WO2019156296A1 - Plasma treatment device comprising boron carbide, and manufacturing method therefor - Google Patents

Plasma treatment device comprising boron carbide, and manufacturing method therefor Download PDF

Info

Publication number
WO2019156296A1
WO2019156296A1 PCT/KR2018/008595 KR2018008595W WO2019156296A1 WO 2019156296 A1 WO2019156296 A1 WO 2019156296A1 KR 2018008595 W KR2018008595 W KR 2018008595W WO 2019156296 A1 WO2019156296 A1 WO 2019156296A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron carbide
plasma
component
processing apparatus
plasma processing
Prior art date
Application number
PCT/KR2018/008595
Other languages
French (fr)
Korean (ko)
Inventor
황성식
선호정
이재범
오준록
김현정
민경열
김경인
Original Assignee
에스케이씨솔믹스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨솔믹스 주식회사 filed Critical 에스케이씨솔믹스 주식회사
Publication of WO2019156296A1 publication Critical patent/WO2019156296A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • H01J37/32495Means for protecting the vessel against plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes

Definitions

  • the present invention relates to a plasma processing apparatus and a manufacturing method thereof, and more particularly, to a plasma apparatus and a manufacturing method including a component made of boron carbide having high corrosion resistance to plasma.
  • the plasma processing apparatus arranges an upper electrode and a lower electrode in a chamber, mounts a substrate such as a semiconductor wafer or a glass substrate on the lower electrode, and applies electric power between both electrodes. Electrons accelerated by an electric field between the electrodes, electrons emitted from the electrodes, or heated electrons cause ionization collision with molecules of the processing gas, thereby generating a plasma of the processing gas. Active species such as radicals and ions in the plasma perform the desired microfabrication, for example etching, on the substrate surface. In recent years, design rules in the manufacture of microelectronic devices and the like have become increasingly finer, and in particular, plasma etch is required to have higher dimensional accuracy, and thus significantly higher power is used than in the prior art.
  • the plasma processing apparatus includes components such as an edge ring, a focus ring, and a showerhead that are affected by plasma.
  • Korean Patent Publication No. 2009-0101129 seeks to achieve uniformity of plasma distribution by placing a dielectric between the susceptor and the edge portion.
  • the patent has a problem in that the structure is complicated and precise design between the dielectric and the edge portion is difficult.
  • the problem to be solved by the present invention is to provide a plasma processing apparatus and a manufacturing method comprising boron carbide excellent in corrosion resistance to plasma and ensure uniformity of plasma distribution, improve electrical conductivity and thermal conductivity, and simple structure have.
  • a plasma processing apparatus including boron carbide for solving one problem of the present invention includes a chamber forming a reaction space for plasma processing, and a component located in the chamber and in contact with the plasma. At this time, the component is made of boron carbide with plasma corrosion resistance, the boron carbide has a volume resistivity 10 5 ⁇ 10 -5 ⁇ ⁇ cm.
  • the boron carbide is a compound based on boron and carbon.
  • the boron carbide may be a single phase or a complex phase.
  • the single phase may comprise stoichiometric phases of boron and carbon and non-stoichiometric phases outside of the stoichiometric composition.
  • the single phase or complex phase may include a solid solution to which impurities are added.
  • the component can be any one selected from an edge ring, a focus ring or a showerhead.
  • the component is an edge ring that squeezes the edge of the substrate seated in the susceptor, and the distribution of the plasma extends beyond the edge of the substrate.
  • the part may be in sintered bulk form and may be in physical or chemical vapor deposition form.
  • the part may be bonded to one surface of the base material, and may include a boron carbide plate having a critical thickness of 0.3 mm.
  • the component may include a boron carbide coating layer positioned on one surface of the base material and having a critical thickness of 0.3 mm, and may seal the base material and include a boron carbide coating layer having a critical thickness of 0.3 mm.
  • the base material may be made of any one selected from metals, ceramics or composites thereof.
  • Another aspect of the present invention provides a method for manufacturing a plasma processing apparatus including boron carbide, the method including: a chamber forming a reaction space for plasma processing; and a component located in the chamber and in contact with the plasma.
  • the component is boron carbide having plasma corrosion resistance and having a volume resistivity of 10 5 to 10 ⁇ 5 ⁇ ⁇ cm.
  • the part can be produced by sintering and can be produced by physical or chemical vapor deposition.
  • the part may be formed by bonding a boron carbide plate having a critical thickness of 0.3 mm to a base material.
  • the boron carbide plate (plate) may be made by processing the boron carbide in a bulk form 0.3mm critical thickness.
  • the bonding may be implemented by inducing diffusion at the interface by applying heat and pressure to the boron carbide and the base material, using a metal bonding agent, or applying a bonding tape.
  • the part may be formed by forming a boron carbide coating layer having a critical thickness of 0.3 mm on the base material.
  • the part may be formed by wrapping the base material with a boron carbide coating layer having a critical thickness of 0.3 mm.
  • the boron carbide coating layer is preferably formed by spraying or spraying.
  • the plasma processing apparatus and manufacturing method including boron carbide of the present invention by using a component containing boron carbide excellent in plasma corrosion resistance and imparting electrical conductivity, it is excellent in corrosion resistance to plasma and uniformity of plasma distribution. It is secured and the structure is simple.
  • FIG. 1 and 2 are schematic views showing a plasma processing apparatus equipped with a plasma component according to the present invention.
  • FIG 3 is a cross-sectional view showing a first component applied to the plasma apparatus according to the present invention.
  • FIG. 4 is a cross-sectional view showing a second component applied to the plasma apparatus according to the present invention.
  • FIG. 5 is a cross-sectional view showing a third component applied to the plasma apparatus according to the present invention.
  • An embodiment of the present invention provides a plasma processing apparatus and a manufacturing method which are excellent in corrosion resistance to plasma, secure uniformity of plasma distribution, and simple structure by using boron carbide.
  • a plasma processing apparatus includes components such as an edge ring, a focus ring, and a showerhead that are affected by plasma, and here, the edge ring will be described as an example.
  • a plasma component will be described in detail with respect to the edge ring of the present invention, and a method of manufacturing the plasma component will be described in detail.
  • FIGS. 1 and 2 are diagrams schematically showing a plasma processing apparatus equipped with a plasma component according to an embodiment of the present invention.
  • a plasma processing apparatus equipped with a plasma component according to an embodiment of the present invention.
  • it can be applied to the plasma processing apparatus of various structures.
  • the treatment apparatus of the present invention includes a chamber 10, a susceptor 20, a showerhead 30, and an edge ring 40.
  • the susceptor 20, the shower head 30, the edge ring 40, and the like are plasma components AP affected by the plasma.
  • the chamber 10 defines a reaction space, and the susceptor 20 mounts the substrate 50 on the upper surface and moves up and down. In some cases, the susceptor 20 may be fixed and not move. Here, the vertical motion is taken as an example.
  • the shower head 30 is positioned above the susceptor 20 and sprays a process gas onto the substrate 50.
  • the shower head 30 has a gas supply pipe 12 connected through the chamber 10 to introduce the process gas from the outside.
  • the shower head 30 includes a buffer space 31 for uniformly dispersing the inside of the shower head 30 before the process gas introduced through the gas supply pipe 12 is injected, and a nozzle part 32 composed of numerous through holes. It includes.
  • the edge ring 40 is installed on the inner wall of the chamber 10 and is located on the ring support 41.
  • an RF power source 16 for supplying RF power for generating plasma is connected to a plasma electrode or an antenna.
  • the connection scheme is various, and as shown, the plasma electrode is integrally formed with the shower head 30, and the RF power source 16 is provided to the gas supply pipe 12 so that the RF power is applied to the center of the electrode. ) Can be connected.
  • a separate RF power source may also be applied to the susceptor 20.
  • the susceptor 20 may include a heater for preheating or heating the substrate 50, a lift pin for mounting the substrate 50, and the like.
  • the susceptor 20 When the substrate 50 is placed in the susceptor 20, the susceptor 20 is raised to the position of the plasma processing step. The edge ring 40 rises together while pressing the edges of the substrate 50. Raising the susceptor 20 prevents the exhaust port 14 from adversely affecting the process uniformity.
  • the process gas is injected through the shower head 30, and then RF power is applied to convert the process gas into plasma active species having strong reactivity.
  • the active paper may be deposited or etched on the substrate 50, and the process gas may be discharged at a constant flow rate through the exhaust port 14 during the process. After the treatment process is performed for a predetermined time, residual gas is discharged to the exhaust port 14. Subsequently, the susceptor 20 is lowered and the substrate 50 is carried out from the chamber 10 to the outside.
  • Boron carbide applied to the present invention is represented by B 4 C, the third high strength material after diamond, cubic boron nitride, and excellent in chemical resistance and corrosion resistance.
  • plasma corrosion resistance is affected by the bonding force of the parts. That is, the stronger the bonding force, the higher the corrosion resistance, and boron carbide has a high covalent bond, and thus the bonding force is large, so the plasma corrosion resistance is excellent.
  • boron carbide refers to all compounds based on boron and carbon.
  • Boron carbide of the present invention may be either a single phase or a complex phase.
  • the boron carbide single phase includes both the stoichiometric phase of boron and carbon and the nonstoichiometric phase deviated from the stoichiometric composition, and the complex phase is one of the compounds based on boron and carbon.
  • the boron carbide of the present invention is a mixture of at least two in a predetermined ratio, and in addition, the boron carbide of the present invention is added to impurities in a single phase or a complex phase of the boron carbide to form a solid solution or inevitably added in the process of preparing boron carbide. This includes all cases where impurities are mixed.
  • the influence of the plasma around the edge ring 40 in the plasma component AP will be described.
  • the center of the substrate 50 is maximized and the edge is generally the lowest due to the wavelength effect in which standing waves are formed in the chamber 10 or the skin effect in which the electric field is concentrated at the center of the electrode surface.
  • the plasma distribution on the substrate 50 becomes nonuniform. If the plasma distribution is uneven on the substrate 50, the plasma processing becomes inconsistent and the quality of the microelectronic device is degraded.
  • the plasma distribution refers to a state in which a plasma is applied on the substrate 50 and the boron carbide edge ring 40, and the distribution indicates the plasma density at each point of the substrate 50 and the boron carbide edge ring 40. It is associated with the straightness towards the substrate 50.
  • the difference in volume resistivity with the boron carbide edge ring 40 has a significant impact on the plasma distribution uniformity.
  • the uniformity refers to the degree of change in the plasma distribution. When the uniformity is small, the plasma distribution changes abruptly, and when the uniformity is large, the plasma distribution changes slowly.
  • the volume resistivity of the boron carbide edge ring 40 is preferably similar or lower than the volume resistivity of the substrate 50. In this case, since the plasma distribution extends beyond the edge of the substrate 50 to the boron carbide edge ring 40, the edge of the substrate 50 has a relatively high uniformity.
  • the uniformity means that the plasma density and the straightness toward the substrate 50 are excellent. In the drawing, the state that deviates from the edge of the substrate 50 is expressed as near edge ED.
  • the volume resistivity of the boron carbide edge ring 40 according to the embodiment of the present invention is similar to or smaller than the substrate 50 can be described in the following aspects. If the volume resistivity of the boron carbide edge ring 40 is similar or smaller than the substrate 50, the plasma distribution extends beyond the edge of the substrate 50 to the boron carbide edge ring 40. Accordingly, the volume resistivity of the boron carbide edge ring 40 of the present invention extends from the edge of the substrate to the boron carbide edge ring 40 so that the plasma distribution over the entire substrate 50 is uniform even at the edge of the substrate 50. It can be said that. Such volume resistivity may be defined as extending the plasma distribution beyond the edge of the substrate 50 and extending the boron carbide edge ring 40.
  • volume resistivity of 10 5 to 10 of boron carbide edge ring 40 of the present invention - 5 ⁇ cm and is based on the technical idea for making uniform the plasma distribution in the edge of the substrate 50. Accordingly, the volume resistivity cannot be obtained through simple repeated experiments without considering the technical idea.
  • the relationship between the volume resistivity of the boron carbide edge ring 40 and the substrate 50 has been described taking the edge ring as an example. However, in the case of other parts such as showerheads, the view that the volume resistivity of boron carbide improves plasma corrosion resistance is the same.
  • Boron carbide plasma component (AP) is produced by sintering and physical or chemical vapor deposition, the first method to be itself a bulk component, the second method of bonding to the base material and the third method of coating on the base material Can be done.
  • the bulk is distinguished from the coating layer of the third method coated on the surface of the base material.
  • physical or chemical vapor deposition is the production of boron carbide plasma component (AP) using a source material, it can be distinguished from other methods (eg, sintering).
  • the first to third methods presented herein are merely to provide examples appropriate for each, and therefore include other methods within the scope of the present invention.
  • the sintering sinters the boron carbide powder, or the boron and carbon mixed powder in a vacuum or inert gas atmosphere.
  • the inert gas may be any known inert gas, and preferably argon, nitrogen, and the like.
  • the boron carbide plasma component produced by sintering as described above is a sintered body in bulk form.
  • the boron source and the carbon source are reacted to be deposited on the base material under certain conditions, grown, and subsequently, the base material is removed.
  • the deposition temperature can be deposited by a chemical vapor deposition apparatus at 500 to 1500 ° C.
  • Physical vapor deposition is sputtered with the target itself as boron carbide to allow boron carbide to grow on the base material and then remove the base material.
  • the boron carbide parts manufactured by physical or chemical vapor deposition are bulk in distinct form from later coatings.
  • the bonding is a combination of the boron carbide bulk of the sintering or chemical vapor deposition described above to the base material, the part (AP) is made by processing the boron carbide bulk in the form of a plate (0.33mm) critical thickness by polishing or the like. By the above processing, a boron carbide plate is formed.
  • the bonding is not necessarily limited thereto, but may be implemented by inducing diffusion at an interface by applying pressure between the boron carbide and the base metal at a high temperature below the melting point.
  • a metal such as indium may be bonded with a bonding agent, or other bonding tape may be used.
  • the plasma component AP may be variously modified by the coating.
  • the plasma component generated by the coating can be seen as a modification of the plasma component AP described in FIGS. 1 and 2. Accordingly, the plasma component manufactured by the coating will be referred to as first to third components AP1, AP2, and AP3.
  • 3 is a cross-sectional view showing the first component AP1 applied to the plasma apparatus according to the embodiment of the present invention. In this case, the plasma apparatus will be described with reference to FIGS. 1 and 2.
  • the first component AP1 includes a base material 60 and a boron carbide coating layer 61 positioned on one surface of the base material 60.
  • the base material 60 is preferably a ceramic material having corrosion resistance to the plasma, but may be a metal or a composite thereof. This is because the base material 60 is located in an environment not affected by the plasma.
  • the critical thickness of the boron carbide coating layer 61 of the present invention is a thick film of 0.3 mm.
  • the coating of boron carbide to be specified in the present invention is composed of a corrosion-resistant material only the maximum thickness range allowed for etching, rather than the entire base material 60 is composed of a corrosion-resistant material to constitute a plasma processing apparatus.
  • the coating is carried out to reduce the manufacturing cost of the product and to facilitate the manufacturing process. That is, one of the cases in which two heterogeneous bulk materials are joined by a coating method.
  • the coating layer 61 having a thickness in the maximum range allowed for etching may be referred to as a thick film coating layer 61.
  • the corrosion resistant plate 61 has a critical thickness. The reason is at least as follows. First, when the edge ring 40 including the corrosion resistant plate 61 is initially mounted on the etching equipment, the surface of the corrosion resistant plate 61 is in line with the surface of the substrate 50. The substrate 50 is replaced for each subsequent etching process but the edge ring 40 remains the same. As the etching process is repeated, a step occurs between the surface of the substrate 50 and the surface of the corrosion resistant plate 61 and the step continuously increases.
  • the aspect ratio of the etching pattern continues to increase, and recently, it has almost reached its limit.
  • the plasma power must be increased.
  • chemical etching by chemical reaction and physical etching by physical ion collision are mixed.
  • the strength of the physical etching becomes relatively larger than the chemical etching and becomes overwhelming at a predetermined power or more. Therefore, it becomes more difficult to maintain the corrosion resistance of the corrosion resistant plate 61.
  • the direction of active ions rushing to the edge of the substrate 50 is from the direction perpendicular to the surface of the substrate 50. Gradually the direction becomes oblique.
  • an etching pattern such as an etching hole or a trench is formed in the diagonal direction on the substrate 50. In the diagonal direction, misalignment occurs from the pattern of the underlying layer of the etching layer, thereby reducing the yield of the device. Therefore, the maximum etching thickness and the maximum number of substrates 50 that are the allowable misalignment should be etched to set the minimum etching thickness limit for maintaining the productivity of the equipment.
  • the thickness for general corrosion resistance should be more than 0.3mm. This thickness is called the critical thickness.
  • the plasma thickness of the boron carbide bulk is generally applied to a thickness of less than 3mm, but may be applied to more than the thickness if necessary. This is because the thickness of the plasma component AP requires a critical thickness which is the minimum thickness for corrosion resistance.
  • the critical thickness is designed in consideration of the technical idea of the present invention, which cannot be obtained by repeated experiments of the plasma component (AP).
  • the method of coating the boron carbide coating layer 61 with a thick film is not limited, and there are chemical vapor deposition, physical vapor deposition, room temperature spraying, low temperature spraying, aerosol spraying, plasma spraying, and the like.
  • the chemical vapor deposition method for example, using a boron precursor B 2 H 6 , the deposition temperature can be deposited by a chemical vapor deposition apparatus to 500 ⁇ 1500 °C.
  • the boron carbide target may be sputtered in an argon (Ar) gas atmosphere.
  • the coating layer 61 formed by the chemical vapor deposition method and the physical vapor deposition method may be referred to as a thick film CVD boron carbide coating layer 61 and a thick film PVD boron carbide coating layer 61, respectively.
  • the boron carbide powder is sprayed onto the base material 60 through a plurality of discharge ports by applying pressure to the boron carbide powder at room temperature to form the boron carbide coating layer 61.
  • the boron carbide powder may use a vacuum granule form.
  • the boron carbide powder is sprayed on the base material 60 through a plurality of discharge ports by the flow of compressed gas at a temperature higher than about 60 ° C. than the normal temperature to form the boron carbide coating layer 61.
  • the aerosol injection method is to form aerosol by mixing the boron carbide powder in a volatile solvent such as polyethylene glycol, isopropyl alcohol and the like, and then spray the aerosol on the base material 60 to form a boron carbide coating layer 61.
  • the plasma spraying method injects boron carbide powder into a high temperature plasma jet to spray the powder melted in the plasma jet to the base material 60 at high speed to form the boron carbide coating layer 61.
  • FIG. 4 is a cross-sectional view illustrating the second component AP2 applied to the plasma apparatus according to the embodiment of the present invention.
  • the second part AP2 is the same as the first part AP1 except that the form in which the boron carbide coating layer 62 covers the base material 60 is different.
  • the plasma apparatus will be described with reference to FIGS. 1 and 2, and the second component AP2 is one of the components affected by the plasma as described above.
  • the boron carbide coating layer 62 of the second component AP2 seals the base material 60.
  • the sealing means plasma sealing that covers the base material 60 to such an extent that the base material 60 cannot be damaged by the plasma.
  • the cross section of the base material 60 is a quadrangular shape having a top surface, a bottom surface and a side surface
  • the top surface is a plasma exposure surface directly exposed to plasma
  • the bottom surface is a surface opposite to the top surface
  • the side surface is It can be seen as a surface connecting the top and bottom surfaces.
  • the boron carbide coating layer 62 of the second component 4b covers the plasma exposed surface, the side surface and the bottom surface. This seals the portion of the base material 60 that may be damaged by the plasma.
  • the base material 60 may be made of any one selected from metal, ceramic, or a composite thereof.
  • the base material 60 may not necessarily have plasma corrosion resistance.
  • the base material 60 may freely apply a material having good electrical conductivity and thermal conductivity, such as a metal material, regardless of plasma corrosion resistance.
  • the base material 60 may be made of a material having good shock absorption.
  • yttria which reacts with plasma to form solid residues, may be applied, or a material having good electrical and thermal conductivity such as aluminum or copper may be used. Accordingly, in the case of a metal which is likely to be corroded by the plasma, it can be used as the base material 60 of the second component AP2 without being limited thereto. In this way, when the base material 60 is sealed with the boron carbide coating layer 62, the degree of freedom of selection of the base material 60 can be greatly increased as compared with the unsealed first part AP1.
  • FIG. 5 is a cross-sectional view showing a third component AP3 applied to a plasma apparatus according to an embodiment of the present invention.
  • the third component AP3 is the same as the first component AP1 and the second component AP2 except that the primer layer 63 is disposed between the boron carbide coating layer 61 and the base material 60.
  • the plasma apparatus will be described with reference to FIGS. 1 and 2, and the third component AP3 is one of the components affected by the plasma as described above, and includes an edge ring and the like.
  • the primer layer 63 of the third component AP3 increases the bonding force between the boron carbide coating layer 61 and the base material 60.
  • the primer layer 63 may be applied to, for example, a material including tungsten, nickel, cobalt, etc. in consideration of the relationship between the bonding strength between the boron carbide coating layer 61 and the base material 60.
  • the primer layer 63 is necessarily limited thereto, but may be coated with a binder with a powder composed of at least one selected from an alloy including boron, a ceramic containing boron, and a mixture thereof.
  • the primer layer 63 is necessarily limited thereto, but a material made of at least one selected from an alloy including boron, a ceramic containing boron, and a mixture thereof may be formed as a single layer or a multilayer.
  • a primer layer 63 is present between the base material 60 and the boron carbide coating layer 61, and in the case of the second part AP2, the base material 60 and the boron carbide coating layer. It is between 62.
  • the primer layer 63 is present, the bonding force between the boron carbide coating layers 61 and 62 and the base material 60 is increased, so that the boron carbide coating layers 61 and 62 are not damaged by the impact of plasma. .
  • the electrical conductivity ( ⁇ cm) of the components shown in Examples and Comparative Examples was measured by model name LORESTA-GP MCP-T610 (manufacturer, Mitsubish), and thermal conductivity ((W / m ⁇ k) was model name LFA 467-TMA 402 F3 ( Manufacturer (NETZSCH), and the etching rate (%) was compared with the change in thickness after etching with CF 4 gas plasma.
  • 0.1-60 wt% of the liquid phenolic resin was mixed with boron carbide powder to the boron carbide weight to prepare a sintered body having a thickness of ⁇ 50x10Tmm produced by sintering at 2,200 ° C. or more.
  • the electrical conductivity ( ⁇ ⁇ cm) and thermal conductivity ((W / m ⁇ k) were measured by the above-described apparatus, and the relative density was measured.
  • Boron carbide was prepared in the same manner as in Example 1 by increasing the supply amount of the liquid phenol resin as a carbon source to 40% by weight, and the electrical conductivity ( ⁇ ⁇ cm) and thermal conductivity ((W / m ⁇ k) were measured by the above-described apparatus. And the relative density was measured.
  • Example 6 60 wt% of the phenol resin was mixed with respect to the weight of boron carbide, prepared as in Example 1, and the electrical conductivity ( ⁇ ⁇ cm) and thermal conductivity ((W / m ⁇ k) were measured by the apparatus described above, and the relative density was measured. Measured.
  • Table 1 shows the electrical conductivity ( ⁇ ⁇ and thermal conductivity ((W / m ⁇ k)) of Example 1 and Comparative Examples 1 and 2 of the present invention, where electrical conductivity ( ⁇ ⁇ cm) and thermal conductivity ((W / m ⁇ k) is an average value obtained by multiple measurements, not one measurement. For convenience, electrical conductivity is expressed as a power of 10.
  • the electrical conductivity and the thermal conductivity of Examples 1 to 4 and Comparative Examples 1 to 2 are similar to each other, and there is no comparable element. Specifically, the electrical conductivity of Example 1 was about 10 ⁇ 1 , the thermal conductivity was 27, the electrical conductivity of Comparative Examples 1 and 2 was 10 ⁇ 1 , and the thermal conductivity was 22.
  • the etching rate of Comparative Example 1 is 76%
  • the etching rates of Examples 1 to 4 of the present invention were 71%, 68%, 66% and 57%, respectively. That is, it was confirmed that the etching rate is independent of the electrical conductivity and the thermal conductivity and is affected by the relative density.
  • the relative density of the present invention was greater than 63% and less than 99%.
  • the present invention improves the sintered density of boron carbide by adding phenol resin and the like, thereby achieving excellent corrosion resistance to plasma compared to conventional boron carbide.
  • the difference in etching rate is remarkable as the plasma power increases.
  • a phenol resin is used as the carbon source, but the carbon source is supplied as amorphous carbon by pyrolysis, and thus, the same technical concept is applied to other liquid or solid carbon sources other than the phenol resin within the scope of the present invention. Apply.
  • the difference between the etching rate and the relative density is slightly different depending on the weight of the carbon source within the scope of the present invention.
  • Corrosion resistance of plasma component parts made of boron carbide according to an embodiment of the present invention increases as the relative density increases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

Disclosed are a plasma treatment device comprising a boron carbide coating layer, and a manufacturing method therefor, the device having excellent corrosion resistance against plasma, ensuring the uniformity of plasma distribution, improving electrical conductivity and thermal conductivity, and having a simple structure. The device and the method comprise: a chamber having a reaction space for plasma treatment; and a component positioned inside the chamber and coming in contact with plasma, wherein the component is boron carbide having corrosion resistance against plasma and having a volume resistivity of 105-10-5Ωㆍcm.

Description

보론카바이드를 포함하는 플라즈마 처리장치 및 그 제조방법Plasma processing apparatus comprising boron carbide and its manufacturing method
본 발명은 플라즈마 처리장치 및 그 제조방법에 관한 것으로, 보다 상세하게는 플라즈마에 대한 내식성이 높은 보론카바이드로 이루어진 부품을 포함하는 플라즈마 장치 및 제조방법에 관한 것이다.The present invention relates to a plasma processing apparatus and a manufacturing method thereof, and more particularly, to a plasma apparatus and a manufacturing method including a component made of boron carbide having high corrosion resistance to plasma.
플라즈마 처리장치는 챔버 내에 상부전극과 하부전극을 배치하고, 하부전극의 위에 반도체 웨이퍼, 유리 기판 등의 기판을 탑재하여, 양 전극 사이에 전력을 인가한다. 양 전극 사이의 전계에 의해서 가속된 전자, 전극으로부터 방출된 전자, 또는 가열된 전자가 처리가스의 분자와 전리 충돌을 일으켜, 처리가스의 플라즈마가 발생한다. 플라즈마 중의 래디컬이나 이온과 같은 활성종은 기판 표면에 원하는 미세 가공, 예를 들면 에칭 가공을 수행한다. 최근, 미세전자소자 등의 제조에서의 디자인 룰이 점점 미세화되고, 특히 플라즈마 에칭에서는 더욱 높은 치수 정밀도가 요구되고 있어서, 종래보다도 현격히 높은 전력이 이용되고 있다. 이러한 플라즈마 처리장치에는 플라즈마에 영향을 받는 에지링, 포커스링, 샤워헤드 등의 부품들이 내장되어 있다.The plasma processing apparatus arranges an upper electrode and a lower electrode in a chamber, mounts a substrate such as a semiconductor wafer or a glass substrate on the lower electrode, and applies electric power between both electrodes. Electrons accelerated by an electric field between the electrodes, electrons emitted from the electrodes, or heated electrons cause ionization collision with molecules of the processing gas, thereby generating a plasma of the processing gas. Active species such as radicals and ions in the plasma perform the desired microfabrication, for example etching, on the substrate surface. In recent years, design rules in the manufacture of microelectronic devices and the like have become increasingly finer, and in particular, plasma etch is required to have higher dimensional accuracy, and thus significantly higher power is used than in the prior art. The plasma processing apparatus includes components such as an edge ring, a focus ring, and a showerhead that are affected by plasma.
상기 에지링의 경우, 전력이 높아지면, 정재파가 형성되는 파장 효과 및 전극 표면에서 전계가 중심부에 집중하는 표피 효과 등에 의해서, 대체로 기판 상에서 중심부가 극대로 되고 에지부가 가장 낮아져서, 기판 상의 플라즈마 분포의 불균일성이 심화된다. 기판 상에서 플라즈마 분포가 불균일하면, 플라즈마 처리가 일정하지 않게 되어 미세전자소자의 품질이 저하된다. 국내공개특허 제2009-0101129호는 서셉터와 에지부 사이에 유전체를 두어 플라즈마 분포의 균일성을 도모하고자 하였다. 하지만, 상기 특허는 구조가 복잡하고, 유전체 및 에지부 사이의 정밀한 설계가 어려운 문제가 있다.In the case of the edge ring, when the power is increased, the center part is maximized on the substrate and the edge part is the lowest on the substrate due to the wavelength effect in which standing waves are formed and the skin effect in which the electric field is concentrated at the center part of the electrode surface. Inhomogeneity deepens. If the plasma distribution is uneven on the substrate, the plasma processing becomes inconsistent and the quality of the microelectronic device is degraded. Korean Patent Publication No. 2009-0101129 seeks to achieve uniformity of plasma distribution by placing a dielectric between the susceptor and the edge portion. However, the patent has a problem in that the structure is complicated and precise design between the dielectric and the edge portion is difficult.
본 발명이 해결하고자 하는 과제는 플라즈마에 대한 내식성이 우수하고 플라즈마 분포의 균일성을 확보하며, 전기전도도 및 열전도도를 개선하고 구조가 간단한 보론카바이드를 포함하는 플라즈마 처리장치 및 제조방법을 제공하는 데 있다.The problem to be solved by the present invention is to provide a plasma processing apparatus and a manufacturing method comprising boron carbide excellent in corrosion resistance to plasma and ensure uniformity of plasma distribution, improve electrical conductivity and thermal conductivity, and simple structure have.
본 발명의 하나의 과제를 해결하기 위한 보론카바이드를 포함하는 플라즈마 처리장치는 플라즈마 처리를 위한 반응공간을 형성하는 챔버 및 상기 챔버의 내부에 위치하고 상기 플라즈마와 접촉하는 부품을 포함한다. 이때, 상기 부품은 플라즈마 내식성이 있는 보론카바이드로 이루어지며, 상기 보론카바이드는 부피 비저항 105~10-5Ωㆍcm을 갖는다. A plasma processing apparatus including boron carbide for solving one problem of the present invention includes a chamber forming a reaction space for plasma processing, and a component located in the chamber and in contact with the plasma. At this time, the component is made of boron carbide with plasma corrosion resistance, the boron carbide has a volume resistivity 10 5 ~ 10 -5 Ω · cm.
본 발명의 장치에 있어서, 상기 보론카바이드는 보론 및 카본을 기반으로 하는 화합물이다. 상기 보론카바이드는 단일상 또는 복합상일 수 있다. 상기 단일상은 보론 및 카본의 화학양론적 상 및 상기 화학양론적 조성을 벗어난 비화학양론적 상을 포함할 수 있다. 상기 단일상 또는 복합상은 상기 단일상 또는 복합상에 불순물이 추가된 고용체를 포함할 수 있다. 상기 부품은 에지링, 포커스링 또는 샤워헤드 중에 선택된 어느 하나일 수 있다. 상기 부품은 서셉터에 안치된 기판의 가장자리를 압착하는 에지링이고, 상기 플라즈마의 분포는 상기 기판의 가장자리를 벗어나 확장된다. In the device of the present invention, the boron carbide is a compound based on boron and carbon. The boron carbide may be a single phase or a complex phase. The single phase may comprise stoichiometric phases of boron and carbon and non-stoichiometric phases outside of the stoichiometric composition. The single phase or complex phase may include a solid solution to which impurities are added. The component can be any one selected from an edge ring, a focus ring or a showerhead. The component is an edge ring that squeezes the edge of the substrate seated in the susceptor, and the distribution of the plasma extends beyond the edge of the substrate.
본 발명의 바람직한 장치에 있어서, 상기 부품은 소결된 벌크(bulk) 형태일 수 있고, 물리 또는 화학기상증착된 (bulk) 형태일 수 있다. 상기 부품은 모재의 일면에 접합되고, 임계두께가 0.3mm의 보론카바이드 판(plate)을 포함할 수 있다. 상기 부품은 모재의 일면에 위치하고 임계두께가 0.3mm인 보론카바이드 코팅층을 포함할 수 있고, 모재를 밀봉하고 임계두께가 0.3mm의 보론카바이드 코팅층을 포함할 수 있다. 상기 모재는 금속, 세라믹 또는 그들의 복합물 중에 선택된 어느 하나로 이루어질 수 있다. In a preferred device of the invention, the part may be in sintered bulk form and may be in physical or chemical vapor deposition form. The part may be bonded to one surface of the base material, and may include a boron carbide plate having a critical thickness of 0.3 mm. The component may include a boron carbide coating layer positioned on one surface of the base material and having a critical thickness of 0.3 mm, and may seal the base material and include a boron carbide coating layer having a critical thickness of 0.3 mm. The base material may be made of any one selected from metals, ceramics or composites thereof.
본 발명의 다른 과제를 해결하기 위한 보론카바이드를 포함하는 플라즈마 처리장치의 제조방법은 플라즈마 처리를 위한 반응공간을 형성하는 챔버 및 상기 챔버의 내부에 위치하고 상기 플라즈마와 접촉하는 부품을 포함하는 플라즈마 장치의 제조방법에 있어서, 상기 부품은 플라즈마 내식성이 있고, 부피 비저항이 105~10-5Ωㆍcm인 보론카바이드이다.Another aspect of the present invention provides a method for manufacturing a plasma processing apparatus including boron carbide, the method including: a chamber forming a reaction space for plasma processing; and a component located in the chamber and in contact with the plasma. In the manufacturing method, the component is boron carbide having plasma corrosion resistance and having a volume resistivity of 10 5 to 10 −5 Ω · cm.
본 발명의 방법에 있어서, 상기 부품은 소결에 의해 제조될 수 있고, 물리 또는 화학기상증착에 의해 제조될 수 있다. 상기 부품은 모재에 임계두께가 0.3mm인 보론카바이드 판(plate)이 접합되어 형성될 수 있다. 상기 보론카바이드 판(plate)은 벌크 형태의 보론카바이드를 0.3mm 임계두께로 가공하여 이루어질 수 있다. 상기 접합은 보론카바이드와 모재에 열과 압력을 가하여 계면에서의 확산을 유도하여 구현하거나 금속접합제를 사용하거나 또는 접합테이프를 적용할 수 있다. 상기 부품은 모재 상에 임계두께가 0.3mm인 보론카바이드 코팅층을 형성하여 이루어질 수 있다. 상기 부품은 모재를 임계두께가 0.3mm의 보론카바이드 코팅층으로 감싸서 형성될 수 있다. 상기 보론카바이드 코팅층은 분사법 또는 용사법으로 형성하는 것이 좋다. In the method of the invention, the part can be produced by sintering and can be produced by physical or chemical vapor deposition. The part may be formed by bonding a boron carbide plate having a critical thickness of 0.3 mm to a base material. The boron carbide plate (plate) may be made by processing the boron carbide in a bulk form 0.3mm critical thickness. The bonding may be implemented by inducing diffusion at the interface by applying heat and pressure to the boron carbide and the base material, using a metal bonding agent, or applying a bonding tape. The part may be formed by forming a boron carbide coating layer having a critical thickness of 0.3 mm on the base material. The part may be formed by wrapping the base material with a boron carbide coating layer having a critical thickness of 0.3 mm. The boron carbide coating layer is preferably formed by spraying or spraying.
본 발명의 보론카바이드를 포함하는 플라즈마 처리장치 및 제조방법에 의하면, 플라즈마 내식성이 우수하고 전기전도성이 부여된 보론카바이드를 포함하는 부품을 사용함으로써, 플라즈마에 대한 내식성이 우수하고, 플라즈마 분포의 균일성을 확보하며, 구조가 간단하다. According to the plasma processing apparatus and manufacturing method including boron carbide of the present invention, by using a component containing boron carbide excellent in plasma corrosion resistance and imparting electrical conductivity, it is excellent in corrosion resistance to plasma and uniformity of plasma distribution. It is secured and the structure is simple.
도 1 및 도 2는 본 발명에 의한 플라즈마 부품이 장착된 플라즈마 처리장치를 개략적으로 도시한 도면들이다. 1 and 2 are schematic views showing a plasma processing apparatus equipped with a plasma component according to the present invention.
도 3은 본 발명에 의한 플라즈마 장치에 적용되는 제1 부품을 나타내는 단면도이다.3 is a cross-sectional view showing a first component applied to the plasma apparatus according to the present invention.
도 4는 본 발명에 의한 플라즈마 장치에 적용되는 제2 부품을 나타내는 단면도이다.4 is a cross-sectional view showing a second component applied to the plasma apparatus according to the present invention.
도 5는 본 발명에 의한 플라즈마 장치에 적용되는 제3 부품을 나타내는 단면도이다.5 is a cross-sectional view showing a third component applied to the plasma apparatus according to the present invention.
이하 첨부된 도면을 참조하면서 본 발명의 바람직한 실시예를 상세히 설명한다. 다음에서 설명되는 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술되는 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당 분야에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments described below may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
본 발명의 실시예는 보론카바이드를 사용함으로써, 플라즈마에 대한 내식성이 우수하고, 플라즈마 분포의 균일성을 확보하며, 구조가 간단한 플라즈마 처리장치 및 제조방법을 제시한다. 이러한 플라즈마 처리장치에는 플라즈마에 영향을 받는 에지링, 포커스링, 샤워헤드 등의 부품들이 있으며, 여기서는 그 중에서 에지링을 사례로 들어 설명하기로 한다. 이를 위해, 본 발명의 에지링을 중심으로 플라즈마 부품에 대하여 구체적으로 알아보고, 상기 플라즈마 부품을 제조하는 방법을 상세하게 설명하기로 한다.An embodiment of the present invention provides a plasma processing apparatus and a manufacturing method which are excellent in corrosion resistance to plasma, secure uniformity of plasma distribution, and simple structure by using boron carbide. Such a plasma processing apparatus includes components such as an edge ring, a focus ring, and a showerhead that are affected by plasma, and here, the edge ring will be described as an example. To this end, a plasma component will be described in detail with respect to the edge ring of the present invention, and a method of manufacturing the plasma component will be described in detail.
도 1 및 도 2는 본 발명의 실시예에 의한 플라즈마 부품이 장착된 플라즈마 처리장치를 개략적으로 도시한 도면들이다. 본 발명의 범주 내에서 제시된 장치의 구조 이외에도 다양한 구조의 플라즈마 처리장치에 적용될 수 있다. 1 and 2 are diagrams schematically showing a plasma processing apparatus equipped with a plasma component according to an embodiment of the present invention. In addition to the structure of the apparatus presented within the scope of the present invention, it can be applied to the plasma processing apparatus of various structures.
도 1 및 도 2를 참조하면, 본 발명의 처리장치는 챔버(10), 서셉터(20), 샤워헤드(30) 및 에지링(40)을 포함하여 이루어진다. 여기서, 서셉터(20), 샤워헤드(30), 에지링(40) 등이 플라즈마에 영향을 받는 플라즈마 부품(AP)이다. 챔버(10)는 반응공간을 정의하며, 서셉터(20)는 상면에 기판(50)을 탑재하고 상하운동을 한다. 경우에 따라, 서셉터(20)는 고정되어 움직이지 않을 수 있지만, 여기서는 상하운동을 하는 경우를 예로 들었다. 샤워헤드(30)는 서셉터(20)의 상부에 위치하며, 기판(50)으로 공정가스를 분사한다. 샤워헤드(30)는 가스공급관(12)이 챔버(10)를 관통하여 연결되어, 상기 공정가스를 외부로부터 유입시킨다. 샤워헤드(30)는 가스공급관(12)을 통해 유입된 공정가스가 분사되기 전에 샤워헤드(30) 내부에 균일하게 확산하도록 하는 버퍼공간(31)과, 수많은 관통홀로 구성되는 노즐부(32)를 포함한다. 에지링(40)은 챔버(10)의 내벽에 설치되며 링지지대(41) 위에 위치한다. 1 and 2, the treatment apparatus of the present invention includes a chamber 10, a susceptor 20, a showerhead 30, and an edge ring 40. Here, the susceptor 20, the shower head 30, the edge ring 40, and the like are plasma components AP affected by the plasma. The chamber 10 defines a reaction space, and the susceptor 20 mounts the substrate 50 on the upper surface and moves up and down. In some cases, the susceptor 20 may be fixed and not move. Here, the vertical motion is taken as an example. The shower head 30 is positioned above the susceptor 20 and sprays a process gas onto the substrate 50. The shower head 30 has a gas supply pipe 12 connected through the chamber 10 to introduce the process gas from the outside. The shower head 30 includes a buffer space 31 for uniformly dispersing the inside of the shower head 30 before the process gas introduced through the gas supply pipe 12 is injected, and a nozzle part 32 composed of numerous through holes. It includes. The edge ring 40 is installed on the inner wall of the chamber 10 and is located on the ring support 41.
챔버(10)의 외부에는 플라즈마의 발생을 위해 RF전력을 공급하는 RF 전원(16)이 플라즈마전극이나 안테나에 연결된다. 상기 연결 방식은 다양하게 존재하며, 도시된 바와 같이, 플라즈마 전극을 샤워헤드(30)와 일체로 형성하고, 상기 RF전력이 전극의 중심에 인가되도록 하기 위해 가스공급관(12)에 RF전원(16)을 연결될 수 있다. 기판(50)에 입사하는 플라즈마의 에너지를 제어하기 위하여 서셉터(20)에도 별도의 RF전원을 인가되기도 한다. 도시되지는 않았지만, 서셉터(20)에는 기판(50)을 예열하거나 가열하는 히터, 기판(50)의 탑재를 위한 리프트 핀 등을 포함할 수 있다. Outside the chamber 10, an RF power source 16 for supplying RF power for generating plasma is connected to a plasma electrode or an antenna. The connection scheme is various, and as shown, the plasma electrode is integrally formed with the shower head 30, and the RF power source 16 is provided to the gas supply pipe 12 so that the RF power is applied to the center of the electrode. ) Can be connected. In order to control energy of the plasma incident on the substrate 50, a separate RF power source may also be applied to the susceptor 20. Although not shown, the susceptor 20 may include a heater for preheating or heating the substrate 50, a lift pin for mounting the substrate 50, and the like.
기판(50)이 서셉터(20)에 안치되면, 서셉터(20)가 플라즈마 처리공정의 위치까지 상승한다. 에지링(40)은 기판(50)의 가장자리를 압착하면서 함께 상승한다. 서셉터(20)를 상승시키면, 배기구(14)가 공정균일도에 악영향을 미치는 것을 방지한다. 기판(50)이 공정위치에 놓이면, 샤워헤드(30)를 통해 공정가스를 분사한 후, RF전력을 인가하여 공정가스를 강력한 반응성을 가지는 플라즈마 활성종으로 변환시킨다. 상기 활성종이 기판(50)에 대한 증착, 식각 공정 등을 수행하며, 공정진행 중에 배기구(14)를 통해 공정가스를 일정한 유량으로 배출시킬 수 있다. 소정 시간동안 처리공정을 수행한 후, 배기구(14)로 잔류가스를 배출한다. 이어서, 서셉터(20)를 하강시키고 기판(50)을 챔버(10)로부터 외부로 반출한다. When the substrate 50 is placed in the susceptor 20, the susceptor 20 is raised to the position of the plasma processing step. The edge ring 40 rises together while pressing the edges of the substrate 50. Raising the susceptor 20 prevents the exhaust port 14 from adversely affecting the process uniformity. When the substrate 50 is placed in the process position, the process gas is injected through the shower head 30, and then RF power is applied to convert the process gas into plasma active species having strong reactivity. The active paper may be deposited or etched on the substrate 50, and the process gas may be discharged at a constant flow rate through the exhaust port 14 during the process. After the treatment process is performed for a predetermined time, residual gas is discharged to the exhaust port 14. Subsequently, the susceptor 20 is lowered and the substrate 50 is carried out from the chamber 10 to the outside.
본 발명에 적용되는 보론카바이드(boron carbide)는 B4C로 대표되며, 다이아몬드, 큐빅 보론 나이트라이드에 이어 세번째로 높은 강도를 가지는 재료로서, 내화학성 및 내침식성이 매우 우수하다. 한편, 플라즈마 내식성은 부품의 결합력에 영향을 받는다. 즉, 결합력이 강할수록 내식성이 증가하며, 보론카바이드는 높은 공유 결합성으로 상기 결합력이 커서 플라즈마 내식성이 우수하다.Boron carbide applied to the present invention is represented by B 4 C, the third high strength material after diamond, cubic boron nitride, and excellent in chemical resistance and corrosion resistance. On the other hand, plasma corrosion resistance is affected by the bonding force of the parts. That is, the stronger the bonding force, the higher the corrosion resistance, and boron carbide has a high covalent bond, and thus the bonding force is large, so the plasma corrosion resistance is excellent.
이외에도, 본 발명의 범주 내에서도 다른 보론카바이드 화합물을 포함할 수 있다. 즉, 보론카바이드는 보론 및 카본을 기반(base)로 하는 모든 화합물을 지칭한다. 본 발명의 보론카바이드는 단일상 또는 복합상 중의 어느 하나일 수 있다. 여기서, 보론카바이드 단일상은 보론 및 카본의 화학양론적 상(phase)과 화학양론적 조성에서 벗어난 비화학양론적 상을 모두 포함하며, 복합상이란 보론 및 카본을 기반(base)로 하는 화합물 중의 적어도 2개가 소정의 비율로 혼합된 것을 말한다, 또한, 본 발명의 보론카바이드는 상기 보론카바이드의 단일상 또는 복합상에 불순물이 추가되어 고용체를 이루거나 또는 보론카바이드를 제조하는 공정에서 불가피하게 추가되는 불순물이 혼입된 경우도 모두 포함한다.  In addition, other boron carbide compounds may be included within the scope of the present invention. That is, boron carbide refers to all compounds based on boron and carbon. Boron carbide of the present invention may be either a single phase or a complex phase. Here, the boron carbide single phase includes both the stoichiometric phase of boron and carbon and the nonstoichiometric phase deviated from the stoichiometric composition, and the complex phase is one of the compounds based on boron and carbon. The boron carbide of the present invention is a mixture of at least two in a predetermined ratio, and in addition, the boron carbide of the present invention is added to impurities in a single phase or a complex phase of the boron carbide to form a solid solution or inevitably added in the process of preparing boron carbide. This includes all cases where impurities are mixed.
이하에서는 플라즈마 부품(AP) 중에서 에지링(40)을 중심으로 플라즈마의 영향을 살펴보기로 한다. 플라즈마를 형성하는 전력이 높아지면, 챔버(10) 내에 정재파가 형성되는 파장 효과나 전극 표면에서 전계가 중심부에 집중하는 표피 효과 등에 의해서, 대체로 기판(50)의 중심부가 극대로 되고 가장자리가 가장 낮아져서, 기판(50) 상의 플라즈마의 분포가 불균일하게 된다. 기판(50) 상에서 플라즈마 분포가 불균일하면, 플라즈마 처리가 일정하지 않게 되어 미세전자소자의 품질이 저하된다. 여기서, 플라즈마 분포는 기판(50) 및 보론카바이드 에지링(40) 상에 플라즈마가 인가되는 상태를 말하는 것으로, 상기 분포는 기판(50) 및 보론카바이드 에지링(40) 각 지점에서의 플라즈마 밀도 및 기판(50)을 향한 직진성과 연관이 있다. Hereinafter, the influence of the plasma around the edge ring 40 in the plasma component AP will be described. When the power to form the plasma is high, the center of the substrate 50 is maximized and the edge is generally the lowest due to the wavelength effect in which standing waves are formed in the chamber 10 or the skin effect in which the electric field is concentrated at the center of the electrode surface. The plasma distribution on the substrate 50 becomes nonuniform. If the plasma distribution is uneven on the substrate 50, the plasma processing becomes inconsistent and the quality of the microelectronic device is degraded. Here, the plasma distribution refers to a state in which a plasma is applied on the substrate 50 and the boron carbide edge ring 40, and the distribution indicates the plasma density at each point of the substrate 50 and the boron carbide edge ring 40. It is associated with the straightness towards the substrate 50.
기판(50)의 가장자리 근처(ED)에서, 보론카바이드 에지링(40)과의 부피 비저항 차이는 플라즈마 분포 균일성에 큰 영향을 준다. 여기서, 균일성은 플라즈마 분포의 변화 정도를 말하는 것으로, 균일성이 작으면 플라즈마 분포가 급격하게 변하고, 크면 플라즈마 분포의 변화가 완만하다. 이를 위해, 보론카바이드 에지링(40)의 부피 비저항은 기판(50)의 부피 비저항과 유사하거나 낮은 것이 바람직하다. 이렇게 되면, 플라즈마 분포는 기판(50)의 가장자리를 벗어나 보론카바이드 에지링(40)으로 확장되므로, 기판(50)의 가장자리는 상대적으로 높은 균일성을 가진다. 상기 균일성은 플라즈마 밀도 및 기판(50)을 향한 직진성이 우수하다는 것을 의미한다. 도면에서는 기판(50)의 가장자리를 벗어나는 상태를 가장자리 근처(ED)로 표현하였다. Near the edge ED of the substrate 50, the difference in volume resistivity with the boron carbide edge ring 40 has a significant impact on the plasma distribution uniformity. Here, the uniformity refers to the degree of change in the plasma distribution. When the uniformity is small, the plasma distribution changes abruptly, and when the uniformity is large, the plasma distribution changes slowly. To this end, the volume resistivity of the boron carbide edge ring 40 is preferably similar or lower than the volume resistivity of the substrate 50. In this case, since the plasma distribution extends beyond the edge of the substrate 50 to the boron carbide edge ring 40, the edge of the substrate 50 has a relatively high uniformity. The uniformity means that the plasma density and the straightness toward the substrate 50 are excellent. In the drawing, the state that deviates from the edge of the substrate 50 is expressed as near edge ED.
본 발명의 실시예에 의한 보론카바이드 에지링(40)의 부피 비저항이 기판(50)과 유사하거나 작다는 것은 다음과 같은 관점에서 설명될 수 있다. 보론카바이드 에지링(40)의 부피 비저항이 기판(50)과 유사하거나 작으면, 플라즈마 분포는 기판(50)의 가장자리를 벗어나 보론카바이드 에지링(40)으로 확장된다. 이에 따라, 본 발명의 보론카바이드 에지링(40)의 부피 비저항은 기판의 가장자리로부터 보론카바이드 에지링(40)으로 확장되어, 기판(50) 전체에 대한 플라즈마 분포가 기판(50)의 가장자리에도 균일하다고 볼 수 있다. 이와 같은 부피 비저항은 플라즈마 분포를 기판(50)의 가장자리를 벗어나 보론카바이드 에지링(40)의 확장하는 것이라고 정의할 수 있다.The volume resistivity of the boron carbide edge ring 40 according to the embodiment of the present invention is similar to or smaller than the substrate 50 can be described in the following aspects. If the volume resistivity of the boron carbide edge ring 40 is similar or smaller than the substrate 50, the plasma distribution extends beyond the edge of the substrate 50 to the boron carbide edge ring 40. Accordingly, the volume resistivity of the boron carbide edge ring 40 of the present invention extends from the edge of the substrate to the boron carbide edge ring 40 so that the plasma distribution over the entire substrate 50 is uniform even at the edge of the substrate 50. It can be said that. Such volume resistivity may be defined as extending the plasma distribution beyond the edge of the substrate 50 and extending the boron carbide edge ring 40.
본 발명의 보론카바이드 에지링(40)의 부피 비저항 105~10- 5Ωㆍcm은 기판(50)의 가장자리에서 플라즈마 분포를 균일하게 하기 위한 기술적 사상에 근거한다. 이에 따라, 상기 부피 비저항은 상기 기술적 사상을 고려하지 않고, 단순한 반복실험을 통하여 획득할 수 없는 것이다. 앞에서는, 보론카바이드 에지링(40)과 기판(50)의 부피 비저항의 관계는 에지링을 사례로 들어 설명하였다. 하지만, 샤워헤드와 같은 다른 부품의 경우에서, 보론카바이드의 부피 비저항은 플라즈마 내식성을 향상시킨다는 관점은 동일하다. Volume resistivity of 10 5 to 10 of boron carbide edge ring 40 of the present invention - 5 Ω cm and is based on the technical idea for making uniform the plasma distribution in the edge of the substrate 50. Accordingly, the volume resistivity cannot be obtained through simple repeated experiments without considering the technical idea. In the above, the relationship between the volume resistivity of the boron carbide edge ring 40 and the substrate 50 has been described taking the edge ring as an example. However, in the case of other parts such as showerheads, the view that the volume resistivity of boron carbide improves plasma corrosion resistance is the same.
이하, 보론카바이드(BC, boron carbide)를 포함하는 플라즈마 부품(AP)을 제조하는 방법을 중심으로 설명하기로 한다. 보론카바이드 플라즈마 부품(AP)은 소결 및 물리 또는 화학기상증착에 의해 제조되며 자체가 벌크(bulk) 형태의 부품이 되는 제1 방법, 모재에 접합하는 제2 방법 및 모재에 코팅하는 제3 방법으로 이루어질 수 있다. 여기서, 벌크(bulk)는 모재의 표면에 코팅되는 제3 방법의 코팅층과 구분되는 것이다. 또한, 물리 또는 화학기상증착은 소스 물질을 활용하여 보론카바이드 플라즈마 부품(AP)을 제조하는 것으로, 여타의 다른 방법(예, 소결)과 구분될 수 있다. 여기에서 제시하는 제1 내지 제3 방법은 각각에 대해 적절한 사례를 제시하는 것에 불과하므로, 본 발명의 범주 내에서 다른 방법을 포함한다.Hereinafter, a method of manufacturing a plasma component AP including boron carbide (BC) will be described. Boron carbide plasma component (AP) is produced by sintering and physical or chemical vapor deposition, the first method to be itself a bulk component, the second method of bonding to the base material and the third method of coating on the base material Can be done. Here, the bulk is distinguished from the coating layer of the third method coated on the surface of the base material. In addition, physical or chemical vapor deposition is the production of boron carbide plasma component (AP) using a source material, it can be distinguished from other methods (eg, sintering). The first to third methods presented herein are merely to provide examples appropriate for each, and therefore include other methods within the scope of the present invention.
<소결에 의한 보론카바이드 플라즈마 부품(AP)>Boron Carbide Plasma Parts by Sintering
상기 소결은 보론카바이드 분말을, 또는 보론과 탄소 혼합분말을 진공 또는 불활성기체 분위기에서 소결한다. 상기 불활성 가스는 공지의 불활성 가스이면 모두 가능하며, 바람직하게는 아르곤, 질소 등이 있다. 이와 같이 소결에 의해 제조된 보론카바이드 플라즈마 부품은 벌크(bulk) 형태인 소결체이다.The sintering sinters the boron carbide powder, or the boron and carbon mixed powder in a vacuum or inert gas atmosphere. The inert gas may be any known inert gas, and preferably argon, nitrogen, and the like. The boron carbide plasma component produced by sintering as described above is a sintered body in bulk form.
<물리 또는 화학기상증착에 의한 보론카바이드 플라즈마 부품(AP)>Boron Carbide Plasma Parts by Physical or Chemical Vapor Deposition
상기 화학기상증착은 보론 소스 및 카본 소스를 반응시켜 일정한 조건에서 모재에 증착시켜 성장시키고, 추후에 모재를 제거한 것이다. 예를 들어, 보론 프리커서(precursor)로써 B2H6, 카본 프리커서로 CH4 사용하여, 증착온도는 500~1500℃로 하여 화학기상증착 장치로 증착할 수 있다. 물리 기상증착은 타겟 자체를 보론카바이드로 하여 스퍼터하여 모재 상부에 보론카바이드가 성장되게 한 후 모재를 제거한 것이다. 이와 같이 물리 또는 화학기상증착에 의해 제조된 보론카바이드 부품은 추후의 코팅과 구분되어 벌크(bulk) 형태이다.In the chemical vapor deposition, the boron source and the carbon source are reacted to be deposited on the base material under certain conditions, grown, and subsequently, the base material is removed. For example, using B 2 H 6 as the boron precursor, CH 4 as the carbon precursor, the deposition temperature can be deposited by a chemical vapor deposition apparatus at 500 to 1500 ° C. Physical vapor deposition is sputtered with the target itself as boron carbide to allow boron carbide to grow on the base material and then remove the base material. As such, the boron carbide parts manufactured by physical or chemical vapor deposition are bulk in distinct form from later coatings.
<접합에 의한 보론카바이드 플라즈마 부품(AP)><Boron Carbide Plasma Component (AP) by Bonding>
상기 접합은 앞에서 설명한 소결 또는 화학기상증착의 보론카바이드 벌크를 모재에 결합시킨 것이고, 상기 부품(AP)은 연마 등에 의해 보론카바이드 벌크를 0.33mm 임계두께의 판(plate) 형태로 가공하여 이루어진다. 상기 가공에 의해, 보론카바이드 판이 이루어진다. 상기 접합은 반드시 이에 한정되는 것은 아니나, 융점 이하의 고온에서 보론카바이드와 모재간 압력을 가하여 계면에서의 확산을 유도하여 구현할 수 있다. 또한 상기 접합은 인듐과 같은 금속을 접합제로 접합할 수도 있고, 기타 접합테이프를 사용할 수도 있다.The bonding is a combination of the boron carbide bulk of the sintering or chemical vapor deposition described above to the base material, the part (AP) is made by processing the boron carbide bulk in the form of a plate (0.33mm) critical thickness by polishing or the like. By the above processing, a boron carbide plate is formed. The bonding is not necessarily limited thereto, but may be implemented by inducing diffusion at an interface by applying pressure between the boron carbide and the base metal at a high temperature below the melting point. In the bonding, a metal such as indium may be bonded with a bonding agent, or other bonding tape may be used.
<코팅에 의한 보론카바이드 플라즈마 부품(AP)><Boron Carbide Plasma Component (AP)>
상기 코팅에 의한 플라즈마 부품(AP)은 다양하게 변형될 수 있다. 코팅에 의해 생성되는 플라즈마 부품은 도 1 및 도 2에 설명한 플라즈마 부품(AP)이 변형된 변형예로 볼 수 있다. 이에 따라, 코팅에 의해 제조되는 플라즈마 부품을 제1 내지 제3 부품(AP1, AP2, AP3)로 명명하기로 한다. 도 3은 본 발명의 실시예에 의한 플라즈마 장치에 적용되는 제1 부품(AP1)을 나타내는 단면도이다. 이때, 플라즈마 장치는 도 1 및 도 2를 참조하기로 한다.The plasma component AP may be variously modified by the coating. The plasma component generated by the coating can be seen as a modification of the plasma component AP described in FIGS. 1 and 2. Accordingly, the plasma component manufactured by the coating will be referred to as first to third components AP1, AP2, and AP3. 3 is a cross-sectional view showing the first component AP1 applied to the plasma apparatus according to the embodiment of the present invention. In this case, the plasma apparatus will be described with reference to FIGS. 1 and 2.
도 3에 의하면, 제1 부품(AP1)은 모재(60) 및 모재(60)의 일면에 위치하는 보론카바이드 코팅층(61)을 포함하여 이루어진다. 모재(60)는 플라즈마에 내식성이 있는 세라믹 물질이 바람직하나 금속 또는 그들의 복합물이어도 무방하다. 왜냐하면, 모재(60)는 플라즈마에 의해 영향을 받지 않는 환경에 위치하고 있기 때문이다. 본 발명의 보론카바이드 코팅층(61)의 임계두께는 0.3mm의 후막(thick film)이다. 본 발명에서 명시하고자 하는 보론카바이드의 코팅은 모재(60) 전체를 내식성 재료로 구성하여 플라즈마처리 장치를 구성하기 보다는 식각이 허용되는 최대두께 범위만을 내식성 재료로 구성한다. 이를 통하여, 제품의 제조원가를 절감하고 제조 공정을 용이하게 하기 위하여 실시하는 코팅이다. 즉, 두 가지 이종 벌크(bulk) 재료를 코팅법으로 접합하는 사례 중의 하나이다. 이와 같이, 식각이 허용되는 최대 범위의 두께를 가진 코팅층(61)을 후막 코팅층(61)이라고 할 수 있다.According to FIG. 3, the first component AP1 includes a base material 60 and a boron carbide coating layer 61 positioned on one surface of the base material 60. The base material 60 is preferably a ceramic material having corrosion resistance to the plasma, but may be a metal or a composite thereof. This is because the base material 60 is located in an environment not affected by the plasma. The critical thickness of the boron carbide coating layer 61 of the present invention is a thick film of 0.3 mm. The coating of boron carbide to be specified in the present invention is composed of a corrosion-resistant material only the maximum thickness range allowed for etching, rather than the entire base material 60 is composed of a corrosion-resistant material to constitute a plasma processing apparatus. Through this, the coating is carried out to reduce the manufacturing cost of the product and to facilitate the manufacturing process. That is, one of the cases in which two heterogeneous bulk materials are joined by a coating method. As such, the coating layer 61 having a thickness in the maximum range allowed for etching may be referred to as a thick film coating layer 61.
본 발명의 실시예에 의한 내식판(61)은 임계두께를 가진다. 그 이유는 적어도 다음과 같다. 첫째, 내식판(61)을 포함하는 에지링(40)이 최초에 식각장비에 장착되면, 내식판(61)의 표면은 기판(50)의 표면과 동일선상에 놓이게 된다. 추후의 식각공정마다 기판(50)은 교체되나 에지링(40)은 동일한 것으로 계속 유지된다. 이와 같은 식각공정이 반복됨에 따라, 기판(50)의 표면과 내식판(61)의 표면 사이에는 단차가 발생하며 지속적으로 단차가 증가한다. The corrosion resistant plate 61 according to the embodiment of the present invention has a critical thickness. The reason is at least as follows. First, when the edge ring 40 including the corrosion resistant plate 61 is initially mounted on the etching equipment, the surface of the corrosion resistant plate 61 is in line with the surface of the substrate 50. The substrate 50 is replaced for each subsequent etching process but the edge ring 40 remains the same. As the etching process is repeated, a step occurs between the surface of the substrate 50 and the surface of the corrosion resistant plate 61 and the step continuously increases.
둘째, 소자의 패턴에 미세화됨에 따라 식각패턴의 종횡비가 지속적으로 증가하여 최근에는 거의 한계치에 다다르고 있다. 이러한 종횡비에 대응하는 식각을 위해서는 플라즈마 파워를 상승시켜야 한다. 플라즈마 식각에는 화학반응에 의한 화학적 식각과 물리적 이온 충돌에 의한 물리적 식각이 혼재되어 있다. 그런데, 플라즈마 파워가 커질수록 물리적 식각의 강도가 화학적 식각보다 상대적으로 커지며 소정 파워 이상에서는 압도적이 된다. 따라서 내식판(61)의 내식성을 유지하기 더욱 어려워진다. Second, as the pattern of the device becomes finer, the aspect ratio of the etching pattern continues to increase, and recently, it has almost reached its limit. For etching corresponding to this aspect ratio, the plasma power must be increased. In plasma etching, chemical etching by chemical reaction and physical etching by physical ion collision are mixed. However, as the plasma power increases, the strength of the physical etching becomes relatively larger than the chemical etching and becomes overwhelming at a predetermined power or more. Therefore, it becomes more difficult to maintain the corrosion resistance of the corrosion resistant plate 61.
셋째, 기판(50)의 표면과 내식판(61)의 표면 간의 단차가 소정두께 이상으로 벌어지면, 기판(50)의 가장자리부로 돌진하는 활성이온의 방향이 기판(50)의 표면에 수직방향으로부터 점차 사선방향으로 변하게 된다. 이러한 사선방향의 식각 이온에 의해 기판(50) 상에 식각 홀(hole) 또는 트렌치(trench)와 같은 식각 패턴 역시 사선방향으로 형성되게 된다. 사선방향은 식각막의 하지 층의 패턴으로부터 오정렬(misalignment) 현상이 발생하여 소자의 수율이 감소하게 된다. 따라서, 상기 오정렬이 허용되는 한계가 되는 최대 식각두께와 최대한 많은 수의 기판(50)을 식각 가공하여 장비의 생산성을 유지하기 위한 최소한의 식각두께 한계치를 설정하여야 한다. Third, when the level difference between the surface of the substrate 50 and the surface of the corrosion resistant plate 61 is greater than or equal to a predetermined thickness, the direction of active ions rushing to the edge of the substrate 50 is from the direction perpendicular to the surface of the substrate 50. Gradually the direction becomes oblique. By the diagonal etching ions, an etching pattern such as an etching hole or a trench is formed in the diagonal direction on the substrate 50. In the diagonal direction, misalignment occurs from the pattern of the underlying layer of the etching layer, thereby reducing the yield of the device. Therefore, the maximum etching thickness and the maximum number of substrates 50 that are the allowable misalignment should be etched to set the minimum etching thickness limit for maintaining the productivity of the equipment.
앞에서 설명한 이유를 감안한 일반적인 내식성을 위한 두께는 0.3mm 이상이어야 한다. 이러한 두께를 임계두께라고 한다. 물론, 보론카바이드 벌크로 이루어진 플라즈마 두께는 통상적으로 3mm 이내의 두께를 적용하나, 필요에 따라 그 이상의 두께도 적용할 수 있다. 왜냐하면, 플라즈마 부품(AP)의 두께는 내식성을 위한 최소한의 두께인 임계두께를 요구하기 때문이다. 상기 임계두께는 본 발명의 기술적 사상을 고려하여 설계된 것이며, 이는 플라즈마 부품(AP)의 반복실험으로 얻을 수 없다.Considering the reasons mentioned above, the thickness for general corrosion resistance should be more than 0.3mm. This thickness is called the critical thickness. Of course, the plasma thickness of the boron carbide bulk is generally applied to a thickness of less than 3mm, but may be applied to more than the thickness if necessary. This is because the thickness of the plasma component AP requires a critical thickness which is the minimum thickness for corrosion resistance. The critical thickness is designed in consideration of the technical idea of the present invention, which cannot be obtained by repeated experiments of the plasma component (AP).
보론카바이드 코팅층(61)을 후막으로 코팅하는 방법은 제한이 없으며, 화학기상증착법, 물리기상증착법, 상온분사법, 저온분사법, 에어졸 분사법, 플라즈마 용사법 등이 있다. 상기 화학기상증착법은 예를 들어, 보론 프리커서로 B2H6를 사용하여, 증착온도는 500~1500℃로 하여 화학기상증착 장치로 증착할 수 있다. 상기 물리기상증착법은 예를 들어, 보론카바이드 타겟(target)을 아르곤(Ar) 가스 분위기에서 스퍼터링(sputtering)할 수 있다. 화학기상증착법 및 물리기상증착법으로 형성된 코팅층(61)는 각각 후막 CVD 보론카바이드 코팅층(61) 및 후막 PVD 보론카바이드 코팅층(61)이라고 할 수 있다. The method of coating the boron carbide coating layer 61 with a thick film is not limited, and there are chemical vapor deposition, physical vapor deposition, room temperature spraying, low temperature spraying, aerosol spraying, plasma spraying, and the like. In the chemical vapor deposition method, for example, using a boron precursor B 2 H 6 , the deposition temperature can be deposited by a chemical vapor deposition apparatus to 500 ~ 1500 ℃. In the physical vapor deposition method, for example, the boron carbide target may be sputtered in an argon (Ar) gas atmosphere. The coating layer 61 formed by the chemical vapor deposition method and the physical vapor deposition method may be referred to as a thick film CVD boron carbide coating layer 61 and a thick film PVD boron carbide coating layer 61, respectively.
상기 상온분사법은 상온에서 보론카바이드 분말에 압력을 가하여 복수개의 토출구를 통하여 모재(60)에 분사하여 보론카바이드 코팅층(61)을 형성한다. 이때, 보론카바이드 분말은 진공과립 형태를 사용할 수 있다. 상기 저온분사법은 대략 상온보다 60℃ 정도보다 높은 온도에서, 압축가스의 유동에 의해 보론카바이드 분말을 복수개의 토출구를 통하여 모재(60)에 분사하여 보론카바이드 코팅층(61)을 형성한다. 상기 에어졸 분사법은 폴리에틸렌글리콜, 이소프로필알코올 등과 같은 휘발성 용매에 보론카바이드 분말을 혼합하여 에어졸 형태로 만든 후, 상기 에어졸을 모재(60)에 분사하여 보론카바이드 코팅층(61)을 형성하는 것이다. 상기 플라즈마 용사법은 고온의 플라즈마 제트 속에 보론카바이드 분말을 주입시킴으로서 플라즈마 제트 속에서 용융된 상기 분말을 초고속으로 모재(60)에 분사하여 보론카바이드 코팅층(61)을 형성한다.In the normal temperature spraying method, the boron carbide powder is sprayed onto the base material 60 through a plurality of discharge ports by applying pressure to the boron carbide powder at room temperature to form the boron carbide coating layer 61. In this case, the boron carbide powder may use a vacuum granule form. In the low temperature spraying method, the boron carbide powder is sprayed on the base material 60 through a plurality of discharge ports by the flow of compressed gas at a temperature higher than about 60 ° C. than the normal temperature to form the boron carbide coating layer 61. The aerosol injection method is to form aerosol by mixing the boron carbide powder in a volatile solvent such as polyethylene glycol, isopropyl alcohol and the like, and then spray the aerosol on the base material 60 to form a boron carbide coating layer 61. The plasma spraying method injects boron carbide powder into a high temperature plasma jet to spray the powder melted in the plasma jet to the base material 60 at high speed to form the boron carbide coating layer 61.
도 4는 본 발명의 실시예에 의한 플라즈마 장치에 적용되는 제2 부품(AP2)을 나타내는 단면도이다. 이때, 제2 부품(AP2)은 보론카바이드 코팅층(62)이 모재(60)에 덮는 형태가 다른 것을 제외하고, 제1 부품(AP1)과 동일하다. 이때, 플라즈마 장치는 도 1 및 도 2를 참조하기로 하고, 제2 부품(AP2)은 앞에서 설명한 플라즈마에 영향을 받는 부품 중의 하나로써, 에지링 등이 있다.4 is a cross-sectional view illustrating the second component AP2 applied to the plasma apparatus according to the embodiment of the present invention. In this case, the second part AP2 is the same as the first part AP1 except that the form in which the boron carbide coating layer 62 covers the base material 60 is different. In this case, the plasma apparatus will be described with reference to FIGS. 1 and 2, and the second component AP2 is one of the components affected by the plasma as described above.
도 4에 의하면, 제2 부품(AP2)의 보론카바이드 코팅층(62)은 모재(60)를 밀봉한다. 상기 밀봉이란, 모재(60)가 플라즈마에 의해 손상을 받을 수 없는 정도로 모재(60)를 덮는 플라즈마 밀봉을 말한다. 예를 들어, 모재(60)의 단면이 상면, 저면 및 측면을 가진 사각 형태라고 하면, 상기 상면은 플라즈마에 직접 노출되는 플라즈마 노출면이고, 상기 저면은 상기 상면에 대향하는 면이며, 상기 측면은 상기 상면 및 저면을 연결하는 면이라고 볼 수 있다. 제2 부품(4b)의 보론카바이드 코팅층(62)은 상기 플라즈마 노출면, 상기 측면 및 상기 저면을 덮는다. 이렇게 하면, 모재(60)에서, 플라즈마에 의해 손상을 받을 수 있는 부분을 밀봉하게 된다. 모재(60)는 금속, 세라믹 또는 그들의 복합물 중에 선택된 어느 하나로 이루어질 수 있다. According to FIG. 4, the boron carbide coating layer 62 of the second component AP2 seals the base material 60. The sealing means plasma sealing that covers the base material 60 to such an extent that the base material 60 cannot be damaged by the plasma. For example, when the cross section of the base material 60 is a quadrangular shape having a top surface, a bottom surface and a side surface, the top surface is a plasma exposure surface directly exposed to plasma, and the bottom surface is a surface opposite to the top surface, and the side surface is It can be seen as a surface connecting the top and bottom surfaces. The boron carbide coating layer 62 of the second component 4b covers the plasma exposed surface, the side surface and the bottom surface. This seals the portion of the base material 60 that may be damaged by the plasma. The base material 60 may be made of any one selected from metal, ceramic, or a composite thereof.
한편, 모재(60)가 보론카바이드 코팅층(62)에 의해 밀봉되면, 모재(60)는 굳이 플라즈마 내식성을 가지지 않아도 좋다. 모재(60)는 플라즈마 내식성과는 상관없이 전기도전도성 및 열전도성이 좋은 재료, 예컨대 금속 재질을 자유롭게 적용할 수 있다. 또한, 모재(60)는 충격흡수성이 좋은 재질을 사용할 수 있다. 예를 들어, 플라즈마와 반응하여 고체 상태의 찌꺼기가 형성되는 이트리아가 적용될 수 있고, 알루미늄이나 구리와 같이 전기전도성 및 열전도성이 좋은 재료를 적용할 수도 있다. 이에 따라, 플라즈마에 의해 부식될 가능성이 큰 금속의 경우, 이에 구애받지 않고 제2 부품(AP2)의 모재(60)로 채용할 수 있다. 이와 같이, 모재(60)를 보론카바이드 코팅층(62)으로 밀봉하면, 밀봉되지 않은 제1 부품(AP1)에 비해, 모재(60)의 선택 자유도를 크게 높일 수 있다.On the other hand, if the base material 60 is sealed by the boron carbide coating layer 62, the base material 60 may not necessarily have plasma corrosion resistance. The base material 60 may freely apply a material having good electrical conductivity and thermal conductivity, such as a metal material, regardless of plasma corrosion resistance. In addition, the base material 60 may be made of a material having good shock absorption. For example, yttria, which reacts with plasma to form solid residues, may be applied, or a material having good electrical and thermal conductivity such as aluminum or copper may be used. Accordingly, in the case of a metal which is likely to be corroded by the plasma, it can be used as the base material 60 of the second component AP2 without being limited thereto. In this way, when the base material 60 is sealed with the boron carbide coating layer 62, the degree of freedom of selection of the base material 60 can be greatly increased as compared with the unsealed first part AP1.
도 5는 본 발명의 실시예에 의한 플라즈마 장치에 적용되는 제3 부품(AP3)을 나타내는 단면도이다. 이때, 제3 부품(AP3)은 보론카바이드 코팅층(61)와 모재(60) 사이에 프라이머층(63)이 있는 것을 제외하고, 제1 부품(AP1) 및 제2 부품(AP2)과 동일하다. 이때, 플라즈마 장치는 도 1 및 도 2를 참조하기로 하고, 제3 부품(AP3)은 앞에서 설명한 플라즈마에 영향을 받는 부품 중의 하나로써, 에지링 등이 있다.5 is a cross-sectional view showing a third component AP3 applied to a plasma apparatus according to an embodiment of the present invention. In this case, the third component AP3 is the same as the first component AP1 and the second component AP2 except that the primer layer 63 is disposed between the boron carbide coating layer 61 and the base material 60. In this case, the plasma apparatus will be described with reference to FIGS. 1 and 2, and the third component AP3 is one of the components affected by the plasma as described above, and includes an edge ring and the like.
도 5에 의하면, 제3 부품(AP3)의 프라이머층(63)은 보론카바이드 코팅층(61)과 모재(60)와의 결합력을 높인다. 프라이머층(63)는 보론카바이드 코팅층(61)과 모재(60)와의 결합력의 관계를 고려하여, 예컨대 텅스텐, 니켈, 코발트를 포함하는 물질 등이 적용될 수 있다. 예를 들어, 프라이머층(63)은 반드시 이에 한정하는 것이나, 보론을 포함하는 합금, 보론이 포함된 세라믹 및 그들의 혼합물 중에서 선택된 적어도 어느 하나로 이루어진 분말을 결합재와 함께 코팅된 것일 수 있다. 프라이머층(63)은 반드시 이에 한정하는 것이나, 보론을 포함하는 합금, 보론이 포함된 세라믹 및 그들의 혼합물 중에서 선택된 적어도 어느 하나로 이루어진 물질이 단층 또는 복층으로 이루어질 수 있다. Referring to FIG. 5, the primer layer 63 of the third component AP3 increases the bonding force between the boron carbide coating layer 61 and the base material 60. The primer layer 63 may be applied to, for example, a material including tungsten, nickel, cobalt, etc. in consideration of the relationship between the bonding strength between the boron carbide coating layer 61 and the base material 60. For example, the primer layer 63 is necessarily limited thereto, but may be coated with a binder with a powder composed of at least one selected from an alloy including boron, a ceramic containing boron, and a mixture thereof. The primer layer 63 is necessarily limited thereto, but a material made of at least one selected from an alloy including boron, a ceramic containing boron, and a mixture thereof may be formed as a single layer or a multilayer.
제1 부품(AP1)의 경우 도시된 바와 같이 모재(60)와 보론카바이드 코팅층(61) 사이에 프라이머층(63)이 존재하고, 제2 부품(AP2)의 경우 모재(60)와 보론카바이드 코팅층(62) 사이에 존재한다. 이와 같이, 프라이머층(63)이 존재하면, 보론카바이드 코팅층(61, 62)과 모재(60)의 결합력이 증가되어, 플라즈마에 의한 충격에 의해 보론카바이드 코팅층(61, 62)이 손상되지 않도록 한다.In the case of the first part AP1, a primer layer 63 is present between the base material 60 and the boron carbide coating layer 61, and in the case of the second part AP2, the base material 60 and the boron carbide coating layer. It is between 62. As such, when the primer layer 63 is present, the bonding force between the boron carbide coating layers 61 and 62 and the base material 60 is increased, so that the boron carbide coating layers 61 and 62 are not damaged by the impact of plasma. .
이하, 본 발명의 플라즈마 부품의 물성을 상세하게 설명하기 위해, 다음과 같은 실시예를 제시한다. 하지만, 본 발명은 이하의 실시예에 특별히 한정되는 것은 아니다. 실시예 및 비교예에 나타내는 부품의 전기전도도(Ω㎝)는 모델명 LORESTA-GP MCP-T610(제조사, Mitsubish)으로 측정하였고, 열전도율((W/mㆍk)은 모델명 LFA 467-TMA 402 F3(제조사, NETZSCH)로 측정하였다. 또한, 식각율(%)은 CF4 가스 플라즈마로 식각을 실시한 후 두께의 변화로 비교하였다.Hereinafter, in order to explain in detail the physical properties of the plasma component of the present invention, the following examples are presented. However, the present invention is not particularly limited to the following examples. The electrical conductivity (Ωcm) of the components shown in Examples and Comparative Examples was measured by model name LORESTA-GP MCP-T610 (manufacturer, Mitsubish), and thermal conductivity ((W / m · k) was model name LFA 467-TMA 402 F3 ( Manufacturer (NETZSCH), and the etching rate (%) was compared with the change in thickness after etching with CF 4 gas plasma.
<실시예 1> <Example 1>
보론카바이드 분말에 액상의 페놀수지를 보론카바이드 중량에 대하여 각각 0.1~60중량% 혼합하여 2,200℃ 이상에서 소결 방식으로 제작된 두께 Φ50x10Tmm인 소결체를 제작하였다. 전기전도도(Ωㆍ㎝) 및 열전도율((W/mㆍk)을 앞에서 제시한 장치에 의해 측정하고, 상대밀도를 측정하였다. 0.1-60 wt% of the liquid phenolic resin was mixed with boron carbide powder to the boron carbide weight to prepare a sintered body having a thickness of Φ50x10Tmm produced by sintering at 2,200 ° C. or more. The electrical conductivity (Ω · cm) and thermal conductivity ((W / m · k) were measured by the above-described apparatus, and the relative density was measured.
<비교예 1>Comparative Example 1
탄소공급원인 액상의 페놀 수지의 공급량을 40중량%로 늘려 보론카바이드를 실시예 1과 같이 제작하여 전기전도도(Ωㆍ㎝) 및 열전도율((W/mㆍk)을 앞에서 제시한 장치에 의해 측정하고, 상대밀도를 측정하였다.Boron carbide was prepared in the same manner as in Example 1 by increasing the supply amount of the liquid phenol resin as a carbon source to 40% by weight, and the electrical conductivity (Ω · cm) and thermal conductivity ((W / m · k) were measured by the above-described apparatus. And the relative density was measured.
<비교예 2>Comparative Example 2
페놀 수지를 보론카바이드 중량에 대하여 60중량% 혼합하여 실시예 1과 같이 제작하여 전기전도도(Ωㆍ㎝) 및 열전도율((W/mㆍk)을 앞에서 제시한 장치에 의해 측정하고, 상대밀도를 측정하였다. 60 wt% of the phenol resin was mixed with respect to the weight of boron carbide, prepared as in Example 1, and the electrical conductivity (Ω · cm) and thermal conductivity ((W / m · k) were measured by the apparatus described above, and the relative density was measured. Measured.
표 1은 본 발명의 실시예 1 및 비교예 1 및 2의 전기전도도(Ωㆍ및 열전도율((W/mㆍk)을 나타낸 것이다. 이때, 전기전도도(Ωㆍ㎝) 및 열전도율((W/mㆍk)은 1회의 측정이 아닌 다수회의 측정에 의한 평균적인 값이며, 편의를 위하여 전기전도도는 10의 제곱수로 나타내었다.Table 1 shows the electrical conductivity (Ω · and thermal conductivity ((W / m · k)) of Example 1 and Comparative Examples 1 and 2 of the present invention, where electrical conductivity (Ω · cm) and thermal conductivity ((W / m · k) is an average value obtained by multiple measurements, not one measurement. For convenience, electrical conductivity is expressed as a power of 10.
구분division 페놀 수지 함량(중량%)Phenolic Resin Content (wt%) 전기전도도(Ωㆍ㎝)Electrical Conductivity (Ω · cm) 열전도율(W/mㆍk)Thermal Conductivity (W / m · k) 상대밀도(%)Relative Density (%) 식각률(%)Etch Rate (%)
비교예1Comparative Example 1 0.10.1 10-1 10 -1 2222 63.863.8 7676
비교예2Comparative Example 2 5.05.0 10-1 10 -1 2323 65.365.3 7575
실시예1Example 1 1010 10-1 10 -1 2727 77.477.4 7171
실시예2Example 2 2020 10-1 10 -1 2929 85.085.0 6868
실시예3Example 3 4040 100 10 0 3232 90.890.8 6666
실시예4Example 4 6060 100 10 0 3232 98.098.0 5757
표 1을 참조하면, 실시예 1~4 및 비교예 1~2의 전기전도도 및 열전도율은 서로 비슷하여 비교될 만한 요소는 없었다. 구체적으로, 실시예 1 전기전도도는 10-1 정도, 열전도도는 27이고, 비교예 1~2의 전기전도도는 10-1, 열전도도는 22이었다. 그런데, 비교예 1의 식각율을 76%라고 할 때, 본 발명의 실시예 1~4의 식각율은 각각 71%, 68%, 66% 및 57%이었다. 즉, 식각율은 전기전도도 및 열전도율에 무관하고 상대밀도에 영향을 받는다는 것을 확인하였다. 본 발명의 상대밀도는 63%보다 크고 99%보다 작았다. 이와 같이, 본 발명은 보론카바이드의 소결 치밀도를 페놀 수지 등을 첨가하여 향상시켜 기존 보론카바이드에 비해 플라즈마에 대하여 우수한 내식성을 구현하였다. 한편, 식각율의 차이는 플라즈마 전력이 커짐에 따라 현저하게 나타난다. Referring to Table 1, the electrical conductivity and the thermal conductivity of Examples 1 to 4 and Comparative Examples 1 to 2 are similar to each other, and there is no comparable element. Specifically, the electrical conductivity of Example 1 was about 10 −1 , the thermal conductivity was 27, the electrical conductivity of Comparative Examples 1 and 2 was 10 −1 , and the thermal conductivity was 22. By the way, when the etching rate of Comparative Example 1 is 76%, the etching rates of Examples 1 to 4 of the present invention were 71%, 68%, 66% and 57%, respectively. That is, it was confirmed that the etching rate is independent of the electrical conductivity and the thermal conductivity and is affected by the relative density. The relative density of the present invention was greater than 63% and less than 99%. As described above, the present invention improves the sintered density of boron carbide by adding phenol resin and the like, thereby achieving excellent corrosion resistance to plasma compared to conventional boron carbide. On the other hand, the difference in etching rate is remarkable as the plasma power increases.
본 발명의 실시예는 탄소공급원으로 페놀 수지를 예로 들었으나, 탄소공급원은 열분해에 의해 무정형 탄소로 공급되는 것이므로, 본 발명의 범주 내에서 페놀 수지 이외에 다른 액상 또는 고상의 탄소공급원도 동일한 기술적 사상이 적용된다. 식각율과 상대밀도의 차이는 본 발명의 범주 내에서 탄소공급원의 중량에 따라 약간씩 차이가 있다.In the embodiment of the present invention, a phenol resin is used as the carbon source, but the carbon source is supplied as amorphous carbon by pyrolysis, and thus, the same technical concept is applied to other liquid or solid carbon sources other than the phenol resin within the scope of the present invention. Apply. The difference between the etching rate and the relative density is slightly different depending on the weight of the carbon source within the scope of the present invention.
본 발명의 실시예에 의한 보론카바이드로 이루어진 플라즈마 장치용 부품의 내식성은 상대 밀도가 커질수록 증가한다. Corrosion resistance of plasma component parts made of boron carbide according to an embodiment of the present invention increases as the relative density increases.
이상, 본 발명은 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않으며, 본 발명의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다. As mentioned above, although the present invention has been described in detail with reference to preferred embodiments, the present invention is not limited to the above embodiments, and various modifications may be made by those skilled in the art within the scope of the technical idea of the present invention. It is possible.
* 부호의 설명* Explanation of the sign
10; 챔버 12; 가스공급관10; Chamber 12; Gas supply pipe
20; 서셉터 30; 샤워헤드20; Susceptor 30; Shower head
40; 에지링 41; 링지지대40; Edge ring 41; Ring support
50; 기판 60; 모재 50; Substrate 60; Base material
61, 62; 보론카바이드 코팅층61, 62; Boron Carbide Coating Layer
63; 프라이머층 AP; 플라즈마 부품63; Primer layer AP; Plasma components
AP1, AP2, AP3; 제1 내지 제3 플라즈마 부품AP1, AP2, AP3; First to third plasma components

Claims (22)

  1. 플라즈마 처리를 위한 반응공간을 형성하는 챔버: 및A chamber forming a reaction space for plasma treatment: and
    상기 챔버의 내부에 위치하고 상기 플라즈마와 접촉하는 부품을 포함하고, A component located inside the chamber and in contact with the plasma;
    상기 부품은 플라즈마 내식성이 있는 보론카바이드로 이루어지며, 상기 보론카바이드는 부피 비저항 105~10- 5Ωㆍcm을 갖는 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치.The parts are made of a boron carbide in the plasma corrosion resistance, wherein the boron carbide has a volume resistivity of 10 5 to 10 - a plasma processing apparatus including a boron carbide, characterized in that Ω and having a 5 cm.
  2. 제1항에 있어서, 상기 보론카바이드는 보론 및 카본을 기반으로 하는 화합물인 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치.The plasma processing apparatus of claim 1, wherein the boron carbide is a compound based on boron and carbon.
  3. 제1항에 있어서, 상기 보론카바이드는 단일상 또는 복합상인 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치.The plasma processing apparatus of claim 1, wherein the boron carbide is a single phase or a complex phase.
  4. 제3항에 있어서, 상기 단일상은 보론 및 카본의 화학양론적 상 및 상기 화학양론적 조성을 벗어난 비화학양론적 상을 포함하는 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치.4. The plasma processing apparatus of claim 3, wherein the single phase comprises a stoichiometric phase of boron and carbon and a nonstoichiometric phase outside of the stoichiometric composition.
  5. 제3항에 있어서, 상기 단일상 또는 복합상은 상기 단일상 또는 복합상에 불순물이 추가된 고용체를 포함하는 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치.The plasma processing apparatus of claim 3, wherein the single phase or the composite phase comprises a solid solution in which impurities are added to the single phase or the composite phase.
  6. 제1항에 있어서, 상기 부품은 에지링, 포커스링 또는 샤워헤드 중에 선택된 어느 하나인 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치.The plasma processing apparatus of claim 1, wherein the component is any one selected from an edge ring, a focus ring, and a showerhead.
  7. 제1항에 있어서, 상기 부품은 서셉터에 안치된 기판의 가장자리를 압착하는 에지링이고, 상기 플라즈마의 분포는 상기 기판의 가장자리를 벗어나 확장되는 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치.The plasma processing apparatus of claim 1, wherein the component is an edge ring that compresses an edge of a substrate placed on a susceptor, and the distribution of the plasma extends beyond an edge of the substrate.
  8. 제1항에 있어서, 상기 부품은 소결된 벌크(bulk) 형태인 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치The plasma processing apparatus of claim 1, wherein the component is in a sintered bulk form.
  9. 제1항에 있어서, 상기 부품은 물리 또는 화학기상증착된 벌크(bulk) 형태인 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치.2. The plasma processing apparatus of claim 1, wherein the component is in the form of a physical or chemical vapor deposited bulk.
  10. 제1항에 있어서, 상기 부품은 모재의 일면에 접합되고 임계두께가 0.3mm인 보론카바이드 판(plate)을 포함하는 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치.The plasma processing apparatus of claim 1, wherein the component comprises a boron carbide plate bonded to one surface of the base material and having a critical thickness of 0.3 mm.
  11. 제1항에 있어서, 상기 부품은 모재의 일면에 위치하고 임계두께가 0.3mm인 보론카바이드 코팅층을 포함하는 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치.The plasma processing apparatus of claim 1, wherein the component comprises a boron carbide coating layer disposed on one surface of the base material and having a critical thickness of 0.3 mm.
  12. 제1항에 있어서, 상기 부품은 모재를 밀봉하면서 임계두께가 0.3mm인 보론카바이드 코팅층을 포함하는 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치.The plasma processing apparatus of claim 1, wherein the component includes a boron carbide coating layer having a critical thickness of 0.3 mm while sealing the base material.
  13. 제11항 또는 제12항 중의 어느 한 항에 있어서, 상기 모재는 금속, 세라믹 또는 그들의 복합물 중에 선택된 어느 하나로 이루어지는 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치.The plasma processing apparatus according to any one of claims 11 to 12, wherein the base material is any one selected from a metal, a ceramic, or a composite thereof.
  14. 플라즈마 처리를 위한 반응공간을 형성하는 챔버: 및A chamber forming a reaction space for plasma treatment: and
    상기 챔버의 내부에 위치하고 상기 플라즈마와 접촉하는 부품을 포함하는 플라즈마 장치의 제조방법에 있어서, In the method of manufacturing a plasma device comprising a component located in the chamber and in contact with the plasma,
    상기 부품은 플라즈마 내식성이 있고, 부피 비저항 105~10- 5Ωㆍcm인 보론카바이드인 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치의 제조방법.The components and the plasma corrosion resistance, volume resistivity of 10 5 to 10 - The method of the plasma processing apparatus comprising a boron carbide, characterized in that the boron carbide and 5 Ω cm.
  15. 제14항에 있어서, 상기 부품은 소결에 의해 제조되는 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치의 제조방법.15. The method of claim 14, wherein the component is manufactured by sintering.
  16. 제14항에 있어서, 상기 부품은 물리 또는 화학기상증착에 의해 제조되는 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치의 제조방법.15. The method of claim 14, wherein the component is manufactured by physical or chemical vapor deposition.
  17. 제14항에 있어서, 상기 부품은 모재에 임계두께가 0.3mm인 보론카바이드 판(plate)이 접합되어 형성되는 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치의 제조방법.15. The method of claim 14, wherein the component is formed by bonding a boron carbide plate having a critical thickness of 0.3 mm to a base material.
  18. 제17항에 있어서, 상기 보론카바이드 판(plate)은 벌크 형태의 보론카바이드를 0.3mm의 임계두께로 가공하여 이루어지는 것을 특징으로 하는 보론카바이드를 포하는 플라즈마 처리장치의 제조방법.18. The method of claim 17, wherein the boron carbide plate is formed by processing bulk boron carbide to a critical thickness of 0.3 mm.
  19. 제17항에 있어서, 상기 접합은 보론카바이드와 모재에 열과 압력을 가하여 계면에서의 확산을 유도하거나 금속접합제로 접합하거나 또는 접합테이프로 접합하여 이루어지는 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치의 제조방법.18. The plasma processing apparatus of claim 17, wherein the bonding is performed by applying heat and pressure to the boron carbide and the base material to induce diffusion at an interface, bonding with a metal bonding agent, or bonding with a bonding tape. Manufacturing method.
  20. 제14항에 있어서, 상기 부품은 모재 상에 임계두께가 0.3mm인 보론카바이드 코팅층을 형성하여 이루어지는 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치의 제조방법.15. The method of claim 14, wherein the component is formed by forming a boron carbide coating layer having a critical thickness of 0.3 mm on a base material.
  21. 제14항에 있어서, 상기 부품은 모재를 임계두께가 0.3mm인 보론카바이드 코팅층으로 감싸서 형성되는 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치의 제조방법.15. The method of claim 14, wherein the component is formed by wrapping a base material with a boron carbide coating layer having a critical thickness of 0.3 mm.
  22. 제20항 또는 제21항의 어느 한 항에 있어서, 상기 보론카바이드 코팅층은 분사법 또는 용사법으로 형성하는 것을 특징으로 하는 보론카바이드를 포함하는 플라즈마 처리장치의 제조방법.22. The method according to any one of claims 20 and 21, wherein the boron carbide coating layer is formed by spraying or spraying.
PCT/KR2018/008595 2017-02-14 2018-07-30 Plasma treatment device comprising boron carbide, and manufacturing method therefor WO2019156296A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20170019787 2017-02-14
KR10-2018-0016746 2018-02-12
KR1020180016746A KR20180093814A (en) 2017-02-14 2018-02-12 Plasma processing apparatus having boron carbide and method of manufacturing the apparatus

Publications (1)

Publication Number Publication Date
WO2019156296A1 true WO2019156296A1 (en) 2019-08-15

Family

ID=63452948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008595 WO2019156296A1 (en) 2017-02-14 2018-07-30 Plasma treatment device comprising boron carbide, and manufacturing method therefor

Country Status (2)

Country Link
KR (2) KR20180093814A (en)
WO (1) WO2019156296A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200019068A (en) * 2018-08-13 2020-02-21 에스케이씨솔믹스 주식회사 Boroncarbide sintered body and etch apparatus comprising the same
KR102132251B1 (en) * 2019-01-31 2020-07-09 비씨엔씨 주식회사 Method of manufacturing a cylinder or a ring type boron carbaide sintered body and method of manufacturing a edge ring for plasma device using thereof
KR102266986B1 (en) * 2020-02-12 2021-06-21 에스케이씨솔믹스 주식회사 A focus ring, method for preparing a focus ring, and method for preparing a semiconductor element
CN115210197A (en) * 2020-02-12 2022-10-18 Skc索密思株式会社 Ceramic member and plasma etching apparatus including the same
KR102262340B1 (en) * 2020-07-02 2021-06-09 주식회사 티씨케이 Boron carbide material
KR102419533B1 (en) * 2021-11-25 2022-07-11 비씨엔씨 주식회사 Edge ring for semiconductor manufacturing process with dense boron carbide layer advantageous for minimizing particle generation, and the manufacturing method for the same
WO2024010100A1 (en) * 2022-07-04 2024-01-11 주식회사 티씨케이 Semiconductor manufacturing part including boron carbide plasma-resistance member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030063486A (en) * 2000-12-29 2003-07-28 램 리서치 코포레이션 Carbonitride coated component of semiconductor processing equipment and method of manufacturing thereof
KR20040101330A (en) * 2002-03-21 2004-12-02 램 리서치 코포레이션 Low contamination components for semiconductor processing apparatus and methods for making components
KR100588265B1 (en) * 1996-12-19 2006-08-30 어플라이드 머티어리얼스, 인코포레이티드 Boron carbide parts and coatings in a plasma reactor
JP2009127079A (en) * 2007-11-22 2009-06-11 Densho Engineering Co Ltd Member in plasma processing container, and its manufacturing method
JP2010156009A (en) * 2008-12-26 2010-07-15 Hitachi High-Technologies Corp Method for forming thermal spray coating in plasma etching apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100588265B1 (en) * 1996-12-19 2006-08-30 어플라이드 머티어리얼스, 인코포레이티드 Boron carbide parts and coatings in a plasma reactor
KR20030063486A (en) * 2000-12-29 2003-07-28 램 리서치 코포레이션 Carbonitride coated component of semiconductor processing equipment and method of manufacturing thereof
KR20040101330A (en) * 2002-03-21 2004-12-02 램 리서치 코포레이션 Low contamination components for semiconductor processing apparatus and methods for making components
JP2009127079A (en) * 2007-11-22 2009-06-11 Densho Engineering Co Ltd Member in plasma processing container, and its manufacturing method
JP2010156009A (en) * 2008-12-26 2010-07-15 Hitachi High-Technologies Corp Method for forming thermal spray coating in plasma etching apparatus

Also Published As

Publication number Publication date
KR20180093814A (en) 2018-08-22
KR20200020764A (en) 2020-02-26

Similar Documents

Publication Publication Date Title
WO2019156296A1 (en) Plasma treatment device comprising boron carbide, and manufacturing method therefor
US20170345691A1 (en) Substrate support assembly
KR102395205B1 (en) Slurry plasma spray of plasma resistant ceramic coating
CN101501834B (en) Electrostatic chuck device
US20230122695A1 (en) Corrosion resistant ground shield of processing chamber
US20140177123A1 (en) Single-body electrostatic chuck
CN111454080B (en) Copper-clad or copper-clad alloy aluminum oxide ceramic substrate and preparation method thereof
WO2014089244A1 (en) Substrate support assembly having a plasma resistant protective layer
KR20200019069A (en) Ring type component for etching apparatus and method for etching substrate with the same
CN104112635A (en) Cold spray barrier coated component of a plasma processing chamber and method of manufacture thereof
WO2009091214A2 (en) Substrate-supporting device, and a substrate-processing device having the same
CN101577211B (en) Reaction chamber component resisting plasma corrosion, preparation method thereof and plasma reaction chamber comprising same
CN101191203A (en) Plasma reactor substrate mounting surface texturing
CN112899607A (en) Method for coating nickel or nickel alloy on surface of alumina ceramic
KR101941232B1 (en) Part for semiconductor manufactoring, part for semiconductor manufactoring including complex coating layer and method of manufacturning the same
KR102104158B1 (en) Plasma processing apparatus having reaction bonded boron carbide and method of manufacturing the apparatus
KR101849038B1 (en) Parts for plasma processing apparatus having tungsten carbide layer and method of manufacturing the parts
KR101870051B1 (en) Parts for plasma processing apparatus having tungsten carbide bulk
KR101849037B1 (en) Parts for plasma processing apparatus having tungsten based corrosion-resisting plate and method of manufacturing the parts
CN100479111C (en) Plasma processing apparatus
KR101849039B1 (en) Parts for plasma processing apparatus having tungsten base coating layer and method of manufacturing the parts
KR102039798B1 (en) Method of manufacturing Parts for plasma processing apparatus having tungsten carbide
WO2017222201A1 (en) Component made of tungsten carbide bulk for plasma device
KR20180065899A (en) Plasma processing apparatus having tungsten boride and method of manufacturing the apparatus
WO2024101896A1 (en) High-temperature electrostatic chuck

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904639

Country of ref document: EP

Kind code of ref document: A1