WO2019155953A1 - リソース割当方法 - Google Patents

リソース割当方法 Download PDF

Info

Publication number
WO2019155953A1
WO2019155953A1 PCT/JP2019/003136 JP2019003136W WO2019155953A1 WO 2019155953 A1 WO2019155953 A1 WO 2019155953A1 JP 2019003136 W JP2019003136 W JP 2019003136W WO 2019155953 A1 WO2019155953 A1 WO 2019155953A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
resource
frequency
cells
time division
Prior art date
Application number
PCT/JP2019/003136
Other languages
English (en)
French (fr)
Inventor
草野 正明
良夫 稲澤
延佳 堀江
聡泰 角田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019570702A priority Critical patent/JP7126525B2/ja
Publication of WO2019155953A1 publication Critical patent/WO2019155953A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/2041Spot beam multiple access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a resource allocation method that divides a target range to be irradiated with electromagnetic waves into cells and allocates communication resources for each cell.
  • a target range in which communication is possible is divided into cells, and communication resources are allocated to each cell.
  • communication resources having the same contents can be used repeatedly, and the use efficiency of communication resources can be improved.
  • communication resources such as frequency bands are allocated for each cell so as to suppress interference between cells.
  • frequency bands which are communication resources, are assigned to each cell by repeating frequency bands such as 3 frequency bands, 4 frequency bands, and 7 frequency bands, thereby suppressing interference between cells.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a resource allocation method that can further suppress interference due to electromagnetic waves irradiated in each cell.
  • the resource allocation method according to the present invention is based on the premise that the target range to be irradiated with electromagnetic waves is divided into cells, and is a resource allocation method executed in a communication system to allocate communication resources for each divided cell. For each cell, a time resource for limiting the communicable range in the time domain is set as a communication resource, and the time resource is assigned to each cell.
  • FIG. FIG. 1 is a diagram for explaining an example of assignment of communication resources to each cell by the resource assignment method according to Embodiment 1 of the present invention.
  • the first embodiment it is assumed that all service areas to be irradiated to the satellite by satellite communication are the target range, all the service areas are divided into cells, and communication resources are allocated to each cell.
  • the first embodiment is premised on being applied to a communication system for satellite communication. That is, communication resources are allocated by the communication system. More specifically, a computer used for construction of a communication system determines communication resource allocation, and control within the communication system is performed according to the determined allocation. The antenna device mounted on the satellite operates according to the control.
  • FIG. 1 a total of 16 cells are indicated by circles and denoted by reference numerals 11-1 to 14-4. The reason why only 16 cells are shown in FIG. 1 is that these 16 cells are units for allocating frequency resources.
  • the reference numeral attached to the cell is also described.
  • each cell is divided into cell groups composed of four adjacent cells, and communication resources are allocated in units of cell groups.
  • the cell group is hereinafter referred to as “cluster”.
  • cluster In FIG. 1, four clusters 11 to 14 are shown.
  • the reference numeral attached to the cluster is also described.
  • Each cluster 11 to 14 includes four cells as described above.
  • the four cells 11-1 to 11-4 constitute a cluster 11.
  • the four cells 12-1 to 12-4 constitute a cluster 12.
  • FIG. 1 by assigning a cluster number to the preceding stage and a cell number to the succeeding stage, the correspondence between the cell and the cluster to which the cell belongs is indicated by a symbol.
  • frequency domain resources and time domain resources are allocated to each cell as communication resources.
  • the frequency domain resource is referred to as “frequency resource”
  • the time domain resource is referred to as “time resource”.
  • “F1” to “F4” in FIG. 1 represent different frequency resources.
  • “T1” to “T4” shown in FIG. 1 represent different time resources.
  • “F1” to “F4” and “T1” to “T4” written in the circle indicate frequency resources and time resources allocated to the cell indicated by the circle in which it is written. For example, “F1, T1” written in the cell 11-1 indicates that the frequency resource F1 and the time resource T1 are allocated to the cell 11-1.
  • FIG. 2 is a diagram for explaining an example of a frequency resource.
  • an example of a frequency resource will be specifically described with reference to FIG.
  • the frequency resource is a combination of a frequency band and a polarization as shown in FIG. Comparing the frequency resource F1 and the frequency resource F2, the frequency resource F1 is a right-handed polarized wave that is relatively narrow and a relatively low frequency band.
  • the frequency resource F2 is a frequency band that is right-hand polarized and is adjacent to the higher frequency side of the frequency resource F1. The frequency bandwidth of the frequency resource F2 is wider than that of the frequency resource F1.
  • the frequency resource F3 is a left-handed polarized wave and is relatively narrow and a relatively low frequency band.
  • the frequency resource F4 is a left-hand polarized wave and a frequency band adjacent to the higher frequency side of the frequency resource F3.
  • the relationship of the frequency bandwidth between the frequency resources F1 to F4 is F2> F4> F3> F1.
  • symbols corresponding to the frequency resource are also described.
  • the communication capacity that can be handled that is, the amount of communication traffic, increases as the frequency bandwidth increases.
  • FIG. 3 is a diagram for explaining another example of the frequency resource. Also in the example shown in FIG. 3, the frequency band height relationship and polarization in the frequency resources F1 to F4 are the same as those in the example shown in FIG. However, the relationship of the frequency bandwidth between the frequency resources F1 to F4 is F1> F4 ⁇ F3> F2.
  • the contents of the frequency resource are not limited to those shown in FIG. 2 or FIG.
  • the content of the frequency resource may be different only in the frequency band, for example.
  • the frequency bandwidths may all be the same. Further, the number of frequency bands for each polarization may be different.
  • FIG. 4 is a diagram for explaining an example of a time resource. Next, with reference to FIG. 4, the time resource allocation in the first embodiment will be specifically described.
  • the time resource allocated to each cell is a resource for limiting the communicable range in the time domain for each cell.
  • the arrangement of the time resources T1 to T4 within the control unit period P is T1 ⁇ T2 ⁇ T3 ⁇ T4 from the top.
  • the time resources T1 to T4 are also referred to as “time division slots T1 to T4”.
  • time division slots T1 to T4 are also referred to as “time division slots T1 to T4”.
  • the frequency resource only when a specific time division slot is indicated, a symbol corresponding to the time division slot is also described.
  • FIG. 5 is a diagram for explaining an example of arrangement of control unit periods.
  • P (n) represents an arbitrary control unit period
  • P (n + 1) represents a control unit period P following the control unit period P (n).
  • the time region is divided by a predetermined time, and each divided time is set as a control unit period P.
  • the control unit period P has a continuous form.
  • the time division slots T1 to T4 set in the frequency resources F1 to F4 are synchronized.
  • each of the time division slots T1 to T4 is a period obtained by dividing the control unit period P into four. Therefore, each of the time division slots T1 to T4 is mutually exclusive in the time domain. That is, each of the time division slots T1 to T4 is a time zone (period) that does not overlap with another time division slot in the time domain.
  • time division slot When such a time division slot is assigned as a time resource, irradiation of each cell with an antenna beam, which is an electromagnetic wave, is performed only during the period of the time division slot assigned to that cell. Therefore, even if the frequency resources allocated to two adjacent cells are the same, by assigning different time division slots, interference between the two cells can be avoided or greatly suppressed. For example, when the frequency resource F2 is assigned to a certain cell, even if the same frequency resource F2 is assigned to the adjacent cell, interference between the two cells can be avoided by assigning different time division slots. Or significantly reduced.
  • the degree of freedom increases.
  • the improvement in the degree of freedom increases the choices of frequency bands that can be allocated as frequency resources, and the degree of freedom in setting the frequency bands also improves. As a result, it is possible to more easily assign a wide frequency band to a cell having a relatively large traffic.
  • Each cell is assigned any one of the frequency resources F1 to F4 and any one of the time division slots T1 to T4 as a communication resource.
  • the same time division slot is assigned to each cluster. Different time division slots are allocated between adjacent clusters. Specifically, the time division slot T1 is assigned to the cluster 11, and similarly, the time division slot T2 is assigned to the cluster 12, the time division slot T3 is assigned to the cluster 13, and the time division slot T4 is assigned to the cluster 14. In this way, the time division slots to be assigned are different between adjacent clusters.
  • frequency resource F1 is assigned to cell 11-1
  • frequency resource F2 is assigned to cell 11-2
  • frequency resource F3 is assigned to cell 11-3
  • cell 11-4 is assigned to cell 11-4. Respectively allocates frequency resources F4.
  • a time division slot assigned to a certain cluster is assigned to a cluster at a position sandwiching one cluster.
  • the time division slot T1 is also assigned to a cluster (not shown) having two cells adjacent to the cells 12-2 and 12-4 of the cluster 12.
  • the time ratio which is the time ratio assigned to each cell, is 1 ⁇ 4 compared to the case of simply irradiating the antenna beam continuously. Due to the time rate, the frequency utilization efficiency is also 1 ⁇ 4.
  • the cell size is made smaller, the signal gain can be improved even if the transmission power is the same.
  • interference between antenna beams can be avoided or greatly suppressed. From these things, the throughput of a cell can be improved. Therefore, it is possible to cover a decrease in frequency utilization efficiency.
  • the first embodiment is premised on being applied to the satellite communication system as described above.
  • applicable communication systems are not limited to satellite communication systems.
  • the first embodiment can be widely applied to communication systems that need to suppress interference between electromagnetic waves irradiated in each cell. Therefore, the communication system may be a ground mobile communication system, for example.
  • the time division slots T1 to T4 are all set to the same time interval, but may be different time intervals. Further, a time interval may be provided between time division slots so that the time division slots are not continuous.
  • Each of the time division slots T1 to T4 may be divided into a plurality. The number of time division slots may be 3 or less, or 5 or more. For these reasons, the time division slot can be variously modified.
  • Embodiment 2 FIG. In the first embodiment, the same time division slot is assigned in cluster units. On the other hand, in the second embodiment, different time division slots are assigned to the cells constituting the same cluster.
  • the reference numerals used in the first embodiment will be used as they are, and the description will be made with attention paid only to portions different from the first embodiment.
  • FIG. 6 is a diagram for explaining an example of allocation of communication resources to each cell by the resource allocation method according to Embodiment 2 of the present invention.
  • different time division slots are assigned to cells belonging to the same cluster.
  • the frequency resource allocated to each cell belonging to the same cluster and the time division slot are different for each cell.
  • the frequency resource F1 and the time division slot T1 are allocated to the cell 11-1.
  • frequency resource F2 and time division slot T2 are allocated to cell 11-2
  • frequency resource F3 and time division slot T3 are allocated to cell 11-3
  • frequency resource F4 and time division slot T4 are allocated to cell 11-4. It has been.
  • time division slots of adjacent cells are different between adjacent clusters.
  • the frequency resources of adjacent cells are also made different between adjacent clusters.
  • the combination of the frequency resource F1 allocated to the cell 11-1 belonging to the cluster 11 and the time division slot T1 is assigned to the cell 12-1 belonging to the cluster 12, the cell 13-1 belonging to the cluster 13, and the cluster 14.
  • Each cell 141 is also assigned.
  • a guard band is usually provided between adjacent frequency bands in the frequency domain.
  • the time division slot assigned to each cell constituting the same cluster is different and the time division slot assigned to an adjacent cell is different between clusters, the influence of unnecessary emission can be avoided or the influence is greatly increased. Can be reduced. For this reason, it is not necessary to provide a guard band, or the width of the guard band can be minimized. This means that higher frequency utilization efficiency can be realized. Since the influence of unnecessary emission can be avoided or the influence can be greatly reduced, interference between electromagnetic waves irradiated in each cell is further suppressed.
  • the frequency resources assigned to the cells constituting the same cluster are different from each other, but the same frequency resources may be assigned to the cells constituting the same cluster.
  • frequency resources can be arbitrarily allocated to the cells constituting each cluster. For example, the same frequency resource F2 as that of the cell 11-2 can be allocated to the cell 12-1 adjacent to the cell 11-2. Allocation of the remaining frequency resources F1, F3, and F4 to the cells 12-2 to 12-4 can be arbitrarily performed.
  • Embodiment 3 In the first and second embodiments, communication resources are allocated in units of clusters composed of four cells. On the other hand, in the third embodiment, communication resources are allocated in units of clusters composed of 16 cells.
  • the description will be made with attention paid only to portions different from the second embodiment.
  • FIG. 7 is a diagram for explaining an example of allocation of communication resources to each cell by the resource allocation method according to Embodiment 3 of the present invention.
  • the cluster 60 is divided into cell groups 60-1 to 60-4, which are four sub-clusters, and communication resources are allocated in units of cell groups. Accordingly, here, the cluster 60 is used as a unit of communication resource repetition.
  • circles with 61-1 to 61-4 represent cells belonging to the cell group 60-1.
  • circles with 62-1 to 62-4 are cells belonging to the cell group 60-2
  • circles with 63-1 to 63-4 are cells belonging to the cell group 60-3
  • symbol to a cell shall be attached
  • the frequency resources are different for each cell group, that is, the frequency resources of the cells constituting the same cell group are the same, and the cells of the same cell group are configured.
  • the divided slots are different from each other.
  • time division slots T1 to T4 are assigned to the cell groups 61-1 to 61-4, respectively, while the same frequency resource is assigned.
  • the frequency resource F1 and the time division slot T1 are allocated to the cell 61-1.
  • Others include the frequency resource F1 and time division slot T2 in the cell 61-2, the frequency resource F1 and time division slot T3 in the cell 61-3, and the frequency resource F1 and time division slot T4 in the cell 61-4. Are assigned respectively.
  • the same communication resources that is, cells having the same combination of frequency resources and time division slots are far apart from those in the second embodiment.
  • a cell to which the same frequency F1 and time division slot T1 as the cell 61-1 is assigned is a cell adjacent to the cell 62-2 and a cell adjacent to the cell 63-3. For this reason, as compared with the second embodiment, interference between electromagnetic waves irradiated in each cell is further suppressed.
  • the time division slots of adjacent cells are different between adjacent clusters (not shown). Therefore, allocation of frequency resources to the cell groups 60-1 to 60-4 constituting the cluster 60 can be arbitrarily performed.
  • a time division slot and a frequency resource are allocated to each cell as communication resources.
  • different types of resources combined with the time division slot are not limited to frequency resources. That is, a resource of a different type from the frequency resource may be combined with the time division slot, and the different type of resource may be further combined.
  • the spreading code is one of the communication resources.
  • the number of cells constituting the cluster and further the number of cells constituting the cell group are not particularly limited. These numbers may be determined according to, for example, the number of communication resources that can be allocated, for example, the number of combinations of time division slots and frequency resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

リソース割当方法は、電磁波を照射すべき対象範囲を分割するセル毎に通信リソースを割り当てるための方法である。このリソース割当方法では、セル毎に、時間領域で通信可能範囲を制限するための時間リソースを通信リソースとして設定し、この時間リソースをセル毎に割り当てる。

Description

リソース割当方法
 本発明は、電磁波を照射すべき対象範囲をセルに分割し、セル毎に通信リソースを割り当てるリソース割当方法に関する。
 無線通信では、通信リソースをより有効に利用するために、通信を可能とすべき対象範囲をセルに分割し、セル毎に通信リソースを割り当てることが行われている。セルへの分割により、同じ内容の通信リソースは、繰り返し利用することができ、通信リソースの利用効率を向上させることができる。
 対象範囲をセルに分割した場合、周波数帯域等の通信リソースの割り当ては、セル毎に行い、セル間の干渉を抑制するようにしている。例えば、無線通信で行われる衛星通信では、反射鏡を4枚または3枚用いて地上の対象範囲である全サービスエリアをカバーしている。さらに、無線通信で行われる衛星通信では、通信リソースである周波数帯域を、3周波数帯域、4周波数帯域、7周波数帯域などの周波数帯域の繰り返しにより、各セルに割り当て、セル間での干渉を抑制している(例えば、非特許文献1参照)。
"Parametric Design and Analysis of Multiple-Beam Reflector Antennas for Satellite Communications", IEEE Antennas and Propagation Magazine, Vol. 45, No.4, August 2003
 衛星通信では、衛星からセル毎に電磁波をアンテナビームとして照射するようになっている。そのため、隣接する2つのセルに異なる通信リソースを割り当てたとしても、他のセルに照射する電磁波による干渉が発生し易いという課題がある。
 本発明は、かかる課題を解決するためになされたもので、その目的は、各セルで照射する電磁波による干渉を、より抑制可能なリソース割当方法を提供することにある。
 本発明に係るリソース割当方法は、電磁波を照射すべき対象範囲をセルに分割し、分割されたセル毎に通信リソースを割り当てるために通信システムにおいて実行されるリソース割当方法であることを前提とし、セル毎に、時間領域で通信可能範囲を制限するための時間リソースを通信リソースとして設定し、時間リソースをセル毎に割り当てるものである。
 本発明によれば、各セルで照射する電磁波による干渉を、より抑制することができる。
本発明の実施の形態1に係るリソース割当方法による各セルへの通信リソースの割り当て例を説明する図である。 周波数リソースの例を説明する図である。 周波数リソースの他の例を説明する図である。 時間リソースの例を説明する図である。 制御単位期間の配置例を説明する図である。 本発明の実施の形態2に係るリソース割当方法による各セルへの通信リソースの割り当て例を説明する図である。 本発明の実施の形態3に係るリソース割当方法による各セルへの通信リソースの割り当て例を説明する図である。
 以下、本発明に係るリソース割当方法の各実施の形態を、図を参照して説明する。
 実施の形態1.
 図1は、本発明の実施の形態1に係るリソース割当方法による各セルへの通信リソースの割り当て例を説明する図である。
 本実施の形態1では、衛星通信で衛星に照射させる全サービスエリアを対象範囲とし、その全サービスエリアをセルに分割して、セル毎に通信リソースを割り当てることを前提とする。それにより、本実施の形態1は、衛星通信用の通信システムに適用されることを前提とする。つまり、通信リソースの割り当ては通信システムにより行われる。より具体的には通信システムの構築に用いられるコンピュータが通信リソースの割り当てを決定し、決定した割り当てに従って通信システム内での制御が行われる。衛星に搭載されたアンテナ装置は、その制御に従って動作する。
 図1では、計16個のセルをそれぞれ丸で示し、11-1~14-4の符号を付している。図1に16個のセルのみを示したのは、この16個のセルが周波数リソースを割り当てるうえでの単位となるからである。以降、特定のセルを指す場合にのみ、そのセルに付した符号を併せて表記する。
 本実施の形態1では、隣接する4個のセルで構成されるセルグループに各セルを分け、セルグループ単位で通信リソースの割り当てを行っている。セルグループは、以降「クラスタ」と表記する。図1では、4個のクラスタ11~14を示している。以降、セルと同様に、特定のクラスタを指す場合にのみ、そのクラスタに付した符号を併せて表記する。
 各クラスタ11~14には、上記のように、それぞれ4個のセルが含まれる。4個のセル11-1~11-4は、クラスタ11を構成する。同様に、4個のセル12-1~12-4は、クラスタ12を構成する。図1では、前段にクラスタの番号、後段にセルの番号を付すことにより、セルとそのセルが属するクラスタの対応関係を符号により示している。
 本実施の形態1では、通信リソースとして、周波数領域のリソース、及び時間領域のリソースを各セルに割り当てるようにしている。以下の説明では、周波数領域のリソースを「周波数リソース」と表記し、時間領域のリソースを「時間リソース」と表記することとする。
 図1中に表記の「F1」~「F4」は、それぞれ異なる内容の周波数リソースを表している。同様に、図1中に表記の「T1」~「T4」は、それぞれ異なる内容の時間リソースを表している。丸内に表記の「F1」~「F4」、及び「T1」~「T4」は、それが表記されている丸が示すセルに割り当てられた周波数リソース、及び時間リソースを表している。例えば、セル11-1に表記の「F1,T1」は、セル11-1に周波数リソースF1、及び時間リソースT1が割り当てられていることを表している。
 図2は、周波数リソースの例を説明する図である。ここで、図2を参照し、周波数リソースの例について、具体的に説明する。
 受信側では、異なる周波数帯域の信号成分を分離することができる。周波数帯域が同じであっても、偏波が異なれば、信号成分を分離することができる。このことから、本実施の形態1では、周波数リソースは、図2に示すように、周波数帯域と偏波の組み合わせとしている。周波数リソースF1と周波数リソースF2とを比較すると、周波数リソースF1は、右旋偏波で相対的に狭く、且つ相対的に低い周波数帯域である。周波数リソースF2は、右旋偏波で周波数リソースF1の周波数の高い側に隣接する形の周波数帯域である。周波数リソースF2の周波数帯域幅は、周波数リソースF1よりも広くなっている。
 また、周波数リソースF3と周波数リソースF4とを比較すると、周波数リソースF3は、左旋偏波で相対的に狭く、且つ相対的に低い周波数帯域である。周波数リソースF4は、左旋偏波で周波数リソースF3の周波数の高い側に隣接する形の周波数帯域である。
 周波数リソースF1~F4間の周波数帯域幅の関係は、F2>F4>F3>F1、となっている。以降、セル及びクラスタと同様に、特定の周波数リソースを指す場合にのみ、その周波数リソースに対応するシンボルを併せて表記する。対応可能な通信容量、つまり通信トラフィック量は、周波数帯域幅が広くなるほど大きくなる。
 図3は、周波数リソースの他の例を説明する図である。この図3に示す例でも、周波数リソースF1~F4における周波数帯域の高さ関係、及び偏波は、図2に示す例と同じである。しかし、周波数リソースF1~F4間の周波数帯域幅の関係は、F1>F4≧F3>F2、となっている。
 周波数リソースの内容は、図2、或いは図3に示すものに限定されない。周波数リソースの内容は、例えば、周波数帯域のみが異なるものであっても良い。周波数帯域幅は、全て同じであっても良い。また、偏波別の周波数帯域の数が異なっていても良い。
 図4は、時間リソースの例を説明する図である。次に、図4を参照し、本実施の形態1における時間リソースの割り当てについて、具体的に説明する。
 各セルに割り当てる時間リソースは、時間領域での通信可能範囲をセル毎に制限するためのリソースである。本実施の形態1では、図4に示すように、時間領域において通信可能範囲を制限するための単位となる制御期間である制御単位期間Pを設け、その制御単位期間P内を4分割し、分割した各期間(=P/4)を時間リソースT1~T4として割り当てている。時間リソースT1~T4の制御単位期間P内での配置は、先頭から、T1→T2→T3→T4、となっている。以降、時間リソースT1~T4は、「時分割スロットT1~T4」とも表記する。周波数リソースと同様に、特定の時分割スロットを指す場合にのみ、その時分割スロットに対応するシンボルを併せて表記する。
 図5は、制御単位期間の配置例を説明する図である。図5中に表記の「P(n)」は、任意の制御単位期間を示し、「P(n+1)」は、その制御単位期間P(n)に続く制御単位期間Pを示している。本実施の形態1では、図5に示すように、時間領域を予め定めた時間で分割し、分割した時間をそれぞれ制御単位期間Pとしている。それにより、制御単位期間Pは、連続する形となっている。各周波数リソースF1~F4に設定されるそれぞれの時分割スロットT1~T4は、同期がとられている。
 上記のように、各時分割スロットT1~T4は、制御単位期間Pを4分割して得られる期間である。そのため、各時分割スロットT1~T4のそれぞれは、時間領域で互いに排他的な関係となっている。つまり、各時分割スロットT1~T4のそれぞれは、時間領域で別の時分割スロットと重なる部分のない時間帯(期間)となっている。
 このような時分割スロットが時間リソースとして割り当てられた場合、電磁波であるアンテナビームの各セルへの照射は、そのセルに割り当てられた時分割スロットの期間のみ行われることとなる。そのため、隣接する2つのセルに割り当てる周波数リソースが同じだとしても、異なる時分割スロットが割り当てられることにより、その2つのセル間での干渉は、回避できるか、或いは大幅に抑制できる。例えば、或るセルに周波数リソースF2を割り当てた場合、その隣接セルに同じ周波数リソースF2を割り当てたとしても、異なる時分割スロットが割り当てられることにより、その2つのセル間での干渉は、回避できるか、或いは大幅に抑制できる。
 このようなことから、時分割スロットを時間リソースとして割り当て可能とすることにより、隣接するセル間での干渉は、回避できるか、或いは大幅に抑制でき、その時間リソース以外の通信リソースを割り当てるうえでの自由度は向上する。自由度の向上により、周波数リソースとして割り当て可能な周波数帯域の選択肢は増え、その周波数帯域の設定上の自由度も向上する。その結果、通信量の比較的に大きいセルにより広い周波数帯域を割り当てるといったことも、より容易に行えるようになる。
 各セルには、周波数リソースF1~F4のうちの何れか、及び時分割スロットT1~T4のうちの何れかが、それぞれ通信リソースとして割り当てられる。本実施の形態1では、図1に示すように、クラスタ毎に同じ時分割スロットを割り当てるようにしている。隣接するクラスタ間では異なる時分割スロットを割り当てるようにしている。具体的には、クラスタ11には時分割スロットT1を割り当て、同様にクラスタ12には時分割スロットT2、クラスタ13には時分割スロットT3、クラスタ14には時分割スロットT4をそれぞれ割り当てている。このように、隣接するクラスタ間では、割り当てる時分割スロットを異ならせている。
 クラスタ毎に同一の時分割スロットの割り当てを決定していることから、クラスタを構成する各セルには互いに異なる周波数リソースが割り当てられる。そのため、各クラスタには、全ての周波数リソースF1~F4が割り当てられる。具体的には、例えばクラスタ11では、セル11-1には周波数リソースF1を割り当て、同様に、セル11-2には周波数リソースF2、セル11-3には周波数リソースF3、セル11-4には周波数リソースF4をそれぞれ割り当てている。
 このように、クラスタ毎に同一の時分割スロットの割り当てを決定した場合、隣接するクラスタ間では時分割スロットが異なることから、クラスタを構成する各セルへの周波数リソースの割り当ては任意に行うことができる。これは、クラスタ間で隣接するセルに割り当てられる周波数リソースを考慮する必要性がないからである。各セルへの状況の変化に応じた周波数リソースの割り当ての変更も、その変更の必要性が生じたクラスタ内だけで行うことができる。このことから、時分割スロットを割り当て対象とした場合、周波数リソースの割り当てを変更するうえでの高い利便性も得られる。
 本実施の形態1では、或るクラスタに割り当てた時分割スロットは、1つのクラスタを挟む位置にあるクラスタに割り当てられる。図1に示す例では、例えば時分割スロットT1は、クラスタ12のセル12-2、及び12-4と隣接する2つのセルを有するクラスタ(図示せず)にも割り当てられる。しかし、同じ時分割スロットが割り当てられた2つのクラスタにおいて、同じ周波数リソースが割り当てられるセルの間には少なくとも2つのセルが存在する。このように離れたセルで時分割スロット、及び周波数リソースが同じとなるため、それらのセルを照射するアンテナビーム間の干渉は、極めて低いレベルに抑制されることとなる。
 図4に示す時分割スロットT1~T4を割り当てる場合、アンテナビームを単に連続的に照射する場合と比較して、各セルに割り当てる時間的な割合である時間率は1/4となる。その時間率により、周波数利用効率も1/4になる。しかし、セルサイズをより小さくした場合、送信電力を同じにしても信号の利得を向上できる。上記のように、アンテナビーム間の干渉は、回避できるか、大幅に抑制できる。これらのことから、セルのスループットを向上させることができる。従って、周波数利用効率の低下をカバーすることができる。
 なお、本実施の形態1では、上記のように、衛星通信システムに適用されることを前提としている。しかし、適用可能な通信システムは、衛星通信システムのみに限定されない。本実施の形態1は、各セルで照射される電磁波間の干渉を抑制する必要のある通信システムに幅広く適用することができる。このことから、通信システムは、例えば地上の移動体通信システムであっても良い。
 また、時分割スロットT1~T4は、全て同じ時間間隔としているが、異なる時間間隔としても良い。また、時分割スロット間に時間間隔を設け、時分割スロットを連続させないようにしても良い。各時分割スロットT1~T4を複数に分けても良い。時分割スロットの数は、3以下であっても良く、5以上であっても良い。これらのことから、時分割スロットは、様々な変形が可能である。
 実施の形態2.
 上記実施の形態1では、クラスタ単位で、同一の時分割スロットを割り当てるようにしている。これに対し、本実施の形態2は、同じクラスタを構成する各セルに対し、互いに異なる時分割スロットを割り当てるようにしたものである。ここでは、上記実施の形態1で用いた符号をそのまま用いて、その実施の形態1から異なる部分にのみ着目する形で説明を行う。
 図6は、本発明の実施の形態2に係るリソース割当方法による各セルへの通信リソースの割り当て例を説明する図である。
 本実施の形態2では、上記のように、同じクラスタに属する各セルに互いに異なる時分割スロットを割り当てるようにしている。それにより、図6に示すように、同じクラスタに属する各セルに割り当てられる周波数リソース、及び時分割スロットは、セル毎に異なっている。具体的には、例えばクラスタ11では、セル11-1には周波数リソースF1と時分割スロットT1が割り当てられている。同様に、セル11-2には周波数リソースF2と時分割スロットT2、セル11-3には周波数リソースF3と時分割スロットT3、セル11-4には周波数リソースF4と時分割スロットT4がそれぞれ割り当てられている。
 図6に示すように、隣接するクラスタ間では、そのクラスタ間で隣接するセルの時分割スロットは異ならせている。セル間の干渉をより抑制するために、本実施の形態2では、隣接するクラスタ間で隣接するセルの周波数リソースも、併せて異ならせている。その結果、隣接するクラスタ間では、周波数リソースと時分割スロットの組み合わせが同じセルが存在している。つまり、或るクラスタに属する1つのセルに割り当てられた周波数リソースと時分割スロットの組み合わせは、そのクラスタに隣接するクラスタに属する1つのセルにも割り当てられるようになっている。それにより、例えばクラスタ11に属するセル11-1に割り当てられた周波数リソースF1と時分割スロットT1との組み合わせは、クラスタ12に属するセル12-1,クラスタ13に属するセル13-1、クラスタ14に属するセル141にも、それぞれ割り当てられている。
 一般的に、電磁波の発射では、目的外の周波数帯域の領域に存在する電磁波の発射である不要発射、つまり帯域外発射、及びスプリアス発射が懸念される。そのため、周波数領域で隣接する周波数帯域間にはガードバンドが設けられるのが普通である。しかし、同じクラスタを構成する各セルに割り当てる時分割スロットを異ならせ、且つクラスタ間で隣接するセルに割り当てる時分割スロットを異ならせる場合、不要発射の影響は、回避できるか、或いはその影響を大きく低減できる。このため、ガードバンドを設ける必要性はないか、そのガードバンドの幅を最小限に抑えることが可能となる。これは、より高い周波数利用効率を実現できることを意味する。不要発射の影響の回避、或いはその影響の大きな低減が可能となることから、各セルで照射される電磁波間の干渉も、より抑制されることとなる。
 なお、本実施の形態2では、同じクラスタを構成する各セルに割り当てる周波数リソースを互いに異ならせているが、同じクラスタを構成する各セルに同じ周波数リソースを割り当てても良い。クラスタ間で隣接するセルの時分割スロットを異ならせる場合、各クラスタを構成するセルへの周波数リソースの割り当ては、任意に行うことができる。例えばセル11-2に隣接するセル12-1に対し、セル11-2と同じ周波数リソースF2を割り当てることもできる。残りの周波数リソースF1、F3、及びF4のセル12-2~4への割り当ても任意に行うことができる。
 実施の形態3.
 上記実施の形態1及び2では、4つのセルで構成されるクラスタ単位で通信リソースの割り当てを行っている。これに対し、本実施の形態3は、16個のセルで構成されるクラスタを単位に通信リソースの割り当てを行うようにしている。ここでも上記実施の形態2と同様に、上記実施の形態2から異なる部分にのみ着目する形で説明を行う。
 図7は、本発明の実施の形態3に係るリソース割当方法による各セルへの通信リソースの割り当て例を説明する図である。
 上記のように、クラスタ60を構成するセルの数を16としている。本実施の形態3では、そのクラスタ60を4つのサブクラスタであるセルグループ60-1~60-4に分け、セルグループ単位で通信リソースの割り当てを行うようにしている。それにより、ここではクラスタ60を通信リソースの繰り返しの単位としている。図7中、61-1~61-4を付した丸は、セルグループ60-1に属するセルを表している。同様に、62-1~62-4を付した丸は、セルグループ60-2に属するセル、63-1~63-4を付した丸は、セルグループ60-3に属するセル、64-1~64-4を付した丸は、セルグループ60-4に属するセルをそれぞれ表している。ここでも、セルグループ、及びセルへの符号は、特定のセルグループ、及びセルを指す場合のみ付すこととする。
 本実施の形態3では、図7に示すように、セルグループ毎に周波数リソースを異ならせ、つまり同じセルグループを構成する各セルの周波数リソースを同じとし、同じセルグループを構成する各セルの時分割スロットを互いに異ならせている。それにより、各セルグループ61-1~61-4には、それぞれ時分割スロットT1~T4を割り当てる一方で、同じ周波数リソースを割り当てている。この結果、例えばセルグループ60-1では、セル61-1には、周波数リソースF1と時分割スロットT1を割り当てている。他は、セル61-2には、周波数リソースF1と時分割スロットT2、セル61-3には、周波数リソースF1と時分割スロットT3、セル61-4には、周波数リソースF1と時分割スロットT4をそれぞれ割り当てている。
 図7に示すような通信リソースの割り当てを行った場合、同じ通信リソース、つまり周波数リソースと時分割スロットの組み合わせが同じセルは、上記実施の形態2と比較して、大きく離れることになる。例えばセル61-1と同じ周波数F1と時分割スロットT1が割り当てられるセルは、セル62-2と隣接するセル、セル63-3と隣接するセルとなる。このことから、上記実施の形態2と比較して、各セルで照射される電磁波間の干渉もより抑制される。
 上記実施の形態2と同様に、本実施の形態3でも、隣接するクラスタ間では、そのクラスタ間で隣接するセルの時分割スロットは異ならせている(図示せず)。そのため、クラスタ60を構成するセルグループ60-1~60-4への周波数リソースの割り当ては、任意に行うことができる。
 本実施の形態3でも上記実施の形態2と同様に、隣接するセルに異なる時分割スロットを割り当てている。そのため、周波数帯域間にガードバンドを設ける必要性はないか、そのガードバンドの幅を最小限に抑えることができる。
 なお、本実施の形態1~3では、通信リソースとして、時分割スロットと周波数リソースを各セルに割り当てるようにしているが、時分割スロットと組み合わせる異なる種類のリソースは、周波数リソースに限定されない。つまり、周波数リソースとは異なる種類のリソースを時分割スロットに組み合わせても良く、その異なる種類のリソースを更に組み合わせるようにしても良い。通信方式によっては、拡散符号も通信リソースの一つである。
 また、クラスタを構成するセル、更にはセルグループを構成するセルの数も特に限定されない。それらの数は、例えば割り当て可能な通信リソースの数、例えば時分割スロットと周波数リソースの組み合わせの数に応じて決定すれば良いものである。
 11~14、60 クラスタ、11-1~4、12-1~4、13-1~4、14-1~4、61-1~4、62-1~4、63-1~4、64-1~4 セル、60-1~4 セルグループ。

Claims (3)

  1.  電磁波を照射すべき対象範囲をセルに分割し、分割されたセル毎に通信リソースを割り当てるために通信システムにおいて実行されるリソース割当方法であって、
     前記セル毎に、時間領域で通信可能範囲を制限するための時間リソースを通信リソースとして設定し、
     前記時間リソースを前記セル毎に割り当てる、
     リソース割当方法。
  2.  割り当て可能な前記時間リソースは、前記通信可能範囲が互いに重ならない時間帯である、
     請求項1に記載のリソース割当方法。
  3.  前記通信リソースは、前記時間リソースとは異なる種類の他のリソースを含み、
     前記時間リソース、及び前記他のリソースの組み合わせの内容を隣接するセル間で異ならせる、
     請求項1または2に記載のリソース割当方法。
PCT/JP2019/003136 2018-02-09 2019-01-30 リソース割当方法 WO2019155953A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019570702A JP7126525B2 (ja) 2018-02-09 2019-01-30 リソース割当方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018021737 2018-02-09
JP2018-021737 2018-02-09

Publications (1)

Publication Number Publication Date
WO2019155953A1 true WO2019155953A1 (ja) 2019-08-15

Family

ID=67548927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003136 WO2019155953A1 (ja) 2018-02-09 2019-01-30 リソース割当方法

Country Status (2)

Country Link
JP (2) JP7126525B2 (ja)
WO (1) WO2019155953A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092547A (ja) * 2001-09-18 2003-03-28 Mitsubishi Electric Corp アレー型マルチビームアンテナを用いた通信方法および装置
JP2013012976A (ja) * 2011-06-30 2013-01-17 Mitsubishi Electric Corp 制御局、中継器、送信器、通信システムおよび通信方法
WO2015114729A1 (ja) * 2014-01-28 2015-08-06 ソフトバンクモバイル株式会社 移動通信システム及び基地局制御装置
JP2017168898A (ja) * 2016-03-14 2017-09-21 ソフトバンク株式会社 通信端末装置、衛星基地局、基地局制御装置及び移動通信システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5279624B2 (ja) * 2009-06-10 2013-09-04 三菱電機株式会社 衛星通信システム、地上局および衛星通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092547A (ja) * 2001-09-18 2003-03-28 Mitsubishi Electric Corp アレー型マルチビームアンテナを用いた通信方法および装置
JP2013012976A (ja) * 2011-06-30 2013-01-17 Mitsubishi Electric Corp 制御局、中継器、送信器、通信システムおよび通信方法
WO2015114729A1 (ja) * 2014-01-28 2015-08-06 ソフトバンクモバイル株式会社 移動通信システム及び基地局制御装置
JP2017168898A (ja) * 2016-03-14 2017-09-21 ソフトバンク株式会社 通信端末装置、衛星基地局、基地局制御装置及び移動通信システム

Also Published As

Publication number Publication date
JP7126525B2 (ja) 2022-08-26
JPWO2019155953A1 (ja) 2020-06-18
JP7317073B2 (ja) 2023-07-28
JP2021153318A (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
US20060205412A1 (en) System and method for controlling resource allocation in a multicell communication system
EP0616481B1 (en) Method of allocating radio channels for mobile communication system
US8929312B2 (en) Dynamic resource management for orthogonal frequency division multiple access wireless networks
CN112383346B (zh) 一种卫星广播信道的实现方法和装置
US10064183B2 (en) Method and apparatus for configuring virtual beam identifier, and method and apparatus for allocating resources using the virtual beam identifier
ES2820587T3 (es) Procedimiento de asignación de recursos de frecuencia para un sistema de telecomunicaciones por satélite
EP2702788B1 (en) Methods in a base station, computer programs, computer program products and base station
US6810249B1 (en) Method and system of efficient spectrum utilization by communications satellites
JP2014036325A (ja) アンテナ装置
CN104620643A (zh) 用于无线网络中的下行功率控制和调度的系统和方法
JP3996344B2 (ja) タイムスケジューリング方式
WO2019155953A1 (ja) リソース割当方法
US11552696B2 (en) Relay station, control station, data transmission system, data transmission method, control circuit, and recording medium
CN111148253B (zh) 一种多样终端接入的卫星通信下行链路sc-ofdma频率分配方法
US8649390B2 (en) Method and apparatus for allocating resource in wireless network using directional antenna
JP6877373B2 (ja) リソース割当方法
KR101285389B1 (ko) 지향성 빔을 이용한 무선통신 네트워크에서의 자원 할당 방법 및 그 장치
ES2648793T3 (es) Procedimiento y disposición de gestión dinámica de sub-sectores en un sistema de comunicación celular
Lee et al. GMPS (Group based multi-level packet scheduling) method in multi-beam based mobile communication system
CN115314081B (zh) 一种低轨通信卫星空间资源管理与优化方法
US20230208497A1 (en) Beam-index based data distribution for scalable distributed radio systems
US11075692B2 (en) Method for defining the flexible payload of a telecommunications satellite with low-interference-level beam hopping
US20230232381A1 (en) Technique for scheduling downlink data allocations and uplink data allocations in a wireless network
JP6355855B2 (ja) 帯域割当て装置およびフレームフォーマット
EP3247053A1 (en) An improved method of exchanging data between an apparatus and user terminals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019570702

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750965

Country of ref document: EP

Kind code of ref document: A1