WO2019157755A1 - 信号传输的方法和设备 - Google Patents

信号传输的方法和设备 Download PDF

Info

Publication number
WO2019157755A1
WO2019157755A1 PCT/CN2018/076901 CN2018076901W WO2019157755A1 WO 2019157755 A1 WO2019157755 A1 WO 2019157755A1 CN 2018076901 W CN2018076901 W CN 2018076901W WO 2019157755 A1 WO2019157755 A1 WO 2019157755A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
signal
allowed
candidate
receiving node
Prior art date
Application number
PCT/CN2018/076901
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2018/076901 priority Critical patent/WO2019157755A1/zh
Priority to CN201880089020.7A priority patent/CN111699746A/zh
Priority to KR1020207026344A priority patent/KR20200120710A/ko
Priority to JP2020543274A priority patent/JP2021517758A/ja
Priority to AU2018409038A priority patent/AU2018409038A1/en
Priority to EP18906646.7A priority patent/EP3751947A4/en
Publication of WO2019157755A1 publication Critical patent/WO2019157755A1/zh
Priority to US16/993,186 priority patent/US11399391B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information

Definitions

  • Embodiments of the present application relate to the field of communications and, more particularly, to methods and apparatus for signal transmission.
  • the 5G system supports data transmission on the unlicensed frequency band, and the transmitting node may send a transmission signal to the receiving node to request communication with the receiving node, and the receiving node returns a signal to the transmitting node to indicate that the transmitting node can transmit data with the receiving node.
  • the transmitting node can transmit data only with the receiving node only when receiving the signal returned by the receiving node. Therefore, how to improve the signal transmission efficiency between the transmitting node and the receiving node in the unlicensed frequency band becomes an urgent problem to be solved.
  • the embodiment of the present application provides a method and a device for signal transmission, which can improve signal transmission efficiency between a transmitting node and a receiving node in an unlicensed frequency band.
  • a method for signal transmission comprising: a sending node sending a request sending signal to a receiving node, the request sending signal comprising configuration information for transmitting an allowed transmitting signal; and the sending node receiving the receiving node The allowable transmission signal transmitted according to the configuration information.
  • the transmitting node when transmitting the request transmission signal to the receiving node, the transmitting node enables the receiving node to transmit the permission transmitting signal to the transmitting node based on the configuration information by carrying the configuration information used for transmitting the transmission permitted signal, and the transmitting node can be based on the configuration.
  • the information detection allows the signal to be transmitted, thereby improving the signal transmission efficiency between the transmitting node and the receiving node.
  • the request sending signal is used at least to request data transmission with the receiving node, and the permission sending signal is at least used to indicate that the sending node and the receiving node are allowed to perform data transmission.
  • the configuration information includes indication information of N candidate beams, and/or information of a transmission time of the N candidate beams corresponding to the transmission signal, and N is a positive integer.
  • the indication information of each candidate beam of the N candidate waves includes: a signal index of a reference signal that satisfies a quasi-co-located QCL relationship with each of the candidate beams.
  • the sending time of the allowed transmission signal corresponding to each candidate beam in the N candidate beams includes: a time taken to assume that the transmission enable signal is transmitted by using each of the candidate beams.
  • the transmission times of the N allowed transmission signals corresponding to the N candidate beams do not overlap; the transmission time of the allowed transmission signal corresponding to the first candidate beam, and the transmission time of the request transmission signal
  • the time interval between the transmission time of the ith candidate beam corresponding to the transmission signal of the i-th candidate beam and the transmission time of the transmission-allowable signal corresponding to the i+1th candidate beam is T i ;
  • the time interval between the transmission time of the allowable transmission signal corresponding to one candidate beam and the transmission time of the transmission enable signal corresponding to the i+2 candidate beam is T i+1 ;
  • T i T i+1 or T i ⁇ T i+1 , i from 1 to N-2.
  • the transmission times of the N allowed transmission signals of the N candidate beams overlap, and the time interval between the transmission time of the overlap allowed transmission signal and the transmission time of the request transmission signal For T1.
  • the sending, by the sending, the sending, by the receiving, the sending, sending, sending, sending, sending, sending, sending, sending, sending, sending, sending, sending, sending, sending, sending, sending, sending, sending, sending, sending, sending, sending, sending, sending, sending, sending, sending, sending, The allowable transmission signal is detected on the N candidate beams.
  • a second aspect provides a method for signal transmission, comprising: receiving, by a receiving node, a request sending signal sent by a sending node, where the request sending signal includes configuration information for transmitting an allowed transmitting signal; and the receiving node is configured according to the Information, sending the permission to send signal to the sending node.
  • the transmitting node when transmitting the request transmission signal to the receiving node, the transmitting node enables the receiving node to transmit the permission transmitting signal to the transmitting node based on the configuration information by carrying the configuration information used for transmitting the transmission permitted signal, and the transmitting node can be based on the configuration.
  • the information detection allows the signal to be transmitted, thereby improving the signal transmission efficiency between the transmitting node and the receiving node.
  • the request sending signal is used at least to request data transmission with the receiving node, and the permission sending signal is at least used to indicate that the sending node and the receiving node are allowed to perform data transmission.
  • the configuration information includes indication information of N candidate beams, and/or information of a transmission time of the N candidate beams corresponding to the transmission signal, and N is a positive integer.
  • the indication information of each of the N candidate waves includes: a signal index of a reference signal that satisfies a quasi-co-located QCL relationship with each of the candidate beams.
  • the sending time of the allowed transmission signal corresponding to each candidate beam of the N candidate waves includes: a time taken to assume that the transmission enable signal is transmitted by using each of the candidate beams.
  • the method before the sending node sends the permission to send signal to the sending node, the method further includes: receiving, by the receiving node, a measurement result obtained by performing signal measurement on a reference signal, and Or, the interception result obtained by performing carrier sensing on the beam, selecting a target beam among the N candidate beams; wherein the receiving node sends the permission to send signal to the sending node, including: the receiving The node transmits the allowed transmission signal to the transmitting node using the target beam.
  • the target beam is: a beam in which the listening channel is idle in the N candidate beams; or a beam in which the measurement result of the reference signal in the N candidate beams is optimal;
  • the listening channel is a beam whose measurement result of the reference signal in the idle beam is optimal.
  • the transmission times of the N allowed transmission signals corresponding to the N candidate beams do not overlap; the transmission time of the allowed transmission signal corresponding to the first candidate beam, and the transmission time of the request transmission signal
  • the time interval between the transmission time of the ith candidate beam corresponding to the transmission signal of the i-th candidate beam and the transmission time of the transmission-allowable signal corresponding to the i+1th candidate beam is T i ;
  • the time interval between the transmission time of the allowable transmission signal corresponding to one candidate beam and the transmission time of the transmission enable signal corresponding to the i+2 candidate beam is T i+1 ;
  • T i T i+1 or T i ⁇ T i+1 , i from 1 to N-2.
  • the receiving node sends the permission to send signal to the sending node according to the configuration information, including: sending, by the receiving node, a transmission time of an allowed transmission signal corresponding to a target beam. Transmitting, by using the target beam, the allowed transmission signal to the transmitting node.
  • the transmission times of the N allowed transmission signals of the N candidate beams overlap, and the time interval between the transmission time of the overlap allowed transmission signal and the transmission time of the request transmission signal For T1.
  • the receiving node sends the permission to send signal to the sending node according to the configuration information, where: the receiving node is in a sending time of the overlapping allowed sending signal, The allowed transmit signal is sent to the transmitting node using a target beam.
  • a transmitting node device which can perform the operations of the transmitting node in the above first aspect or any optional implementation of the first aspect.
  • the terminal device may comprise a modular unit configured to perform the operations of the transmitting node in any of the above-described first aspects or any of the possible implementations of the first aspect.
  • a receiving node device which can perform the operations of the receiving node in the above first aspect or any optional implementation of the first aspect.
  • the network device may comprise a modular unit configured to perform the operations of the receiving node in any of the possible implementations of the second aspect or the second aspect described above.
  • a transmitting node device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is configured to store instructions that are configured to execute instructions stored by the memory.
  • the processor executes the instruction stored by the memory, the executing causes the transmitting node device to perform the method of the first aspect or any possible implementation of the first aspect, or the performing causes the transmitting node device to implement the second aspect Send node device.
  • a receiving node device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is configured to store instructions that are configured to execute instructions stored by the memory.
  • the processor executes the instruction stored by the memory, the executing causes the receiving node device to perform the method in any of the possible implementations of the second aspect or the second aspect, or the performing causes the receiving node device to implement the fourth aspect Receive node device.
  • a system chip comprising an input interface, an output interface, a processor, and a memory, the processor configured to execute an instruction stored by the memory, when the instruction is executed, the processor can implement The method of any of the preceding first aspect or any possible implementation of the first aspect.
  • a system chip in an eighth aspect, includes an input interface, an output interface, a processor, and a memory, the processor configured to execute an instruction stored by the memory, when the instruction is executed, the processor can implement The method of any of the preceding second aspect or any of the possible implementations of the second aspect.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any of the first aspect or the first aspect of the first aspect.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any of the above-described second or second aspect of the second aspect.
  • FIG. 1 is a schematic diagram of a wireless communication system to which an embodiment of the present application is applied.
  • FIG. 2 is a flow interaction diagram of a method of signal transmission in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a transmission time of a transmission allowed signal according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a transmission time of a transmission enable signal according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a sending node device according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a receiving node device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a system chip according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UPD Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • FIG. 1 shows a wireless communication system 100 to which an embodiment of the present application is applied.
  • the wireless communication system 100 can include a network device 110.
  • Network device 100 can be a device that communicates with a terminal device.
  • Network device 100 may provide communication coverage for a particular geographic area and may communicate with terminal devices (e.g., UEs) located within the coverage area.
  • the network device 100 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or may be a base station (NodeB, NB) in a WCDMA system, or may be an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • the network device can be a relay station, an access point, an in-vehicle device, a wearable device, A network side device in a future 5G network or a network device in a publicly available Public Land Mobile Network (PLMN) in the future.
  • PLMN Public Land Mobile Network
  • the wireless communication system 100 also includes at least one terminal device, such as terminal device 121 and terminal device 122, located within the coverage of network device 110.
  • Terminal device 121 and terminal device 122 may be mobile or fixed.
  • the terminal device 121 and the terminal device 122 may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user device.
  • UE User Equipment
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • a device to device (D2D) communication may be performed between the terminal device 121 and the terminal device 122.
  • D2D device to device
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system 100 may include a plurality of network devices and may include other numbers of terminal devices within the coverage of each network device. The application embodiment does not limit this.
  • the wireless communication system 100 may further include other network entities, such as a network controller, a mobility management entity, and the like.
  • network entities such as a network controller, a mobility management entity, and the like.
  • the frequency band used for data transmission is higher than the frequency band used in LTE, so the path loss of the wireless signal transmission becomes large, and the coverage of the wireless signal becomes small.
  • beamforming technology is proposed in 5G systems to increase the gain of wireless signals to compensate for path loss.
  • the beam used by the base station to send signals to the terminal device has directivity, and different beams actually correspond to different transmission directions, and each narrow beam can only cover a partial area of the cell, and cannot cover all areas in the cell.
  • FIG. 1 shows four beams in different directions, namely, beam B1, beam B2, beam B3, and beam B4, and the base station can transmit signals to the terminal device through four different directions of beams.
  • the base station can transmit signals to the terminal device 121 through the beam B1 and the beam B2, and transmit signals to the terminal device 122 through the beam B3 and the beam B4.
  • LBT Listening Before Talk
  • WiFi Wireless Fidelity
  • RTS Request-To-Send
  • CTS Clear-To-Send
  • LBT Listen Before Talk
  • Request-To-Send RTS/Clear-to-Send (Clear-To-Send)
  • CTS CTS
  • Hidden Stations Hidden Stations
  • the base station A sends a signal to the base station B.
  • the base station C does not detect the base station A, it can also transmit to the base station B. Therefore, the base station A and the base station C simultaneously transmit signals to the base station B, causing the signal to be transmitted to the base station B. Signal collisions may eventually result in the loss of signals sent to base station B.
  • this problem can be solved by the RTS/CTS mechanism.
  • the base station A sends an RTS signal to the base station B, indicating that the base station A is to send some data to the base station B, and the base station B sends a CTS signal after receiving the RTS signal, indicating that it is ready, the base station A can transmit data, and the rest wants to the base station B.
  • the base station transmitting the data suspends transmitting data to the base station B.
  • the two parties start the real data transmission after successfully switching the RTS/CTS signal (that is, completing the handshake), and ensuring that when multiple invisible transmitting nodes simultaneously send signals to the same receiving node, the actual receiving can only be received.
  • the node that the node responds to the CTS signal can transmit data to the receiving node, thereby avoiding collisions.
  • the transmitting node Since the transmitting node only receives the CTS signal returned by the receiving node, it can transmit data with the receiving node. Therefore, how to improve the signal transmission efficiency between the transmitting node and the receiving node becomes an urgent problem to be solved.
  • the transmitting node when the sending node sends the request sending signal to the receiving node, can send the allowed sending signal to the sending node based on the configuration information by carrying the configuration information used by the transmission permission transmitting signal, and the sending node The allowable transmission signal can be detected based on the configuration information, thereby improving signal transmission efficiency between the transmitting node and the receiving node.
  • a beam used to receive a signal can be understood as a spatial domain reception filter used to receive a signal; a beam used to transmit a signal can be understood as , a spatial domain transmission filter used to transmit a signal.
  • the two signals can be said to be Quasi-Co-Located (QCL) with respect to the spatial receive parameters.
  • the transmitting node setting and receiving node shown in FIG. 2 may be, for example, the network device 110, the terminal device 121, or the terminal device 122 shown in FIG. 1.
  • the method shown in Figure 2 can be applied, for example, to an unlicensed band.
  • the method of signal transmission may include some or all of the following contents:
  • the transmitting node sends a request to send signal to the receiving node.
  • the receiving node receives a request to send signal sent by the transmitting node.
  • the request sending signal includes configuration information for transmitting an allowed transmission signal.
  • the request sending signal is at least used to request data transmission with the receiving node.
  • it includes the address of the receiving node, the time of the data frame, the time when the ACK is sent, and the like.
  • the request sending signal may also carry other content or have other functions, which are not limited herein.
  • the permission to send signal is at least used to indicate that the sending node is allowed to perform data transmission with the receiving node, or, further, to instruct other nodes to perform data transmission with the receiving node.
  • the allowed transmission signal may also carry other content or have other functions, which are not limited herein.
  • the request transmission signal is an RTS signal
  • the permission transmission signal is a CTS signal.
  • the configuration information includes indication information of the N candidate beams, and/or information of a transmission time of the allowed transmission signals corresponding to each of the N candidate beams, where N is a positive integer.
  • the indication information of each candidate beam of the N candidate waves may include, for example, a signal index of a reference signal satisfying a quasi-co-located QCL relationship with each of the candidate beams.
  • the transmission time of the allowable transmission signal corresponding to each of the N candidate beams may include, for example, a time taken to assume that the transmission enable signal is transmitted using each of the candidate beams.
  • the transmission times of the N allowed transmission signals corresponding to the N candidate beams may overlap or not overlap, and the following two cases are respectively described below.
  • the transmission times of the N allowed transmission signals corresponding to the N candidate beams do not overlap.
  • the time interval between the transmission time of the allowable transmission signal corresponding to the first candidate beam and the transmission time of the request transmission signal is T1.
  • the transmission time of the allowable transmission signal corresponding to the i-th candidate beam and the transmission time of the transmission-allowable signal corresponding to the i+1th candidate beam are T i .
  • the time interval between the transmission time of the allowable transmission signal corresponding to the i+1th candidate beam and the transmission time of the transmission enable signal corresponding to the i+2 candidate beam is T i+1 .
  • T i T i+1 or T i ⁇ T i+1 , i is from 1 to N-2.
  • the three candidate beams are beam 1, beam 2, and beam 3.
  • the time interval between the transmission time of the allowable transmission signal corresponding to beam 1 and the transmission time of the request transmission signal is T1; the transmission time of the transmission enable signal corresponding to beam 2, and the transmission time of the transmission enable signal corresponding to beam 1
  • the time interval is T2; the time interval between the transmission time of the transmit signal corresponding to beam 3 and the transmission time of the allowable transmission signal corresponding to beam 2 is T3.
  • T1 can be, for example, 16 us or 25 us.
  • T2 and T3 may or may not be equal.
  • the transmission times of the N allowed transmission signals corresponding to the N candidate beams overlap, and the time interval between the transmission time of the overlap allowed transmission signal and the transmission time of the request transmission signal is T1.
  • the three candidate beams are beam 1, beam 2, and beam 3.
  • the transmission time of the allowable transmission signals corresponding to beam 1, beam 2 and beam 3 is the same, and the time interval between the transmission times of the request transmission signals is T1.
  • T1 can be, for example, 16 us or 25 us.
  • the receiving node has only the ability to transmit and receive using only one beam at the same time; in case 2, the receiving node has the ability to transmit and receive using multiple beams at the same time.
  • the receiving node sends the permission sending signal to the sending node according to the configuration information.
  • the receiving node may perform a sensing result obtained by performing signal measurement on the reference signal, and/or a listening result obtained by performing carrier sensing (or beam sensing, channel sensing, interception, etc.) on the beam. And selecting a target beam among the N candidate beams, so that the allowed transmission signal is sent to the transmitting node by using the target beam.
  • the target beam may be, for example, a beam in which the listening channel is idle in the N candidate beams; or a beam in which the measurement result of the reference signal in the N candidate beams is optimal; or the listening channel is The beam with the best measurement result of the reference signal in the idle beam.
  • the terminal device detects that the channel is idle on a certain beam, for example, the power of the reference signal sent on the beam is less than a preset threshold, and the channel on the beam is considered to be idle.
  • the receiving node sends the allowed transmission signal to the sending node according to the configuration information.
  • the method includes: the receiving node sends the allowed transmission signal to the sending node by using the target beam during a transmission time of the allowed transmission signal corresponding to the target beam.
  • the receiving node sends the permission transmission signal to the sending node according to the configuration information, including The receiving node transmits the allowed transmission signal to the transmitting node using the target beam during the transmission time of the overlapping allowed transmission signal.
  • the sending node receives the allowed sending signal sent by the receiving node according to the configuration information.
  • the sending node optionally receives the allowable sending signal sent by the receiving node according to the configuration information, and the sending node sequentially and in the N according to the sending time of the N allowed sending signals.
  • the allowable transmission signal is detected on the N candidate beams corresponding to the transmission time of the transmission signal until the permission to transmit the signal is detected, or until the transmission time of the last allowed transmission signal in the transmission time of the N allowed transmission signals. The transmission allowed signal was detected before the end.
  • the sending node receives the allowable sending signal sent by the receiving node according to the configuration information, and the sending node is simultaneously on the N candidate beams during the sending time of the overlapping allowed transmitting signals. Detect this allowed transmission signal.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 5 is a schematic block diagram of a transmitting node device 500 in accordance with an embodiment of the present application.
  • the sending node device 500 includes a transceiver unit 510 configured to:
  • the transmitting node device when transmitting the request transmission signal to the receiving node device, the transmitting node device enables the receiving node device to transmit the permission transmitting signal to the transmitting node device based on the configuration information by carrying the configuration information used for transmitting the transmission permitted signal, and the transmitting node The device can detect the allowed transmission signal based on the configuration information, thereby improving signal transmission efficiency between the transmitting node device and the receiving node device.
  • the request sending signal is used at least to request data transmission with the receiving node device, and the permission sending signal is at least used to indicate that the sending node device is allowed to perform data transmission with the receiving node device.
  • the configuration information includes indication information of N candidate beams, and/or information of a transmission time of the allowed transmission signals corresponding to each of the N candidate beams.
  • the indication information of each of the N candidate waves includes: a signal index of a reference signal that satisfies a quasi-co-located QCL relationship with each of the candidate beams.
  • a sending time of the allowed transmission signal corresponding to each candidate beam of the N candidate beams includes: a time occupied by assuming that each of the candidate beams is used to transmit an allowable transmission signal.
  • the transmission times of the N allowed transmission signals corresponding to the N candidate beams do not overlap; the time interval between the transmission time of the allowed transmission signal corresponding to the first candidate beam and the transmission time of the request transmission signal
  • the time interval between the transmission time of the allowable transmission signal corresponding to the i th candidate beam and the transmission time of the allowable transmission signal corresponding to the i+1th candidate beam is T i ;
  • the transceiver unit 510 is configured to: detect, according to a sequence of transmission times of the N allowed transmission signals, sequentially on N candidate beams corresponding to transmission times of the N allowed transmission signals. The transmission is allowed to be transmitted until the transmission of the permission is detected, or until the transmission of the transmission of the last of the N allowed transmission signals is completed, the transmission of the transmission is detected.
  • the transmission times of the N allowed transmission signals corresponding to the N candidate beams overlap, and the time interval between the transmission time of the overlapping allowed transmission signals and the transmission time of the request transmission signal is T1.
  • the transceiver unit 510 is configured to: simultaneously detect the allowed transmission signal on the N candidate beams during a transmission time of the overlap allowed transmission signal.
  • the sending node device 500 can perform the corresponding operations performed by the sending node in the foregoing method 200. For brevity, no further details are provided herein.
  • FIG. 6 is a schematic block diagram of a receiving node device 600 in accordance with an embodiment of the present application.
  • the network device 600 includes a transceiver unit 610 configured to:
  • the transmitting node device when transmitting the request transmission signal to the receiving node device, the transmitting node device enables the receiving node device to transmit the permission transmitting signal to the transmitting node device based on the configuration information by carrying the configuration information used for transmitting the transmission permitted signal, and the transmitting node The device can detect the allowed transmission signal based on the configuration information, thereby improving signal transmission efficiency between the transmitting node device and the receiving node device.
  • the request sending signal is used at least to request data transmission with the receiving node device, and the permission sending signal is at least used to indicate that the sending node device is allowed to perform data transmission with the receiving node device.
  • the configuration information includes indication information of N candidate beams, and/or information of a transmission time of the allowed transmission signals corresponding to each of the N candidate beams, where N is a positive integer.
  • the indication information of each of the N candidate waves includes: a signal index of a reference signal that satisfies a quasi-co-located QCL relationship with each of the candidate beams.
  • a transmission time of the allowed transmission signal corresponding to each candidate beam of the N candidate waves includes: a time taken to assume that the transmission enable signal is transmitted by using each of the candidate beams.
  • the receiving node device further includes a processing unit 620 configured to: according to the measurement result obtained by performing signal measurement on the reference signal, and/or the interception result obtained by performing carrier sensing on the beam, in the N Selecting a target beam among the candidate beams;
  • the transceiver unit 610 is specifically configured to: send the allowed transmission signal to the sending node device by using the target beam.
  • the target beam is: a beam in which the listening channel is idle in the N candidate beams; or a beam in which the measurement result of the reference signal in the N candidate beams is optimal; or The beam with the best measurement result of the reference signal in the beam where the channel is idle is heard.
  • the transmission times of the N allowed transmission signals corresponding to the N candidate beams do not overlap; the time interval between the transmission time of the allowed transmission signal corresponding to the first candidate beam and the transmission time of the request transmission signal
  • the time interval between the transmission time of the allowable transmission signal corresponding to the i th candidate beam and the transmission time of the allowable transmission signal corresponding to the i+1th candidate beam is T i ;
  • the transceiver unit 610 is specifically configured to: send, by using the target beam, the permission to send signal to the sending node device during a sending time of the allowed transmission signal corresponding to the target beam.
  • the transmission times of the N allowed transmission signals corresponding to the N candidate beams overlap, and the time interval between the transmission time of the overlapping allowed transmission signals and the transmission time of the request transmission signal is T1.
  • the transceiver unit 610 is specifically configured to: send the allowed transmission signal to the sending node device by using a target beam during a transmission time of the overlapping allowed transmission signal.
  • receiving node device 600 can perform the corresponding operations performed by the receiving node in the foregoing method 200, and details are not described herein for brevity.
  • FIG. 7 is a schematic structural diagram of a communication device 700 according to an embodiment of the present application.
  • the communication device includes a processor 710, a transceiver 720, and a memory 730, wherein the processor 710, the transceiver 720, and the memory 730 communicate with each other through an internal connection path.
  • the memory 730 is configured to store instructions
  • the processor 710 is configured to execute instructions stored by the memory 730 to control the transceiver 720 to receive signals or transmit signals.
  • the processor 710 can call the program code stored in the memory 730 to perform the corresponding operations performed by the sending node in the method 200.
  • the processor 710 can call the program code stored in the memory 730 to perform the corresponding operations performed by the sending node in the method 200.
  • the processor 710 can call the program code stored in the memory 730 to perform the corresponding operations performed by the receiving node in the method 200.
  • the processor 710 can call the program code stored in the memory 730 to perform the corresponding operations performed by the receiving node in the method 200.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • FIG. 8 is a schematic structural diagram of a system chip according to an embodiment of the present application.
  • the system chip 800 of FIG. 8 includes an input interface 801, an output interface 802, at least one processor 803, and a memory 804.
  • the input interface 801, the output interface 802, the processor 803, and the memory 804 are interconnected by an internal connection path.
  • the processor 803 is configured to execute code in the memory 804.
  • the processor 803 can implement the corresponding operations performed by the transmitting node in the method 200. For the sake of brevity, it will not be repeated here.
  • the processor 803 can implement corresponding operations performed by the receiving node in the method 200. For the sake of brevity, it will not be repeated here.
  • B corresponding to (corresponding to) A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one monitoring unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号传输的方法和设备,包括:发送节点向接收节点发送请求发送信号,所述请求发送信号包括用于传输允许发送信号的配置信息;所述发送节点接收所述接收节点根据所述配置信息发送的所述允许发送信号。

Description

信号传输的方法和设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及信号传输的方法和设备。
背景技术
5G系统中支持非授权频段上的数据传输,发送节点可以向接收节点发送发送信号以请求与接收节点之间进行通信,接收节点向发送节点返回信号以指示发送节点可以与接收节点之间传输数据,发送节点只有收到接收节点返回的信号时,才可以与接收节点之间传输数据。因此,如何提高非授权频段上发送节点和接收节点之间的信号传输效率,成为亟待解决的问题。
发明内容
本申请实施例提供了一种信号传输的方法和设备,能够提高非授权频段上发送节点和接收节点之间的信号传输效率。
第一方面,提供了一种信号传输的方法,包括:发送节点向接收节点发送请求发送信号,所述请求发送信号包括用于传输允许发送信号的配置信息;所述发送节点接收所述接收节点根据所述配置信息发送的所述允许发送信号。
因此,发送节点在向接收节点发送请求发送信号时,通过携带传输允许发送信号所使用的配置信息,使接收节点能够基于该配置信息向发送节点发送该允许发送信号,且发送节点能够基于该配置信息检测该允许发送信号,从而提高了发送节点和接收节点之间的信号传输效率。
在一种可能的实现方式中,所述请求发送信号至少用于请求与所述接收节点进行数据传输,所述允许发送信号至少用于指示允许所述发送节点与所述接收节点进行数据传输。
在一种可能的实现方式中,所述配置信息包括N个候选波束的指示信息,和/或,N个候选波束各自对应的允许发送信号的发送时间的信息,N为正整数。
在一种可能的实现方式中,所述N个候选波中每个候选波束的指示信息 包括:与所述每个候选波束之间满足准共址QCL关系的参考信号的信号索引。
在一种可能的实现方式中,所述N个候选波束中每个候选波束对应的允许发送信号的发送时间包括:以假定使用所述每个候选波束发送允许发送信号时所占用的时间。
在一种可能的实现方式中,所述N个候选波束对应的N个允许发送信号的发送时间各不重叠;第1个候选波束对应的允许发送信号的发送时间,与请求发送信号的发送时间之间的时间间隔为T1;第i个候选波束对应的允许发送信号的发送时间,与第i+1个候选波束对应的允许发送信号的发送时间之间的时间间隔为T i;第i+1个候选波束对应的允许发送信号的发送时间,与第i+2个候选波束对应的允许发送信号的发送时间之间的时间间隔为T i+1;T i=T i+1或者T i≠T i+1,i从1至N-2。
在一种可能的实现方式中,所述发送节点接收所述接收节点根据所述配置信息发送的允许发送信号,包括:所述发送节点按照所述N个允许发送信号的发送时间的先后顺序,依次在与所述N个允许发送信号的发送时间对应的N个候选波束上,检测所述允许发送信号,直至检测到允许发送信号,或者,直至在所述N个允许发送信号的发送时间中的最后一个允许发送信号的发送时间结束之前检测了允许发送信号。
在一种可能的实现方式中,所述N个候选波束对应的N个允许发送信号的发送时间重叠,且所述重叠的允许发送信号的发送时间与请求发送信号的发送时间之间的时间间隔为T1。
在一种可能的实现方式中,所述发送节点接收所述接收节点根据所述配置信息发送的允许发送信号,包括:所述发送节点在所述重叠的允许发送信号的发送时间内,同时在所述N个候选波束上检测所述允许发送信号。
第二方面,提供了一种信号传输的方法,包括:接收节点接收发送节点发送的请求发送信号,所述请求发送信号包括用于传输允许发送信号的配置信息;所述接收节点根据所述配置信息,向所述发送节点发送所述允许发送信号。
因此,发送节点在向接收节点发送请求发送信号时,通过携带传输允许发送信号所使用的配置信息,使接收节点能够基于该配置信息向发送节点发送该允许发送信号,且发送节点能够基于该配置信息检测该允许发送信号, 从而提高了发送节点和接收节点之间的信号传输效率。
在一种可能的实现方式中,所述请求发送信号至少用于请求与所述接收节点进行数据传输,所述允许发送信号至少用于指示允许所述发送节点与所述接收节点进行数据传输。
在一种可能的实现方式中,所述配置信息包括N个候选波束的指示信息,和/或,N个候选波束各自对应的允许发送信号的发送时间的信息,N为正整数。
在一种可能的实现方式中,所述N个候选波中每个候选波束的指示信息包括:与所述每个候选波束之间满足准共址QCL关系的参考信号的信号索引。
在一种可能的实现方式中,所述N个候选波中每个候选波束对应的允许发送信号的发送时间包括:以假定使用所述每个候选波束发送允许发送信号时所占用的时间。
在一种可能的实现方式中,在所述接收节点向所述发送节点发送所述允许发送信号之前,所述方法还包括:所述接收节点根据对参考信号进行信号测量得到的测量结果,和/或,对波束进行载波侦听得到的侦听结果,在所述N个候选波束中选择目标波束;其中,所述接收节点向所述发送节点发送所述允许发送信号,包括:所述接收节点使用所述目标波束向所述发送节点发送所述允许发送信号。
在一种可能的实现方式中,所述目标波束为:所述N个候选波束中侦听到信道为空闲的波束;或者,所述N个候选波束中参考信号的测量结果最优的波束;或者,所述侦听到信道为空闲的波束中参考信号的测量结果最优的波束。
在一种可能的实现方式中,所述N个候选波束对应的N个允许发送信号的发送时间各不重叠;第1个候选波束对应的允许发送信号的发送时间,与请求发送信号的发送时间之间的时间间隔为T1;第i个候选波束对应的允许发送信号的发送时间,与第i+1个候选波束对应的允许发送信号的发送时间之间的时间间隔为T i;第i+1个候选波束对应的允许发送信号的发送时间,与第i+2个候选波束对应的允许发送信号的发送时间之间的时间间隔为T i+1;T i=T i+1或者T i≠T i+1,i从1至N-2。
在一种可能的实现方式中,所述接收节点根据所述配置信息,向所述发 送节点发送所述允许发送信号,包括:所述接收节点在与目标波束对应的允许发送信号的发送时间内,使用所述目标波束向所述发送节点发送所述允许发送信号。
在一种可能的实现方式中,所述N个候选波束对应的N个允许发送信号的发送时间重叠,且所述重叠的允许发送信号的发送时间与请求发送信号的发送时间之间的时间间隔为T1。
在一种可能的实现方式中,所述接收节点根据所述配置信息,向所述发送节点发送所述允许发送信号,包括:所述接收节点在所述重叠的允许发送信号的发送时间内,使用目标波束向所述发送节点发送所述允许发送信号。
第三方面,提供了一种发送节点设备,该发送节点设备可以执行上述第一方面或第一方面的任意可选的实现方式中的发送节点的操作。具体地,该终端设备可以包括配置为执行上述第一方面或第一方面的任意可能的实现方式中的发送节点的操作的模块单元。
第四方面,提供了一种接收节点设备,该接收节点设备可以执行上述第一方面或第一方面的任意可选的实现方式中的接收节点的操作。具体地,该网络设备可以包括配置为执行上述第二方面或第二方面的任意可能的实现方式中的接收节点的操作的模块单元。
第五方面,提供了一种发送节点设备,该发送节点设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器配置为存储指令,该处理器配置为执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该发送节点设备执行第一方面或第一方面的任意可能的实现方式中的方法,或者该执行使得该发送节点设备实现第二方面提供的发送节点设备。
第六方面,提供了一种接收节点设备,该接收节点设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器配置为存储指令,该处理器配置为执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该接收节点设备执行第二方面或第二方面的任意可能的实现方式中的方法,或者该执行使得该接收节点设备实现第四方面提供的接收节点设备。
第七方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器配置为执行该存储器存储的指令,当该指令被执 行时,该处理器可以实现前述第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器配置为执行该存储器存储的指令,当该指令被执行时,该处理器可以实现前述第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,提供了一种包括指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得该计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十方面,提供了一种包括指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得该计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
附图说明
图1是本申请实施例应用的无线通信系统的示意图。
图2是本申请实施例的信号传输的方法的流程交互图。
图3是本申请实施例的允许发送信号的发送时间的示意图。
图4是本申请实施例的允许发送信号的发送时间的示意图。
图5是本申请实施例的发送节点设备的示意性框图。
图6是本申请实施例的接收节点设备的示意性框图。
图7是本申请实施例的通信设备的示意性结构图。
图8是本申请实施例的系统芯片的示意性结构图。
具体实施方式
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex, 简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统或未来的5G系统等。
图1示出了本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110。网络设备100可以是与终端设备通信的设备。网络设备100可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备(例如UE)进行通信。可选地,该网络设备100可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、未来5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备例如终端设备121和终端设备122。终端设备121和终端设备122可以是移动的或固定的。可选地,终端设备121和终端设备122可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN中的终端设备等。其中,可选地,终端设备121与终端设备122之间也可以进行终端直连(Device to Device,D2D)通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
在5G系统中,数据传输所采用的频段比LTE中使用的频段更高,因此无线信号传输的路径损耗变大,无线信号的覆盖变小。为此,5G系统中提出波束成形(beamforming)技术,以提高无线信号的增益,从而弥补路径损耗。具体地,基站向终端设备发送信号所使用的波束具有方向性,不同波束实际对应着不同的发射方向,每个窄波束只能覆盖小区的部分区域,而无法覆盖小区中的所有区域。例如图1所示,图1示出了4个不同方向的波束,即波束B1、波束B2、波束B3和波束B4,基站可以通过着4个不同方向的波束向终端设备发送信号。对于波束B1和波束B2,只能覆盖终端设备121而无法覆盖终端设备122;而波束B3和波束B4只能覆盖终端设备122而无法覆盖终端设备121。基站可以通过波束B1和波束B2向终端设备121发送信号,通过波束B3和波束B4向终端设备122发送信号。
下面简单介绍本申请实施例涉及的非授权频段(unlicensed frequency bands)上的先听后说(Listen Before Talk,LBT)机制,以及工作在非授权频段上的无线保真(Wireless Fidelity,WiFi)系统中的请求发送(Request-To-Send,RTS)/清除发送(Clear-To-Send,CTS)机制。
在5G系统中,支持非授权频段(unlicensed frequency bands)上的数据传输。在使用非授权频段进行数据传输时是基于先听后说(Listen Before Talk,LBT)机制。即,发送节点在发送数据之前,需要侦听信道是否空闲,只有确定信道为空闲后才可以发送数据。
另外,对于工作在非授权频段上的无线保真(Wireless Fidelity,WiFi)系统,为了解决隐藏节点的问题,提出了请求发送(Request-To-Send,RTS)/清除发送(Clear-To-Send,CTS)机制。隐藏终端(Hidden Stations)是指,基站A向基站B发送信号,基站C未侦测到基站A时,也可以向基站B发送,故基站A和基站C同时将信号发送至基站B,引起了信号冲突,最终可能导致发送至基站B的信号都丢失了。这时,可以通过RTS/CTS机制解决这个问题。若使用RTS/CTS时,同时设置传送上限字节数,一旦待传送的数据大于此上限值时,即启动RTS/CTS握手协议。首先,基站A向基站B发送RTS信号,表明基站A要向基站B发送若干数据,基站B收到RTS信号后发出CTS信号,表明已准备就绪,基站A可以发送数据,而其余欲向基站B发送数据的基站则暂停向基站B发送数据。这样,双方在成功交换RTS/CTS信号(即完成握手)后才开始真正的数据传递,就保证了多个 互不可见的发送节点同时向同一接收节点发送信号时,实际只能是收到接收节点回应CTS信号的那个节点能够向接收节点传输数据,从而避免了冲突。
由于发送节点只有收到接收节点返回的CTS信号时,才可以与接收节点之间传输数据。因此,如何提高发送节点和接收节点之间的信号传输效率,成为亟待解决的问题。
本申请实施例中,发送节点在向接收节点发送请求发送信号时,通过携带传输允许发送信号所使用的配置信息,使接收节点能够基于该配置信息向发送节点发送该允许发送信号,且发送节点能够基于该配置信息检测该允许发送信号,从而提高了发送节点和接收节点之间的信号传输效率。
应理解,本申请实施例中,接收一个信号所使用的波束,可以理解为,接收一个信号所使用的空间域接收滤波器(Spatial domain reception filter);发送一个信号所使用的波束,可以理解为,发送一个信号所使用的空间域传输滤波器(Spatial domain transmission filter)。对于采用相同的空间域发送滤波器发送的两个信号,可以称这两个信号相对于空间接收参数是准同址(Quasi-Co-Located,QCL)的。
图2是本申请实施例的信号传输的方法的流程交互图。图2中所示的发送节点设和接收节点例如可以为图1中所示的网络设备110、终端设备121或终端设备122。图2所示的方法例如可以应用在非授权频段。如图2所示,该信号传输的方法可以包括以下部分或全部内容:
在210中,发送节点向接收节点发送请求发送信号。
在220中,接收节点接收发送节点发送的请求发送信号。
其中,该请求发送信号包括用于传输允许发送信号的配置信息。
可选地,该请求发送信号至少用于请求与该接收节点进行数据传输。例如包括接收节点的地址、数据帧的时间、发送ACK的时间等。该请求发送信号还可以携带其他内容或者具有其他功能,这里不做限定。
可选地,该允许发送信号至少用于指示允许该发送节点与该接收节点进行数据传输,或者,进一步地,还指示禁止其他节点与该接收节点进行数据传输。该允许发送信号还可以携带其他内容或者具有其他功能,这里不做限定。特别地,在WiFi系统中,该请求发送信号为RTS信号,该允许发送信号为CTS信号。
可选地,该配置信息包括N个候选波束的指示信息,和/或,N个候选 波束各自对应的允许发送信号的发送时间的信息,N为正整数。
该N个候选波中每个候选波束的指示信息例如可以包括:与该每个候选波束之间满足准共址QCL关系的参考信号的信号索引。
该N个候选波束中每个候选波束对应的允许发送信号的发送时间例如可以包括:以假定使用该每个候选波束发送允许发送信号时所占用的时间。
该N个候选波束对应的N个允许发送信号的发送时间之间可以重叠或者不重叠,下面分别对这两种情况进行描述。
情况1
可选地,该N个候选波束对应的N个允许发送信号的发送时间各不重叠。
其中,第1个候选波束对应的允许发送信号的发送时间,与请求发送信号的发送时间之间的时间间隔为T1。第i个候选波束对应的允许发送信号的发送时间,与第i+1个候选波束对应的允许发送信号的发送时间之间的时间间隔为T i。第i+1个候选波束对应的允许发送信号的发送时间,与第i+2个候选波束对应的允许发送信号的发送时间之间的时间间隔为T i+1
其中,T i=T i+1或者T i≠T i+1,i从1至N-2。
举例来说,如图3所示,假设N=3,3个候选波束为波束1、波束2和波束3。波束1对应的允许发送信号的发送时间,与请求发送信号的发送时间之间的时间间隔为T1;波束2对应的允许发送信号的发送时间,与波束1对应的允许发送信号的发送时间之间的时间间隔为T2;波束3对应的允许发送信号的发送时间,与波束2对应的允许发送信号的发送时间之间的时间间隔为T3。T1例如可以为16us或25us。T2与T3可以相等也可以不相等。
情况2
可选地,该N个候选波束对应的N个允许发送信号的发送时间重叠,且该重叠的允许发送信号的发送时间与请求发送信号的发送时间之间的时间间隔为T1。
例如,如图4所示,假设N=3,3个候选波束为波束1、波束2和波束3。波束1、波束2和波束3对应的允许发送信号的发送时间是相同的,且于请求发送信号的发送时间之间的时间间隔为T1。T1例如可以为16us或25us。
可选地,在情况1中,该接收节点仅具有在同一时间只能使用一个波束进行收发的能力;在情况2中,该接收节点具有在同一时间能够使用多个波 束进行收发的能力。
在230中,该接收节点根据该配置信息,向该发送节点发送该允许发送信号。
可选地,该接收节点可以根据对参考信号进行信号测量得到的测量结果,和/或,对波束进行载波侦听(或称波束侦听、信道侦听、侦听等)得到的侦听结果,在该N个候选波束中选择目标波束,从而使用该目标波束向该发送节点发送该允许发送信号。
其中,该目标波束例如可以为:该N个候选波束中侦听到信道为空闲的波束;或者,该N个候选波束中参考信号的测量结果最优的波束;或者,该侦听到信道为空闲的波束中参考信号的测量结果最优的波束。
终端设备在某个波束上侦听到信道为空闲,例如可以是该波束上发送的参考信号的功率小于一个预设阈值,这时认为该波束上的信道为空闲。
可选地,对于情况1,即N个候选波束对应的N个允许发送信号的发送时间各不重叠的情况,在230中,该接收节点根据该配置信息,向该发送节点发送该允许发送信号,包括:该接收节点在与目标波束对应的允许发送信号的发送时间内,使用该目标波束向该发送节点发送该允许发送信号。
可选地,对于情况2,即N个候选波束对应的N个允许发送信号的发送时间重叠的情况,在230中,该接收节点根据该配置信息,向该发送节点发送该允许发送信号,包括:该接收节点在该重叠的允许发送信号的发送时间内,使用目标波束向该发送节点发送该允许发送信号。
在240中,该发送节点接收该接收节点根据该配置信息发送的该允许发送信号。
对于情况1,可选地,该发送节点接收该接收节点根据该配置信息发送的允许发送信号,包括:该发送节点按照该N个允许发送信号的发送时间的先后顺序,依次在与该N个允许发送信号的发送时间对应的N个候选波束上,检测该允许发送信号,直至检测到允许发送信号,或者,直至在该N个允许发送信号的发送时间中的最后一个允许发送信号的发送时间结束之前检测了允许发送信号。
对于情况2,可选地,该发送节点接收该接收节点根据该配置信息发送的允许发送信号,包括:该发送节点在该重叠的允许发送信号的发送时间内,同时在该N个候选波束上检测该允许发送信号。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的信号传输的方法,下面将结合图5至图8,描述根据本申请实施例的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图5是根据本申请实施例的发送节点设备500的示意性框图。如图5所示,该发送节点设备500包括收发单元510,配置为:
向接收节点设备发送请求发送信号,所述请求发送信号包括用于传输允许发送信号的配置信息;接收所述接收节点设备根据所述配置信息发送的所述允许发送信号。
因此,发送节点设备在向接收节点设备发送请求发送信号时,通过携带传输允许发送信号所使用的配置信息,使接收节点设备能够基于该配置信息向发送节点设备发送该允许发送信号,且发送节点设备能够基于该配置信息检测该允许发送信号,从而提高了发送节点设备和接收节点设备之间的信号传输效率。
可选地,所述请求发送信号至少用于请求与所述接收节点设备进行数据传输,所述允许发送信号至少用于指示允许所述发送节点设备与所述接收节点设备进行数据传输。
可选地,所述配置信息包括N个候选波束的指示信息,和/或,N个候选波束各自对应的允许发送信号的发送时间的信息。
可选地,所述N个候选波中每个候选波束的指示信息包括:与所述每个候选波束之间满足准共址QCL关系的参考信号的信号索引。
可选地,所述N个候选波束中每个候选波束对应的允许发送信号的发送时间包括:以假定使用所述每个候选波束发送允许发送信号时所占用的时间。
可选地,所述N个候选波束对应的N个允许发送信号的发送时间各不重叠;第1个候选波束对应的允许发送信号的发送时间,与请求发送信号的发送时间之间的时间间隔为T1;第i个候选波束对应的允许发送信号的发送时间,与第i+1个候选波束对应的允许发送信号的发送时间之间的时间间隔为T i;第i+1个候选波束对应的允许发送信号的发送时间,与第i+2个候选 波束对应的允许发送信号的发送时间之间的时间间隔为T i+1;T i=T i+1或者T i≠T i+1,i从1至N-2。
可选地,所述收发单元510具体配置为:按照所述N个允许发送信号的发送时间的先后顺序,依次在与所述N个允许发送信号的发送时间对应的N个候选波束上,检测所述允许发送信号,直至检测到允许发送信号,或者,直至在所述N个允许发送信号的发送时间中的最后一个允许发送信号的发送时间结束之前检测了允许发送信号。
可选地,所述N个候选波束对应的N个允许发送信号的发送时间重叠,且所述重叠的允许发送信号的发送时间与请求发送信号的发送时间之间的时间间隔为T1。
可选地,所述收发单元510具体配置为:在所述重叠的允许发送信号的发送时间内,同时在所述N个候选波束上检测所述允许发送信号。
应理解,该发送节点设备500可以执行上述方法200中由发送节点执行的相应操作,为了简洁,在此不再赘述。
图6是根据本申请实施例的接收节点设备600的示意性框图。如图6所示,该网络设备600包括收发单元610,配置为:
接收发送节点设备发送的请求发送信号,所述请求发送信号包括用于传输允许发送信号的配置信息;根据所述配置信息,向所述发送节点设备发送所述允许发送信号。
因此,发送节点设备在向接收节点设备发送请求发送信号时,通过携带传输允许发送信号所使用的配置信息,使接收节点设备能够基于该配置信息向发送节点设备发送该允许发送信号,且发送节点设备能够基于该配置信息检测该允许发送信号,从而提高了发送节点设备和接收节点设备之间的信号传输效率。
可选地,所述请求发送信号至少用于请求与所述接收节点设备进行数据传输,所述允许发送信号至少用于指示允许所述发送节点设备与所述接收节点设备进行数据传输。
可选地,所述配置信息包括N个候选波束的指示信息,和/或,N个候选波束各自对应的允许发送信号的发送时间的信息,N为正整数。
可选地,所述N个候选波中每个候选波束的指示信息包括:与所述每个候选波束之间满足准共址QCL关系的参考信号的信号索引。
可选地,所述N个候选波中每个候选波束对应的允许发送信号的发送时间包括:以假定使用所述每个候选波束发送允许发送信号时所占用的时间。
可选地,所述接收节点设备还包括处理单元620,配置为:根据对参考信号进行信号测量得到的测量结果,和/或,对波束进行载波侦听得到的侦听结果,在所述N个候选波束中选择目标波束;
其中,所述收发单元610具体配置为:使用所述目标波束向所述发送节点设备发送所述允许发送信号。
可选地,所述目标波束为:所述N个候选波束中侦听到信道为空闲的波束;或者,所述N个候选波束中参考信号的测量结果最优的波束;或者,所述侦听到信道为空闲的波束中参考信号的测量结果最优的波束。
可选地,所述N个候选波束对应的N个允许发送信号的发送时间各不重叠;第1个候选波束对应的允许发送信号的发送时间,与请求发送信号的发送时间之间的时间间隔为T1;第i个候选波束对应的允许发送信号的发送时间,与第i+1个候选波束对应的允许发送信号的发送时间之间的时间间隔为T i;第i+1个候选波束对应的允许发送信号的发送时间,与第i+2个候选波束对应的允许发送信号的发送时间之间的时间间隔为T i+1;T i=T i+1或者T i≠T i+1,i从1至N-2。
可选地,所述收发单元610具体配置为:在与目标波束对应的允许发送信号的发送时间内,使用所述目标波束向所述发送节点设备发送所述允许发送信号。
可选地,所述N个候选波束对应的N个允许发送信号的发送时间重叠,且所述重叠的允许发送信号的发送时间与请求发送信号的发送时间之间的时间间隔为T1。
可选地,所述收发单元610具体配置为:在所述重叠的允许发送信号的发送时间内,使用目标波束向所述发送节点设备发送所述允许发送信号。
应理解,该接收节点设备600可以执行上述方法200中由接收节点执行的相应操作,为了简洁,在此不再赘述。
图7是根据本申请实施例的通信设备700的示意性结构图。如图7所示,该通信设备包括处理器710、收发器720和存储器730,其中,该处理器710、收发器720和存储器730之间通过内部连接通路互相通信。该存储器730配置为存储指令,该处理器710配置为执行该存储器730存储的指令,以控制 该收发器720接收信号或发送信号。
可选地,该处理器710可以调用存储器730中存储的程序代码,执行方法200中由发送节点执行的相应操作,为了简洁,在此不再赘述。
可选地,该处理器710可以调用存储器730中存储的程序代码,执行方法200中由接收节点执行的相应操作,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存 总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图8是本申请实施例的系统芯片的一个示意性结构图。图8的系统芯片800包括输入接口801、输出接口802、至少一个处理器803、存储器804,所述输入接口801、输出接口802、所述处理器803以及存储器804之间通过内部连接通路互相连接。所述处理器803配置为执行所述存储器804中的代码。
可选地,当所述代码被执行时,所述处理器803可以实现方法200中由发送节点执行的相应操作。为了简洁,这里不再赘述。
可选地,当所述代码被执行时,所述处理器803可以实现方法200中由接收节点执行的相应操作。为了简洁,这里不再赘述。
应理解,在本发明实施例中,“与A相应(对应)的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个监测单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (40)

  1. 一种信号传输的方法,所述方法包括:
    发送节点向接收节点发送请求发送信号,所述请求发送信号包括用于传输允许发送信号的配置信息;
    所述发送节点接收所述接收节点根据所述配置信息发送的所述允许发送信号。
  2. 根据权利要求1所述的方法,其中,所述请求发送信号至少用于请求与所述接收节点进行数据传输,所述允许发送信号至少用于指示允许所述发送节点与所述接收节点进行数据传输。
  3. 根据权利要求1或2所述的方法,其中,所述配置信息包括N个候选波束的指示信息,和/或,N个候选波束各自对应的允许发送信号的发送时间的信息,N为正整数。
  4. 根据权利要求3所述的方法,其中,所述N个候选波中每个候选波束的指示信息包括:与所述每个候选波束之间满足准共址QCL关系的参考信号的信号索引。
  5. 根据权利要求3或4所述的方法,其中,所述N个候选波束中每个候选波束对应的允许发送信号的发送时间包括:以假定使用所述每个候选波束发送允许发送信号时所占用的时间。
  6. 根据权利要求3至5中任一项所述的方法,其中,所述N个候选波束对应的N个允许发送信号的发送时间各不重叠,
    第1个候选波束对应的允许发送信号的发送时间,与请求发送信号的发送时间之间的时间间隔为T1,
    第i个候选波束对应的允许发送信号的发送时间,与第i+1个候选波束对应的允许发送信号的发送时间之间的时间间隔为T i
    第i+1个候选波束对应的允许发送信号的发送时间,与第i+2个候选波束对应的允许发送信号的发送时间之间的时间间隔为T i+1
    T i=T i+1或者T i≠T i+1,i从1至N-2。
  7. 根据权利要求6所述的方法,其中,所述发送节点接收所述接收节点根据所述配置信息发送的允许发送信号,包括:
    所述发送节点按照所述N个允许发送信号的发送时间的先后顺序,依次在与所述N个允许发送信号的发送时间对应的N个候选波束上,检测所述 允许发送信号,直至检测到允许发送信号,或者,直至在所述N个允许发送信号的发送时间中的最后一个允许发送信号的发送时间结束之前检测了允许发送信号。
  8. 根据权利要求3至5中任一项所述的方法,其中,所述N个候选波束对应的N个允许发送信号的发送时间重叠,且所述重叠的允许发送信号的发送时间与请求发送信号的发送时间之间的时间间隔为T1。
  9. 根据权利要求8所述的方法,其中,所述发送节点接收所述接收节点根据所述配置信息发送的允许发送信号,包括:
    所述发送节点在所述重叠的允许发送信号的发送时间内,同时在所述N个候选波束上检测所述允许发送信号。
  10. 一种信号传输的方法,所述方法包括:
    接收节点接收发送节点发送的请求发送信号,所述请求发送信号包括用于传输允许发送信号的配置信息;
    所述接收节点根据所述配置信息,向所述发送节点发送所述允许发送信号。
  11. 根据权利要求10所述的方法,其中,所述请求发送信号至少用于请求与所述接收节点进行数据传输,所述允许发送信号至少用于指示允许所述发送节点与所述接收节点进行数据传输。
  12. 根据权利要求10或11所述的方法,其中,所述配置信息包括N个候选波束的指示信息,和/或,N个候选波束各自对应的允许发送信号的发送时间的信息,N为正整数。
  13. 根据权利要求12所述的方法,其中,所述N个候选波中每个候选波束的指示信息包括:与所述每个候选波束之间满足准共址QCL关系的参考信号的信号索引。
  14. 根据权利要求12或13所述的方法,其中,所述N个候选波中每个候选波束对应的允许发送信号的发送时间包括:以假定使用所述每个候选波束发送允许发送信号时所占用的时间。
  15. 根据权利要求10至14中任一项所述的方法,其中,在所述接收节点向所述发送节点发送所述允许发送信号之前,所述方法还包括:
    所述接收节点根据对参考信号进行信号测量得到的测量结果,和/或,对波束进行载波侦听得到的侦听结果,在所述N个候选波束中选择目标波束;
    其中,所述接收节点向所述发送节点发送所述允许发送信号,包括:
    所述接收节点使用所述目标波束向所述发送节点发送所述允许发送信号。
  16. 根据权利要求15所述的方法,其中,所述目标波束为:
    所述N个候选波束中侦听到信道为空闲的波束;或者,
    所述N个候选波束中参考信号的测量结果最优的波束;或者,
    所述侦听到信道为空闲的波束中参考信号的测量结果最优的波束。
  17. 根据权利要求12至16中任一项所述的方法,其中,所述N个候选波束对应的N个允许发送信号的发送时间各不重叠,
    第1个候选波束对应的允许发送信号的发送时间,与请求发送信号的发送时间之间的时间间隔为T1,
    第i个候选波束对应的允许发送信号的发送时间,与第i+1个候选波束对应的允许发送信号的发送时间之间的时间间隔为T i
    第i+1个候选波束对应的允许发送信号的发送时间,与第i+2个候选波束对应的允许发送信号的发送时间之间的时间间隔为T i+1
    T i=T i+1或者T i≠T i+1,i从1至N-2。
  18. 根据权利要求17所述的方法,其中,所述接收节点根据所述配置信息,向所述发送节点发送所述允许发送信号,包括:
    所述接收节点在与目标波束对应的允许发送信号的发送时间内,使用所述目标波束向所述发送节点发送所述允许发送信号。
  19. 根据权利要求12至16中任一项所述的方法,其中,所述N个候选波束对应的N个允许发送信号的发送时间重叠,且所述重叠的允许发送信号的发送时间与请求发送信号的发送时间之间的时间间隔为T1。
  20. 根据权利要求19所述的方法,其中,所述接收节点根据所述配置信息,向所述发送节点发送所述允许发送信号,包括:
    所述接收节点在所述重叠的允许发送信号的发送时间内,使用目标波束向所述发送节点发送所述允许发送信号。
  21. 一种发送节点设备,所述发送节点设备包括:
    收发单元,配置为向接收节点设备发送请求发送信号,所述请求发送信号包括用于传输允许发送信号的配置信息;
    所述收发单元还配置为,接收所述接收节点设备根据所述配置信息发送 的所述允许发送信号。
  22. 根据权利要求21所述的发送节点设备,其中,所述请求发送信号至少用于请求与所述接收节点设备进行数据传输,所述允许发送信号至少用于指示允许所述发送节点设备与所述接收节点设备进行数据传输。
  23. 根据权利要求21或22所述的发送节点设备,其中,所述配置信息包括N个候选波束的指示信息,和/或,N个候选波束各自对应的允许发送信号的发送时间的信息,N为正整数。
  24. 根据权利要求23所述的发送节点设备,其中,所述N个候选波中每个候选波束的指示信息包括:与所述每个候选波束之间满足准共址QCL关系的参考信号的信号索引。
  25. 根据权利要求23或24所述的发送节点设备,其中,所述N个候选波束中每个候选波束对应的允许发送信号的发送时间包括:以假定使用所述每个候选波束发送允许发送信号时所占用的时间。
  26. 根据权利要求23至25中任一项所述的发送节点设备,其中,所述N个候选波束对应的N个允许发送信号的发送时间各不重叠,
    第1个候选波束对应的允许发送信号的发送时间,与请求发送信号的发送时间之间的时间间隔为T1,
    第i个候选波束对应的允许发送信号的发送时间,与第i+1个候选波束对应的允许发送信号的发送时间之间的时间间隔为T i
    第i+1个候选波束对应的允许发送信号的发送时间,与第i+2个候选波束对应的允许发送信号的发送时间之间的时间间隔为T i+1
    T i=T i+1或者T i≠T i+1,i从1至N-2。
  27. 根据权利要求26所述的发送节点设备,其中,所述收发单元具体配置为:
    按照所述N个允许发送信号的发送时间的先后顺序,依次在与所述N个允许发送信号的发送时间对应的N个候选波束上,检测所述允许发送信号,直至检测到允许发送信号,或者,直至在所述N个允许发送信号的发送时间中的最后一个允许发送信号的发送时间结束之前检测了允许发送信号。
  28. 根据权利要求23至25中任一项所述的发送节点设备,其中,所述N个候选波束对应的N个允许发送信号的发送时间重叠,且所述重叠的允许发送信号的发送时间与请求发送信号的发送时间之间的时间间隔为T1。
  29. 根据权利要求28所述的发送节点设备,其中,所述收发单元具体配置为:
    在所述重叠的允许发送信号的发送时间内,同时在所述N个候选波束上检测所述允许发送信号。
  30. 一种接收节点设备,所述方法包括:
    收发单元,配置为接收发送节点设备发送的请求发送信号,所述请求发送信号包括用于传输允许发送信号的配置信息;
    所述收发单元还配置为,根据所述配置信息,向所述发送节点设备发送所述允许发送信号。
  31. 根据权利要求30所述的接收节点设备,其中,所述请求发送信号至少用于请求与所述接收节点设备进行数据传输,所述允许发送信号至少用于指示允许所述发送节点设备与所述接收节点设备进行数据传输。
  32. 根据权利要求30或31所述的接收节点设备,其中,所述配置信息包括N个候选波束的指示信息,和/或,N个候选波束各自对应的允许发送信号的发送时间的信息,N为正整数。
  33. 根据权利要求32所述的接收节点设备,其中,所述N个候选波中每个候选波束的指示信息包括:与所述每个候选波束之间满足准共址QCL关系的参考信号的信号索引。
  34. 根据权利要求32或33所述的接收节点设备,其中,所述N个候选波中每个候选波束对应的允许发送信号的发送时间包括:以假定使用所述每个候选波束发送允许发送信号时所占用的时间。
  35. 根据权利要求30至34中任一项所述的接收节点设备,其中,所述接收节点设备还包括处理单元,配置为:
    根据对参考信号进行信号测量得到的测量结果,和/或,对波束进行载波侦听得到的侦听结果,在所述N个候选波束中选择目标波束;
    其中,所述收发单元具体配置为:
    使用所述目标波束向所述发送节点设备发送所述允许发送信号。
  36. 根据权利要求35所述的接收节点设备,其中,所述目标波束为:
    所述N个候选波束中侦听到信道为空闲的波束;或者,
    所述N个候选波束中参考信号的测量结果最优的波束;或者,
    所述侦听到信道为空闲的波束中参考信号的测量结果最优的波束。
  37. 根据权利要求32至36中任一项所述的接收节点设备,其中,所述N个候选波束对应的N个允许发送信号的发送时间各不重叠,
    第1个候选波束对应的允许发送信号的发送时间,与请求发送信号的发送时间之间的时间间隔为T1,
    第i个候选波束对应的允许发送信号的发送时间,与第i+1个候选波束对应的允许发送信号的发送时间之间的时间间隔为T i
    第i+1个候选波束对应的允许发送信号的发送时间,与第i+2个候选波束对应的允许发送信号的发送时间之间的时间间隔为T i+1
    T i=T i+1或者T i≠T i+1,i从1至N-2。
  38. 根据权利要求37所述的接收节点设备,其中,所述收发单元具体配置为:
    在与目标波束对应的允许发送信号的发送时间内,使用所述目标波束向所述发送节点设备发送所述允许发送信号。
  39. 根据权利要求32至36中任一项所述的接收节点设备,其中,所述N个候选波束对应的N个允许发送信号的发送时间重叠,且所述重叠的允许发送信号的发送时间与请求发送信号的发送时间之间的时间间隔为T1。
  40. 根据权利要求39所述的接收节点设备,其中,所述收发单元具体配置为:
    在所述重叠的允许发送信号的发送时间内,使用目标波束向所述发送节点设备发送所述允许发送信号。
PCT/CN2018/076901 2018-02-14 2018-02-14 信号传输的方法和设备 WO2019157755A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2018/076901 WO2019157755A1 (zh) 2018-02-14 2018-02-14 信号传输的方法和设备
CN201880089020.7A CN111699746A (zh) 2018-02-14 2018-02-14 信号传输的方法和设备
KR1020207026344A KR20200120710A (ko) 2018-02-14 2018-02-14 신호 전송 방법 및 기기
JP2020543274A JP2021517758A (ja) 2018-02-14 2018-02-14 信号伝送方法および機器
AU2018409038A AU2018409038A1 (en) 2018-02-14 2018-02-14 Signal transmission method and device
EP18906646.7A EP3751947A4 (en) 2018-02-14 2018-02-14 SIGNAL TRANSMISSION METHOD AND DEVICE
US16/993,186 US11399391B2 (en) 2018-02-14 2020-08-13 Method and device to provide a signal transmission between a sending node and receiving node in unlicensed frequency band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/076901 WO2019157755A1 (zh) 2018-02-14 2018-02-14 信号传输的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/993,186 Continuation US11399391B2 (en) 2018-02-14 2020-08-13 Method and device to provide a signal transmission between a sending node and receiving node in unlicensed frequency band

Publications (1)

Publication Number Publication Date
WO2019157755A1 true WO2019157755A1 (zh) 2019-08-22

Family

ID=67619151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076901 WO2019157755A1 (zh) 2018-02-14 2018-02-14 信号传输的方法和设备

Country Status (7)

Country Link
US (1) US11399391B2 (zh)
EP (1) EP3751947A4 (zh)
JP (1) JP2021517758A (zh)
KR (1) KR20200120710A (zh)
CN (1) CN111699746A (zh)
AU (1) AU2018409038A1 (zh)
WO (1) WO2019157755A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021201554A1 (ko) * 2020-03-30 2021-10-07 삼성전자 주식회사 무선 통신 시스템에서 기준 신호 송수신 방법 및 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404082A (zh) * 2010-09-10 2012-04-04 中兴通讯股份有限公司 初始帧发送、响应帧回复、信道预约方法、装置及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6735445B2 (en) * 2002-08-26 2004-05-11 Symbol Technologies, Inc. System and method for medium access control in a wireless network
US20100182987A1 (en) * 2009-01-16 2010-07-22 Electronics And Telecommunications Research Institute Method and apparatus for transmitting/receiving data in wireless communication network
JP2010206667A (ja) * 2009-03-05 2010-09-16 Sony Corp 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
JP2010252049A (ja) * 2009-04-15 2010-11-04 Sony Corp 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
US9479240B1 (en) * 2014-01-31 2016-10-25 Quantenna Communications, Inc. Composite beamforming to coordinate concurrent WLAN links
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
US10367677B2 (en) * 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
US11412422B2 (en) * 2019-03-14 2022-08-09 Ofinno, Llc Handover in unlicensed band
US11991728B2 (en) * 2019-08-27 2024-05-21 Intel Corporation Techniques for high frequency wireless communication

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404082A (zh) * 2010-09-10 2012-04-04 中兴通讯股份有限公司 初始帧发送、响应帧回复、信道预约方法、装置及系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL INC: "On coexistence and channel access for NR- Unlicensed", 3GPP TSG RAN WG1 MEETING AH1801, R1-1800638, 26 January 2018 (2018-01-26), XP051384967 *
MEDIATEK INC: "Considerations on NR Unlicensed Channel Access", 3GPP TSG RAN WG1 MEETING, R1-1719567, vol. 91, 1 December 2017 (2017-12-01), XP051369381 *
SAMSUNG: "Channel Access for NR Unlicensed Operation", 3GPP TSG-RAN WG1 MEETING #AH1801, R1-1800478, 26 January 2018 (2018-01-26), XP051384461 *
See also references of EP3751947A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021201554A1 (ko) * 2020-03-30 2021-10-07 삼성전자 주식회사 무선 통신 시스템에서 기준 신호 송수신 방법 및 장치

Also Published As

Publication number Publication date
AU2018409038A1 (en) 2020-10-01
JP2021517758A (ja) 2021-07-26
US20200374931A1 (en) 2020-11-26
US11399391B2 (en) 2022-07-26
KR20200120710A (ko) 2020-10-21
EP3751947A4 (en) 2021-01-20
EP3751947A1 (en) 2020-12-16
CN111699746A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
WO2019157754A1 (zh) 上行数据的调度方法和设备
WO2019153311A1 (zh) 传输上行控制信息的方法和设备
US11523432B2 (en) Signal transmission method and device
WO2019242419A1 (zh) 一种bwp切换方法及装置、终端设备
US11641588B2 (en) Listening method and device
US11357058B2 (en) Method for transmitting random access preamble, and terminal device
WO2019127462A1 (zh) 无线通信方法、终端设备和网络设备
WO2019157755A1 (zh) 信号传输的方法和设备
WO2018170892A1 (zh) 用于终端设备接入网络的方法、终端设备和网络设备
WO2019047182A1 (zh) 无线通信方法、网络设备和终端设备
WO2019157749A1 (zh) 信号传输的方法和设备
WO2019061580A1 (zh) 无线通信方法和设备
WO2021087779A1 (zh) 无线通信的方法和终端设备
WO2019191997A1 (zh) 信道处理方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020543274

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207026344

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018906646

Country of ref document: EP

Effective date: 20200914

ENP Entry into the national phase

Ref document number: 2018409038

Country of ref document: AU

Date of ref document: 20180214

Kind code of ref document: A