WO2019156282A1 - Combination fine dust and nitrogen oxide removal device using pulse - Google Patents

Combination fine dust and nitrogen oxide removal device using pulse Download PDF

Info

Publication number
WO2019156282A1
WO2019156282A1 PCT/KR2018/002831 KR2018002831W WO2019156282A1 WO 2019156282 A1 WO2019156282 A1 WO 2019156282A1 KR 2018002831 W KR2018002831 W KR 2018002831W WO 2019156282 A1 WO2019156282 A1 WO 2019156282A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust
unit
exhaust gas
dust collecting
fine dust
Prior art date
Application number
PCT/KR2018/002831
Other languages
French (fr)
Korean (ko)
Inventor
권경남
최태주
권경우
박영옥
김광득
나임하솔리
전성민
이강산
이재랑
Original Assignee
주식회사와이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사와이티 filed Critical 주식회사와이티
Publication of WO2019156282A1 publication Critical patent/WO2019156282A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/14Plant or installations having external electricity supply dry type characterised by the additional use of mechanical effects, e.g. gravity
    • B03C3/155Filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • B01D46/023Pockets filters, i.e. multiple bag filters mounted on a common frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/01Pretreatment of the gases prior to electrostatic precipitation
    • B03C3/013Conditioning by chemical additives, e.g. with SO3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/017Combinations of electrostatic separation with other processes, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/09Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces at right angles to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • B03C3/361Controlling flow of gases or vapour by static mechanical means, e.g. deflector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/08Ionising electrode being a rod
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode with two or more serrated ends or sides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/30Details of magnetic or electrostatic separation for use in or with vehicles

Definitions

  • the present invention relates to a combination type dust and nitrogen oxide removal device, and more particularly to the combined fine dust and nitrogen oxide using a pulse to remove the fine dust and nitrogen oxides are introduced using a pulse to have an electrostatic force more efficiently. Relates to a removal device.
  • Fine dust among representative air pollutants has a particle size range of 0.1 ⁇ 10 ⁇ m, mainly fossil fuel combustion, power plant, waste incineration process, blast furnace and arcon of steel making process, heat treatment facility, petroleum refining and petrochemical product manufacturing process. It is becoming.
  • the electrostatic precipitator In the case of the electrostatic precipitator, the electrostatic principle by the corona discharge is used, and the initial installation cost and the operation cost are high, and since the electric resistance is affected by the type of dust particles, there is a need to cope with this.
  • the method of the filter bag duster described above should shake off fine dust collected on the surface of the filter cloth by periodic dust-drying operation, but has a disadvantage in that the periodic dust-drying operation damages the filter cloth and shortens its life.
  • the object of the present invention is to combine the fine dust and nitrogen oxide using a pulse to remove more efficiently by the fine dust and nitrogen oxides are introduced using a pulse having an electrostatic force. Relates to a removal device.
  • Combination type fine dust and nitrogen oxide removal apparatus using a pulse is an electrostatic precipitator to charge and collect the fine dust in the exhaust gas, and fine dust not collected in the electrostatic precipitating unit or
  • a dust collecting unit including a filter dust collecting unit for filtering fine dust re-spread from the electrostatic precipitating unit, and applying a pulse to the electrostatic precipitating unit and the filter dust collecting unit to drop fine dust collected on the electrostatic precipitating unit or filtered on the filter dust collecting unit.
  • the electrostatic precipitator includes first and second dust collecting modules extending in parallel to each other and spaced apart a predetermined distance, the filter dust collecting portion is located between the first and second dust collecting modules, It may extend in a direction parallel to the second dust collecting modules.
  • each of the first and second dust collecting modules may include a plurality of discharge electrodes formed in a rod shape and charged with fine dust, and a plurality of dust collectors on which fine dust charged by the discharge electrodes are adsorbed. Can be.
  • the discharge electrodes and the dust collecting poles may be alternately arranged.
  • each of the discharge electrode is connected to each other, it may be corona discharge by an externally applied pulse.
  • each of the dust collecting poles, a plane, a first end surface extending in an oblique direction from one side of the plane and a second end surface branched into a plurality of plates toward the filter dust collector from the other side of the plane It may include.
  • the dust collecting unit may further include a baffle plate disposed at a front end of the dust collecting unit to induce exhaust gas to be moved to each of the first and second dust collecting modules.
  • the filter dust collection portion may include a plurality of filter bags through which exhaust gas is passed and fine dust is removed.
  • the exhaust unit is a pulse generator for generating a pulse. It may include a pipe connected to the pulse generating unit for transmitting the pulse and a pulse line connected to the pipe to supply the pulse toward the upper portion of the dust collecting unit.
  • the mixing unit may include an injection unit for injecting a reducing agent into the exhaust gas and a mixing member positioned below the injection unit to mix the reducing agent into the exhaust gas.
  • the reducing unit may include a plurality of catalyst modules continuously arranged with respect to the traveling direction of the exhaust gas.
  • each of the catalyst modules includes a plurality of blocks extending in parallel with the traveling direction of the exhaust gas, a gap is formed between the blocks, the exhaust gas is the block along the gap Nitrogen oxides can be selectively reduced by passing through and decreasing the moving speed.
  • the reducing unit may further include a plasma unit for providing a low temperature plasma to the exhaust gas passing through the catalyst module.
  • the dust may be charged in advance by using a high voltage in the electrostatic precipitator so that the dust has a strong electrostatic force.
  • the particle charge effect is increased, while the average electric field strength and the adhesion force of the dust are lowered, thereby increasing the dust removal rate, thereby reducing reverse ionization.
  • the fine dust that is not collected in the electrostatic precipitator or re-spread by dust collection of the electrostatic precipitator has the effect of removing the ultra-fine dust and high-resistance dust by secondary collection in the filter dust collector.
  • the clogging phenomenon in the filter bag of the filter bag is significantly reduced, so that the pressure loss of the filter bags can be greatly reduced, the filtration speed is significantly improved, and the power cost is increased. It can reduce the effect of maximizing the driving performance.
  • each of the dust collecting electrodes may be formed to extend in an oblique direction to induce exhaust gas to move along the extending direction of the dust collecting modules.
  • each of the dust collecting poles is formed in a branched shape toward the filter dust collecting portion so that the fine dust not collected in the dust collecting poles can be removed by moving to the filter dust collecting portion.
  • a dust extraction unit for applying a pulse is located on the upper part of the dust collecting unit, and by applying a pulse to the dust collecting unit, impurities accumulated in the dust collecting electrode and the filter bag can be more effectively removed.
  • the mixing unit for mixing the reducing agent with respect to the exhaust gas passing through the dust collection unit and configured to further pass the reducing unit for reducing the exhaust gas mixed with the reducing agent, thereby further removing impurities not filtered by the dust collection unit through the dust collection unit.
  • the efficiency of removing impurities from the exhaust gas can be improved.
  • the reduction of the nitrogen oxide may be repeatedly performed, thereby improving the removal efficiency.
  • the catalyst module may form gaps between the blocks and the blocks, thereby slowing the progress of exhaust gas to promote a reduction reaction, thereby further improving the removal efficiency.
  • FIG. 1 is a schematic diagram showing a combination type dust and nitrogen oxide removal apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of the combined fine dust and nitrogen oxide removal apparatus of FIG. 1 observed from above.
  • FIG. 2 is a schematic view of the combined fine dust and nitrogen oxide removal apparatus of FIG. 1 observed from above.
  • FIG. 3 is an exploded perspective view illustrating a dust collecting part of the combined fine dust and nitrogen oxide removing device of FIG. 1.
  • Figure 4 is a perspective view showing an example of the catalyst module of the combined fine dust and nitrogen oxide removal apparatus of FIG.
  • electrostatic precipitating unit 120 first dust collecting module
  • filter bag 170 baffle plate
  • FIG. 1 is a schematic diagram showing a combination type dust and nitrogen oxide removal apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of the combined fine dust and nitrogen oxide removal apparatus of FIG. 1 observed from above.
  • FIG. 3 is an exploded perspective view illustrating a dust collecting part of the combined fine dust and nitrogen oxide removing device of FIG. 1.
  • Figure 4 is a perspective view showing an example of the catalyst module of the combined fine dust and nitrogen oxide removal apparatus of FIG.
  • the combined fine dust and nitrogen oxide removal device 1 according to the present embodiment, the chamber 2 of the overall appearance and forming a receiving space therein, of the chamber 2
  • the chamber 2 may be formed in a square cylinder structure or a cylindrical structure such as square or rectangular, and the receiving space of the chamber 2 is a first space along the first direction X from the inlet portion 3. 10, the second space 20 and the third space 30 are sequentially divided.
  • the dust collecting unit 100 and the dust collecting unit 200 are formed in the first space 10, the mixing unit 300 is formed in the second space 20, and the reducing unit is disposed in the third space 30. 400 is formed, and the exhaust gas introduced into the inlet part 3 sequentially passes through the dust collecting unit 100 and the dust collecting part 200, the mixing part 300, and the reducing part 400. do.
  • the exhaust gas flowing into the inlet part 3 is generated from various facilities such as a waste incineration process, a blast furnace, a heat treatment facility, a petroleum refining facility, a petrochemical product manufacturing process, and includes fine dust particles and nitrogen oxides. It is done.
  • the dust collecting unit 100 includes an electrostatic precipitator 110 and the filter dust collecting unit 160.
  • the electrostatic precipitator 110 charges fine dust in the exhaust gas in advance by using a pulse applied through the dust extraction unit 200 to be described later, so that fine dust has a strong electrostatic force, and collects the charged fine dust. Do it.
  • the electrostatic precipitator 110 includes a first dust collecting module 120 and a second dust collecting module 130 which are arranged in parallel with each other in the first direction and extend in a vertical direction perpendicular to the first direction.
  • the first and second dust collecting modules 120 and 130 are located at both sides of the filter bags 161 of the filter dust collecting unit 160 which will be described later.
  • each of the first and second dust collecting modules 120 and 130 is arranged in parallel with each other in the first direction, and each of the plurality of discharge electrodes 140 is formed in a circular rod shape and charges fine dust.
  • a plurality of plates are formed to extend in contact with each other, and dust collecting electrodes 150 to which fine dust charged by the discharge electrodes 140 adhere to each other.
  • the discharge electrodes 140 and the dust collecting electrodes 150 are disposed in the plurality of spaced apart at predetermined intervals along the first direction.
  • the discharge electrodes 140 and the dust collecting electrodes 150 may have a shape in which they are alternately arranged.
  • a pulse applying unit is separately formed outside the chamber 2 to apply pulses to the discharge electrodes 140. Then, the pulse is sufficiently charged so that the corona starting voltage reaches between each of the discharge electrodes 140 and the dust collecting electrodes 150, and the corona discharge starts from the discharge electrodes 140. By the corona discharge, the insulation of the exhaust gas introduced between each of the discharge electrodes 140 and the dust collecting electrodes 150 is destroyed, so that the exhaust gas is in a plasma state, whereby a large amount of radicals and ozone are generated.
  • the exhaust gas is oxidative radicals such as O, OH, H2O, ozone (O3) and reducing agents such as H, N, NH, NH2 due to the collision of free dust with oxygen, water vapor, etc. in the exhaust gas in the plasma state
  • oxidative radicals such as O, OH, H2O, ozone (O3)
  • reducing agents such as H, N, NH, NH2 due to the collision of free dust with oxygen, water vapor, etc. in the exhaust gas in the plasma state
  • radicals are removed by adsorption on the dust collecting electrodes 150.
  • each of the discharge electrodes 140 is connected to the first tube 521 and the other end thereof is connected to the second tube 522.
  • one end of the first pipe 521 is connected to the first providing pipe 511 and the other end is connected to the second providing pipe 512.
  • the first and second providing pipes 511 and 512 are connected to the pulse applying unit to receive a pulse, and supply the provided pulse to the discharge electrodes 140 through the first pipe 521. Then, a pulse is also supplied to the second tube 522 connected to the other end of each of the discharge electrodes 140, and a corona is formed on the entire surface of the discharge electrodes 140.
  • the electrostatic precipitator 110 includes first and second dust collection modules 120 and 130 extending in parallel to each other.
  • a baffle plate 170 may be formed.
  • the baffle plate 170 may be disposed in line with the filter dust collecting unit 160 to be described later and may be positioned at the foremost end of the filter dust collecting unit 160, so that the exhaust gas flowing directly is provided directly to the filter dust collecting unit 160. Can be blocked first.
  • the baffle plate 170 is a first baffle 173 extending in diagonal directions, ie, a first diagonal direction 171 and a second diagonal direction 121, which are separated from each other based on an extension direction of the electrostatic precipitator 110. ) And a second baffle 174.
  • an angle formed by the first and second oblique directions 171 and 121 may be set in various ways, and as shown, may be selected at any angle between 90 and 180 degrees.
  • the exhaust gas introduced into the inlet part 3 is moved to the space where the first and second dust collecting modules 120 and 130 are formed by the baffle plate 170 to remove most of the fine dust. It becomes possible.
  • each of the dust collecting poles 150 may include a plate-shaped plane 151, a first end surface 152 formed on one side of the plane 151, and an agent formed on the other side of the plane 151. 2 includes an end surface 153.
  • the first end surface 152 is formed in a plate shape extending in the third oblique direction 154, and the second end surface 153 faces the filter dust collecting part 160 from the plane 151. It is formed in the shape of a plurality of branched plates.
  • the third oblique direction 154 may have the same or a predetermined angle as the first oblique direction 171 and may be defined as a direction inclined with respect to the first direction X as a whole. Can be.
  • both of the first and second dust collecting modules 120 and 130 include the dust collecting poles 150
  • the first and second dust collecting modules 120 and 130 are formed by the baffle plate 170.
  • the third oblique direction 154 is formed by the first end surface 152 formed on the dust collecting poles 150 of each of the first and second dust collecting modules 120 130.
  • fine dust not removed by the electrostatic precipitator 110 may be formed by the second end surface 153 formed on the respective dust collecting electrodes 150, that is, the second end surface 153. As it is configured in a branched shape to face the filter bags 161 of the filter dust collector, movement to the filter bags 161 is induced and further removed by the filter bags 161.
  • the filter dust collecting unit 160 since the first and second dust collecting modules 120 and 130 are located at both sides, between the first and second dust collecting modules 120 and 130. Will be located.
  • the filter dust collecting unit 160 collects fine dust that is not collected in the electrostatic precipitating unit 110 or is re-scattered due to the exhaustion of the electrostatic precipitating unit 110. That is, as described above, the fine dust that is not removed by the first and second dust collecting modules 120 and 130 is separated by the filter dust collecting part by the second end surface 153 of each of the dust collecting poles 150. When the movement is guided to 160, the bag filter 160 collects and removes the fine dust.
  • the filter dust collecting unit 160 is formed in a cylindrical shape, each of which has an upper end and a lower end, and includes a plurality of filter bags 161 for removing fine dust.
  • the exhaust gas is first collected by the electrostatic precipitator 110 and then is not collected by the electrostatic precipitator 110 or re-spread due to exhaustion of the electrostatic precipitator 110.
  • fine dust is collected in the filter bags 161 of the filter bag 160, clogging of the filter bags 161 may be reduced, and the filtration speed of the filter bags 161 may be significantly improved. have.
  • the filter bags 161 are disposed one by one between the pair of dust collectors 150 arranged adjacent to each other in the first direction, and thus, each of the filter bags 161 is respectively
  • the discharge electrodes 140 may be arranged in parallel with each other.
  • the dust collecting unit 100 formed as a structure including the electrostatic precipitating unit 110 and the filter dust collecting unit 160 may be provided as two dust collecting units inside the chamber 2 as shown in FIG. 2.
  • the number of dust collecting units 100 may be variously changed according to the width of the chamber 2.
  • the dust collecting part 200 is formed on the dust collecting unit 100 to apply a pulse to each of the electrostatic precipitating unit 110 and the filter dust collecting unit 160. Accordingly, the fine dust collected in the dust collecting electrodes 150 and the fine dust filtered on the surfaces of the filter bags 161 fall.
  • the exhaust unit 200 includes a pulse generator 210, a pipe 220, and a pulse line 230.
  • the pulse generator 210 generates a pulse and supplies the pulse to the pulse line 230 through the pipe 220, and the pulse line 230 supplies the supplied pulse to the electrostatic precipitator 110 and the filtration. It is provided to the dust collector 160.
  • the pulse line 230 is formed to branch toward the respective filter bags 161 from the pipe 220 when a plurality of filter bags 161 are arranged.
  • pressure is applied from the upper portion to the lower portion of the electrostatic precipitator 110 and the filter precipitating unit 160 by the pulses. It will fall from the surface of the field 161 and settle downward.
  • the fine dust settled downward is accumulated by the first hopper 5a and the second hopper 5b.
  • a valve (not shown) may be formed at the lower portions of the first and second hoppers 5a and 5b to discharge the fine dust downward through opening when a predetermined amount or more of fine dust is accumulated. have.
  • fine dust accumulated in the dust collecting electrodes 150 and the filter bags 161 may be more effectively removed at the same time.
  • the exhaust gas from which the fine dust is removed is discharged through the outlet part 4 after passing through the mixing part 300 and the reducing part 400.
  • the mixing unit 300 injects and mixes a reducing agent into the exhaust gas passing through the dust collecting unit 100, and the reducing unit 400 selectively selects nitrogen oxides in the exhaust gas passing through the mixing unit 300. Reduced to remove.
  • the mixing unit 300 is uniformly mixed with a reducing agent before the exhaust gas passing through the dust collecting unit 100 is supplied to the reducing unit 400 to remove the nitrogen oxides by the reducing unit 400 efficiency
  • the right side of the dust collecting unit 100 that is, is formed in the second space 20 formed between the dust collecting unit 100 and the reducing unit 400.
  • the mixing part 300 includes an injection part 310 and a mixing member 320.
  • the injection unit 310 injects a reducing agent into the exhaust gas collected by the dust collecting unit 100
  • the reducing agent may be, for example, ammonia (NH3) or urea (Urea).
  • the injection unit 310 may be connected to a storage tank and a pump for storing and supplying the reducing agent may be supplied with the reducing agent from the storage tank and the pump.
  • the mixing member 320 is positioned below the injection unit 310 to mix the reducing agent injected from the injection unit 310 and the exhaust gas.
  • the mixing member 320 may include a first mixing member 321 and a second mixing member 322 that are spaced apart from each other by a predetermined interval up and down.
  • the reducing agent injected from the injection unit 310 is primarily mixed with the exhaust gas by the first mixing member 321, and then the secondary gas and secondary by the second mixing member 322.
  • the mixing ratio with the exhaust gas may be improved.
  • the number of the mixing members may be variously changed in consideration of the mixing speed, mixing efficiency, etc. of the exhaust gas and the reducing agent.
  • the second vane 72 and the third vane 73 for guiding the supply to the reduction unit 400 is installed.
  • the second vane 72 and the third vane 73 may be installed to be bent in a symmetrical shape to guide the lower vane 72 to move upward while moving the lower exhaust gas to the right.
  • the mixing unit 300 injects and mixes a reducing agent with the exhaust gas, and the exhaust gas mixed with the reducing agent is provided to the reducing unit 400.
  • the reduction unit 400 includes a plurality of catalyst modules 420.
  • the catalyst module 420 accelerates the reducing action of the reducing agent and the exhaust gas, and nitrogen oxide (NOx) is selectively reduced and removed from the exhaust gas through the catalyst module 420.
  • NOx nitrogen oxide
  • the plurality of catalyst modules 420 are connected in a line along the extending direction of the reducing unit.
  • the selective reduction of the nitrogen oxides is repeated a plurality of times to more effectively remove the nitrogen oxides from the exhaust gas.
  • Each of the catalyst modules 420 is composed of a pellet-shaped SCR catalyst extending in the first direction.
  • the catalyst module 420 is arranged such that a plurality of square blocks extend along an extension direction of the reduction unit 400, and the space between the blocks is either upper or lower. It is open to one side and closed on the other side.
  • the exhaust gas drawn to the open one side passes through the square blocks, the speed decreases and is then discharged to the other open side. Accordingly, as the velocity decreases through the rectangular blocks, the nitrogen oxides are reduced and thus more effective in removing the nitrogen oxides.
  • the catalyst module 420 forms a first gap 426 and a pair of first blocks 421 extending in parallel with each other, and a second gap 427. And a pair of second blocks 422 extending parallel to one another.
  • an upper portion of the first block 421 is blocked by the first blocking portion 423, and an upper portion of the second block 422 is blocked by the second blocking portion 424 and adjacent to each other. Lower spaces of the first block 421 and the second block 422 are blocked by the third blocking unit 428.
  • a through gap 425 is formed between the first and second blocks 421 and 422 adjacent to each other, the upper part of which is opened, and the lower part of which is blocked.
  • the exhaust gas passing through the reducing part 400 is introduced through the catalyst module 420 through the through gap 425, and then passes through the first block 421 or the second block 422. After passing, the lower part is discharged downward through the open first gap 426 or the second gap 427.
  • the inlet and discharge steps as described above may be repeated by the number of arrangement of the catalyst modules.
  • the reducing unit 400 may include a plasma unit (not shown) to provide a low temperature plasma to the exhaust gas moved from the mixing unit 300 to the reducing unit 400 through the plasma unit. .
  • the plasma unit provides a low temperature plasma to the catalyst module 420, whereby the nitrogen oxides (NOx) in the exhaust gas passing through the catalyst module 420 reacts with the low temperature plasma, thereby reducing the effect. Can be accelerated further.
  • NOx nitrogen oxides
  • the plasma unit may be located outside the third space 30 of the chamber 2 to provide a low temperature plasma to the catalyst module 420, the third space 30 It may be disposed inside or adjacent to the catalyst module 420 to provide a low temperature plasma.
  • the exhaust gas from which nitrogen oxide has been removed by passing through the catalyst modules 420 is discharged to the outside through the outlet portion 4.
  • the fourth vane 74 and the fifth vane 75 are installed in the shape bent symmetrically to each other in the upper portion of the reducing unit 400, the exhaust gas passing through the catalyst modules 420 is Guide to move to the outlet (4).
  • the dust can be charged in advance using a high voltage in the electrostatic precipitator so that the dust has a strong electrostatic force.
  • the particle charge effect is increased, while the average electric field strength and the adhesion force of the dust are lowered, thereby increasing the dust removal rate, thereby reducing reverse ionization.
  • fine dust that is not collected in the electrostatic precipitator or re-spread due to the exhaustion of the electrostatic precipitator is collected in the filter dust collection unit to remove ultrafine dust and high resistance dust.
  • the clogging phenomenon in the filter bag of the filter bag is significantly reduced, so that the pressure loss of the filter bags can be greatly reduced, and the filtration speed is significantly improved. It can reduce the effect of maximizing the driving performance.
  • each of the dust collecting electrodes may be formed to extend in an oblique direction to induce exhaust gas to move along the extending direction of the dust collecting modules.
  • each of the dust collecting poles is formed in a branched shape toward the filter dust collecting portion so that the fine dust not collected in the dust collecting poles can be removed by moving to the filter dust collecting portion.
  • a dust extraction unit for applying a pulse is located on the upper part of the dust collecting unit, and by applying a pulse to the dust collecting unit, impurities accumulated in the dust collecting electrode and the filter bag can be more effectively removed.
  • the mixing unit for mixing the reducing agent with respect to the exhaust gas passing through the dust collection unit and configured to further pass the reducing unit for reducing the exhaust gas mixed with the reducing agent, thereby further removing impurities not filtered by the dust collection unit through the dust collection unit.
  • the efficiency of removing impurities from the exhaust gas can be improved.
  • the reduction of the nitrogen oxide may be repeatedly performed, thereby improving the removal efficiency.
  • the catalyst module may form gaps between the blocks and the blocks, thereby slowing the progress of exhaust gas to promote a reduction reaction, thereby further improving the removal efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)
  • Electrostatic Separation (AREA)

Abstract

A combination fine dust and nitrogen oxide removal device comprises: a dust collection unit including an electric dust collection part for charging and collecting fine dust in an exhaust gas and a dust collection filter part for filtering fine dust which has not been collected by the electric dust collection part or fine dust which has been re-scattered in the electric dust collection part; a dust removal unit for applying pulses to the electric dust collection part and the dust collection filter part to drop the fine dust collected by the electric dust collection part or filtered by the dust collection filter part; a mixing unit for mixing a reducing agent with the exhaust gas that has passed through the dust collection unit; and a reducing unit for selectively reducing and removing nitrogen oxides from the exhaust gas mixed with the reducing agent.

Description

펄스를 이용한 조합형 미세먼지 및 질소산화물 제거 장치Combined fine dust and nitrogen oxide removal device using pulse
본 발명은 조합형 미세먼지 및 질소산화물 제거장치에 관한 것으로, 보다 상세하게는 펄스를 이용하여 유입되는 미세먼지 및 질소산화물이 정전기력을 갖도록 하여 보다 효율적으로 제거되도록 하는 펄스를 이용한 조합형 미세먼지 및 질소산화물 제거 장치에 관한 것이다. The present invention relates to a combination type dust and nitrogen oxide removal device, and more particularly to the combined fine dust and nitrogen oxide using a pulse to remove the fine dust and nitrogen oxides are introduced using a pulse to have an electrostatic force more efficiently. Relates to a removal device.
대표적인 대기오염물질 중 미세먼지는 입자크기 범위가 0.1 ~ 10㎛로써 주로 화석연료연소로, 발전소, 폐기물 소각공정, 제철제강 공정의 용광로 및 아크론, 열처리 시설, 석유정재 및 석유화학제품 제조공정 등에서 발생되고 있다.Fine dust among representative air pollutants has a particle size range of 0.1 ~ 10㎛, mainly fossil fuel combustion, power plant, waste incineration process, blast furnace and arcon of steel making process, heat treatment facility, petroleum refining and petrochemical product manufacturing process. It is becoming.
이러한 산업공정에서 배출되는 미세먼지입자와 질소산화물의 제거를 위해서 전기집진기, 여과포집진기, 선택적 촉매 환원(SCR: selective catalytic reduction) 등의 방법이 사용되고 있다.In order to remove fine dust particles and nitrogen oxides discharged from such industrial processes, methods such as an electrostatic precipitator, a bag filter, and a selective catalytic reduction (SCR) are used.
전기집진기의 경우, 코로나 방전에 의한 정전기적 원리를 이용한 것으로, 초기 설치비와 운영비가 높으며 먼지입자의 종류에 따라 전기저항의 영향을 받으므로 이에 대한 대처가 필요한 단점이 있다.In the case of the electrostatic precipitator, the electrostatic principle by the corona discharge is used, and the initial installation cost and the operation cost are high, and since the electric resistance is affected by the type of dust particles, there is a need to cope with this.
여과집진장치의 경우, 먼지 등이 집진필터에 축적되는 경우 물리적 충격으로 먼지를 제거하여야 하는데 이를 통해 집진필터의 손상 또는 효율이 저하되며 먼지 제거를 위한 추가 장비나 추가 비용이 필요한 단점이 있으며, 먼지 농도가 높거나 여과속도가 빠른 경우에는 먼지 자체의 성질로 인해 먼지층이 집진필터로부터 잘 털어지지 않거나 털어진 먼지가 인접한 필터로 재부착되어 집진성능을 저하시키는 단점이 있다.In the case of the bag filter, when dust is accumulated in the filter, it is necessary to remove the dust by physical impact, which may damage or reduce the efficiency of the filter and require additional equipment or additional cost to remove the dust. If the concentration is high or the filtration speed is high, there is a disadvantage in that the dust layer is not easily shaken off from the dust collecting filter due to the nature of the dust itself, or the dust is re-attached to the adjacent filter to reduce dust collection performance.
선택적 촉매 환원의 경우, 촉매 반응기가 필요하지 않아 설치비와 운전비가 저렴한 장점은 있으나, 반응속도가 높게 유지되어야 하며 질소산화물 제거 효율이 60% 이하로 낮은 단점이 있다.In the case of selective catalytic reduction, there is an advantage that the installation cost and the operating cost is low because no catalytic reactor is required, but the reaction rate must be maintained high and the nitrogen oxide removal efficiency is low as 60% or less.
한편, 미세먼지 및 질소산화물 제거를 위해 상기와 같은 단일 구조 장치로는 고효율을 얻는데 한계가 있으므로, 이러한 점을 극복하기 위하여 두 가지 이상의 집진원리가 접목된 하이브리드형 집진장치가 개발되어 왔다.On the other hand, there is a limit in obtaining a high efficiency as a single structure device as described above for the removal of fine dust and nitrogen oxide, in order to overcome this point, a hybrid dust collector combined with two or more dust collecting principles have been developed.
즉, 상기에 기재된 여과포집진기에 의한 방식은 주기적인 탈진조작에 의해 여과포 표면에 포집된 미세 먼지를 털어줘야 하는데 오히려 주기적인 탈진조작은 여과포를 손상시켜 수명이 단축 된다는 단점이 있다.That is, the method of the filter bag duster described above should shake off fine dust collected on the surface of the filter cloth by periodic dust-drying operation, but has a disadvantage in that the periodic dust-drying operation damages the filter cloth and shortens its life.
이를 해결하기 위한 방안으로, 대한민국 공개특허 제10-2008-0101501호, 및 대한민국 공개특허 제10-2003-0024127호에서와 같이, 여과포 집진기에 전기 집진기 또는 원심 집진기와 SCR을 설치하여 미세먼지의 부하량을 감소시키고 질소산화물을 제거하는 하이브리드형 집진장치들이 개발되었다.In order to solve this problem, as in the Republic of Korea Patent Publication No. 10-2008-0101501, and the Republic of Korea Patent Publication No. 10-2003-0024127, the fine dust load by installing an electrostatic precipitator or centrifugal dust collector and SCR in the filter bag dust collector Hybrid dust collectors have been developed to reduce the nitrogen oxides and remove nitrogen oxides.
그러나, 이와 같이 현재까지 제안된 하이브리형 집진장치들의 경우 고효율의 집진성능 및 질소산화물의 제거성능을 획득하기 위해서는 한계가 있는 바 이를 해결하기 위한 신규장치의 개발이 필요한 상황이다.However, the hybrid type dust collectors proposed to date have limitations in order to obtain high efficiency dust collection performance and nitrogen oxide removal performance. Therefore, it is necessary to develop a new apparatus to solve this problem.
관련 선행기술로는 대한민국 공개특허 제10-2008-0101501호 및 대한민국 공개특허 제10-2003-0024127호가 있다. Related prior arts include Korean Patent Publication No. 10-2008-0101501 and Korean Patent Publication No. 10-2003-0024127.
이에, 본 발명의 기술적 과제는 이러한 점에서 착안된 것으로 본 발명의 목적은 펄스를 이용하여 유입되는 미세먼지 및 질소산화물이 정전기력을 갖도록 하여 보다 효율적으로 제거되도록 하는 펄스를 이용한 조합형 미세먼지 및 질소산화물 제거 장치에 관한 것이다. Accordingly, the technical problem of the present invention has been conceived in this regard, the object of the present invention is to combine the fine dust and nitrogen oxide using a pulse to remove more efficiently by the fine dust and nitrogen oxides are introduced using a pulse having an electrostatic force. Relates to a removal device.
상기한 본 발명의 목적을 실현하기 위한 일 실시예에 따른 펄스를 이용한 조합형 미세먼지 및 질소산화물 제거 장치는 배가스 중의 미세먼지를 하전시켜 포집하는 전기집진부, 및 상기 전기집진부에서 포집되지 않은 미세먼지 또는 상기 전기집진부에서 재비산된 미세먼지가 여과되는 여과집진부를 포함하는 집진유닛, 상기 전기집진부 및 상기 여과집진부로 펄스를 인가하여, 상기 전기집진부에 포집되거나 상기 여과집진부에 여과된 미세먼지를 낙하시키는 탈진부, 상기 집진유닛을 통과한 배가스를 환원제와 혼합시키는 혼합부 및 상기 환원제와 혼합된 배가스에서 질소산화물을 선택적으로 환원하여 제거하는 환원부를 포함한다.Combination type fine dust and nitrogen oxide removal apparatus using a pulse according to an embodiment for realizing the object of the present invention is an electrostatic precipitator to charge and collect the fine dust in the exhaust gas, and fine dust not collected in the electrostatic precipitating unit or A dust collecting unit including a filter dust collecting unit for filtering fine dust re-spread from the electrostatic precipitating unit, and applying a pulse to the electrostatic precipitating unit and the filter dust collecting unit to drop fine dust collected on the electrostatic precipitating unit or filtered on the filter dust collecting unit. A dust extraction unit, a mixing unit for mixing the exhaust gas passing through the dust collection unit with a reducing agent and a reducing unit for selectively reducing and removing nitrogen oxides in the exhaust gas mixed with the reducing agent.
일 실시예에서, 상기 전기집진부는 서로 평행하게 연장되며 소정 거리 이격된 제1 및 제2 집진모듈들을 포함하고, 상기 여과집진부는 상기 제1 및 제2 집진모듈들의 사이에 위치하며 상기 제1 및 제2 집진모듈들과 평행한 방향으로 연장될 수 있다.In one embodiment, the electrostatic precipitator includes first and second dust collecting modules extending in parallel to each other and spaced apart a predetermined distance, the filter dust collecting portion is located between the first and second dust collecting modules, It may extend in a direction parallel to the second dust collecting modules.
일 실시예에서, 상기 제1 및 제2 집진모듈들 각각은 막대형상으로 형성되고 미세먼지를 하전시키는 복수개의 방전극들 및 상기 방전극들에 의해 하전된 미세먼지가 흡착되는 복수개의 집진극들을 포함할 수 있다.In an embodiment, each of the first and second dust collecting modules may include a plurality of discharge electrodes formed in a rod shape and charged with fine dust, and a plurality of dust collectors on which fine dust charged by the discharge electrodes are adsorbed. Can be.
일 실시예에서, 상기 방전극들 및 상기 집진극들은 서로 교번적으로 배열될 수 있다.In one embodiment, the discharge electrodes and the dust collecting poles may be alternately arranged.
일 실시예에서, 상기 방전극들 각각의 일단 및 타단은 서로 연결되며, 외부에서 인가되는 펄스에 의해 코로나 방전될 수 있다.In one embodiment, one end and the other end of each of the discharge electrode is connected to each other, it may be corona discharge by an externally applied pulse.
일 실시예에서, 상기 집진극들 각각은, 평면, 상기 평면의 일측에서 사선방향으로 연장되는 제1 끝단면 및 상기 평면의 타측에서 상기 여과집진부를 향하여 복수개의 플레이트로 분기된 제2 끝단면을 포함할 수 있다.In one embodiment, each of the dust collecting poles, a plane, a first end surface extending in an oblique direction from one side of the plane and a second end surface branched into a plurality of plates toward the filter dust collector from the other side of the plane It may include.
일 실시예에서, 상기 집진유닛은 상기 집진유닛의 전단(前端)에 배치되어, 배가스가 상기 제1 및 제2 집진모듈들 각각으로 이동되도록 유도하는 배플 플레이트를 더 포함할 수 있다.In one embodiment, the dust collecting unit may further include a baffle plate disposed at a front end of the dust collecting unit to induce exhaust gas to be moved to each of the first and second dust collecting modules.
일 실시예에서, 상기 여과집진부는 배가스가 통과되며 미세먼지가 제거되는 복수개의 필터백들을 포함할 수 있다.In one embodiment, the filter dust collection portion may include a plurality of filter bags through which exhaust gas is passed and fine dust is removed.
일 실시예에서, 상기 탈진부는 펄스를 생성하는 펄스 생성부. 상기 펄스 생성부와 연결되어 상기 펄스를 전달하는 배관 및 상기 배관에 연결되어 상기 집진유닛의 상부를 향하여 상기 펄스를 공급하는 펄스라인을 포함할 수 있다.In one embodiment, the exhaust unit is a pulse generator for generating a pulse. It may include a pipe connected to the pulse generating unit for transmitting the pulse and a pulse line connected to the pipe to supply the pulse toward the upper portion of the dust collecting unit.
일 실시예에서, 상기 혼합부는 상기 배가스에 환원제를 주입하는 분사부 및 상기 분사부의 하측에 위치하며 상기 환원제를 배가스에 혼합시키는 혼합부재를 포함함할 수 있다.In one embodiment, the mixing unit may include an injection unit for injecting a reducing agent into the exhaust gas and a mixing member positioned below the injection unit to mix the reducing agent into the exhaust gas.
일 실시예에서, 상기 환원부는 상기 배가스의 진행방향에 대하여 연속적으로 배열되는 복수의 촉매모듈들을 포함할 수 있다.In one embodiment, the reducing unit may include a plurality of catalyst modules continuously arranged with respect to the traveling direction of the exhaust gas.
일 실시예에서, 상기 촉매모듈들 각각은 상기 배가스의 진행방향과 평행하게 연장된 복수의 블록들을 포함하고, 상기 블록들의 사이에 갭(gap)이 형성되어, 상기 배가스는 상기 갭을 따라 상기 블록을 통과하며 이동속도가 감소하여 질소산화물이 선택적으로 환원될 수 있다.In one embodiment, each of the catalyst modules includes a plurality of blocks extending in parallel with the traveling direction of the exhaust gas, a gap is formed between the blocks, the exhaust gas is the block along the gap Nitrogen oxides can be selectively reduced by passing through and decreasing the moving speed.
일 실시예에서, 상기 환원부는 상기 촉매모듈을 통과하는 상기 배가스에 저온 플라즈마를 제공하는 플라즈마 유닛을 더 포함할 수 있다. In one embodiment, the reducing unit may further include a plasma unit for providing a low temperature plasma to the exhaust gas passing through the catalyst module.
본 발명의 실시예들에 의하면, 전기집진부에서 고전압을 사용하여 먼지를 미리 하전시켜 먼지가 강한 정전기력을 갖도록 할 수 있다. 특히, 펄스를 일정 주기로 인가하여 방전극 전체면에 코로나를 형성시킴으로써 입자 하전 효과가 상승하게 되는 반면에 평균 전계 강도와 분진의 부착력이 낮아져서 탈진율이 높아지기 때문에 역전리를 감소시킬 수 있다.According to embodiments of the present invention, the dust may be charged in advance by using a high voltage in the electrostatic precipitator so that the dust has a strong electrostatic force. In particular, by applying pulses at regular intervals to form corona on the entire surface of the discharge electrode, the particle charge effect is increased, while the average electric field strength and the adhesion force of the dust are lowered, thereby increasing the dust removal rate, thereby reducing reverse ionization.
또한, 전기집진부에서 포집되지 않거나 전기집진부의 탈진으로 재비산된 미세먼지는 여과집진부에서 2차 포집됨으로써 초미세먼지 및 고저항 분진까지 제거할 수 있는 효과가 있다. In addition, the fine dust that is not collected in the electrostatic precipitator or re-spread by dust collection of the electrostatic precipitator has the effect of removing the ultra-fine dust and high-resistance dust by secondary collection in the filter dust collector.
또한, 배가스에 함유된 미세먼지가 1차적으로 전기집진부에 포집됨으로써 여과집진부의 필터백들에서는 막힘 현상이 대폭 줄어들기 때문에 필터백들의 압력손실을 크게 줄일 수 있고, 여과속도가 현저히 향상되며, 동력비를 절감할 수 있어 운전성능을 극대화 시킬 수 있는 효과가 있다.In addition, since the fine dust contained in the exhaust gas is first collected in the electrostatic precipitator, the clogging phenomenon in the filter bag of the filter bag is significantly reduced, so that the pressure loss of the filter bags can be greatly reduced, the filtration speed is significantly improved, and the power cost is increased. It can reduce the effect of maximizing the driving performance.
또한, 배플 플레이트를 통해 배가스가 먼저 전기집진부로 이동되도록 유도함으로써 미세먼지가 먼저 전기집진부에 의해 제거되도록 가이드할 수 있다.Further, by inducing the exhaust gas to be first moved to the electrostatic precipitator through the baffle plate, fine dust may be guided to be removed by the electrostatic precipitator first.
특히, 집진극들 각각의 제1 끝단면이 사선 방향으로 연장 형성됨으로써 배가스가 집진모듈들의 연장방향을 따라 이동되도록 유도할 수 있다.In particular, the first end surface of each of the dust collecting electrodes may be formed to extend in an oblique direction to induce exhaust gas to move along the extending direction of the dust collecting modules.
한편, 집진극들 각각의 제2 끝단면은 여과집진부를 향하여 분기된 형상으로 형성됨으로써 집진극들에 포집되지 않은 미세먼지가 여과집진부로 이동하여 제거되도록 할 수 있다.On the other hand, the second end surface of each of the dust collecting poles is formed in a branched shape toward the filter dust collecting portion so that the fine dust not collected in the dust collecting poles can be removed by moving to the filter dust collecting portion.
또한, 집진유닛의 상부에는 펄스를 인가하는 탈진부가 위치하여, 상기 집진유닛으로 펄스를 인가함으로써 집진극 및 필터백에 축적되는 불순물을 보다 효과적으로 제거할 수 있다.In addition, a dust extraction unit for applying a pulse is located on the upper part of the dust collecting unit, and by applying a pulse to the dust collecting unit, impurities accumulated in the dust collecting electrode and the filter bag can be more effectively removed.
또한, 집진유닛을 통과한 배가스에 대하여 환원제를 혼합시키는 혼합부, 상기 환원제와 혼합된 배가스를 환원하는 환원부를 추가로 통과시키도록 구성함으로써, 집진유닛을 통한 집진으로 필터링되지 않은 불순물들을 추가로 제거함으로써, 배가스에 대한 불순물 제거 효율을 향상시킬 수 있다.In addition, the mixing unit for mixing the reducing agent with respect to the exhaust gas passing through the dust collection unit, and configured to further pass the reducing unit for reducing the exhaust gas mixed with the reducing agent, thereby further removing impurities not filtered by the dust collection unit through the dust collection unit. As a result, the efficiency of removing impurities from the exhaust gas can be improved.
특히, 배가스의 진행방향을 따라 복수개가 연속적으로 형성되므로 질소산화물의 환원을 반복적으로 수행할 수 있어 제거 효율이 향상될 수 있다.In particular, since a plurality is continuously formed along the traveling direction of the exhaust gas, the reduction of the nitrogen oxide may be repeatedly performed, thereby improving the removal efficiency.
나아가, 상기 촉매모듈은 블록들 및 블록들 사이의 갭들을 형성함으로써, 배가스의 진행속도를 늦추어 환원 반응을 촉진시켜 제거 효율을 보다 향상시킬 수 있다.Furthermore, the catalyst module may form gaps between the blocks and the blocks, thereby slowing the progress of exhaust gas to promote a reduction reaction, thereby further improving the removal efficiency.
도 1은 본 발명의 일 실시예에 의한 조합형 미세먼지 및 질소산화물 제거 장치를 도시한 모식도이다.1 is a schematic diagram showing a combination type dust and nitrogen oxide removal apparatus according to an embodiment of the present invention.
도 2는 도 1의 조합형 미세먼지 및 질소산화물 제거 장치를 상부에서 관찰한 모식도이다.FIG. 2 is a schematic view of the combined fine dust and nitrogen oxide removal apparatus of FIG. 1 observed from above. FIG.
도 3은 도 1의 조합형 미세먼지 및 질소산화물 제거 장치의 집진부를 도시한 분해 사시도이다.3 is an exploded perspective view illustrating a dust collecting part of the combined fine dust and nitrogen oxide removing device of FIG. 1.
도 4는 도 1의 조합형 미세먼지 및 질소산화물 제거 장치의 촉매모듈의 예를 도시한 사시도이다.Figure 4 is a perspective view showing an example of the catalyst module of the combined fine dust and nitrogen oxide removal apparatus of FIG.
* 부호의 설명* Explanation of the sign
1 : 조합형 미세먼지 및 질소산화물 제거 장치 2: 챔버1: Combined fine dust and nitrogen oxide removal device 2: Chamber
10, 20, 30 : 제1 내지 제3 공간 10, 20, 30: first to third space
71, 72, 73, 74, 75 : 제1 내지 제5 베인 100 : 집진부71, 72, 73, 74, 75: 1st-5th vane 100: Dust collector
110 : 전기집진부 120 : 제1 집진모듈110: electrostatic precipitating unit 120: first dust collecting module
130 : 제2 집진모듈 140 : 방전극들130: second dust collecting module 140: discharge electrodes
150 : 집진극들 160 : 여과집진부150: dust collecting poles 160: bag filter
161 : 필터백 170 : 배플 플레이트 161: filter bag 170: baffle plate
200 : 탈진부 300 : 혼합부200: dust exhausting unit 300: mixing unit
400 : 환원부 421 : 제1 블록400: reduction unit 421: first block
422 : 제2 블록 423 : 제1 차단부422: second block 423: first blocking unit
424 : 제2 차단부 428 : 제3 차단부424: second blocking unit 428: third blocking unit
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 실시예들을 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. As the inventive concept allows for various changes and numerous modifications, the embodiments will be described in detail in the text. However, this is not intended to limit the present invention to a specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the drawings, similar reference numerals are used for similar elements. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms.
상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. The terms are used only for the purpose of distinguishing one component from another. The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 출원에서, "포함하다" 또는 "이루어진다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. In this application, the terms "comprise" or "consist of" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
도 1은 본 발명의 일 실시예에 의한 조합형 미세먼지 및 질소산화물 제거 장치를 도시한 모식도이다. 도 2는 도 1의 조합형 미세먼지 및 질소산화물 제거 장치를 상부에서 관찰한 모식도이다. 도 3은 도 1의 조합형 미세먼지 및 질소산화물 제거 장치의 집진부를 도시한 분해 사시도이다. 도 4는 도 1의 조합형 미세먼지 및 질소산화물 제거 장치의 촉매모듈의 예를 도시한 사시도이다.1 is a schematic diagram showing a combination type dust and nitrogen oxide removal apparatus according to an embodiment of the present invention. FIG. 2 is a schematic view of the combined fine dust and nitrogen oxide removal apparatus of FIG. 1 observed from above. FIG. 3 is an exploded perspective view illustrating a dust collecting part of the combined fine dust and nitrogen oxide removing device of FIG. 1. Figure 4 is a perspective view showing an example of the catalyst module of the combined fine dust and nitrogen oxide removal apparatus of FIG.
도 1 내지 도 3을 참조하면, 본 실시예에 의한 조합형 미세먼지 및 질소산화물 제거 장치(1)는, 전체적인 외형을 형성하며 내부에 수용공간을 형성하는 챔버(2), 상기 챔버(2)의 전단에 형성되어 미세먼지 및 질소산화물이 포함된 배가스가 유입되는 유입부(3), 및 상기 챔버(2)의 후단에 형성되어 미세먼지 및 질소산화물이 제거된 배가스가 배출되는 유출부(4)를 포함한다.1 to 3, the combined fine dust and nitrogen oxide removal device 1 according to the present embodiment, the chamber 2 of the overall appearance and forming a receiving space therein, of the chamber 2 An inlet portion 3 formed at the front end to which the exhaust gas containing fine dust and nitrogen oxides is introduced, and an outlet portion 4 formed at the rear end of the chamber 2 to discharge the exhaust gas from which the fine dust and nitrogen oxides have been removed. It includes.
상기 챔버(2)는 정사각형이나 직사각형 등의 사각통 구조 또는 원통형 구조로 형성될 수 있으며, 상기 챔버(2)의 수용공간은 상기 유입부(3)에서부터 제1 방향(X)을 따라 제1 공간(10), 제2 공간(20) 및 제3 공간(30)으로 순차적으로 분할된다.The chamber 2 may be formed in a square cylinder structure or a cylindrical structure such as square or rectangular, and the receiving space of the chamber 2 is a first space along the first direction X from the inlet portion 3. 10, the second space 20 and the third space 30 are sequentially divided.
상기 제1 공간(10)에는 집진유닛(100) 및 탈진부(200)가 형성되고, 상기 제2 공간(20)에는 혼합부(300)가 형성되고, 상기 제3 공간(30)에는 환원부(400)가 형성되며, 이에 따라 상기 유입부(3)로 유입된 배가스는 상기 집진유닛(100) 및 탈진부(200), 상기 혼합부(300) 및 상기 환원부(400)를 순차적으로 통과한다.The dust collecting unit 100 and the dust collecting unit 200 are formed in the first space 10, the mixing unit 300 is formed in the second space 20, and the reducing unit is disposed in the third space 30. 400 is formed, and the exhaust gas introduced into the inlet part 3 sequentially passes through the dust collecting unit 100 and the dust collecting part 200, the mixing part 300, and the reducing part 400. do.
상기 유입부(3)로 유입되는 상기 배가스는, 폐기물 소각공정, 용광로, 열처리 시설, 석유정재시설, 석유화학제품 제조공정 등 다양한 설비로부터 발생되는 것으로, 미세먼지 입자와 질소산화물을 포함하는 것을 특징으로 한다.The exhaust gas flowing into the inlet part 3 is generated from various facilities such as a waste incineration process, a blast furnace, a heat treatment facility, a petroleum refining facility, a petrochemical product manufacturing process, and includes fine dust particles and nitrogen oxides. It is done.
보다 구체적으로, 상기 집진유닛(100)는 전기집진부(110) 및 여과집진부(160)를 포함한다.More specifically, the dust collecting unit 100 includes an electrostatic precipitator 110 and the filter dust collecting unit 160.
상기 전기집진부(110)는 후술하는 상기 탈진부(200)를 통해 인가받은 펄스를 사용하여 상기 배가스 중의 미세먼지를 미리 하전시켜 미세먼지가 강한 정전기력을 갖도록 하며, 상기 하전된 미세먼지를 포집하는 역할을 한다.The electrostatic precipitator 110 charges fine dust in the exhaust gas in advance by using a pulse applied through the dust extraction unit 200 to be described later, so that fine dust has a strong electrostatic force, and collects the charged fine dust. Do it.
상기 전기집진부(110)는 상기 제1 방향을 따라 서로 평행하게 배열되며, 상기 제1 방향에 수직인 수직 방향으로 연장된 제1 집진모듈(120) 및 제2 집진모듈(130)을 포함한다. 상기 제1 및 제2 집진모듈들(120, 130)은 후술하는 상기 여과집진부(160)의 상기 필터백들(161)의 양 측면에 위치한다. The electrostatic precipitator 110 includes a first dust collecting module 120 and a second dust collecting module 130 which are arranged in parallel with each other in the first direction and extend in a vertical direction perpendicular to the first direction. The first and second dust collecting modules 120 and 130 are located at both sides of the filter bags 161 of the filter dust collecting unit 160 which will be described later.
이 경우, 상기 제1 및 제2 집진모듈들(120, 130) 각각은 상기 제1 방향으로 서로 평행하게 배열되며, 각각은 원형의 막대형상으로 형성되고 미세먼지를 하전시키는 복수개의 방전극들(140) 및 복수개의 플레이트들이 서로 접하면서 연장되어 형성되고 상기 방전극들(140)에 의해 하전된 미세먼지가 달라붙는 집진극들(150)을 포함한다.In this case, each of the first and second dust collecting modules 120 and 130 is arranged in parallel with each other in the first direction, and each of the plurality of discharge electrodes 140 is formed in a circular rod shape and charges fine dust. ) And a plurality of plates are formed to extend in contact with each other, and dust collecting electrodes 150 to which fine dust charged by the discharge electrodes 140 adhere to each other.
즉, 상기 방전극들(140) 및 상기 집진극들(150)은 상기 제1 방향을 따라 복수개가 소정 간격으로 이격되며 배치된다. That is, the discharge electrodes 140 and the dust collecting electrodes 150 are disposed in the plurality of spaced apart at predetermined intervals along the first direction.
여기서, 상기 방전극들(140) 및 집진극들(150)은 서로 교번적으로 배열되는 형상을 이룰 수 있다.Here, the discharge electrodes 140 and the dust collecting electrodes 150 may have a shape in which they are alternately arranged.
도시하지 않았으나, 상기 챔버(2)의 외부에는 펄스인가부가 별도로 형성되어 상기 방전극들(140)에 펄스를 인가한다. 그러면, 상기 펄스가 충분히 충전되어 방전극들(140) 각각과 집진극들(150) 각각의 사이에 코로나 개시 전압이 도달하여 상기 방전극들(140)로부터 코로나 방전이 시작된다. 이와 같은 코로나 방전에 의하여 상기 방전극들(140) 각각과 상기 집진극들(150) 각각의 사이로 유입되는 배가스의 절연이 파괴됨으로써 배가스는 플라즈마 상태가 되고, 그에 따라 다량의 라디칼 및 오존이 발생된다.Although not shown, a pulse applying unit is separately formed outside the chamber 2 to apply pulses to the discharge electrodes 140. Then, the pulse is sufficiently charged so that the corona starting voltage reaches between each of the discharge electrodes 140 and the dust collecting electrodes 150, and the corona discharge starts from the discharge electrodes 140. By the corona discharge, the insulation of the exhaust gas introduced between each of the discharge electrodes 140 and the dust collecting electrodes 150 is destroyed, so that the exhaust gas is in a plasma state, whereby a large amount of radicals and ozone are generated.
상기 배가스는 플라즈마 상태에서 상기 배가스 중의 산소, 수증기 등을 포함하는 미세먼지가 자유전자들과 충돌하여 O, OH, H₂0, 오존(O3)과 같은 산화성 라디칼과 H, N, NH, NH₂ 등과 같은 환원성 라디칼로 생성되며, 생성된 라디칼들은 상기 집진극들(150)에 흡착됨으로써 제거 처리된다.The exhaust gas is oxidative radicals such as O, OH, H2O, ozone (O3) and reducing agents such as H, N, NH, NH2 due to the collision of free dust with oxygen, water vapor, etc. in the exhaust gas in the plasma state Generated by radicals, the generated radicals are removed by adsorption on the dust collecting electrodes 150.
이 경우, 상기 방전극들(140) 각각의 일단은 제1 관(521)에 연결되고 각각의 타단은 제2 관(522)에 연결된다. 또한 상기 제1 관(521)의 일단은 제1 제공관(511)과 연결되고 타단은 제2 제공관(512)과 연결된다.In this case, one end of each of the discharge electrodes 140 is connected to the first tube 521 and the other end thereof is connected to the second tube 522. In addition, one end of the first pipe 521 is connected to the first providing pipe 511 and the other end is connected to the second providing pipe 512.
상기 제1 및 제2 제공관들(511, 512)은 상기 펄스인가부와 연결되어 펄스를 제공받으며, 제공받은 펄스를 상기 제1 관(521)을 통해 상기 방전극들(140)로 공급한다. 그러면, 상기 방전극들(140) 각각의 타단과 연결된 상기 제2 관(522)에도 펄스가 공급되며 상기 방전극들(140)의 전체면에는 코로나가 형성된다.The first and second providing pipes 511 and 512 are connected to the pulse applying unit to receive a pulse, and supply the provided pulse to the discharge electrodes 140 through the first pipe 521. Then, a pulse is also supplied to the second tube 522 connected to the other end of each of the discharge electrodes 140, and a corona is formed on the entire surface of the discharge electrodes 140.
한편, 앞서 설명한 바와 같이 상기 전기집진부(110)는 서로 평행하게 연장된 제1 및 제2 집진모듈들(120, 130)을 포함한다. On the other hand, as described above, the electrostatic precipitator 110 includes first and second dust collection modules 120 and 130 extending in parallel to each other.
이 경우, 상기 배가스가 상기 제1 및 제2 집진모듈들(120, 130) 각각으로 이동됨으로써 배가스 중의 미세먼지가 효과적으로 제거되도록 하기 위해, 상기 전기집진부(110)의 전단에는 상기 배가스의 이동을 유도하는 배플 플레이트(baffle plate, 170)가 형성될 수 있다. In this case, the exhaust gas is moved to each of the first and second dust collecting modules 120 and 130 so that the fine dust in the exhaust gas is effectively removed, and the front of the electrostatic precipitator 110 induces the movement of the exhaust gas. A baffle plate 170 may be formed.
상기 배플 플레이트(170)는 후술되는 상기 여과집진부(160)와 일렬로 배치하며 상기 여과집진부(160)의 가장 앞단에 위치할 수 있어, 유입되는 상기 배가스가 상기 여과집진부(160)로 직접 제공되는 것을 1차적으로 차단할 수 있다. The baffle plate 170 may be disposed in line with the filter dust collecting unit 160 to be described later and may be positioned at the foremost end of the filter dust collecting unit 160, so that the exhaust gas flowing directly is provided directly to the filter dust collecting unit 160. Can be blocked first.
상기 배플 플레이트(170)는 상기 전기집진부(110)의 연장방향을 기준으로 서로 멀어지는 사선방향들, 즉 제1 사선방향(171) 및 제2 사선방향(121)으로 각각 연장되는 제1 배플(173) 및 제2 배플(174)을 포함한다. The baffle plate 170 is a first baffle 173 extending in diagonal directions, ie, a first diagonal direction 171 and a second diagonal direction 121, which are separated from each other based on an extension direction of the electrostatic precipitator 110. ) And a second baffle 174.
이 경우, 상기 제1 및 제2 사선방향들(171, 121)이 이루는 각은 다양하게 설정될 수 있으며, 도시된 바와 같이, 90~180도의 사이각 중 임의의 각으로 선택될 수 있다. In this case, an angle formed by the first and second oblique directions 171 and 121 may be set in various ways, and as shown, may be selected at any angle between 90 and 180 degrees.
그리하여, 상기 유입부(3)로 유입된 배가스는 상기 배플 플레이트(170)에 의해 상기 제1 및 제2 집진모듈들(120, 130) 각각이 형성된 공간으로 이동되어 함유하는 미세먼지의 대부분이 제거될 수 있게 된다.Thus, the exhaust gas introduced into the inlet part 3 is moved to the space where the first and second dust collecting modules 120 and 130 are formed by the baffle plate 170 to remove most of the fine dust. It becomes possible.
나아가, 상기 배플 플레이트(170)에 의해 상기 제1 및 제2 집진모듈들(120, 130)을 향해 이동한 배가스가 더욱 효과적으로 상기 전기집진부(110)에 의해 제거되도록 하기 위해, 도 3에 도시된 바와 같이 상기 집진극들(150) 각각은 플레이트(plate) 형상의 평면(151), 상기 평면(151)의 일측에 형성된 제1 끝단면(152), 및 상기 평면(151)의 타측에 형성된 제2 끝단면(153)을 포함한다.Furthermore, in order to more effectively remove the exhaust gas moved toward the first and second dust collecting modules 120 and 130 by the baffle plate 170, the electrostatic precipitator 110 is illustrated in FIG. 3. As described above, each of the dust collecting poles 150 may include a plate-shaped plane 151, a first end surface 152 formed on one side of the plane 151, and an agent formed on the other side of the plane 151. 2 includes an end surface 153.
상기 제1 끝단면(152)은 상기 제3 사선방향(154) 방향으로 연장된 플레이트 형상으로 형성되며, 상기 제2 끝단면(153)은 상기 평면(151)으로부터 상기 여과집진부(160)를 향하여 복수개로 분기된 플레이트 형상으로 형성된다.The first end surface 152 is formed in a plate shape extending in the third oblique direction 154, and the second end surface 153 faces the filter dust collecting part 160 from the plane 151. It is formed in the shape of a plurality of branched plates.
도시된 바와 같이, 상기 제3 사선방향(154)은 상기 제1 사선방향(171)과 동일하거나 소정의 각을 이룰 수 있으며, 전체적으로는 상기 제1 방향(X)에 대하여 경사진 방향으로 정의될 수 있다. As shown, the third oblique direction 154 may have the same or a predetermined angle as the first oblique direction 171 and may be defined as a direction inclined with respect to the first direction X as a whole. Can be.
이 경우, 상기 제1 및 제2 집진모듈들(120, 130) 모두 상기 집진극들(150)을 포함하므로, 상기 배플 플레이트(170)에 의해 상기 제1 및 제2 집진모듈들(120, 130)을 향하여 이동하도록 유도된 배가스가 상기 제1 및 제2 집진모듈들(120 130) 각각의 집진극들(150)에 형성된 상기 제1 끝단면(152)에 의해 상기 제3 사선방향(154)으로 이동이 유도됨으로써 전체적으로는 상기 제1 방향(X)으로 흐르게 되고, 이에 따라 상기 배가스 중의 미세먼지가 상기 전기집진부(110)에 의해 제거된다.In this case, since both of the first and second dust collecting modules 120 and 130 include the dust collecting poles 150, the first and second dust collecting modules 120 and 130 are formed by the baffle plate 170. The third oblique direction 154 is formed by the first end surface 152 formed on the dust collecting poles 150 of each of the first and second dust collecting modules 120 130. As a result, movement in the air flows in the first direction X as a whole, whereby fine dust in the exhaust gas is removed by the electrostatic precipitator 110.
또한 이 경우, 상기 전기집진부(110)에 의해 제거되지 않은 미세먼지는 상기 각각의 집진극들(150)에 형성된 상기 제2 끝단면(153)에 의해, 즉, 상기 제2 끝단면(153)이 상기 여과집진부의 필터백들(161)을 향하도록 분기된 형상으로 구성됨에 따라, 상기 필터백들(161)로 이동이 유도되어 상기 필터백들(161)에 의해 추가로 제거된다. Also, in this case, fine dust not removed by the electrostatic precipitator 110 may be formed by the second end surface 153 formed on the respective dust collecting electrodes 150, that is, the second end surface 153. As it is configured in a branched shape to face the filter bags 161 of the filter dust collector, movement to the filter bags 161 is induced and further removed by the filter bags 161.
한편, 상기 여과집진부(160)는 앞서 설명한 바와 같이 상기 제1 및 제2 집진모듈들(120, 130)이 양측에 위치하므로, 상기 제1 및 제2 집진모듈들(120, 130)의 사이에 위치하게 된다. On the other hand, the filter dust collecting unit 160, as described above, since the first and second dust collecting modules 120 and 130 are located at both sides, between the first and second dust collecting modules 120 and 130. Will be located.
상기 여과집진부(160)는 상기 전기집진부(110)에서 포집되지 않거나, 상기 전기집진부(110)의 탈진으로 인한 재비산된 미세먼지를 포집하는 역할을 한다. 즉, 앞서 설명한 바와 같이 상기 제1 및 제2 집진모듈들(120, 130)에 의해 제거되지 않은 미세먼지가 상기 집진극들(150) 각각의 제2 끝단면(153)에 의해 상기 여과집진부(160)로 이동이 유도되면, 상기 여과집진부(160)가 상기 미세먼지를 포집하여 제거한다.The filter dust collecting unit 160 collects fine dust that is not collected in the electrostatic precipitating unit 110 or is re-scattered due to the exhaustion of the electrostatic precipitating unit 110. That is, as described above, the fine dust that is not removed by the first and second dust collecting modules 120 and 130 is separated by the filter dust collecting part by the second end surface 153 of each of the dust collecting poles 150. When the movement is guided to 160, the bag filter 160 collects and removes the fine dust.
상기 여과집진부(160)는 각각이 상단부 및 하단부가 개구된 원기둥 형상으로 형성되며, 미세먼지를 제거하는 복수개의 상기 필터백(filter bag)들(161)을 포함한다.The filter dust collecting unit 160 is formed in a cylindrical shape, each of which has an upper end and a lower end, and includes a plurality of filter bags 161 for removing fine dust.
상기 배가스가 이와 같은 구조로 형성된 상기 필터백들(161)을 통과하면서, 상기 배가스 중에 포함된 미세먼지가 상기 필터백들(161) 각각의 외부 표면에 흡착되어 걸러지게 된다.As the exhaust gas passes through the filter bags 161 formed as described above, fine dust contained in the exhaust gas is adsorbed on the outer surface of each of the filter bags 161 and filtered.
이 경우, 앞서 설명한 바와 같이, 상기 배가스가 상기 전기집진부(110)에 의해 먼저 1차적으로 집진된 후 상기 전기집진부(110)에 의해 집진되지 않거나 상기 전기집진부(110)의 탈진으로 인해 재비산된 미세먼지가 상기 여과집진부(160)의 상기 필터백들(161)에 포집됨으로써, 상기 필터백들(161)의 막힘 현상이 줄어들며, 상기 필터백들(161)을 통한 여과속도가 현저히 향상될 수 있다.In this case, as described above, the exhaust gas is first collected by the electrostatic precipitator 110 and then is not collected by the electrostatic precipitator 110 or re-spread due to exhaustion of the electrostatic precipitator 110. As fine dust is collected in the filter bags 161 of the filter bag 160, clogging of the filter bags 161 may be reduced, and the filtration speed of the filter bags 161 may be significantly improved. have.
또한, 상기 필터백들(161)이 상기 제1 방향으로 복수개가 서로 인접하도록 배열됨에 따라 집진 효율이 보다 향상될 수 있다.In addition, as the plurality of filter bags 161 are arranged to be adjacent to each other in the first direction, dust collecting efficiency may be further improved.
나아가, 상기 필터백들(161)은 상기 제1 방향으로 서로 인접하게 배열된 한 쌍의 집진극들(150)의 사이에 한 개씩 배치되며, 이에 따라, 상기 필터백들(161) 각각은 상기 방전극들(140) 각각과 서로 나란히 배열될 수 있다. Further, the filter bags 161 are disposed one by one between the pair of dust collectors 150 arranged adjacent to each other in the first direction, and thus, each of the filter bags 161 is respectively The discharge electrodes 140 may be arranged in parallel with each other.
이와 같이 전기집진부(110) 및 여과집진부(160)를 포함하는 구조로 형성되는 집진유닛(100)은 도 2에 도시된 바와 같이 상기 챔버(2)의 내부에 2개의 집진유닛으로 구비될 수 있으며, 상기 집진유닛(100)의 개수는 상기 챔버(2)의 너비에 따라 다양하게 변경될 수 있다.The dust collecting unit 100 formed as a structure including the electrostatic precipitating unit 110 and the filter dust collecting unit 160 may be provided as two dust collecting units inside the chamber 2 as shown in FIG. 2. The number of dust collecting units 100 may be variously changed according to the width of the chamber 2.
한편, 상기 탈진부(200)는 상기 집진유닛(100)의 상부에 형성되어 상기 전기집진부(110) 및 상기 여과집진부(160) 각각에 펄스를 인가한다. 이에 따라, 상기 집진극들(150)에 포집된 미세먼지와 상기 필터백들(161)의 표면에 걸러진 미세먼지가 낙하된다.Meanwhile, the dust collecting part 200 is formed on the dust collecting unit 100 to apply a pulse to each of the electrostatic precipitating unit 110 and the filter dust collecting unit 160. Accordingly, the fine dust collected in the dust collecting electrodes 150 and the fine dust filtered on the surfaces of the filter bags 161 fall.
보다 구체적으로, 상기 탈진부(200)는 펄스 생성부(210), 배관(220), 펄스라인(230)을 포함한다.More specifically, the exhaust unit 200 includes a pulse generator 210, a pipe 220, and a pulse line 230.
상기 펄스 생성부(210)는 펄스를 생성하여 상기 배관(220)을 통해 상기 펄스라인(230)으로 공급하고, 상기 펄스라인(230)은 상기 공급받은 펄스를 상기 전기집진부(110) 및 상기 여과집진부(160)로 제공한다.The pulse generator 210 generates a pulse and supplies the pulse to the pulse line 230 through the pipe 220, and the pulse line 230 supplies the supplied pulse to the electrostatic precipitator 110 and the filtration. It is provided to the dust collector 160.
이 경우, 상기 펄스라인(230)은 상기 필터백들(161)이 복수개가 배열된 경우, 상기 배관(220)으로부터 각각의 필터백들(161)을 향해 분기되도록 형성된다.In this case, the pulse line 230 is formed to branch toward the respective filter bags 161 from the pipe 220 when a plurality of filter bags 161 are arranged.
이와 같이, 상기 펄스가 상기 펄스라인(230)을 통해 상기 전기집진부(110) 및 상기 여과 집진부(160)의 상부로 공급되면, 상기 집진극들(150)에 흡착된 미세먼지 및 상기 필터백들(161)의 표면에 붙은 미세먼지가 탈진되어 하부로 침강된다.As such, when the pulse is supplied to the upper portion of the electrostatic precipitator 110 and the filter dust collector 160 through the pulse line 230, the fine dust and filter bags adsorbed to the dust collectors 150. Fine dust adhering to the surface of 161 is exhausted and settles downward.
이 경우, 상기 펄스에 의해 상기 전기집진부(110) 및 상기 여과집진부(160)의 상부에서 하부로 압력이 가해지는데, 이때 미세먼지들이 압력을 견디지 못하여, 상기 집진극들(150) 및 상기 필터백들(161)의 표면에서 떨어지면서 하부로 침강하게 된다.In this case, pressure is applied from the upper portion to the lower portion of the electrostatic precipitator 110 and the filter precipitating unit 160 by the pulses. It will fall from the surface of the field 161 and settle downward.
이와 같이 상기 하부로 침강된 미세먼지는 제1 호퍼(5a) 및 제2 호퍼(5b)로 쌓이게 된다. 이 경우 도시하지 않았으나, 상기 제1 및 제2 호퍼들(5a, 5b)의 하부에 형성되어 일정량 이상의 미세먼지가 쌓이면 개방을 통해 상기 미세먼지를 하부로 배출하는 밸브(미도시)가 형성될 수 있다. As such, the fine dust settled downward is accumulated by the first hopper 5a and the second hopper 5b. In this case, although not shown, a valve (not shown) may be formed at the lower portions of the first and second hoppers 5a and 5b to discharge the fine dust downward through opening when a predetermined amount or more of fine dust is accumulated. have.
상기와 같이 상기 탈진부(200)에서 펄스를 공급함에 따라, 상기 집진극들(150) 및 상기 필터백들(161)에 축적되는 미세먼지를 동시에 보다 효과적으로 제거할 수 있다. As the pulse is supplied from the dust extraction unit 200 as described above, fine dust accumulated in the dust collecting electrodes 150 and the filter bags 161 may be more effectively removed at the same time.
또한, 이와 같이 미세 먼지가 제거된 배가스는 상기 혼합부(300) 및 상기 환원부(400)를 통과한 후 상기 유출부(4)를 통해서 배출되게 된다.In addition, the exhaust gas from which the fine dust is removed is discharged through the outlet part 4 after passing through the mixing part 300 and the reducing part 400.
이 경우, 상기 혼합부(300)는 상기 집진유닛(100)을 통과한 배가스에 환원제를 주입하여 혼합하고, 상기 환원부(400)는 상기 혼합부(300)를 통과한 배가스 중의 질소산화물을 선택적으로 환원시켜 제거한다.In this case, the mixing unit 300 injects and mixes a reducing agent into the exhaust gas passing through the dust collecting unit 100, and the reducing unit 400 selectively selects nitrogen oxides in the exhaust gas passing through the mixing unit 300. Reduced to remove.
보다 구체적으로, 상기 혼합부(300)는 상기 집진유닛(100)을 통과한 배가스가 상기 환원부(400)로 공급되기 전에 환원제와 균일하게 혼합시켜 상기 환원부(400)에 의한 질소산화물 제거 효율을 높이기 위한 구성으로, 상기 집진유닛(100)의 우측, 즉 상기 집진유닛(100)과 상기 환원부(400) 사이에 형성된 상기 제2 공간(20)에 형성된다. More specifically, the mixing unit 300 is uniformly mixed with a reducing agent before the exhaust gas passing through the dust collecting unit 100 is supplied to the reducing unit 400 to remove the nitrogen oxides by the reducing unit 400 efficiency In order to increase the configuration, the right side of the dust collecting unit 100, that is, is formed in the second space 20 formed between the dust collecting unit 100 and the reducing unit 400.
상기 혼합부(300)는 분사부(310) 및 혼합부재(320)를 포함한다.The mixing part 300 includes an injection part 310 and a mixing member 320.
여기서, 상기 분사부(310)는 상기 집진유닛(100)에 의해 집진된 배가스에 환원제를 주입하며, 상기 환원제는 예를 들어 암모니아(NH3) 또는 우레아(Urea)일 수 있다. 한편, 도시하지 않았으나, 상기 분사부(310)는 상기 환원제를 저장 및 공급하는 저장 탱크 및 펌프와 연결되어 상기 저장 탱크 및 상기 펌프로부터 상기 환원제를 공급받을 수도 있다.Here, the injection unit 310 injects a reducing agent into the exhaust gas collected by the dust collecting unit 100, the reducing agent may be, for example, ammonia (NH3) or urea (Urea). On the other hand, although not shown, the injection unit 310 may be connected to a storage tank and a pump for storing and supplying the reducing agent may be supplied with the reducing agent from the storage tank and the pump.
상기 혼합부재(320)는 상기 분사부(310)의 하측에 위치하여, 상기 분사부(310)에서 분사된 환원제와 상기 배가스를 혼합한다.The mixing member 320 is positioned below the injection unit 310 to mix the reducing agent injected from the injection unit 310 and the exhaust gas.
상기 혼합부재(320)는 도시된 바와 같이 상하로 소정 간격 이격 설치된 제1 혼합부재(321) 및 제2 혼합부재(322)를 포함할 수 있다. 그리하여, 상기 분사부(310)로부터 주입되는 상기 환원제는 상기 제1 혼합부재(321)에 의해 1차적으로 상기 배가스와 혼합된 후, 상기 제2 혼합부재(322)에 의해 2차적으로 상기 배가스와 혼합됨으로써 상기 배가스와의 혼합율이 향상될 수 있다.As illustrated, the mixing member 320 may include a first mixing member 321 and a second mixing member 322 that are spaced apart from each other by a predetermined interval up and down. Thus, the reducing agent injected from the injection unit 310 is primarily mixed with the exhaust gas by the first mixing member 321, and then the secondary gas and secondary by the second mixing member 322. By mixing, the mixing ratio with the exhaust gas may be improved.
이 경우, 상기 혼합부재의 개수는 상기 배가스 및 상기 환원제의 혼합속도, 혼합 효율 등을 고려하여 다양하게 변경될 수 있음은 자명하다.In this case, it is apparent that the number of the mixing members may be variously changed in consideration of the mixing speed, mixing efficiency, etc. of the exhaust gas and the reducing agent.
한편, 상기 혼합부(300)의 상부 공간에는 상기 집진유닛(100)에서 집진된 배가스가 상기 혼합부(300)로 이동이 유도 되도록 상기 혼합부(300)를 향하여 절곡된 형상으로 형성된 제1 베인(71)이 형성되고, 상기 혼합부(300)의 하부 공간에는 상기 환원제와 혼합된 배가스가 상기 환원부(400)로 이동이 유도 되도록 상기 제1 베인(71)과 같은 역할을 하도록 하강한 배가스를 가이드하여 상기 환원부(400)에 공급하기 위한 제2 베인(72) 및 제3 베인(73)이 설치된다.On the other hand, in the upper space of the mixing unit 300, the first vane formed in a shape bent toward the mixing unit 300 so that the exhaust gas collected in the dust collecting unit 100 is guided to the mixing unit 300 An exhaust gas lowered to serve as the first vane 71 so that an exhaust gas mixed with the reducing agent is induced in the lower space of the mixing part 300 so that the exhaust gas mixed with the reducing agent is induced to the reducing part 400. The second vane 72 and the third vane 73 for guiding the supply to the reduction unit 400 is installed.
이 경우, 상기 제2 베인(72) 및 상기 제3 베인(73)은 서로 대칭적인 형상으로 절곡되게 설치되어 하강한 배가스가 우측으로 이동되면서 상부로 상승하도록 가이드 할 수 있다. In this case, the second vane 72 and the third vane 73 may be installed to be bent in a symmetrical shape to guide the lower vane 72 to move upward while moving the lower exhaust gas to the right.
이와 같이, 상기 혼합부(300)에서는 상기 배가스에 환원제를 분사 및 혼합시키며, 이렇게 환원제와 혼합된 배가스는 상기 환원부(400)로 제공된다.As such, the mixing unit 300 injects and mixes a reducing agent with the exhaust gas, and the exhaust gas mixed with the reducing agent is provided to the reducing unit 400.
상기 환원부(400)는 복수의 촉매모듈(420)들을 포함한다.The reduction unit 400 includes a plurality of catalyst modules 420.
상기 촉매모듈(420)에서 상기 환원제와 상기 배가스의 환원 작용을 가속시키며 상기 촉매모듈(420)을 통해 상기 배가스에서 질소산화물(NOx)이 선택적으로 환원되어 제거된다.The catalyst module 420 accelerates the reducing action of the reducing agent and the exhaust gas, and nitrogen oxide (NOx) is selectively reduced and removed from the exhaust gas through the catalyst module 420.
한편, 상기 촉매모듈(420)은 복수개가 상기 환원부의 연장방향을 따라 일렬로 연결된다. 그리하여, 상기 질소산화물의 선택적 환원이 복수 회 반복되어 보다 효과적으로 상기 배가스에서 질소산화물이 제거될 수 있다. On the other hand, the plurality of catalyst modules 420 are connected in a line along the extending direction of the reducing unit. Thus, the selective reduction of the nitrogen oxides is repeated a plurality of times to more effectively remove the nitrogen oxides from the exhaust gas.
상기 촉매모듈들(420) 각각은 상기 제1 방향으로 연장되는 펠렛(pellet) 형상의 SCR 촉매로 구성된다.Each of the catalyst modules 420 is composed of a pellet-shaped SCR catalyst extending in the first direction.
보다 구체적으로, 도 4를 참조하면, 상기 촉매모듈(420)은 복수의 사각블록들이 상기 환원부(400)의 연장방향을 따라 연장되도록 배열되며, 각각의 블록들 사이의 공간은 상측 또는 하측 중 일측으로는 개방되며, 다른 측으로는 폐쇄된 구조를 가진다. 그리하여, 상기 개방된 일측으로 인입된 배가스가 사각블록들을 통과하며 속도가 감소하고 이후 개방된 다른 측으로 배출된다. 이에 따라, 사각블록들을 통과하며 속도가 감소함에 따라 질소산화물이 환원되어 제거되기 위한 시간을 확보함으로써 질소산화물의 제거에 보다 효과적이다.More specifically, referring to FIG. 4, the catalyst module 420 is arranged such that a plurality of square blocks extend along an extension direction of the reduction unit 400, and the space between the blocks is either upper or lower. It is open to one side and closed on the other side. Thus, the exhaust gas drawn to the open one side passes through the square blocks, the speed decreases and is then discharged to the other open side. Accordingly, as the velocity decreases through the rectangular blocks, the nitrogen oxides are reduced and thus more effective in removing the nitrogen oxides.
예를 들어, 도 4에 도시된 바와 같이, 상기 촉매모듈(420)은 제1 갭(426)을형성하며 서로 평행하게 연장된 한 쌍의 제1 블록(421), 및 제2 갭(427)을 형성하며 서로 평행하게 연장된 한 쌍의 제2 블록(422)을 포함한다.For example, as shown in FIG. 4, the catalyst module 420 forms a first gap 426 and a pair of first blocks 421 extending in parallel with each other, and a second gap 427. And a pair of second blocks 422 extending parallel to one another.
이 때, 상기 제1 블록(421)의 상부는 제1 차단부(423)에 의해 차단되고, 상기 제2 블록(422)의 상부는 제2 차단부(424)에 의해 차단되며, 서로 인접한 제1 블록(421) 및 제2 블록(422)의 하부 공간은 제3 차단부(428)에 의해 차단된다.In this case, an upper portion of the first block 421 is blocked by the first blocking portion 423, and an upper portion of the second block 422 is blocked by the second blocking portion 424 and adjacent to each other. Lower spaces of the first block 421 and the second block 422 are blocked by the third blocking unit 428.
그리하여, 상기 서로 인접한 제1 및 제2 블록들(421, 422) 사이는 상부는 개방되고 하부는 차단된 관통갭(425)이 형성된다.Thus, a through gap 425 is formed between the first and second blocks 421 and 422 adjacent to each other, the upper part of which is opened, and the lower part of which is blocked.
이에 따라, 환원부(400)를 통과하는 배가스는 상기 관통갭(425)을 통해 상기 촉매모듈(420)을 통해 인입되며, 이후 상기 제1 블록(421) 또는 제2 블록(422)을 관통하여 통과한 후, 하부가 개방된 제1 갭(426) 또는 제2 갭(427)을 통해 하부로 배출된다.Accordingly, the exhaust gas passing through the reducing part 400 is introduced through the catalyst module 420 through the through gap 425, and then passes through the first block 421 or the second block 422. After passing, the lower part is discharged downward through the open first gap 426 or the second gap 427.
또한, 본 실시예에서는, 상기 촉매모듈(420)이 상기 환원부(400)를 따라 복수개가 연속적으로 배치되므로, 상기와 같은 인입 및 배출 단계가 상기 촉매모듈의배열 개수만큼 반복될 수 있다.In addition, in the present embodiment, since the plurality of catalyst modules 420 are continuously disposed along the reduction unit 400, the inlet and discharge steps as described above may be repeated by the number of arrangement of the catalyst modules.
나아가, 상기 환원부(400)는 플라즈마 유닛(미도시)를 포함하여, 상기 플라즈마 유닛을 통해 상기 혼합부(300)에서 상기 환원부(400)로 이동한 상기 배가스에 저온 플라즈마를 제공할 수 있다. In addition, the reducing unit 400 may include a plasma unit (not shown) to provide a low temperature plasma to the exhaust gas moved from the mixing unit 300 to the reducing unit 400 through the plasma unit. .
이 경우, 상기 플라즈마 유닛은 상기 촉매모듈(420)에 저온 플라즈마를 제공하는 것으로, 이에 의해, 상기 촉매모듈(420)을 통과하는 배가스 중의 질소산화물(NOx)은 상기 저온 플라즈마와 반응함으로써 환원 작용이 더욱 가속화될 수 있다.In this case, the plasma unit provides a low temperature plasma to the catalyst module 420, whereby the nitrogen oxides (NOx) in the exhaust gas passing through the catalyst module 420 reacts with the low temperature plasma, thereby reducing the effect. Can be accelerated further.
한편, 도시하지는 않았으나, 상기 플라즈마 유닛은 상기 챔버(2)의 제3 공간(30)의 외측에 위치하여 상기 촉매모듈(420)로 저온 플라즈마를 제공할 수 있으며, 상기 제3 공간(30)의 내부 또는 상기 촉매모듈(420)에 인접하도록 배치되어 저온 플라즈마를 제공할 수도 있다. On the other hand, although not shown, the plasma unit may be located outside the third space 30 of the chamber 2 to provide a low temperature plasma to the catalyst module 420, the third space 30 It may be disposed inside or adjacent to the catalyst module 420 to provide a low temperature plasma.
이와 같은 촉매모듈들(420)을 통과하여 질소산화물이 제거된 배가스는 상기 유출부(4)를 통해 외부로 유출된다.The exhaust gas from which nitrogen oxide has been removed by passing through the catalyst modules 420 is discharged to the outside through the outlet portion 4.
한편, 이 경우, 상기 환원부(400)의 상부에는 제4 베인(74) 및 제5 베인(75)이 서로 대칭되게 절곡된 형상으로 설치되어 상기 촉매모듈들(420)을 통과한 배가스가 상기 유출부(4)로 이동되도록 가이드하게 된다.On the other hand, in this case, the fourth vane 74 and the fifth vane 75 are installed in the shape bent symmetrically to each other in the upper portion of the reducing unit 400, the exhaust gas passing through the catalyst modules 420 is Guide to move to the outlet (4).
상기와 같은 본 발명의 실시예들에 의하면, 전기집진부에서 고전압을 사용하여 먼지를 미리 하전시켜 먼지가 강한 정전기력을 갖도록 할 수 있다. 특히, 펄스를 일정 주기로 인가하여 방전극 전체면에 코로나를 형성시킴으로써 입자 하전 효과가 상승하게 되는 반면에 평균 전계 강도와 분진의 부착력이 낮아져서 탈진율이 높아지기 때문에 역전리를 감소시킬 수 있다.According to the embodiments of the present invention as described above, the dust can be charged in advance using a high voltage in the electrostatic precipitator so that the dust has a strong electrostatic force. In particular, by applying pulses at regular intervals to form corona on the entire surface of the discharge electrode, the particle charge effect is increased, while the average electric field strength and the adhesion force of the dust are lowered, thereby increasing the dust removal rate, thereby reducing reverse ionization.
또한, 전기집진부에서 포집되지 않거나 전기집진부의 탈진으로 인한 재비산된 미세먼지는 여과집진부에서 2차 포집됨으로써 초미세먼지 및 고저항 분진까지 제거할 수 있는 효과가 있다. In addition, fine dust that is not collected in the electrostatic precipitator or re-spread due to the exhaustion of the electrostatic precipitator is collected in the filter dust collection unit to remove ultrafine dust and high resistance dust.
또한, 배가스에 함유된 미세먼지가 1차적으로 전기집진부에 포집됨으로써 여과집진부의 필터백들에서는 막힘 현상이 대폭 줄어들기 때문에 필터백들의 압력손실을 크게 줄일 수 있고, 여과속도가 현저히 향상되며, 동력비를 절감할 수 있어 운전성능을 극대화 시킬 수 있는 효과가 있다.In addition, since the fine dust contained in the exhaust gas is first collected in the electrostatic precipitator, the clogging phenomenon in the filter bag of the filter bag is significantly reduced, so that the pressure loss of the filter bags can be greatly reduced, and the filtration speed is significantly improved. It can reduce the effect of maximizing the driving performance.
또한, 배플 플레이트를 통해 배가스가 먼저 전기집진부로 이동되도록 유도함으로써 미세먼지가 먼저 전기집진부에 의해 제거되도록 가이드할 수 있다.Further, by inducing the exhaust gas to be first moved to the electrostatic precipitator through the baffle plate, fine dust may be guided to be removed by the electrostatic precipitator first.
특히, 집진극들 각각의 제1 끝단면이 사선 방향으로 연장 형성됨으로써 배가스가 집진모듈들의 연장방향을 따라 이동되도록 유도할 수 있다.In particular, the first end surface of each of the dust collecting electrodes may be formed to extend in an oblique direction to induce exhaust gas to move along the extending direction of the dust collecting modules.
한편, 집진극들 각각의 제2 끝단면은 여과집진부를 향하여 분기된 형상으로 형성됨으로써 집진극들에 포집되지 않은 미세먼지가 여과집진부로 이동하여 제거되도록 할 수 있다.On the other hand, the second end surface of each of the dust collecting poles is formed in a branched shape toward the filter dust collecting portion so that the fine dust not collected in the dust collecting poles can be removed by moving to the filter dust collecting portion.
또한, 집진유닛의 상부에는 펄스를 인가하는 탈진부가 위치하여, 상기 집진유닛으로 펄스를 인가함으로써 집진극 및 필터백에 축적되는 불순물을 보다 효과적으로 제거할 수 있다.In addition, a dust extraction unit for applying a pulse is located on the upper part of the dust collecting unit, and by applying a pulse to the dust collecting unit, impurities accumulated in the dust collecting electrode and the filter bag can be more effectively removed.
또한, 집진유닛을 통과한 배가스에 대하여 환원제를 혼합시키는 혼합부, 상기 환원제와 혼합된 배가스를 환원하는 환원부를 추가로 통과시키도록 구성함으로써, 집진유닛을 통한 집진으로 필터링되지 않은 불순물들을 추가로 제거함으로써, 배가스에 대한 불순물 제거 효율을 향상시킬 수 있다.In addition, the mixing unit for mixing the reducing agent with respect to the exhaust gas passing through the dust collection unit, and configured to further pass the reducing unit for reducing the exhaust gas mixed with the reducing agent, thereby further removing impurities not filtered by the dust collection unit through the dust collection unit. As a result, the efficiency of removing impurities from the exhaust gas can be improved.
특히, 배가스의 진행방향을 따라 복수개가 연속적으로 형성되므로 질소산화물의 환원을 반복적으로 수행할 수 있어 제거 효율이 향상될 수 있다.In particular, since a plurality is continuously formed along the traveling direction of the exhaust gas, the reduction of the nitrogen oxide may be repeatedly performed, thereby improving the removal efficiency.
나아가, 상기 촉매모듈은 블록들 및 블록들 사이의 갭들을 형성함으로써, 배가스의 진행속도를 늦추어 환원 반응을 촉진시켜 제거 효율을 보다 향상시킬 수 있다.Furthermore, the catalyst module may form gaps between the blocks and the blocks, thereby slowing the progress of exhaust gas to promote a reduction reaction, thereby further improving the removal efficiency.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. Although the above has been described with reference to the preferred embodiments of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. It will be appreciated.

Claims (13)

  1. 배가스 중의 미세먼지를 하전시켜 포집하는 전기집진부, 및 상기 전기집진부에서 포집되지 않은 미세먼지 또는 상기 전기집진부에서 재비산된 미세먼지가 여과되는 여과집진부를 포함하는 집진유닛; A dust collecting unit including an electrostatic precipitating unit charging and collecting fine dust in exhaust gas, and a filter dust collecting unit for filtering fine dust not collected in the electrostatic precipitating unit or fine dust re-spread in the electrostatic precipitating unit;
    상기 전기집진부 및 상기 여과집진부로 펄스를 인가하여, 상기 전기집진부에 포집되거나 상기 여과집진부에 여과된 미세먼지를 낙하시키는 탈진부; A dust extraction unit applying pulses to the electrostatic precipitating unit and the filter dust collecting unit to drop fine dust collected in the electrostatic precipitating unit or filtered by the filter dust collecting unit;
    상기 집진유닛을 통과한 배가스를 환원제와 혼합시키는 혼합부; 및 A mixing unit for mixing the exhaust gas passing through the dust collecting unit with a reducing agent; And
    상기 환원제와 혼합된 배가스에서 질소산화물을 선택적으로 환원하여 제거하는 환원부를 포함하는 조합형 미세먼지 및 질소산화물 제거 장치.Combination fine dust and nitrogen oxide removal apparatus comprising a reducing unit for selectively reducing and removing nitrogen oxides in the exhaust gas mixed with the reducing agent.
  2. 제1항에 있어서, The method of claim 1,
    상기 전기집진부는 서로 평행하게 연장되며 소정 거리 이격된 제1 및 제2 집진모듈들을 포함하고,The electrostatic precipitator includes first and second dust collecting modules extending parallel to each other and spaced a predetermined distance,
    상기 여과집진부는 상기 제1 및 제2 집진모듈들의 사이에 위치하며 상기 제1 및 제2 집진모듈들과 평행한 방향으로 연장되는 것을 특징으로 하는 조합형 미세먼지 및 질소산화물 제거 장치.The filter dust collector is located between the first and the second dust collecting module and combined dust and nitrogen oxide removal device, characterized in that extending in a direction parallel to the first and second dust collecting modules.
  3. 제2항에 있어서, 상기 제1 및 제2 집진모듈들 각각은,The method of claim 2, wherein each of the first and second dust collecting modules,
    막대형상으로 형성되고 미세먼지를 하전시키는 복수개의 방전극들; 및 A plurality of discharge electrodes formed in a rod shape and charged with fine dust; And
    상기 방전극들에 의해 하전된 미세먼지가 흡착되는 복수개의 집진극들을 포함하는 것을 특징으로 하는 조합형 미세먼지 및 질소산화물 제거 장치.Combination fine dust and nitrogen oxide removal device, characterized in that it comprises a plurality of dust collecting poles are adsorbed fine dust by the discharge electrodes.
  4. 제3항에 있어서, The method of claim 3,
    상기 방전극들 및 상기 집진극들은 서로 교번적으로 배열되는 것을 특징으로 하는 조합형 미세먼지 및 질소산화물 제거 장치.Combination fine dust and nitrogen oxide removal apparatus, characterized in that the discharge electrode and the dust collecting poles are alternately arranged.
  5. 제3항에 있어서,The method of claim 3,
    상기 방전극들 각각의 일단 및 타단은 서로 연결되며, 외부에서 인가되는 펄스에 의해 코로나 방전되는 것을 특징으로 하는 조합형 미세먼지 및 질소산화물 제거 장치.One end and the other end of each of the discharge electrode is connected to each other, combined dust and nitrogen oxide removal device, characterized in that the corona discharge by a pulse applied from the outside.
  6. 제3항에 있어서, 상기 집진극들 각각은,The method of claim 3, wherein each of the dust collecting poles,
    평면;plane;
    상기 평면의 일측에서 사선방향으로 연장되는 제1 끝단면; 및A first end surface extending in an oblique direction from one side of the plane; And
    상기 평면의 타측에서 상기 여과집진부를 향하여 복수개의 플레이트로 분기된 제2 끝단면을 포함하는 것을 특징으로 하는 조합형 미세먼지 및 질소산화물 제거 장치.Combination fine dust and nitrogen oxide removal device comprising a second end surface which is branched into a plurality of plates toward the filter dust collection portion from the other side of the plane.
  7. 제2항에 있어서, 상기 집진유닛은,According to claim 2, wherein the dust collecting unit,
    상기 집진유닛의 전단(前端)에 배치되어, 배가스가 상기 제1 및 제2 집진모듈들 각각으로 이동되도록 유도하는 배플 플레이트를 더 포함하는 것을 특징으로 하는 조합형 미세먼지 및 질소산화물 제거 장치. Combination fine dust and nitrogen oxide removal device, characterized in that it further comprises a baffle plate disposed in front of the dust collecting unit, to induce exhaust gas to be moved to each of the first and second dust collecting modules.
  8. 제2항에 있어서, 상기 여과집진부는,The method of claim 2, wherein the filter dust collector,
    배가스가 통과되며 미세먼지가 제거되는 복수개의 필터백들을 포함하는 것을 특징으로 하는 조합형 미세먼지 및 질소산화물 제거 장치.Combination fine dust and nitrogen oxide removal apparatus characterized in that it comprises a plurality of filter bags through which exhaust gas is passed and fine dust is removed.
  9. 제1항에 있어서, 상기 탈진부는,The method of claim 1, wherein the dust extraction unit,
    펄스를 생성하는 펄스 생성부;A pulse generator for generating a pulse;
    상기 펄스 생성부와 연결되어 상기 펄스를 전달하는 배관; 및A pipe connected to the pulse generator to transfer the pulse; And
    상기 배관에 연결되어 상기 집진유닛의 상부를 향하여 상기 펄스를 공급하는 펄스라인을 포함하는 것을 특징으로 하는 조합형 미세먼지 및 질소산화물 제거 장치. Combination fine dust and nitrogen oxide removal device comprising a pulse line connected to the pipe for supplying the pulse toward the upper portion of the dust collecting unit.
  10. 제1항에 있어서, 상기 혼합부는,The method of claim 1, wherein the mixing unit,
    상기 배가스에 환원제를 주입하는 분사부; 및An injection unit for injecting a reducing agent into the exhaust gas; And
    상기 분사부의 하측에 위치하며 상기 환원제를 배가스에 혼합시키는 혼합부재를 포함하는 것을 특징으로 하는 조합형 미세먼지 및 질소산화물 제거 장치. Combination type fine dust and nitrogen oxide removal device characterized in that it comprises a mixing member which is located below the injection unit for mixing the reducing agent to the exhaust gas.
  11. 제1항에 있어서, 상기 환원부는,The method of claim 1, wherein the reducing unit,
    상기 배가스의 진행방향에 대하여 연속적으로 배열되는 복수의 촉매모듈들을 포함하는 것을 특징으로 하는 조합형 미세먼지 및 질소산화물 제거 장치. Combination type fine dust and nitrogen oxide removal device comprising a plurality of catalyst modules that are continuously arranged with respect to the traveling direction of the exhaust gas.
  12. 제11항에 있어서, The method of claim 11,
    상기 촉매모듈들 각각은, 상기 배가스의 진행방향과 평행하게 연장된 복수의 블록들을 포함하고, Each of the catalyst modules includes a plurality of blocks extending in parallel with the traveling direction of the exhaust gas,
    상기 블록들의 사이에 갭(gap)이 형성되어, 상기 배가스는 상기 갭을 따라 상기 블록을 통과하며 이동속도가 감소하여 질소산화물이 선택적으로 환원되는 것을 특징으로 하는 조합형 미세먼지 및 질소산화물 제거 장치. A gap is formed between the blocks, and the exhaust gas passes through the block along the gap, and the movement speed decreases, so that the nitrogen oxides are selectively reduced.
  13. 제12항에 있어서, 상기 환원부는, The method of claim 12, wherein the reducing unit,
    상기 촉매모듈을 통과하는 상기 배가스에 저온 플라즈마를 제공하는 플라즈마 유닛을 더 포함하는 것을 특징으로 하는 조합형 미세먼지 및 질소산화물 제거 장치. Combination fine dust and nitrogen oxide removal apparatus further comprises a plasma unit for providing a low temperature plasma to the exhaust gas passing through the catalyst module.
PCT/KR2018/002831 2018-02-09 2018-03-09 Combination fine dust and nitrogen oxide removal device using pulse WO2019156282A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0016005 2018-02-09
KR1020180016005A KR101896948B1 (en) 2018-02-09 2018-02-09 Integrated removal apparatus of removing fine particulate and nitrogen oxide using pulse type high voltage

Publications (1)

Publication Number Publication Date
WO2019156282A1 true WO2019156282A1 (en) 2019-08-15

Family

ID=63593605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002831 WO2019156282A1 (en) 2018-02-09 2018-03-09 Combination fine dust and nitrogen oxide removal device using pulse

Country Status (2)

Country Link
KR (1) KR101896948B1 (en)
WO (1) WO2019156282A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114682382A (en) * 2022-03-02 2022-07-01 湖北净天环保设备有限公司 Aerosol catcher

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109663422B (en) * 2019-02-28 2021-02-02 中材海外工程有限公司 Intelligent bag type dust collecting system
CN110124404B (en) * 2019-06-18 2023-09-12 山西绿源碳索科技有限公司 Negative ion bag type smoke dust purifier without ash cleaning
KR102275229B1 (en) 2020-08-28 2021-07-09 주식회사 더이앤이솔루션 Integrated removing apparatus for removing paticulate matter and nitrogen oxide
CN115532439B (en) * 2022-10-08 2023-05-23 中科新天地(合肥)环保科技有限公司 Denitration and dioxin removal catalytic dust removal device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269133A (en) * 2002-03-15 2003-09-25 Toyota Motor Corp Exhaust emission control device
JP2004089980A (en) * 2002-08-29 2004-03-25 Korea Inst Of Energ Res Combination-type dust collecting apparatus
KR101245198B1 (en) * 2012-12-26 2013-03-25 한국에너지기술연구원 Integrated removal apparatus for removing fine particulate and nitrogen oxide
JP2014533607A (en) * 2011-11-29 2014-12-15 アルストム テクノロジー リミテッドALSTOM Technology Ltd Method and apparatus for cleaning an electrostatic precipitator
KR20170124734A (en) * 2016-05-03 2017-11-13 한국에너지기술연구원 Complex filtering apparatus for nano particles or gaseous material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182051A (en) * 1987-01-23 1988-07-27 Mitsubishi Heavy Ind Ltd Treatment of exhaust gas by pulse charge
KR20030024127A (en) 2001-09-17 2003-03-26 주식회사 에스앤에이취정보 System and Method for automatically transferring member information
JP3984059B2 (en) * 2002-01-21 2007-09-26 川崎重工業株式会社 Exhaust gas purification device
KR20040090182A (en) * 2003-04-16 2004-10-22 한국에너지기술연구원 Baghouse for simultaneously removing fine particle and nitric oxides to preliminary reduction of dust loading
KR20080101501A (en) 2007-05-18 2008-11-21 엘지디스플레이 주식회사 Diffusion plate and liquid crystal display including the same
CN101274304B (en) * 2008-05-07 2010-11-03 浙江大学 Composite electro-static dust-collector for cooperatively removing multipollutants in flue gas
KR101505732B1 (en) * 2013-07-18 2015-03-25 주식회사 에코에너젠 System for treat nitrogen oxide and particle material at combined station

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269133A (en) * 2002-03-15 2003-09-25 Toyota Motor Corp Exhaust emission control device
JP2004089980A (en) * 2002-08-29 2004-03-25 Korea Inst Of Energ Res Combination-type dust collecting apparatus
JP2014533607A (en) * 2011-11-29 2014-12-15 アルストム テクノロジー リミテッドALSTOM Technology Ltd Method and apparatus for cleaning an electrostatic precipitator
KR101245198B1 (en) * 2012-12-26 2013-03-25 한국에너지기술연구원 Integrated removal apparatus for removing fine particulate and nitrogen oxide
KR20170124734A (en) * 2016-05-03 2017-11-13 한국에너지기술연구원 Complex filtering apparatus for nano particles or gaseous material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114682382A (en) * 2022-03-02 2022-07-01 湖北净天环保设备有限公司 Aerosol catcher

Also Published As

Publication number Publication date
KR101896948B1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
WO2019156282A1 (en) Combination fine dust and nitrogen oxide removal device using pulse
KR101245198B1 (en) Integrated removal apparatus for removing fine particulate and nitrogen oxide
EP1946845A1 (en) Electrostatic precipitator with high efficiency
KR20010023156A (en) Combination of filter and electrostatic separator
WO2019231010A1 (en) Highly efficient microbubble wet dust collection apparatus
WO1987000089A1 (en) Method and apparatus for simultaneously recovering heat and removing gaseous and sticky pollutants from a heated, polluted gas flow
CN103055649B (en) Dust removal, desulfurization and denitrification device of coal-fired power generation boiler
WO2020091089A1 (en) Ring electrode structure for additional removal of ultrafine particles inside electrostatic spray cyclone
WO2020091392A1 (en) Integrated apparatus for treating exhaust gas using metal filter
WO2016204516A1 (en) Exhaust gas processing device
KR101924433B1 (en) Complex filtering apparatus for nano particles or gaseous material
WO2013065908A1 (en) Induction voltage electrical precipitator having honeycomb electric charge part
WO2019039679A1 (en) Air purification apparatus
EP2868384A1 (en) Wet electric dust-collecting device and exhaust gas treatment method
WO2022119277A1 (en) Wet desulfurization and dust removal apparatus
KR20170083681A (en) Electrostatic precipitation device for particle removal in explosive gases
KR101790842B1 (en) Electrostatic precipitation device for particle removal in explosive gases and method of particle removal in explosive gases using thereof
WO2017003021A1 (en) Fly ash separation and recovery apparatus
KR0166413B1 (en) Process for exhaust gas purification using a plasma cyclone and system for performing the process
KR100561550B1 (en) method and apparatus for collecting a dust and cleaning air by electrostatic spray
US4276056A (en) Method of removing particulate matter from precipitator plate
WO2015126014A1 (en) Integrated dust collecting apparatus
WO2022055141A1 (en) De-dusting nozzle for bag filter
KR200343967Y1 (en) apparatus for collecting a dust and cleaning air by electrostatic spray
WO2018236067A1 (en) Filtering system capable of selective dust collection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905249

Country of ref document: EP

Kind code of ref document: A1