是一个中央处理器(central processing unit,CPU)、微处理器或专用集成电路(application specific integrated circuit,ASIC),也可以是一个或多个用于控制第一方面任意可能的实现方式中的信号发送方法的程序执行的集成电路。
第五方面,提供了一种网络设备,该网络设备包括:处理器和收发器,用于执行上述第一方面或第一方面的任一种实现方式所述的方法。
第六方面,提供了一种终端设备,该终端设备包括:处理器和收发器,用于执行上述第二方面或第二方面的任一种实现方式所述的方法。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质用于存储计算机软件指令,其包含用于执行上述第一方面或第一方面中任一种实现方式所述的方法所设计的程序。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质用于存储计算机软件指令,其包含用于执行上述第二方面或第二方面中任一种实现方式所述的方法所设计的程序。
第九方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行上述第一方面或第一方面中任一种实现方式所述的方法。
第十方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行上述第二方面或第二方面中任一种实现方式所述的方法。
第十一方面,提供一种芯片,包括处理器和存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,该计算机程序用于实现上述各方面中的方法。
第十二方面,提供了一种通信系统,该通信系统包括上述第三方面或第五方面所述的网络设备以及上述第四方面或第六方面所述的终端设备。
附图说明
图1是本申请实施例应用的无线通信系统100。
图2是本申请实施例提供的一种无线通信方法的示意图。
图3是本申请实施例提供的终端设备对乱序HARQ调度的PDSCH的处理方式的示意图。
图4是本申请实施例提供的另一种无线通信方法的示意图。
图5是本申请实施例提供的一种网络设备的示意性框图。
图6是本申请实施例提供的另一种网络设备的示意性框图。
图7是本申请实施例提供的一种终端设备的示意性框图。
图8是本申请实施例提供的另一种终端设备的示意性框图。
具体实施方式
图1是本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110。网络设备110可以是与终端设备120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信。
图1示例性地示出了一个网络设备和两个终端,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其它网络实体, 本申请实施例对此不作限定。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(global system of mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolutional nodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
下面以网络设备和终端设备为例,对PDSCH的调度过程进行详细描述。
HARQ重传技术是将前向纠错(forward error correction,FEC)与自动重传请求(automatic repeat-request,ARQ)结合起来,提升通信的额可靠性。网络设备向终端设备发送数据包时,数据包经过物理层的FEC编码、调制后送到天线端口传输出去。数据包到达终端设备后,经过终端设备的物理层进行解调、解码,并将解码结果反馈给发送端。通常,网络设备是根据终端设备反馈的HARQ信息确定数据有没有被正确接收。如果终端设备能够正确接收到该数据包,则向网络设备发送确认(acknowledgement,ACK)信息,如果终端设备不能正确接收到该数据包,则向网络设备发送非确认(negative acknowledgement,NACK)信息。网络设备接收到终端设备发送的NACK后,则重新发送该数据包。
一般来讲,网络设备调度终端设备接收第一PDSCH和第二PDSCH,为方便描述,下文将第一PDSCH和第二PDSCH简称为D1和D2。假设D1在D2之前调度和传输,正常情况下,D2的HARQ信息的反馈时间不早于D1的HARQ信息的反馈时间,这种调度称为顺序调度。但在某些场景下,例如D2为紧急业务,这时网络设备可能会调度D2的HARQ 信息的反馈时间提前于D1的HARQ信息的反馈时间,这种后调度的数据先反馈的情况,称为乱序HARQ调度。
网络设备基于HARQ机制能够获知终端设备是否正确接收PDSCH对应的数据,但在乱序HARQ调度场景中,仅获知PDSCH对应的数据的接收状态不利于网络设备做出正确的调度策略。
本申请实施例提供一种无线通信方法,有利于网络设备在乱序HARQ调度场景下做出正确的调度策略。
图2是本申请实施例提供的一种无线通信方法的示意性流程图。图2的方法包括步骤210-230,下面分别对步骤210-230进行详细描述。
在步骤210中,网络设备向终端设备发送第一PDSCH和第二PDSCH,其中,第一PDSCH的发送时间早于第二PDSCH的发送时间,第一PDSCH对应的HARQ信息的接收时间晚于第二PDSCH的HARQ信息的接收时间。也就是说,网络设备对第一PDSCH和第二PDSCH的调度为乱序HARQ调度。
网络设备可以为具有无线资源调度功能。网络设备例如可以为基站、小区或具有调度功能的其他类型的网络节点和中继节点,网络设备还可以是具有调度功能的中继终端。在某些实施例中,网络设备也可以是芯片系统。
在步骤220中,网络设备确定第二PDSCH的传输是否会导致终端设备对第一PDSCH的处理过程被中断。
终端设备对第一PDSCH的处理过程可以包括以下过程中的至少一种:第一PDSCH对应的数据的接收过程,第一PDSCH的解调过程以及第一PDSCH的解码过程。
在步骤230中,如果网络设备确定第二PDSCH的传输会导致所述终端设备对所述第一PDSCH的处理过程被中断,则网络设备确定第一PDSCH所对应的第一数据未被成功接收。
根据本申请实施例提供的方法,在乱序HARQ调度场景下,网络设备主动判断第二PDSCH的传输是否会引起在先传输的第一PDSCH的处理过程被中断,有利于网络设备做出正确的调度策略。
为方便描述,下文将第一PDSCH和第二PDSCH简称为D1和D2进行描述。
通常,如果终端设备在处理D1的数据的过程中,发现需要处理更为紧急的数据D2,则终端设备会中断D1的处理,转而进行D2的处理。由于D1的处理被中断,D1的数据可能没有被完全接收,所以终端设备会向网络设备反馈D1的HARQ信息为NACK。网络设备根据终端设备反馈的NACK信息,向终端设备发送重传数据。
本申请实施例中,网络设备向终端设备调度D1和D2,可以是向终端设备同时发送D1和D2,也可以是向终端设备先后发送D1和D2。
增量冗余(incremental redundancy,IR)是HARQ重传技术的一种,IR技术是通过在第一次传输时发送信息位(bit)和一部分冗余bit,而通过重传(retransmission)发送额外的冗余bit。如果第一次传输没有成功解码,则可以通过重传更多冗余bit降低信道编码率,从而提高解码成功率。如果加上重传的冗余bit仍然无法正常解码,则进行再次重传。随着重传次数的增加,冗余bit不断积累,信道编码率不断降低,从而可以获得更好的解码效果。通常情况下,第一次传输的数据包是可以独立译码的,但重传数据包则可能会只传 输较少的冗余比特,单独用重传数据包是无法独立译码的。
但如果网络设备不知道终端设备是由于D1的中断而反馈的NACK,网络设备发送的重传数据包可能是无法自译码的数据包。这样,终端接收到这个重传数据包后,无法正确译码,会继续反馈NACK,从而网络设备继续重传,这个过程一直持续到重传次数到达一定的次数,而启动高层数据重传或者丢弃数据。在乱序HARQ调度场景下,采用增量冗余重传技术会导致数据丢失,数据传输时延增加,传输资源浪费等。
根据本申请实施例提供的无线通信方法,网络设备在主动地确定D1由于被中断而没有正确接收后,可以根据这个预判,做出一些合理的决策,从而能够避免不必要的重传,减少传输资源的浪费以及传输时延的增加。
可选地,作为一个示例,网络设备确定终端设备会中断D1后,可以选择丢掉D1的传输数据,重新调度D1,向终端设备发送D1的初始传输数据。
可选地,作为一个示例,网络设备确定终端设备会中断D1后,向终端设备发送D1的第一重传数据,其中,第一重传数据为能够独立译码的重传数据。这样可以避免终端设备接收到不能独立译码的数据包而不能正确译码,会继续反馈NACK,导致传输时延增加,传输资源浪费的问题。
可选地,作为一个示例,网络设备确定终端设备会中断D1后,可以选择不接收D1的HARQ信息,也就是说,不接收D1的ACK/NACK的反馈信息,直接按照D1的HARQ信息为NACK进行处理,向终端设备发送第一重传数据。这样,能够节省网络设备接收D1的HARQ的资源,从而能够减少传输功率。
网络设备不接收D1的HARQ信息,可以指终端设备在预定时间上不发送HARQ信息,或者终端设备可以发送HARQ信息,但网络设备在预定时间不去接收该HARQ信息。
可选地,作为一个示例,如果网络设备确定终端设备会中断D1后,可以选择在目标时间向终端设备发送第一重传数据,其中,目标时间不晚于D1对应的HARQ信息的接收时间。也就是说,网络设备提前向终端设备发送第一重传数据,从而能够减少传输时延。
可选地,作为一个示例,网络设备确定D1所对应的第一数据未被成功接收后,向终端设备发送第一重传数据。其中,第一重传数据为能够独立译码的重传数据。作为一个示例,第一重传数据为与D1对应的初始传输数据包相同的数据。
进一步地,网络设备可以确定本次调度的是否为D1的初始传输数据,如果是初始传输数据,则网络设备向终端设备发送可独立译码的重传数据。如果是不是初始传输数据,也就是说,如果本次调度的是重传数据包,网络设备可以向终端设备发送第一重传数据,或者也可以按照正常的重传流程就行重新调度,向终端设备发送重传数据(如增量冗余数据)。
本申请实施例对网络设备确定D2的传输是否会导致终端设备对D1的处理过程被中断的确定方式不做具体限定。作为一个示例,网络设备根据终端设备的能力信息,及D1所对应的传输方式和D2所对应的传输方式,确定D2的传输是否会导致终端设备对D1的处理过程被中断。
可选地,D1所对应的传输方式包括:D1的结束位置,D1的最后一个解调参考信号(demodulation reference signal,DMRS)的结束位置,D1所对应的HARQ信息的开始传输位置,D1的子载波间隔。D2所对应的传输方式包括:D2的结束位置,D2的最后一个 DMRS的结束位置,D2所对应的HARQ信息的开始传输位置,D2的子载波间隔。
本申请实施例对能力信息的获取方式不做具体限定。作为一个示例,能力信息可以是网络设备根据协议上的规定获得的。作为另一个示例,能力信息可以是终端设备向网络设备上报的能力信息。
本申请实施例中,能力信息可以包括以下信息中的至少一种:终端设备的下行数据处理时延、终端设备能够同时处理的PDSCH的数量。
其中,终端设备的下行数据处理时延,指终端设备从一个PDSCH的最后一个正交频分复用技术(orthogonal frequency division multiplexing,OFDM)符号接收结束开始到对应该PDSCH的HARQ信息的最早可能发送开始时间的时间间隔。其中,HARQ信息包括终端设备反馈的ACK/NACK信息。一般情况下,终端设备从一个PDSCH的最后一个OFDM符号接收结束到发送ACK/NACK信号的开始时间的时间间隔,要大于等于终端设备的下行数据处理时延。
终端设备的下行数据处理时延大小,包括终端设备在不同调度条件下的处理时延大小。调度条件包括以下条件中的至少一种:PDSCH的子载波间隔;PDSCH的DMRS,例如PDSCH只有前置解调参考信号,或者PDSCH除了包括前置解调参考信号外,还包括额外的参考信号;传输的数据是初始传输数据还是重传数据;PDSCH的类型,PDSCH的类型例如可以为type A或者type B,其中,TYPE A的PDSCH的时域长度大于等于7OFDM符号,TYPE B的PDSCH的时域长度小于7OFDM符号;PDSCH的资源映射方式,例如PDSCH的资源映射方式是先时域后频域映射,或者是先频域后时域映射。
以PDSCH的子载波间隔和DMRS为例,对不同调度条件下的下行数据处理时延大小进行举例说明。
如果用OFDM符号来表示下行数据处理时延,则可将下行数据处理时延表示为N1个OFDM符号,其中,N1为正整数(N1:从终端设备的角度来看,从NR-PDSCH接收结束到相应的ACK/NACK最早可能开始传输时间,定义为终端设备进行处理所需的OFDM符号数)。不同调度条件下的下行数据处理时延大小如下表1所示。
表1
Figure PCTCN2019074879-appb-000001
网络设备要调度PDSCH所对应的ACK/NACK的传输时间,要大于等于(N1+TA)符号。TA表示定时提前量(timing advanced),例如可以指终端设备相对于下行传输的上行定时提前量。TA可以符号为单位进行计量,也可以绝对时间或者以采样率为单位计量,我们这里统一以符号为单位计量。
若PDSCH在第N个时隙传输,且PDSCH的最后一个OFDM符号是N时隙的X_2符号,对应的ACK/NACK在(N+K1)时隙的X_3符号传输,则K1*L+(X_3-TA)-X_2大于 等于N1。其中,L表示一个时隙中的符号数,例如L=14或者L=7。
终端设备能够同时处理的PDSCH的数量,可以为终端在不同传输条件下,能够同时处理的PDSCH的数量。
在不同传输条件下,终端设备能够同时处理的PDSCH的数量,可以包括以下信息中的至少一种:每个载波上能够同时处理的PDSCH的数量;每个频带band能够同时处理的PDSCH的数量;高频或者低频能够同时处理的PDSCH的数量;终端设备总的能够同时处理的PDSCH数量;终端设备能够同时处理不同大小的PDSCH的数量。例如,对于大于100k的数据包,终端设备能够同时处理1个PDSCH;对于小于等于100k的数据包,终端设备可以同时处理2个PDSCH。
在本申请实施例中,PDSCH例如可以为单播PDSCH,也可以为组播PDSCH,也可以为广播PDSCH。终端设备能够同时处理的PDSCH的数量,例如可以是每个载波上能够同时处理的单播PDSCH的数量,或者是每个载波上能够同时处理的单播或广播PDSCH的数量,本申请对此不做具体限定。
本申请实施例对网络设备确定D2的传输是否会导致终端设备对所述D1的处理过程被中断的方式不做具体限定。作为一个示例,网络设备可以根据D2的反馈时间与D1的反馈时间的符号差来确定。作为另一个示例,可以根据D2的最晚开始处理时间是否早于D1的处理结束时间来确定。换句话说,可以根据D1的处理时间是否晚于D2的最早开始处理时间来确定。如果终端设备在每个载波上能够同时处理的单播PDSCH的数量有限,例如为1,且如果D2的最晚开始处理时间早于D1的处理结束时间,则网络设备可以确定来自终端设备的反馈信号不会是ACK。
本申请实施例对确定D1的处理时间是否晚于D2的最早开始处理时间的方式不做具体限定。作为一个示例,可以按照下述方法确定D2的最晚开始处理时间是否晚于D1的处理结束时间。
判断方法如下,以D1的第一个符号作为符号0,之后的符号顺序编号。
1)D1的最后一个承载DMRS的符号为符号X1_1;
2)D1的最后一个数据的符号为符号X1_2;
3)传输D1所对应的ACK/NACK的第一个符号为符号X1_3;
4)D1的处理时延为N1_1符号;
5)D1的子载波间隔为S_1;
6)D2的最后一个承载DMRS的符号为符号X2_1;
7)D2的最后一个数据的符号为符号X2_2;
8)传输D2所对应的ACK/NACK的第一个符号为符号X2_3;
9)D1的处理时延为N1_2符号;
10)D2的子载波间隔为S_2;
11)如果(X2_3-TA-(X2_2-X2_1+N1_2))/S_2>(X1_1+(X1_2-X1_1+N1_1))/S_1,则认为D2的最晚开始处理时间早于D1的处理结束时间。
如果D2的最晚开始处理时间早于D1的处理结束时间,进一步地,如果D1是初始传输数据,则网络设备向终端设备重新发送初始传输数据或能够自译码的数据。如果D1是重传数据,则网络设备可以向终端设备发送初始传输数据或能够自译码的数据,也可以按 照正常的重传流程进行重新调度,发送增量冗余数据。
可选地,作为一个示例,如果D2的最晚开始处理时间晚于D1的处理结束时间,且D1对应的HARQ信息为NACK,则网络设备向终端设备发送D1对应的第二重传数据,第二重传数据为D1对应的增量冗余数据。
下面结合图3,对D2的处理是否会导致D1的处理过程被中断的情况进行具体说明。在图3中,N1_1’=N1_1+(X1_2-X1_1),N1_2’=N1_2+(X2_2-X2_1)。
情况1:D2的处理会造成D1的处理过程被中断。D2的最晚开始处理时间早于D1的处理结束时间,也就是说,D1的处理结束时间到D2反馈ACK/NACK的时间小于处理D2所需要的时间。因此,D2的处理会导致D1的处理过程被中断。
情况2:D2的处理不会造成D1的处理过程被中断。D2的最晚开始处理时间晚于D1的处理结束时间,也就是说,D1的处理结束时间到D2反馈ACK/NACK的时间大于处理D2所需要的时间。因此,D2的处理不会导致D1的处理过程被中断。
可选地,作为一个示例,网络设备在调度D1和D2的过程中,可以采取措施避免出现乱序HARQ调度。
可选地,网络设备在确定终端设备对D2的处理会导致D1的处理被中断后,可以选择通知终端设备是丢弃D1还是D2。作为一个示例,网络设备可以预先确定终端设备的能力信息,在终端设备处理能力受限的情况下,确定是在先调度的D1的优先级更高还是在后调度的D2的优先级更高。如果在先调度的D1的优先级高,则向终端设备发送配置信息,以指示终端设备优先处理D1的数据,只有在D1的数据处理完成后才会处理D2的数据。
可选地,网络设备可以根据终端设备的能力,确定D2的传输方式。例如网络设备可以为D2的反馈预留足够的时间避免发生中断的场景。例如,如果网络设备确定D2为非紧急业务,则可以确定D2的传输方式,使得D2的最晚开始时间晚于D1的处理结束时间。其中,网络设备可以根据上文描述的方法确定为D2的反馈预留的时间是否足够。例如X2_3>X1_1+(X1_2-X1_1+N1_1)+TA+(X2_2-X2_1+N1_2)。
可选地,网络设备可以采取下述简化的条件确定D2是否会中断D1。
1)如果D1和D2的调度条件相同,则网络设备可以默认D1不会被中断。
2)如果D1和D2的调度时间间隔很长,则网络设备可以默认D1不会被中断。
3)如果D1和D2为连续调度,且调度条件发生变化,且D1的处理时间大于D2的处理时间,则网络设备可以默认D1会被中断。
图4是本申请实施例提供的另一种无线通信方法的示意性流程图。图4的方法包括步骤410-430,下面分别对步骤410-430进行详细描述。
在步骤410中,终端设备从网络设备接收第一PDSCH和第二PDSCH,其中第一PDSCH的接收时间早于第二PDSCH的接收时间,第一PDSCH对应的HARQ信息的发送时间晚于所述第二PDSCH的HARQ信息的发送时间。
在步骤420中,终端设备确定第二PDSCH的传输是否会导致终端设备对第一PDSCH的处理过程被中断。
在步骤430中,如果终端设备确定第二PDSCH的传输会导致终端设备对第一PDSCH的处理过程被中断,终端设备中断第一PDSCH所对应的第一数据的处理。
根据本申请提供的无线通信方法,在乱序HARQ调度场景下,终端设备主动判断第二PDSCH的传输是否会引起在先传输的第一PDSCH的处理过程被中断,有利于终端设备做出正确的调度策略。
网络设备根据第一PDSCH和第二PDSCH的调度方式,主动地去判断第二PDSCH的传输是否会造成第一PDSCH的处理过程被中断,以确定第一PDSCH是否成功接收,使得通信方式更加灵活。
可选地,终端设备可以接收网络设备发送的第一重传数据或新的第一PDSCH,该第一重传数据为能够独立译码的重传数据。其中,第一重传数据可以为与第一PDSCH对应的初始传输数据相同的数据。
可选地,终端设备确定中断第一PDSCH后,可以选择丢弃本次调度的第一PDSCH,从而来节省资源。然后再接收网络设备发送的第一重传数据进行解调解码等操作。
可选地,终端设备可以根据自己的能力信息,可以选择在中断第一PDSCH后,存储中断第一PDSCH时的状态,在第二PDSCH处理结束后继续进行第一PDSCH的处理。
可选地,终端设备确定中断第一PDSCH后,可以确定对应于第一PDSCH的HARQ信息为NACK信息,进而在对应于第一PDSCH的HARQ信息传输资源上传输该NACK信息。
可选地,终端设备确定中断第一PDSCH后,可以选择不发送对应于第一PDSCH的ACK/NACK信号,以节省传输资源。
本申请实施例对终端设备确定第二PDSCH的传输是否会导致终端设备对第一PDSCH的处理过程被中断的确定方式不做具体限定。作为一个示例,终端设备根据终端设备的能力信息,及第一PDSCH所对应的传输方式和第二PDSCH所对应的传输方式,确定第二PDSCH的传输是否会导致终端设备对第一PDSCH的处理过程被中断。
根据本申请实施例提供的无线通信方法,终端设备在处理在先调度的第一PDSCH时,接收到在后的第二PDSCH的调度信令。如果出现乱序HARQ调度,则终端设备判断终端设备是否由于接收在后调度的更紧急反馈的数据第二PDSCH而中断在先调度的数据第一PDSCH的处理。如果是,则中断D1的处理;如果不需要中断,则缓存D2的数据等待D1数据处理结束后进行D2的处理。
可选地,终端设备也可以向网络设备发送自己的能力信息。
可选地,第一PDSCH所对应的传输方式包括以下信息中的至少一种:第一PDSCH的结束位置,第一PDSCH的最后一个DMRS的结束位置,第一PDSCH所对应的HARQ信息的开始传输位置,第一PDSCH的子载波间隔。第二PDSCH所对应的传输方式包括以下信息中的至少一种:第二PDSCH的结束位置,第二PDSCH的最后一个DMRS的结束位置,第二PDSCH所对应的HARQ信息的开始传输位置,第二PDSCH的子载波间隔。
本申请实施例中,能力信息可以包括以下信息中的至少一种:终端设备的下行数据处理时延、终端设备能够同时处理的PDSCH的数量。
其中,终端设备的下行数据处理时延,指终端设备从一个PDSCH的最后一个OFDM符号接收结束开始到对应该PDSCH的HARQ信息的生成时间。其中,HARQ信息包括终端设备反馈的ACK/NACK信息。一般情况下,终端设备从一个PDSCH的最后一个OFDM符号接收结束到发送ACK/NACK信号的时间间隔,要大于等于终端设备的下行数据处理 时延。
终端设备的下行数据处理时延大小,包括终端设备在不同调度条件下的处理时延大小。该调度条件包括以下条件中的至少一种:PDSCH的子载波间隔;PDSCH的DMRS,例如PDSCH只有解调参考信号,或者PDSCH还包括额外的参考信号;传输的数据是初始传输数据还是重传数据;PDSCH的类型。例如PDSCH的类型可以为type A或者type B,其中,TYPE A的PDSCH的时域长度大于等于7OFDM符号,TYPE B的PDSCH的时域长度小于7OFDM符号。
以PDSCH的子载波间隔和DMRS为例,对不同调度条件下的下行数据处理时延大小进行举例说明。
如果用OFDM符号来表示下行数据处理时延,则可将下行数据处理时延表示为N1个OFDM符号,其中,N1为正整数。不同调度条件下的下行数据处理时延大小如下文表1所示。
终端设备从接收PDSCH结束开始到开始传输ACK/NACK的时间,要大于等于(N1+TA)符号。TA表示timing advanced,定时提前量,TA为m个符号,m为正整数。TA指终端设备相对于下行传输的上行定时提前量。
若PDSCH在第N个时隙传输,且PDSCH的最后一个符号是X_2,对应的ACK/NACK在(N+K1)时隙的X_3符号传输,则K1*L+(X_3-TA)-X_2大于等于N1。其中,L表示一个时隙中的符号数,L=7或14或者其他值。
终端设备能够同时处理的PDSCH的数量,可以为终端在不同传输条件下,能够同时处理的PDSCH的数量。
在不同传输条件下,终端设备能够同时处理的PDSCH的数量,包括以下信息终端的至少一种:每个载波上能够同时处理的PDSCH的数量;每个频带band能够同时处理的PDSCH的数量;高频或者低频能够同时处理的PDSCH的数量;终端设备总的能够同时处理的PDSCH数量;终端设备能够同时处理不同大小的PDSCH的数量。例如,对于大于100k的数据包,终端设备能够同时处理1个PDSCH;对于小于等于100k的数据包,终端设备可以同时处理2个PDSCH。
在本申请实施例中,PDSCH例如可以为单播PDSCH,也可以为组播PDSCH,本申请对此不做具体限定。
本申请实施例对终端设备确定第二PDSCH的传输是否会导致所述终端设备对第一PDSCH的处理过程被中断的方式不做具体限定。作为一个示例,终端设备可以根据第二PDSCH的反馈时间与第一PDSCH的反馈时间的符号差来确定。作为另一个示例,终端设备可以根据第二PDSCH的最晚开始处理时间是否早于第一PDSCH的处理结束时间来确定。换句话说,终端设备可以根据第一PDSCH的处理结束时间是否晚于第二PDSCH的最早开始处理时间来确定。如果第二PDSCH的最晚开始处理时间早于第一PDSCH的处理结束时间,则终端设备可以确定中断第一PDSCH的处理。作为另一个示例,终端设备可以根据终端设备的PDSCH处理能力,以及第二PDSCH的最晚开始处理时间是否早于第一PDSCH的处理结束时间来确定。若终端设备能够同时处理的单播PDSCH的数量有限,例如为1,且如果第二PDSCH的最晚开始处理时间早于第一PDSCH的处理结束时间,则终端设备可以确定中断第一PDSCH处理。
本申请实施例对确定第一PDSCH的处理结束时间是否晚于第二PDSCH的最早开始处理时间的方式不做具体限定。作为一个示例,可以按照下述方法确定第二PDSCH的最晚开始处理时间是否晚于第一PDSCH的处理结束时间。为方便描述,下文将第一PDSCH和第二PDSCH简称为D1和D2。
判断方法如下,以D1的第一个符号作为符号0,之后的符号顺序编号。
1)D1的最后一个承载DMRS的符号为符号X1_1;
2)D1的最后一个数据的符号为符号X1_2;
3)传输D1所对应的ACK/NACK的第一个符号为符号X1_3;
4)D1的处理时延为N1_1符号;
5)D1的子载波间隔为S_1;
6)D2的最后一个承载DMRS的符号为符号X2_1;
7)D2的最后一个数据的符号为符号X2_2;
8)传输D2所对应的ACK/NACK的第一个符号为符号X2_3;
9)D1的处理时延为N1_2符号;
10)D2的子载波间隔为S_2;
11)如果(X2_3-TA-(X2_2-X2_1+N1_2))/S_2>(X1_1+(X1_2-X1_1+N1_1))/S_1,则认为D2的最晚开始处理时间早于D1的处理结束时间。
传统的通信方式中,通常采用PDSCH来承载网络设备发送给终端设备的数据信息,采用物理下行控制信道(physical downlink control channel,PDCCH)来承载网络设备发送给终端设备的控制信令,采用物理上行控制信道(physical uplink control channel,PUCCH)或者物理上行共享信道(physical uplink shared channel,PUSCH)来承载针对PDSCH承载的数据是否成功接收的确认信号ACK/NACK。
本申请实施例中,网络设备(如基站或小区)确定下行数据的传输方式以及针对该下行数据的反馈信号承载的资源,并通过下行控制信令传送给终端设备,所述下行数据的传输方式,包括下行数据的时频资源、调制方式、编码方式、资源映射方式等,所述针对该下行数据的反馈信号的承载资源,包括该反馈信号ACK/NACK的时频资源。ACK/NACK的时频资源,可以是通过网络设备发送的控制信令中直接指定的,也可以是按照一定的规则获得的,或者是部分资源信息是通过控制信令指定,部分资源信息是按照预定义的规则获得的。终端设备首先接收下行控制信令,从而获得需要自己接收的PDSCH的传输方式,然后按照所定义的传输方式,接收相应的PDSCH,并译码在所述PDSCH上承载的数据块或传输块(transmission block,TB),并根据译码结果,生成相应的ACK或者NACK信号,然后根据所确定的ACK/NACK传输方式在ACK/NACK的传输资源上传输对应的ACK/NACK信号。终端设备接收PDSCH到发送ACK/NACK之间的时间间隔,要大于等于终端设备处理该PDSCH数据的处理时延。
上文结合图1至图4,详细描述了本申请的方法实施例,下面结合图5至图8,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图5是本申请实施例提供的网络设备的示意性框图。该网络设备500包括第一发送单元510、第一确定单元520、第二确定单元530。
收发单元510,被配置为发送第一PDSCH和第二PDSCH,其中第一PDSCH的发送时间早于第二PDSCH的发送时间,第一PDSCH对应的HARQ信息的接收时间晚于第二PDSCH的HARQ信息的接收时间;
处理单元520,被配置为确定第二PDSCH的传输是否会导致终端设备对第一PDSCH的处理过程被中断;
该处理单元520还被配置为:在确定第二PDSCH的传输会导致终端设备对第一PDSCH的处理过程被中断的情况下,确定第一PDSCH所对应的第一数据未被成功接收。
根据本申请实施例提供的网络设备,在乱序HARQ调度场景下,网络设备主动判断第二PDSCH的传输是否会引起在先传输的第一PDSCH的处理过程被中断,有利于网络设备做出正确的调度策略。
可选地,该网络设备还包括:收发单元510,还被配置为向所述终端设备发送第一重传数据,所述第一重传数据为能够独立译码的重传数据。其中,第一重传数据可以为与所述第一PDSCH所对应的初始传输数据相同的数据。
可选地,处理单元520还被配置为:根据所述终端设备的能力信息,及所述第一PDSCH所对应的传输方式和所述第二PDSCH所对应的传输方式,确定所述第二PDSCH的传输是否会导致所述终端设备对所述第一PDSCH的处理过程被中断,其中,所述终端设备的能力信息包括以下信息中的至少一种:所述终端设备的下行数据处理时延、所述终端设备能够同时处理的PDSCH的数量。
可选地,收发单元510还被配置为,接收终端设备发送的能力信息。
可选地,处理单元520还被配置为:根据终端设备的能力信息,及第一PDSCH所对应的传输方式和第二PDSCH所对应的传输方式,确定第一PDSCH的处理结束时间与第二PDSCH的最晚开始处理时间的关系;在第一PDSCH的处理结束时间晚于第二PDSCH的最晚开始处理时间的情况下,确定第二PDSCH的传输会导致第一PDSCH的处理过程被中断。
可选地,第一PDSCH所对应的传输方式包括以下信息中的至少一种:第一PDSCH的结束位置,第一PDSCH的最后一个解调参考信号的结束位置,第一PDSCH所对应的HARQ信息的开始传输位置,第一PDSCH的子载波间隔。第二PDSCH所对应的传输方式包括以下信息中的至少一种:第二PDSCH的结束位置,第二PDSCH的最后一个解调参考信号的结束位置,第二PDSCH所对应的HARQ信息的开始传输位置,第二PDSCH的子载波间隔。
可选地,收发单元510还被配置为,在不接收第一PDSCH对应的HARQ信息的情况下,直接向终端设备发送第一重传数据。
可选地,收发单元510还被配置为,在目标时间向终端设备发送第一重传数据,目标时间不晚于第一PDSCH对应的HARQ信息的接收时间。
可选地,处理单元520还被配置为,根据第二PDSCH的业务类型,确定第二PDSCH的传输方式;在第二PDSCH的业务类型为非紧急业务的情况下,确定第二PDSCH的传输方式,以使第二PDSCH的最晚开始处理时间晚于第一PDSCH的处理结束时间。
如图6所示,本申请实施例还提供一种网络设备600。该网络设备600包括处理器610,存储器620与收发器630。该存储器620用于存储指令,该处理器610与收发器630用于 执行该存储器620存储的指令。
应理解,图5所示的网络设备500或图6所示的网络设备600可用于执行上述方法实施例中相关的操作或流程,并且网络设备500或网络设备600中的各个单元的操作和/或功能分别为了实现上述方法实施例中的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例提供的终端设备的示意性框图。该终端设备700包括收发单元710、处理单元720。
收发单元710,被配置为从网络设备接收第一PDSCH和第二PDSCH,其中第一PDSCH的接收时间早于第二PDSCH的接收时间,第一PDSCH对应的HARQ信息的发送时间晚于第二PDSCH的HARQ信息的发送时间;
处理单元720被配置为,确定第二PDSCH的传输是否会导致终端设备对第一PDSCH的处理过程被中断;
处理单元720还被配置为,在确定第二PDSCH的传输会导致终端设备对第一PDSCH的处理过程被中断的情况下,中断第一PDSCH所对应的第一数据的处理。
根据本申请提供的终端设备,在乱序HARQ调度场景下,终端设备主动判断第二PDSCH的传输是否会引起在先传输的第一PDSCH的处理过程被中断,有利于终端设备做出正确的调度策略。
可选地,收发单元710还被配置为,接收网络设备发送的第一重传数据,第一重传数据为能够独立译码的重传数据。其中,第一重传数据可以为与第一PDSCH对应的初始传输数据相同的数据。
可选地,处理单元720还被配置为:根据终端设备的能力信息,及第一PDSCH所对应的传输方式和第二PDSCH所对应的传输方式,确定第二PDSCH的传输是否会导致终端设备对第一PDSCH的处理过程被中断,其中,终端设备的能力信息包括以下信息中的至少一种:终端设备的下行数据处理时延、终端设备能够同时处理的PDSCH的数量。
可选地,收发单元710还被配置为:向网络设备发送终端设备的能力信息。
可选地,处理单元720还被配置为:根据终端设备的能力信息,及第一PDSCH和第二PDSCH所对应的传输方式,确定第一PDSCH的处理结束时间与第二PDSCH的最晚开始处理时间的关系;在第一PDSCH的处理结束时间晚于第二PDSCH的最晚开始处理时间的情况下,确定第二PDSCH的传输会导致第一PDSCH的处理过程被中断。
可选地,第一PDSCH所对应的传输方式包括以下信息中的至少一种:第一PDSCH的结束位置,第一PDSCH的最后一个解调参考信号的结束位置,第一PDSCH所对应的HARQ信息的开始传输位置,第一PDSCH的子载波间隔。第二PDSCH所对应的传输方式包括以下信息中的至少一种:第二PDSCH的结束位置,第二PDSCH的最后一个解调参考信号的结束位置,第二PDSCH所对应的HARQ信息的开始传输位置,第二PDSCH的子载波间隔。
如图8所示,本申请实施例还提供一种终端设备800。该终端设备800包括处理器88,存储器820与收发器830。该存储器820用于存储指令,该处理器88与收发器830用于执行该存储器820存储的指令。
应理解,图7所示的终端设备700或图8所示的终端设备800可用于执行上述方法实施例中相关的操作或流程,并且终端设备700或终端设备800中的各个单元的操作和/或 功能分别为了实现上述方法实施例中的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种无线通信方法,其特征在于,包括:
    网络设备向终端设备发送第一物理上行共享信道PDSCH和第二PDSCH,其中所述第一PDSCH的发送时间早于所述第二PDSCH的发送时间,所述第一PDSCH对应的混合自动重传请求HARQ信息的接收时间晚于所述第二PDSCH的HARQ信息的接收时间;
    所述网络设备确定所述第二PDSCH的传输是否会导致所述终端设备对所述第一PDSCH的处理过程被中断;
    在所述网络设备确定所述第二PDSCH的传输会导致所述终端设备对所述第一PDSCH的处理过程被中断的情况下,所述网络设备确定所述第一PDSCH所对应的第一数据未被成功接收。
  2. 根据权利要求1所述的无线通信方法,其特征在于,所述无线通信方法还包括:
    所述网络设备向所述终端设备发送第一重传数据,所述第一重传数据为能够独立译码的重传数据。
  3. 根据权利要求2所述的无线通信方法,其特征在于,所述第一重传数据为与所述第一PDSCH所对应的初始传输数据相同的数据。
  4. 根据权利要求1-3中任一项所述的无线通信方法,其特征在于,所述网络设备确定所述第二PDSCH的传输是否会导致所述终端设备对所述第一PDSCH的处理过程被中断,包括:
    所述网络设备根据所述终端设备的能力信息,所述第一PDSCH所对应的传输方式和所述第二PDSCH所对应的传输方式,确定所述第二PDSCH的传输是否会导致所述终端设备对所述第一PDSCH的处理过程被中断,其中,所述终端设备的能力信息包括以下信息中的至少一种:所述终端设备的下行数据处理时延以及所述终端设备能够同时处理的PDSCH的数量。
  5. 根据权利要求4所述的无线通信方法,其特征在于,在所述网络设备根据所述终端设备的能力信息,所述第一PDSCH所对应的传输方式和所述第二PDSCH所对应的传输方式,确定所述第二PDSCH的传输是否会导致所述终端设备对所述第一PDSCH的处理过程被中断之前,所述无线通信方法还包括:
    所述网络设备接收所述终端设备发送的所述能力信息。
  6. 根据权利要求4或5所述的无线通信方法,其特征在于,所述网络设备根据所述终端设备的能力信息,所述第一PDSCH所对应的传输方式和所述第二PDSCH所对应的传输方式,确定所述第二PDSCH的传输是否会导致所述终端设备对所述第一PDSCH的处理过程被中断,包括:
    所述网络设备根据所述终端设备的能力信息,所述第一PDSCH所对应的传输方式和所述第二PDSCH所对应的传输方式,确定所述第一PDSCH的处理结束时间与所述第二PDSCH的最晚开始处理时间的关系;
    在所述第一PDSCH的处理结束时间晚于所述第二PDSCH的最晚开始处理时间的情况下,确定所述第二PDSCH的传输会导致所述第一PDSCH的处理过程被中断。
  7. 根据权利要求4-6中任一项所述的无线通信方法,其特征在于,
    所述第一PDSCH所对应的传输方式包括以下信息中的至少一种:所述第一PDSCH的结束位置,所述第一PDSCH的最后一个解调参考信号的结束位置,所述第一PDSCH所对应的HARQ信息的开始传输位置,所述第一PDSCH的子载波间隔;
    所述第二PDSCH所对应的传输方式包括以下信息中的至少一种:所述第二PDSCH的结束位置,所述第二PDSCH的最后一个解调参考信号的结束位置,所述第二PDSCH所对应的HARQ信息的开始传输位置,所述第二PDSCH的子载波间隔。
  8. 根据权利要求1-7中任一项所述的无线通信方法,其特征在于,所述无线通信方法还包括:
    所述网络设备在不接收所述第一PDSCH对应的HARQ信息的情况下,直接向所述终端设备发送所述第一重传数据。
  9. 根据权利要求1-8中任一项所述的无线通信方法,其特征在于,所述无线通信方法还包括:
    所述网络设备在目标时间向所述终端设备发送所述第一重传数据,所述目标时间不晚于所述第一PDSCH对应的HARQ信息的接收时间。
  10. 根据权利要求1-9中任一项所述的无线通信方法,其特征在于,所述无线通信方法还包括:
    所述网络设备根据所述第二PDSCH的业务类型,确定所述第二PDSCH的传输方式;
    在所述第二PDSCH的业务类型为非紧急业务的情况下,所述网络设备确定第二PDSCH的传输方式,以使所述第二PDSCH的最晚开始处理时间晚于所述第一PDSCH的处理结束时间。
  11. 一种无线通信方法,其特征在于,包括:
    终端设备从网络设备接收第一物理下行共享信道PDSCH和第二PDSCH,其中所述第一PDSCH的接收时间早于所述第二PDSCH的接收时间,所述第一PDSCH对应的混合自动重传请求HARQ信息的发送时间晚于所述第二PDSCH的HARQ信息的发送时间;
    所述终端设备确定所述第二PDSCH的接收是否会导致所述终端设备对所述第一PDSCH的处理过程被中断;
    在所述终端设备确定所述第二PDSCH的接收会导致所述终端设备对所述第一PDSCH的处理过程被中断的情况下,所述终端设备中断所述第一PDSCH所对应的第一数据的处理。
  12. 根据权利要求11所述的无线通信方法,其特征在于,所述无线通信方法还包括:
    所述终端设备接收所述网络设备发送的第一重传数据,所述第一重传数据为能够独立译码的重传数据。
  13. 根据权利要求12所述的无线通信方法,其特征在于,所述第一重传数据为与所述第一PDSCH对应的初始传输数据相同的数据。
  14. 根据权利要求11-13中任一项所述的无线通信方法,其特征在于,所述终端设备确定所述第二PDSCH的传输是否会导致所述终端设备对所述第一PDSCH的处理过程被中断,包括:
    所述终端设备根据所述终端设备的能力信息,所述第一PDSCH所对应的传输方式和 所述第二PDSCH所对应的传输方式,确定所述第二PDSCH的传输是否会导致所述终端设备对所述第一PDSCH的处理过程被中断,其中,所述终端设备的能力信息包括以下信息中的至少一种:所述终端设备的下行数据处理时延、所述终端设备能够同时处理的PDSCH的数量。
  15. 根据权利要求14所述的无线通信方法,其特征在于,所述无线通信方法还包括:
    所述终端设备向所述网络设备发送所述终端设备的能力信息。
  16. 根据权利要求14或15所述的无线通信方法,其特征在于,所述终端设备根据所述终端设备的能力信息,所述第一PDSCH所对应的传输方式和所述第二PDSCH所对应的传输方式,确定所述第二PDSCH的传输是否会导致所述终端设备对所述第一PDSCH的处理过程被中断,包括:
    所述终端设备根据所述终端设备的能力信息,及所述第一PDSCH所对应的传输方式和所述第二PDSCH所对应的传输方式,确定所述第一PDSCH的处理结束时间与所述第二PDSCH的最晚开始处理时间的关系;
    在所述第一PDSCH的处理结束时间晚于所述第二PDSCH的最晚开始处理时间的情况下,确定所述第二PDSCH的传输会导致所述第一PDSCH的处理过程被中断。
  17. 根据权利要求14-16中任一项所述的无线通信方法,其特征在于,
    所述第一PDSCH所对应的传输方式包括以下信息中的至少一种:所述第一PDSCH的结束位置,所述第一PDSCH的最后一个解调参考信号的结束位置,所述第一PDSCH所对应的HARQ信息的开始传输位置,所述第一PDSCH的子载波间隔;
    所述第二PDSCH所对应的传输方式包括以下信息中的至少一种:所述第二PDSCH的结束位置,所述第二PDSCH的最后一个解调参考信号的结束位置,所述第二PDSCH所对应的HARQ信息的开始传输位置,所述第二PDSCH的子载波间隔。
  18. 一种网络设备,其特征在于,包括:
    收发单元,被配置为发送第一物理上行共享信道PDSCH和第二PDSCH,其中所述第一PDSCH的发送时间早于所述第二PDSCH的发送时间,所述第一PDSCH对应的混合自动重传请求HARQ信息的接收时间晚于所述第二PDSCH的HARQ信息的接收时间;
    处理单元,被配置为确定所述第二PDSCH的传输是否会导致所述终端设备对所述第一PDSCH的处理过程被中断;
    所述处理单元还被配置为:在确定所述第二PDSCH的传输会导致所述终端设备对所述第一PDSCH的处理过程被中断的情况下,确定所述第一PDSCH所对应的第一数据未被成功接收。
  19. 根据权利要求18所述的网络设备,其特征在于,所述收发单元还被配置为:
    向所述终端设备发送第一重传数据,所述第一重传数据为能够独立译码的重传数据。
  20. 根据权利要求19所述的网络设备,其特征在于,所述第一重传数据为与所述第一PDSCH所对应的初始传输数据相同的数据。
  21. 根据权利要求18-20中任一项所述的网络设备,其特征在于,所述处理单元还被配置为:
    根据所述终端设备的能力信息,所述第一PDSCH所对应的传输方式和所述第二PDSCH所对应的传输方式,确定所述第二PDSCH的传输是否会导致所述终端设备对所述 第一PDSCH的处理过程被中断,其中,所述终端设备的能力信息包括以下信息中的至少一种:所述终端设备的下行数据处理时延、所述终端设备能够同时处理的PDSCH的数量。
  22. 根据权利要求21所述的网络设备,其特征在于,所述收发单元还被配置为:
    接收所述终端设备发送的所述能力信息。
  23. 根据权利要求21或22所述的网络设备,其特征在于,所述处理单元还被配置为:
    根据所述终端设备的能力信息,所述第一PDSCH所对应的传输方式和所述第二PDSCH所对应的传输方式,确定所述第一PDSCH的处理结束时间与所述第二PDSCH的最晚开始处理时间的关系;
    在所述第一PDSCH的处理结束时间晚于所述第二PDSCH的最晚开始处理时间的情况下,确定所述第二PDSCH的传输会导致所述第一PDSCH的处理过程被中断。
  24. 根据权利要求21-23中任一项所述的网络设备,其特征在于,
    所述第一PDSCH所对应的传输方式包括以下信息中的至少一种:所述第一PDSCH的结束位置,所述第一PDSCH的最后一个解调参考信号的结束位置,所述第一PDSCH所对应的HARQ信息的开始传输位置,所述第一PDSCH的子载波间隔;
    所述第二PDSCH所对应的传输方式包括以下信息中的至少一种:所述第二PDSCH的结束位置,所述第二PDSCH的最后一个解调参考信号的结束位置,所述第二PDSCH所对应的HARQ信息的开始传输位置,所述第二PDSCH的子载波间隔。
  25. 根据权利要求18-24中任一项所述的网络设备,其特征在于,所述处理单元还被配置为:
    在不接收所述第一PDSCH对应的HARQ信息的情况下,直接向所述终端设备发送所述第一重传数据。
  26. 根据权利要求18-25中任一项所述的网络设备,其特征在于,所述收发单元还被配置为:
    在目标时间向所述终端设备发送所述第一重传数据,所述目标时间不晚于所述第一PDSCH对应的HARQ信息的接收时间。
  27. 根据权利要求18-26中任一项所述的网络设备,其特征在于,所述处理单元还被配置为:
    根据所述第二PDSCH的业务类型,确定所述第二PDSCH的传输方式;
    在所述第二PDSCH的业务类型为非紧急业务的情况下,确定第二PDSCH的传输方式,以使所述第二PDSCH的最晚开始处理时间晚于所述第一PDSCH的处理结束时间。
  28. 一种终端设备,其特征在于,包括:
    收发单元,被配置为从网络设备接收第一物理下行共享信道PDSCH和第二PDSCH,其中所述第一PDSCH的接收时间早于所述第二PDSCH的接收时间,所述第一PDSCH对应的混合自动重传请求HARQ信息的发送时间晚于所述第二PDSCH的HARQ信息的发送时间;
    处理单元,被配置为确定所述第二PDSCH的传输是否会导致所述终端设备对所述第一PDSCH的处理过程被中断;
    所述处理单元还被配置为在确定所述第二PDSCH的传输会导致所述终端设备对所述第一PDSCH的处理过程被中断的情况下,中断所述第一PDSCH所对应的第一数据的处 理。
  29. 根据权利要求28所述的终端设备,其特征在于,所述收发单元还被配置为:
    接收所述网络设备发送的第一重传数据,所述第一重传数据为能够独立译码的重传数据。
  30. 根据权利要求29所述的终端设备,其特征在于,所述第一重传数据为与所述第一PDSCH对应的初始传输数据相同的数据。
  31. 根据权利要求28-30中任一项所述的终端设备,其特征在于,所述处理单元还被配置为:
    根据所述终端设备的能力信息,所述第一PDSCH所对应的传输方式和所述第二PDSCH所对应的传输方式,确定所述第二PDSCH的传输是否会导致所述终端设备对所述第一PDSCH的处理过程被中断,其中,所述终端设备的能力信息包括以下信息中的至少一种:所述终端设备的下行数据处理时延、所述终端设备能够同时处理的PDSCH的数量。
  32. 根据权利要求31所述的终端设备,其特征在于,所述收发单元还被配置为:
    向所述网络设备发送所述终端设备的能力信息。
  33. 根据权利要求31或32所述的终端设备,其特征在于,所述处理单元还被配置为:
    根据所述终端设备的能力信息,所述第一PDSCH所对应的传输方式和所述第二PDSCH所对应的传输方式,确定所述第一PDSCH的处理结束时间与所述第二PDSCH的最晚开始处理时间的关系;
    在所述第一PDSCH的处理结束时间晚于所述第二PDSCH的最晚开始处理时间的情况下,确定所述第二PDSCH的传输会导致所述第一PDSCH的处理过程被中断。
  34. 根据权利要求28-33中任一项所述的终端设备,其特征在于,
    所述第一PDSCH所对应的传输方式包括以下信息中的至少一种:所述第一PDSCH的结束位置,所述第一PDSCH的最后一个解调参考信号的结束位置,所述第一PDSCH所对应的HARQ信息的开始传输位置,所述第一PDSCH的子载波间隔;
    所述第二PDSCH所对应的传输方式包括以下信息中的至少一种:所述第二PDSCH的结束位置,所述第二PDSCH的最后一个解调参考信号的结束位置,所述第二PDSCH所对应的HARQ信息的开始传输位置,所述第二PDSCH的子载波间隔。
  35. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1-10中任一项所述的方法。
  36. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求11-17中任一项所述的方法。
PCT/CN2019/074879 2018-02-13 2019-02-12 无线通信方法、网络设备、终端设备及可读存储介质 WO2019158056A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19754420.8A EP3748887B1 (en) 2018-02-13 2019-02-12 Wireless communication method, network device, terminal device, and readable storage medium
US16/992,903 US11483097B2 (en) 2018-02-13 2020-08-13 Wireless communication method, network device, terminal device, and readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810150951.5 2018-02-13
CN201810150951.5A CN110149174B (zh) 2018-02-13 2018-02-13 无线通信方法、网络设备、终端设备及可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/992,903 Continuation US11483097B2 (en) 2018-02-13 2020-08-13 Wireless communication method, network device, terminal device, and readable storage medium

Publications (1)

Publication Number Publication Date
WO2019158056A1 true WO2019158056A1 (zh) 2019-08-22

Family

ID=67588814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074879 WO2019158056A1 (zh) 2018-02-13 2019-02-12 无线通信方法、网络设备、终端设备及可读存储介质

Country Status (4)

Country Link
US (1) US11483097B2 (zh)
EP (1) EP3748887B1 (zh)
CN (1) CN110149174B (zh)
WO (1) WO2019158056A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200012702A (ko) * 2018-07-27 2020-02-05 삼성전자주식회사 무선 통신 시스템에서 전송 시간 결정 방법 및 장치
CN114640427A (zh) * 2020-12-15 2022-06-17 维沃移动通信有限公司 传输方法、装置、设备及可读存储介质
CN117897921A (zh) * 2021-12-03 2024-04-16 Oppo广东移动通信有限公司 一种数据接收方法及装置、终端设备
WO2023139517A1 (en) * 2022-01-19 2023-07-27 Lenovo (Singapore) Pte. Ltd. Dropping application data units

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102960022A (zh) * 2010-06-28 2013-03-06 高通股份有限公司 多点hsdpa通信网络中的移动性

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101457688B1 (ko) * 2007-10-04 2014-11-12 엘지전자 주식회사 제어채널의 수신오류를 검출하는 데이터 전송방법
ES2567084T3 (es) * 2010-03-29 2016-04-19 Lg Electronics Inc. Método y dispositivo eficaces para transmitir información de control destinados a dar apoyo a la transmisión multiantena en el enlace ascendente
KR101799273B1 (ko) * 2010-06-09 2017-12-20 엘지전자 주식회사 Harq 프로세스 수행 방법 및 이를 이용하는 장치
KR101614096B1 (ko) * 2010-08-12 2016-04-29 한국전자통신연구원 이동통신 시스템에서 멀티 캐리어 구조를 위한 채널 관리 방법
US9007888B2 (en) * 2010-11-08 2015-04-14 Qualcomm Incorporated System and method for uplink multiple input multiple output transmission
US9510295B2 (en) * 2013-03-04 2016-11-29 Lg Electronics Inc. Method for controlling uplink power in wireless communication system and device therefor
CN104349491A (zh) * 2013-08-08 2015-02-11 中兴通讯股份有限公司 一种物理下行共享信道传输的方法、系统和网络侧设备
CN105264960B (zh) * 2013-09-26 2019-10-01 华为技术有限公司 能力匹配方法、装置及系统
WO2015105291A1 (ko) * 2014-01-10 2015-07-16 엘지전자 주식회사 무선통신 시스템에서 수신확인 전송 방법 및 장치
CN106817767B (zh) * 2015-12-02 2020-01-07 普天信息技术有限公司 无线通信系统的多子带下行资源分配方法、系统及基站
WO2017105494A1 (en) * 2015-12-18 2017-06-22 Intel IP Corporation POINT SWITCHING IN CELL-LESS mmWAVE SMALL CELL
US10932278B2 (en) * 2017-03-20 2021-02-23 Convida Wireless, Llc Scheduling and control in new radio using preemption indication
US10230502B2 (en) * 2017-03-24 2019-03-12 Qualcomm Incorporated Hybrid automatic repeat request buffer configuration
US10716133B2 (en) * 2017-09-08 2020-07-14 Apple Inc. Enhancement of performance of ultra-reliable low-latency communication
US11083001B2 (en) * 2018-08-06 2021-08-03 Industry-Academic Cooperation Foundatio Data transmission method for ultra low-latency, highly-reliable communication in wireless communication system, and device therefor
US11284415B2 (en) * 2018-08-10 2022-03-22 Qualcomm Incorporated Out-of-order scheduling

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102960022A (zh) * 2010-06-28 2013-03-06 高通股份有限公司 多点hsdpa通信网络中的移动性

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"DL/UL Scheduling, Processing Time and HARQ Management", 3GPP TSG-RAN WG1 MEETING AH 1801, R1-1800876, 13 January 2018 (2018-01-13), XP051385146 *
HUAWEI ET AL.: "Summary of Remaining Issues on HARQ Management", 3GPP TSG RAN WG1 MEETING AD HOC, R1-1800036, 13 January 2018 (2018-01-13), XP051384539 *
See also references of EP3748887A4

Also Published As

Publication number Publication date
CN110149174A (zh) 2019-08-20
EP3748887B1 (en) 2024-01-10
CN110149174B (zh) 2021-02-12
EP3748887A4 (en) 2021-03-17
US11483097B2 (en) 2022-10-25
US20200374042A1 (en) 2020-11-26
EP3748887A1 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
EP2341685B1 (en) Method and apparatus for scheduling an acknowledgement in a wireless communication system
WO2019158056A1 (zh) 无线通信方法、网络设备、终端设备及可读存储介质
TWI822665B (zh) 傳輸方法和裝置
EP2835928B1 (en) Methods of handling communication operation
EP3742658B1 (en) Method for transmitting feedback information, terminal equipment and base station
WO2019201249A1 (zh) 通信方法、通信装置及可读存储介质
JP2017537508A (ja) 信頼できる低レイテンシ通信のためのファウンテンharq
WO2016183705A1 (zh) 授权辅助接入系统中用于传输上行数据的方法和装置
WO2019028684A1 (zh) 通信方法与设备
WO2019157683A1 (zh) 上行控制信息的传输方法和装置
EP3528413B1 (en) Re-transmission method and device
WO2018201959A1 (zh) 上行数据的传输方法和装置
WO2018201369A1 (zh) 一种控制信息传输的方法、终端设备和网络设备
WO2018152790A1 (zh) 传输反馈信息的方法、终端设备和网络设备
WO2013107399A1 (zh) 基于跨载波调度的数据传输方法、用户设备和基站
WO2019114730A1 (zh) 数据收发的方法、装置和通信系统
WO2018028123A1 (zh) 数据传输方法、数据传输装置和通信系统
WO2020103316A1 (zh) 一种传输数据的方法和终端设备
EP3565346B1 (en) Method and device for data transmission
EP3300279B1 (en) Method for data storage, terminal device and base station
WO2019228241A1 (zh) 信号处理的方法和装置
CN107710664A (zh) 传输数据的方法、终端和基站
WO2019237259A1 (zh) 传输信息的方法和装置
WO2023098464A1 (zh) 数据传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019754420

Country of ref document: EP

Effective date: 20200902