WO2019156179A1 - HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR - Google Patents

HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR Download PDF

Info

Publication number
WO2019156179A1
WO2019156179A1 PCT/JP2019/004470 JP2019004470W WO2019156179A1 WO 2019156179 A1 WO2019156179 A1 WO 2019156179A1 JP 2019004470 W JP2019004470 W JP 2019004470W WO 2019156179 A1 WO2019156179 A1 WO 2019156179A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel
region
recrystallization
toughness
Prior art date
Application number
PCT/JP2019/004470
Other languages
French (fr)
Japanese (ja)
Inventor
仲道 治郎
植田 圭治
大地 泉
孝一 中島
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020207024683A priority Critical patent/KR102367801B1/en
Priority to JP2019524302A priority patent/JP6590120B1/en
Priority to CN201980011639.0A priority patent/CN111684093B/en
Publication of WO2019156179A1 publication Critical patent/WO2019156179A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a high Mn steel particularly suitable for structural steel used in a cryogenic environment, such as a tank for a liquefied gas storage tank, and particularly excellent in toughness at a low temperature, and a method for producing the same.
  • Patent Document 1 proposes a technique for controlling the austenite grain size to an appropriate size and preventing the carbides generated at the grain boundaries from becoming the starting point of fracture and the propagation path of cracks.
  • Patent Document 2 proposes a technique that improves low-temperature toughness by suppressing the segregation of Mn to a certain level or more.
  • an object of the present invention is to propose a method for providing further excellent ductility in a high Mn steel excellent in low temperature toughness of a base material and a weld heat affected zone. Furthermore, an object of the present invention is to propose a method capable of manufacturing such a high Mn steel sheet without warping or distortion.
  • excellent in low temperature toughness means that the absorbed energy vE-196 in the Charpy impact test at ⁇ 196 ° C. is 100 J or more.
  • the present inventors conducted intensive research on various factors that determine the composition of steel sheets and the production method for high-Mn steel, investigated the relationship with the microstructure, and found the following knowledge. I came to get.
  • high-Mn steel does not undergo brittle fracture even at extremely low temperatures, but occurs from grain boundaries when fracture occurs. That is, it has been found that the shape of the crystal grain boundary greatly affects the toughness.
  • carbides and the like are formed at the grain boundaries, and the distribution of the carbides and the form of the grain boundaries have a great influence on the toughness.
  • carbide forming sites increase as a starting point of fracture, and the toughness value decreases.
  • the crystal grains are coarse, the starting point is reduced because there is no carbide, but the propagation of the fracture surface is facilitated and the toughness value is lowered.
  • the load on the manufacturing process which is the evaluation standard in Table 1, means the load required for care and correction for intermediate products and products in each process.
  • ⁇ in Table 1 does not require the above-mentioned care and correction, etc., and passes and transports the post-manufacturing work to a material storage site such as a flattening device (leveler) and a cooling bed without problems. If it is possible, ⁇ indicates that a slight smoothing process that adjusts the opening of the leveler for each production opportunity is performed and the plate can be passed. In the case where it is necessary to make an individual judgment by the operator (execution of correction of deformation by manual operation), ⁇ indicates that correction is impossible in manufacturing and there is a problem in shipping as a product.
  • the region composed of fine crystal grains is a region where recrystallization and recovery are delayed after rolling, and the polygonal region is a region after rolling. It was found that recrystallization / recovery occurred in a relatively early stage. For this reason, it has been found that such a structure can be formed by optimizing the temperature conditions for hot rolling and the cooling conditions after rolling in addition to adjusting the components. In particular, it has been found that addition of Cr makes it easy to control a region in which non-recrystallization and recovery are suppressed. In addition, by setting the finish rolling finish temperature from 750 ° C. to 850 ° C., and performing subsequent cooling at a cooling rate of 5 ° C./s or less, the recrystallization recovery delay region is formed, and both strength and toughness are achieved. Found to get.
  • the present invention has been made by further studying the above knowledge, and the gist thereof is as follows. 1. % By mass C: 0.10% to 0.70%, Si: 0.05% or more and 1.00% or less, Mn: 15.0% to 30.0%, P: 0.030% or less, S: 0.0070% or less, Al: 0.01% or more and 0.07% or less, Cr: 2.5% to 7.0%, N: 0.0050% or more and 0.0500% or less and O: 0.0050% or less, with the balance being a component composition of Fe and inevitable impurities, and austenite as a base phase, the base phase being polygonal And a microstructure that is a recrystallization recovery delay region of 10% to 50% in terms of area ratio, the recrystallization recovery delay region is composed of a plurality of crystal grains having a diameter of 5 ⁇ m or less, and A high-Mn steel having an ellipse whose major axis is the rolling direction of a steel sheet or a shape close to the ellip
  • the component composition is further mass%, Mo: 2.0% or less, V: 2.0% or less, W: 2.0% or less, 2.
  • high Mn steel having excellent low temperature toughness can be provided.
  • this high Mn steel is used for welding, both the base material after welding and the weld heat affected zone are excellent in low temperature toughness. Therefore, the high Mn steel of the present invention greatly contributes to the improvement of safety and life of a steel structure used in a cryogenic environment such as a liquefied gas storage tank, and has a remarkable industrial effect.
  • the production method of the present invention can produce the high-Mn steel having excellent low-temperature toughness without causing a decrease in productivity and an increase in production cost. it can.
  • C 0.10% to 0.70%
  • C is an inexpensive austenite stabilizing element and an important element for obtaining austenite. In order to acquire the effect, C needs to contain 0.10% or more.
  • the content exceeds 0.70%, Cr carbide is excessively generated and low temperature toughness is lowered. For this reason, C is made 0.10% or more and 0.70% or less.
  • the content is 0.20% or more and 0.60% or less.
  • Mn 15.0% to 30.0%
  • Mn is a relatively inexpensive austenite stabilizing element. In the present invention, it is an important element for achieving both strength and cryogenic toughness. In order to acquire the effect, Mn needs to contain 15.0% or more. On the other hand, even if the content exceeds 30.0%, the effect of improving the cryogenic toughness is saturated, resulting in an increase in alloy cost. In addition, the weldability and cutability are deteriorated. Furthermore, segregation is promoted and stress corrosion cracking is promoted. For this reason, Mn is made 15.0% or more and 30.0% or less. Preferably, the content is 18.0% or more and 28.0% or less.
  • P 0.030% or less
  • P 0.030% or less
  • it is 0.028% or less, more preferably 0.24% or less.
  • it may be 0%.
  • 0.002% or more is preferable from the viewpoint of economy.
  • S 0.0070% or less Since S deteriorates the low-temperature toughness and ductility of the base material, 0.0070% is the upper limit and it is desirable to reduce it as much as possible. Therefore, S is made 0.0070% or less. Preferably it is 0.0050% or less. Of course, it may be 0%. In order to reduce S to less than 0.0005%, a large amount of cost is required for refining, so 0.0005% or more is preferable from the viewpoint of economy.
  • Al acts as a deoxidizing agent, and is most commonly used in a molten steel deoxidizing process of a steel sheet. In order to acquire such an effect, Al needs to contain 0.01% or more. On the other hand, if the content exceeds 0.07%, it is mixed in the weld metal part during welding and deteriorates the toughness of the weld metal, so the content is made 0.07% or less. Preferably, it is 0.02% or more and 0.06% or less.
  • Cr 2.5% to 7.0% Cr is an element that stabilizes austenite by addition of an appropriate amount and is effective in improving cryogenic toughness and base material strength. Further, it is an effective element for forming a recrystallization recovery delay region described later. In order to acquire such an effect, it is necessary to contain Cr at 2.5% or more. On the other hand, if the content exceeds 7.0%, the low temperature toughness and stress corrosion cracking resistance decrease due to the formation of Cr carbide. For this reason, Cr is 2.5% or more and 7.0% or less. Preferably, the content is 3.5% or more and 6.5% or less.
  • O 0.0050% or less O forms oxides and degrades cryogenic toughness. For this reason, O is made into 0.0050% or less of range. Preferably, it is 0.0045% or less. Of course, it may be 0%. In order to reduce O to less than 0.0005%, a large amount of cost is required for refining, so 0.0005% or more is preferable from the viewpoint of economy.
  • Inevitable impurities include Ca, Mg, Ti, Nb, Cu, and the like, and a total of 0.05% or less is acceptable.
  • Mo, V, W each 2.0% or less Mo, V, and W contribute to the stabilization of austenite and to the improvement of the strength of the base material. In order to acquire such an effect, it is preferable to contain Mo, V, and W at 0.001% or more, respectively. On the other hand, if the content exceeds 2.0%, coarse carbonitrides are generated, which may be a starting point of destruction, and also press production costs. For this reason, when it contains these alloy elements, the content shall be 2.0% or less, respectively. Preferably it is 0.003% or more and 1.7% or less, more preferably 1.5% or less.
  • B 0.0005% or more and 0.0020% or less B segregates at the grain boundary and contributes to improvement of toughness due to the grain boundary strength of the material.
  • the amount added is preferably 0.0005% or more and 0.0020% or less in order to form coarse nitrides or carbides when excessively added.
  • achieving low temperature toughness is demonstrated.
  • Microstructure based on austenite When the crystal structure of the steel material is a body-centered cubic structure (bcc), the steel material may cause brittle fracture in a low temperature environment, and thus is not suitable for use in a low temperature environment.
  • the base phase in the steel structure is austenite whose crystal structure is a face-centered cubic structure (fcc). “Austenite is the base phase” means that the austenite phase is 90% or more in terms of the area ratio in the microstructure, and may be 100%.
  • the remainder other than the austenite phase is composed of the ferrite or martensite phase of BCC structure, inclusions and precipitates, and the ratio of these is preferably 5% or less.
  • the austenite fraction can be determined by observation by EBSD, analysis by XRD, magnetic permeability, and the like.
  • the present invention realizes improvement of low temperature toughness by controlling the microstructure, particularly the austenite structure, in the hot rolling and the subsequent cooling process. For this purpose, it is important to control the morphology of the microstructure. In particular, in the cooling process during hot rolling and after hot rolling, recrystallization / recovery progresses rapidly and has regions with polygonal grains, that is, polygonal regions, and recrystallization / recovery is delayed, causing many strains inside. It is important to improve the toughness by reducing the starting point of the fracture surface and suppressing the progress of the fracture surface by appropriately including the region including the recrystallization recovery delay region. Below, the form of each area
  • the recrystallization recovery delay region has an ellipse whose major axis is the rolling direction or an approximate shape to the ellipse in observation of a cross section perpendicular to the rolling direction of the steel sheet (hereinafter referred to as L cross section),
  • the aspect ratio of the ellipse is 2.0 or more and the major axis is 10 ⁇ m or more.
  • the recrystallization recovery delay region is formed in combination with the polygonal region, and when the area ratio of the recrystallization recovery delay region is high, the entire structure becomes strained, which is disadvantageous in terms of ductility. Furthermore, since carbides formed at the grain boundaries and the like in the recrystallization recovery delay region increase and the starting point of the fracture surface increases, this is also disadvantageous for toughness. For this reason, the upper limit of the ratio of the recrystallization recovery delay region in the microstructure is 50% in terms of area ratio. On the other hand, when the area ratio is lower than 10%, the other portions are formed of polygonal crystal grains, so that the strength of the material is lowered.
  • the polygonal region is a region in which the strain region introduced by hot rolling is sufficiently recrystallized and recovered to become polygonal crystal grains.
  • the crystal grains are also subjected to strain recovery and contribute to the improvement of ductility. Further, since the polygonal region has a relatively large grain boundary, the formation density of carbide is reduced and the starting point of the fracture surface is reduced, which is effective in improving toughness.
  • the aspect ratio is 1.0 or more and 1.8 or less when the crystal grain is elliptically approximated and the maximum diameter of the crystal grain is defined as the major axis of the ellipse in the observation of the L cross section of the steel sheet.
  • the particle diameter is preferably 5 ⁇ m or more and 100 ⁇ m or less in terms of the major axis of the ellipse.
  • the ratio of the polygonal region in the entire microstructure is preferably 40% or more and 90% or less in terms of area ratio. More preferably, it is 60% or more and 80% or less.
  • the austenite phase forming the base phase (parent phase) of the steel sheet is mainly defined by the polygonal region and the recrystallization recovery delay region.
  • a region that does not satisfy these regulations such as a crystal grain having an aspect ratio of 1.0 to 1.8 and less than 5 ⁇ m, a region that is recognized as a recrystallization recovery delay region by the following observation method, but has an aspect ratio of less than 2.0, etc.
  • the area ratio in the microstructure is suppressed to 5% or less, and most of the austenite phase needs to be formed as one of the polygonal region and the recrystallization recovery delay region.
  • the matrix phase is a polygonal recrystallization region and a recrystallization recovery delay region of 10% to 50% in area ratio.
  • each region described above can be recognized by optimizing the method for adjusting the SEM observation sample. Specifically, after performing mirror polishing with colloidal silica on the steel sheet surface, if ion etching is performed on the steel sheet surface layer by ion milling, fine irregularities are formed on the surface layer of the recrystallization recovery delay region, so that it is 5 kV or less. Identification is possible by in-lens texture observation and backscattered electron image observation by low acceleration SEM. The recrystallization recovery delay region can also be identified by performing mirror polishing using electrolytic polishing.
  • the cause of the contrast difference in the base phase may be a difference in hardness or strain, a small amount of element distribution, or the like, but the details are unknown.
  • the area recognized in accordance with the above is binarized by image processing and defined as an area ratio.
  • the small one is composed of two or more crystal grains, and the aggregate size (major axis) of the plurality of crystal grains is about 10 ⁇ m, while the large region is a band. It has a structure (a belt-like structure stretched in accordance with the rolling direction of the plate), (width in the plate thickness direction (lamination)) width is 50 ⁇ m, and length (the longitudinal direction of the belt in the stretched direction (major axis) )) Is about 500 ⁇ m.
  • the recrystallization recovery delay region can be clearly distinguished from the polygonal region, as indicated by the outline in the figure, as shown in the structure photographs of the reflected electron images. That is, FIG.
  • FIG. 1A is a 200 ⁇ structure photograph, and a structure (recrystallization recovery delay region) stretched in the rolling direction can be observed.
  • FIG. 1B is a 500-fold structure photograph, and it can be confirmed that various forms of non-recrystallized regions (recrystallization recovery delay regions) are formed in the observation region.
  • the SEM structure observation is performed by appropriately adjusting the magnification for a field of view of about 300 ⁇ 500 ⁇ m per location at a depth position of 1/4 of the plate thickness from the steel plate surface (hereinafter referred to as 1/4 t portion) ( Measure the area of the recrystallization recovery delay region within the same field of view, and calculate the area ratio in this field of view. This operation is performed at at least 10 places, and the average is calculated as the area ratio of the recrystallization recovery delay region.
  • polygonal region For polygonal crystal grains (polygonal region), SEM observation is performed at 1000 times, and 100 or more crystal grains are recognized. In this case, in combination with EBSD, the crystal grain size may be measured in a region excluding the recrystallization recovery delay region recognized by SEM observation.
  • the high Mn steel according to the present invention can be obtained by melting a molten steel having the above-described composition by a known melting method such as a converter or an electric furnace. Further, secondary refining may be performed in a vacuum degassing furnace. Thereafter, a steel material such as a slab having a predetermined size is preferably formed by a known casting method such as a continuous casting method or an ingot-bundling rolling method.
  • the plate warpage occurs and causes a problem in the process, so that it is preferable to cool at a rate of 3 ° C./s or less.
  • the cooling rate is regulated to the temperature range from the finish rolling finish temperature to 650 ° C.
  • cooling in a temperature range of less than 650 ° C. may be optionally performed as described below.
  • the cooling rate changes depending on the plate thickness, it is advantageous to appropriately adjust by water cooling or the like.
  • the cooling process here is performed on the basis of the thickness center temperature of the steel sheet.
  • this center temperature can be calculated
  • the lower limit of the cooling rate is not particularly set, use of a heat-retaining furnace is disadvantageous in terms of furnace cost, process cost, and manufacturing time, and therefore may be within the range of air cooling.
  • the present invention realizes improvement of toughness at a low temperature by combining the polygonal region and the recrystallization recovery delay region even in a situation where carbides are formed at the grain boundaries. For this reason, there is no particular regulation for cooling below 650 ° C.
  • carbide suppression is effective for toughness, and since the influence of the above-mentioned sheet warpage is reduced from a temperature range of less than 650 ° C., rapid cooling of 10 ° C./s or more is required from the viewpoint of suppressing carbide formation. It is desirable to do.
  • a process of heating and cooling to a temperature range of 300 ° C. or higher and 650 ° C. or lower may be added. That is, tempering treatment may be performed for the purpose of adjusting the strength of the steel sheet.
  • the high-Mn steel according to the present invention satisfies the above-mentioned target performance (base material yield strength of 400 MPa or more, low-temperature toughness is 100 J or more in terms of the average value of absorbed energy (vE-196)). Was confirmed.
  • the comparative example that is out of the scope of the present invention any one or more of the yield strength and the low temperature toughness does not satisfy the above target performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Proposed is a method for further imparting excellent ductility to a high-Mn steel having excellent cryogenic toughness in a base material and welding-heat-affected portion thereof. This high-Mn steel has a compositional makeup containing 0.10-0.70% of C, 0.05-1.00% of Si, 15.0-30.0% of Mn, 0.030% or less of P, 0.0070% or less of S, 0.01-0.07% of Al, 2.5-7.0% of Cr, 0.0050-0.0500% of N, and 0.0050% or less of O, the remaining portion being Fe and incidental impurities, and includes austenite as a base phase, wherein the base phase includes a polygonal recrystallization region and a microstructure which is a recrystallization recovery delay region having an area ratio of 10-50%, the recrystallization recovery delay region includes a plurality of crystal grains having a diameter of 5 μm or less, and is in the shape of an ellipse having a major axis in the rolling direction of a steel sheet or a shape similar to said ellipse, and the ellipse has an aspect ratio of 2.0 or more and the major axis is 10 μm or more.

Description

高Mn鋼およびその製造方法High Mn steel and manufacturing method thereof
 本発明は、例えば液化ガス貯槽用タンク等の、極低温環境で使用される構造用鋼に供して好適な、特に低温での靭性に優れた高Mn鋼およびその製造方法に関する。 The present invention relates to a high Mn steel particularly suitable for structural steel used in a cryogenic environment, such as a tank for a liquefied gas storage tank, and particularly excellent in toughness at a low temperature, and a method for producing the same.
 液化ガス貯槽用構造物に熱間圧延鋼板を用いる場合、使用環境が極低温となるため、鋼板は高強度であることに加えて、極低温での靱性に優れることも要求される。例えば、液化天然ガスの貯槽に熱間圧延鋼板を使用する場合は、液化天然ガスの沸点:-164℃以下で優れた靱性が確保されている必要がある。鋼材の低温靱性が劣ると、極低温貯槽用構造物としての安全性を維持できなくなる可能性があるため、適用される鋼材に対する低温靱性の向上に対する要求は強い。 When using a hot-rolled steel sheet for a structure for a liquefied gas storage tank, since the use environment is extremely low temperature, the steel sheet is required to have excellent toughness at extremely low temperature in addition to high strength. For example, when a hot-rolled steel sheet is used in a liquefied natural gas storage tank, it is necessary to ensure excellent toughness at a boiling point of liquefied natural gas: −164 ° C. or lower. If the low-temperature toughness of the steel material is inferior, the safety as a structure for cryogenic storage tanks may not be maintained. Therefore, there is a strong demand for improving the low-temperature toughness of the applied steel material.
 この要求に対して、従来、極低温で脆性を示さないオーステナイトを鋼板の組織とするオーステナイト系ステンレス鋼や、9%Ni鋼もしくは5000系アルミニウム合金が使用されてきた。しかしながら、これらの材料は、合金コストや製造コストが高いことから、安価で極低温靱性に優れる鋼材に対する要望がある。 In response to this requirement, conventionally, austenitic stainless steel, 9% Ni steel or 5000 series aluminum alloy having an austenite that does not show brittleness at a very low temperature as a steel sheet structure has been used. However, since these materials have high alloy costs and manufacturing costs, there is a demand for steel materials that are inexpensive and have excellent cryogenic toughness.
 そこで、従来の極低温用鋼に代わる新たな鋼材として、比較的安価なオーステナイト安定化元素であるMnを多量に添加した高Mn鋼を極低温環境の構造用鋼として使用することが、例えば特許文献1に提案されている。 Therefore, as a new steel material to replace the conventional cryogenic steel, it is possible to use a high-Mn steel to which a relatively inexpensive austenite stabilizing element Mn is added as a structural steel in a cryogenic environment. It is proposed in Document 1.
 特許文献1には、オーステナイト粒径を適切なサイズに制御して結晶粒界に生成する炭化物が破壊の起点や亀裂の伝播の経路となることを回避する技術が提案されている。また、特許文献2では、Mnの偏析を一定以上に抑えることで、低温靱性が向上する技術が提案されている Patent Document 1 proposes a technique for controlling the austenite grain size to an appropriate size and preventing the carbides generated at the grain boundaries from becoming the starting point of fracture and the propagation path of cracks. Patent Document 2 proposes a technique that improves low-temperature toughness by suppressing the segregation of Mn to a certain level or more.
特開2016-196703号公報Japanese Unexamined Patent Publication No. 2016-196703 特開2017-71817号公報Japanese Unexamined Patent Publication No. 2017-71817
 上記に記載した液化ガス貯槽用構造物などの使途では、使用する鋼材に高い加工性を備える必要があるため、低温靭性に加えて延性を確保することが重要になる。この延性について特許文献1および2に記載の技術では何も検証されていない。また、特許文献1に記載の高Mn鋼材は、厚みが15~50mm程度であるが、例えば用途によっては、15mm未満特には10mm以下の厚みが要求される。このような薄板を製造する際、特許文献1に例示された、熱間圧延の終了後に加速冷却を行う手法では、得られる鋼板に反りや歪が発生し易く、形状矯正などの余分な工程が必要になり生産性が阻害される。また、特許文献2においては、偏析を緩和するために長時間の熱処理が必要になり、生産性の面で不利である。 In the use of the structure for a liquefied gas storage tank described above, it is important to ensure ductility in addition to low temperature toughness because the steel material to be used must have high workability. Nothing about the ductility is verified by the techniques described in Patent Documents 1 and 2. The high Mn steel material described in Patent Document 1 has a thickness of about 15 to 50 mm. However, depending on the application, for example, a thickness of less than 15 mm, particularly 10 mm or less is required. When manufacturing such a thin plate, the method of accelerating cooling after the end of hot rolling exemplified in Patent Document 1 tends to cause warpage and distortion in the obtained steel plate, and there is an extra step such as shape correction. It becomes necessary and productivity is hindered. Moreover, in patent document 2, in order to relieve segregation, the heat processing for a long time is needed, and it is disadvantageous in terms of productivity.
 そこで、本発明は、母材および溶接熱影響部の低温靭性に優れた高Mn鋼において、さらに優れた延性を与えるための方途について提案することを目的とする。さらに、本発明は、かような高Mn鋼の薄板を反りや歪の発生なしに製造し得る方途について提案することを目的とする。
 ここで、前記「低温靭性に優れた」とは、-196℃におけるシャルピー衝撃試験の吸収エネルギーvE-196が100J以上であることをいう。
Therefore, an object of the present invention is to propose a method for providing further excellent ductility in a high Mn steel excellent in low temperature toughness of a base material and a weld heat affected zone. Furthermore, an object of the present invention is to propose a method capable of manufacturing such a high Mn steel sheet without warping or distortion.
Here, “excellent in low temperature toughness” means that the absorbed energy vE-196 in the Charpy impact test at −196 ° C. is 100 J or more.
 本発明者らは、上記課題を解決するため、高Mn鋼を対象に、鋼板の成分組成、製造方法を決定する各種要因に関して鋭意研究を行い、微細組織との関連について調査し、以下の知見を得るに到った。
 まず、高Mn鋼は、極低温においても脆性破壊とならずに、破壊が生じる場合は結晶粒界から発生する。すなわち、結晶粒界の形状が靱性に大きく影響を与えることが判明した。特に、粒界には炭化物等が形成され、この炭化物の分布と粒界の形態とが靱性に大きな影響を与えることが分かった。具体的には、微細な結晶粒にした場合は、破壊の起点として炭化物形成サイトが増え靱性値が低下する。逆に粗大な結晶粒にした場合は、炭化物が無いために起点は減少するが、破面の伝播が容易になり靱性値が低下する。
In order to solve the above-mentioned problems, the present inventors conducted intensive research on various factors that determine the composition of steel sheets and the production method for high-Mn steel, investigated the relationship with the microstructure, and found the following knowledge. I came to get.
First, high-Mn steel does not undergo brittle fracture even at extremely low temperatures, but occurs from grain boundaries when fracture occurs. That is, it has been found that the shape of the crystal grain boundary greatly affects the toughness. In particular, it has been found that carbides and the like are formed at the grain boundaries, and the distribution of the carbides and the form of the grain boundaries have a great influence on the toughness. Specifically, when fine crystal grains are used, carbide forming sites increase as a starting point of fracture, and the toughness value decreases. On the other hand, when the crystal grains are coarse, the starting point is reduced because there is no carbide, but the propagation of the fracture surface is facilitated and the toughness value is lowered.
 この炭化物の形成抑制法として、鋼板を急速に冷却(以下、急冷ともいう)することは効果的な手段である。ただし、鋼板の厚みが20mm以下の薄物の場合、鋼板を急冷すると、熱歪による内部応力に伴う板反りが発生することがある。特に、高Mn鋼の場合には、組織がオーステナイトであるため、フェライト鋼と比較すると板反りが大きくなる傾向がある。この板反りが発生した場合、冷却後の工程である表面平滑処理ライン等への板の挿入が困難になる。また、出荷するためには鋼板の反りを矯正する必要があり、製造ラインに新たな工程を追加しなくてはならないため、製造コストの上昇をまねくことになる。オーステナイト鋼の反りが大きくなる要因は、フェライト鋼と比較して熱伝導度が小さく温度分布が大きくなるためと推察されるが、詳細は不明である。 As a method for suppressing the formation of carbides, it is an effective means to rapidly cool a steel plate (hereinafter also referred to as rapid cooling). However, in the case of a thin steel sheet having a thickness of 20 mm or less, when the steel sheet is rapidly cooled, a sheet warp accompanying internal stress due to thermal strain may occur. In particular, in the case of high Mn steel, since the structure is austenite, the plate warp tends to be larger than that of ferritic steel. When this plate warpage occurs, it becomes difficult to insert the plate into a surface smoothing processing line or the like, which is a process after cooling. Moreover, in order to ship, it is necessary to correct the curvature of a steel plate, and a new process must be added to the production line, leading to an increase in production cost. The reason why the warpage of the austenitic steel is large is presumed to be because the thermal conductivity is small and the temperature distribution is large compared to the ferritic steel, but the details are unknown.
 ここで、実際の製造ラインにおいて、鋼板の厚みと熱間圧延後の冷却における冷却速度とを変化させた場合に、鋼板の反りにより製造工程上の負荷が発生する状況についてまとめた結果を、表1に示す。この表1に示すように、冷却速度が5℃/sを超えると、板厚20mm以下の鋼板にて、工程上に問題が発生していることがわかった。 Here, in the actual production line, when the thickness of the steel sheet and the cooling rate in the cooling after hot rolling are changed, the results of the summary of the situation in which the load on the manufacturing process occurs due to the warpage of the steel sheet It is shown in 1. As shown in Table 1, it was found that when the cooling rate exceeded 5 ° C./s, a problem occurred in the process with a steel plate having a thickness of 20 mm or less.
 なお、表1における評価基準である、製造工程上の負荷とは、各工程上の中間製品や製品に対する、手入れや矯正等に要する負荷を意味する。そして、表1における、◎は前記の手入れや矯正等が不要であり、製造後の作業である、平坦矯正装置(レベラー)およびクーリングベッド等の資材置き場への移送をオンラインで問題なく通過、搬送できた場合、○は製造チャンス毎にレベラーの開度を調整するような軽微な平滑処理を実施して通板が可能になった場合、△は一旦オフラインでの個別作業にて軽度な矯正作業(作業員が個別に判断しマニュアルによる加工変形矯正を実施)が必要になった場合、×は製造上、矯正も不可能で製品としての出荷自体に問題があった場合、である。 In addition, the load on the manufacturing process, which is the evaluation standard in Table 1, means the load required for care and correction for intermediate products and products in each process. ◎ in Table 1 does not require the above-mentioned care and correction, etc., and passes and transports the post-manufacturing work to a material storage site such as a flattening device (leveler) and a cooling bed without problems. If it is possible, ○ indicates that a slight smoothing process that adjusts the opening of the leveler for each production opportunity is performed and the plate can be passed. In the case where it is necessary to make an individual judgment by the operator (execution of correction of deformation by manual operation), × indicates that correction is impossible in manufacturing and there is a problem in shipping as a product.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 そこで、かように、炭化物抑制に効果的な急冷処理の適用が困難な場合に、炭化物が存在しても母相の結晶粒形態を制御することで靱性を向上させる手法について検討を行った。すなわち、炭化物が存在する条件下での、母相結晶粒の形態と靱性との影響について鋭意検討を行った。その結果、微細な結晶粒からなる領域とポリゴナルな結晶粒とを組み合わせることにより、破壊の起点の減少と破面伝播の抑制とを同時に行え、靱性値が向上することを見出した。 Therefore, when it was difficult to apply quenching treatment effective for carbide suppression, a method for improving toughness by controlling the crystal grain morphology of the matrix even when carbide was present was studied. In other words, the inventors studied diligently about the influence of the morphology and toughness of the parent phase grains under the condition where carbides exist. As a result, it has been found that by combining a region composed of fine crystal grains and polygonal crystal grains, the fracture starting point can be reduced and the propagation of the fracture surface can be suppressed simultaneously, and the toughness value can be improved.
 上記した靱性値の向上に寄与する組織について解析を行った結果、微細な結晶粒からなる領域は圧延後に再結晶・回復の遅延が生じている領域であり、また、ポリゴナルな領域は圧延後の比較的早い段階で再結晶・回復が生じている領域であることがわかった。このため、このような組織の作り込みは、成分調整に加えて、熱間圧延の温度条件、さらに圧延後の冷却条件の最適化により可能になることを見出した。特に、Cr添加により、未再結晶・回復が抑制された領域の制御が容易になることを見出した。また、仕上圧延終了温度を、750℃から850℃とすること、その後の冷却を5℃/s以下の冷却速度で行うことによって、上記再結晶回復遅延領域が形成され、強度と靱性を両立させ得ることを見出した。 As a result of analyzing the structure contributing to the improvement of the toughness value, the region composed of fine crystal grains is a region where recrystallization and recovery are delayed after rolling, and the polygonal region is a region after rolling. It was found that recrystallization / recovery occurred in a relatively early stage. For this reason, it has been found that such a structure can be formed by optimizing the temperature conditions for hot rolling and the cooling conditions after rolling in addition to adjusting the components. In particular, it has been found that addition of Cr makes it easy to control a region in which non-recrystallization and recovery are suppressed. In addition, by setting the finish rolling finish temperature from 750 ° C. to 850 ° C., and performing subsequent cooling at a cooling rate of 5 ° C./s or less, the recrystallization recovery delay region is formed, and both strength and toughness are achieved. Found to get.
 本発明は、以上の知見にさらに検討を加えてなされたものであり、その要旨は次のとおりである。
1.質量%で、
 C:0.10%以上0.70%以下、
 Si:0.05%以上1.00%以下、
 Mn:15.0%以上30.0%以下、
 P:0.030%以下、
 S:0.0070%以下、
 Al:0.01%以上0.07%以下、
 Cr:2.5%以上7.0%以下、
 N:0.0050%以上0.0500%以下および
 O:0.0050%以下
含有し、残部がFeおよび不可避的不純物の成分組成を有し、かつ、オーステナイトを基地相とし、該基地相がポリゴナルな再結晶領域および面積率で10%以上50%以下の再結晶回復遅延領域であるミクロ組織を有し、該再結晶回復遅延領域は、径が5μm以下の複数の結晶粒で構成され、かつ鋼板の圧延方向を長軸とする楕円または前記楕円に近似の形状を有し、前記楕円のアスペクト比が2.0以上および前記長軸が10μm以上である高Mn鋼。
The present invention has been made by further studying the above knowledge, and the gist thereof is as follows.
1. % By mass
C: 0.10% to 0.70%,
Si: 0.05% or more and 1.00% or less,
Mn: 15.0% to 30.0%,
P: 0.030% or less,
S: 0.0070% or less,
Al: 0.01% or more and 0.07% or less,
Cr: 2.5% to 7.0%,
N: 0.0050% or more and 0.0500% or less and O: 0.0050% or less, with the balance being a component composition of Fe and inevitable impurities, and austenite as a base phase, the base phase being polygonal And a microstructure that is a recrystallization recovery delay region of 10% to 50% in terms of area ratio, the recrystallization recovery delay region is composed of a plurality of crystal grains having a diameter of 5 μm or less, and A high-Mn steel having an ellipse whose major axis is the rolling direction of a steel sheet or a shape close to the ellipse, having an aspect ratio of 2.0 or more and a major axis of 10 μm or more.
2.前記成分組成は、さらに質量%で、
 Mo:2.0%以下、
 V:2.0%以下、
 W:2.0%以下、
 REM:0.0010%以上0.0200%以下および
 B:0.0005%以上0.0020%以下
のうちから選ばれる1種または2種以上を含有する前記1に記載の高Mn鋼。
2. The component composition is further mass%,
Mo: 2.0% or less,
V: 2.0% or less,
W: 2.0% or less,
2. The high Mn steel according to 1 above, containing one or more selected from REM: 0.0010% to 0.0200% and B: 0.0005% to 0.0020%.
3.前記1または2に記載の成分組成を有する鋼素材を、1100℃以上1300℃以下の温度域に加熱し、仕上げ圧延終了温度が750℃以上850℃未満となる熱間圧延を施し、該仕上圧延終了温度から650℃までの温度域における平均冷却速度が5℃/s以下の冷却処理を行う高Mn鋼の製造方法。 3. The steel material having the component composition according to 1 or 2 is heated to a temperature range of 1100 ° C. or higher and 1300 ° C. or lower, and subjected to hot rolling at a finish rolling end temperature of 750 ° C. or higher and lower than 850 ° C., and the finish rolling A method for producing high-Mn steel, in which an average cooling rate in the temperature range from the end temperature to 650 ° C. is 5 ° C./s or less.
4.前記平均冷却速度が3℃/s以下である前記3に記載の高Mn鋼の製造方法。 4). 4. The method for producing a high Mn steel as described in 3 above, wherein the average cooling rate is 3 ° C./s or less.
 本発明によれば、低温靭性に優れた高Mn鋼を提供できる。この高Mn鋼を溶接する使途とした場合には、溶接後の母材および溶接熱影響部がともに低温靭性に優れるものとなる。したがって、本発明の高Mn鋼は、液化ガス貯槽用タンク等の、極低温環境で使用される鋼構造物の安全性や寿命の向上に大きく寄与し、産業上格段の効果を奏する。また、本発明の製造方法は、生産性の低下および製造コストの増大を引き起こすことなしに、前記低温靭性に優れた高Mn鋼を製造できるため、経済性に優れた製造手法を提供することができる。 According to the present invention, high Mn steel having excellent low temperature toughness can be provided. When this high Mn steel is used for welding, both the base material after welding and the weld heat affected zone are excellent in low temperature toughness. Therefore, the high Mn steel of the present invention greatly contributes to the improvement of safety and life of a steel structure used in a cryogenic environment such as a liquefied gas storage tank, and has a remarkable industrial effect. In addition, the production method of the present invention can produce the high-Mn steel having excellent low-temperature toughness without causing a decrease in productivity and an increase in production cost. it can.
SEMによる組織写真である。It is the organization photograph by SEM. SEMによる組織写真である。It is the organization photograph by SEM.
 以下、本発明の高Mn鋼について詳しく説明する。
[成分組成]
 まず、本発明の高Mn鋼の成分組成とその限定理由について説明する。なお、成分組成における「%」表示は、特に断らない限り「質量%」を意味するものとする。
C:0.10%以上0.70%以下
 Cは、安価なオーステナイト安定化元素であり、オーステナイトを得るために重要な元素である。その効果を得るために、Cは0.10%以上の含有を必要とする。一方、0.70%を超えて含有すると、Cr炭化物が過度に生成され、低温靱性が低下する。このため、Cは0.10%以上0.70%以下とする。好ましくは、0.20%以上0.60%以下とする。
Hereinafter, the high Mn steel of the present invention will be described in detail.
[Ingredient composition]
First, the component composition of the high Mn steel of the present invention and the reason for limitation will be described. The “%” in the component composition means “% by mass” unless otherwise specified.
C: 0.10% to 0.70% C is an inexpensive austenite stabilizing element and an important element for obtaining austenite. In order to acquire the effect, C needs to contain 0.10% or more. On the other hand, if the content exceeds 0.70%, Cr carbide is excessively generated and low temperature toughness is lowered. For this reason, C is made 0.10% or more and 0.70% or less. Preferably, the content is 0.20% or more and 0.60% or less.
Si:0.05%以上1.00%以下
 Siは、脱酸剤として作用し、製鋼上必要であるだけでなく、鋼に固溶して固溶強化により鋼板を高強度化する効果を有する。このような効果を得るために、Siは0.05%以上の含有を必要とする。一方、1.00%を超えて含有すると、溶接性が劣化する。このため、Siは0.05%以上1.00%とする。好ましくは、0.07%以上0.50%以下とする。
Si: 0.05% or more and 1.00% or less Si acts as a deoxidizer and is not only necessary for steelmaking, but also has the effect of increasing the strength of the steel sheet by solid solution strengthening by solid solution in steel. . In order to acquire such an effect, Si needs to contain 0.05% or more. On the other hand, when it contains exceeding 1.00%, weldability will deteriorate. For this reason, Si is made 0.05% or more and 1.00%. Preferably, the content is 0.07% or more and 0.50% or less.
Mn:15.0%以上30.0%以下
 Mnは、比較的安価なオーステナイト安定化元素である。本発明では、強度と極低温靱性を両立するために重要な元素である。その効果を得るために、Mnは15.0%以上の含有を必要とする。一方、30.0%を超えて含有しても、極低温靱性を改善する効果が飽和し、合金コストの上昇を招く。また、溶接性、切断性が劣化する。さらに、偏析を助長し、応力腐食割れの発生を助長する。このため、Mnは15.0%以上30.0%以下とする。好ましくは、18.0%以上28.0%以下とする。
Mn: 15.0% to 30.0% Mn is a relatively inexpensive austenite stabilizing element. In the present invention, it is an important element for achieving both strength and cryogenic toughness. In order to acquire the effect, Mn needs to contain 15.0% or more. On the other hand, even if the content exceeds 30.0%, the effect of improving the cryogenic toughness is saturated, resulting in an increase in alloy cost. In addition, the weldability and cutability are deteriorated. Furthermore, segregation is promoted and stress corrosion cracking is promoted. For this reason, Mn is made 15.0% or more and 30.0% or less. Preferably, the content is 18.0% or more and 28.0% or less.
P:0.030%以下
 Pは、0.030%を超えて含有すると、粒界に偏析し、応力腐食割れの発生起点となる。このため、0.030%を上限とし、可能なかぎり低減することが望ましい。したがって、Pは0.030%以下とする。好ましくは、0.028%以下、さらに好ましくは0.24%以下とする。勿論、0%であってもよい。なお、Pを0.002%未満に低減するには、精錬に多大のコストが必要となることから、経済性の観点からは0.002%以上であることが好ましい。
P: 0.030% or less When P exceeds 0.030%, it segregates at the grain boundary and becomes the starting point of stress corrosion cracking. For this reason, it is desirable to make 0.030% an upper limit and to reduce as much as possible. Therefore, P is 0.030% or less. Preferably, it is 0.028% or less, more preferably 0.24% or less. Of course, it may be 0%. In order to reduce P to less than 0.002%, a great deal of cost is required for refining, so 0.002% or more is preferable from the viewpoint of economy.
S:0.0070%以下
 Sは、母材の低温靭性や延性を劣化させるため、0.0070%を上限とし、可能なかぎり低減することが望ましい。したがって、Sは0.0070%以下とする。好ましくは0.0050%以下とする。勿論、0%であってもよい。なお、Sを0.0005%未満に低減するには、精錬に多大のコストが必要となることから、経済性の観点からは0.0005%以上であることが好ましい。
S: 0.0070% or less Since S deteriorates the low-temperature toughness and ductility of the base material, 0.0070% is the upper limit and it is desirable to reduce it as much as possible. Therefore, S is made 0.0070% or less. Preferably it is 0.0050% or less. Of course, it may be 0%. In order to reduce S to less than 0.0005%, a large amount of cost is required for refining, so 0.0005% or more is preferable from the viewpoint of economy.
Al:0.01%以上0.07%以下
 Alは、脱酸剤として作用し、鋼板の溶鋼脱酸プロセスに於いて、もっとも汎用的に使われる。このような効果を得るためには、Alは0.01%以上の含有を必要とする。一方、0.07%を超えて含有すると、溶接時に溶接金属部に混入して、溶接金属の靭性を劣化させるため、0.07%以下とする。好ましくは、0.02%以上0.06%以下である。
Al: 0.01% or more and 0.07% or less Al acts as a deoxidizing agent, and is most commonly used in a molten steel deoxidizing process of a steel sheet. In order to acquire such an effect, Al needs to contain 0.01% or more. On the other hand, if the content exceeds 0.07%, it is mixed in the weld metal part during welding and deteriorates the toughness of the weld metal, so the content is made 0.07% or less. Preferably, it is 0.02% or more and 0.06% or less.
Cr:2.5%以上7.0%以下
 Crは、適量の添加でオーステナイトを安定化させ、極低温靱性および母材強度の向上に有効な元素である。また、後述の再結晶回復遅延領域を形成させるために効果的な元素である。このような効果を得るためには、Crを2.5%以上で含有する必要がある。一方、7.0%を超えて含有すると、Cr炭化物の生成により、低温靭性および耐応力腐食割れ性が低下する。このため、Crは2.5%以上7.0%以下とする。好ましくは3.5%以上6.5%以下とする。
Cr: 2.5% to 7.0% Cr is an element that stabilizes austenite by addition of an appropriate amount and is effective in improving cryogenic toughness and base material strength. Further, it is an effective element for forming a recrystallization recovery delay region described later. In order to acquire such an effect, it is necessary to contain Cr at 2.5% or more. On the other hand, if the content exceeds 7.0%, the low temperature toughness and stress corrosion cracking resistance decrease due to the formation of Cr carbide. For this reason, Cr is 2.5% or more and 7.0% or less. Preferably, the content is 3.5% or more and 6.5% or less.
N:0.0050%以上0.0500%以下
 Nは、オーステナイト安定化元素であり、極低温靱性向上に有効な元素である。このような効果を得るためには、Nは0.0050%以上の含有を必要とする。一方、0.0500%を超えて含有すると、窒化物または炭窒化物が粗大化し、靭性が低下する。このため、Nは0.0050%以上0.0500%以下とする。好ましくは0.0060%以上0.0400%以下とする。
N: 0.0050% or more and 0.0500% or less N is an austenite stabilizing element, and is an element effective in improving cryogenic toughness. In order to acquire such an effect, N needs to contain 0.0050% or more. On the other hand, if the content exceeds 0.0500%, the nitride or carbonitride becomes coarse and the toughness is lowered. For this reason, N is made into 0.0050% or more and 0.0500% or less. Preferably it is 0.0060% or more and 0.0400% or less.
O:0.0050%以下
 Oは、酸化物を形成して極低温靱性を劣化させる。このため、Oは0.0050%以下の範囲とする。好ましくは、0.0045%以下である。勿論、0%であってもよい。なお、Oを0.0005%未満に低減するには、精錬に多大のコストが必要となることから、経済性の観点からは0.0005%以上であることが好ましい。
O: 0.0050% or less O forms oxides and degrades cryogenic toughness. For this reason, O is made into 0.0050% or less of range. Preferably, it is 0.0045% or less. Of course, it may be 0%. In order to reduce O to less than 0.0005%, a large amount of cost is required for refining, so 0.0005% or more is preferable from the viewpoint of economy.
 上記した成分以外の残部は鉄および不可避的不純物である。ここでの不可避的不純物としては、Ca、Mg、Ti、Nb、Cuなどが挙げられ、合計で0.05%以下であれば許容できる。 The balance other than the above components is iron and inevitable impurities. Inevitable impurities here include Ca, Mg, Ti, Nb, Cu, and the like, and a total of 0.05% or less is acceptable.
 本発明では、強度および低温靱性をさらに向上させることを目的として、上記の必須元素に加えて、必要に応じて下記の元素を含有することができる。
Mo:2.0%以下、V:2.0%以下、W:2.0%以下、REM:0.0010%以上0.0200%以下、B:0.0005%以上0.0020%以下の1種または2種以上を添加することができる。
In the present invention, for the purpose of further improving the strength and the low temperature toughness, the following elements can be contained as required in addition to the above essential elements.
Mo: 2.0% or less, V: 2.0% or less, W: 2.0% or less, REM: 0.0010% or more and 0.0200% or less, B: 0.0005% or more and 0.0020% or less 1 type (s) or 2 or more types can be added.
 Mo、V、W:各々2.0%以下
 Mo、VおよびWは、オーステナイトの安定化に寄与するとともに母材強度の向上に寄与する。このような効果を得るためには、Mo、VおよびWは各々0.001%以上で含有することが好ましい。一方、2.0%を超えて含有すると、粗大な炭窒化物が生成し、破壊の起点となることがある他、製造コストを圧迫する。このため、これらの合金元素を含有する場合は、その含有量は各々2.0%以下とする。好ましくは0.003%以上1.7%以下、より好ましくは1.5%以下とする。
Mo, V, W: each 2.0% or less Mo, V, and W contribute to the stabilization of austenite and to the improvement of the strength of the base material. In order to acquire such an effect, it is preferable to contain Mo, V, and W at 0.001% or more, respectively. On the other hand, if the content exceeds 2.0%, coarse carbonitrides are generated, which may be a starting point of destruction, and also press production costs. For this reason, when it contains these alloy elements, the content shall be 2.0% or less, respectively. Preferably it is 0.003% or more and 1.7% or less, more preferably 1.5% or less.
REM:0.0010%以上0.0200%以下
 REMは、介在物の形態制御に有用な元素であり、必要に応じて含有できる。介在物の形態制御とは、展伸した硫化物系介在物を粒状の介在物とすることをいう。この介在物の形態制御を介して、延性、靭性および耐硫化物応力腐食割れ性を向上させる。このような効果を得るためには、REMは0.0010%以上含有することが好ましい。一方、過剰に含有させると、非金属介在物量が増加し、かえって延性、靭性、耐硫化物応力腐食割れ性が低下する場合がある。したがって、REM量は0.0015%以上0.0200%以下とすることが好ましい。
REM: 0.0010% or more and 0.0200% or less REM is an element useful for controlling the form of inclusions, and can be contained as necessary. The inclusion shape control means that the expanded sulfide inclusion is a granular inclusion. Ductility, toughness, and resistance to sulfide stress corrosion cracking are improved through shape control of the inclusions. In order to acquire such an effect, it is preferable to contain REM 0.0010% or more. On the other hand, when it is contained excessively, the amount of non-metallic inclusions increases, and on the contrary, ductility, toughness, and resistance to sulfide stress corrosion cracking may decrease. Therefore, the REM amount is preferably 0.0015% or more and 0.0200% or less.
B:0.0005%以上0.0020%以下
 Bは、粒界に偏析し、材料の粒界強度による靱性向上に寄与する。ただし、過剰に添加されると粗大な窒化物や炭化物を形成するために、添加量は、0.0005%以上0.0020%以下とすることが好ましい。
B: 0.0005% or more and 0.0020% or less B segregates at the grain boundary and contributes to improvement of toughness due to the grain boundary strength of the material. However, the amount added is preferably 0.0005% or more and 0.0020% or less in order to form coarse nitrides or carbides when excessively added.
 次に、低温靱性を実現するための組織形態について説明する。
[オーステナイトを基地相とするミクロ組織]
 鋼材の結晶構造が体心立方構造(bcc)である場合、該鋼材は低温環境下で脆性破壊を起こす可能性があるため、低温環境下での使用には適していない。ここに、低温環境下での使用を想定したとき、鋼材の組織における基地相は、結晶構造が面心立方構造(fcc)であるオーステナイトであることが必須となる。なお、「オーステナイトを基地相とする」とは、オーステナイト相がミクロ組織における面積率で90%以上であることを示し、100%であってもよい。一方、オーステナイト相以外の残部は、BCC構造のフェライトまたはマルテンサイト相や、介在物や析出物にて構成されることになるが、これらの比率は5%以下であることが好ましい。なお、オーステナイト分率については、EBSDによる観察やXRDによる解析および透磁率等によって決定することが出来る。
Next, the structure | tissue form for implement | achieving low temperature toughness is demonstrated.
[Microstructure based on austenite]
When the crystal structure of the steel material is a body-centered cubic structure (bcc), the steel material may cause brittle fracture in a low temperature environment, and thus is not suitable for use in a low temperature environment. Here, when assumed to be used in a low temperature environment, the base phase in the steel structure is austenite whose crystal structure is a face-centered cubic structure (fcc). “Austenite is the base phase” means that the austenite phase is 90% or more in terms of the area ratio in the microstructure, and may be 100%. On the other hand, the remainder other than the austenite phase is composed of the ferrite or martensite phase of BCC structure, inclusions and precipitates, and the ratio of these is preferably 5% or less. The austenite fraction can be determined by observation by EBSD, analysis by XRD, magnetic permeability, and the like.
[ミクロ組織形態]
 本発明は、熱間圧延およびその後の冷却過程において、ミクロ組織制御、とりわけオーステナイト組織の制御を行うことにより、低温靱性の向上を実現するものである。そのためには、ミクロ組織の形態を制御することが重要である。特に、熱間圧延中や熱間圧延後の冷却過程において、再結晶・回復が速やかに進行しポリゴナルな結晶粒をもつ領域、すなわちポリゴナル領域と、再結晶・回復が遅延し内部に多くの歪を含む領域、すなわち再結晶回復遅延領域と、を適正に存在させることによって、破面の起点の減少および破面進展の抑制をはかり、靱性を向上させることが肝要である。以下に、上記した各領域の形態について詳述する。
[Microstructure]
The present invention realizes improvement of low temperature toughness by controlling the microstructure, particularly the austenite structure, in the hot rolling and the subsequent cooling process. For this purpose, it is important to control the morphology of the microstructure. In particular, in the cooling process during hot rolling and after hot rolling, recrystallization / recovery progresses rapidly and has regions with polygonal grains, that is, polygonal regions, and recrystallization / recovery is delayed, causing many strains inside. It is important to improve the toughness by reducing the starting point of the fracture surface and suppressing the progress of the fracture surface by appropriately including the region including the recrystallization recovery delay region. Below, the form of each area | region mentioned above is explained in full detail.
[再結晶回復遅延領域]
 再結晶回復遅延領域は、熱間圧延の歪導入からの再結晶そして回復が遅延している、内部に歪を多く含む複数個の結晶粒で構成されている領域である。この領域は、個々の結晶粒の大きさが5μm以下であり、基本的に圧延組織を反映して圧延方向に展伸し、複数個の結晶粒の集合が楕円状となる形状を呈する、領域である。すなわち、再結晶回復遅延領域は、鋼板の圧延方向と直交する断面(以下、L断面という)の観察にて、前記圧延方向を長軸とする楕円または前記楕円に近似の形状を有し、前記楕円のアスペクト比が2.0以上かつ前記長軸が10μm以上である。この領域の認識の仕方については後述するが、上述した形状とする組織制御を行う。
[Recrystallization recovery delay region]
The recrystallization recovery delay region is a region composed of a plurality of crystal grains containing a lot of strain inside, in which recrystallization and recovery from the introduction of strain in hot rolling are delayed. This region has an individual crystal grain size of 5 μm or less, basically extends in the rolling direction reflecting the rolling structure, and has a shape in which a set of a plurality of crystal grains is elliptical. It is. That is, the recrystallization recovery delay region has an ellipse whose major axis is the rolling direction or an approximate shape to the ellipse in observation of a cross section perpendicular to the rolling direction of the steel sheet (hereinafter referred to as L cross section), The aspect ratio of the ellipse is 2.0 or more and the major axis is 10 μm or more. Although the method of recognizing this area will be described later, the tissue control having the shape described above is performed.
[再結晶回復遅延領域の面積率:10%以上50%以下]
 再結晶回復遅延領域は、ポリゴナル領域との組み合わせで形成され、再結晶回復遅延領域の面積率が高いと全体的に歪の多い組織となり、延性の点で不利になる。さらに、再結晶回復遅延領域の粒界等に形成される炭化物が増加して破面の起点が増加するため、靱性に対しても不利となる。このため、ミクロ組織において再結晶回復遅延領域が占める比率は、その上限を面積率で50%とした。一方、この面積率が10%より低い場合には、その他の部分がポリゴナルな結晶粒で形成されるため、材料の強度が低下する。特に、前記面積率が10%より低い場合には、靱性試験での破面単位が増加して破面の進展が容易になるため、再結晶回復遅延領域は10%以上の分率が必要である。前記面積率は、20%以上40%以下であることが好ましい。
[Area ratio of recrystallization recovery delay region: 10% to 50%]
The recrystallization recovery delay region is formed in combination with the polygonal region, and when the area ratio of the recrystallization recovery delay region is high, the entire structure becomes strained, which is disadvantageous in terms of ductility. Furthermore, since carbides formed at the grain boundaries and the like in the recrystallization recovery delay region increase and the starting point of the fracture surface increases, this is also disadvantageous for toughness. For this reason, the upper limit of the ratio of the recrystallization recovery delay region in the microstructure is 50% in terms of area ratio. On the other hand, when the area ratio is lower than 10%, the other portions are formed of polygonal crystal grains, so that the strength of the material is lowered. In particular, if the area ratio is lower than 10%, the fracture surface unit in the toughness test increases and the progress of the fracture surface is facilitated. Therefore, the recrystallization recovery delay region requires a fraction of 10% or more. is there. The area ratio is preferably 20% or more and 40% or less.
[ポリゴナル領域]
 ポリゴナル領域は、熱間圧延により導入された歪領域が十分に再結晶・回復してポリゴナルな結晶粒となった領域である。この結晶粒は、歪の回復も行われており延性の向上に効果的に寄与する。また、ポリゴナル領域は粒界が比較的大きいことから、炭化物の形成密度が小さくなり、破面の起点が減少するため靱性の向上にも効果的である。このポリゴナルな結晶粒の形態としては、鋼板のL断面の観察にて、結晶粒を楕円近似して該結晶粒の最大径を楕円の長軸と定義した場合に、アスペクト比が1.0以上1.8以下であることが望ましい。なぜなら、アスペクト比が1.8を超えることは、圧延による展伸の影響を受けていることであり、破面伝播の抑制には不利である。また、粒径としては前記楕円の長軸換算で5μm以上100μm以下であることが望ましい。この粒径が、5μm未満になると、炭化物の形成サイトである粒界が増えるために破面の起点を減少させる上では不利である。一方、粒径が100μmを超えると、破面単位が大きくなり、破面進展が容易になり靱性が低下する。なお、ミクロ組織全体に占めるポリゴナル領域の割合としては、面積率で40%以上90%以下であることが好ましい。より好適には、60%以上80%以下である。
[Polygonal area]
The polygonal region is a region in which the strain region introduced by hot rolling is sufficiently recrystallized and recovered to become polygonal crystal grains. The crystal grains are also subjected to strain recovery and contribute to the improvement of ductility. Further, since the polygonal region has a relatively large grain boundary, the formation density of carbide is reduced and the starting point of the fracture surface is reduced, which is effective in improving toughness. As the form of polygonal crystal grains, the aspect ratio is 1.0 or more and 1.8 or less when the crystal grain is elliptically approximated and the maximum diameter of the crystal grain is defined as the major axis of the ellipse in the observation of the L cross section of the steel sheet. It is desirable that This is because if the aspect ratio exceeds 1.8, it is affected by the expansion due to rolling, which is disadvantageous for the suppression of fracture surface propagation. The particle diameter is preferably 5 μm or more and 100 μm or less in terms of the major axis of the ellipse. When this particle size is less than 5 μm, the grain boundary which is a carbide forming site increases, which is disadvantageous in reducing the starting point of the fracture surface. On the other hand, when the particle diameter exceeds 100 μm, the fracture surface unit becomes large, the fracture surface progresses easily, and the toughness decreases. The ratio of the polygonal region in the entire microstructure is preferably 40% or more and 90% or less in terms of area ratio. More preferably, it is 60% or more and 80% or less.
 従って、鋼板の基地相(母相)を形成するオーステナイト相は、主に上記のポリゴナル領域および再結晶回復遅延領域で定義されることになる。ただし、これらの規定を満たさない領域、例えば、アスペクト比1.0以上1.8以下で5μm未満の結晶粒や、下記観察方法で再結晶回復遅延領域と認識されるがアスペクト比が2.0未満である領域等、が存在する可能性はあるが、これらはミクロ組織における面積率で5%以下に抑制し、大部分のオーステナイト相は、上記ポリゴナル領域および再結晶回復遅延領域のいずれかの領域として形成される必要がある。すなわち、基地相はポリゴナルな再結晶領域および面積率で10%以上50%以下の再結晶回復遅延領域である。 Therefore, the austenite phase forming the base phase (parent phase) of the steel sheet is mainly defined by the polygonal region and the recrystallization recovery delay region. However, a region that does not satisfy these regulations, such as a crystal grain having an aspect ratio of 1.0 to 1.8 and less than 5 μm, a region that is recognized as a recrystallization recovery delay region by the following observation method, but has an aspect ratio of less than 2.0, etc. However, the area ratio in the microstructure is suppressed to 5% or less, and most of the austenite phase needs to be formed as one of the polygonal region and the recrystallization recovery delay region. There is. That is, the matrix phase is a polygonal recrystallization region and a recrystallization recovery delay region of 10% to 50% in area ratio.
 次いで、これらの領域の識別方法について以下に記載する。
 上記した各領域については、SEM観察用試料の調整方法を最適化することで認識が可能である。具体的には、鋼板表面にコロイダルシリカで鏡面研磨を行った後に、イオンミリングにより鋼板表層にイオンエッチングを行えば、再結晶回復遅延領域の表層に微細な凹凸が形成されるため、5kV以下の低加速SEMによるインレンズ組織観察および反射電子像観察にて識別が可能となる。また、電解研磨を用いる鏡面研磨を行うことによっても、再結晶回復遅延領域を識別することが可能である。このように、基地相(母相)にコントラスト差が発生する要因については、硬さや歪の違いや微量の元素分配等が考えられるが、詳細については不明である。解析は、上記に従って認識できた領域を画像処理により二値化し、面積率として定義する。
Next, a method for identifying these areas will be described below.
Each region described above can be recognized by optimizing the method for adjusting the SEM observation sample. Specifically, after performing mirror polishing with colloidal silica on the steel sheet surface, if ion etching is performed on the steel sheet surface layer by ion milling, fine irregularities are formed on the surface layer of the recrystallization recovery delay region, so that it is 5 kV or less. Identification is possible by in-lens texture observation and backscattered electron image observation by low acceleration SEM. The recrystallization recovery delay region can also be identified by performing mirror polishing using electrolytic polishing. As described above, the cause of the contrast difference in the base phase (matrix) may be a difference in hardness or strain, a small amount of element distribution, or the like, but the details are unknown. In the analysis, the area recognized in accordance with the above is binarized by image processing and defined as an area ratio.
 また、EBSD( Electron Back Scattered Diffraction)を用いて、イメージクオリティー等の値をもって各領域を識別することも可能である。ただし、この場合、サンプル調製時に試料表面に研磨による歪が導入されることがあるため、そのサンプル準備時には注意が必要であり、表層の歪除去を電解研磨やイオン研磨等で確実に実施する必要がある。 Also, it is possible to identify each region with values such as image quality using EBSD (“Electron” Back “Scattered” Diffraction). In this case, however, strain due to polishing may be introduced into the sample surface during sample preparation, so care must be taken when preparing the sample, and surface strain must be removed by electrolytic polishing, ion polishing, etc. There is.
 再結晶回復遅延領域の形態としては、小さいものは2個以上の複数の結晶粒からなり、該複数の結晶粒の集合体の大きさ(長軸)が10μm程度あり、一方大きな領域についてはバンド構造(板の圧延方向に従って展伸した帯状の構造)を有しており、(板厚方向の幅(積層))幅が50μmで、長さ(展伸している帯状の長手方向(長軸))が500μm程度のものも存在する。図1に、3つの事例について、その反射電子像による組織写真を示すように、再結晶回復遅延領域は、図に囲み線をもって示したように、ポリゴナル領域とは明確に識別することができる。すなわち、図1Aは200倍の組織写真であり、圧延方向に展伸した組織(再結晶回復遅延領域)を観察することができる。また、図1Bは500倍の組織写真であり、観察領域に様々な形態の未再結晶領域(再結晶回復遅延領域)が形成されていることが確認できる。 As for the form of the recrystallization recovery delay region, the small one is composed of two or more crystal grains, and the aggregate size (major axis) of the plurality of crystal grains is about 10 μm, while the large region is a band. It has a structure (a belt-like structure stretched in accordance with the rolling direction of the plate), (width in the plate thickness direction (lamination)) width is 50 μm, and length (the longitudinal direction of the belt in the stretched direction (major axis) )) Is about 500 μm. As shown in FIG. 1 for the three cases, the recrystallization recovery delay region can be clearly distinguished from the polygonal region, as indicated by the outline in the figure, as shown in the structure photographs of the reflected electron images. That is, FIG. 1A is a 200 × structure photograph, and a structure (recrystallization recovery delay region) stretched in the rolling direction can be observed. Moreover, FIG. 1B is a 500-fold structure photograph, and it can be confirmed that various forms of non-recrystallized regions (recrystallization recovery delay regions) are formed in the observation region.
 上記を考慮し、SEM組織観察は、鋼板表面から板厚の1/4の深さ位置(以下、1/4t部という)について1箇所あたり約300×500μmの視野について、適宜倍率を調整し(200倍~5000倍)、同視野内の再結晶回復遅延領域の面積を測定し、この視野での面積率を算出する。この作業を少なくとも10箇所において行って、その平均を算出し、再結晶回復遅延領域の面積率とする。 In consideration of the above, the SEM structure observation is performed by appropriately adjusting the magnification for a field of view of about 300 × 500 μm per location at a depth position of 1/4 of the plate thickness from the steel plate surface (hereinafter referred to as 1/4 t portion) ( Measure the area of the recrystallization recovery delay region within the same field of view, and calculate the area ratio in this field of view. This operation is performed at at least 10 places, and the average is calculated as the area ratio of the recrystallization recovery delay region.
 ポリゴナルな結晶粒(ポリゴナル領域)については、1000倍でSEM観察を行い、100個以上の結晶粒について認識を行う。また、この場合EBSDと組み合わせて、SEM観察で認識した再結晶回復遅延領域を除いた領域での結晶粒の大きさの測定を実施しても良い。 For polygonal crystal grains (polygonal region), SEM observation is performed at 1000 times, and 100 or more crystal grains are recognized. In this case, in combination with EBSD, the crystal grain size may be measured in a region excluding the recrystallization recovery delay region recognized by SEM observation.
 本発明に係る高Mn鋼は、上記した成分組成を有する溶鋼を、転炉、電気炉等、公知の溶製方法で溶製することができる。また、真空脱ガス炉にて2次精錬を行ってもよい。その後、連続鋳造法あるいは造塊-分塊圧延法等、公知の鋳造方法により、所定寸法のスラブ等の鋼素材とすることが好ましい。 The high Mn steel according to the present invention can be obtained by melting a molten steel having the above-described composition by a known melting method such as a converter or an electric furnace. Further, secondary refining may be performed in a vacuum degassing furnace. Thereafter, a steel material such as a slab having a predetermined size is preferably formed by a known casting method such as a continuous casting method or an ingot-bundling rolling method.
 さらに、上記鋼素材を低温靭性に優れた鋼材へと造りこむための製造条件について説明する。
[鋼素材加熱温度:1100℃以上1300℃以下]
 鋼材のミクロ組織の結晶粒径を粗大にするために、熱間圧延前の加熱温度は1100℃以上とする。ただし、1300℃を超えると一部溶解が始まってしまう懸念があるため、加熱温度の上限は1300℃とする。ここでの温度制御は、鋼素材の表面温度を基準とする。
Furthermore, manufacturing conditions for building the steel material into a steel material having excellent low temperature toughness will be described.
[Steel material heating temperature: 1100 ° C to 1300 ° C]
In order to make the crystal grain size of the microstructure of the steel material coarse, the heating temperature before hot rolling is set to 1100 ° C. or higher. However, since there exists a possibility that a part of melt | dissolution may start when it exceeds 1300 degreeC, the upper limit of heating temperature shall be 1300 degreeC. The temperature control here is based on the surface temperature of the steel material.
[仕上圧延終了温度:750℃以上850℃以下]
 熱間圧延終了温度およびその後の冷却条件は、再結晶回復遅延領域を制御するうえで重要となる。この温度が850℃より高くなると、最終圧延中および圧延後直ちに再結晶が進行し、ポリゴナルな結晶粒の形成が促進されて、粒界が大きくなり靱性が高くなりすぎる。また、圧延温度が750℃より低くなると、再結晶によるポリゴナルな結晶粒の形成が抑制され、また、再結晶回復遅延領域にも歪が多く導入されるために、強度が高くなり靱性が劣化する。
[Finish rolling finish temperature: 750 ° C or higher and 850 ° C or lower]
The hot rolling finish temperature and the subsequent cooling conditions are important in controlling the recrystallization recovery delay region. When this temperature is higher than 850 ° C., recrystallization proceeds during the final rolling and immediately after rolling, the formation of polygonal crystal grains is promoted, the grain boundary becomes large, and the toughness becomes too high. Further, when the rolling temperature is lower than 750 ° C., formation of polygonal crystal grains due to recrystallization is suppressed, and a lot of strain is also introduced into the recrystallization recovery delay region, so that the strength increases and the toughness deteriorates. .
[仕上げ圧延終了温度から650℃までの冷却速度:5℃/s以下]
 再結晶・回復によるポリゴナルな結晶粒の形成と再結晶回復遅延領域の残存とを両立させるためには、圧延終了温度から回復・再結晶の進行が顕著である650℃までの冷却を制御することが非常に重要である。このとき、冷却速度が速すぎると圧延後の組織が凍結されて、十分なポリゴナル粒の形成が生じずに靱性が劣化するため、冷却速度の上限を5℃/sとする。好ましくは、3℃/s以下とする。特に、薄物の場合には、前述のように板反りが発生して工程上の問題になるため、3℃/s以下の速度で冷却することが好ましい。なお、650℃未満の温度域での冷却は、基地相(母相)の再結晶・回復に影響を与えないため、冷却速度の規制は仕上げ圧延終了温度から650℃までの温度域とした。一方、650℃未満の温度域での冷却は、下記のように任意で行ってよい。
[Cooling rate from finish rolling finish temperature to 650 ° C: 5 ° C / s or less]
In order to achieve both the formation of polygonal crystal grains by recrystallization / recovery and the remaining recrystallization recovery delay region, the cooling from the rolling end temperature to 650 ° C. in which the progress of recovery / recrystallization is remarkable should be controlled. Is very important. At this time, if the cooling rate is too high, the structure after rolling is frozen, and sufficient polygonal grains are not formed, and the toughness deteriorates. Therefore, the upper limit of the cooling rate is set to 5 ° C./s. Preferably, it shall be 3 degrees C / s or less. In particular, in the case of a thin object, as described above, the plate warpage occurs and causes a problem in the process, so that it is preferable to cool at a rate of 3 ° C./s or less. In addition, since cooling in a temperature range of less than 650 ° C. does not affect the recrystallization / recovery of the base phase (parent phase), the cooling rate is regulated to the temperature range from the finish rolling finish temperature to 650 ° C. On the other hand, cooling in a temperature range of less than 650 ° C. may be optionally performed as described below.
 ここで、冷却速度は、板厚により変化するため、水冷等により調整を適宜実施することが有利である。ここでの冷却処理は、鋼板の板厚中心温度を基準として行う。なお、該中心温度は、放射温度計で測定した鋼板表面温度から、伝熱計算により求めることができる。
また、冷却速度の下限については特に設定しないが、保温炉等を用いると炉のコストやプロセスコストおよび、製造時間上不利であるため、空冷の範囲内であればよい。
Here, since the cooling rate changes depending on the plate thickness, it is advantageous to appropriately adjust by water cooling or the like. The cooling process here is performed on the basis of the thickness center temperature of the steel sheet. In addition, this center temperature can be calculated | required by heat-transfer calculation from the steel plate surface temperature measured with the radiation thermometer.
Further, although the lower limit of the cooling rate is not particularly set, use of a heat-retaining furnace is disadvantageous in terms of furnace cost, process cost, and manufacturing time, and therefore may be within the range of air cooling.
[650℃未満の冷却について]
 本発明は、粒界に炭化物が形成されるような状況においても、上記ポリゴナル領域と再結晶回復遅延領域との組合せにより低温での靱性の向上を実現するものである。このため、650℃未満の冷却については、特に規定はしない。ただし、炭化物抑制は、靱性にとって効果的であり、しかも650℃未満の温度域からは上述の板反りの影響は低減されるために、炭化物形成を抑制する観点から10℃/s以上の急冷を行うことが望ましい。
[Cooling below 650 ° C]
The present invention realizes improvement of toughness at a low temperature by combining the polygonal region and the recrystallization recovery delay region even in a situation where carbides are formed at the grain boundaries. For this reason, there is no particular regulation for cooling below 650 ° C. However, carbide suppression is effective for toughness, and since the influence of the above-mentioned sheet warpage is reduced from a temperature range of less than 650 ° C., rapid cooling of 10 ° C./s or more is required from the viewpoint of suppressing carbide formation. It is desirable to do.
 さらに、必要に応じて、前記冷却処理(650℃未満の冷却)を行ったのち、300℃以上650℃以下の温度域まで加熱して冷却する処理を追加してもよい。すなわち、鋼板の強度を調整する目的で焼き戻し処理を行っても良い。 Furthermore, if necessary, after performing the cooling process (cooling below 650 ° C.), a process of heating and cooling to a temperature range of 300 ° C. or higher and 650 ° C. or lower may be added. That is, tempering treatment may be performed for the purpose of adjusting the strength of the steel sheet.
 以下、本発明を実施例により詳細に説明する。なお、本発明は以下の実施例に限定されない。
(1)鋼板
 真空溶解により、表1に示す成分組成になる鋼スラブを作製した。次いで、得られた鋼スラブを加熱炉に装入して1250℃に加熱後、仕上圧延終了温度を種々に変化させて熱間圧延を施し、該仕上圧延終了温度から650℃までの温度域での冷却速度を種々に変化させて冷却処理を行って、5~20mm厚の鋼板を作製した。ここで、熱間圧延においては、鋼板の厚み中心部に熱電対を設置し、鋼板の温度をモニターリングし仕上圧延終了温度を測定した。この仕上圧延終了温度および仕上圧延終了温度から650℃までの温度域での冷却速度を、表2に示す。
Hereinafter, the present invention will be described in detail with reference to examples. The present invention is not limited to the following examples.
(1) Steel plate Steel slabs having the composition shown in Table 1 were prepared by vacuum melting. Next, the obtained steel slab was charged into a heating furnace and heated to 1250 ° C., and then the finish rolling end temperature was changed variously to perform hot rolling, and in the temperature range from the finish rolling end temperature to 650 ° C. The steel sheet having a thickness of 5 to 20 mm was prepared by performing a cooling process while changing the cooling rate. Here, in hot rolling, a thermocouple was installed at the center of the thickness of the steel sheet, the temperature of the steel sheet was monitored, and the finish rolling end temperature was measured. Table 2 shows the finish rolling end temperature and the cooling rate in the temperature range from the finish rolling end temperature to 650 ° C.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 得られた鋼板について、引張試験特性および低温靭性を下記の要領で評価し、また組織について解析した。
(2)引張試験特性
 得られた各鋼板より、JIS5号引張試験片を採取し、JIS Z2241(1998年)の規定に準拠して引張試験を実施し、引張試験特性を調査した。本発明では、降伏強度400MPa以上および引張強度800MPa以上を引張特性に優れるものと判定した。さらに、伸び30%以上を延性に優れるものと判定した。
About the obtained steel plate, the tensile test characteristic and low temperature toughness were evaluated in the following manner, and the structure was analyzed.
(2) Tensile test characteristics JIS No. 5 tensile test specimens were collected from each of the obtained steel sheets, and subjected to a tensile test in accordance with the provisions of JIS Z2241 (1998), and the tensile test characteristics were investigated. In the present invention, it was determined that a yield strength of 400 MPa or more and a tensile strength of 800 MPa or more are excellent in tensile properties. Furthermore, the elongation of 30% or more was determined to be excellent in ductility.
(3)低温靭性
 各鋼板の表面から板厚の1/2の位置において、圧延方向と垂直な方向から、JIS Z2202(1998年)の規定に準拠してシャルピーVノッチ試験片を採取し、JIS Z 2242(1998年)の規定に準拠して各鋼板について3本のシャルピー衝撃試験を実施し、-196℃での吸収エネルギーを求め、母材靭性を評価した。本発明では、3本の吸収エネルギー(vE-196)の平均値が100J以上を母材靭性に優れるものとした。また、板厚10mm以下の鋼板については、ハーフサイズ(5mm)の シャルピーVノッチ試験片を作製して試験を行い、吸収エネルギーが50J以上を合格とした。
(3) Low temperature toughness Charpy V-notch specimens were sampled in accordance with JIS Z2202 (1998) from the direction perpendicular to the rolling direction at a position 1/2 the thickness from the surface of each steel sheet. Three Charpy impact tests were performed on each steel sheet in accordance with the provisions of Z 2242 (1998), the absorbed energy at -196 ° C. was determined, and the base metal toughness was evaluated. In the present invention, the average value of the three absorbed energies (vE-196) is 100 J or more, and the base metal toughness is excellent. For steel plates with a thickness of 10 mm or less, half-size (5 mm) Charpy V-notch test pieces were prepared and tested, and the absorbed energy was 50 J or more.
(4)組織解析
 組織解析については、電解放出銃およびインレンズ型検出器をもつ走査電子顕微鏡(FE-SEM)で組織観察を行った。すなわち、鋼板を樹脂埋め込みして作製した、サンプルについて、ダイヤモンド研磨およびコロイダルシリカにより鏡面研磨を行った後、Arイオンビームで表面のスパッタリングを実施した。組織観察は、加速電圧5kVで行い、再結晶回復遅延領域の形態を評価し、その面積率を計算した。すなわち、各SEM像から未再結晶領域について、抽出しその領域のトレースを行った。トレースを行った領域についてその面積を画像解析ソフト等を用いて求めて、面積率を計算した。観察領域は、鋼板の表面から板厚の1/4の位置から1箇所あたり500×500μmの領域とし、この観察を10箇所で行って平均値とした。
 以上により得られた評価および観察の結果を、表3に示す。
(4) Tissue analysis For tissue analysis, the structure was observed with a scanning electron microscope (FE-SEM) having an electrolytic emission gun and an in-lens detector. That is, a sample prepared by embedding a steel plate with resin was subjected to mirror polishing with diamond polishing and colloidal silica, and then surface sputtering was performed with an Ar ion beam. The structure was observed at an acceleration voltage of 5 kV, the morphology of the recrystallization recovery delay region was evaluated, and the area ratio was calculated. That is, an unrecrystallized region was extracted from each SEM image and the region was traced. About the area | region which performed the trace, the area was calculated | required using image analysis software etc., and the area ratio was calculated. The observation region was an area of 500 × 500 μm per location from a position of ¼ of the plate thickness from the surface of the steel plate, and this observation was performed at 10 locations to obtain an average value.
Table 3 shows the evaluation and observation results obtained as described above.
 表3に示すように、本発明に従う高Mn鋼は、上述の目標性能(母材の降伏強度が400MPa以上、低温靭性が吸収エネルギー(vE-196)の平均値で100J以上)を満足することが確認された。一方、本発明の範囲を外れる比較例は、降伏強度および低温靭性のいずれか1つ以上が、上述の目標性能を満足できていない。 As shown in Table 3, the high-Mn steel according to the present invention satisfies the above-mentioned target performance (base material yield strength of 400 MPa or more, low-temperature toughness is 100 J or more in terms of the average value of absorbed energy (vE-196)). Was confirmed. On the other hand, in the comparative example that is out of the scope of the present invention, any one or more of the yield strength and the low temperature toughness does not satisfy the above target performance.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (4)

  1.  質量%で、
     C:0.10%以上0.70%以下、
     Si:0.05%以上1.00%以下、
     Mn:15.0%以上30.0%以下
     P:0.030%以下、
     S:0.0070%以下、
     Al:0.01%以上0.07%以下、
     Cr:2.5%以上7.0%以下、
     N:0.0050%以上0.0500%以下および
     O:0.0050%以下
    を含有し、残部がFeおよび不可避的不純物の成分組成を有し、かつ、オーステナイトを基地相とし、該基地相がポリゴナルな再結晶領域および面積率で10%以上50%以下の再結晶回復遅延領域であるミクロ組織を有し、該再結晶回復遅延領域は、径が5μm以下の複数の結晶粒で構成され、かつ鋼板の圧延方向を長軸とする楕円または前記楕円に近似の形状を有し、前記楕円のアスペクト比が2.0以上および前記長軸が10μm以上である高Mn鋼。
    % By mass
    C: 0.10% to 0.70%,
    Si: 0.05% or more and 1.00% or less,
    Mn: 15.0% or more and 30.0% or less P: 0.030% or less,
    S: 0.0070% or less,
    Al: 0.01% or more and 0.07% or less,
    Cr: 2.5% to 7.0%,
    N: 0.0050% or more and 0.0500% or less and O: 0.0050% or less, the balance having a component composition of Fe and inevitable impurities, and austenite as a base phase, Having a microstructure which is a polygonal recrystallization region and a recrystallization recovery delay region of 10% to 50% in area ratio, and the recrystallization recovery delay region is composed of a plurality of crystal grains having a diameter of 5 μm or less, And the high Mn steel which has an ellipse which makes the rolling direction of a steel plate a major axis, or the shape approximate to the said ellipse, the aspect ratio of the said ellipse is 2.0 or more, and the said major axis is 10 micrometers or more.
  2.  前記成分組成は、さらに質量%で、
     Mo:2.0%以下、
     V:2.0%以下、
     W:2.0%以下、
     REM:0.0010%以上0.0200%以下および
     B:0.0005%以上0.0020%以下
    のうちから選ばれる1種または2種以上を含有する請求項1に記載の高Mn鋼。
    The component composition is further mass%,
    Mo: 2.0% or less,
    V: 2.0% or less,
    W: 2.0% or less,
    The high Mn steel according to claim 1, comprising one or more selected from REM: 0.0010% to 0.0200% and B: 0.0005% to 0.0020%.
  3.  請求項1または2に記載の成分組成を有する鋼素材を、1100℃以上1300℃以下の温度域に加熱し、仕上げ圧延終了温度が750℃以上850℃未満となる熱間圧延を施し、該仕上圧延終了温度から650℃までの温度域における平均冷却速度が5℃/s以下の冷却処理を行う高Mn鋼の製造方法。 The steel material having the component composition according to claim 1 or 2 is heated to a temperature range of 1100 ° C or higher and 1300 ° C or lower and subjected to hot rolling at a finish rolling finish temperature of 750 ° C or higher and lower than 850 ° C, and the finish A method for producing high-Mn steel, wherein a cooling treatment is performed at an average cooling rate of 5 ° C./s or less in a temperature range from the rolling end temperature to 650 ° C.
  4.  前記平均冷却速度が3℃/s以下である請求項3に記載の高Mn鋼の製造方法。 The method for producing high-Mn steel according to claim 3, wherein the average cooling rate is 3 ° C / s or less.
PCT/JP2019/004470 2018-02-07 2019-02-07 HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR WO2019156179A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207024683A KR102367801B1 (en) 2018-02-07 2019-02-07 High Mn steel and manufacturing method thereof
JP2019524302A JP6590120B1 (en) 2018-02-07 2019-02-07 High Mn steel and manufacturing method thereof
CN201980011639.0A CN111684093B (en) 2018-02-07 2019-02-07 High Mn steel and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-020472 2018-02-07
JP2018020472 2018-02-07

Publications (1)

Publication Number Publication Date
WO2019156179A1 true WO2019156179A1 (en) 2019-08-15

Family

ID=67548342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004470 WO2019156179A1 (en) 2018-02-07 2019-02-07 HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR

Country Status (4)

Country Link
JP (1) JP6590120B1 (en)
KR (1) KR102367801B1 (en)
CN (1) CN111684093B (en)
WO (1) WO2019156179A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114269959A (en) * 2019-08-21 2022-04-01 杰富意钢铁株式会社 Steel and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258743A (en) * 1994-03-18 1995-10-09 Sumitomo Metal Ind Ltd Production of medium carbon steel sheet excellent in workability
JP2017155300A (en) * 2016-03-03 2017-09-07 新日鐵住金株式会社 Thick steel sheet for low temperature and manufacturing method therefor
WO2018199145A1 (en) * 2017-04-26 2018-11-01 Jfeスチール株式会社 HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3244393A (en) 1992-12-02 1994-06-22 Vestar, Inc. Antibiotic formulation and process
JP4529872B2 (en) * 2005-11-04 2010-08-25 住友金属工業株式会社 High Mn steel material and manufacturing method thereof
JP5003785B2 (en) * 2010-03-30 2012-08-15 Jfeスチール株式会社 High tensile steel plate with excellent ductility and method for producing the same
KR101543916B1 (en) * 2013-12-25 2015-08-11 주식회사 포스코 Steels for low temperature services having superior deformed surface quality and method for production thereof
JP6645103B2 (en) * 2014-10-22 2020-02-12 日本製鉄株式会社 High Mn steel material and method for producing the same
JP6693217B2 (en) * 2015-04-02 2020-05-13 日本製鉄株式会社 High Mn steel for cryogenic temperatures
JP6589535B2 (en) 2015-10-06 2019-10-16 日本製鉄株式会社 Low temperature thick steel plate and method for producing the same
CN106222554A (en) * 2016-08-23 2016-12-14 南京钢铁股份有限公司 A kind of economical steel used at ultra-low temperature and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258743A (en) * 1994-03-18 1995-10-09 Sumitomo Metal Ind Ltd Production of medium carbon steel sheet excellent in workability
JP2017155300A (en) * 2016-03-03 2017-09-07 新日鐵住金株式会社 Thick steel sheet for low temperature and manufacturing method therefor
WO2018199145A1 (en) * 2017-04-26 2018-11-01 Jfeスチール株式会社 HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114269959A (en) * 2019-08-21 2022-04-01 杰富意钢铁株式会社 Steel and method for producing same

Also Published As

Publication number Publication date
KR20200112950A (en) 2020-10-05
JP6590120B1 (en) 2019-10-16
CN111684093A (en) 2020-09-18
JPWO2019156179A1 (en) 2020-02-27
KR102367801B1 (en) 2022-02-24
CN111684093B (en) 2022-08-23

Similar Documents

Publication Publication Date Title
JP5124988B2 (en) High-tensile steel plate with excellent delayed fracture resistance and tensile strength of 900 MPa or more and method for producing the same
JP6418358B1 (en) High Mn steel sheet and method for producing the same
JP6791192B2 (en) High Mn steel and its manufacturing method
JP6682967B2 (en) Steel plate and method of manufacturing the same
WO2014103629A1 (en) STEEL SHEET HAVING YIELD STRENGTH OF 670-870 N/mm2 AND TENSILE STRENGTH OF 780-940 N/mm2
JP2007291511A (en) High-tensile strength thick steel plate having excellent toughness and its production method
JP6856129B2 (en) Manufacturing method of high Mn steel
JP2009242840A (en) High-tensile steel excellent in bending workability and low-temperature toughness, and method for manufacturing the same
WO2021020220A1 (en) High-strength steel sheet for sour resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour resistant line pipe
JP2003213366A (en) Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone
WO2019112012A1 (en) High-mn steel and method for manufacturing same
JP4538095B2 (en) Steel plate with excellent low temperature toughness and low strength anisotropy of base metal and weld heat affected zone, and method for producing the same
JP7272438B2 (en) Steel material, manufacturing method thereof, and tank
JP6590120B1 (en) High Mn steel and manufacturing method thereof
JP6582590B2 (en) Steel sheet for LPG storage tank and method for producing the same
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JP2017057483A (en) H-shaped steel and production method therefor
KR20200076804A (en) High strength steel for a structure having excellent cold bendability and manufacturing method for the same
JP6631702B2 (en) High-strength steel sheet with excellent low-temperature toughness
JP2007277697A (en) High tensile strength thick steel plate having excellent fatigue crack propagation resistance and brittle crack propagation arrest property and its production method
JP7269523B2 (en) Slab with excellent resistance to surface cracking and its continuous casting method
JP3439062B2 (en) High Mn stainless steel with excellent hot workability and cryogenic toughness
JP7444339B1 (en) Steel plate for high heat input welding and its manufacturing method
TWI842982B (en) Steel material, method for manufacturing the same, and groove
JP7385831B2 (en) Welded joint and its manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019524302

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207024683

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19750638

Country of ref document: EP

Kind code of ref document: A1