WO2019155637A1 - Transmission device, reception device, and radio communication method - Google Patents

Transmission device, reception device, and radio communication method Download PDF

Info

Publication number
WO2019155637A1
WO2019155637A1 PCT/JP2018/004737 JP2018004737W WO2019155637A1 WO 2019155637 A1 WO2019155637 A1 WO 2019155637A1 JP 2018004737 W JP2018004737 W JP 2018004737W WO 2019155637 A1 WO2019155637 A1 WO 2019155637A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
slot
data
unit
signal
Prior art date
Application number
PCT/JP2018/004737
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 武田
聡 永田
ホワン ワン
リフェ ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2018/004737 priority Critical patent/WO2019155637A1/en
Publication of WO2019155637A1 publication Critical patent/WO2019155637A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a transmission device, a reception device, and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-patent Document 1 LTE Advanced, LTE Rel. 10, 11, 12, 13
  • LTE Rel. 8, 9 LTE Advanced, LTE Rel. 10, 11, 12, 13
  • LTE successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Also referred to as Rel.
  • a 1 ms subframe (also referred to as a transmission time interval (TTI), etc.) is used for downlink (DL) and / or uplink. Communication of a link (UL: Uplink) is performed.
  • the subframe is a transmission time unit of one channel-encoded data packet, and is a processing unit such as scheduling, link adaptation, retransmission control (HARQ: Hybrid Automatic Repeat reQuest).
  • a radio base station controls data allocation (scheduling) to user terminals (UE: User Equipment), and uses downlink control information (DCI) to control data transmission.
  • DCI downlink control information
  • a scheduling instruction is notified to the UE.
  • a UE compliant with existing LTE for example, LTE Rel. 8-13
  • receives a sub-station after a predetermined period for example, 4 ms
  • DCI also called UL grant
  • slot unit scheduling slot base scheduling
  • mini slot unit scheduling mini slot base scheduling
  • mini-slot repetition data is repeatedly transmitted (mini-slot repetition) in a predetermined period by applying mini-slot base scheduling.
  • sufficient studies have not yet been made on how to control repeated transmission of each data (for example, allocation of time resources used for transmission). If repeated transmission is not appropriately performed, there is a possibility that communication throughput and / or communication quality may deteriorate.
  • an object of the present disclosure is to provide a transmission device, a reception device, and a wireless communication method that can appropriately perform repeated transmission.
  • a transmission apparatus includes a transmission unit that repeatedly transmits a physical shared channel with a predetermined symbol length in at least one of a one-slot period and a plurality of slots, and each physical to which repeated transmission is applied. And a control unit that controls the transmission so that the transmission of the shared channel does not cross the slot boundary.
  • FIG. 1A and 1B are diagrams illustrating an example of repeated transmission control in the first mode.
  • 2A and 2B are diagrams illustrating another example of repeated transmission control in the first mode.
  • FIG. 3 is a diagram illustrating an example of repeated transmission control in the second mode.
  • 4A to 4C are diagrams illustrating an example of repeated transmission control in the third mode.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • a slot is one of basic transmission units, and one slot is composed of a predetermined number of symbols.
  • the slot period is composed of a first number of symbols (for example, 14 symbols), and in extended CP (extended CP), the slot period is composed of a second number of symbols (for example, 12 symbols). Is done.
  • a minislot corresponds to a period composed of a number of symbols equal to or less than a predetermined value (for example, 14 symbols (or 12 symbols).
  • a predetermined value for example, 14 symbols (or 12 symbols).
  • a minislot has a predetermined number ( For example, the number of symbols may be 2, 4 or 7.
  • the slot-based scheduling (type A) and the mini-slot base scheduling (type B) may be configured such that different resource allocation methods are applied.
  • the PDSCH start position in the slot is selected from preset candidate symbols, and the number of PDSCH allocation symbols (PDSCH length) is selected from a range from a predetermined value (X) to 14.
  • PDSCH length is selected from a range from a predetermined value (X) to 14.
  • X predetermined value
  • Candidate symbols that are candidates for the start position correspond to, for example, predetermined symbol indexes (for example, # 0, # 1, # 2, and # 3) in the slot.
  • minislot-based scheduling also referred to as PDSCH mapping type B
  • DL for example, PDSCH transmission
  • the number of PDSCH allocation symbols (PDSCH length) is selected from a preset number of candidate symbols, and the PDSCH start position in the slot is set to any location (symbol) in the slot.
  • the number of PDSCH-length candidate symbols corresponds to, for example, a predetermined number (2, 4, or 7 symbols). That is, the PDSCH start position is set flexibly.
  • slot-based scheduling also referred to as PUSCH mapping type A
  • PUSCH mapping type A slot-based scheduling
  • the PDSCH start position in the slot is selected from preset candidate symbols (for example, predetermined symbol index # 0), and the number of PDSCH allocation symbols (PDSCH length) is within a range from a predetermined value (Y) to 14. Selected.
  • mini-slot based scheduling (also referred to as PUSCH mapping type B) is applied in UL (for example, PUSCH transmission).
  • PDSCH length the number of PDSCH allocated symbols
  • start position of PDSCH in the slot is set to any location (symbol) in the slot. . That is, the PDSCH start position is set flexibly.
  • the minislot-based scheduling may be PDSCH and / or PUSCH transmission that is configured with 2, 4, or 7 symbols and can flexibly set the start symbol position.
  • a PDSCH that is not mini-slot-based scheduling may be a PDSCH having a start symbol position of the 0th to 3rd symbols in the slot and having a predetermined symbol length or more.
  • a PUSCH that is not mini-slot-based scheduling may be a PUSCH having a start symbol position of the 0th symbol in the slot and having a predetermined symbol length or more.
  • PDSCH and PUSCH that are not minislot-based scheduling may be referred to as PDSCH / PUSCH mapping type A
  • PDSCH and PUSCH that are minislot-based scheduling may be referred to as PDSCH / PUSCH mapping type B
  • DMRSs may be inserted at different positions according to the PDSCH / PUSCH mapping type.
  • which mapping type PDSCH / PUSCH is used may be set by higher layer signaling such as RRC, may be notified by DCI, or may be recognized by a combination of both. Also good.
  • the base station repeatedly transmits DL data (for example, downlink shared channel (PDSCH)) a predetermined number of times.
  • DL data for example, downlink shared channel (PDSCH)
  • UL data for example, uplink shared channel (PUSCH)
  • slot-based scheduling When slot-based scheduling is applied, it is conceivable that data is allocated to each slot over a plurality of slots and is repeatedly transmitted (inter-slot repetition). In slot-based scheduling, data allocation is controlled on a slot basis (within each slot), so that data is not allocated across slot boundaries.
  • minislot-based scheduling when minislot-based scheduling is applied, data is repeatedly transmitted in units of a predetermined number of symbols. Therefore, depending on the number of repeated transmissions (for example, K), a data allocation unit (data length of each repeated transmission), a period during which repeated transmission is applied, etc., one transmission among a plurality of repeated transmissions (data allocation) A case occurs where (data allocation) crosses a slot-boundary.
  • the slot Since the slot is used as a basic unit of transmission, when allocation of data or the like crosses the boundary of the slot, collision with other signals and / or channels occurs, transmission power control becomes complicated, and communication throughput is increased. And / or there is a risk of degradation of communication quality.
  • the present inventors have conceived that when repeated transmission is applied to data scheduled on a mini-slot basis, control is performed so that each piece of repeatedly transmitted data is not (or does not cross) a slot boundary. .
  • an arbitrary signal and channel may be read with a prefix of “NR ⁇ ” indicating that it is for NR.
  • repeated transmission of DL data (PDSCH) in DL is taken as an example, but the present invention can be similarly applied to repeated transmission of UL data (PUSCH) in UL. Further, the following embodiments may be applied to repetitive transmission of signals and / or channels other than data.
  • a base station that transmits DL data in DL and / or a UE that transmits UL data in UL may be read as a transmitting device. Also, a base station that receives UL data in DL and / or a UE that transmits DL data in DL may be read as a receiving device.
  • FIG. 1 shows an example in which data (or physical shared channel) to which minislot-based scheduling is applied is repeatedly transmitted.
  • data transmission with a data length of 4 symbols is repeated 4 times over 2 slots.
  • the data length is not limited to 4 symbols, but may be other values (for example, 2 symbols or 7 symbols).
  • the number of data repetitions (K) is not limited to four, and may be another value.
  • the data length may be read as PDSCH length or PUSCH length.
  • the repeated transmission may be controlled by using the first available resource (resource earlier in the time direction) in order from among consecutive available symbols (consecutive available symbols). Thereby, it is possible to reduce the delay of repeated transmission.
  • FIG. 1 shows an example in which all symbols after symbol # 3 in slot #n can be used for data transmission (when repeated transmission is continuously arranged), but is not limited thereto. Symbols used for other signals (or channels) may be inserted between one data transmission or a plurality of data transmissions.
  • a symbol (U) notified as UL from a base station, a symbol (X) notified as flexible, and a control channel (for example, between consecutive symbols constituting one data transmission) .
  • At least one of symbols used in the control resource set may be inserted.
  • a data transmission period is set over 5 symbols (using 4 of 5 symbols) It is good.
  • a symbol (D) notified as DL from the base station, a symbol (X) notified as flexible, and control information (for example, between consecutive symbols constituting one data transmission) At least one of a symbol used for the short PUCCH and a symbol used for the reference signal (SRS) may be inserted.
  • RV Redundancy Version
  • Data is allocated (shifted).
  • the order of RVs assigned to each repetition is shifted.
  • Puncture processing and / or rate matching processing may be applied to a region where data is not allocated (symbol # 0 in slot # n + 1 in FIG. 2A).
  • symbol # 0 in slot # n + 1 in FIG. 2A When the number of data allocation resources is the same in the two slots, one of the slots (for example, a slot with a small index) may be selected.
  • data transmission may be performed by increasing the coding rate in consideration of puncturing and / or rate matching processing. Further, when the coding rate becomes higher than a predetermined value (for example, 0.93), the transmission may be dropped.
  • a predetermined value for example, 0.93
  • the resource allocation area in the frequency direction for the data may be increased. Therefore, even when puncturing and / or rate matching processing is performed, data transmission can be performed while suppressing an increase in coding rate (or without increasing the coding rate).
  • the receiver (user terminal in the case of downlink, base station in the case of uplink) is subjected to special processing such as an increase in coding rate and a change in resource allocation for data transmission arranged across slot boundaries, Since reception quality is different from transmission of other repetition numbers, it may be controlled not to perform reception processing.
  • the range for repeated transmission is limited to a predetermined slot (for example, 1 slot).
  • a predetermined slot for example, 1 slot.
  • the data length is not limited to 4 symbols, but may be other values (for example, 2 symbols or 7 symbols).
  • the number of data repetitions (K) is not limited to two, and may be another value.
  • the repeated transmission may be controlled by using the first available resource (resource earlier in the time direction) in order from among consecutive available symbols (consecutive available symbols).
  • FIG. 3 shows a case where consecutive symbols after symbol # 3 in slot #n can be used for data transmission.
  • the number of symbols that can be used for repeated transmission is 11 (# 3- # 13).
  • the number of repetitions of data transmission with a data length of 4 is 2.
  • the base station sets the number of repetitions so that repeated transmission of data (DL data and / or UL data) within one slot range based on the data length (L), the start symbol position (S), etc. May be notified.
  • the UE may control at least one of reception of DL data repeatedly transmitted and repeated transmission of UL transmission on the assumption that repeated transmission is not set over a plurality of slots.
  • intra-slot repetition intra-slot repetition
  • inter-slot repetition inter-slot repetition
  • the base station may set intra-slot repetitive transmission and inter-slot repetitive transmission so that each repetitive transmission is not arranged across at least a slot boundary.
  • intra-slot repetitive transmission may be preferentially applied compared to inter-slot repetitive transmission. For example, when repeat transmission is set a predetermined number of times (for example, K times) for DL data (or UL data), inter-slot repetition is applied only when the number of repetitions in a slot is smaller than K.
  • repeated transmission within a slot may be controlled by sequentially using resources for initial transmission (resources earlier in the time direction) that can be used for transmission among consecutive available symbols (consecutive available symbols). Good.
  • FIG. 4 shows an example in which repeated transmission is controlled by setting repeated transmission within a slot and repeated transmission between slots.
  • the data length is not limited to 4 symbols, but may be another value (for example, 2 symbols or 7 symbols), and the data start position is not limited to this.
  • the number of data repetitions (K) is not limited to four, and may be another value.
  • the same symbol allocation is applied to repeated transmission between different slots (here, slot #n and slot # n + 1). For example, for repeated transmission within a slot, a number of times (for example, ⁇ 1, 2, 4, 8 ⁇ ) selected from a predetermined number of candidates (for example, ⁇ 1, 2, 4, 8 ⁇ ) The maximum number that can be placed is applied.
  • a number of times for example, ⁇ 1, 2, 4, 8 ⁇
  • a predetermined number of candidates for example, ⁇ 1, 2, 4, 8 ⁇
  • repeated transmission is set at the same symbol position in slot #n and slot # n + 1.
  • Data is allocated.
  • the fourth iteration (K 4) of symbols # 6- # 9 in slot # n + 1.
  • Data is allocated.
  • the receiver can easily perform reception signal processing using repetition over a plurality of slots.
  • control is performed so that the start position (start symbol of each repeated transmission transmitted first in the slot) is the same in each slot (here, slot #n and slot # n + 1). To do.
  • repeated transmission in the slot is applied as much as possible so as not to be arranged across the slot boundary, and repeated transmission is performed over the next and subsequent slots (the same start position) when repeated transmission is not completed within one slot.
  • repeat transmission start position is symbol # 2 and the data length is 4 symbols
  • repeat transmission in one slot is set to 3.
  • number of repetitions is less than 4 in one slot
  • repeated transmission is performed in the next slot # n + 1.
  • repeat transmission within a slot is applied as much as possible so as not to be placed across slot boundaries, and when repeated transmission is not completed within one slot, repeated transmission is performed over the next and subsequent slots.
  • repeat transmission start position is symbol # 2 and the data length is 4 symbols
  • repeat transmission in one slot is set to 3.
  • number of repetitions is less than 4 in one slot
  • repeated transmission is performed in the next slot # n + 1.
  • the start position of repeated transmission in the next slot # n + 1 may be a symbol having the smallest available index.
  • wireless communication system Wireless communication system
  • communication is performed using any one or a combination of the wireless communication methods according to the above embodiments of the present invention.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
  • the radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 at the same time using CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC) (for example, 5 or less CCs, 6 or more CCs).
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • the user terminal 20 can perform communication using time division duplex (TDD) and / or frequency division duplex (FDD) in each cell.
  • TDD time division duplex
  • FDD frequency division duplex
  • a single neurology may be applied, or a plurality of different neurology may be applied.
  • the wireless base station 11 and the wireless base station 12 are connected by wire (for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly. May be.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
  • SC-FDMA single carrier-frequency division multiple access
  • Frequency Division Multiple Access and / or OFDMA is applied.
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single carrier transmission in which the system bandwidth is divided into bands each composed of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between terminals. It is a method.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Moreover, MIB (Master Information Block) is transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
  • scheduling information may be notified by DCI.
  • DCI for scheduling DL data reception may be referred to as DL assignment
  • DCI for scheduling UL data transmission may be referred to as UL grant.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the PHICH transmits HARQ (Hybrid Automatic Repeat reQuest) delivery confirmation information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) to the PUSCH.
  • HARQ Hybrid Automatic Repeat reQuest
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • an uplink shared channel (PUSCH) shared by each user terminal 20
  • an uplink control channel (PUCCH: Physical Uplink Control Channel)
  • a random access channel (PRACH: Physical Random Access Channel)
  • User data, higher layer control information, etc. are transmitted by PUSCH.
  • downlink radio quality information CQI: Channel Quality Indicator
  • delivery confirmation information SR
  • scheduling request etc.
  • a random access preamble for establishing connection with the cell is transmitted by the PRACH.
  • a cell-specific reference signal CRS
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • a measurement reference signal SRS: Sounding Reference Signal
  • a demodulation reference signal DMRS
  • the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
  • FIG. 6 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ transmission processing
  • scheduling transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing
  • IFFT Inverse Fast Fourier Transform
  • precoding processing precoding processing, and other transmission processing
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • the allocated length symbol length
  • FIG. 7 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present invention.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
  • the control unit (scheduler) 301 controls the entire radio base station 10.
  • the control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
  • the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal allocation in the mapping unit 303, and the like.
  • the control unit 301 also controls signal reception processing in the reception signal processing unit 304, signal measurement in the measurement unit 305, and the like.
  • the control unit 301 schedules system information, downlink data signals (for example, signals transmitted by PDSCH), downlink control signals (for example, signals transmitted by PDCCH and / or EPDCCH, delivery confirmation information, etc.) (for example, resource Control).
  • the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal.
  • the control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
  • control unit 301 includes an uplink data signal (for example, a signal transmitted on PUSCH), an uplink control signal (for example, a signal transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.), a random access preamble (for example, Scheduling of the uplink reference signal and the like.
  • uplink data signal for example, a signal transmitted on PUSCH
  • uplink control signal for example, a signal transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.
  • a random access preamble for example, Scheduling of the uplink reference signal and the like.
  • control unit 301 controls transmission so that transmission of each downlink physical shared channel to which repeated transmission is applied does not cross the slot boundary. For example, the control unit 301 may drop a transmission of a predetermined downlink physical shared channel that crosses the slot boundary.
  • the control unit 301 uses only the slot in which a large number of allocation resources for the predetermined downlink physical shared channel are arranged and uses the predetermined downlink physical shared channel. It may be controlled to perform transmission of.
  • control unit 301 may perform control (scheduling) so that the downlink and / or uplink physical shared channel is repeatedly transmitted within the range of one slot.
  • control unit 301 uses successive symbols that can be used for transmission of the downlink and / or uplink physical shared channel to perform control (scheduling) so as to repeatedly perform transmission in the time direction so as not to cross the slot boundary. May be.
  • control scheduling
  • a configuration may be adopted in which intra-slot repetitive transmission and inter-slot repetitive transmission are scheduled.
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates, for example, a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301.
  • the DL assignment and UL grant are both DCI and follow the DCI format.
  • the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
  • CSI Channel State Information
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301.
  • the reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal.
  • the measurement unit 305 includes received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
  • Signal strength for example, RSSI (Received Signal Strength Indicator)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 301.
  • FIG. 8 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment of the present invention.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception units for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the allocated length symbol length
  • FIG. 9 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal allocation in the mapping unit 403, and the like.
  • the control unit 401 also controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of retransmission control for the downlink control signal and / or the downlink data signal.
  • control unit 401 controls transmission so that transmission of each uplink physical shared channel to which repeated transmission is applied does not cross the slot boundary. For example, the control unit 401 may drop a transmission of a predetermined uplink physical shared channel that crosses the slot boundary.
  • the control unit 401 uses only the slot in which a large number of allocated resources for the predetermined uplink physical shared channel are arranged and uses the predetermined uplink physical shared channel. It may be controlled to perform transmission of.
  • control unit 401 may perform control so that repeated transmission of the uplink physical shared channel is performed within the range of one slot.
  • control unit 401 may use a continuous symbol that can be used for transmission of the uplink physical shared channel to perform control so as to repeatedly perform transmission in the time direction so as not to cross the slot boundary.
  • a configuration may be adopted in which intra-slot repetitive transmission and inter-slot repetitive transmission are scheduled.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • CSI channel state information
  • the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401.
  • the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 401.
  • each functional block (components) are realized by any combination of hardware and / or software.
  • the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one device physically and / or logically coupled, or directly and / or two or more devices physically and / or logically separated. Alternatively, it may be realized indirectly by connecting (for example, using wired and / or wireless) and using these plural devices.
  • a radio base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 10 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication and controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store programs (program codes), software modules, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured by one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
  • the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • the slot may be a time unit based on the numerology.
  • the slot may include a plurality of mini slots. Each minislot may be configured with one or more symbols in the time domain. The minislot may also be called a subslot.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be called a TTI
  • TTI slot or one minislot
  • a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), a code block, and / or a code word, or may be a processing unit such as scheduling or link adaptation.
  • a time interval for example, the number of symbols
  • a transport block, a code block, and / or a code word is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
  • a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
  • the resource block may be configured by one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • the information, parameters, and the like described in this specification may be expressed using absolute values, may be expressed using relative values from a predetermined value, or other corresponding information may be used. May be represented.
  • the radio resource may be indicated by a predetermined index.
  • names used for parameters and the like are not limited names in any way.
  • various channels PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.
  • information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
  • the name is not limited in any way.
  • information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
  • system and “network” used in this specification are used interchangeably.
  • base station BS
  • radio base station eNB
  • gNB gNodeB
  • cell gNodeB
  • cell group a base station
  • carrier a base station
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication service in this coverage. Point to.
  • RRH indoor small base station
  • MS mobile station
  • UE user equipment
  • terminal may be used interchangeably.
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • NodeB NodeB
  • eNodeB eNodeB
  • access point transmission point
  • reception point femtocell
  • small cell small cell
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the operation performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in this specification may be used alone, may be used in combination, or may be switched according to execution.
  • the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed as long as there is no contradiction.
  • the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-WideBand), Bluetooth (registered trademark) ), A system using another appropriate wireless communication method, and / or a next generation system extended based on these methods.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc.
  • “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”. Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • connection is any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • the radio frequency domain can be considered “connected” or “coupled” to each other, such as with electromagnetic energy having wavelengths in the microwave and / or light (both visible and invisible) regions.

Abstract

In order to properly perform repetitive transmission, an embodiment of the transmission device of the present disclosure is characterized by having: a transmission unit for repeatedly transmitting a physical shared channel in a predetermined symbol length during one slot period and/or a period extending over multiple slots; and a control unit for controlling transmission such that transmission of each physical shared channel to be repeatedly transmitted will not be performed across a slot boundary.

Description

送信装置、受信装置及び無線通信方法Transmitting apparatus, receiving apparatus, and wireless communication method
 本発明は、次世代移動通信システムにおける送信装置、受信装置及び無線通信方法に関する。 The present invention relates to a transmission device, a reception device, and a wireless communication method in a next-generation mobile communication system.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。 In the UMTS (Universal Mobile Telecommunications System) network, Long Term Evolution (LTE) has been specified for the purpose of further high data rate, low delay, etc. (Non-patent Document 1). In addition, LTE-A (LTE Advanced, LTE Rel. 10, 11, 12, 13) was specified for the purpose of further increasing the capacity and sophistication of LTE (LTE Rel. 8, 9).
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。 LTE successor systems (for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Also referred to as Rel.
 既存のLTEシステム(例えば、LTE Rel.8-13)において、1msのサブフレーム(伝送時間間隔(TTI:Transmission Time Interval)などともいう)を用いて、下りリンク(DL:Downlink)及び/又は上りリンク(UL:Uplink)の通信が行われる。当該サブフレームは、チャネル符号化された1データパケットの送信時間単位であり、スケジューリング、リンクアダプテーション、再送制御(HARQ:Hybrid Automatic Repeat reQuest)などの処理単位となる。 In an existing LTE system (for example, LTE Rel. 8-13), a 1 ms subframe (also referred to as a transmission time interval (TTI), etc.) is used for downlink (DL) and / or uplink. Communication of a link (UL: Uplink) is performed. The subframe is a transmission time unit of one channel-encoded data packet, and is a processing unit such as scheduling, link adaptation, retransmission control (HARQ: Hybrid Automatic Repeat reQuest).
 また、無線基地局(例えば、eNB(eNode B))は、ユーザ端末(UE:User Equipment)に対するデータの割当て(スケジューリング)を制御し、下り制御情報(DCI:Downlink Control Information)を用いてデータのスケジューリング指示をUEに通知する。例えば、既存のLTE(例えば、LTE Rel.8-13)に準拠するUEは、UL送信を指示するDCI(ULグラントとも呼ばれる)を受信した場合に、所定期間後(例えば、4ms後)のサブフレームにおいて、ULデータの送信を行う。 In addition, a radio base station (for example, eNB (eNode B)) controls data allocation (scheduling) to user terminals (UE: User Equipment), and uses downlink control information (DCI) to control data transmission. A scheduling instruction is notified to the UE. For example, a UE compliant with existing LTE (for example, LTE Rel. 8-13) receives a sub-station after a predetermined period (for example, 4 ms) when receiving DCI (also called UL grant) instructing UL transmission. UL data is transmitted in a frame.
 将来の無線通信システム(例えば、NR)においては、所定期間(例えば、スロット)単位でデータのスケジューリングを制御することが検討されている。あるいは、スロットに含まれる1以上のシンボル単位(例えば、ミニスロットとも呼ぶ)でデータのスケジューリングを制御することも検討されている。 In future wireless communication systems (for example, NR), it is considered to control data scheduling in units of a predetermined period (for example, slot). Alternatively, it has been studied to control data scheduling in units of one or more symbols included in a slot (for example, also referred to as a mini-slot).
 また、NRでは、スロット単位のスケジューリング(スロットベーススケジューリング)及び/又はミニスロット単位のスケジューリング(ミニスロットベーススケジューリング)において繰り返し送信(repetition)を行うことも検討されている。 Also, in NR, it is considered to perform repetition transmission in slot unit scheduling (slot base scheduling) and / or mini slot unit scheduling (mini slot base scheduling).
 例えば、ミニスロットベーススケジューリングを適用することにより、所定期間においてデータ等の繰り返し送信(mini-slot repetition)を行うことが考えられる。一方で、各データの繰り返し送信(例えば、送信に利用する時間リソースの割当て等)をどのように制御するかについてまだ十分に検討が進んでいない。繰り返し送信が適切に行われなければ、通信スループット及び/又は通信品質などの劣化が生じるおそれがある。 For example, it is conceivable that data is repeatedly transmitted (mini-slot repetition) in a predetermined period by applying mini-slot base scheduling. On the other hand, sufficient studies have not yet been made on how to control repeated transmission of each data (for example, allocation of time resources used for transmission). If repeated transmission is not appropriately performed, there is a possibility that communication throughput and / or communication quality may deteriorate.
 そこで、本開示では、繰り返し送信を適切に行うことができる送信装置、受信装置及び無線通信方法を提供することを目的の1つとする。 Therefore, an object of the present disclosure is to provide a transmission device, a reception device, and a wireless communication method that can appropriately perform repeated transmission.
 本発明の一態様に係る送信装置は、1スロットの期間及び複数スロットにわたる期間の少なくとも一つにおいて、所定のシンボル長で物理共有チャネルを繰り返し送信する送信部と、繰り返し送信が適用される各物理共有チャネルの送信がスロットの境界をまたがないように送信を制御する制御部と、を有することを特徴とする。 A transmission apparatus according to an aspect of the present invention includes a transmission unit that repeatedly transmits a physical shared channel with a predetermined symbol length in at least one of a one-slot period and a plurality of slots, and each physical to which repeated transmission is applied. And a control unit that controls the transmission so that the transmission of the shared channel does not cross the slot boundary.
 本発明によれば、繰り返し送信を適切に行うことができる。 According to the present invention, repeated transmission can be appropriately performed.
図1A及び図1Bは、第1の態様における繰り返し送信制御の一例を示す図である。1A and 1B are diagrams illustrating an example of repeated transmission control in the first mode. 図2A及び図2Bは、第1の態様における繰り返し送信制御の他の例を示す図である。2A and 2B are diagrams illustrating another example of repeated transmission control in the first mode. 図3は、第2の態様における繰り返し送信制御の一例を示す図である。FIG. 3 is a diagram illustrating an example of repeated transmission control in the second mode. 図4A-図4Cは、第3の態様における繰り返し送信制御の一例を示す図である。4A to 4C are diagrams illustrating an example of repeated transmission control in the third mode. 図5は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 5 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention. 図6は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。FIG. 6 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention. 図7は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。FIG. 7 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present invention. 図8は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。FIG. 8 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment of the present invention. 図9は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention. 図10は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
 将来の無線通信システム(例えば、LTE Rel.14、15以降、5G、NRなど。以下、NRともいう)においては、スロットベースのスケジューリング及びミニスロットベースのスケジューリングを利用してデータ等の送信を行うことが検討されている。 In future wireless communication systems (for example, LTE Rel. 14, 15 and later, 5G, NR, etc., hereinafter also referred to as NR), data and the like are transmitted using slot-based scheduling and minislot-based scheduling. It is being considered.
 スロットは、送信の基本単位(basic transmission unit)の1つであり、1スロットは所定数のシンボルで構成される。例えば、ノーマルCP(Normal CP)ではスロット期間が第1のシンボル数(例えば、14シンボル)で構成され、拡張CP(Extended CP)ではスロット期間が第2のシンボル数(例えば、12シンボル)で構成される。 A slot is one of basic transmission units, and one slot is composed of a predetermined number of symbols. For example, in normal CP, the slot period is composed of a first number of symbols (for example, 14 symbols), and in extended CP (extended CP), the slot period is composed of a second number of symbols (for example, 12 symbols). Is done.
 ミニスロットは、所定値(例えば、14シンボル(又は、12シンボル)以下のシンボル数で構成される期間に相当する。一例として、DLの送信(例えば、PDSCH送信)において、ミニスロットは所定数(例えば、2、4又は7のシンボル数)で構成してもよい。 A minislot corresponds to a period composed of a number of symbols equal to or less than a predetermined value (for example, 14 symbols (or 12 symbols). As an example, in DL transmission (for example, PDSCH transmission), a minislot has a predetermined number ( For example, the number of symbols may be 2, 4 or 7.
 スロットベーススケジューリング(タイプA)と、ミニスロットベーススケジューリング(タイプB)は、異なるリソースの割当て方法が適用される構成としてもよい。 The slot-based scheduling (type A) and the mini-slot base scheduling (type B) may be configured such that different resource allocation methods are applied.
 DL(例えば、PDSCH送信)において、スロットベーススケジューリング(PDSCHマッピングタイプAとも呼ぶ)を適用する場合を想定する。この場合、スロットにおけるPDSCHの開始位置は予め設定された候補シンボルから選択され、PDSCHの割当てシンボル数(PDSCH長)は所定値(X)から14までの範囲から選択される。開始位置の候補となる候補シンボルは、例えば、スロット内の所定シンボルインデックス(例えば、#0、#1、#2、#3)に相当する。 Assume a case where slot-based scheduling (also referred to as PDSCH mapping type A) is applied in DL (for example, PDSCH transmission). In this case, the PDSCH start position in the slot is selected from preset candidate symbols, and the number of PDSCH allocation symbols (PDSCH length) is selected from a range from a predetermined value (X) to 14. Candidate symbols that are candidates for the start position correspond to, for example, predetermined symbol indexes (for example, # 0, # 1, # 2, and # 3) in the slot.
 DL(例えば、PDSCH送信)において、ミニスロットベーススケジューリング(PDSCHマッピングタイプBとも呼ぶ)を適用する場合を想定する。この場合、PDSCHの割当てシンボル数(PDSCH長)は予め設定された候補シンボル数から選択され、スロットにおけるPDSCHの開始位置はスロットのいずれかの場所(シンボル)に設定する。PDSCH長の候補シンボル数は、例えば、所定数(2、4、又は7シンボル)に相当する。つまり、PDSCHの開始位置は柔軟に設定される。 Assume a case where minislot-based scheduling (also referred to as PDSCH mapping type B) is applied in DL (for example, PDSCH transmission). In this case, the number of PDSCH allocation symbols (PDSCH length) is selected from a preset number of candidate symbols, and the PDSCH start position in the slot is set to any location (symbol) in the slot. The number of PDSCH-length candidate symbols corresponds to, for example, a predetermined number (2, 4, or 7 symbols). That is, the PDSCH start position is set flexibly.
 UL(例えば、PUSCH送信)において、スロットベーススケジューリング(PUSCHマッピングタイプAとも呼ぶ)を適用する場合を想定する。この場合、スロットにおけるPDSCHの開始位置は予め設定された候補シンボル(例えば、所定シンボルインデックス#0)から選択され、PDSCHの割当てシンボル数(PDSCH長)は所定値(Y)から14までの範囲から選択される。 Suppose a case in which slot-based scheduling (also referred to as PUSCH mapping type A) is applied in UL (for example, PUSCH transmission). In this case, the PDSCH start position in the slot is selected from preset candidate symbols (for example, predetermined symbol index # 0), and the number of PDSCH allocation symbols (PDSCH length) is within a range from a predetermined value (Y) to 14. Selected.
 UL(例えば、PUSCH送信)において、ミニスロットベーススケジューリング(PUSCHマッピングタイプBとも呼ぶ)を適用する場合を想定する。この場合、PDSCHの割当てシンボル数(PDSCH長)は予め設定された候補シンボル数(1~14シンボル数)から選択され、スロットにおけるPDSCHの開始位置はスロットのいずれかの場所(シンボル)に設定する。つまり、PDSCHの開始位置は柔軟に設定される。 It is assumed that mini-slot based scheduling (also referred to as PUSCH mapping type B) is applied in UL (for example, PUSCH transmission). In this case, the number of PDSCH allocated symbols (PDSCH length) is selected from a preset number of candidate symbols (1 to 14 symbols), and the start position of PDSCH in the slot is set to any location (symbol) in the slot. . That is, the PDSCH start position is set flexibly.
 このように、ミニスロットベーススケジューリングは、2、4、又は7シンボルで構成され、スタートシンボル位置を柔軟に設定することができるPDSCH及び/又はPUSCH送信であってもよい。一方、ミニスロットベーススケジューリングでないPDSCHは、スタートシンボル位置がスロット内の第0~3シンボルであり、所定のシンボル長以上のPDSCHであるとしてもよい。また、ミニスロットベーススケジューリングでないPUSCHは、スタートシンボル位置がスロット内の第0シンボルであり、所定のシンボル長以上のPUSCHであるとしてもよい。 Thus, the minislot-based scheduling may be PDSCH and / or PUSCH transmission that is configured with 2, 4, or 7 symbols and can flexibly set the start symbol position. On the other hand, a PDSCH that is not mini-slot-based scheduling may be a PDSCH having a start symbol position of the 0th to 3rd symbols in the slot and having a predetermined symbol length or more. A PUSCH that is not mini-slot-based scheduling may be a PUSCH having a start symbol position of the 0th symbol in the slot and having a predetermined symbol length or more.
 ミニスロットベーススケジューリングでないPDSCH及びPUSCHは、PDSCH/PUSCHマッピングタイプA、ミニスロットベーススケジューリングのPDSCH及びPUSCHは、PDSCH/PUSCHマッピングタイプBと呼ばれてもよい。また、PDSCH/PUSCHのマッピングタイプに応じて、異なる位置にDMRSが挿入されるものとしてもよい。さらに、いずれのマッピングタイプのPDSCH/PUSCHとするかは、RRC等上位レイヤシグナリングによって設定されるものとしてもよいし、DCIによって通知されるものとしてもよいし、両者の組み合わせによって認識されるものとしてもよい。 PDSCH and PUSCH that are not minislot-based scheduling may be referred to as PDSCH / PUSCH mapping type A, and PDSCH and PUSCH that are minislot-based scheduling may be referred to as PDSCH / PUSCH mapping type B. Also, DMRSs may be inserted at different positions according to the PDSCH / PUSCH mapping type. Furthermore, which mapping type PDSCH / PUSCH is used may be set by higher layer signaling such as RRC, may be notified by DCI, or may be recognized by a combination of both. Also good.
 また、NRでは、データ送信において繰り返し送信を適用することが検討されている。例えば、基地局は、DLデータ(例えば、下り共有チャネル(PDSCH))の送信を所定回数だけ繰り返して行う。あるいは、UEは、ULデータ(例えば、上り共有チャネル(PUSCH))を所定回数だけ繰り返して行う。 Also, in NR, it is considered to apply repeated transmission in data transmission. For example, the base station repeatedly transmits DL data (for example, downlink shared channel (PDSCH)) a predetermined number of times. Alternatively, the UE repeatedly performs UL data (for example, uplink shared channel (PUSCH)) a predetermined number of times.
 スロットベーススケジューリングが適用される場合、複数スロットにわたってスロット毎にデータを割当てて繰り返し送信(inter-slot repetition)を行うことが考えられる。スロットベーススケジューリングでは、スロット単位(各スロット内)でデータの割当てが制御されるため、スロット境界をまたがってデータが割当てられる構成とはならない。 When slot-based scheduling is applied, it is conceivable that data is allocated to each slot over a plurality of slots and is repeatedly transmitted (inter-slot repetition). In slot-based scheduling, data allocation is controlled on a slot basis (within each slot), so that data is not allocated across slot boundaries.
 一方で、ミニスロットベーススケジューリングが適用される場合、所定のシンボル数単位でデータが繰り返し送信される。そのため、繰り返し送信回数(例えば、K)、データの割当て単位(各繰り返し送信のデータ長)、及び繰り返し送信が適用される期間等によっては、複数の繰り返し送信(データ割当て)のうちある一つの送信(データ割当て)がスロット境界(slot-boundary)をまたぐ(cross)ケースが生じる。 On the other hand, when minislot-based scheduling is applied, data is repeatedly transmitted in units of a predetermined number of symbols. Therefore, depending on the number of repeated transmissions (for example, K), a data allocation unit (data length of each repeated transmission), a period during which repeated transmission is applied, etc., one transmission among a plurality of repeated transmissions (data allocation) A case occurs where (data allocation) crosses a slot-boundary.
 スロットは、送信の基本単位として利用されるため、データ等の割当てがスロットの境界をまたぐ場合、他の信号及び/又はチャネルとの衝突の発生、送信電力の制御の複雑化が生じ、通信スループット及び/又は通信品質などの劣化が生じるおそれがある。 Since the slot is used as a basic unit of transmission, when allocation of data or the like crosses the boundary of the slot, collision with other signals and / or channels occurs, transmission power control becomes complicated, and communication throughput is increased. And / or there is a risk of degradation of communication quality.
 そこで、本発明者等は、ミニスロットベースでスケジューリングされるデータに繰り返し送信を適用する場合に、繰り返し送信される各データがスロット境界に配置されない(またがらない)ように制御することを着想した。 Accordingly, the present inventors have conceived that when repeated transmission is applied to data scheduled on a mini-slot basis, control is performed so that each piece of repeatedly transmitted data is not (or does not cross) a slot boundary. .
 以下、本発明に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. The wireless communication method according to each embodiment may be applied independently or in combination.
 なお、以下の実施形態では、任意の信号及びチャネルに関して、NR用であることを示す「NR-」の接頭語が付与されて読み替えられてもよい。また、以下の説明では、DLにおけるDLデータ(PDSCH)の繰り返し送信を例に挙げるが、ULにおけるULデータ(PUSCH)の繰り返し送信にも同様に適用できる。また、以下の実施形態は、データ以外の信号及び/又はチャネルの繰り返し送信に適用してもよい。 In the following embodiments, an arbitrary signal and channel may be read with a prefix of “NR−” indicating that it is for NR. Further, in the following description, repeated transmission of DL data (PDSCH) in DL is taken as an example, but the present invention can be similarly applied to repeated transmission of UL data (PUSCH) in UL. Further, the following embodiments may be applied to repetitive transmission of signals and / or channels other than data.
 以下の説明において、DLにおいてDLデータを送信する基地局及び/又はULにおいてULデータを送信するUEは、送信装置と読み替えてもよい。また、DLにおいてULデータを受信する基地局及び/又はDLにおいてDLデータを送信するUEは、受信装置と読み替えてもよい。 In the following description, a base station that transmits DL data in DL and / or a UE that transmits UL data in UL may be read as a transmitting device. Also, a base station that receives UL data in DL and / or a UE that transmits DL data in DL may be read as a receiving device.
(第1の態様)
 第1の態様では、データ(又は、物理共有チャネル)の繰り返し送信においてスロット境界をまたいで配置されるデータ送信がある場合に、当該データ送信がスロット境界にまたがらないように送信を制御する。
(First aspect)
In the first aspect, when there is data transmission arranged across slot boundaries in repeated transmission of data (or physical shared channel), transmission is controlled so that the data transmission does not cross slot boundaries.
 当該データ送信がスロット境界にまたがらないようにするには、当該データ送信をドロップする、あるいはデータの一部にパンクチャ及び/又はレートマッチング処理を適用していずれかのスロットのみに配置するように制御する。 To prevent the data transmission from crossing the slot boundary, drop the data transmission or apply puncture and / or rate matching processing to a part of the data and place it only in one of the slots. Control.
<ドロップ処理>
 図1に、ミニスロットベーススケジューリングが適用されるデータ(又は、物理共有チャネル)を繰り返し送信する場合の一例を示している。ここでは、データ長が4シンボルのデータ送信を2スロットにわたって4回繰り返して送信する場合を示している。なお、データ長は、4シンボルに限られず他の値(例えば、2シンボル又は7シンボル)であってもよい。また、データの繰り返し回数(K)も4回に限られず他の値としてもよい。
<Drop processing>
FIG. 1 shows an example in which data (or physical shared channel) to which minislot-based scheduling is applied is repeatedly transmitted. Here, a case is shown in which data transmission with a data length of 4 symbols is repeated 4 times over 2 slots. The data length is not limited to 4 symbols, but may be other values (for example, 2 symbols or 7 symbols). The number of data repetitions (K) is not limited to four, and may be another value.
 データ(K=1)の開始シンボルを示す情報(例えば、オフセットを示すS=3)、データ長(例えば、L=4)に関する情報、及び繰り返し回数に関する情報等の少なくとも一つは基地局からUEに通知してもよい。データ長は、PDSCH長、PUSCH長と読み替えてもよい。 At least one of information indicating a start symbol of data (K = 1) (for example, S = 3 indicating offset), information regarding a data length (for example, L = 4), information regarding the number of repetitions, and the like from the base station to the UE May be notified. The data length may be read as PDSCH length or PUSCH length.
 また、繰り返し送信は、連続する利用可能なシンボル(consecutive available symbols)のうち、送信に利用可能となる最初のリソース(時間方向に早いリソース)から順に利用して制御する構成としてもよい。これにより、繰り返し送信の遅延を削減することができる。 Also, the repeated transmission may be controlled by using the first available resource (resource earlier in the time direction) in order from among consecutive available symbols (consecutive available symbols). Thereby, it is possible to reduce the delay of repeated transmission.
 図1では、スロット#nのシンボル#3以降のシンボルが全てデータ送信に利用可能となる場合(繰り返し送信が連続して配置される場合)を例に挙げているがこれに限られない。1つのデータ送信、又は複数のデータ送信の間に他の信号(又は、チャネル)に利用されるシンボルが挿入されてもよい。 FIG. 1 shows an example in which all symbols after symbol # 3 in slot #n can be used for data transmission (when repeated transmission is continuously arranged), but is not limited thereto. Symbols used for other signals (or channels) may be inserted between one data transmission or a plurality of data transmissions.
 例えば、DLデータの送信において、1つのデータ送信を構成する連続するシンボルの間に、基地局からULと通知されたシンボル(U)、フレキシブルと通知されたシンボル(X)、及び制御チャネル(例えば、コントロールリソースセット)に利用されるシンボルの少なくとも一つが挿入されていてもよい。データ長が4シンボルのDLデータ送信の間に他の信号用のシンボルが1つ挿入される場合、5シンボルにわたって(5シンボルのうちの4シンボルを利用して)データ送信期間が設定される構成としてもよい。 For example, in transmission of DL data, a symbol (U) notified as UL from a base station, a symbol (X) notified as flexible, and a control channel (for example, between consecutive symbols constituting one data transmission) , At least one of symbols used in the control resource set) may be inserted. When one symbol for other signals is inserted during DL data transmission with a data length of 4 symbols, a data transmission period is set over 5 symbols (using 4 of 5 symbols) It is good.
 また、ULデータの送信において、1つのデータ送信を構成する連続するシンボルの間に、基地局からDLと通知されたシンボル(D)、フレキシブルと通知されたシンボル(X)、制御情報(例えば、ショートPUCCH)に利用されるシンボル、及び参照信号(SRS)に利用されるシンボルの少なくとも一つが挿入されていてもよい。 Further, in the transmission of UL data, a symbol (D) notified as DL from the base station, a symbol (X) notified as flexible, and control information (for example, between consecutive symbols constituting one data transmission) At least one of a symbol used for the short PUCCH and a symbol used for the reference signal (SRS) may be inserted.
 図1Aでは、スロット#nのシンボル#3-#6に繰り返し回数1回目(K=1)のデータが割当てられる。なお、K=1のデータの割当ての開始位置及びデータ長に関する情報は、基地局からUEに通知してもよい。繰り返し回数2回目(K=2)のデータはスロット#nのシンボル#7-#10に割当てられ、繰り返し回数3回目(K=3)のデータはスロット#nのシンボル#11-スロット#n+1のシンボル#0に割当てられ、繰り返し回数4回目(K=4)のデータはスロット#n+1のシンボル#1-#4に割当てられる。 In FIG. 1A, the first repetition (K = 1) data is assigned to symbols # 3- # 6 of slot #n. Note that the base station may notify the UE of information regarding the allocation start position and data length of data with K = 1. The second iteration number (K = 2) data is assigned to symbols # 7- # 10 in slot #n, and the third iteration number (K = 3) data is assigned to symbols # 11-slot # n + 1 in slot #n. The data assigned to symbol # 0 and the fourth repetition (K = 4) is assigned to symbols # 1- # 4 in slot # n + 1.
 この場合、繰り返し回数3回目(K=3)のデータがスロット#nとスロット#n+1の境界をまたいで配置される。図1AがDL伝送である場合、基地局は、K=3に対応するDLデータ(又は、PDSCH)送信をドロップする。図1AがUL伝送である場合、UEは、K=3に対応するULデータ(又は、PUSCH)送信をドロップする。なお、K=3のデータ送信をドロップするのではなく、実際にデータのスケジューリングをしないように制御してもよい。 In this case, the data of the third repetition (K = 3) is arranged across the boundary between slot #n and slot # n + 1. If FIG. 1A is a DL transmission, the base station drops the DL data (or PDSCH) transmission corresponding to K = 3. If FIG. 1A is UL transmission, the UE drops the UL data (or PUSCH) transmission corresponding to K = 3. In addition, it may be controlled not to drop the data transmission of K = 3 but to actually schedule the data.
 このように、スロット境界をまたいで配置されるデータ送信を行わないように制御することにより、スロット単位の送信を適切に行うことができる。ユーザ端末は、各送信の送受信制御をスロットに閉じて行うことができるため、処理負担を軽減することができる。 In this way, by performing control so as not to perform data transmission arranged across the slot boundary, transmission in slot units can be appropriately performed. Since the user terminal can perform transmission / reception control of each transmission in a slot, the processing load can be reduced.
 なお、繰り返しに割り当てるRVの順序は、ドロップしない場合と共通になるようにしてもよい。すなわち、上位レイヤシグナリングで設定されたRV(Redundancy Version)順序が{0、2、3、1}であるとする。この場合、図1AのK=1にはRV=0、K=2にはRV=2、K=4にはRV=1としてもよい。これにより、ドロップする繰り返しデータの位置に関わらずRVの順序を固定にできるため、端末処理負担を軽減できる。 Note that the order of RVs to be repeatedly assigned may be the same as when not dropping. That is, it is assumed that the RV (Redundancy Version) order set by higher layer signaling is {0, 2, 3, 1}. In this case, RV = 0 in K = 1 in FIG. 1A, RV = 2 in K = 2, and RV = 1 in K = 4. Thereby, since the order of RV can be fixed irrespective of the position of the repeated data to be dropped, the terminal processing burden can be reduced.
 あるいは、繰り返しに割り当てるRVの順序は、ドロップする送信をスキップして割り当てるようにしてもよい。すなわち、上位レイヤシグナリングで設定されたRV順序が{0、2、3、1}であるとする。この場合、図1AのK=1にはRV=0、K=2にはRV=2、K=4にはRV=3としてもよい。これにより、ドロップする繰り返しデータの位置に関わらず各繰り返しにRVを順番に割り当てられ、繰り返しによる性能改善効果を最大化することができる。 Alternatively, the order of RVs to be assigned repeatedly may be assigned by skipping the transmission to be dropped. That is, it is assumed that the RV order set by higher layer signaling is {0, 2, 3, 1}. In this case, RV = 0 in K = 1 in FIG. 1A, RV = 2 in K = 2, and RV = 3 in K = 4. As a result, RVs are assigned in order to each repetition regardless of the position of the repeated data to be dropped, and the performance improvement effect by repetition can be maximized.
 図1Aでは、スロット境界をまたいで配置されるデータ送信(ここでは、K=3)を送信しない構成、つまり、UEは繰り返し送信を1回減らす構成とする場合を示したが、これに限られない。例えば、スロット境界をまたいで配置されるデータ送信(ここでは、K=3)を最後の繰り返し送信(ここでは、K=4)の後に続けて行ってもよい。つまり、スロット境界をまたいで配置されるデータ送信を最後の繰り返し送信後にシフトする。 FIG. 1A shows a configuration in which data transmission (here, K = 3) arranged across slot boundaries is not transmitted, that is, the UE is configured to reduce repeated transmission once, but this is not the only case. Absent. For example, data transmission (here, K = 3) arranged across slot boundaries may be performed after the last repeated transmission (here, K = 4). That is, data transmission arranged across slot boundaries is shifted after the last repeated transmission.
 図1Bでは、スロット境界をまたいで配置されるデータ送信(図1AのK=3)を最後の繰り返し送信(図1AのK=4)の後にシフトする場合を示している。この場合、スロット#n+1のシンボル#1-#4に繰り返し回数3回目(K=3)のデータが割当てられ、スロット#n+1のシンボル#5-#8に繰り返し回数4回目(K=4)のデータが割当てられる(シフトされる)。 FIG. 1B shows a case where the data transmission (K = 3 in FIG. 1A) arranged across the slot boundary is shifted after the last repeated transmission (K = 4 in FIG. 1A). In this case, data of the third iteration (K = 3) is assigned to symbols # 1- # 4 in slot # n + 1, and the fourth iteration (K = 4) of symbols # 5- # 8 in slot # n + 1. Data is allocated (shifted).
 このように、当該データ送信をシフト(例えば、最後の繰り返し送信の後に移動)することにより、スロット境界をまたいで配置されるデータ送信がある場合であっても、繰り返し送信数を減らさずに繰り返し送信を制御することができる。 In this way, by shifting the data transmission (for example, moving after the last repetitive transmission), even if there is a data transmission arranged across the slot boundary, it is repeated without reducing the number of repetitive transmissions. Transmission can be controlled.
 なお、スロット境界をまたいで配置されるデータ送信(ここでは、K=3)を最後の繰り返し送信(ここでは、K=4)の後に続けて行う場合、各繰り返しに割り当てるRVの順序は、シフトしない場合と共通になるようにしてもよい。すなわち、上位レイヤシグナリングで設定されたRV順序が{0、2、3、1}であるとする。この場合、図1BのK=1にはRV=0、K=2にはRV=2、K=3にはRV=3、K=4にはRV=1としてもよい。これにより、シフト繰り返しデータの数や位置に関わらずRVの順序を固定にできるため、端末処理負担を軽減できる。 When data transmission (here, K = 3) arranged across slot boundaries is performed after the last repeated transmission (here, K = 4), the order of RVs assigned to each repetition is shifted. You may make it common with the case where it does not. That is, it is assumed that the RV order set by higher layer signaling is {0, 2, 3, 1}. In this case, RV = 0 in K = 1 in FIG. 1B, RV = 2 in K = 2, RV = 3 in K = 3, and RV = 1 in K = 4. Thereby, since the order of RV can be fixed regardless of the number and position of the shift repetition data, the terminal processing burden can be reduced.
 あるいは、スロット境界をまたいで配置されるデータ送信(ここでは、K=3)を最後の繰り返し送信(ここでは、K=4)の後に続けて行う場合、各繰り返しに割り当てるRVの順序は、シフトする送信とともにシフトさせてもよい。すなわち、上位レイヤシグナリングで設定されたRV順序が{0、2、3、1}であるとする。この場合、図1AのK=1にはRV=0、K=2にはRV=2、K=3にはRV=1、K=4にはRV=3としてもよい。これにより、各繰り返しにRVを割り当ててから送信タイミングをシフトさせることが可能となり、端末処理を軽減することができる。 Alternatively, when data transmission (here, K = 3) arranged across slot boundaries is performed after the last repeated transmission (here, K = 4), the order of RVs assigned to each repetition is shifted. The transmission may be shifted with transmission. That is, it is assumed that the RV order set by higher layer signaling is {0, 2, 3, 1}. In this case, RV = 0 for K = 1 in FIG. 1A, RV = 2 for K = 2, RV = 1 for K = 3, and RV = 3 for K = 4. Thereby, it is possible to shift the transmission timing after assigning RV to each repetition, and the terminal processing can be reduced.
<パンクチャ/レートマッチング処理>
 上記図1では、スロット境界をまたいで配置されるデータ送信(図1AのK=3)をパンクチャする例を示したが、当該データ送信をいずれか一方のスロットにのみ配置して送信するように制御してもよい。
<Puncture / Rate matching process>
Although FIG. 1 shows an example of puncturing data transmission (K = 3 in FIG. 1A) arranged across slot boundaries, the data transmission is arranged and transmitted only in one of the slots. You may control.
 図2Aでは、スロット#nのシンボル#11-スロット#n+1のシンボル#0に割当てられる予定の繰り返し回数3回目(K=3)のデータを、一方のスロット(ここでは、スロット#n)のみに割当てる場合を示している。例えば、2つのスロットのうち、データ用の割当て領域(リソース)が多い方のスロットにデータを割当てる。図2Aでは、繰り返し回数3回目(K=3)のデータ用のリソースが、スロット#nにおいて3シンボル、スロット#n+1において1シンボルとなっているため、スロット#nを選択する。 In FIG. 2A, the data of the third iteration number (K = 3) scheduled to be assigned to symbol # 11 of slot # n-symbol # 0 of slot # n + 1 is transferred to only one slot (here, slot #n). The case of assignment is shown. For example, data is allocated to a slot having a larger allocation area (resource) for data among the two slots. In FIG. 2A, the data resource for the third iteration (K = 3) is 3 symbols in slot #n and 1 symbol in slot # n + 1, so slot #n is selected.
 データの割当てを行わない領域(図2Aにおけるスロット#n+1のシンボル#0)については、パンクチャ処理及び/又はレートマッチング処理を適用してもよい。なお、2つのスロットにおいてデータの割当てリソース数が同じである場合には、いずれか一方のスロット(例えば、インデックスが小さいスロット)を選択すればよい。 Puncture processing and / or rate matching processing may be applied to a region where data is not allocated (symbol # 0 in slot # n + 1 in FIG. 2A). When the number of data allocation resources is the same in the two slots, one of the slots (for example, a slot with a small index) may be selected.
 図2Aでは、繰り返し回数3回目(K=3)のデータをスロット#nのシンボル#11-#13に割当てる。この場合、当該データに対する周波数方向へのリソース割当て領域を維持する(変更しない)場合、パンクチャ及び/又はレートマッチング処理分を考慮して符号化率を高くしてデータ送信を行えばよい。また、符号化率が所定値(例えば0.93)よりも高くなる場合、当該送信をドロップするものとしてもよい。 In FIG. 2A, data of the third repetition (K = 3) is assigned to symbols # 11- # 13 of slot #n. In this case, when the resource allocation region in the frequency direction for the data is maintained (does not change), data transmission may be performed by increasing the coding rate in consideration of puncturing and / or rate matching processing. Further, when the coding rate becomes higher than a predetermined value (for example, 0.93), the transmission may be dropped.
 あるいは、繰り返し回数3回目(K=3)のデータをスロット#nのシンボル#11-#13に割当てる場合、当該データに対する周波数方向へのリソース割当て領域を増やしてもよい。これにより、パンクチャ及び/又はレートマッチング処理を行う場合であっても、符号化率の増加を抑制して(又は、符号化率を増加させずに)データ送信を行うことができる。 Alternatively, when the data of the third repetition (K = 3) is allocated to symbols # 11 to # 13 of slot #n, the resource allocation area in the frequency direction for the data may be increased. Thereby, even when puncturing and / or rate matching processing is performed, data transmission can be performed while suppressing an increase in coding rate (or without increasing the coding rate).
 また、スロット境界をまたいで配置されるデータ送信(K=3)を時間方向に前のスロットのみに配置する場合、その後の繰り返し送信(例えば、K=4以降)の割当て位置を時間方向に早めるようにシフトしてもよい(図2B参照)。図2Bでは、スロット#n+1のシンボル#0-#3にK=4のデータを割当てる場合を示している。 Further, when data transmission (K = 3) arranged across the slot boundary is arranged only in the previous slot in the time direction, the allocation position of the subsequent repeated transmission (for example, after K = 4) is advanced in the time direction. (See FIG. 2B). FIG. 2B shows a case where data of K = 4 is assigned to symbols # 0 to # 3 in slot # n + 1.
 これにより、スロット#nのシンボル#11-#13に割当てられるデータ送信(K=3)に続いて、K=4のデータ送信を割当てることができる。その結果、繰り返し送信の遅延を低減すると共に、リソースの利用効率を向上することができる。 Thus, the data transmission of K = 4 can be allocated following the data transmission (K = 3) allocated to the symbols # 11 to # 13 of the slot #n. As a result, it is possible to reduce delay in repeated transmission and improve resource utilization efficiency.
 なお、受信機(下りリンクの場合ユーザ端末、上りリンクの場合基地局)は、スロット境界をまたいで配置されるデータ送信について、符号化率の増加やリソース割り当ての変更等特殊な処理がなされ、その他の繰り返し番号の送信に比べて受信品質が異なることから、受信処理を行わないよう制御してもよい。例えば図2A、図2Bの場合、受信機は、繰り返し送信されるK=1~4のうち、K=3以外の繰り返し送信を受信・復号処理するものとしてもよい。 The receiver (user terminal in the case of downlink, base station in the case of uplink) is subjected to special processing such as an increase in coding rate and a change in resource allocation for data transmission arranged across slot boundaries, Since reception quality is different from transmission of other repetition numbers, it may be controlled not to perform reception processing. For example, in the case of FIGS. 2A and 2B, the receiver may receive / decode the repetitive transmissions other than K = 3 among the repetitively transmitted K = 1 to 4.
(第2の態様)
 第2の態様では、データ(又は、物理共有チャネル)の繰り返し送信の構成を制御することにより、繰り返し送信がスロット境界をまたいで配置されることを回避する。
(Second aspect)
In the second aspect, by controlling the configuration of repeated transmission of data (or physical shared channel), it is avoided that repeated transmission is arranged across slot boundaries.
 例えば、ミニスロットベーススケジューリングが適用されるデータを繰り返し送信する場合、繰り返し送信を行う範囲を所定スロット(例えば、1スロット)内に制限する。繰り返し送信を行う範囲を1スロット内に制限する場合、複数のスロットにわたってデータの繰り返し送信が行われなくなるため、スロット境界をまたいでデータ送信が配置されることを回避できる。 For example, when repeatedly transmitting data to which minislot-based scheduling is applied, the range for repeated transmission is limited to a predetermined slot (for example, 1 slot). When the range in which repeated transmission is performed is limited to one slot, repeated data transmission is not performed over a plurality of slots, so that data transmission across slot boundaries can be avoided.
 図3では、データ長が4シンボル(L=4)のデータ送信を1スロット範囲において2回繰り返して送信する場合を示している。なお、データ長は、4シンボルに限られず他の値(例えば、2シンボル又は7シンボル)であってもよい。また、データの繰り返し回数(K)も2回に限られず他の値としてもよい。 FIG. 3 shows a case in which data transmission with a data length of 4 symbols (L = 4) is repeated twice in one slot range. The data length is not limited to 4 symbols, but may be other values (for example, 2 symbols or 7 symbols). Also, the number of data repetitions (K) is not limited to two, and may be another value.
 データ(K=1)の開始シンボルを示す情報(例えば、オフセットを示すS=3)、データ長(例えば、L=4)に関する情報、及び繰り返し回数に関する情報等の少なくとも一つは基地局からUEに通知してもよい。 At least one of information indicating a start symbol of data (K = 1) (for example, S = 3 indicating offset), information regarding a data length (for example, L = 4), information regarding the number of repetitions, and the like from the base station to the UE May be notified.
 また、繰り返し送信は、連続する利用可能なシンボル(consecutive available symbols)のうち、送信に利用可能となる最初のリソース(時間方向に早いリソース)から順に利用して制御する構成としてもよい。図3では、スロット#nのシンボル#3以降において連続するシンボルをデータ送信に利用できる場合を示している。 Also, the repeated transmission may be controlled by using the first available resource (resource earlier in the time direction) in order from among consecutive available symbols (consecutive available symbols). FIG. 3 shows a case where consecutive symbols after symbol # 3 in slot #n can be used for data transmission.
 この場合、スロット#nにおいて、繰り返し送信に利用できるシンボル数は11個(#3-#13)となる。また、1スロットの範囲に繰り返し送信が制限されるため、データ長が4となるデータ送信の繰り返し回数は2となる。基地局は、データ長(L)及び開始シンボル位置(S)等に基づいて、1スロット範囲内にデータ(DLデータ及び/又はULデータ)の繰り返し送信がおさまるように繰り返し数を設定してUEに通知してもよい。 In this case, in slot #n, the number of symbols that can be used for repeated transmission is 11 (# 3- # 13). In addition, since repeated transmission is limited to the range of one slot, the number of repetitions of data transmission with a data length of 4 is 2. The base station sets the number of repetitions so that repeated transmission of data (DL data and / or UL data) within one slot range based on the data length (L), the start symbol position (S), etc. May be notified.
 また、UEは、繰り返し送信が複数のスロットにわたって設定されないと想定して繰り返し送信されるDLデータの受信、及びUL送信の繰り返し送信の少なくとも一方を制御してもよい。 Further, the UE may control at least one of reception of DL data repeatedly transmitted and repeated transmission of UL transmission on the assumption that repeated transmission is not set over a plurality of slots.
 このように、繰り返し送信を1スロットの範囲に制限することにより、繰り返し送信がスロット境界をまたいで配置されることを回避でき、端末制御の処理負担を軽減することができる。 As described above, by limiting the repeated transmission to the range of one slot, it is possible to avoid the repeated transmission from being arranged across the slot boundary, and to reduce the processing load of terminal control.
(第3の態様)
 第3の態様では、データ(又は、物理共有チャネル)のスケジューリングを制御することにより、繰り返し送信がスロット境界をまたいで配置されることを回避する。
(Third aspect)
In the third aspect, by controlling the scheduling of data (or physical shared channel), it is avoided that repeated transmissions are arranged across slot boundaries.
 例えば、ミニスロットベーススケジューリングが適用されるデータを繰り返し送信する場合、スロット内繰り返し(intra-slot repetition)送信と、スロット間繰り返し(inter-slot repetition)送信を設定する。基地局は、各繰り返し送信が少なくともスロット境界をまたいで配置されないように、スロット内繰り返し送信と、スロット間繰り返し送信を設定してもよい。 For example, when data to which mini-slot base scheduling is applied is repeatedly transmitted, intra-slot repetition (intra-slot repetition) transmission and inter-slot repetition (inter-slot repetition) transmission are set. The base station may set intra-slot repetitive transmission and inter-slot repetitive transmission so that each repetitive transmission is not arranged across at least a slot boundary.
 また、スロット内繰り返し送信とスロット間繰り返し送信を設定する場合、スロット間繰り返し送信と比較して、スロット内繰り返し送信の方を優先的に適用してもよい。例えば、DLデータ(又は、ULデータ)に対して所定回数(例えば、K回)の繰り返し送信が設定された場合、スロット内繰り返し回数がKより小さい場合にのみスロット間繰り返しを適用する。 Also, when setting intra-slot repetitive transmission and inter-slot repetitive transmission, intra-slot repetitive transmission may be preferentially applied compared to inter-slot repetitive transmission. For example, when repeat transmission is set a predetermined number of times (for example, K times) for DL data (or UL data), inter-slot repetition is applied only when the number of repetitions in a slot is smaller than K.
 スロット内繰り返し送信を優先的に適用することにより、繰り返し送信の遅延を削減することができる。 遅 延 By repeatedly applying intra-slot repetitive transmission, it is possible to reduce repetitive transmission delay.
 また、スロット内繰り返し送信は、連続する利用可能なシンボル(consecutive available symbols)のうち、送信に利用可能となる初期送信用のリソース(時間方向に早いリソース)から順に利用して制御する構成としてもよい。 In addition, repeated transmission within a slot may be controlled by sequentially using resources for initial transmission (resources earlier in the time direction) that can be used for transmission among consecutive available symbols (consecutive available symbols). Good.
 図4に、スロット内繰り返し送信とスロット間繰り返し送信を設定して繰り返し送信を制御する場合の一例を示す。なお、図4では、データ長が4シンボル(L=4)のデータ送信を4回繰り返して送信する場合を示している。また、K=1のデータ送信がスロット#nのシンボル#2(S=2)から開始する場合を示している。なお、データ長は、4シンボルに限られず他の値(例えば、2シンボル又は7シンボル)であってもよいし、データの開始位置もこれに限られない。また、データの繰り返し回数(K)も4回に限られず他の値としてもよい。 FIG. 4 shows an example in which repeated transmission is controlled by setting repeated transmission within a slot and repeated transmission between slots. FIG. 4 shows a case where data transmission with a data length of 4 symbols (L = 4) is repeated 4 times. Further, a case is shown where data transmission of K = 1 starts from symbol # 2 (S = 2) of slot #n. The data length is not limited to 4 symbols, but may be another value (for example, 2 symbols or 7 symbols), and the data start position is not limited to this. The number of data repetitions (K) is not limited to four, and may be another value.
<オプション1>
 オプション1では、異なるスロット(ここでは、スロット#nとスロット#n+1)間において、繰り返し送信に同じシンボル割当て(symbol allocation)を適用する。例えば、スロット内繰り返し送信に対して、所定の候補数(例えば、{1、2、4、8})から選択された回数(例えば、{1、2、4、8}のうち、1スロットに配置可能な最大の数)を適用する。図4Aでは、繰り返し送信の開始位置がシンボル#2であり、データ長が4シンボルであるため、1スロット内の繰り返し送信が2に設定される。
<Option 1>
In option 1, the same symbol allocation is applied to repeated transmission between different slots (here, slot #n and slot # n + 1). For example, for repeated transmission within a slot, a number of times (for example, {1, 2, 4, 8}) selected from a predetermined number of candidates (for example, {1, 2, 4, 8}) The maximum number that can be placed is applied. In FIG. 4A, since the repeat transmission start position is symbol # 2 and the data length is 4 symbols, repeat transmission in one slot is set to 2.
 この場合、スロット#nとスロット#n+1において、同じシンボル位置に繰り返し送信が設定される。図4では、スロット#nのシンボル#2-#5に繰り返し回数1回目(K=1)のデータが割当てられ、スロット#nのシンボル#6-#9に繰り返し回数2回目(K=2)のデータが割当てられる。同様に、スロット#n+1のシンボル#2-#5に繰り返し回数3回目(K=3)のデータが割当てられ、スロット#n+1のシンボル#6-#9に繰り返し回数4回目(K=4)のデータが割当てられる。 In this case, repeated transmission is set at the same symbol position in slot #n and slot # n + 1. In FIG. 4, data of the first iteration (K = 1) is assigned to symbols # 2- # 5 in slot #n, and the second iteration (K = 2) is assigned to symbols # 6- # 9 in slot #n. Data is allocated. Similarly, data of the third iteration (K = 3) is assigned to symbols # 2- # 5 in slot # n + 1, and the fourth iteration (K = 4) of symbols # 6- # 9 in slot # n + 1. Data is allocated.
 このようにすることで、設定された繰り返し回数を確保し、かつ送信に必要なスロット数を最小としつつ、複数のスロット間で、スロット内の繰り返しの配置を共通(同じ)とすることができる。これにより受信機は、複数スロット間にわたる繰り返しを用いる受信信号処理を容易に行うことができる。 By doing this, it is possible to secure the set number of repetitions and minimize the number of slots necessary for transmission, while making the repetition arrangement in the slots common (same) among the plurality of slots. . Accordingly, the receiver can easily perform reception signal processing using repetition over a plurality of slots.
<オプション2>
 オプション2では、各スロット(ここでは、スロット#nとスロット#n+1)において、繰り返し送信が配置される開始位置(スロットで最初に送信される各繰り返し送信の開始シンボル)が同じとなるように制御する。
<Option 2>
In option 2, control is performed so that the start position (start symbol of each repeated transmission transmitted first in the slot) is the same in each slot (here, slot #n and slot # n + 1). To do.
 この場合、スロット境界をまたいで配置されないように出来るだけスロット内の繰り返し送信を適用し、1スロット内で繰り返し送信が完了しない場合に次以降のスロット(開始位置は同じ)にわたって繰り返し送信を行う。 In this case, repeated transmission in the slot is applied as much as possible so as not to be arranged across the slot boundary, and repeated transmission is performed over the next and subsequent slots (the same start position) when repeated transmission is not completed within one slot.
 図4Bでは、繰り返し送信の開始位置がシンボル#2であり、データ長が4シンボルであるため、1スロット(スロット#n)内の繰り返し送信が3に設定される。また、1スロット内で繰り返し回数が4より少ないため、次スロット#n+1において繰り返し送信を行う。次スロット#n+1における繰り返し送信の開始位置は、スロット#nの繰り返し送信(K=1)の開始位置と同じとすればよい。 In FIG. 4B, since the repeat transmission start position is symbol # 2 and the data length is 4 symbols, repeat transmission in one slot (slot #n) is set to 3. In addition, since the number of repetitions is less than 4 in one slot, repeated transmission is performed in the next slot # n + 1. The start position of repeated transmission in the next slot # n + 1 may be the same as the start position of repeated transmission (K = 1) in slot #n.
 このように、繰り返し送信の開始位置及びデータ長に基づいて、スロット内の繰り返し送信のスケジューリング(回数)を制御することにより、繰り返し送信のスケジューリングを柔軟に制御することができる。その結果、設定された繰り返し回数を確保し、かつ送信に必要なスロット数を最小としつつ、各スロット内での繰り返し送信の開始位置を共通とすることができるので、複数スロットを用いる受信機信号処理を簡易化することができる。 Thus, by controlling the scheduling (number of times) of repeated transmission within a slot based on the start position and data length of repeated transmission, it is possible to flexibly control the scheduling of repeated transmission. As a result, it is possible to ensure the set number of repetitions and minimize the number of slots required for transmission, while making the start position of repeated transmission in each slot common. Processing can be simplified.
<オプション3>
 オプション3では、各スロット(ここでは、スロット#nとスロット#n+1)において、繰り返し送信が配置される開始位置(スロットで最初に送信される各繰り返し送信の開始シンボル)を別々に制御する。つまり、あるスロット(例えば、スロット#n+1)において、先頭シンボルがデータ送信に利用可能である場合、当該スロットにおいて先頭シンボルから繰り返し送信を行う。
<Option 3>
In option 3, in each slot (here, slot #n and slot # n + 1), the start position where the repeated transmission is arranged (the start symbol of each repeated transmission transmitted first in the slot) is controlled separately. That is, when the first symbol is available for data transmission in a certain slot (for example, slot # n + 1), transmission is repeatedly performed from the first symbol in that slot.
 また、スロット境界をまたいで配置されないように出来るだけスロット内の繰り返し送信を適用し、1スロット内で繰り返し送信が完了しない場合に次以降のスロットにわたって繰り返し送信を行う。 Also, repeat transmission within a slot is applied as much as possible so as not to be placed across slot boundaries, and when repeated transmission is not completed within one slot, repeated transmission is performed over the next and subsequent slots.
 図4Cでは、繰り返し送信の開始位置がシンボル#2であり、データ長が4シンボルであるため、1スロット(スロット#n)内の繰り返し送信が3に設定される。また、1スロット内で繰り返し回数が4より少ないため、次スロット#n+1において繰り返し送信を行う。次スロット#n+1における繰り返し送信の開始位置は、利用可能な最もインデックスが小さいシンボルとすればよい。 In FIG. 4C, since the repeat transmission start position is symbol # 2 and the data length is 4 symbols, repeat transmission in one slot (slot #n) is set to 3. In addition, since the number of repetitions is less than 4 in one slot, repeated transmission is performed in the next slot # n + 1. The start position of repeated transmission in the next slot # n + 1 may be a symbol having the smallest available index.
 このように、繰り返し送信の開始位置及びデータ長に基づいて、スロット内の繰り返し送信のスケジューリング(回数)を制御することにより、繰り返し送信のスケジューリングを柔軟に制御することができる。また、各スロットにおいて開始位置を別々に設定する(例えば、利用可能な最初のシンボルから繰り返し送信を開始する)ことを許容することにより、繰り返し送信の遅延を削減することができる。 Thus, by controlling the scheduling (number of times) of repeated transmission within a slot based on the start position and data length of repeated transmission, it is possible to flexibly control the scheduling of repeated transmission. Also, by allowing the start position to be set separately in each slot (for example, iterative transmission is started from the first available symbol), it is possible to reduce the repetition delay.
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of a wireless communication system according to an embodiment of the present invention will be described. In this wireless communication system, communication is performed using any one or a combination of the wireless communication methods according to the above embodiments of the present invention.
 図5は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。 FIG. 5 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention. In the radio communication system 1, carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。 The wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。 The radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange | positioned at the macrocell C1 and each small cell C2. The arrangement, the number, and the like of each cell and user terminal 20 are not limited to the mode shown in the figure.
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。 The user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 at the same time using CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC) (for example, 5 or less CCs, 6 or more CCs).
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。 Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier). On the other hand, a carrier having a relatively high frequency band (for example, 3.5 GHz, 5 GHz, etc.) and a wide bandwidth may be used between the user terminal 20 and the radio base station 12, or The same carrier may be used. The configuration of the frequency band used by each radio base station is not limited to this.
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。 Further, the user terminal 20 can perform communication using time division duplex (TDD) and / or frequency division duplex (FDD) in each cell. In each cell (carrier), a single neurology may be applied, or a plurality of different neurology may be applied.
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。 The wireless base station 11 and the wireless base station 12 (or between the two wireless base stations 12) are connected by wire (for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly. May be.
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。 The radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30. The upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。 The radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like. The radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point. Hereinafter, when the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。 Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。 In the radio communication system 1, as a radio access method, orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink. Frequency Division Multiple Access) and / or OFDMA is applied.
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。 OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier. SC-FDMA is a single carrier transmission in which the system bandwidth is divided into bands each composed of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between terminals. It is a method. The uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。 In the wireless communication system 1, downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Moreover, MIB (Master Information Block) is transmitted by PBCH.
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。 Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like. Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
 なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。 Note that scheduling information may be notified by DCI. For example, DCI for scheduling DL data reception may be referred to as DL assignment, and DCI for scheduling UL data transmission may be referred to as UL grant.
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。 The number of OFDM symbols used for PDCCH is transmitted by PCFICH. The PHICH transmits HARQ (Hybrid Automatic Repeat reQuest) delivery confirmation information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) to the PUSCH. EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。 In the wireless communication system 1, as an uplink channel, an uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) is used. User data, higher layer control information, etc. are transmitted by PUSCH. Also, downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information, scheduling request (SR), etc. are transmitted by PUCCH. A random access preamble for establishing connection with the cell is transmitted by the PRACH.
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。 In the wireless communication system 1, as downlink reference signals, a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DMRS: DeModulation Reference Signal), Positioning Reference Signal (PRS), etc. are transmitted. In the wireless communication system 1, a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS), and the like are transmitted as uplink reference signals. The DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
(無線基地局)
 図6は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
(Radio base station)
FIG. 6 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention. The radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
 下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。 User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。 In the baseband signal processing unit 104, with respect to user data, PDCP (Packet Data Convergence Protocol) layer processing, user data division / combination, RLC (Radio Link Control) retransmission control and other RLC layer transmission processing, MAC (Medium Access) Control) Retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing are performed and the transmission / reception unit 103. The downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal. The radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101. The transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device which is described based on common recognition in the technical field according to the present invention. In addition, the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。 On the other hand, for the upstream signal, the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102. The transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102. The transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。 The baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106. The call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。 The transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. The transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
 また、送受信部103は、1スロットの期間及び複数スロットにわたる期間の少なくとも一つにおいて、所定のシンボル長で下り物理共有チャネル(例えば、PDSCH)を繰り返し送信する。また、送受信部103は、1スロットの期間及び複数スロットにわたる期間の少なくとも一つにおいて、所定のシンボル長で繰り返し送信される上り物理共有チャネル(例えば、PUSCH)を受信する。また、送受信部103は、物理共有チャネル(例えば、K=1)の開始位置、割当てられる長さ(シンボル長)、及び繰り返し回数の少なくとも一つの情報を送信してもよい。 Also, the transmission / reception unit 103 repeatedly transmits a downlink physical shared channel (for example, PDSCH) with a predetermined symbol length in at least one of a period of one slot and a period of a plurality of slots. Further, the transmission / reception unit 103 receives an uplink physical shared channel (for example, PUSCH) that is repeatedly transmitted with a predetermined symbol length in at least one of a period of one slot and a period of a plurality of slots. Further, the transmission / reception unit 103 may transmit at least one piece of information on the start position of the physical shared channel (for example, K = 1), the allocated length (symbol length), and the number of repetitions.
 図7は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 7 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present invention. In addition, in this example, the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the wireless base station 10 also has other functional blocks necessary for wireless communication.
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。 The baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit (scheduler) 301 controls the entire radio base station 10. The control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。 The control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal allocation in the mapping unit 303, and the like. The control unit 301 also controls signal reception processing in the reception signal processing unit 304, signal measurement in the measurement unit 305, and the like.
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。また、制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。 The control unit 301 schedules system information, downlink data signals (for example, signals transmitted by PDSCH), downlink control signals (for example, signals transmitted by PDCCH and / or EPDCCH, delivery confirmation information, etc.) (for example, resource Control). In addition, the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal. Further, the control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
 また、制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。 In addition, the control unit 301 includes an uplink data signal (for example, a signal transmitted on PUSCH), an uplink control signal (for example, a signal transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.), a random access preamble (for example, Scheduling of the uplink reference signal and the like.
 また、制御部301は、繰り返し送信が適用される各下り物理共有チャネルの送信がスロットの境界をまたがないように送信を制御する。例えば、制御部301は、スロットの境界をまたぐ所定の下り物理共有チャネルの送信をドロップしてもよい。 Also, the control unit 301 controls transmission so that transmission of each downlink physical shared channel to which repeated transmission is applied does not cross the slot boundary. For example, the control unit 301 may drop a transmission of a predetermined downlink physical shared channel that crosses the slot boundary.
 あるいは、制御部301は、所定の下り物理共有チャネルの送信がスロットの境界をまたぐ場合に、所定の下り物理共有チャネル用の割当てリソースが多く配置されるスロットのみ利用して所定の下り物理共有チャネルの送信を行うように制御してもよい。 Alternatively, when the transmission of the predetermined downlink physical shared channel crosses the boundary of the slot, the control unit 301 uses only the slot in which a large number of allocation resources for the predetermined downlink physical shared channel are arranged and uses the predetermined downlink physical shared channel. It may be controlled to perform transmission of.
 あるいは、制御部301は、下り及び/又は上り物理共有チャネルの繰り返し送信を1スロットの範囲内で行うように制御(スケジューリング)してもよい。 Alternatively, the control unit 301 may perform control (scheduling) so that the downlink and / or uplink physical shared channel is repeatedly transmitted within the range of one slot.
 あるいは、制御部301は、下り及び/又は上り物理共有チャネルの送信に利用できる連続したシンボルを利用して、スロット境界をまたがないように時間方向において順に繰り返し送信を行うように制御(スケジューリング)してもよい。この場合、スロット内繰り返し送信と、スロット間繰り返し送信がスケジューリングされる構成としてもよい。 Alternatively, the control unit 301 uses successive symbols that can be used for transmission of the downlink and / or uplink physical shared channel to perform control (scheduling) so as to repeatedly perform transmission in the time direction so as not to cross the slot boundary. May be. In this case, a configuration may be adopted in which intra-slot repetitive transmission and inter-slot repetitive transmission are scheduled.
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 The transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303. The transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。 The transmission signal generation unit 302 generates, for example, a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301. The DL assignment and UL grant are both DCI and follow the DCI format. In addition, the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 The mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103. The mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。 The reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103. Here, the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20. The reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。 The reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301. The reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 305 performs measurement on the received signal. The measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。 For example, the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal. The measurement unit 305 includes received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)). Signal strength (for example, RSSI (Received Signal Strength Indicator)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 301.
(ユーザ端末)
 図8は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
(User terminal)
FIG. 8 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment of the present invention. The user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205. Note that the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202. The transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202. The transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204. The transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention. The transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。 The baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal. The downlink user data is transferred to the application unit 205. The application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。 On the other hand, uplink user data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processing unit 204 performs transmission / reception units for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. 203. The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it. The radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
 また、送受信部203は、1スロットの期間及び複数スロットにわたる期間の少なくとも一つにおいて、所定のシンボル長で上り物理共有チャネル(例えば、PUSCH)を繰り返し送信する。また、送受信部203は、1スロットの期間及び複数スロットにわたる期間の少なくとも一つにおいて、所定のシンボル長で繰り返し送信される下り物理共有チャネル(例えば、PDSCH)を受信する。また、送受信部203は、物理共有チャネル(例えば、K=1)の開始位置、割当てられる長さ(シンボル長)、及び繰り返し回数の少なくとも一つの情報を受信してもよい。 Further, the transmission / reception unit 203 repeatedly transmits an uplink physical shared channel (for example, PUSCH) with a predetermined symbol length in at least one of a period of one slot and a period of a plurality of slots. Further, the transmission / reception unit 203 receives a downlink physical shared channel (for example, PDSCH) that is repeatedly transmitted with a predetermined symbol length in at least one of a period of one slot and a period of a plurality of slots. Further, the transmission / reception unit 203 may receive at least one piece of information on the start position of the physical shared channel (for example, K = 1), the allocated length (symbol length), and the number of repetitions.
 図9は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 9 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention. In addition, in this example, the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。 The baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 401 controls the entire user terminal 20. The control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。 The control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal allocation in the mapping unit 403, and the like. The control unit 401 also controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
 制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。 The control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404. The control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of retransmission control for the downlink control signal and / or the downlink data signal.
 また、制御部401は、繰り返し送信が適用される各上り物理共有チャネルの送信がスロットの境界をまたがないように送信を制御する。例えば、制御部401は、スロットの境界をまたぐ所定の上り物理共有チャネルの送信をドロップしてもよい。 Also, the control unit 401 controls transmission so that transmission of each uplink physical shared channel to which repeated transmission is applied does not cross the slot boundary. For example, the control unit 401 may drop a transmission of a predetermined uplink physical shared channel that crosses the slot boundary.
 あるいは、制御部401は、所定の上り物理共有チャネルの送信がスロットの境界をまたぐ場合に、所定の上り物理共有チャネル用の割当てリソースが多く配置されるスロットのみ利用して所定の上り物理共有チャネルの送信を行うように制御してもよい。 Alternatively, when the transmission of the predetermined uplink physical shared channel crosses the boundary of the slot, the control unit 401 uses only the slot in which a large number of allocated resources for the predetermined uplink physical shared channel are arranged and uses the predetermined uplink physical shared channel. It may be controlled to perform transmission of.
 あるいは、制御部401は、上り物理共有チャネルの繰り返し送信を1スロットの範囲内で行うように制御してもよい。 Alternatively, the control unit 401 may perform control so that repeated transmission of the uplink physical shared channel is performed within the range of one slot.
 あるいは、制御部401は、上り物理共有チャネルの送信に利用できる連続したシンボルを利用して、スロット境界をまたがないように時間方向において順に繰り返し送信を行うように制御してもよい。この場合、スロット内繰り返し送信と、スロット間繰り返し送信がスケジューリングされる構成としてもよい。 Alternatively, the control unit 401 may use a continuous symbol that can be used for transmission of the uplink physical shared channel to perform control so as to repeatedly perform transmission in the time direction so as not to cross the slot boundary. In this case, a configuration may be adopted in which intra-slot repetitive transmission and inter-slot repetitive transmission are scheduled.
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 The transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403. The transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。 The transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 The mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203. The mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。 The reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203. Here, the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10. The reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。 The reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401. The reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. In addition, the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 405 performs measurement on the received signal. The measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。 For example, the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal. The measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 401.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
(Hardware configuration)
In addition, the block diagram used for description of the said embodiment has shown the block of the functional unit. These functional blocks (components) are realized by any combination of hardware and / or software. Further, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one device physically and / or logically coupled, or directly and / or two or more devices physically and / or logically separated. Alternatively, it may be realized indirectly by connecting (for example, using wired and / or wireless) and using these plural devices.
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図10は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a radio base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the radio communication method of the present invention. FIG. 10 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention. The wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed by one or more processors simultaneously, sequentially, or using other methods. Note that the processor 1001 may be implemented by one or more chips.
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることによって実現される。 Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication and controlling reading and / or writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like. For example, the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Further, the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store programs (program codes), software modules, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by. The storage 1003 may be referred to as an auxiliary storage device.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Also, the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
Note that the terms described in this specification and / or terms necessary for understanding this specification may be replaced with terms having the same or similar meaning. For example, the channel and / or symbol may be a signal (signaling). The signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard. Moreover, a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, etc.
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。 Further, the radio frame may be configured by one or a plurality of periods (frames) in the time domain. Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe. Further, a subframe may be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。 Furthermore, the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on the numerology. The slot may include a plurality of mini slots. Each minislot may be configured with one or more symbols in the time domain. The minislot may also be called a subslot.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol. For example, one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called a TTI, and one slot or one minislot is called a TTI. May be. That is, the subframe and / or TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. There may be. Note that a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI means, for example, a minimum time unit for scheduling in wireless communication. For example, in the LTE system, a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-encoded data packet (transport block), a code block, and / or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, a time interval (for example, the number of symbols) in which a transport block, a code block, and / or a code word is actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one minislot is referred to as a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe. A TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 A resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks. One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be configured by one or a plurality of resource elements (RE: Resource Element). For example, 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 Note that the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
 また、本明細書において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, and the like described in this specification may be expressed using absolute values, may be expressed using relative values from a predetermined value, or other corresponding information may be used. May be represented. For example, the radio resource may be indicated by a predetermined index.
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 In this specification, names used for parameters and the like are not limited names in any way. For example, various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various channels and information elements assigned to them. The name is not limited in any way.
 本明細書において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described herein may be represented using any of a variety of different technologies. For example, data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Also, information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer. Information, signals, and the like may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 The input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
 情報の通知は、本明細書において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the aspect / embodiment described in this specification, and may be performed using other methods. For example, information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。 The physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. Further, the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like. The MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, notification of predetermined information (for example, notification of “being X”) is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false. The comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether it is called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be interpreted broadly.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。 Also, software, instructions, information, etc. may be transmitted / received via a transmission medium. For example, software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
 本明細書において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms “system” and “network” used in this specification are used interchangeably.
 本明細書においては、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。 In this specification, “base station (BS)”, “radio base station”, “eNB”, “gNB”, “cell”, “sector”, “cell group”, “carrier” and “component” The term “carrier” may be used interchangeably. A base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication service in this coverage. Point to.
 本明細書においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。 In this specification, the terms “mobile station (MS)”, “user terminal”, “user equipment (UE)”, and “terminal” may be used interchangeably. . A base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。 Also, the radio base station in this specification may be read by the user terminal. For example, each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device). In this case, the user terminal 20 may have a function that the wireless base station 10 has. In addition, words such as “up” and “down” may be read as “side”. For example, the uplink channel may be read as a side channel.
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。 Similarly, a user terminal in this specification may be read by a radio base station. In this case, the wireless base station 10 may have a function that the user terminal 20 has.
 本明細書において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In this specification, the operation performed by the base station may be performed by the upper node in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
 本明細書において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in this specification may be used alone, may be used in combination, or may be switched according to execution. In addition, the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed as long as there is no contradiction. For example, the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
 本明細書において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-WideBand), Bluetooth (registered trademark) ), A system using another appropriate wireless communication method, and / or a next generation system extended based on these methods.
 本明細書において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used herein, the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
 本明細書において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
 本明細書において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 As used herein, the term “determining” may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc. In addition, “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be "determining". Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
 本明細書において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。 As used herein, the terms “connected”, “coupled”, or any variation thereof, is any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
 本明細書において、2つの要素が接続される場合、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 As used herein, when two elements are connected, using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples, the radio frequency domain Can be considered “connected” or “coupled” to each other, such as with electromagnetic energy having wavelengths in the microwave and / or light (both visible and invisible) regions.
 本明細書において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。 In the present specification, the term “A and B are different” may mean “A and B are different from each other”. Terms such as “leave” and “coupled” may be interpreted in a similar manner.
 本明細書又は請求の範囲において、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where the term “including”, “comprising”, and variations thereof are used in this specification or the claims, these terms are inclusive, as are the terms “comprising”. Intended to be Furthermore, the term “or” as used herein or in the claims is not intended to be an exclusive OR.
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されないということは明らかである。本発明は、請求の範囲の記載に基づいて定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本発明に対して何ら制限的な意味をもたらさない。 Although the present invention has been described in detail above, it will be apparent to those skilled in the art that the present invention is not limited to the embodiments described herein. The present invention can be implemented as modifications and changes without departing from the spirit and scope of the present invention determined based on the description of the scope of claims. Accordingly, the description herein is for illustrative purposes and does not give any limiting meaning to the present invention.

Claims (6)

  1.  1スロットの期間及び複数スロットにわたる期間の少なくとも一つにおいて、所定のシンボル長で物理共有チャネルを繰り返し送信する送信部と、
     繰り返し送信が適用される各物理共有チャネルの送信がスロットの境界をまたがないように送信を制御する制御部と、を有することを特徴とする送信装置。
    A transmitter that repeatedly transmits a physical shared channel with a predetermined symbol length in at least one of a period of one slot and a period of a plurality of slots;
    And a control unit that controls transmission so that transmission of each physical shared channel to which repeated transmission is applied does not cross a slot boundary.
  2.  前記制御部は、スロットの境界をまたぐ所定の物理共有チャネルの送信をドロップすることを特徴とする請求項1に記載の送信装置。 The transmission device according to claim 1, wherein the control unit drops transmission of a predetermined physical shared channel across a slot boundary.
  3.  前記制御部は、所定の物理共有チャネルの送信がスロットの境界をまたぐ場合に、前記所定の物理共有チャネル用の割当てリソースが多く配置されるスロットのみ利用して前記所定の物理共有チャネルの送信を行うように制御することを特徴とする請求項1に記載の送信装置。 When the transmission of the predetermined physical shared channel crosses the boundary of the slot, the control unit transmits the predetermined physical shared channel by using only the slot in which a large number of allocation resources for the predetermined physical shared channel are arranged. The transmission device according to claim 1, wherein the transmission device is controlled to perform.
  4.  前記制御部は、前記物理共有チャネルの繰り返し送信を1スロットの範囲内で行うように制御することを特徴とする請求項1に記載の送信装置。 The transmission apparatus according to claim 1, wherein the control unit performs control such that the physical shared channel is repeatedly transmitted within a range of one slot.
  5.  1スロットの期間及び複数スロットにわたる期間の少なくとも一つにおいて、所定のシンボル長で繰り返し送信される物理共有チャネルを受信する受信部と、
     繰り返し送信が適用される各物理共有チャネルの送信がスロットの境界をまたがないようにスケジューリングされていると想定して受信を制御する制御部と、を有することを特徴とする受信装置。
    A receiving unit that receives a physical shared channel that is repeatedly transmitted with a predetermined symbol length in at least one of a period of one slot and a period of a plurality of slots;
    And a control unit that controls reception on the assumption that transmission of each physical shared channel to which repeated transmission is applied is scheduled so as not to cross a slot boundary.
  6.  1スロットの期間及び複数スロットにわたる期間の少なくとも一つにおいて、所定のシンボル長で物理共有チャネルを繰り返し送信する工程と、
     繰り返し送信が適用される各物理共有チャネルの送信がスロットの境界をまたがないように送信を制御する工程と、を有することを特徴とする無線通信方法。
    Repeatedly transmitting a physical shared channel with a predetermined symbol length in at least one of a period of one slot and a period of a plurality of slots;
    And a step of controlling transmission so that transmission of each physical shared channel to which repeated transmission is applied does not cross a slot boundary.
PCT/JP2018/004737 2018-02-09 2018-02-09 Transmission device, reception device, and radio communication method WO2019155637A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/004737 WO2019155637A1 (en) 2018-02-09 2018-02-09 Transmission device, reception device, and radio communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/004737 WO2019155637A1 (en) 2018-02-09 2018-02-09 Transmission device, reception device, and radio communication method

Publications (1)

Publication Number Publication Date
WO2019155637A1 true WO2019155637A1 (en) 2019-08-15

Family

ID=67549557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004737 WO2019155637A1 (en) 2018-02-09 2018-02-09 Transmission device, reception device, and radio communication method

Country Status (1)

Country Link
WO (1) WO2019155637A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210235503A1 (en) * 2018-05-10 2021-07-29 Telefonaktiebolaget Lm Ericsson (Publ) Signaling mechanism for message and physical uplink shared channel repetitions
WO2021159263A1 (en) * 2020-02-10 2021-08-19 Oppo广东移动通信有限公司 Data transmission method and related device
JP2021522712A (en) * 2018-04-23 2021-08-30 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Time domain allocation for repetition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Remaining details on TBS determination and resource allocation", 3GPP TSG RAN WG1 #91 R1-1720094, 1 December 2017 (2017-12-01), XP051369775 *
NTT DOCOMO; INC: "DL/UL resource allocation", 3GPP TSG RAN WG1 #91 R1-1720821, 1 December 2017 (2017-12-01), pages 1 - 12, XP051370250 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021522712A (en) * 2018-04-23 2021-08-30 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Time domain allocation for repetition
JP7135110B2 (en) 2018-04-23 2022-09-12 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Time domain allocation for repetition
US11510196B2 (en) 2018-04-23 2022-11-22 Telefonaktiebolaget Lm Ericsson (Publ) Time-domain allocation for repetitions
US11910367B2 (en) 2018-04-23 2024-02-20 Telefonaktiebolaget Lm Ericsson (Publ) Time-domain allocation for repetitions
US20210235503A1 (en) * 2018-05-10 2021-07-29 Telefonaktiebolaget Lm Ericsson (Publ) Signaling mechanism for message and physical uplink shared channel repetitions
US11751252B2 (en) * 2018-05-10 2023-09-05 Telefonaktiebolaget Lm Ericsson (Publ) Signaling mechanism for message and physical uplink shared channel repetitions
WO2021159263A1 (en) * 2020-02-10 2021-08-19 Oppo广东移动通信有限公司 Data transmission method and related device

Similar Documents

Publication Publication Date Title
CN110832925B (en) User terminal and wireless communication method
WO2019193732A1 (en) Transmission device and reception device
WO2018173235A1 (en) User terminal and wireless communication method
JP7053615B2 (en) Terminals, wireless communication methods, base stations and systems
CN111788806B (en) User terminal and wireless communication method
CN111492712B (en) User terminal and wireless communication method
WO2019215794A1 (en) User terminal and wireless communication method
WO2019159245A1 (en) User terminal and wireless communication method
WO2019038832A1 (en) User equipment and wireless communication method
CN110463304B (en) User terminal and wireless communication method
WO2017213222A1 (en) User terminal and radio communication method
WO2019224876A1 (en) Transmission device and receiving device
WO2019171519A1 (en) User terminal and wireless communication method
WO2019180886A1 (en) User equipment and wireless communication method
WO2018207369A1 (en) User terminal and wireless communication method
WO2018207370A1 (en) User terminal and wireless communication method
WO2019225689A1 (en) User terminal and wireless communication method
WO2019155637A1 (en) Transmission device, reception device, and radio communication method
WO2019215935A1 (en) User terminal and wireless communication method
WO2019186737A1 (en) Reception device, transmission device, and wireless communication method
WO2019159295A1 (en) User terminal and wireless communication method
WO2018207374A1 (en) User terminal and wireless communication method
WO2019167939A1 (en) User equipment and wireless communication method
CN111165053B (en) Terminal, base station, system and wireless communication method
JP7053606B2 (en) Terminals, wireless communication methods, base stations and systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP