WO2019155687A1 - Calibration device, measurement device, spherical body, calibration method and program - Google Patents

Calibration device, measurement device, spherical body, calibration method and program Download PDF

Info

Publication number
WO2019155687A1
WO2019155687A1 PCT/JP2018/038168 JP2018038168W WO2019155687A1 WO 2019155687 A1 WO2019155687 A1 WO 2019155687A1 JP 2018038168 W JP2018038168 W JP 2018038168W WO 2019155687 A1 WO2019155687 A1 WO 2019155687A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
acceleration
angular velocity
measurement device
correction value
Prior art date
Application number
PCT/JP2018/038168
Other languages
French (fr)
Japanese (ja)
Inventor
中川 真志
東一 奥野
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Publication of WO2019155687A1 publication Critical patent/WO2019155687A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups

Definitions

  • the present invention relates to a calibration device, a measurement device, a sphere, a calibration method, and a program.
  • acceleration generated in the device can be measured by an acceleration sensor mounted in the device.
  • the acceleration output from the acceleration sensor is automatically performed when the device body is in a stationary state with a predetermined posture or when the user performs a predetermined operation on the device body.
  • Patent Document 1 when a free fall state of a mobile device is detected, a noise level of the signal is measured, and an accelerometer included in the mobile device is automatically calibrated based on a compensation signal based on the measured noise level. Techniques to do this are disclosed.
  • Patent Document 1 below discloses a technique for compensating for rotation (angular velocity) of a sphere with respect to acceleration output from an accelerometer using a compensation coefficient based on a rotation vector measured by a three-axis gyroscope. It is disclosed.
  • Patent Document 1 when a configuration in which an accelerometer and a three-axis gyroscope are incorporated inside a sphere (for example, a ball for ball games), variation in the assembling position, Due to variations in the center of rotation, the relationship between the rotation (angular velocity) of the sphere and the centrifugal force actually generated on the sphere cannot be determined uniquely.
  • a calibration device is a calibration device that calibrates a measurement device including an acceleration sensor and a gyro sensor, and includes an acceleration acquisition unit that acquires acceleration output from the acceleration sensor, and an angular velocity output from the gyro sensor. Based on the angular velocity acquisition unit to be acquired, the first determination unit that determines whether the rotation of the measuring device is stable based on the angular velocity acquired by the angular velocity acquisition unit, and the acceleration acquired by the acceleration acquisition unit A third determination unit that determines whether or not the measurement device is in a free fall state, and a case where the first determination unit determines that the rotation of the measurement device is stable, and the third determination unit determines the measurement device. Is determined to be in a free-fall state, the acceleration acquired by the acceleration acquisition unit is used as valid data to compensate for the acceleration output from the acceleration sensor. And a correction value calculation unit for calculating a value.
  • FIG. 1 is a diagram illustrating a schematic configuration of a ball 10 according to an embodiment.
  • the ball 10 shown in FIG. 1 is an example of a “sphere” and has a spherical outer shape.
  • the ball 10 includes a measurement module 100, a pincushion layer 12, and a skin layer 14.
  • the measurement module 100 is an example of a “measurement device”.
  • the measurement module 100 is provided substantially at the center inside the ball 10.
  • the measurement module 100 includes a case 101 and a measurement circuit 102.
  • the case 101 has a spherical outer shape and is a hollow member formed from a relatively hard material (for example, a hard resin).
  • the measurement circuit 102 is a device that is fixedly disposed inside the case 101.
  • the measurement circuit 102 includes an acceleration sensor 111, a gyro sensor 112, a geomagnetic sensor 113, and the like mounted on a circuit board 102A.
  • the axial directions of these three axes are set in advance so that the X axis direction, the Y axis direction, and the Z axis direction are all predetermined directions.
  • the directions parallel to the surface of the circuit board 102A are defined as the X-axis direction and the Y-axis direction
  • the direction perpendicular to the surface of the circuit board 102A is defined as the Z-axis direction.
  • the acceleration sensor 111 and the gyro sensor 112 are the acceleration and angular velocity generated in the measurement module 100 (ie, the acceleration generated in the ball 10) for each of the three axes (X axis, Y axis, and Z axis) whose axial directions are defined in advance. , Angular velocity) can be detected.
  • the geomagnetic sensor 113 can detect geomagnetism for each of the three axes (X axis, Y axis, Z axis) whose axial directions are defined in advance.
  • the bobbin layer 12 is provided outside the measurement module 100 so as to cover the outer surface of the measurement module 100.
  • the bobbin layer 12 is formed by winding a plurality of yarns (for example, cotton yarn, wool yarn, rubber yarn) on the outer surface of the measurement module 100.
  • the skin layer 14 is a member constituting the outer surface of the ball 10, and is provided on the outer side of the bobbin layer 12 so as to cover the outer surface of the bobbin layer 12.
  • the skin layer 14 is formed of a material such as leather (for example, cowhide, artificial leather, etc.).
  • the ball 10 configured in this way is used as a ball for ball games (for example, for baseball, soccer, golf, etc.), and when the ball 10 flies, the acceleration and angular velocity of the ball 10 , And geomagnetism can be continuously measured by the measurement module 100. Further, the ball 10 can communicate with an external information processing device (for example, a smartphone, a tablet terminal, a personal computer, a server, etc.), and each measurement data (acceleration, angular velocity, and geomagnetism) is transmitted to the external information processing device. Can be output to.
  • an external information processing device for example, a smartphone, a tablet terminal, a personal computer, a server, etc.
  • the external information processing apparatus displays each measurement data (acceleration, angular velocity, and geomagnetism) acquired from the ball 10 by, for example, a display or used for analysis of how the ball 10 is rotated. be able to.
  • FIG. 2 is a diagram illustrating a hardware configuration of the measurement module 100 (measurement circuit 102) according to the embodiment.
  • the measurement circuit 102 of the measurement module 100 includes an acceleration sensor 111, a gyro sensor 112, a geomagnetic sensor 113, a microcomputer 114, a memory 115, a communication interface (I / F) 116, and a battery 117. Yes.
  • these hardware are mounted on a circuit board 102A (see FIG. 1) and are electrically connected to each other by wiring formed on the circuit board 102A.
  • the acceleration sensor 111 detects the acceleration generated in the measurement module 100 (that is, the ball 10) for each of the three predefined axes (X axis, Y axis, Z axis).
  • the acceleration detected by the acceleration sensor 111 is supplied to the microcomputer 114.
  • the acceleration sensor 111 for example, a strain gauge type acceleration sensor, a piezoresistive type acceleration sensor, a piezoelectric type acceleration sensor, or the like can be used.
  • the gyro sensor 112 detects an angular velocity generated in the measurement module 100 (that is, the ball 10) for each of three predefined axes (X axis, Y axis, and Z axis).
  • the angular velocity detected by the gyro sensor 112 is supplied to the microcomputer 114.
  • a vibration type gyro sensor, a capacitance type gyro sensor, or the like can be used as the gyro sensor 112.
  • the geomagnetic sensor 113 detects the geomagnetism of each of three predefined axes (X axis, Y axis, Z axis).
  • the geomagnetism detected by the geomagnetic sensor 113 is supplied to the microcomputer 114.
  • a magnetoresistive sensor, a hall sensor, or the like can be used as the geomagnetic sensor 113.
  • the microcomputer 114 is an example of a “calibration device” and a “computer”.
  • the microcomputer 114 includes a processor, and the processor implements various functions included in the measurement module 100 by executing a program stored in the memory 115 or the like.
  • the microcomputer 114 has a function of outputting each measurement data (acceleration, angular velocity, and geomagnetism) supplied from each sensor to an external information processing apparatus via the communication I / F 116.
  • the microcomputer 114 has a function of calibrating the acceleration detected by the acceleration sensor 111 based on each measurement data (acceleration and angular velocity) supplied from each sensor.
  • the memory 115 stores, for example, a program executed by the microcomputer 114 and various data used when the microcomputer 114 executes the program.
  • a RAM Random Access Memory
  • the memory 115 for example, a RAM (Random Access Memory) or the like can be used.
  • the communication I / F 116 controls communication with an external information processing apparatus.
  • BLE Bluetooth Low Energy
  • Wi-Fi Wireless Fidelity
  • NFC Near Field Communication
  • USB Universal
  • USB Universal
  • the battery 117 supplies DC power to each part of the measurement module 100.
  • a primary battery for example, a silver oxide battery, a lithium battery, or the like
  • various secondary batteries for example, a lithium ion secondary battery, a lithium ion polymer secondary battery, a nickel hydrogen secondary battery, etc.
  • a lithium ion secondary battery for example, a lithium ion polymer secondary battery, a nickel hydrogen secondary battery, etc.
  • various secondary batteries for example, a lithium ion secondary battery, a lithium ion polymer secondary battery, a nickel hydrogen secondary battery, etc.
  • FIG. 3 is a diagram illustrating a functional configuration of the measurement module 100 (measurement circuit 102) according to the embodiment.
  • the measurement circuit 102 of the measurement module 100 includes a main control unit 300, an acceleration acquisition unit 301, an angular velocity acquisition unit 302, a geomagnetism acquisition unit 303, a first determination unit 304, a second determination unit 305, and a third.
  • a determination unit 306, a correction value calculation unit 307, a value holding unit 308, a correction value writing unit 309, a correction value storage unit 310, a correction unit 311, an output unit 312, and a power supply control unit 313 are provided.
  • the main control unit 300 controls the entire processing by the measurement circuit 102.
  • the main control unit 300 controls the start of processing by the measurement circuit 102, the end of processing, the repetition of processing, the execution of processing by each functional unit, and the like.
  • the acceleration acquisition unit 301 acquires the acceleration output from the acceleration sensor 111. Specifically, the acceleration acquisition unit 301 acquires the acceleration of each of the three axes (X axis, Y axis, and Z axis) output from the acceleration sensor 111.
  • the angular velocity acquisition unit 302 acquires the angular velocity output from the gyro sensor 112. Specifically, the angular velocity acquisition unit 302 acquires the angular velocities of the three axes (X axis, Y axis, and Z axis) output from the gyro sensor 112.
  • angular velocity of the X axis means an angular velocity having the X axis as a rotation axis.
  • Y-axis angular velocity means an angular velocity with the Y-axis as a rotation axis
  • Z-axis angular velocity means an angular velocity with the Z-axis as a rotation axis.
  • the geomagnetism acquisition unit 303 acquires the geomagnetism output from the geomagnetic sensor 113. Specifically, the geomagnetism acquisition unit 303 acquires the geomagnetism of each of the three axes (X axis, Y axis, Z axis) output from the geomagnetic sensor 113.
  • the first determination unit 304 determines whether or not the rotation of the measurement module 100 is stable (hereinafter referred to as “rotation stable state”) based on the angular velocity acquired by the angular velocity acquisition unit 302. . Specifically, the first determination unit 304 determines that the difference between the latest angular velocity and the angular velocity immediately before the latest angular velocity is the first threshold value for all three axes (X axis, Y axis, Z axis). When the state of being equal to or less than th1 continues for N consecutive times, it is determined that the rotation is stable (that is, the angular velocity is stable, the angular velocity displacement amount is small).
  • the first determination unit 304 may determine the rotational stable state using a moving average value of a predetermined number of angular velocities. Thereby, the 1st determination part 304 can suppress the misjudgment by the noise contained in angular velocity, and can perform the determination of a rotation stable state with higher precision.
  • the second determining unit 305 determines whether centrifugal force is generated for each of the three axes (X axis, Y axis, Z axis) in the measurement module 100. To do.
  • FIG. 4 is a diagram illustrating a determination pattern by the second determination unit 305 in the measurement module 100 (measurement circuit 102) according to an embodiment.
  • the second determination unit 305 determines that no centrifugal force is generated in the Z axis when both the X-axis angular velocity and the Y-axis angular velocity are equal to or less than a predetermined second threshold th2. To do. This is because, in one or both of the X axis and the Y axis, when the measurement module 100 rotates with the axis as a rotation axis, centrifugal force is generated in the Z axis direction.
  • the second determination unit 305 determines that centrifugal force is not generated on the Y axis when both the X-axis angular velocity and the Z-axis angular velocity are equal to or less than a predetermined second threshold th2. This is because, in one or both of the X axis and the Z axis, when the measurement module 100 rotates with the axis as a rotation axis, centrifugal force is generated in the Y axis direction.
  • the second determination unit 305 determines that centrifugal force is not generated on the X axis when both the angular velocity of the Y axis and the angular velocity of the Z axis are equal to or less than a predetermined second threshold th2. This is because, in one or both of the Y axis and the Z axis, when the measurement module 100 rotates with the axis as a rotation axis, centrifugal force is generated in the X axis direction.
  • the third determination unit 306 determines whether or not the measurement module 100 (that is, the ball 10) is in a free fall state based on the acceleration acquired by the acceleration acquisition unit 301. In particular, the third determination unit 306 determines whether or not the measurement module 100 (that is, the ball 10) is in a free fall state based on a moving average value of a predetermined number of accelerations. Specifically, the third determination unit 306, for all three axes (X axis, Y axis, Z axis), when the moving average value of a predetermined number of accelerations is equal to or less than a predetermined third threshold th3, It is determined that the ball 10 is in a free fall state. As described above, the third determination unit 306 determines the free fall state by using the moving average value of the acceleration, thereby suppressing erroneous determination due to noise included in the acceleration, and determining the free fall state. It can be performed with higher accuracy.
  • the correction value calculation unit 307 calculates the correction value of the acceleration output from the acceleration sensor 111 based on the acceleration acquired by the acceleration acquisition unit 301. Specifically, the correction value calculation unit 307 determines that all three axes (X axis, Y axis, Z axis) in the measurement module 100 are in a rotationally stable state by the first determination unit 304, and the first 3 When the determination unit 306 determines that the ball 10 is in a free fall state, the second determination unit 305 determines that the centrifugal force is not generated (at least one of the X axis, the Y axis, and the Z axis).
  • the correction value calculation unit 307 includes three axes ( For each of the X axis, the Y axis, and the Z axis, the acceleration acquired by the acceleration acquisition unit 301 (that is, the difference value from “0”) can be calculated as it is as a correction value for acceleration.
  • the value holding unit 308 holds the acceleration determined as valid data. For example, when it is determined that only the X-axis acceleration is valid data, the value holding unit 308 holds the X-axis acceleration. After that, if the Y-axis acceleration is determined to be valid data, and if the Z-axis acceleration is determined to be valid data, the value holding unit 308 further holds the Y-axis and Z-axis accelerations. As a result, the value holding unit 308 holds the acceleration of each of the three axes (X axis, Y axis, and Z axis).
  • the correction value calculation unit 307 uses the three axes (X axis, Y axis, and Z axis) held by the value holding unit 308 to use the three axes (X axis) output from the acceleration sensor 111. , Y axis, and Z axis) can be calculated.
  • the value holding unit 308 can hold a plurality of accelerations determined to be valid data for each of the three axes (X axis, Y axis, and Z axis). Accordingly, the correction value calculation unit 307 calculates an average value of a plurality of accelerations held in the value holding unit 308 for each of the three axes (X axis, Y axis, and Z axis), and uses the average value. Thus, the correction value of the acceleration output from the acceleration sensor 111 can be calculated. As described above, the correction value calculation unit 307 calculates the average value of the plurality of accelerations as the correction value, thereby smoothing noise included in the plurality of accelerations and calculating a correction value with higher accuracy. it can.
  • the correction value writing unit 309 writes the correction values of the three axes (X axis, Y axis, Z axis) calculated by the correction value calculation unit in the correction value storage unit 310.
  • the correction value storage unit 310 stores the correction values of the three axes (X axis, Y axis, and Z axis) written by the correction value writing unit 309.
  • the correction value writing unit 309 overwrites the correction value storage unit 310 with a new correction value. As a result, the latest correction value is always stored in the correction value storage unit 310.
  • the correction unit 311 uses the three axis (X axis, Y axis, Z axis) correction values stored in the correction value storage unit 310 to obtain the three axes (X axis, Y) acquired by the acceleration acquisition unit 301. Axes and Z-axis) are corrected. For example, the correction unit 311 calculates the three axes (X axis, Y axis) stored in the correction value storage unit 310 from the accelerations of the three axes (X axis, Y axis, Z axis) acquired by the acceleration acquisition unit 301. , Z axis) is subtracted.
  • the output unit 312 outputs acceleration, angular velocity, and geomagnetism. Specifically, the output unit 312 outputs the acceleration of each of the three axes (X axis, Y axis, and Z axis) corrected by the correction unit 311. The output unit 312 outputs the angular velocities of the three axes (X axis, Y axis, and Z axis) acquired by the angular velocity acquisition unit 302. The output unit 312 outputs the geomagnetism of each of the three axes (X axis, Y axis, and Z axis) acquired by the geomagnetism acquisition unit 303.
  • the output unit 312 outputs acceleration, angular velocity, and geomagnetism to an external information processing apparatus (for example, a smartphone, a tablet terminal, a personal computer, a server, etc.) via the communication I / F 116.
  • an external information processing apparatus for example, a smartphone, a tablet terminal, a personal computer, a server, etc.
  • the power control unit 313 controls the power on and off of the measurement module 100. For example, when the power supply control unit 313 determines that the ball 10 is in a free fall state based on the acceleration acquired by the acceleration acquisition unit 301 when the measurement module 100 is powered off (or in sleep mode). Then, the measurement module 100 is turned on. As a method for determining this free fall state, for example, a determination method similar to the determination method by the third determination unit 306 can be used. Further, for example, when the power supply control unit 313 determines that the ball 10 is in a stationary state for a certain period based on the acceleration acquired by the acceleration acquisition unit 301, the power supply of the measurement module 100 is turned off (or in sleep mode). ). Thereby, the measurement module 100 according to the present embodiment turns on and off the power of the measurement module 100 without providing a power switch by a user operation (that is, without exposing a physical switch to the outer surface of the ball 10). Can be switched.
  • Each function of the measurement module 100 described above is realized by various hardware (see FIG. 2) and software included in the measurement module 100.
  • the unit 309, the correction unit 311, the output unit 312, and the power supply control unit 313 are realized by the microcomputer 114 executing the program stored in the memory 115.
  • the value holding unit 308 and the correction value storage unit 310 are realized by the memory 115.
  • the program executed by the microcomputer 114 may be provided in a state of being introduced into the measurement module 100 in advance, or may be provided from the outside and introduced into the measurement module 100. In the latter case, this program may be provided by an external storage medium (for example, a USB memory, a memory card, a CD-ROM, etc.), or provided by downloading from a server on a network (for example, the Internet, etc.). You may do it.
  • an external storage medium for example, a USB memory, a memory card, a CD-ROM, etc.
  • a server on a network for example, the Internet, etc.
  • FIG. 5 is a flowchart illustrating a processing procedure performed by the measurement module 100 (measurement circuit 102) according to an embodiment.
  • the processing shown in FIG. 5 is executed in the measurement module 100 when, for example, the user gives a processing start instruction to the ball 10 and then freely drops the ball 10 from a state of being held by hand. It is processing.
  • the main control unit 300 determines whether or not a predetermined process start event has occurred (step S501).
  • the predetermined process start event may be any event. For example, the reception of a process start instruction from an external information processing apparatus may be used as the predetermined process start event. If it is determined in step S501 that the predetermined process start event has not occurred (step S501: No), the main control unit 300 executes the process of step S501 again.
  • step S501 when it is determined in step S501 that a predetermined process start event has occurred (step S501: Yes), the acceleration acquisition unit 301 outputs the three axes (X axis, Y axis, Z) output from the acceleration sensor 111. The acceleration of each axis is acquired (step S502). Further, the angular velocity acquisition unit 302 acquires the angular velocities of the three axes (X axis, Y axis, Z axis) output from the gyro sensor 112 (step S503).
  • step S502 since acceleration is repeatedly output from the acceleration sensor 111, in step S502, the acceleration acquisition unit 301 repeatedly acquires acceleration. Similarly, since the angular velocity is actually output repeatedly from the gyro sensor 112, the angular velocity acquisition unit 302 repeatedly acquires the angular velocity in step S503.
  • the first determination unit 304 rotates all three axes (X axis, Y axis, Z axis) in the measurement module 100 based on the angular velocities (moving average values of the three axes) acquired in step S503. It is determined whether or not it is in a stable state (step S504). In step S504, when it is determined that all three axes are not in the rotation stable state (step S504: No), the main control unit 300 returns the process to step S502.
  • step S504 when it is determined in step S504 that all the three axes are in a rotationally stable state (step S504: Yes), the third determination unit 306 determines the acceleration (moving average of each of the three axes) acquired in step S502. Based on (value), it is determined whether or not the ball 10 is in a free fall state (step S505). If it is determined in step S505 that the ball 10 is not in the free fall state (step S505: No), the main control unit 300 returns the process to step S502.
  • step S505 determines the three axes in the measurement module 100 based on the angular velocity acquired in step S503. It is determined whether or not centrifugal force is generated for each of the (X axis, Y axis, and Z axis) (step S506).
  • the value holding unit 308 determines the acceleration of the axis determined to have no centrifugal force generated in step S506. It is held as valid data (step S507).
  • the main control unit 300 determines whether or not a certain amount of acceleration is held in the value holding unit 308 for each of the three axes (X axis, Y axis, and Z axis) (step S508). If it is determined in step S508 that a certain amount of acceleration is not held in the value holding unit 308 (step S508: No), the main control unit 300 returns the process to step S502.
  • step S508 when it is determined in step S508 that a certain amount of acceleration has been held in the value holding unit 308 (step S508: Yes), the correction value calculation unit 307 has three axes (X axis, Y axis, Z axis). For each, an average value of a plurality of accelerations held in the value holding unit 308 is calculated as an acceleration correction value output from the acceleration sensor 111 (step S509). Then, the correction value writing unit 309 writes the correction values of the three axes (X axis, Y axis, and Z axis) calculated in step S509 in the correction value storage unit 310 (step S510). Thereafter, the main control unit 300 ends the series of processes shown in FIG.
  • the measurement module 100 repeatedly executes a series of processes until a certain amount of acceleration is held in the value holding unit 308, but is not limited thereto.
  • the measurement module 100 may execute a series of processes shown in FIG. 5 once periodically (for example, every day, every week, every time the measurement module 100 is activated, etc.). .
  • the measurement module 100 may calculate an acceleration correction value at a timing when a certain amount of acceleration is held in the value holding unit 308.
  • FIG. 6 is a diagram illustrating an example (first example) of measurement data obtained by the measurement module 100 according to an embodiment.
  • FIG. 7 is a diagram illustrating an example (second example) of measurement data obtained by the measurement module 100 according to an embodiment.
  • FIG. 6 shows measurement data measured by the measurement module 100 provided inside the ball 10 when the user freely drops the ball 10.
  • FIG. 6 shows measurement data when the ball 10 falls freely without rotation.
  • FIG. 6A represents acceleration measurement data, where the horizontal axis represents time, and the vertical axis represents acceleration.
  • FIG. 6B represents angular velocity measurement data, where the horizontal axis represents time and the vertical axis represents angular velocity.
  • the period S1 is a period in which the ball 10 is held in the user's hand.
  • the period S2 is a period in which the ball 10 is rolled from the user's hand.
  • the period S3 is a period in which the ball 10 is in a free fall state.
  • the solid line represents the X-axis acceleration.
  • the broken line represents the Y-axis acceleration.
  • the alternate long and short dash line represents the Z-axis acceleration.
  • the first determination unit 304 determines that the ball 10 is in a rotationally stable state
  • the second determination unit 305 determines each of the three axes (X axis, Y axis, Z axis). It is determined that the centrifugal force is not generated in the ball, and the third determination unit 306 determines that the ball 10 is in a free fall state. Therefore, in this case, the measurement module 100 determines that each acceleration of the three axes (X axis, Y axis, Z axis) in the period S3 is valid data by using the correction value calculation unit 307, and uses these accelerations.
  • a correction value of acceleration of each of the three axes is calculated.
  • the correction value calculation unit 307 uses the difference value from the ideal value as a correction value. Can be calculated.
  • FIG. 7 shows measurement data measured by the measurement module 100 provided inside the ball 10 when the user freely drops the ball 10.
  • FIG. 7 shows measurement data when the ball 10 freely falls with rotation.
  • FIG. 7A represents acceleration measurement data, where the horizontal axis represents time and the vertical axis represents acceleration.
  • FIG. 7B represents angular velocity measurement data, where the horizontal axis represents time and the vertical axis represents angular velocity.
  • a period S4 is a period in which the ball 10 is in a state of being thrown up from the user's hand.
  • the period S5 is a period in which the ball 10 is in a free fall state.
  • the solid line represents the X-axis acceleration.
  • the broken line represents the Y-axis acceleration.
  • the alternate long and short dash line represents the Z-axis acceleration.
  • a period S5 in FIG. 7A when the ball 10 is in a free fall state (ie, 0G state), the acceleration of each of the three axes (X axis, Y axis, and Z axis) converges near zero. It will be stable.
  • a free fall state ie, 0G state
  • each of the angular velocities of the three axes X axis, Y axis, Z axis
  • the ball 10 is not in a converged state, that is, the ball 10 is in a rotating state.
  • the third determination unit 306 determines that the ball 10 is in a free fall state.
  • the first determination unit 304 determines that the ball 10 is not in a stable rotation state.
  • the second determination is made.
  • the unit 305 determines that centrifugal force is generated in each of the three axes (X axis, Y axis, and Z axis). Therefore, in this case, the measurement module 100 determines that each acceleration of the three axes (X axis, Y axis, Z axis) in the period S5 is invalid data by using the correction value calculation unit 307, and uses these accelerations. The correction value of acceleration of each of the three axes (X axis, Y axis, Z axis) is not calculated.
  • the measurement module 100 of the present embodiment is measured by the acceleration sensor 111 when it is determined that the measurement module 100 is in the rotation stable state based on the angular velocity measured by the gyro sensor 112.
  • a configuration is adopted in which the acceleration correction value output from the acceleration sensor 111 is calculated using the acceleration as effective data.
  • the measurement module 100 outputs from the acceleration sensor 111 using only the acceleration measured when the ball 10 is in the rotation stable state.
  • the acceleration correction value can be calculated. Therefore, the measurement module 100 according to the present embodiment can eliminate the influence due to the large amount of displacement of the rotation of the measurement module 100, and thus can correct the acceleration output from the acceleration sensor 111 with high accuracy. .
  • the measurement module 100 centrifuges each of the three axes (X axis, Y axis, Z axis) in the measurement module 100 (that is, the ball 10) based on the angular velocity measured by the gyro sensor 112. It is determined whether or not a force is generated, and is output from the acceleration sensor 111 using the acceleration of the axis measured by the acceleration sensor 111 as valid data for an axis determined to have no centrifugal force. A configuration for calculating a correction value of acceleration of the axis is employed.
  • the measurement module 100 of this embodiment can eliminate the influence of the centrifugal force due to the rotation of the measurement module 100, and thus can correct the acceleration output from the acceleration sensor 111 with high accuracy.
  • the measurement module 100 is configured so that even if a centrifugal force is generated in a part of three axes (X axis, Y axis, and Z axis), Since the acceleration of the axis is determined as valid data (that is, the acceleration of all axes is not invalidated in general), a sufficient amount of valid data necessary for calculating the correction value is obtained relatively early. Can be collected.
  • the measurement module 100 is measured by the acceleration sensor 111 when it is determined that the measurement module 100 (that is, the ball 10) is in a free fall state based on the acceleration measured by the acceleration sensor 111.
  • a configuration for calculating a correction value of acceleration output from the acceleration sensor 111 by using the acceleration as effective data is adopted.
  • each acceleration is an ideal value (that is, 0), and therefore, the acceleration correction value for each of the three axes (X axis, Y axis, Z axis) Can be calculated easily and with high accuracy.
  • the measurement module 100 of the present embodiment allows the measurement module 100 (that is, the ball 10) to freely fall a plurality of times, so that each time at least one of the X axis, the Y axis, and the Z axis,
  • the acceleration measured by the acceleration sensor 111 can be obtained as effective data.
  • the measurement module 100 according to the present embodiment includes an acceleration that is obtained by determining that the measurement module 100 is in a free-falling state a plurality of times, and at least one effective data of the X axis, and the Y axis.
  • Each of the X-axis, Y-axis, and Z-axis output from the acceleration sensor 111 using at least one acceleration of the valid data and acceleration of at least one valid data of the Z-axis.
  • the measurement module 100 of the present embodiment allows the measurement module 100 to freely fall a plurality of times and obtain at least one effective data for each of the X axis, the Y axis, and the Z axis. It is possible to calculate correction values for acceleration of each of the Y axis and the Z axis.
  • the free fall of the measurement module 100 may be performed every time the measurement module 100 is activated, for example. In this case, the activation interval of the measurement module 100 may be any day, week, month, or the like.
  • the calibration device (microcomputer 114) of the present invention is provided integrally with the acceleration sensor 111, the gyro sensor 112, and the measurement module 100.
  • the calibration device of the present invention is not limited to this.
  • the acceleration sensor 111 and the gyro sensor 112 may be provided separately.
  • the measuring device (measurement module 100) of this invention is provided in the spherical body (ball
  • the measuring device of this invention is a pincushion layer. It may be provided in a sphere that does not have a sphere or any device other than a sphere.
  • the measurement module 100 is provided with both the first determination unit 304 and the second determination unit 305.
  • the measurement module 100 is not limited thereto, and the measurement module 100 includes the first determination unit 304 and the first determination unit 304. Either one of the two determination units 305 may be provided.
  • the output unit 312 outputs the acceleration corrected by the correction unit 311 to an external information processing apparatus.
  • the present invention is not limited to this, and for example, the output unit 312 acquires the acceleration.
  • the acceleration acquired by the unit 301 and the correction value stored in the correction value storage unit 310 may be output to an external information processing apparatus so that the acceleration is corrected by the external information processing apparatus. .
  • the output unit 312 may output each measurement data (acceleration, angular velocity, and geomagnetism) in real time, accumulate each measurement data in the memory 115, and at a predetermined timing. You may make it output collectively.
  • the correction value calculation unit 307 calculates the correction values for the three axes in a state where the accelerations (effective data) for the three axes (X axis, Y axis, and Z axis) are aligned.
  • the present invention is not limited to this, and the correction value may be calculated when valid data is obtained for each axis.
  • the third determination unit 306 determines that the acceleration (moving average value) of each of the three axes (X axis, Y axis, Z axis) is equal to or less than a predetermined third threshold th3.
  • the ball 10 is determined to be in a free-fall state, but the present invention is not limited to this.
  • the combined vector value of the acceleration of each of the three axes (X axis, Y axis, Z axis) or its movement When the average value is equal to or less than the predetermined fourth threshold th4, it may be determined that the ball 10 is in a free fall state.
  • Measuring module (measuring device) DESCRIPTION OF SYMBOLS 101 Case 102 Measuring circuit 102A Circuit board 111 Acceleration sensor 112 Gyro sensor 113 Geomagnetic sensor 114 Microcomputer (calibration apparatus, computer) 115 Memory 116 Communication I / F 117 battery 300 main control unit 301 acceleration acquisition unit 302 angular velocity acquisition unit 303 geomagnetism acquisition unit 304 first determination unit 305 second determination unit 306 third determination unit 307 correction value calculation unit 308 value holding unit 309 correction value writing unit 310 correction Value storage unit 311 Correction unit 312 Output unit 313 Power supply control unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Gyroscopes (AREA)

Abstract

The present invention is provided with: an acceleration acquisition unit which acquires an acceleration output from an acceleration sensor; an angular velocity acquisition unit which acquires an angular velocity output from a gyro sensor; a first determination unit which determines, on the basis of the angular velocity acquired by the angular velocity acquisition unit, whether rotation of a measurement device is stable; a third determination unit which determines, on the basis of the acceleration acquired from the acceleration acquisition unit, whether the measurement device is in a free-fall state; and a correction value calculation unit which uses, as valid data, the acceleration acquired from the acceleration acquisition unit and calculates a correction value for the acceleration output from the acceleration sensor, when the first determination unit determines that the rotation of the measurement device is stable and the third determination unit determines that the measurement device is in the free-fall state.

Description

較正装置、計測装置、球体、較正方法、およびプログラムCalibration apparatus, measurement apparatus, sphere, calibration method, and program
 本発明は、較正装置、計測装置、球体、較正方法、およびプログラムに関する。 The present invention relates to a calibration device, a measurement device, a sphere, a calibration method, and a program.
 従来、各種機器において、当該機器の内部に実装された加速度センサにより、当該機器に生じた加速度を計測できるようになっている。このような機器の中には、機器本体を所定の姿勢で静止状態とするか、または、機器本体に対してユーザが所定の動作を行うことにより、加速度センサから出力される加速度を自動的に較正できるようになっているものがある。 Conventionally, in various devices, acceleration generated in the device can be measured by an acceleration sensor mounted in the device. Among such devices, the acceleration output from the acceleration sensor is automatically performed when the device body is in a stationary state with a predetermined posture or when the user performs a predetermined operation on the device body. Some are designed to be calibrated.
 例えば、下記特許文献1には、モバイルデバイスの自由落下状態を検出したときに、信号の雑音レベルを測定し、測定された雑音レベルに基づく補償信号によって、当該モバイルデバイスが備える加速度計を自動較正する技術が開示されている。また、下記特許文献1には、3軸ジャイロスコープによって測定された回転ベクトルに基づく補償係数を用いて、加速度計から出力される加速度に対して、球体の回転(角速度)の補償を行う技術が開示されている。 For example, in Patent Document 1 below, when a free fall state of a mobile device is detected, a noise level of the signal is measured, and an accelerometer included in the mobile device is automatically calibrated based on a compensation signal based on the measured noise level. Techniques to do this are disclosed. Patent Document 1 below discloses a technique for compensating for rotation (angular velocity) of a sphere with respect to acceleration output from an accelerometer using a compensation coefficient based on a rotation vector measured by a three-axis gyroscope. It is disclosed.
特表2014-524037号公報Special table 2014-524037 gazette
 しかしながら、上記特許文献1の技術では、例えば、加速度計および3軸ジャイロスコープを、球体(例えば、球技用のボール等)の内部に組み込む構成を採用した場合、その組み込み位置のばらつきや、球体の回転中心のばらつき等により、球体の回転(角速度)と、実際に球体に生じる遠心力との関係が一意に定まらなくなる。 However, in the technique disclosed in Patent Document 1, for example, when a configuration in which an accelerometer and a three-axis gyroscope are incorporated inside a sphere (for example, a ball for ball games), variation in the assembling position, Due to variations in the center of rotation, the relationship between the rotation (angular velocity) of the sphere and the centrifugal force actually generated on the sphere cannot be determined uniquely.
 このため、上記特許文献1の技術では、3軸ジャイロスコープによって測定された回転ベクトルに基づく補償係数を用いて、加速度計から出力される加速度に対して、球体の回転(角速度)の補償を行ったとしても、実際に球体に生じる遠心力の補償を行うことができず、よって、加速度計から出力される加速度を高精度に補正することができない。そこで、加速度センサから出力される加速度を高精度に補正することが可能な較正装置が求められている。 For this reason, in the technique of Patent Document 1 described above, the rotation (angular velocity) of the sphere is compensated for the acceleration output from the accelerometer using the compensation coefficient based on the rotation vector measured by the three-axis gyroscope. Even so, the centrifugal force actually generated in the sphere cannot be compensated, and therefore the acceleration output from the accelerometer cannot be corrected with high accuracy. Therefore, a calibration device capable of correcting the acceleration output from the acceleration sensor with high accuracy is required.
 一実施形態の較正装置は、加速度センサおよびジャイロセンサを備えた計測装置を較正する較正装置であって、加速度センサから出力された加速度を取得する加速度取得部と、ジャイロセンサから出力された角速度を取得する角速度取得部と、角速度取得部によって取得された角速度に基づいて、計測装置の回転が安定しているか否かを判定する第1判定部と、加速度取得部によって取得された加速度に基づいて、計測装置が自由落下状態であるか否かを判定する第3判定部と、第1判定部によって計測装置の回転が安定していると判定された場合、且つ、第3判定部によって計測装置が自由落下状態であると判定された場合、加速度取得部によって取得された加速度を有効なデータとして用いて、加速度センサから出力される加速度の補正値を算出する補正値算出部とを備える。 A calibration device according to an embodiment is a calibration device that calibrates a measurement device including an acceleration sensor and a gyro sensor, and includes an acceleration acquisition unit that acquires acceleration output from the acceleration sensor, and an angular velocity output from the gyro sensor. Based on the angular velocity acquisition unit to be acquired, the first determination unit that determines whether the rotation of the measuring device is stable based on the angular velocity acquired by the angular velocity acquisition unit, and the acceleration acquired by the acceleration acquisition unit A third determination unit that determines whether or not the measurement device is in a free fall state, and a case where the first determination unit determines that the rotation of the measurement device is stable, and the third determination unit determines the measurement device. Is determined to be in a free-fall state, the acceleration acquired by the acceleration acquisition unit is used as valid data to compensate for the acceleration output from the acceleration sensor. And a correction value calculation unit for calculating a value.
 一実施形態によれば、加速度センサから出力される加速度を高精度に補正することが可能な較正装置を実現することができる。 According to one embodiment, it is possible to realize a calibration device capable of correcting the acceleration output from the acceleration sensor with high accuracy.
一実施形態に係るボールの概略構成を示す図である。It is a figure which shows schematic structure of the ball | bowl which concerns on one Embodiment. 一実施形態に係る計測モジュール(計測回路)のハードウェア構成を示す図である。It is a figure which shows the hardware constitutions of the measurement module (measurement circuit) which concerns on one Embodiment. 一実施形態に係る計測モジュール(計測回路)の機能構成を示す図である。It is a figure which shows the function structure of the measurement module (measurement circuit) which concerns on one Embodiment. 一実施形態に係る計測モジュール(計測回路)における、第2判定部による判定パターンを示す図である。It is a figure which shows the determination pattern by the 2nd determination part in the measurement module (measurement circuit) which concerns on one Embodiment. 一実施形態に係る計測モジュール(計測回路)による処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process by the measurement module (measurement circuit) which concerns on one Embodiment. 一実施形態に係る計測モジュールによる計測データの一例(第1例)を示す図である。It is a figure which shows an example (1st example) of the measurement data by the measurement module which concerns on one Embodiment. 一実施形態に係る計測モジュールによる計測データの一例(第1例)を示す図である。It is a figure which shows an example (1st example) of the measurement data by the measurement module which concerns on one Embodiment. 一実施形態に係る計測モジュールによる計測データの一例(第2例)を示す図である。It is a figure which shows an example (2nd example) of the measurement data by the measurement module which concerns on one Embodiment. 一実施形態に係る計測モジュールによる計測データの一例(第2例)を示す図である。It is a figure which shows an example (2nd example) of the measurement data by the measurement module which concerns on one Embodiment.
 〔実施形態〕
 以下、図面を参照して、一実施形態について説明する。
Embodiment
Hereinafter, an embodiment will be described with reference to the drawings.
 (ボール10の概略構成)
 図1は、一実施形態に係るボール10の概略構成を示す図である。図1に示すボール10は、「球体」の一例であり、球状の外形をなしている。図1に示すように、ボール10は、計測モジュール100と、糸巻層12と、表皮層14とを備えている。
(Schematic configuration of the ball 10)
FIG. 1 is a diagram illustrating a schematic configuration of a ball 10 according to an embodiment. The ball 10 shown in FIG. 1 is an example of a “sphere” and has a spherical outer shape. As shown in FIG. 1, the ball 10 includes a measurement module 100, a pincushion layer 12, and a skin layer 14.
 計測モジュール100は、「計測装置」の一例である。計測モジュール100は、ボール10の内部における略中心に設けられている。計測モジュール100は、ケース101と、計測回路102とを備えて構成されている。ケース101は、球状の外形をなしており、比較的硬質な素材(例えば、硬質樹脂等)から形成される中空状の部材である。計測回路102は、ケース101の内部に固定的に配置される装置である。計測回路102は、回路基板102A上に加速度センサ111、ジャイロセンサ112、および地磁気センサ113等が搭載されている。 The measurement module 100 is an example of a “measurement device”. The measurement module 100 is provided substantially at the center inside the ball 10. The measurement module 100 includes a case 101 and a measurement circuit 102. The case 101 has a spherical outer shape and is a hollow member formed from a relatively hard material (for example, a hard resin). The measurement circuit 102 is a device that is fixedly disposed inside the case 101. The measurement circuit 102 includes an acceleration sensor 111, a gyro sensor 112, a geomagnetic sensor 113, and the like mounted on a circuit board 102A.
 計測モジュール100においては、X軸方向、Y軸方向、およびZ軸方向が、いずれも所定の方向となるように、これら3軸(X軸,Y軸,Z軸)の各々の軸方向が予め定義されている。例えば、回路基板102Aの表面と平行な方向を、X軸方向およびY軸方向とし、回路基板102Aの表面と垂直な方向を、Z軸方向として、これらの軸方向が予め定義される。そして、加速度センサ111,ジャイロセンサ112は、予め軸方向が定義された3軸(X軸,Y軸,Z軸)の各々について、計測モジュール100に生じる加速度,角速度(すなわち、ボール10に生じる加速度,角速度)を、検知することができるようになっている。また、地磁気センサ113は、予め軸方向が定義された3軸(X軸,Y軸,Z軸)の各々について、地磁気を、検知することができるようになっている。 In the measurement module 100, the axial directions of these three axes (X axis, Y axis, Z axis) are set in advance so that the X axis direction, the Y axis direction, and the Z axis direction are all predetermined directions. Is defined. For example, the directions parallel to the surface of the circuit board 102A are defined as the X-axis direction and the Y-axis direction, and the direction perpendicular to the surface of the circuit board 102A is defined as the Z-axis direction. The acceleration sensor 111 and the gyro sensor 112 are the acceleration and angular velocity generated in the measurement module 100 (ie, the acceleration generated in the ball 10) for each of the three axes (X axis, Y axis, and Z axis) whose axial directions are defined in advance. , Angular velocity) can be detected. The geomagnetic sensor 113 can detect geomagnetism for each of the three axes (X axis, Y axis, Z axis) whose axial directions are defined in advance.
 糸巻層12は、計測モジュール100の外表面を覆うように、計測モジュール100の外側に設けられている。糸巻層12は、計測モジュール100の外表面に対して、糸(例えば、綿糸、毛糸、ゴム糸等)が多重に巻かれることによって形成される。表皮層14は、ボール10の外表面を構成する部材であり、糸巻層12の外表面を覆うように、糸巻層12の外側に設けられている。表皮層14は、例えば、革(例えば、牛革、人工皮革等)等の素材によって形成される。 The bobbin layer 12 is provided outside the measurement module 100 so as to cover the outer surface of the measurement module 100. The bobbin layer 12 is formed by winding a plurality of yarns (for example, cotton yarn, wool yarn, rubber yarn) on the outer surface of the measurement module 100. The skin layer 14 is a member constituting the outer surface of the ball 10, and is provided on the outer side of the bobbin layer 12 so as to cover the outer surface of the bobbin layer 12. The skin layer 14 is formed of a material such as leather (for example, cowhide, artificial leather, etc.).
 このように構成されたボール10は、例えば、球技用(例えば、野球用、サッカー用、ゴルフ用等)のボールとして用いられ、当該ボール10が飛球した際に、当該ボール10における加速度、角速度、および地磁気を、計測モジュール100によって継続的に計測できるようになっている。また、ボール10は、外部の情報処理装置(例えば、スマートフォン、タブレット端末、パーソナルコンピュータ、サーバ等)と通信が可能であり、各計測データ(加速度、角速度、および地磁気)を、外部の情報処理装置へ出力することができるようになっている。 The ball 10 configured in this way is used as a ball for ball games (for example, for baseball, soccer, golf, etc.), and when the ball 10 flies, the acceleration and angular velocity of the ball 10 , And geomagnetism can be continuously measured by the measurement module 100. Further, the ball 10 can communicate with an external information processing device (for example, a smartphone, a tablet terminal, a personal computer, a server, etc.), and each measurement data (acceleration, angular velocity, and geomagnetism) is transmitted to the external information processing device. Can be output to.
 外部の情報処理装置は、ボール10から取得した各計測データ(加速度、角速度、および地磁気)を、例えば、ディスプレイによって表示したり、ボール10がどのように回転したか、等の分析に用いたりすることができる。 The external information processing apparatus displays each measurement data (acceleration, angular velocity, and geomagnetism) acquired from the ball 10 by, for example, a display or used for analysis of how the ball 10 is rotated. be able to.
 (計測モジュール100のハードウェア構成)
 図2は、一実施形態に係る計測モジュール100(計測回路102)のハードウェア構成を示す図である。図2に示すように、計測モジュール100の計測回路102は、加速度センサ111、ジャイロセンサ112、地磁気センサ113、マイコン114、メモリ115、通信I/F(Inter Face)116、およびバッテリ117を備えている。計測回路102において、これらのハードウェアは、回路基板102A(図1参照)上に実装され、回路基板102A上に形成された配線によって、互いに電気的に接続される。
(Hardware configuration of measurement module 100)
FIG. 2 is a diagram illustrating a hardware configuration of the measurement module 100 (measurement circuit 102) according to the embodiment. As shown in FIG. 2, the measurement circuit 102 of the measurement module 100 includes an acceleration sensor 111, a gyro sensor 112, a geomagnetic sensor 113, a microcomputer 114, a memory 115, a communication interface (I / F) 116, and a battery 117. Yes. In the measurement circuit 102, these hardware are mounted on a circuit board 102A (see FIG. 1) and are electrically connected to each other by wiring formed on the circuit board 102A.
 加速度センサ111は、予め定義された3軸(X軸,Y軸,Z軸)の各々について、計測モジュール100(すなわち、ボール10)に生じる加速度を検知する。加速度センサ111によって検知された加速度は、マイコン114へ供給される。加速度センサ111としては、例えば、ひずみゲージ型加速度センサ、ピエゾ抵抗型加速度センサ、圧電型加速度センサ等を用いることができる。 The acceleration sensor 111 detects the acceleration generated in the measurement module 100 (that is, the ball 10) for each of the three predefined axes (X axis, Y axis, Z axis). The acceleration detected by the acceleration sensor 111 is supplied to the microcomputer 114. As the acceleration sensor 111, for example, a strain gauge type acceleration sensor, a piezoresistive type acceleration sensor, a piezoelectric type acceleration sensor, or the like can be used.
 ジャイロセンサ112は、予め定義された3軸(X軸,Y軸,Z軸)の各々について、計測モジュール100(すなわち、ボール10)に生じる角速度を検知する。ジャイロセンサ112によって検知された角速度は、マイコン114へ供給される。ジャイロセンサ112としては、例えば、振動式ジャイロセンサ、静電容量式ジャイロセンサ等を用いることができる。 The gyro sensor 112 detects an angular velocity generated in the measurement module 100 (that is, the ball 10) for each of three predefined axes (X axis, Y axis, and Z axis). The angular velocity detected by the gyro sensor 112 is supplied to the microcomputer 114. As the gyro sensor 112, for example, a vibration type gyro sensor, a capacitance type gyro sensor, or the like can be used.
 地磁気センサ113は、予め定義された3軸(X軸,Y軸,Z軸)の各々の地磁気を検知する。地磁気センサ113によって検知された地磁気は、マイコン114へ供給される。地磁気センサ113としては、例えば、磁気抵抗効果センサ、ホールセンサ等を用いることができる。 The geomagnetic sensor 113 detects the geomagnetism of each of three predefined axes (X axis, Y axis, Z axis). The geomagnetism detected by the geomagnetic sensor 113 is supplied to the microcomputer 114. As the geomagnetic sensor 113, for example, a magnetoresistive sensor, a hall sensor, or the like can be used.
 マイコン114は、「較正装置」および「コンピュータ」の一例である。マイコン114は、プロセッサを備えており、当該プロセッサが、メモリ115等に記憶されているプログラムを実行することにより、計測モジュール100が備える各種機能を実現する。例えば、マイコン114は、各センサから供給された各計測データ(加速度、角速度、および地磁気)を、通信I/F116を介して外部の情報処理装置へ出力する機能を有する。また、例えば、マイコン114は、各センサから供給された各計測データ(加速度および角速度)に基づいて、加速度センサ111によって検知される加速度を較正する機能を有する。 The microcomputer 114 is an example of a “calibration device” and a “computer”. The microcomputer 114 includes a processor, and the processor implements various functions included in the measurement module 100 by executing a program stored in the memory 115 or the like. For example, the microcomputer 114 has a function of outputting each measurement data (acceleration, angular velocity, and geomagnetism) supplied from each sensor to an external information processing apparatus via the communication I / F 116. For example, the microcomputer 114 has a function of calibrating the acceleration detected by the acceleration sensor 111 based on each measurement data (acceleration and angular velocity) supplied from each sensor.
 メモリ115は、例えば、マイコン114が実行するプログラム、マイコン114がプログラムを実行する際に用いる各種データを記憶する。メモリ115としては、例えば、RAM(Random Access Memory)等を用いることができる。 The memory 115 stores, for example, a program executed by the microcomputer 114 and various data used when the microcomputer 114 executes the program. As the memory 115, for example, a RAM (Random Access Memory) or the like can be used.
 通信I/F116は、外部の情報処理装置との通信を制御する。例えば、本実施形態では、通信I/F116による通信方式として、比較的低消費電力な無線通信方式である、BLE(Bluetooth Low Energy)を用いている。但し、これに限らず、通信I/F116による通信方式として、その他の各種無線通信方式(例えば、Wi-Fi、NFC(Near Field Communication)等)、または、各種有線通信方式(例えば、USB(Universal Serial Bus)等)を用いるようにしてもよい。 The communication I / F 116 controls communication with an external information processing apparatus. For example, in this embodiment, BLE (Bluetooth Low Energy), which is a wireless communication method with relatively low power consumption, is used as a communication method by the communication I / F 116. However, the present invention is not limited to this, and other various wireless communication methods (for example, Wi-Fi, NFC (Near Field Communication), etc.) or various wired communication methods (for example, USB (Universal) are used as communication methods by the communication I / F 116. Serial Bus) etc. may be used.
 バッテリ117は、計測モジュール100の各部へ直流電力を供給する。例えば、本実施形態では、バッテリ117として、一次電池(例えば、酸化銀電池、リチウム電池等)を用いている。但し、これに限らず、バッテリ117として、各種二次電池(例えば、リチウムイオン二次電池、リチウムイオンポリマー二次電池、ニッケル水素二次電池等)を用いるようにしてもよい。 The battery 117 supplies DC power to each part of the measurement module 100. For example, in the present embodiment, a primary battery (for example, a silver oxide battery, a lithium battery, or the like) is used as the battery 117. However, the present invention is not limited to this, and various secondary batteries (for example, a lithium ion secondary battery, a lithium ion polymer secondary battery, a nickel hydrogen secondary battery, etc.) may be used as the battery 117.
 (計測モジュール100の機能構成)
 図3は、一実施形態に係る計測モジュール100(計測回路102)の機能構成を示す図である。図3に示すように、計測モジュール100の計測回路102は、主制御部300、加速度取得部301、角速度取得部302、地磁気取得部303、第1判定部304、第2判定部305、第3判定部306、補正値算出部307、値保持部308、補正値書込部309、補正値記憶部310、補正部311、出力部312、および電源制御部313を備えている。
(Functional configuration of measurement module 100)
FIG. 3 is a diagram illustrating a functional configuration of the measurement module 100 (measurement circuit 102) according to the embodiment. As shown in FIG. 3, the measurement circuit 102 of the measurement module 100 includes a main control unit 300, an acceleration acquisition unit 301, an angular velocity acquisition unit 302, a geomagnetism acquisition unit 303, a first determination unit 304, a second determination unit 305, and a third. A determination unit 306, a correction value calculation unit 307, a value holding unit 308, a correction value writing unit 309, a correction value storage unit 310, a correction unit 311, an output unit 312, and a power supply control unit 313 are provided.
 主制御部300は、計測回路102による処理全体を制御する。例えば、主制御部300は、計測回路102による処理の開始、処理の終了、処理の繰り返し、各機能部による処理の実行等を制御する。 The main control unit 300 controls the entire processing by the measurement circuit 102. For example, the main control unit 300 controls the start of processing by the measurement circuit 102, the end of processing, the repetition of processing, the execution of processing by each functional unit, and the like.
 加速度取得部301は、加速度センサ111から出力された加速度を取得する。具体的には、加速度取得部301は、加速度センサ111から出力された、3軸(X軸,Y軸,Z軸)の各々の加速度を取得する。 The acceleration acquisition unit 301 acquires the acceleration output from the acceleration sensor 111. Specifically, the acceleration acquisition unit 301 acquires the acceleration of each of the three axes (X axis, Y axis, and Z axis) output from the acceleration sensor 111.
 角速度取得部302は、ジャイロセンサ112から出力された角速度を取得する。具体的には、角速度取得部302は、ジャイロセンサ112から出力された、3軸(X軸,Y軸,Z軸)の各々の角速度を取得する。なお、本書において、「X軸の角速度」とは、X軸を回転軸とする角速度を意味する。同様に、「Y軸の角速度」とは、Y軸を回転軸とする角速度を意味し、「Z軸の角速度」とは、Z軸を回転軸とする角速度を意味する。 The angular velocity acquisition unit 302 acquires the angular velocity output from the gyro sensor 112. Specifically, the angular velocity acquisition unit 302 acquires the angular velocities of the three axes (X axis, Y axis, and Z axis) output from the gyro sensor 112. In this document, “angular velocity of the X axis” means an angular velocity having the X axis as a rotation axis. Similarly, “Y-axis angular velocity” means an angular velocity with the Y-axis as a rotation axis, and “Z-axis angular velocity” means an angular velocity with the Z-axis as a rotation axis.
 地磁気取得部303は、地磁気センサ113から出力された地磁気を取得する。具体的には、地磁気取得部303は、地磁気センサ113から出力された、3軸(X軸,Y軸,Z軸)の各々の地磁気を取得する。 The geomagnetism acquisition unit 303 acquires the geomagnetism output from the geomagnetic sensor 113. Specifically, the geomagnetism acquisition unit 303 acquires the geomagnetism of each of the three axes (X axis, Y axis, Z axis) output from the geomagnetic sensor 113.
 第1判定部304は、角速度取得部302によって取得された角速度に基づいて、計測モジュール100の回転が安定している状態(以下、「回転安定状態」と示す)であるか否かを判定する。具体的には、第1判定部304は、3軸(X軸,Y軸,Z軸)の全てについて、最新の角速度と、当該最新の角速度の直前の角速度との差が、第1の閾値th1以下である、という状態が連続N回続いた場合、回転安定状態(すなわち、角速度が安定している状態、角速度の変位量が少ない状態)であると判定する。なお、第1判定部304は、所定数の角速度の移動平均値を用いて、回転安定状態を判定するようにしてもよい。これにより、第1判定部304は、角速度に含まれているノイズによる誤判定を抑制し、回転安定状態の判定をより高精度に行うことができる。 The first determination unit 304 determines whether or not the rotation of the measurement module 100 is stable (hereinafter referred to as “rotation stable state”) based on the angular velocity acquired by the angular velocity acquisition unit 302. . Specifically, the first determination unit 304 determines that the difference between the latest angular velocity and the angular velocity immediately before the latest angular velocity is the first threshold value for all three axes (X axis, Y axis, Z axis). When the state of being equal to or less than th1 continues for N consecutive times, it is determined that the rotation is stable (that is, the angular velocity is stable, the angular velocity displacement amount is small). Note that the first determination unit 304 may determine the rotational stable state using a moving average value of a predetermined number of angular velocities. Thereby, the 1st determination part 304 can suppress the misjudgment by the noise contained in angular velocity, and can perform the determination of a rotation stable state with higher precision.
 第2判定部305は、角速度取得部302によって取得された角速度に基づいて、計測モジュール100における3軸(X軸,Y軸,Z軸)の各々について、遠心力が生じているか否かを判定する。 Based on the angular velocity acquired by the angular velocity acquiring unit 302, the second determining unit 305 determines whether centrifugal force is generated for each of the three axes (X axis, Y axis, Z axis) in the measurement module 100. To do.
 ここで、図4を参照して、第2判定部305による遠心力が生じているか否かの判定方法について具体的に説明する。図4は、一実施形態に係る計測モジュール100(計測回路102)における、第2判定部305による判定パターンを示す図である。 Here, with reference to FIG. 4, the determination method of whether the centrifugal force by the 2nd determination part 305 has arisen is demonstrated concretely. FIG. 4 is a diagram illustrating a determination pattern by the second determination unit 305 in the measurement module 100 (measurement circuit 102) according to an embodiment.
 図4に示すように、第2判定部305は、X軸の角速度およびY軸の角速度の双方が、所定の第2の閾値th2以下である場合、Z軸について遠心力が生じていないと判定する。これは、X軸およびY軸の一方または双方において、当該軸を回転軸として計測モジュール100が回転した場合、Z軸方向に遠心力が生じるからである。 As illustrated in FIG. 4, the second determination unit 305 determines that no centrifugal force is generated in the Z axis when both the X-axis angular velocity and the Y-axis angular velocity are equal to or less than a predetermined second threshold th2. To do. This is because, in one or both of the X axis and the Y axis, when the measurement module 100 rotates with the axis as a rotation axis, centrifugal force is generated in the Z axis direction.
 また、第2判定部305は、X軸の角速度およびZ軸の角速度の双方が、所定の第2の閾値th2以下である場合、Y軸について遠心力が生じていないと判定する。これは、X軸およびZ軸の一方または双方において、当該軸を回転軸として計測モジュール100が回転した場合、Y軸方向に遠心力が生じるからである。 Further, the second determination unit 305 determines that centrifugal force is not generated on the Y axis when both the X-axis angular velocity and the Z-axis angular velocity are equal to or less than a predetermined second threshold th2. This is because, in one or both of the X axis and the Z axis, when the measurement module 100 rotates with the axis as a rotation axis, centrifugal force is generated in the Y axis direction.
 また、第2判定部305は、Y軸の角速度およびZ軸の角速度の双方が、所定の第2の閾値th2以下である場合、X軸について遠心力が生じていないと判定する。これは、Y軸およびZ軸の一方または双方において、当該軸を回転軸として計測モジュール100が回転した場合、X軸方向に遠心力が生じるからである。 The second determination unit 305 determines that centrifugal force is not generated on the X axis when both the angular velocity of the Y axis and the angular velocity of the Z axis are equal to or less than a predetermined second threshold th2. This is because, in one or both of the Y axis and the Z axis, when the measurement module 100 rotates with the axis as a rotation axis, centrifugal force is generated in the X axis direction.
 第3判定部306は、加速度取得部301によって取得された加速度に基づいて、計測モジュール100(すなわち、ボール10)が自由落下状態であるか否かを判定する。特に、第3判定部306は、所定数の加速度の移動平均値に基づいて、計測モジュール100(すなわち、ボール10)が自由落下状態であるか否かを判定する。具体的には、第3判定部306は、3軸(X軸,Y軸,Z軸)の全てについて、所定数の加速度の移動平均値が、所定の第3の閾値th3以下である場合、ボール10が自由落下状態であると判定する。このように、第3判定部306は、加速度の移動平均値を用いて、自由落下状態の判定を行うことにより、加速度に含まれているノイズによる誤判定を抑制し、自由落下状態の判定をより高精度に行うことができる。 The third determination unit 306 determines whether or not the measurement module 100 (that is, the ball 10) is in a free fall state based on the acceleration acquired by the acceleration acquisition unit 301. In particular, the third determination unit 306 determines whether or not the measurement module 100 (that is, the ball 10) is in a free fall state based on a moving average value of a predetermined number of accelerations. Specifically, the third determination unit 306, for all three axes (X axis, Y axis, Z axis), when the moving average value of a predetermined number of accelerations is equal to or less than a predetermined third threshold th3, It is determined that the ball 10 is in a free fall state. As described above, the third determination unit 306 determines the free fall state by using the moving average value of the acceleration, thereby suppressing erroneous determination due to noise included in the acceleration, and determining the free fall state. It can be performed with higher accuracy.
 補正値算出部307は、加速度取得部301によって取得された加速度に基づいて、加速度センサ111から出力される加速度の補正値を算出する。具体的には、補正値算出部307は、第1判定部304によって、計測モジュール100における3軸(X軸,Y軸,Z軸)の全てが回転安定状態であると判定され、且つ、第3判定部306によって、ボール10が自由落下状態であると判定された場合、第2判定部305によって遠心力が生じていないと判定された軸(X軸,Y軸,Z軸の少なくともいずれか一つ)について、加速度取得部301によって取得された当該軸の加速度を有効なデータとして用いて、前記加速度センサ111から出力される当該軸の加速度の補正値を算出する。ここで、ボール10が自由落下状態(すなわち、0G状態)であるときには、3軸の各々の角速度が「0」になることが理想であるから、例えば、補正値算出部307は、3軸(X軸,Y軸,Z軸)の各々について、加速度取得部301によって取得された加速度(すなわち、「0」からの差分値)を、そのまま加速度の補正値として算出することができる。 The correction value calculation unit 307 calculates the correction value of the acceleration output from the acceleration sensor 111 based on the acceleration acquired by the acceleration acquisition unit 301. Specifically, the correction value calculation unit 307 determines that all three axes (X axis, Y axis, Z axis) in the measurement module 100 are in a rotationally stable state by the first determination unit 304, and the first 3 When the determination unit 306 determines that the ball 10 is in a free fall state, the second determination unit 305 determines that the centrifugal force is not generated (at least one of the X axis, the Y axis, and the Z axis). 1), using the acceleration of the axis acquired by the acceleration acquisition unit 301 as effective data, the correction value of the acceleration of the axis output from the acceleration sensor 111 is calculated. Here, when the ball 10 is in the free fall state (that is, the 0G state), it is ideal that the angular velocity of each of the three axes is “0”. Therefore, for example, the correction value calculation unit 307 includes three axes ( For each of the X axis, the Y axis, and the Z axis, the acceleration acquired by the acceleration acquisition unit 301 (that is, the difference value from “0”) can be calculated as it is as a correction value for acceleration.
 値保持部308は、有効なデータと判定された加速度を保持する。例えば、X軸の加速度のみ有効なデータと判定された場合、値保持部308は、X軸の加速度を保持する。その後、Y軸の加速度が有効なデータと判定され、さらに、Z軸の加速度が有効なデータと判定されると、値保持部308は、Y軸およびZ軸の加速度をさらに保持する。これにより、値保持部308は、3軸(X軸,Y軸,Z軸)の各々の加速度を保持することとなる。よって、補正値算出部307は、値保持部308に保持されている3軸(X軸,Y軸,Z軸)の各々の加速度を用いて、加速度センサ111から出力される3軸(X軸,Y軸,Z軸)の各々の加速度の補正値を算出することができる。 The value holding unit 308 holds the acceleration determined as valid data. For example, when it is determined that only the X-axis acceleration is valid data, the value holding unit 308 holds the X-axis acceleration. After that, if the Y-axis acceleration is determined to be valid data, and if the Z-axis acceleration is determined to be valid data, the value holding unit 308 further holds the Y-axis and Z-axis accelerations. As a result, the value holding unit 308 holds the acceleration of each of the three axes (X axis, Y axis, and Z axis). Therefore, the correction value calculation unit 307 uses the three axes (X axis, Y axis, and Z axis) held by the value holding unit 308 to use the three axes (X axis) output from the acceleration sensor 111. , Y axis, and Z axis) can be calculated.
 また、値保持部308は、3軸(X軸,Y軸,Z軸)の各々について、有効なデータと判定された複数の加速度を保持することができる。これにより、補正値算出部307は、3軸(X軸,Y軸,Z軸)の各々について、値保持部308に保持されている複数の加速度の平均値を算出し、当該平均値を用いて、加速度センサ111から出力される加速度の補正値を算出することができる。このように、補正値算出部307は、複数の加速度の平均値を補正値として算出することにより、複数の加速度に含まれているノイズを平滑化し、より高精度な補正値を算出することができる。 Further, the value holding unit 308 can hold a plurality of accelerations determined to be valid data for each of the three axes (X axis, Y axis, and Z axis). Accordingly, the correction value calculation unit 307 calculates an average value of a plurality of accelerations held in the value holding unit 308 for each of the three axes (X axis, Y axis, and Z axis), and uses the average value. Thus, the correction value of the acceleration output from the acceleration sensor 111 can be calculated. As described above, the correction value calculation unit 307 calculates the average value of the plurality of accelerations as the correction value, thereby smoothing noise included in the plurality of accelerations and calculating a correction value with higher accuracy. it can.
 補正値書込部309は、補正値算出部によって算出された3軸(X軸,Y軸,Z軸)の各々の補正値を、補正値記憶部310に書き込む。補正値記憶部310は、補正値書込部309によって書き込まれた3軸(X軸,Y軸,Z軸)の各々の補正値を記憶する。ここで、補正値記憶部310に既に補正値が記憶されている場合は、補正値書込部309は、新たな補正値を、補正値記憶部310に上書きする。これにより、補正値記憶部310には、常に最新の補正値が記憶されることとなる。 The correction value writing unit 309 writes the correction values of the three axes (X axis, Y axis, Z axis) calculated by the correction value calculation unit in the correction value storage unit 310. The correction value storage unit 310 stores the correction values of the three axes (X axis, Y axis, and Z axis) written by the correction value writing unit 309. Here, when a correction value is already stored in the correction value storage unit 310, the correction value writing unit 309 overwrites the correction value storage unit 310 with a new correction value. As a result, the latest correction value is always stored in the correction value storage unit 310.
 補正部311は、補正値記憶部310に記憶された3軸(X軸,Y軸,Z軸)の各々の補正値を用いて、加速度取得部301によって取得された3軸(X軸,Y軸,Z軸)の各々の加速度を補正する。例えば、補正部311は、加速度取得部301によって取得された3軸(X軸,Y軸,Z軸)の各々の加速度から、補正値記憶部310に記憶された3軸(X軸,Y軸,Z軸)の各々の補正値を減算する。 The correction unit 311 uses the three axis (X axis, Y axis, Z axis) correction values stored in the correction value storage unit 310 to obtain the three axes (X axis, Y) acquired by the acceleration acquisition unit 301. Axes and Z-axis) are corrected. For example, the correction unit 311 calculates the three axes (X axis, Y axis) stored in the correction value storage unit 310 from the accelerations of the three axes (X axis, Y axis, Z axis) acquired by the acceleration acquisition unit 301. , Z axis) is subtracted.
 出力部312は、加速度、角速度、および地磁気を出力する。具体的には、出力部312は、補正部311によって補正された3軸(X軸,Y軸,Z軸)の各々の加速度を出力する。また、出力部312は、角速度取得部302によって取得された3軸(X軸,Y軸,Z軸)の各々の角速度を出力する。また、出力部312は、地磁気取得部303によって取得された3軸(X軸,Y軸,Z軸)の各々の地磁気を出力する。例えば、出力部312は、加速度、角速度、および地磁気を、通信I/F116を介して、外部の情報処理装置(例えば、スマートフォン、タブレット端末、パーソナルコンピュータ、サーバ等)へ出力する。 The output unit 312 outputs acceleration, angular velocity, and geomagnetism. Specifically, the output unit 312 outputs the acceleration of each of the three axes (X axis, Y axis, and Z axis) corrected by the correction unit 311. The output unit 312 outputs the angular velocities of the three axes (X axis, Y axis, and Z axis) acquired by the angular velocity acquisition unit 302. The output unit 312 outputs the geomagnetism of each of the three axes (X axis, Y axis, and Z axis) acquired by the geomagnetism acquisition unit 303. For example, the output unit 312 outputs acceleration, angular velocity, and geomagnetism to an external information processing apparatus (for example, a smartphone, a tablet terminal, a personal computer, a server, etc.) via the communication I / F 116.
 電源制御部313は、計測モジュール100の電源のオンおよびオフを制御する。例えば、電源制御部313は、計測モジュール100の電源のオフ(または、スリープモード)のときに、加速度取得部301によって取得された加速度に基づいて、ボール10が自由落下状態であると判定した場合、計測モジュール100の電源をオンに切り替える。この自由落下状態の判定方法としては、例えば、第3判定部306による判定方法と同様の判定方法を用いることができる。また、例えば、電源制御部313は、加速度取得部301によって取得された加速度等に基づいて、ボール10が一定期間静止状態にあると判定した場合、計測モジュール100の電源をオフ(または、スリープモード)に切り替える。これにより、本実施形態の計測モジュール100は、ユーザ操作による電源スイッチを設けることなく(すなわち、物理的なスイッチをボール10の外表面に露出することなく)、計測モジュール100の電源のオンおよびオフを切り替え可能となっている。 The power control unit 313 controls the power on and off of the measurement module 100. For example, when the power supply control unit 313 determines that the ball 10 is in a free fall state based on the acceleration acquired by the acceleration acquisition unit 301 when the measurement module 100 is powered off (or in sleep mode). Then, the measurement module 100 is turned on. As a method for determining this free fall state, for example, a determination method similar to the determination method by the third determination unit 306 can be used. Further, for example, when the power supply control unit 313 determines that the ball 10 is in a stationary state for a certain period based on the acceleration acquired by the acceleration acquisition unit 301, the power supply of the measurement module 100 is turned off (or in sleep mode). ). Thereby, the measurement module 100 according to the present embodiment turns on and off the power of the measurement module 100 without providing a power switch by a user operation (that is, without exposing a physical switch to the outer surface of the ball 10). Can be switched.
 なお、上記した計測モジュール100の各機能は、計測モジュール100が備える各種ハードウェア(図2参照)およびソフトウェアによって実現される。例えば、主制御部300、加速度取得部301、角速度取得部302、地磁気取得部303、第1判定部304、第2判定部305、第3判定部306、補正値算出部307、補正値書込部309、補正部311、出力部312、および電源制御部313は、メモリ115に記憶されたプログラムを、マイコン114が実行することにより実現される。また、例えば、値保持部308および補正値記憶部310は、メモリ115によって実現される。 Each function of the measurement module 100 described above is realized by various hardware (see FIG. 2) and software included in the measurement module 100. For example, main control unit 300, acceleration acquisition unit 301, angular velocity acquisition unit 302, geomagnetism acquisition unit 303, first determination unit 304, second determination unit 305, third determination unit 306, correction value calculation unit 307, correction value writing The unit 309, the correction unit 311, the output unit 312, and the power supply control unit 313 are realized by the microcomputer 114 executing the program stored in the memory 115. For example, the value holding unit 308 and the correction value storage unit 310 are realized by the memory 115.
 マイコン114が実行するプログラムは、予め計測モジュール100に導入された状態で提供されてもよく、外部から提供されて計測モジュール100に導入されるようにしてもよい。後者の場合、このプログラムは、外部記憶媒体(例えば、USBメモリ、メモリカード、CD-ROM等)によって提供されてもよく、ネットワーク(例えば、インターネット等)上のサーバからダウンロードすることによって提供されるようにしてもよい。 The program executed by the microcomputer 114 may be provided in a state of being introduced into the measurement module 100 in advance, or may be provided from the outside and introduced into the measurement module 100. In the latter case, this program may be provided by an external storage medium (for example, a USB memory, a memory card, a CD-ROM, etc.), or provided by downloading from a server on a network (for example, the Internet, etc.). You may do it.
 (計測モジュール100による処理の手順)
 図5は、一実施形態に係る計測モジュール100(計測回路102)による処理の手順を示すフローチャートである。図5に示す処理は、例えば、ユーザが、ボール10に対して処理開始指示を行った後、ボール10を手で保持している状態から自由落下させた際に、計測モジュール100において実行される処理である。
(Processing procedure by the measurement module 100)
FIG. 5 is a flowchart illustrating a processing procedure performed by the measurement module 100 (measurement circuit 102) according to an embodiment. The processing shown in FIG. 5 is executed in the measurement module 100 when, for example, the user gives a processing start instruction to the ball 10 and then freely drops the ball 10 from a state of being held by hand. It is processing.
 まず、主制御部300が、所定の処理開始イベントが発生したか否かを判断する(ステップS501)。所定の処理開始イベントは、如何なるものであってもよいが、例えば、外部の情報処理装置から、処理開始指示を受信したことを、所定の処理開始イベントとしてもよい。ステップS501において、所定の処理開始イベントが発生していないと判断された場合(ステップS501:No)、主制御部300が、ステップS501の処理を再度実行する。 First, the main control unit 300 determines whether or not a predetermined process start event has occurred (step S501). The predetermined process start event may be any event. For example, the reception of a process start instruction from an external information processing apparatus may be used as the predetermined process start event. If it is determined in step S501 that the predetermined process start event has not occurred (step S501: No), the main control unit 300 executes the process of step S501 again.
 一方、ステップS501において、所定の処理開始イベントが発生したと判断された場合(ステップS501:Yes)、加速度取得部301が、加速度センサ111から出力された、3軸(X軸,Y軸,Z軸)の各々の加速度を取得する(ステップS502)。また、角速度取得部302が、ジャイロセンサ112から出力された、3軸(X軸,Y軸,Z軸)の各々の角速度を取得する(ステップS503)。 On the other hand, when it is determined in step S501 that a predetermined process start event has occurred (step S501: Yes), the acceleration acquisition unit 301 outputs the three axes (X axis, Y axis, Z) output from the acceleration sensor 111. The acceleration of each axis is acquired (step S502). Further, the angular velocity acquisition unit 302 acquires the angular velocities of the three axes (X axis, Y axis, Z axis) output from the gyro sensor 112 (step S503).
 なお、実際には、加速度センサ111から加速度が繰り返し出力されるため、ステップS502では、加速度取得部301は、加速度を繰り返し取得することとなる。同様に、実際には、ジャイロセンサ112から角速度が繰り返し出力されるため、ステップS503では、角速度取得部302は、角速度を繰り返し取得することとなる。 Actually, since acceleration is repeatedly output from the acceleration sensor 111, in step S502, the acceleration acquisition unit 301 repeatedly acquires acceleration. Similarly, since the angular velocity is actually output repeatedly from the gyro sensor 112, the angular velocity acquisition unit 302 repeatedly acquires the angular velocity in step S503.
 そして、第1判定部304が、ステップS503で取得された角速度(3軸の各々の移動平均値)に基づいて、計測モジュール100における3軸(X軸,Y軸,Z軸)の全てが回転安定状態であるか否かを判定する(ステップS504)。ステップS504において、3軸の全てが回転安定状態にないと判定された場合(ステップS504:No)、主制御部300が、ステップS502へ処理を戻す。 Then, the first determination unit 304 rotates all three axes (X axis, Y axis, Z axis) in the measurement module 100 based on the angular velocities (moving average values of the three axes) acquired in step S503. It is determined whether or not it is in a stable state (step S504). In step S504, when it is determined that all three axes are not in the rotation stable state (step S504: No), the main control unit 300 returns the process to step S502.
 一方、ステップS504において、3軸の全てが回転安定状態にあると判定された場合(ステップS504:Yes)、第3判定部306が、ステップS502で取得された加速度(3軸の各々の移動平均値)に基づいて、ボール10が自由落下状態であるか否かを判定する(ステップS505)。ステップS505において、ボール10が自由落下状態にないと判定された場合(ステップS505:No)、主制御部300が、ステップS502へ処理を戻す。 On the other hand, when it is determined in step S504 that all the three axes are in a rotationally stable state (step S504: Yes), the third determination unit 306 determines the acceleration (moving average of each of the three axes) acquired in step S502. Based on (value), it is determined whether or not the ball 10 is in a free fall state (step S505). If it is determined in step S505 that the ball 10 is not in the free fall state (step S505: No), the main control unit 300 returns the process to step S502.
 一方、ステップS505において、ボール10が自由落下状態にあると判定された場合(ステップS505:Yes)、第2判定部305が、ステップS503で取得された角速度に基づいて、計測モジュール100における3軸(X軸,Y軸,Z軸)の各々について、遠心力が生じているか否かを判定する(ステップS506)。 On the other hand, when it is determined in step S505 that the ball 10 is in a free fall state (step S505: Yes), the second determination unit 305 determines the three axes in the measurement module 100 based on the angular velocity acquired in step S503. It is determined whether or not centrifugal force is generated for each of the (X axis, Y axis, and Z axis) (step S506).
 そして、値保持部308が、ステップS502で取得された3軸(X軸,Y軸,Z軸)の各々の加速度のうち、ステップS506で遠心力が生じていないと判定された軸の加速度を、有効なデータとして保持する(ステップS507)。 Then, among the accelerations of the three axes (X axis, Y axis, and Z axis) acquired in step S502, the value holding unit 308 determines the acceleration of the axis determined to have no centrifugal force generated in step S506. It is held as valid data (step S507).
 その後、主制御部300が、3軸(X軸,Y軸,Z軸)の各々について、一定量の加速度が値保持部308に保持されたか否かを判断する(ステップS508)。ステップS508において、一定量の加速度が値保持部308に保持されていないと判断された場合(ステップS508:No)、主制御部300が、ステップS502へ処理を戻す。 Thereafter, the main control unit 300 determines whether or not a certain amount of acceleration is held in the value holding unit 308 for each of the three axes (X axis, Y axis, and Z axis) (step S508). If it is determined in step S508 that a certain amount of acceleration is not held in the value holding unit 308 (step S508: No), the main control unit 300 returns the process to step S502.
 一方、ステップS508において、一定量の加速度が値保持部308に保持されたと判断された場合(ステップS508:Yes)、補正値算出部307が、3軸(X軸,Y軸,Z軸)の各々について、値保持部308に保持されている複数の加速度の平均値を、加速度センサ111から出力される加速度の補正値として算出する(ステップS509)。そして、補正値書込部309が、ステップS509で算出された3軸(X軸,Y軸,Z軸)の各々の補正値を、補正値記憶部310に書き込む(ステップS510)。その後、主制御部300が、図5に示す一連の処理を終了する。 On the other hand, when it is determined in step S508 that a certain amount of acceleration has been held in the value holding unit 308 (step S508: Yes), the correction value calculation unit 307 has three axes (X axis, Y axis, Z axis). For each, an average value of a plurality of accelerations held in the value holding unit 308 is calculated as an acceleration correction value output from the acceleration sensor 111 (step S509). Then, the correction value writing unit 309 writes the correction values of the three axes (X axis, Y axis, and Z axis) calculated in step S509 in the correction value storage unit 310 (step S510). Thereafter, the main control unit 300 ends the series of processes shown in FIG.
 なお、図5に示す例では、計測モジュール100は、一定量の加速度が値保持部308に保持されるまで、一連の処理を繰り返し実行するようにしているが、これに限らない。例えば、計測モジュール100は、定期的(例えば、1日毎、1週間毎、計測モジュール100が起動される毎、等)に、図5に示す一連の処理を一回ずつ実行するようにしてもよい。この場合、計測モジュール100は、一定量の加速度が値保持部308に保持されたタイミングで、加速度の補正値を算出するようにしてもよい。 In the example shown in FIG. 5, the measurement module 100 repeatedly executes a series of processes until a certain amount of acceleration is held in the value holding unit 308, but is not limited thereto. For example, the measurement module 100 may execute a series of processes shown in FIG. 5 once periodically (for example, every day, every week, every time the measurement module 100 is activated, etc.). . In this case, the measurement module 100 may calculate an acceleration correction value at a timing when a certain amount of acceleration is held in the value holding unit 308.
 (計測モジュール100による計測データの一例)
 図6は、一実施形態に係る計測モジュール100による計測データの一例(第1例)を示す図である。図7は、一実施形態に係る計測モジュール100による計測データの一例(第2例)を示す図である。
(An example of measurement data by the measurement module 100)
FIG. 6 is a diagram illustrating an example (first example) of measurement data obtained by the measurement module 100 according to an embodiment. FIG. 7 is a diagram illustrating an example (second example) of measurement data obtained by the measurement module 100 according to an embodiment.
 図6は、ユーザがボール10を自由落下させたときに、当該ボール10の内部に設けられた計測モジュール100によって計測された計測データを表している。特に、図6は、ボール10が回転を伴わずに自由落下したときの、計測データを表している。図6Aは、加速度の計測データを表すものであり、横軸は時間を表しており、縦軸は加速度を表している。図6Bは、角速度の計測データを表すものであり、横軸は時間を表しており、縦軸は角速度を表している。 FIG. 6 shows measurement data measured by the measurement module 100 provided inside the ball 10 when the user freely drops the ball 10. In particular, FIG. 6 shows measurement data when the ball 10 falls freely without rotation. FIG. 6A represents acceleration measurement data, where the horizontal axis represents time, and the vertical axis represents acceleration. FIG. 6B represents angular velocity measurement data, where the horizontal axis represents time and the vertical axis represents angular velocity.
 図6Aおよび図6Bにおいて、期間S1は、ボール10がユーザの手に保持されている状態にある期間である。また、期間S2は、ボール10がユーザの手から転がり落とされた状態にある期間である。また、期間S3は、ボール10が自由落下状態にある期間である。 6A and 6B, the period S1 is a period in which the ball 10 is held in the user's hand. The period S2 is a period in which the ball 10 is rolled from the user's hand. The period S3 is a period in which the ball 10 is in a free fall state.
 また、図6Aおよび図6Bにおいて、実線は、X軸の加速度を表している。また、破線は、Y軸の加速度を表している。また、一点鎖線は、Z軸の加速度を表している。 In FIGS. 6A and 6B, the solid line represents the X-axis acceleration. The broken line represents the Y-axis acceleration. Also, the alternate long and short dash line represents the Z-axis acceleration.
 図6Aの期間S3に示すように、ボール10が自由落下状態(すなわち、0G状態)にあるとき、3軸(X軸,Y軸,Z軸)の各々の加速度が、0付近に収束した状態で安定することとなる。ここで、図6に示す例では、図6Bの期間S3に示すように、ボール10が自由落下状態にあるとき、3軸(X軸,Y軸,Z軸)の各々の角速度が、0付近に収束した状態で安定した状態となっており、すなわち、ボール10が略無回転状態であることが示されている。 As shown in period S3 of FIG. 6A, when the ball 10 is in a free fall state (that is, 0G state), the accelerations of the three axes (X axis, Y axis, Z axis) are converged around 0 It will be stable. Here, in the example shown in FIG. 6, as shown in the period S3 in FIG. 6B, when the ball 10 is in a free fall state, each of the angular velocities of the three axes (X axis, Y axis, Z axis) is near zero. It is shown that the ball 10 is in a stable state after being converged, that is, the ball 10 is in a substantially non-rotating state.
 この場合、本実施形態の計測モジュール100は、第1判定部304によってボール10が回転安定状態にあると判定され、第2判定部305によって3軸(X軸,Y軸,Z軸)の各々に遠心力が生じていないと判定され、さらに、第3判定部306によってボール10が自由落下状態にあると判定される。よって、この場合、計測モジュール100は、補正値算出部307により、期間S3における3軸(X軸,Y軸,Z軸)の各々の加速度を有効なデータと判定し、これらの加速度を用いて、3軸(X軸,Y軸,Z軸)の各々の加速度の補正値を算出する。このとき、3軸(X軸,Y軸,Z軸)の各々の加速度は、いずれも理想値が0であるから、補正値算出部307は、この理想値との差分値を、補正値として算出することができる。 In this case, in the measurement module 100 of the present embodiment, the first determination unit 304 determines that the ball 10 is in a rotationally stable state, and the second determination unit 305 determines each of the three axes (X axis, Y axis, Z axis). It is determined that the centrifugal force is not generated in the ball, and the third determination unit 306 determines that the ball 10 is in a free fall state. Therefore, in this case, the measurement module 100 determines that each acceleration of the three axes (X axis, Y axis, Z axis) in the period S3 is valid data by using the correction value calculation unit 307, and uses these accelerations. A correction value of acceleration of each of the three axes (X axis, Y axis, Z axis) is calculated. At this time, since each of the accelerations of the three axes (X axis, Y axis, Z axis) has an ideal value of 0, the correction value calculation unit 307 uses the difference value from the ideal value as a correction value. Can be calculated.
 一方、図7は、ユーザがボール10を自由落下させたときに、当該ボール10の内部に設けられた計測モジュール100によって計測された計測データを表している。特に、図7は、ボール10が回転を伴って自由落下したときの、計測データを表している。図7Aは、加速度の計測データを表すものであり、横軸は時間を表しており、縦軸は加速度を表している。図7Bは、角速度の計測データを表すものであり、横軸は時間を表しており、縦軸は角速度を表している。 On the other hand, FIG. 7 shows measurement data measured by the measurement module 100 provided inside the ball 10 when the user freely drops the ball 10. In particular, FIG. 7 shows measurement data when the ball 10 freely falls with rotation. FIG. 7A represents acceleration measurement data, where the horizontal axis represents time and the vertical axis represents acceleration. FIG. 7B represents angular velocity measurement data, where the horizontal axis represents time and the vertical axis represents angular velocity.
 図7Aおよび図7Bにおいて、期間S4は、ボール10がユーザの手から放り上げられた状態にある期間である。また、期間S5は、ボール10が自由落下状態にある期間である。 7A and 7B, a period S4 is a period in which the ball 10 is in a state of being thrown up from the user's hand. The period S5 is a period in which the ball 10 is in a free fall state.
 また、図7Aおよび図7Bにおいて、実線は、X軸の加速度を表している。また、破線は、Y軸の加速度を表している。また、一点鎖線は、Z軸の加速度を表している。 7A and 7B, the solid line represents the X-axis acceleration. The broken line represents the Y-axis acceleration. Also, the alternate long and short dash line represents the Z-axis acceleration.
 図7Aの期間S5に示すように、ボール10が自由落下状態(すなわち、0G状態)にあるとき、3軸(X軸,Y軸,Z軸)の各々の加速度が、0付近に収束した状態で安定することとなる。ここで、図7に示す例では、図7Bの期間S5に示すように、ボール10が自由落下状態にあるとき、3軸(X軸,Y軸,Z軸)の各々の角速度は、0付近に収束した状態となっておらず、すなわち、ボール10が回転状態であることが示されている。 As shown in a period S5 in FIG. 7A, when the ball 10 is in a free fall state (ie, 0G state), the acceleration of each of the three axes (X axis, Y axis, and Z axis) converges near zero. It will be stable. Here, in the example shown in FIG. 7, as shown in the period S5 in FIG. 7B, when the ball 10 is in a free fall state, each of the angular velocities of the three axes (X axis, Y axis, Z axis) is near zero. It is shown that the ball 10 is not in a converged state, that is, the ball 10 is in a rotating state.
 この場合、本実施形態の計測モジュール100は、第3判定部306によってボール10が自由落下状態にあると判定される。しかしながら、図7Bに示す例では、期間S5におけるX軸の角速度の値が安定していないため、第1判定部304によってボール10が回転安定状態にないと判定される。さらに、図7Bに示す例では、期間S5における3軸(X軸,Y軸,Z軸)の各々の角速度の値がいずれも所定の第2の閾値th2以上となっているため、第2判定部305によって3軸(X軸,Y軸,Z軸)の各々に遠心力が生じていると判定される。よって、この場合、計測モジュール100は、補正値算出部307により、期間S5における3軸(X軸,Y軸,Z軸)の各々の加速度を無効なデータと判定し、これらの加速度を用いて、3軸(X軸,Y軸,Z軸)の各々の加速度の補正値を算出することはしない。 In this case, in the measurement module 100 of the present embodiment, the third determination unit 306 determines that the ball 10 is in a free fall state. However, in the example shown in FIG. 7B, since the value of the angular velocity of the X axis in the period S5 is not stable, the first determination unit 304 determines that the ball 10 is not in a stable rotation state. Further, in the example shown in FIG. 7B, since the values of the angular velocities of the three axes (X axis, Y axis, Z axis) in the period S5 are all equal to or greater than the predetermined second threshold th2, the second determination is made. The unit 305 determines that centrifugal force is generated in each of the three axes (X axis, Y axis, and Z axis). Therefore, in this case, the measurement module 100 determines that each acceleration of the three axes (X axis, Y axis, Z axis) in the period S5 is invalid data by using the correction value calculation unit 307, and uses these accelerations. The correction value of acceleration of each of the three axes (X axis, Y axis, Z axis) is not calculated.
 以上説明したように、本実施形態の計測モジュール100は、ジャイロセンサ112によって計測された角速度に基づいて、当該計測モジュール100が回転安定状態であると判定された場合、加速度センサ111によって計測された加速度を有効なデータとして用いて、加速度センサ111から出力される加速度の補正値を算出する構成を採用している。これにより、本実施形態の計測モジュール100は、回転の生じ易い球状のボール10に搭載されたとしても、ボール10が回転安定状態のときに計測された加速度のみを用いて、加速度センサ111から出力される加速度の補正値を算出することができる。したがって、本実施形態の計測モジュール100は、計測モジュール100の回転の変位量が大きいことによる影響を排除することができ、よって、加速度センサ111から出力される加速度を高精度に補正することができる。 As described above, the measurement module 100 of the present embodiment is measured by the acceleration sensor 111 when it is determined that the measurement module 100 is in the rotation stable state based on the angular velocity measured by the gyro sensor 112. A configuration is adopted in which the acceleration correction value output from the acceleration sensor 111 is calculated using the acceleration as effective data. As a result, even if the measurement module 100 of the present embodiment is mounted on the spherical ball 10 that easily rotates, the measurement module 100 outputs from the acceleration sensor 111 using only the acceleration measured when the ball 10 is in the rotation stable state. The acceleration correction value can be calculated. Therefore, the measurement module 100 according to the present embodiment can eliminate the influence due to the large amount of displacement of the rotation of the measurement module 100, and thus can correct the acceleration output from the acceleration sensor 111 with high accuracy. .
 また、本実施形態の計測モジュール100は、ジャイロセンサ112によって計測された角速度に基づいて、当該計測モジュール100(すなわち、ボール10)における3軸(X軸,Y軸,Z軸)の各々について遠心力が生じているか否かを判定し、遠心力が生じていないと判定された軸について、加速度センサ111によって計測された当該軸の加速度を有効なデータとして用いて、加速度センサ111から出力される当該軸の加速度の補正値を算出する構成を採用している。これにより、本実施形態の計測モジュール100は、回転の生じ易い球状のボール10に搭載されたとしても、ボール10の回転による遠心力が生じていないときに計測された加速度のみを用いて、加速度センサ111から出力される加速度の補正値を算出することができる。したがって、本実施形態の計測モジュール100は、計測モジュール100の回転による遠心力の影響を排除することができ、よって、加速度センサ111から出力される加速度を高精度に補正することができる。 In addition, the measurement module 100 according to the present embodiment centrifuges each of the three axes (X axis, Y axis, Z axis) in the measurement module 100 (that is, the ball 10) based on the angular velocity measured by the gyro sensor 112. It is determined whether or not a force is generated, and is output from the acceleration sensor 111 using the acceleration of the axis measured by the acceleration sensor 111 as valid data for an axis determined to have no centrifugal force. A configuration for calculating a correction value of acceleration of the axis is employed. As a result, even if the measurement module 100 of this embodiment is mounted on the spherical ball 10 that is likely to rotate, only the acceleration measured when the centrifugal force due to the rotation of the ball 10 is not generated is used. A correction value of acceleration output from the sensor 111 can be calculated. Therefore, the measurement module 100 of the present embodiment can eliminate the influence of the centrifugal force due to the rotation of the measurement module 100, and thus can correct the acceleration output from the acceleration sensor 111 with high accuracy.
 特に、本実施形態の計測モジュール100は、3軸(X軸,Y軸,Z軸)の一部に遠心力が生じている場合であっても、遠心力が生じていない軸については、その軸の加速度を有効データと判定する(すなわち、一概に全ての軸の加速度を無効とするのではしない)ため、補正値を算出するために必要な十分な量の有効データを、比較的早期に収集することができる。 In particular, the measurement module 100 according to the present embodiment is configured so that even if a centrifugal force is generated in a part of three axes (X axis, Y axis, and Z axis), Since the acceleration of the axis is determined as valid data (that is, the acceleration of all axes is not invalidated in general), a sufficient amount of valid data necessary for calculating the correction value is obtained relatively early. Can be collected.
 また、本実施形態の計測モジュール100は、加速度センサ111によって計測された加速度に基づいて、当該計測モジュール100(すなわち、ボール10)が自由落下状態であると判定された場合、加速度センサ111によって計測された加速度を有効なデータとして用いて、加速度センサ111から出力される加速度の補正値を算出する構成を採用している。これにより、本実施形態の計測モジュール100は、所定の姿勢で加速度の較正を行うことが困難な球状のボール10に搭載されたとしても、ボール10を自由落下させるだけで、3軸(X軸,Y軸,Z軸)の各々の加速度が理想値(すなわち、0)となる基準状態を作り出すことができ、よって、3軸(X軸,Y軸,Z軸)の各々の加速度の補正値を、容易且つ高精度に算出することができる。 In addition, the measurement module 100 according to the present embodiment is measured by the acceleration sensor 111 when it is determined that the measurement module 100 (that is, the ball 10) is in a free fall state based on the acceleration measured by the acceleration sensor 111. A configuration for calculating a correction value of acceleration output from the acceleration sensor 111 by using the acceleration as effective data is adopted. Thereby, even if the measurement module 100 of this embodiment is mounted on the spherical ball 10 in which it is difficult to calibrate the acceleration in a predetermined posture, the measurement module 100 can be moved in three axes (X-axis) only by freely dropping the ball 10. , Y axis, Z axis) can create a reference state in which each acceleration is an ideal value (that is, 0), and therefore, the acceleration correction value for each of the three axes (X axis, Y axis, Z axis) Can be calculated easily and with high accuracy.
 また、本実施形態の計測モジュール100は、当該計測モジュール100(すなわち、ボール10)を複数回自由落下させることにより、その都度、X軸、Y軸、およびZ軸の少なくともいずれか一つについて、加速度センサ111によって計測された加速度を有効なデータとして得ることができる。そして、本実施形態の計測モジュール100は、当該計測モジュール100が複数回自由落下状態であると判定されることによって得られた、X軸の少なくとも1つの有効なデータとされた加速度と、Y軸の少なくとも1つの有効なデータとされた加速度と、Z軸の少なくとも1つの有効なデータとされた加速度とを用いて、加速度センサ111から出力されるX軸、Y軸、およびZ軸の各々の加速度の補正値を算出することができる。要するに、本実施形態の計測モジュール100は、当該計測モジュール100を複数回自由落下させて、X軸、Y軸、およびZ軸のそれぞれについて、少なくとも1つの有効なデータが得られれば、X軸、Y軸、およびZ軸の各々の加速度の補正値を算出することができる。なお、計測モジュール100の自由落下は、例えば、計測モジュール100が起動される毎に、行われるようにしてもよい。この場合、計測モジュール100の起動間隔は、日単位、週単位、月単位等、如何なるものであってもよい。 In addition, the measurement module 100 of the present embodiment allows the measurement module 100 (that is, the ball 10) to freely fall a plurality of times, so that each time at least one of the X axis, the Y axis, and the Z axis, The acceleration measured by the acceleration sensor 111 can be obtained as effective data. The measurement module 100 according to the present embodiment includes an acceleration that is obtained by determining that the measurement module 100 is in a free-falling state a plurality of times, and at least one effective data of the X axis, and the Y axis. Each of the X-axis, Y-axis, and Z-axis output from the acceleration sensor 111 using at least one acceleration of the valid data and acceleration of at least one valid data of the Z-axis. An acceleration correction value can be calculated. In short, the measurement module 100 of the present embodiment allows the measurement module 100 to freely fall a plurality of times and obtain at least one effective data for each of the X axis, the Y axis, and the Z axis. It is possible to calculate correction values for acceleration of each of the Y axis and the Z axis. The free fall of the measurement module 100 may be performed every time the measurement module 100 is activated, for example. In this case, the activation interval of the measurement module 100 may be any day, week, month, or the like.
 以上、本発明の一実施形態について詳述したが、本発明はこれらの実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形又は変更が可能である。 The embodiments of the present invention have been described in detail above, but the present invention is not limited to these embodiments, and various modifications or changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.
 例えば、上記実施形態では、本発明の較正装置(マイコン114)が、加速度センサ111およびジャイロセンサ112と計測モジュール100に一体的に設けられているが、これに限らず、本発明の較正装置は、加速度センサ111およびジャイロセンサ112と別体に設けられてもよい。 For example, in the above embodiment, the calibration device (microcomputer 114) of the present invention is provided integrally with the acceleration sensor 111, the gyro sensor 112, and the measurement module 100. However, the calibration device of the present invention is not limited to this. The acceleration sensor 111 and the gyro sensor 112 may be provided separately.
 また、上記実施形態では、本発明の計測装置(計測モジュール100)が、糸巻層12を有する球体(ボール10)に設けられているが、これに限らず、本発明の計測装置は、糸巻層を有しない球体、または、球体以外の如何なる器具に設けられてもよい。 Moreover, in the said embodiment, although the measuring device (measurement module 100) of this invention is provided in the spherical body (ball | bowl 10) which has the pincushion layer 12, it is not restricted to this, The measuring device of this invention is a pincushion layer. It may be provided in a sphere that does not have a sphere or any device other than a sphere.
 また、上記実施形態では、計測モジュール100に、第1判定部304および第2判定部305の双方を設けるようにしているが、これに限らず、計測モジュール100に、第1判定部304および第2判定部305のいずれか一方を設けるようにしてもよい。 In the above embodiment, the measurement module 100 is provided with both the first determination unit 304 and the second determination unit 305. However, the measurement module 100 is not limited thereto, and the measurement module 100 includes the first determination unit 304 and the first determination unit 304. Either one of the two determination units 305 may be provided.
 また、上記実施形態において、計測モジュール100(計測回路102)が備えることとした複数の機能(図3参照)のうちの一部または全部を、計測モジュール100の外部に設けるようにしてもよい。例えば、上記実施形態では、出力部312が、補正部311によって補正された加速度を、外部の情報処理装置に出力するようにしているが、これに限らず、例えば、出力部312が、加速度取得部301によって取得された加速度と、補正値記憶部310に記憶された補正値とを、外部の情報処理装置に出力して、加速度の補正を、外部の情報処理装置で行うようにしてもよい。 Further, in the above embodiment, some or all of the plurality of functions (see FIG. 3) that the measurement module 100 (measurement circuit 102) has may be provided outside the measurement module 100. For example, in the above embodiment, the output unit 312 outputs the acceleration corrected by the correction unit 311 to an external information processing apparatus. However, the present invention is not limited to this, and for example, the output unit 312 acquires the acceleration. The acceleration acquired by the unit 301 and the correction value stored in the correction value storage unit 310 may be output to an external information processing apparatus so that the acceleration is corrected by the external information processing apparatus. .
 また、上記実施形態において、出力部312は、各計測データ(加速度、角速度、および地磁気)を、リアルタイムで出力してもよく、各計測データを、メモリ115に蓄積しておき、所定のタイミングでまとめて出力するようにしてもよい。 In the above embodiment, the output unit 312 may output each measurement data (acceleration, angular velocity, and geomagnetism) in real time, accumulate each measurement data in the memory 115, and at a predetermined timing. You may make it output collectively.
 また、上記実施形態では、補正値算出部307は、3軸(X軸,Y軸,Z軸)の各々の加速度(有効なデータ)が揃った状態で、3軸の各々の補正値を算出するようにしているが、これに限らず、1軸毎に、有効なデータが得られた時点で、補正値を算出するようにしてもよい。 In the above embodiment, the correction value calculation unit 307 calculates the correction values for the three axes in a state where the accelerations (effective data) for the three axes (X axis, Y axis, and Z axis) are aligned. However, the present invention is not limited to this, and the correction value may be calculated when valid data is obtained for each axis.
 また、上記実施形態では、第3判定部306は、3軸(X軸,Y軸,Z軸)の各々の加速度(移動平均値)が、いずれも所定の第3の閾値th3以下である場合、ボール10が自由落下状態であると判定するようにしているが、これに限らず、例えば、3軸(X軸,Y軸,Z軸)の各々の加速度の合成ベクトル値、または、その移動平均値が、所定の第4の閾値th4以下である場合、ボール10が自由落下状態であると判定するようにしてもよい。 In the above embodiment, the third determination unit 306 determines that the acceleration (moving average value) of each of the three axes (X axis, Y axis, Z axis) is equal to or less than a predetermined third threshold th3. The ball 10 is determined to be in a free-fall state, but the present invention is not limited to this. For example, the combined vector value of the acceleration of each of the three axes (X axis, Y axis, Z axis) or its movement When the average value is equal to or less than the predetermined fourth threshold th4, it may be determined that the ball 10 is in a free fall state.
 本国際出願は、2018年2月6日に出願した日本国特許出願第2018-019573号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2018-019573 filed on Feb. 6, 2018, the entire contents of which are incorporated herein by reference.
 10 ボール(球体)
 12 糸巻層
 14 表皮層
 100 計測モジュール(計測装置)
 101 ケース
 102 計測回路
 102A 回路基板
 111 加速度センサ
 112 ジャイロセンサ
 113 地磁気センサ
 114 マイコン(較正装置、コンピュータ)
 115 メモリ
 116 通信I/F
 117 バッテリ
 300 主制御部
 301 加速度取得部
 302 角速度取得部
 303 地磁気取得部
 304 第1判定部
 305 第2判定部
 306 第3判定部
 307 補正値算出部
 308 値保持部
 309 補正値書込部
 310 補正値記憶部
 311 補正部
 312 出力部
 313 電源制御部
10 balls (sphere)
12 Pincushion layer 14 Skin layer 100 Measuring module (measuring device)
DESCRIPTION OF SYMBOLS 101 Case 102 Measuring circuit 102A Circuit board 111 Acceleration sensor 112 Gyro sensor 113 Geomagnetic sensor 114 Microcomputer (calibration apparatus, computer)
115 Memory 116 Communication I / F
117 battery 300 main control unit 301 acceleration acquisition unit 302 angular velocity acquisition unit 303 geomagnetism acquisition unit 304 first determination unit 305 second determination unit 306 third determination unit 307 correction value calculation unit 308 value holding unit 309 correction value writing unit 310 correction Value storage unit 311 Correction unit 312 Output unit 313 Power supply control unit

Claims (17)

  1.  加速度センサおよびジャイロセンサを備えた計測装置を較正する較正装置であって、
     前記加速度センサから出力された加速度を取得する加速度取得部と、
     前記ジャイロセンサから出力された角速度を取得する角速度取得部と、
     前記角速度取得部によって取得された前記角速度に基づいて、前記計測装置の回転が安定しているか否かを判定する第1判定部と、
     前記加速度取得部によって取得された前記加速度に基づいて、前記計測装置が自由落下状態であるか否かを判定する第3判定部と、
     前記第1判定部によって前記計測装置の回転が安定していると判定された場合、且つ、前記第3判定部によって前記計測装置が自由落下状態であると判定された場合、前記加速度取得部によって取得された前記加速度を有効なデータとして用いて、前記加速度センサから出力される加速度の補正値を算出する補正値算出部と
     を備えることを特徴とする較正装置。
    A calibration device for calibrating a measurement device including an acceleration sensor and a gyro sensor,
    An acceleration acquisition unit for acquiring the acceleration output from the acceleration sensor;
    An angular velocity acquisition unit that acquires the angular velocity output from the gyro sensor;
    A first determination unit that determines whether rotation of the measurement device is stable based on the angular velocity acquired by the angular velocity acquisition unit;
    A third determination unit that determines whether or not the measurement device is in a free-fall state based on the acceleration acquired by the acceleration acquisition unit;
    When the first determination unit determines that the rotation of the measurement device is stable, and when the third determination unit determines that the measurement device is in a free fall state, the acceleration acquisition unit A calibration apparatus comprising: a correction value calculation unit that calculates a correction value of an acceleration output from the acceleration sensor using the acquired acceleration as valid data.
  2.  前記第1判定部は、
     所定数の前記角速度の移動平均値に基づいて、前記計測装置の回転が安定しているか否かを判定する
     ことを特徴とする請求項1に記載の較正装置。
    The first determination unit includes:
    The calibration device according to claim 1, wherein it is determined whether or not the rotation of the measurement device is stable based on a moving average value of a predetermined number of the angular velocities.
  3.  前記第1判定部は、
     前記計測装置におけるX軸、Y軸、およびZ軸の全てについて、最新の前記角速度と、当該最新の角速度の直前の前記角速度との差が、所定の第1の閾値以下である場合が、連続して所定回数以上続いた場合、前記計測装置の回転が安定していると判定する
     ことを特徴とする請求項2に記載の較正装置。
    The first determination unit includes:
    For all of the X-axis, Y-axis, and Z-axis in the measuring device, the difference between the latest angular velocity and the angular velocity immediately before the latest angular velocity is not more than a predetermined first threshold value. The calibration device according to claim 2, wherein if the rotation continues for a predetermined number of times or more, the rotation of the measurement device is determined to be stable.
  4.  加速度センサおよびジャイロセンサを備えた計測装置を較正する較正装置であって、
     前記加速度センサから出力された加速度を取得する加速度取得部と、
     前記ジャイロセンサから出力された角速度を取得する角速度取得部と、
     前記角速度取得部によって取得された前記角速度に基づいて、前記計測装置におけるX軸、Y軸、およびZ軸の各々について、遠心力が生じているか否かを判定する第2判定部と、
     前記加速度取得部によって取得された前記加速度に基づいて、前記計測装置が自由落下状態であるか否かを判定する第3判定部と、
     前記第3判定部によって前記計測装置が自由落下状態であると判定された場合、前記X軸、前記Y軸、および前記Z軸のうち、前記第2判定部によって遠心力が生じていないと判定された軸について、前記加速度取得部によって取得された当該軸の前記加速度を有効なデータとして用いて、前記加速度センサから出力される当該軸の加速度の補正値を算出する補正値算出部と
     を備えることを特徴とする較正装置。
    A calibration device for calibrating a measurement device including an acceleration sensor and a gyro sensor,
    An acceleration acquisition unit for acquiring the acceleration output from the acceleration sensor;
    An angular velocity acquisition unit that acquires the angular velocity output from the gyro sensor;
    A second determination unit that determines whether centrifugal force is generated for each of the X axis, the Y axis, and the Z axis in the measurement device based on the angular velocity acquired by the angular velocity acquisition unit;
    A third determination unit that determines whether or not the measurement device is in a free-fall state based on the acceleration acquired by the acceleration acquisition unit;
    When the third determination unit determines that the measurement device is in a free fall state, it is determined that no centrifugal force is generated by the second determination unit among the X axis, the Y axis, and the Z axis. A correction value calculation unit that calculates a correction value of the acceleration of the axis output from the acceleration sensor, using the acceleration of the axis acquired by the acceleration acquisition unit as valid data for the acquired axis. A calibration device characterized by that.
  5.  前記補正値算出部は、
     前記計測装置が複数回前記自由落下状態であると判定されることによって得られた、
     前記X軸の少なくとも1つの前記有効なデータとされた前記加速度と、
     前記Y軸の少なくとも1つの前記有効なデータとされた前記加速度と、
     前記Z軸の少なくとも1つの前記有効なデータとされた前記加速度と
     を用いて、前記加速度センサから出力される前記X軸、前記Y軸、および前記Z軸の各々の前記加速度の補正値を算出する
     ことを特徴とする請求項4に記載の較正装置。
    The correction value calculation unit
    Obtained by determining that the measuring device is in the free fall state a plurality of times,
    The acceleration taken as the valid data of at least one of the X-axis,
    The acceleration taken as the valid data of at least one of the Y-axis,
    The correction value of the acceleration of each of the X-axis, the Y-axis, and the Z-axis output from the acceleration sensor is calculated using at least one of the effective data of the Z-axis and the acceleration. The calibration device according to claim 4, wherein:
  6.  前記第2判定部は、
     前記X軸の前記角速度および前記Y軸の前記角速度の双方が、所定の第2の閾値以下である場合、前記Z軸について前記遠心力が生じていないと判定し、
     前記X軸の前記角速度および前記Z軸の前記角速度の双方が、前記所定の第2の閾値以下である場合、前記Y軸について前記遠心力が生じていないと判定し、
     前記Y軸の前記角速度および前記Z軸の前記角速度の双方が、前記所定の第2の閾値以下である場合、前記X軸について前記遠心力が生じていないと判定する
     ことを特徴とする請求項4または5に記載の較正装置。
    The second determination unit includes
    When both the angular velocity of the X axis and the angular velocity of the Y axis are equal to or less than a predetermined second threshold, it is determined that the centrifugal force is not generated with respect to the Z axis,
    When both the angular velocity of the X axis and the angular velocity of the Z axis are equal to or less than the predetermined second threshold, it is determined that the centrifugal force is not generated with respect to the Y axis,
    It is determined that the centrifugal force is not generated with respect to the X axis when both the angular velocity of the Y axis and the angular velocity of the Z axis are equal to or less than the predetermined second threshold value. The calibration apparatus according to 4 or 5.
  7.  前記第3判定部は、
     所定数の前記加速度の移動平均値に基づいて、前記計測装置が自由落下状態であるか否かを判定する
     ことを特徴とする請求項1から6のいずれか一項に記載の較正装置。
    The third determination unit includes:
    The calibration device according to any one of claims 1 to 6, wherein it is determined whether or not the measurement device is in a free fall state based on a moving average value of a predetermined number of the accelerations.
  8.  前記第3判定部は、
     前記計測装置におけるX軸、Y軸、およびZ軸の全てについて、前記所定数の加速度の移動平均値が、所定の第3の閾値以下である場合、前記計測装置が自由落下状態であると判定する
     ことを特徴とする請求項7に記載の較正装置。
    The third determination unit includes:
    When the moving average value of the predetermined number of accelerations is less than or equal to a predetermined third threshold for all of the X axis, Y axis, and Z axis in the measuring device, it is determined that the measuring device is in a free fall state The calibration device according to claim 7, wherein:
  9.  前記第3判定部によって前記計測装置が自由落下状態にあると判定される毎に、当該自由落下状態のときに有効なデータとされた前記加速度を保持する値保持部をさらに備え、
     前記補正値算出部は、
     前記値保持部によって保持された複数の前記加速度を用いて、前記補正値を算出する
     ことを特徴とする請求項1から8のいずれか一項に記載の較正装置。
    Each time the third determination unit determines that the measurement device is in a free fall state, the third determination unit further includes a value holding unit that holds the acceleration that is effective data in the free fall state,
    The correction value calculation unit
    The calibration apparatus according to claim 1, wherein the correction value is calculated using a plurality of the accelerations held by the value holding unit.
  10.  前記補正値算出部は、
     前記値保持部によって保持された複数の前記加速度の平均値を用いて、前記補正値を算出する
     ことを特徴とする請求項9に記載の較正装置。
    The correction value calculation unit
    The calibration device according to claim 9, wherein the correction value is calculated using an average value of the plurality of accelerations held by the value holding unit.
  11.  前記加速度センサと、
     前記ジャイロセンサと、
     請求項1から10のいずれか一項に記載の較正装置と
     を備えることを特徴とする計測装置。
    The acceleration sensor;
    The gyro sensor;
    A measuring device comprising: the calibration device according to claim 1.
  12.  請求項11に記載の計測装置を内部に有する
     ことを特徴とする球体。
    A sphere having the measuring device according to claim 11 inside.
  13.  前記計測装置の外側に形成された糸巻層を有する
     ことを特徴とする請求項12に記載の球体。
    The sphere according to claim 12, further comprising a wound layer formed outside the measuring device.
  14.  加速度センサおよびジャイロセンサを備えた計測装置の較正方法であって、
     前記加速度センサから出力された加速度を取得する加速度取得工程と、
     前記ジャイロセンサから出力された角速度を取得する角速度取得工程と、
     前記角速度取得工程において取得された前記角速度に基づいて、前記計測装置の回転が安定しているか否かを判定する第1判定工程と、
     前記加速度取得工程において取得された前記加速度に基づいて、前記計測装置が自由落下状態であるか否かを判定する第3判定工程と、
     前記第1判定工程において前記計測装置の回転が安定していると判定された場合、且つ、前記第3判定工程において前記計測装置が自由落下状態であると判定された場合、前記加速度取得工程において取得された前記加速度を有効なデータとして用いて、前記加速度センサから出力される加速度の補正値を算出する補正値算出工程と
     を含むことを特徴とする較正方法。
    A method for calibrating a measuring device including an acceleration sensor and a gyro sensor,
    An acceleration acquisition step of acquiring the acceleration output from the acceleration sensor;
    An angular velocity acquisition step of acquiring an angular velocity output from the gyro sensor;
    A first determination step of determining whether rotation of the measuring device is stable based on the angular velocity acquired in the angular velocity acquisition step;
    A third determination step of determining whether or not the measurement device is in a free fall state based on the acceleration acquired in the acceleration acquisition step;
    When it is determined that the rotation of the measurement device is stable in the first determination step, and when it is determined that the measurement device is in a free fall state in the third determination step, in the acceleration acquisition step A correction value calculating step of calculating a correction value of the acceleration output from the acceleration sensor using the acquired acceleration as valid data.
  15.  加速度センサおよびジャイロセンサを備えた計測装置の較正方法であって、
     前記加速度センサから出力された加速度を取得する加速度取得工程と、
     前記ジャイロセンサから出力された角速度を取得する角速度取得工程と、
     前記角速度取得工程において取得された前記角速度に基づいて、前記計測装置におけるX軸、Y軸、およびZ軸の各々について、遠心力が生じているか否かを判定する第2判定工程と、
     前記加速度取得工程において取得された前記加速度に基づいて、前記計測装置が自由落下状態であるか否かを判定する第3判定工程と、
     前記第3判定工程において前記計測装置が自由落下状態であると判定された場合、前記X軸、前記Y軸、および前記Z軸のうち、前記第2判定工程において遠心力が生じていないと判定された軸について、前記加速度取得工程において取得された当該軸の前記加速度を有効なデータとして用いて、前記加速度センサから出力される当該軸の加速度の補正値を算出する補正値算出工程と
     を含むことを特徴とする較正方法。
    A method for calibrating a measuring device including an acceleration sensor and a gyro sensor,
    An acceleration acquisition step of acquiring the acceleration output from the acceleration sensor;
    An angular velocity acquisition step of acquiring an angular velocity output from the gyro sensor;
    A second determination step of determining whether centrifugal force is generated for each of the X axis, the Y axis, and the Z axis in the measurement device based on the angular velocity acquired in the angular velocity acquisition step;
    A third determination step of determining whether or not the measurement device is in a free fall state based on the acceleration acquired in the acceleration acquisition step;
    When it is determined in the third determination step that the measuring device is in a free fall state, it is determined that no centrifugal force is generated in the second determination step among the X axis, the Y axis, and the Z axis. A correction value calculation step of calculating a correction value of the acceleration of the axis output from the acceleration sensor using the acceleration of the axis acquired in the acceleration acquisition step as effective data for the acquired axis. A calibration method characterized by the above.
  16.  加速度センサおよびジャイロセンサを備えた計測装置を較正するプログラムであって、
     コンピュータを、
     前記加速度センサから出力された加速度を取得する加速度取得部、
     前記ジャイロセンサから出力された角速度を取得する角速度取得部、
     前記角速度取得部によって取得された前記角速度に基づいて、前記計測装置の回転が安定しているか否かを判定する第1判定部、
     前記加速度取得部によって取得された前記加速度に基づいて、前記計測装置が自由落下状態であるか否かを判定する第3判定部、および、
     前記第1判定部によって前記計測装置の回転が安定していると判定された場合、且つ、前記第3判定部によって前記計測装置が自由落下状態であると判定された場合、前記加速度取得部によって取得された前記加速度を有効なデータとして用いて、前記加速度センサから出力される加速度の補正値を算出する補正値算出部
     として機能させるためのプログラム。
    A program for calibrating a measuring device including an acceleration sensor and a gyro sensor,
    Computer
    An acceleration acquisition unit for acquiring the acceleration output from the acceleration sensor;
    An angular velocity acquisition unit for acquiring the angular velocity output from the gyro sensor;
    A first determination unit that determines whether rotation of the measurement device is stable based on the angular velocity acquired by the angular velocity acquisition unit;
    A third determination unit that determines whether or not the measurement device is in a free-fall state based on the acceleration acquired by the acceleration acquisition unit; and
    When the first determination unit determines that the rotation of the measurement device is stable, and when the third determination unit determines that the measurement device is in a free fall state, the acceleration acquisition unit A program for functioning as a correction value calculation unit that calculates a correction value of acceleration output from the acceleration sensor using the acquired acceleration as valid data.
  17.  加速度センサおよびジャイロセンサを備えた計測装置を較正するプログラムであって、
     コンピュータを、
     前記加速度センサから出力された加速度を取得する加速度取得部、
     前記ジャイロセンサから出力された角速度を取得する角速度取得部、
     前記角速度取得部によって取得された前記角速度に基づいて、前記計測装置におけるX軸、Y軸、およびZ軸の各々について、遠心力が生じているか否かを判定する第2判定部、
     前記加速度取得部によって取得された前記加速度に基づいて、前記計測装置が自由落下状態であるか否かを判定する第3判定部、および、
     前記第3判定部によって前記計測装置が自由落下状態であると判定された場合、前記X軸、前記Y軸、および前記Z軸のうち、前記第2判定部によって遠心力が生じていないと判定された軸について、前記加速度取得部によって取得された当該軸の前記加速度を有効なデータとして用いて、前記加速度センサから出力される当該軸の加速度の補正値を算出する補正値算出部
     として機能させるためのプログラム。
    A program for calibrating a measuring device including an acceleration sensor and a gyro sensor,
    Computer
    An acceleration acquisition unit for acquiring the acceleration output from the acceleration sensor;
    An angular velocity acquisition unit for acquiring the angular velocity output from the gyro sensor;
    A second determination unit that determines whether centrifugal force is generated for each of the X axis, the Y axis, and the Z axis in the measurement device, based on the angular velocity acquired by the angular velocity acquisition unit;
    A third determination unit that determines whether or not the measurement device is in a free-fall state based on the acceleration acquired by the acceleration acquisition unit; and
    When the third determination unit determines that the measurement device is in a free fall state, it is determined that no centrifugal force is generated by the second determination unit among the X axis, the Y axis, and the Z axis. With respect to the obtained axis, the acceleration of the axis acquired by the acceleration acquisition unit is used as effective data, and the correction value calculation unit calculates a correction value of the acceleration of the axis output from the acceleration sensor. Program for.
PCT/JP2018/038168 2018-02-06 2018-10-12 Calibration device, measurement device, spherical body, calibration method and program WO2019155687A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-019573 2018-02-06
JP2018019573A JP2021056002A (en) 2018-02-06 2018-02-06 Calibration device, measurement device, sphere, calibration method, and program

Publications (1)

Publication Number Publication Date
WO2019155687A1 true WO2019155687A1 (en) 2019-08-15

Family

ID=67548368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038168 WO2019155687A1 (en) 2018-02-06 2018-10-12 Calibration device, measurement device, spherical body, calibration method and program

Country Status (2)

Country Link
JP (1) JP2021056002A (en)
WO (1) WO2019155687A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758515B (en) * 2021-08-16 2023-04-07 深圳市睿联技术股份有限公司 Zero calibration method, zero calibration device, electronic equipment and computer-readable storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299757A (en) * 2002-04-10 2003-10-21 Yamasa Tokei Keiki Kk Training aid
WO2006016671A1 (en) * 2004-08-12 2006-02-16 Asahi Kasei Emd Corporation Acceleration measuring device
WO2007077859A1 (en) * 2006-01-05 2007-07-12 Asahi Kasei Emd Corporation Acceleration measuring device
JP2012058066A (en) * 2010-09-08 2012-03-22 Shinshu Univ Device and method for detecting rotation of sphere
JP2014171907A (en) * 2013-03-12 2014-09-22 Adidas Ag Method for determining performance information about individual and sport object
US20160169680A1 (en) * 2014-12-10 2016-06-16 Samsung Electronics Co., Ltd. Method and Apparatus for Calculating Rotation Angle of Device
JP2017146129A (en) * 2016-02-15 2017-08-24 国立研究開発法人理化学研究所 Measurement device, measurement method, program, and information recording medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299757A (en) * 2002-04-10 2003-10-21 Yamasa Tokei Keiki Kk Training aid
WO2006016671A1 (en) * 2004-08-12 2006-02-16 Asahi Kasei Emd Corporation Acceleration measuring device
WO2007077859A1 (en) * 2006-01-05 2007-07-12 Asahi Kasei Emd Corporation Acceleration measuring device
JP2012058066A (en) * 2010-09-08 2012-03-22 Shinshu Univ Device and method for detecting rotation of sphere
JP2014171907A (en) * 2013-03-12 2014-09-22 Adidas Ag Method for determining performance information about individual and sport object
US20160169680A1 (en) * 2014-12-10 2016-06-16 Samsung Electronics Co., Ltd. Method and Apparatus for Calculating Rotation Angle of Device
JP2017146129A (en) * 2016-02-15 2017-08-24 国立研究開発法人理化学研究所 Measurement device, measurement method, program, and information recording medium

Also Published As

Publication number Publication date
JP2021056002A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
WO2017064972A1 (en) Wearable device, method for measuring orientation of same, and program
JP5017539B1 (en) Applied equipment for measuring and using geomagnetism
CN107493531B (en) A kind of head pose detection method, device and earphone
JP6943130B2 (en) MEMS devices, inertial measurement units, mobile positioning devices, portable electronic devices, electronic devices, and mobile objects
JP6199404B2 (en) Golf address correction device
US20140150521A1 (en) System and Method for Calibrating Inertial Measurement Units
US9037789B2 (en) Sensing device and electronic apparatus
JP6648515B2 (en) Electronic device, its angular velocity acquisition method, and angular velocity acquisition program
CN107580268B (en) A kind of head pose detection method, device and earphone
JP2014110832A (en) Motion analyzing system and motion analyzing method
KR20160025687A (en) Wearable watch and display method thereof
JP2017049115A (en) Electronic equipment, sensor calibration method for electronic equipment, and sensor calibration program for electronic equipment
WO2019155687A1 (en) Calibration device, measurement device, spherical body, calibration method and program
JP5678357B2 (en) Rotation information calculation method, rotation information calculation program, magnetic gyroscope and moving body
JP6269160B2 (en) Sleep state evaluation device, sleep state evaluation method, and sleep state evaluation system
JP2018134153A (en) Pitching analysis system
WO2019155686A1 (en) Control device, measurement device, ball, measurement system, control method, and program
US9297660B2 (en) System and method for determining parameters representing orientation of a solid in movement subject to two vector fields
JP5457890B2 (en) Orientation detection device
KR101458134B1 (en) Golf club swing correction apparatus
JP2013210888A (en) Input device, control system, calibration method and program
WO2017094521A1 (en) Wearable device, and method and program for measuring attitude of same
TWI649112B (en) Power start system
JP2016198296A (en) Evaluation device and evaluation system
EP3669759A1 (en) System and method for dynamic posturography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP