WO2019156337A1 - Amorphous electron emitting material stable in air and manufacturing method therefor - Google Patents

Amorphous electron emitting material stable in air and manufacturing method therefor Download PDF

Info

Publication number
WO2019156337A1
WO2019156337A1 PCT/KR2018/016083 KR2018016083W WO2019156337A1 WO 2019156337 A1 WO2019156337 A1 WO 2019156337A1 KR 2018016083 W KR2018016083 W KR 2018016083W WO 2019156337 A1 WO2019156337 A1 WO 2019156337A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting material
electron
amorphous
electron emitting
present
Prior art date
Application number
PCT/KR2018/016083
Other languages
French (fr)
Korean (ko)
Inventor
김성웅
이규형
강세황
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2019156337A1 publication Critical patent/WO2019156337A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G27/00Compounds of hafnium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30449Metals and metal alloys

Definitions

  • the present invention relates to an electron emitting material and a method of manufacturing the same. More particularly, the present invention relates to an amorphous electron-emitting material that is stable in air, and to a method of manufacturing the same, which can increase the emission current at a low driving voltage due to its low work function.
  • Field emission display is a device that emits phosphors and displays images by emitting phosphors, which is one of the core technologies of large area display.
  • the fluorescent tube or lighting device uses a micro electron source with an electron emitter that emits electrons by a strong current. If the diameter of the tube is reduced by using a material having excellent electron emission characteristics, the tube is not only high luminance but also compact in size. It is possible to apply to the backlight of the non-light-emitting display device, such as liquid crystal.
  • the prior art used for FEDs or fluorescent tubes utilizes the principle that an electron beam is emitted from the electron emitter and the phosphor is excited to emit light by applying a high voltage between the electron emitter and the electrode material.
  • a metal or carbon-based material such as Mo is mainly used.
  • Metal or carbon-based materials such as Mo, which are currently used, have a work function directly related to the ease of electron emission at a level of 4 eV, and thus a method of inducing concentration by forming a fine needle structure for electron emission at low voltage is used.
  • the inventors of the present invention have developed amorphous Hf 2 S 1-y having a work function of at least 20% lower than that of Mo and carbon-based materials while studying electron emission materials having low work function properties.
  • Such amorphous Hf 2 S 1 -y is formed on the surface of the crystalline material to a thickness of several tens of nm. Also crystalline Hf 2 S 1 -y is a surface oxide easily create a HfO 2 layer to lower the work function, but the conductive properties are degraded, such as shrinking, amorphous Hf 2 S 1 -y is maintained on the surface structure compared to crystalline material is It is easy to minimize the deterioration of characteristics.
  • An object of the present invention is to provide an electron-emitting material containing the amorphous Hf 2 S 1 -y and a manufacturing method thereof.
  • the present invention provides an amorphous electron emitting material having a composition including Hf and S and represented by the following Chemical Formula 1.
  • the material surface of the formula (1) composition is Hf and S is distributed in a composition ratio of approximately 2: 1, but the amount of S may be locally excessive or insufficient.
  • the present invention also provides an electron emitter, characterized in that it comprises the amorphous electron-emitting material powder exposed to the surface.
  • this invention provides the fluorescent tube provided with the said electron emitter.
  • the present invention comprises a first step of producing a compound raw material by a heat treatment process; Melting and cooling the obtained raw material of the first system to prepare a homogeneous electron-emitting material; And it provides a method for producing an amorphous electron-emitting material powder comprising a third step of crushing and grinding the surface of the material obtained in the third step.
  • it provides a method for producing an amorphous electron-emitting material comprising a third step of crushing and grinding the surface of the material prepared in the second step.
  • the melting is preferably carried out in an inert gas atmosphere.
  • the second step may be performed once or twice or more times.
  • scraping the surface of the material prepared in the second step may be performed through chemical etching or mechanical polishing.
  • the shaving of the surface of the material prepared in the second step is preferably performed in an inert gas atmosphere for preventing oxidation such as vacuum, argon or nitrogen atmosphere.
  • the grinding can be done using ball milling, attrition milling, high energy milling, jet milling or grinding using a mortar and pestle.
  • the grinding can be done by gas atomization.
  • the S powder may be added at a ratio of 0.8 to 1.2 with respect to 2 moles of the Hf powder.
  • the third step of grinding may be performed in a vacuum or inert gas atmosphere.
  • the electron-emitting material of the present invention exhibits a very large electron-emitting effect due to the low work function characteristics expressed from the presence of localized electron layers of amorphous Hf 2 S 1 -y material.
  • Hf 2 S 1 -y included in the electron-emitting material of the present invention does not depend heavily on the value of y and has a value of about 3.0 eV. This is more than 30% lower than the work function of about 4.3 eV level of commercial electron emission material Mo and carbon. When applied to FED and fluorescent tube, it is possible to obtain a large emission current at low driving voltage without changing the existing device structure. .
  • the method for preparing Hf 2 S 1 -y electron-emitting materials provided in the present invention can easily produce a large amount of materials by simple heat treatment, melt-solidification and mechanical grinding processes.
  • the electron-emitting material provided in the present invention is easy to manufacture and can emit electrons at a low driving voltage. Therefore, it is possible to implement an electron emitter that forms a relatively large emission current based on the same applied voltage reference can be effectively applied to low-voltage driving FED, fluorescent tube and lighting device.
  • the electron-emitting material of the present invention is a TEM photograph of a microstructure y (0.2 ⁇ y ⁇ 0.2) .
  • Amorphous Hf 2 S 1 -y material is formed on the crystalline Hf 2 S surface to a thickness of several tens of nm. Localized electrons exist between the amorphous layer atoms, which is the source of the low work function properties.
  • FIG. 2 is an X-ray photoelectron spectroscopy (XPS) analysis result of amorphous Hf 2 S 1 -y prepared in Example 1.
  • XPS X-ray photoelectron spectroscopy
  • Example 3 is a core level X-ray photoelectron spectroscopy analysis of the amorphous Hf 2 S 1 - y prepared in Example 1. The area of each graph can be obtained to determine the composition of the substance Hf 2 S 1-y .
  • FIG. 4 shows the results of ultraviolet photoelectron spectroscopy (UPS) analysis on amorphous Hf 2 S 1 -y prepared in Example 1.
  • UPS ultraviolet photoelectron spectroscopy
  • FIG. 5 is an analysis result of re-measurement after 30 days of the XPS / UPS result and the measured raw material measured in FIG. 2.
  • FIG. 6 is a graph comparing the conductivity of crystalline and amorphous Hf 2 S 1 -y raw materials before and after oxidation. As a result, the conductivity deterioration of the crystalline raw material is severe, but the conductivity deterioration of the amorphous raw material is small.
  • FIG. 7 is a diagram showing the results of measurement of an electronized sample in a state before polishing and removing the surface oxidized in Example 1 by X-ray photoelectron spectroscopy. It can be seen that the pick due to oxidation is clearly visible on the surface.
  • an amorphous electron-emitting material of a composition comprising Hf and S and represented by the following formula (1).
  • the electron-emitting material represented by Formula 1 may have a large or small composition of S locally due to the nature of the amorphous material, but the overall composition converges on the Hf 2 S composition, and the electron-emitting property is not sensitive to the amount of S.
  • the electron-emitting material exhibits a large electron-emitting effect by its low work function, including localized high-density electrons.
  • the electron-emitting material may be an amorphous layer existing in the range of several to several tens of nm on the powder or bulk surface.
  • step (a) preparing a compound raw material by a heat treatment process; And (b) melting and cooling the raw material obtained in step (a) to produce a homogeneous electron emitting material. And (c) there is provided a method for producing an amorphous electron-emitting material powder comprising the step of grinding the material obtained in step (b).
  • Step (a) is a step of heat-treating a mixture of raw materials for seed phase synthesis prior to the melting process to produce the electron-emitting material.
  • Hf and S raw materials vacuum-sealed in a silica tube is put into a furnace and heat-treated for 2 to 4 days at 450 to 600 °C.
  • Step (b) is to increase the purity and homogeneity of the electron-emitting material.
  • the heat-treated mixture prepared in step (a) is placed in an arc melting facility chamber to form an inert gas atmosphere such as argon at a level capable of arc driving after forming a vacuum atmosphere. Thereafter, an arc is applied to melt the heat-treated mixture to solidify to produce an electron-emitting material.
  • an inert gas atmosphere such as argon
  • the melting method may be carried out by a commonly used melting method, for example, a process selected from the group consisting of a high temperature tubular furnace, an ultra high temperature electric furnace, and the like, and may be preferably performed by arc melting.
  • a commonly used melting method for example, a process selected from the group consisting of a high temperature tubular furnace, an ultra high temperature electric furnace, and the like, and may be preferably performed by arc melting.
  • the present invention is not necessarily limited to these methods, and any method that can be used as a melting method in the art is possible.
  • the arc melting method industrial mass production of electron-emitting materials is possible, and improved physical properties can be obtained even when a general melting method other than the arc melting method is used.
  • the raw material in order to prevent oxidation of a mixed raw material, the raw material is melted in a process of making a liquid state by heating the raw material above a melting point in an inert gas atmosphere. It is possible to obtain an electron-emitting material having a size and a shape corresponding to a sample charging part made of a copper material in an arc melting facility chamber. In order to increase the purity and homogeneity of electron-emitting materials, melting by arc melting may be repeated.
  • Step (c) is a step of preparing a powder.
  • the powder is prepared by using a mechanical grinding process such as ball milling to remove the oxidized portion during the process by scraping off the surface of the material in the form of agglomerates prepared in step (b) and preventing oxidation.
  • a mechanical grinding process such as ball milling to remove the oxidized portion during the process by scraping off the surface of the material in the form of agglomerates prepared in step (b) and preventing oxidation.
  • a method of removing the oxidized portion of the surface of the material may be a method such as chemical etching, mechanical polishing that can remove the hafnium oxide in an inert gas atmosphere.
  • etching using a mixture of hydrofluoric acid or hydrofluoric acid and various ether organic solvents in a glove box, or polishing using abrasive stone, abrasive paper, grounder, polisher or the like can be used.
  • the melt-solidified material is pulverized by a method such as ball milling, attrition milling, high energy milling, jet milling, mortar, etc. It can be prepared in the form of a powder, but is not necessarily limited to these, any method that can be used in the art as a method for producing a powder by grinding the raw material in a dry or wet manner.
  • step (c) is preferably performed in an inert gas atmosphere such as vacuum, argon or nitrogen to prevent oxidation of the material.
  • the electron-emitting material powder may be prepared by gas atomization (gas atomization).
  • gas atomization gas atomization
  • the compound raw material prepared by the melting method is heated to a melting point or more to form a liquid state, and rapidly sputtered by rapid ejection into a space of vacuum or argon atmosphere at room temperature through a nozzle to obtain a spherical raw material powder.
  • Hf 2 S 1 -y is a phase that appears at high temperature, whereas S has a very low vaporization point, so pure S is converted into Hf-S through the sintering process in order to minimize the loss of S when melting the material for synthesis.
  • the intermediate materials made by sintering are synthesized by melting and solidifying by arc melting method, and then oxidized surface in the glove box is removed by grinding and then crushed by ball milling.
  • the prepared raw material naturally forms an amorphous material of Hf 2 S 1 -y composition (0.2 ⁇ y ⁇ 0.2) on the crystalline Hf 2 S surface as shown in the TEM photograph shown in FIG. 1.
  • the oxidation of the prepared raw materials and the valence state of the elements were measured using XPS as shown in FIG. 2.
  • the raw material was crushed inside the XPS equipment. As shown in the data, the material was not oxidized, thus confirming that there was no material degradation due to oxidation.
  • the y value of amorphous Hf 2 S 1 -y was determined by core level XPS measurement.
  • the area of the Hf and S core level graphs can be obtained and substituted into the following equation to obtain the composition.
  • n i I i S i is the composition ratio, graph area, and previously reported sensitivity factor for element i , respectively.
  • the work function was measured in the same manner as in Example 1 for Mo and C.
  • Table 1 shows the work function measurement results of amorphous Hf 2 S 1 -y , Mo, and C prepared in Example 1 and Comparative Example 1.
  • Example 1 In order to evaluate the stability of Hf 2 S 1 -y , the amorphous Hf 2 S 1 -y powder prepared in Example 1 was measured again after about 30 days. As shown in the XPS and UPS results of FIG. 5, no significant difference was found in the data before / after 30 days and there was no degradation of the work function value.
  • Crystalline Hf 2 S-based materials are easily oxidized to form HfO 2 layers having a high work function and low conductivity. Therefore, when manufacturing an electron emission device using crystalline Hf 2 S, sufficient conductivity may not be obtained, deterioration of characteristics may occur, and thus desired characteristics may not be obtained or reliability of the device may be degraded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

The present invention relates to an electron emitting material and a manufacturing method therefor. More particularly, the present invention relates to an amorphous electron emitting material that is stable in air and allows a large emission current at a low driving voltage thanks to the low work function thereof, and a manufacturing method therefor. The electron emitting material of the present invention exhibits a work function characteristic lower by 30 % or more than the work functions of the commercial electron emitting materials Mo and carbon, which are at a level of around 4.3 eV. Thus, the application of the electron emitting material to FED and fluorescent tubes allows a large emission current at a low driving voltage without structurally changing preexisting devices. In addition, the electron emitting material of the present invention can be manufactured on a mass scale by using simple thermal treatment, melting-solidification, and mechanical grinding processes.

Description

공기 중에서 안정한 비정질 전자방출 물질 및 이의 제조방법Stable Amorphous Electron Emission Material in Air and Manufacturing Method Thereof
본 발명은 전자방출(electron emitting) 물질 및 그 제조 방법에 관한 것이다. 더욱 상세하게는 낮은 일함수 특성으로 낮은 구동 전압에서 방출 전류를 크게 할 수 있으며, 공기 중에서 안정한 비정질 전자방출 물질 및 그 제조 방법에 관한 것이다.The present invention relates to an electron emitting material and a method of manufacturing the same. More particularly, the present invention relates to an amorphous electron-emitting material that is stable in air, and to a method of manufacturing the same, which can increase the emission current at a low driving voltage due to its low work function.
필드 이미션 디스플레이(FED, Field Emission Display)는 전자를 방출하는 물질로 형광체를 발광하여 화상을 표시하는 장치로 박형화의 장점이 있어 대면적 디스플레이의 핵심 기술 중 하나이다. 또한 형광관이나 조명장치는 강한 전류에 의해 전자를 방출시키는 전자 이미터를 구비한 미소 전자원을 사용하고 있어 전자방출 특성이 우수한 물질을 이용하여 관의 직경을 작게 하면 고휘도화는 물론 장치의 소형화를 가능하게 하므로 액정 등의 비발광형 디스플레이 장치의 백라이트로의 응용이 가능하다. Field emission display (FED) is a device that emits phosphors and displays images by emitting phosphors, which is one of the core technologies of large area display. In addition, the fluorescent tube or lighting device uses a micro electron source with an electron emitter that emits electrons by a strong current. If the diameter of the tube is reduced by using a material having excellent electron emission characteristics, the tube is not only high luminance but also compact in size. It is possible to apply to the backlight of the non-light-emitting display device, such as liquid crystal.
FED 또는 형광관에 이용되는 종래 기술은 전자 이미터와 전극 물질 사이에 고전압을 인가함에 의해 전자 이미터로부터 전자선이 발출되고 형광체가 여기되어 발광하는 원리를 이용한다. 전자방출 물질로는 Mo 등의 금속 또는 카본계 물질이 주로 사용된다. The prior art used for FEDs or fluorescent tubes utilizes the principle that an electron beam is emitted from the electron emitter and the phosphor is excited to emit light by applying a high voltage between the electron emitter and the electrode material. As the electron-emitting material, a metal or carbon-based material such as Mo is mainly used.
미소 전자원의 구동을 용이하게 하기 위해서는 저전압에서 구동하는 것이 요구되며, 특히 FED와 같이 구동 전압의 온/오프에 의해 전자방출을 제어하는 경우에는 구동 전압을 낮게 하는 것이 필수적이다.In order to facilitate the driving of the micro electron source, driving at a low voltage is required. In particular, when the electron emission is controlled by turning on / off the driving voltage such as FED, it is essential to lower the driving voltage.
따라서 낮은 구동 전압에서 전자 이미터로부터의 방출 전류를 크게 할 수 있는 일함수가 작은 물질 개발이 필요하다. 현재 사용되고 있는 Mo 등 금속 또는 카본계 물질은 전자방출의 용이성과 직접 연관된 일함수가 4 eV 수준으로 크기 때문에 낮은 전압에서 전자방출을 위해서는 미세한 침상 구조를 형성하여 집중을 유도하는 방법이 사용된다. Therefore, there is a need for a material having a small work function that can increase the emission current from the electron emitter at a low driving voltage. Metal or carbon-based materials such as Mo, which are currently used, have a work function directly related to the ease of electron emission at a level of 4 eV, and thus a method of inducing concentration by forming a fine needle structure for electron emission at low voltage is used.
예를 들어, Mo의 경우 높이 1 μm 정도의 원뿔형 형태로 가공이 필요하며, 카본의 경우 탄소나노튜브와 같은 직경이 수십 nm인 구조체를 사용하는 것이 필요하다. 그러나 이러한 형상의 전자 이미터 구조체는 전극 가공이 어렵고, 또한 전극 간격을 좁게 하면 소자 제작이나 구동 신뢰성에 문제를 수반하게 된다.For example, in the case of Mo, processing is required in the form of a cone of about 1 μm in height, and in the case of carbon, it is necessary to use a structure having a diameter of several tens of nm, such as carbon nanotubes. However, the electron emitter structure of such a shape is difficult to process the electrode, and when the electrode spacing is narrowed, problems with device fabrication and driving reliability are involved.
본 발명자들은 낮은 일함수 특성의 전자방출 물질에 대해 연구하던 중 Mo 및 카본계 물질 대비 일함수가 20% 이상 낮은 비정질 Hf2S1-y를 개발하였다. The inventors of the present invention have developed amorphous Hf 2 S 1-y having a work function of at least 20% lower than that of Mo and carbon-based materials while studying electron emission materials having low work function properties.
이러한 비정질 Hf2S1 -y는 결정질 물질 표면에 수 내지 수십 nm 두께로 형성된다. 또한 결정질 Hf2S1 -y가 표면이 쉽게 산화되어 HfO2 층을 만들어 일함수가 낮아지고 도전성이 줄어드는 등 특성이 열화되지만, 비정질 Hf2S1 -y는 결정질 물질에 비해 표면 구조의 유지가 용이하여 특성 열화를 최소화할 수 있다. Such amorphous Hf 2 S 1 -y is formed on the surface of the crystalline material to a thickness of several tens of nm. Also crystalline Hf 2 S 1 -y is a surface oxide easily create a HfO 2 layer to lower the work function, but the conductive properties are degraded, such as shrinking, amorphous Hf 2 S 1 -y is maintained on the surface structure compared to crystalline material is It is easy to minimize the deterioration of characteristics.
본 발명은 상기 비정질 Hf2S1 -y를 포함하는 전자방출 물질 및 이의 제조방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide an electron-emitting material containing the amorphous Hf 2 S 1 -y and a manufacturing method thereof.
본 발명은, Hf 및 S를 포함하고 하기 화학식 1로 표시되는 조성의 비정질 전자방출 물질을 제공한다. The present invention provides an amorphous electron emitting material having a composition including Hf and S and represented by the following Chemical Formula 1.
<화학식 1><Formula 1>
Hf2S1-y (-0.2 ≤ y ≤ 0.2)Hf 2 S 1-y (-0.2 ≤ y ≤ 0.2)
본 발명의 일 구현예에서, 상기 화학식 1 조성의 물질 표면은 Hf와 S가 대략 2:1의 조성비로 분포하지만 국소적으로 S의 양이 과도하거나 부족할 수 있다.In one embodiment of the present invention, the material surface of the formula (1) composition is Hf and S is distributed in a composition ratio of approximately 2: 1, but the amount of S may be locally excessive or insufficient.
또한, 본 발명은 상기 비정질 전자방출 물질 분말을 표면에 노출되게 포함하는 것을 특징으로 하는 전자 이미터를 제공한다.The present invention also provides an electron emitter, characterized in that it comprises the amorphous electron-emitting material powder exposed to the surface.
또한, 본 발명은 상기 전자 이미터를 구비하고 있는 것을 특징으로 하는 형광관을 제공한다.Moreover, this invention provides the fluorescent tube provided with the said electron emitter.
또한, 본 발명은 열처리 공정에 의해 화합물 원료를 제조하는 제1 단계; 제1 계 얻어진 원료를 용융-냉각하여 균질성이 높은 전자방출 물질을 제조하는 제2 단계; 및 제3 단계에서 얻어진 물질의 표면을 깎아내고 분쇄하는 제3 단계를 포함하는 비정질 전자방출 물질 분말 제조방법을 제공한다. In addition, the present invention comprises a first step of producing a compound raw material by a heat treatment process; Melting and cooling the obtained raw material of the first system to prepare a homogeneous electron-emitting material; And it provides a method for producing an amorphous electron-emitting material powder comprising a third step of crushing and grinding the surface of the material obtained in the third step.
구체적으로, Hf 분말 및 S 분말을 혼합한 후 450 내지 600 oC의 온도로 2일 내지 4일 동안 열처리하여 화합물 원료를 얻는 제1 단계; 상기 제1 단계에서 얻어진 화합물 원료를 용융하고 냉각하는 제2 단계; 및 상기 제2 단계에서 제조된 물질의 표면을 깎아내고 분쇄하는 제3 단계를 포함하는 비정질 전자방출 물질의 제조방법을 제공한다.Specifically, the first step of mixing the Hf powder and S powder and then heat treatment at a temperature of 450 to 600 o C for 2 to 4 days to obtain a compound raw material; A second step of melting and cooling the compound raw material obtained in the first step; And it provides a method for producing an amorphous electron-emitting material comprising a third step of crushing and grinding the surface of the material prepared in the second step.
상기 용융은 비활성 기체 분위기에서 진행되는 것이 바람직하다.The melting is preferably carried out in an inert gas atmosphere.
상기 제2 단계는 1회 또는 2회 이상 반복하여 수행될 수 있다.The second step may be performed once or twice or more times.
상기 제3 단계에서 상기 제2 단계에서 제조된 물질의 표면을 깎아내는 것은 화학적 에칭 또는 기계적 연마를 통해 수행될 수 있다.In the third step, scraping the surface of the material prepared in the second step may be performed through chemical etching or mechanical polishing.
상기 제3 단계에서 상기 제2 단계에서 제조된 물질의 표면을 깎아내는 것은진공, 알곤 또는 질소 분위기 등의 산화를 방지하기 위한 불활성 기체 분위기에서 이루어지는 것이 바람직하다.In the third step, the shaving of the surface of the material prepared in the second step is preferably performed in an inert gas atmosphere for preventing oxidation such as vacuum, argon or nitrogen atmosphere.
상기 분쇄는 볼 밀링, 어트리션 밀링, 고에너지 밀링, 제트 밀링 또는 막자 사발을 이용한 분쇄를 이용하여 이루어질 수 있다. The grinding can be done using ball milling, attrition milling, high energy milling, jet milling or grinding using a mortar and pestle.
상기 분쇄는 가스 원자화에 의해 이루어질 수 있다.The grinding can be done by gas atomization.
상기 제1 단계에서 상기 S 분말은 상기 Hf 분말 2몰 대비 0.8 내지 1.2의 비율로 첨가될 수 있다.In the first step, the S powder may be added at a ratio of 0.8 to 1.2 with respect to 2 moles of the Hf powder.
상기 제3 단계의 분쇄 공정은 진공 또는 불활성 기체 분위기에서 수행될 수 있다.The third step of grinding may be performed in a vacuum or inert gas atmosphere.
본 발명의 전자방출 물질은 비정질 Hf2S1 -y 물질의 국재화된 전자층의 존재로부터 낮은 일함수 특성이 발현되어 매우 큰 전자방출 효과를 나타낸다. The electron-emitting material of the present invention exhibits a very large electron-emitting effect due to the low work function characteristics expressed from the presence of localized electron layers of amorphous Hf 2 S 1 -y material.
본 발명의 전자방출 물질에 포함되는 Hf2S1 -y는 일함수가 y 값에 크게 의존하지 않으며, 약 3.0eV의 값을 나타낸다. 이는 상용 전자방출 소재인 Mo 및 카본의 약 4.3 eV 수준의 일함수와 비교하여 30% 이상 낮은 특성으로 FED 및 형광관에 적용하면 기존 디바이스 구조의 변경 없이 낮은 구동 전압에서 큰 방출 전류를 얻을 수 있다. Hf 2 S 1 -y included in the electron-emitting material of the present invention does not depend heavily on the value of y and has a value of about 3.0 eV. This is more than 30% lower than the work function of about 4.3 eV level of commercial electron emission material Mo and carbon. When applied to FED and fluorescent tube, it is possible to obtain a large emission current at low driving voltage without changing the existing device structure. .
본 발명에서 제공되는 Hf2S1 -y 전자방출 물질 제조방법은, 단순한 열처리, 용융-응고 및 기계적 분쇄 공정으로 물질을 대량으로 용이하게 제조할 수 있다.The method for preparing Hf 2 S 1 -y electron-emitting materials provided in the present invention can easily produce a large amount of materials by simple heat treatment, melt-solidification and mechanical grinding processes.
본 발명에서 제공되는 전자방출 물질은, 제조가 용이하고 낮은 구동전압으로 전자를 방출할 수 있다. 따라서 동일한 인가전압 기준으로 상대적으로 큰 방출 전류를 형성하는 전자 이미터의 구현을 가능하게 하여 저전압 구동 FED, 형광관 및 조명장치에 효과적으로 적용될 수 있다. The electron-emitting material provided in the present invention is easy to manufacture and can emit electrons at a low driving voltage. Therefore, it is possible to implement an electron emitter that forms a relatively large emission current based on the same applied voltage reference can be effectively applied to low-voltage driving FED, fluorescent tube and lighting device.
도 1은 본 발명의 전자방출 물질인 비정질 Hf2S1 - y(0.2 ≤ y ≤ 0.2) 의 TEM 미세구조 사진이다. 비정질 Hf2S1 -y 물질은 결정질 Hf2S 표면에 수 - 수십 nm 두께로 형성된다. 비정질 층 원자들 사이에 국재화된 전자가 존재하며, 이는 낮은 일함수 특성의 근원이 된다.1 is the amorphous Hf 2 S 1, the electron-emitting material of the present invention is a TEM photograph of a microstructure y (0.2 ≤ y ≤ 0.2) . Amorphous Hf 2 S 1 -y material is formed on the crystalline Hf 2 S surface to a thickness of several tens of nm. Localized electrons exist between the amorphous layer atoms, which is the source of the low work function properties.
도 2는 실시예 1에서 제조된 비정질 Hf2S1 -y에 대한 X-선 광전자 분광법 (XPS) 분석 결과이다. FIG. 2 is an X-ray photoelectron spectroscopy (XPS) analysis result of amorphous Hf 2 S 1 -y prepared in Example 1. FIG.
도 3은 실시예 1에서 제조된 비정질 Hf2S1 - y 의 core level X-선 광전자 분광법 분석 결과이다. 각 그래프의 면적을 구해 물질 Hf2S1-y의 조성을 구할 수 있다.3 is a core level X-ray photoelectron spectroscopy analysis of the amorphous Hf 2 S 1 - y prepared in Example 1. The area of each graph can be obtained to determine the composition of the substance Hf 2 S 1-y .
도 4은 실시예 1에서 제조된 비정질 Hf2S1 -y에 대한 자외선 광전자 분광법 (UPS) 분석 결과이다. 4 shows the results of ultraviolet photoelectron spectroscopy (UPS) analysis on amorphous Hf 2 S 1 -y prepared in Example 1. FIG.
도 5는 도 2에서 측정한 XPS/UPS 결과와 측정한 원료를 30일 후에 재측정한 분석 결과이다.FIG. 5 is an analysis result of re-measurement after 30 days of the XPS / UPS result and the measured raw material measured in FIG. 2.
도 6은 결정질과 비정질 Hf2S1 -y 원료의 도전률을 산화되기 전후로 비교한 그래프이다. 이를 통해 결정질 원료의 도전률 열화가 심한데 비해 비정질 원료의 도전률 열화 폭이 적음을 확인할 수 있다.6 is a graph comparing the conductivity of crystalline and amorphous Hf 2 S 1 -y raw materials before and after oxidation. As a result, the conductivity deterioration of the crystalline raw material is severe, but the conductivity deterioration of the amorphous raw material is small.
도 7은 실시예 1 공정에서 산화된 표면을 연마하여 제거하기 전 상태의 전자화물 시료를 X 선 광전자 분광법으로 측정한 결과를 나타낸 도면이다. 표면에 산화로 인한 픽이 확연하게 보임을 확인할 수 있다.FIG. 7 is a diagram showing the results of measurement of an electronized sample in a state before polishing and removing the surface oxidized in Example 1 by X-ray photoelectron spectroscopy. It can be seen that the pick due to oxidation is clearly visible on the surface.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되는 실시예를 참조하면 명확해질 것이다.Advantages and features of the present invention, and methods for achieving them will be apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings.
그러나 본 발명은 이하에서 개시되는 실시예로 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다.However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms.
본 명세서에서 실시예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며 본 발명은 청구항의 범주에 의해 정의될 뿐이다.The embodiments herein are provided to make the disclosure of the present invention complete, and to fully convey the scope of the invention to those skilled in the art, and the present invention is defined by the scope of the claims. It will be.
따라서, 몇몇 실시예에서, 잘 알려진 구성 요소, 잘 알려진 동작 및 잘 알려진 기술들은 본 발명이 모호하게 해석되는 것을 피하기 위하여 구체적 설명이 생략될 수 있다.Thus, in some embodiments, well-known components, well-known operations and well-known techniques may be omitted from specific description in order to avoid obscuring the present invention.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함하며, '포함(또는, 구비)한다'로 언급된 구성 요소 및 동작은 하나 이상의 다른 구성요소 및 동작의 존재 또는 추가를 배제하지 않는다.As used herein, the singular forms "a", "an" and "the" include plural unless the context clearly dictates otherwise, and the elements and acts referred to as 'comprises' or 'do' not exclude the presence or addition of one or more other components and acts. .
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 공통적 으로 이해될 수 있는 의미로 사용될 수 있을 것이다.Unless otherwise defined, all terms used in the present specification (including technical and scientific terms) may be used in a sense that can be commonly understood by those skilled in the art.
이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명의 일 구현예에 따라, Hf 및 S를 포함하고 하기 화학식 1로 표시되는 조성의 비정질 전자방출 물질이 제공된다. According to one embodiment of the present invention, there is provided an amorphous electron-emitting material of a composition comprising Hf and S and represented by the following formula (1).
<화학식 1><Formula 1>
Hf2S1 -y (-0.2 ≤ y ≤ 0.2) Hf 2 S 1 -y (-0.2 ≤ y ≤ 0.2)
상기 화학식 1에 나타낸 전자방출 물질은 비정질 물질의 특성상 국소적으로 S의 조성이 많거나 적을 수 있지만, 전체 조성은 Hf2S 조성에 수렴하며 그 전자방출 특성이 S 양에 민감하지 않다.The electron-emitting material represented by Formula 1 may have a large or small composition of S locally due to the nature of the amorphous material, but the overall composition converges on the Hf 2 S composition, and the electron-emitting property is not sensitive to the amount of S.
상기 전자방출 물질은 국재화된 고밀도의 전자를 포함하여 낮은 일함수 특성에 의해 큰 전자방출 효과를 발현한다.The electron-emitting material exhibits a large electron-emitting effect by its low work function, including localized high-density electrons.
상기 전자방출 물질은 분말 또는 벌크상 표면에 수 내지 수십 nm 범위로 존재하는 비정질층일 수 있다.The electron-emitting material may be an amorphous layer existing in the range of several to several tens of nm on the powder or bulk surface.
또한, 본 발명의 일 구현예에 따라, (a) 열처리 공정에 의해 화합물 원료를 제조하는 단계; 및 (b) 단계 (a)에서 얻어진 원료를 용융-냉각하여 균질성이 높은 전자방출 물질을 제조하는 단계; 및 (c) 단계 (b)에서 얻어진 물질을 분쇄하는 단계를 포함하는 비정질 전자방출 물질 분말을 제조방법이 제공된다. In addition, according to one embodiment of the invention, (a) preparing a compound raw material by a heat treatment process; And (b) melting and cooling the raw material obtained in step (a) to produce a homogeneous electron emitting material. And (c) there is provided a method for producing an amorphous electron-emitting material powder comprising the step of grinding the material obtained in step (b).
상기 단계 (a)는, 전자방출 물질 제조를 위해 용융공정 이전에 seed 상 합성을 위하여 각 원료 물질의 혼합물을 열처리하는 단계이다.Step (a) is a step of heat-treating a mixture of raw materials for seed phase synthesis prior to the melting process to produce the electron-emitting material.
구체적으로, silica tube에 진공 봉입한 Hf 및 S 원료를 furnace에 넣고 450 내지 600 ℃ 에서 2일 내지 4일 열처리한다. Specifically, Hf and S raw materials vacuum-sealed in a silica tube is put into a furnace and heat-treated for 2 to 4 days at 450 to 600 ℃.
상기 단계 (b)는 전자방출 물질의 순도 및 균질성을 높이는 단계이다. Step (b) is to increase the purity and homogeneity of the electron-emitting material.
구체적으로, 단계 (a)에서 제조한 열처리된 혼합물을 arc melting 설비 챔버에 넣고 진공 분위기 형성 후 arc 구동이 가능한 수준의 알곤 등의 불활성 가스 분위기를 형성한다. 이후 arc를 인가하여 열처리된 혼합물을 용융 후 응고하여 전자방출 물질을 제조한다.Specifically, the heat-treated mixture prepared in step (a) is placed in an arc melting facility chamber to form an inert gas atmosphere such as argon at a level capable of arc driving after forming a vacuum atmosphere. Thereafter, an arc is applied to melt the heat-treated mixture to solidify to produce an electron-emitting material.
상기 용융법은 통상적으로 사용되는 용융법, 예를 들어, 고온 tubular furnace, 초고온 전기로 등으로 이루어진 군에서 선택된 공정에 의해 수행될 수 있으며, 바람직하게는 arc 용융에 의행 수행될 수 있다. 다만, 반드시 이러한 방법들에 한정되지 않으며 당해 기술분야에서 용융법으로 사용될 수 있는 것이라면 모두 가능하다. arc 용융법을 사용함에 의하여 전자방출 물질의 산업적인 대량 생산이 가능하며, arc 용융법이 아닌 일반적인 용융법이 사용되는 경우에도 향상된 물성이 얻어질 수 있다.The melting method may be carried out by a commonly used melting method, for example, a process selected from the group consisting of a high temperature tubular furnace, an ultra high temperature electric furnace, and the like, and may be preferably performed by arc melting. However, the present invention is not necessarily limited to these methods, and any method that can be used as a melting method in the art is possible. By using the arc melting method, industrial mass production of electron-emitting materials is possible, and improved physical properties can be obtained even when a general melting method other than the arc melting method is used.
상기 arc 용융법에서는 혼합 원료의 산화 방지를 위하여 불활성 가스 분위기에서 원료를 융점 이상으로 가열하여 액체 상태를 만드는 과정으로 용융한다. Arc melting 설비 챔버 내의 구리 재질로 제조한 샘플 장입부에 해당하는 크기와 형상의 전자방출 물질을 얻을 수 있다. 전자방출 물질의 순도 및 균질도를 높이기 위해 arc melting에 의한 용융을 반복 시행할 수 있다. In the arc melting method, in order to prevent oxidation of a mixed raw material, the raw material is melted in a process of making a liquid state by heating the raw material above a melting point in an inert gas atmosphere. It is possible to obtain an electron-emitting material having a size and a shape corresponding to a sample charging part made of a copper material in an arc melting facility chamber. In order to increase the purity and homogeneity of electron-emitting materials, melting by arc melting may be repeated.
상기 단계 (c)는 분말을 제조하는 단계이다. Step (c) is a step of preparing a powder.
구체적으로, 단계 (b)에서 제조한 덩어리 형태의 물질 표면을 깎아내 공정 중 산화된 부분을 제거하고, 산화를 방지하는 분위기에서 ball milling 등 기계적 분쇄 공정을 이용하여 분말을 제조한다. Specifically, the powder is prepared by using a mechanical grinding process such as ball milling to remove the oxidized portion during the process by scraping off the surface of the material in the form of agglomerates prepared in step (b) and preventing oxidation.
이때, 물질 표면의 산화된 부분을 제거하는 방법으로는 불활성 기체 분위기에서 하프늄 산화물을 제거할 수 있는 화학적 에칭, 기계적 연마 등의 방법이 가능하다. 예를 들어 글러브 박스 안에서 불산 혹은 불산과 다양한 에테르계 유기 용매를 혼합한 것 등을 이용한 에칭이나 연마석, 연마지, 그라운더, 폴리셔 등을 이용한 연마의 이용이 가능하다.At this time, as a method of removing the oxidized portion of the surface of the material may be a method such as chemical etching, mechanical polishing that can remove the hafnium oxide in an inert gas atmosphere. For example, etching using a mixture of hydrofluoric acid or hydrofluoric acid and various ether organic solvents in a glove box, or polishing using abrasive stone, abrasive paper, grounder, polisher or the like can be used.
상기 용융-응고된 형태의 물질은 볼 밀링(ball milling), 어트리션 밀링(attrition milling), 고에너지 밀링(high energy milling), 제트 밀링(zet milling), 막자 사발 등에서 분쇄하는 방법 등으로 분쇄하여 분말 형태로 제조될 수 있으나, 반드시 이들로 한정되지 않으며, 건식 또는 습식으로 원료를 분쇄하여 분말을 제조하는 방법으로서 당해 기술분야에서 사용할 수 있는 것이라면 모두 가능하다.The melt-solidified material is pulverized by a method such as ball milling, attrition milling, high energy milling, jet milling, mortar, etc. It can be prepared in the form of a powder, but is not necessarily limited to these, any method that can be used in the art as a method for producing a powder by grinding the raw material in a dry or wet manner.
상기 단계 (c)의 분말 분쇄 공정은 진공이나 알곤, 질소 등 불활성 기체 분위기에서 수행하여 물질의 산화를 방지하는 것이 바람직하다.The powder grinding process of step (c) is preferably performed in an inert gas atmosphere such as vacuum, argon or nitrogen to prevent oxidation of the material.
또한, 상기 전자방출 물질 분말은 가스 원자화(gas atomization)에 의하여 준비될 수 있다. 가스원자화법은 용융법으로 제조한 상기 화합물 원료를 융점 이상으로 가열하여 액체 상태를 만들고 노즐을 통하여 상온의 진공 또는 아르곤 분위기의 공간으로 급속 분출하여 급랭시키면 구형태의 원료 분말을 얻을 수 있다.In addition, the electron-emitting material powder may be prepared by gas atomization (gas atomization). In the gas atomization method, the compound raw material prepared by the melting method is heated to a melting point or more to form a liquid state, and rapidly sputtered by rapid ejection into a space of vacuum or argon atmosphere at room temperature through a nozzle to obtain a spherical raw material powder.
이하, 본 발명을 실시예 및 비교예를 이용하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail using examples and comparative examples.
실시예 1. 비정질 Hf2S1 -y (-0.2 ≤ y ≤ 0.2) 제조 및 특성 측정 Example 1 Preparation and Characterization of Amorphous Hf 2 S 1 -y (-0.2 ≦ y ≦ 0.2)
갈아서 섞은 Hf, S 파우더를 펠렛화하여 silica tube에 진공 봉입한 뒤 furnace에 넣고 450 내지 600 ℃에서 2일 내지 4일 소결하였다. Hf2S1 -y는 고온에서 나타나는 상인데 비해 S는 기화점이 매우 낮은 물질이므로 합성을 위한 물질 용융 시 S의 손실을 최소화하기 위해 상기 소결과정을 통해 순수한 S를 Hf-S의 화합물로 만든다. 소결로 만들어진 중간 물질을 arc 용융법으로 용융 및 응고하여 합성한 뒤, 글러브 박스 안에서 산화된 표면을 연마하여 제거한 다음 ball milling을 이용하여 분쇄한다.Grinded Hf, S powder was pelletized and vacuum-sealed in a silica tube, put into a furnace and sintered at 450 to 600 ℃ for 2 to 4 days. Hf 2 S 1 -y is a phase that appears at high temperature, whereas S has a very low vaporization point, so pure S is converted into Hf-S through the sintering process in order to minimize the loss of S when melting the material for synthesis. The intermediate materials made by sintering are synthesized by melting and solidifying by arc melting method, and then oxidized surface in the glove box is removed by grinding and then crushed by ball milling.
제조된 원료는 도 1에 나타낸 TEM 사진에서 확인할 수 있듯이 결정질 Hf2S 표면에 Hf2S1 -y 조성(0.2 ≤ y ≤ 0.2)의 비정질 물질이 자연스럽게 형성된다.The prepared raw material naturally forms an amorphous material of Hf 2 S 1 -y composition (0.2 ≦ y ≦ 0.2) on the crystalline Hf 2 S surface as shown in the TEM photograph shown in FIG. 1.
제조된 원료의 산화 여부와 원소의 원자가 상태를 도 2와 같이 XPS를 이용해 측정하였다. 원료는 XPS 장비 내부에서 파쇄되었다. 데이터에 나타난 것과 같이 물질은 산화되지 않았으며, 따라서 산화에 따른 물질 열화가 없음이 확인된다.The oxidation of the prepared raw materials and the valence state of the elements were measured using XPS as shown in FIG. 2. The raw material was crushed inside the XPS equipment. As shown in the data, the material was not oxidized, thus confirming that there was no material degradation due to oxidation.
도 3에 나타낸 바와 같이 비정질 Hf2S1 -y의 y 값을 core level XPS 측정을 통해 구하였다. Hf과 S core level 그래프의 면적을 구해 다음 식에 대입하여 조성을 구할 수 있다.As shown in FIG. 3, the y value of amorphous Hf 2 S 1 -y was determined by core level XPS measurement. The area of the Hf and S core level graphs can be obtained and substituted into the following equation to obtain the composition.
Figure PCTKR2018016083-appb-I000001
Figure PCTKR2018016083-appb-I000001
이때, ni Ii Si는 각각 i 원소에 대한 조성비, 그래프 면적, 기 보고된 sensitivity factor이다.In this case, n i I i S i is the composition ratio, graph area, and previously reported sensitivity factor for element i , respectively.
도 4에 나타낸 바와 같이 비정질 Hf2S1 -y 일함수는 3.0eV로 알칼리 금속의 일함수에 비해 약간 높지만 상용 제품의 일함수 보다 낮은 값으로 측정되었으며 0.2 ≤ y ≤ 0.2 범위에서 일함수의 변화가 거의 없었다.As shown in FIG. 4, of amorphous Hf 2 S 1 -y The work function was 3.0 eV, which was slightly higher than that of the alkali metal, but was lower than that of the commercial product. There was little change in the work function in the range 0.2?
비교예 1. Mo 및 C 일함수 측정Comparative Example 1. Mo and C Work Function Measurement
Mo 및 C에 대해 실시예 1과 동일한 방법으로 일함수를 측정하였다.The work function was measured in the same manner as in Example 1 for Mo and C.
도 4에 도시된 바와 같이 전자방출 물질로서 기존에 많이 사용되는 Mo나 카본계 물질의 경우 4.3 eV 근방의 일함수를 가지고 있다. 그러나 본 연구진이 합성한 비정질 Hf2S1 -y 원료의 경우 0.2 ≤ y ≤ 0.2 범위에서 y의 조성과 무관하게 3.0eV 근방의 일함수를 가지는 물질로서 Mo와 같은 금속이나 카본계 물질의 일함수보다 현저히 낮은 일함수를 가지므로 낮은 전압에서 전자방출이 비교적 용이하다.As shown in FIG. 4, in the case of Mo or a carbon-based material which is widely used as an electron emission material, it has a work function near 4.3 eV. However, in the case of amorphous Hf 2 S 1 -y raw material synthesized by the researchers, it has a work function near 3.0 eV regardless of the composition of y in the range 0.2 ≤ y ≤ 0.2. With a significantly lower work function, electron emission is relatively easy at low voltages.
아래 표 1은 실시예 1 및 비교예 1에서 제조된 비정질 Hf2S1 -y, Mo 및 C의 일함수 측정 결과이다.Table 1 below shows the work function measurement results of amorphous Hf 2 S 1 -y , Mo, and C prepared in Example 1 and Comparative Example 1.
물질matter 일함수(eV)Work function (eV)
carbon nanotubecarbon nanotube 4.7-4.94.7-4.9
graphenegraphene ~4.5~ 4.5
MoMo 4.36-1.954.36-1.95
비정질 Hf2S1 -y Amorphous Hf 2 S 1 -y 3.0±0.13.0 ± 0.1
실시예 2. Hf2S1-y 안정성 평가 Example 2. Hf 2 S 1-y Stability Evaluation
Hf2S1 -y의 안정성을 평가하기 위하여 실시예 1에서 제조한 비정질 Hf2S1 -y 분말을 약 30일이 지난 후 다시 측정하였다. 도 5의 XPS와 UPS 결과에서 나타난 바와 같이 30일 이전/이후 데이터에서 유의미한 차이가 발견되지 않고 일함수 값의 열화가 없었다.In order to evaluate the stability of Hf 2 S 1 -y , the amorphous Hf 2 S 1 -y powder prepared in Example 1 was measured again after about 30 days. As shown in the XPS and UPS results of FIG. 5, no significant difference was found in the data before / after 30 days and there was no degradation of the work function value.
또한, 도 6의 전도도 결과에서 나타난 바와 같이 30일 이전/이후 데이터에서 유사한 값이 나타나는 것을 확인하였다.In addition, as shown in the conductivity results of FIG. 6, it was confirmed that similar values appeared in the data before / after 30 days.
결정질 Hf2S 계 물질은 표면이 쉽게 산화되어 일함수가 크고 도전성이 낮은 HfO2 층을 형성한다. 따라서 결정질 Hf2S를 이용한 전자 방출 소자 제작 시 충분한 도전성을 얻을 수 없거나 특성의 열화가 생겨 원하는 특성을 얻을 수 없거나 소자의 신뢰성이 저하될 가능성이 있다.Crystalline Hf 2 S-based materials are easily oxidized to form HfO 2 layers having a high work function and low conductivity. Therefore, when manufacturing an electron emission device using crystalline Hf 2 S, sufficient conductivity may not be obtained, deterioration of characteristics may occur, and thus desired characteristics may not be obtained or reliability of the device may be degraded.
이에 비해 비정질 Hf2S1 -y의 표면 구조는 안정적으로 유지되기 때문에 물질 특성의 열화가 방지된다. 그 결과, 핸들링이 기존 결정질 Hf2S 계 물질에 비해 용이하고 신뢰성 높은 소자를 제작할 수 있다.In contrast, since the surface structure of amorphous Hf 2 S 1 -y remains stable, deterioration of material properties is prevented. As a result, it is possible to fabricate devices that are easier to handle and more reliable than conventional crystalline Hf 2 S based materials.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and variations without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (12)

  1. 하기 화학식 1로 표현되는 비정질 전자방출 물질.An amorphous electron emitting material represented by Chemical Formula 1.
    <화학식 1><Formula 1>
    Hf2S1-y(-0.2 ≤ y ≤ 0.2)Hf 2 S 1-y (-0.2 ≤ y ≤ 0.2)
  2. 제1항의 비정질 전자방출 물질 분말을 표면에 노출되게 포함하는 것을 특징으로 하는 전자 이미터.An electron emitter comprising the powder of amorphous electron-emitting material of claim 1 exposed on a surface thereof.
  3. 제2항의 전자 이미터를 구비하고 있는 것을 특징으로 하는 형광관.A fluorescent tube comprising the electron emitter of claim 2.
  4. Hf 분말 및 S 분말을 혼합한 후 450 내지 600 oC의 온도로 2일 내지 4일 동안 열처리하여 화합물 원료를 얻는 제1 단계;A first step of mixing Hf powder and S powder and then heat-treating at a temperature of 450 to 600 ° C. for 2 to 4 days to obtain a compound raw material;
    상기 제1 단계에서 얻어진 화합물 원료를 용융하고 냉각하는 제2 단계; 및A second step of melting and cooling the compound raw material obtained in the first step; And
    상기 제2 단계에서 제조된 물질의 표면을 깎아내고 분쇄하는 제3 단계;A third step of shaving and grinding the surface of the material prepared in the second step;
    를 포함하는 비정질 전자방출 물질의 제조방법.Method for producing an amorphous electron emitting material comprising a.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 용융은 비활성 기체 분위기에서 진행되는 것을 특징으로 하는 비정질 전자방출 물질 제조방법.And the melting is performed in an inert gas atmosphere.
  6. 제4항에 있어서, The method of claim 4, wherein
    상기 제2 단계는 1회 또는 2회 이상 반복하여 수행하는 것을 특징으로 하는 비정질 전자방출 물질 제조방법.The second step is a method for producing an amorphous electron-emitting material, characterized in that performed repeatedly one or more times.
  7. 제4항에 있어서, The method of claim 4, wherein
    상기 제3 단계에서 상기 제2 단계에서 제조된 물질의 표면을 깎아내는 것은 화학적 에칭 또는 기계적 연마를 통해 수행되는 것을 특징으로 하는 비정질 전자방출 물질 제조방법.In the third step, the shaping of the surface of the material prepared in the second step is performed by chemical etching or mechanical polishing method of producing an amorphous electron-emitting material.
  8. 제4항에 있어서, The method of claim 4, wherein
    상기 제3 단계에서 상기 제2 단계에서 제조된 물질의 표면을 깎아내는 것은 진공 또는 불활성 기체 분위기에서 이루어지는 것을 특징으로 하는 비정질 전자방출 물질 제조방법.The method of manufacturing an amorphous electron-emitting material according to claim 3, wherein the surface of the material prepared in the second step is scraped off in a vacuum or inert gas atmosphere.
  9. 제4항에 있어서, The method of claim 4, wherein
    상기 분쇄는 볼 밀링, 어트리션 밀링, 고에너지 밀링, 제트 밀링 또는 막자 사발을 이용한 분쇄를 이용하여 이루어지는 것을 특징으로 하는 비정질 전자방출 물질 제조방법.The grinding is a method of producing an amorphous electron-emitting material, characterized in that using the milling using a ball mill, attrition milling, high energy milling, jet milling or mortar.
  10. 제4항에 있어서, The method of claim 4, wherein
    상기 분쇄는 가스 원자화에 의해 이루어지는 것을 특징으로 하는 비정질 전자방출 물질 제조방법.And the pulverization is carried out by gas atomization.
  11. 제4항에 있어서, The method of claim 4, wherein
    상기 제1 단계에서 상기 S 분말은 상기 Hf 분말 2몰 대비 0.8 내지 1.2의 비율로 첨가되는 것을 특징으로 하는 비정질 전자방출 물질 제조방법.In the first step, the S powder is an amorphous electron-emitting material manufacturing method, characterized in that added in a ratio of 0.8 to 1.2 compared to 2 moles of the Hf powder.
  12. 제4항에 있어서, The method of claim 4, wherein
    상기 제3 단계의 분쇄 공정은 진공 또는 불활성 기체 분위기에서 수행되는 것을 특징으로 하는 전자방출 물질 제조방법.The third step of the grinding process is an electron-emitting material manufacturing method, characterized in that carried out in a vacuum or inert gas atmosphere.
PCT/KR2018/016083 2017-11-15 2018-12-18 Amorphous electron emitting material stable in air and manufacturing method therefor WO2019156337A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20170152643 2017-11-15
KR1020180016486A KR101965813B1 (en) 2017-11-15 2018-02-09 Stable amorphous electron emission materials in air and manufacturing method thereof
KR10-2018-0016486 2018-02-09

Publications (1)

Publication Number Publication Date
WO2019156337A1 true WO2019156337A1 (en) 2019-08-15

Family

ID=66104071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016083 WO2019156337A1 (en) 2017-11-15 2018-12-18 Amorphous electron emitting material stable in air and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR101965813B1 (en)
WO (1) WO2019156337A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307869A (en) * 2004-05-19 2004-11-04 Sony Corp Phosphor powder and its preparation process,display panel, and flat-panel display apparatus
KR20110011586A (en) * 2009-07-28 2011-02-08 성균관대학교산학협력단 Oxynitride phosphor powders, nitride phosphor powders, and preparating method of the same
KR20110016289A (en) * 2009-08-11 2011-02-17 고양미 Producing method of carbon-nanosheets composits
KR20110081685A (en) * 2010-01-08 2011-07-14 한국과학기술연구원 Room temperature grown mg2hf5o12 dielectric film, capacitor and transistor composed the mg2hf5o12 dielectric film, and the fabrication methods thereof
KR20170055082A (en) * 2015-11-10 2017-05-19 성균관대학교산학협력단 Electron emitting material and process for preparing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307869A (en) * 2004-05-19 2004-11-04 Sony Corp Phosphor powder and its preparation process,display panel, and flat-panel display apparatus
KR20110011586A (en) * 2009-07-28 2011-02-08 성균관대학교산학협력단 Oxynitride phosphor powders, nitride phosphor powders, and preparating method of the same
KR20110016289A (en) * 2009-08-11 2011-02-17 고양미 Producing method of carbon-nanosheets composits
KR20110081685A (en) * 2010-01-08 2011-07-14 한국과학기술연구원 Room temperature grown mg2hf5o12 dielectric film, capacitor and transistor composed the mg2hf5o12 dielectric film, and the fabrication methods thereof
KR20170055082A (en) * 2015-11-10 2017-05-19 성균관대학교산학협력단 Electron emitting material and process for preparing the same

Also Published As

Publication number Publication date
KR101965813B1 (en) 2019-04-05

Similar Documents

Publication Publication Date Title
Inam et al. Electrically conductive alumina–carbon nanocomposites prepared by spark plasma sintering
JP5082849B2 (en) Electron emitter, field emission display device, cold cathode fluorescent tube, flat illumination device, and electron emission material
KR101757309B1 (en) Electron emitting material and process for preparing the same
Darbari et al. High electron emission from branched tree-like carbon nanotubes suitable for field emission applications
WO2010056061A2 (en) A single-crystalline germanium cobalt nanowire, a germanium cobalt nanowire structure, and a fabrication method thereof
WO2016024658A1 (en) Phase-change composite containing carbon nanomaterial and preparing method therefor
Jang et al. Field emission from cone-like single crystalline indium tin oxide nanorods
Wang et al. Field emission properties of zinc oxide nanowires fabricated by thermal evaporation
Cui et al. High performance field emission of silicon carbide nanowires and their applications in flexible field emission displays
WO2019156337A1 (en) Amorphous electron emitting material stable in air and manufacturing method therefor
WO2016043396A1 (en) Method for preparing nitrogen-doped graphene and nitrogen-doped graphene prepared thereby
KR20030047888A (en) Catalytically Grown Carbon Fiber Field Emitters and Field Emitter Cathodes Made Therefrom
KR101857550B1 (en) Low work function electron emitting material and process for preparing the same
Xu et al. Growth of single-crystalline SmB6 nanowires and their temperature-dependent electron field emission
WO2018164302A1 (en) Electron-emitting material and preparation method therefor
Kao et al. Intense green emission of ZnS: Cu, Al phosphor obtained by using diode structure of carbon nano-tubes field emission display
WO2020130658A1 (en) Tungsten-doped graphene oxide film, method for manufacturing same, and electron emitter including same
Yang et al. In situ fabrication of HfC-decorated carbon nanotube yarns and their field-emission properties
KR20050087376A (en) Emitter composition of flat panel display and carbon emitter using the same
KR100814838B1 (en) A carbon nanotube emitter composition for field emision device and preparation method of the same
KR102042836B1 (en) Low work function electron emitters and manufacturing method thereof
Wang et al. Intergrowth of a carbon layer and fractal-like trees on 3Y-TZP in TEM observations
JP2008280241A (en) Mixed composite material containing carbon nanotube and carbide derived carbon, electron emission source containing the mixed composite material and method of manufacturing the same, and electron emission element adopting the electron emission source
KR102018288B1 (en) Method for preparation of graphene by using dye
Wei et al. Scaled fabrication of single-nanotube-tipped ends from carbon nanotube micro-yarns and their field emission applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905401

Country of ref document: EP

Kind code of ref document: A1