WO2019038832A1 - User equipment and wireless communication method - Google Patents

User equipment and wireless communication method Download PDF

Info

Publication number
WO2019038832A1
WO2019038832A1 PCT/JP2017/029949 JP2017029949W WO2019038832A1 WO 2019038832 A1 WO2019038832 A1 WO 2019038832A1 JP 2017029949 W JP2017029949 W JP 2017029949W WO 2019038832 A1 WO2019038832 A1 WO 2019038832A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
base station
information
user terminal
Prior art date
Application number
PCT/JP2017/029949
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 松村
一樹 武田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2017/029949 priority Critical patent/WO2019038832A1/en
Priority to CN201780095910.4A priority patent/CN111213420A/en
Publication of WO2019038832A1 publication Critical patent/WO2019038832A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 LTE Advanced, LTE Rel. 10, 11, 12, 13
  • LTE Rel. 8, 9 LTE Rel. 8, 9
  • LTE successor system for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Also referred to as Rel. 14 or 15).
  • downlink Downlink
  • uplink using a subframe of 1 ms (also referred to as transmission time interval (TTI) etc.)
  • TTI transmission time interval
  • UL Uplink
  • the subframe is a transmission time unit of one channel-coded data packet, and is a processing unit such as scheduling, link adaptation, and retransmission control (HARQ: Hybrid Automatic Repeat reQuest).
  • HARQ Hybrid Automatic Repeat reQuest
  • the user terminal (UE: User Equipment) is configured to use an uplink control channel (for example, PUCCH (Physical Uplink Control Channel)) and / or an uplink data channel (for example, PUSCH (Physical Uplink Shared Channel)).
  • Uplink control information (UCI) is transmitted using this.
  • the configuration (format) of the uplink control channel is also called PUCCH format or the like.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • PUCCH PUCCH of a different format
  • PUCCH specified in the existing LTE system for example, LTE Rel. 8-13
  • a PUCCH configuration for mapping modulation symbols on a subcarrier-by-subcarrier basis has been considered to correspond to a large capacity payload. Also, it is considered that PUCCHs of multiple UEs share the same resource block.
  • the UL signal received at the receiving side may be deviated from the original subcarrier position due to the influence of the Doppler effect (Doppler shift) due to the movement of the UE, the phase noise of the oscillator, and the like.
  • Doppler effect Doppler shift
  • inter-UE interference occurs due to the influence of this deviation.
  • the PUCCH reception quality may be degraded and the communication throughput may be reduced.
  • the present disclosure has an object to provide a user terminal and a wireless communication method capable of suppressing degradation in reception quality even when PUCCHs of a plurality of UEs share the same resource block.
  • a user terminal includes: a control unit that performs control to map uplink control information to a part of continuous subcarriers in one resource block; and a transmission unit that transmits the mapped uplink control information. It is characterized by having.
  • degradation of reception quality can be suppressed even when PUCCHs of multiple UEs share the same resource block.
  • FIG. 1A and 1B are diagrams showing an example of PUCCH resource mapping of multiple UEs.
  • FIG. 2 is a diagram illustrating an example of a received signal in which PUCCH interference occurs.
  • FIG. 3A is a diagram illustrating an example of PUCCH resource mapping in an embodiment
  • FIG. 3B is a diagram illustrating an example of a received signal when subcarrier positions of the transmission signal in FIG. 3A are shifted.
  • FIG. 4 is a diagram illustrating another example of PUCCH resource mapping in one embodiment.
  • FIG. 5 is a diagram showing an example of PUCCH resource mapping in the modification.
  • FIG. 6 is a diagram showing another example of PUCCH resource mapping in the modification.
  • FIG. 7 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 8 is a diagram showing an example of the entire configuration of a wireless base station according to an embodiment.
  • FIG. 9 is a diagram showing an example of a functional configuration of a wireless base station according to an embodiment.
  • FIG. 10 is a diagram showing an example of the entire configuration of a user terminal according to an embodiment.
  • FIG. 11 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment.
  • FIG. 12 is a diagram illustrating an example of a hardware configuration of a wireless base station and a user terminal according to an embodiment.
  • PUCCH PUCCH of a different format
  • PUCCH specified in the existing LTE system for example, LTE Rel. 8-13
  • UL control channel (hereinafter also referred to as short PUCCH) having a short duration shorter than the PUCCH (Physical Uplink Control Channel) format of the existing LTE system (for example, LTE Rel. 8-13) and / or the short It is considered to support a UL control channel (hereinafter, also referred to as a long PUCCH) longer than a period.
  • PUCCH Physical Uplink Control Channel
  • long PUCCH UL control channel
  • a short PUCCH (short PUCCH) has a predetermined number of symbols (eg, 1, 2 or 3 symbols) in a certain subcarrier spacing (SCS: Sub-Carrier Spacing).
  • SCS Sub-Carrier Spacing
  • uplink control information (UCI) and reference signal (RS) may be time division multiplexed (TDM) or frequency division multiplexed (FDM) ) May be.
  • RS may be, for example, a demodulation reference signal (DMRS: DeModulation Reference Signal) used for demodulation of UCI.
  • DMRS DeModulation Reference Signal
  • UCI includes scheduling request (SR: Scheduling Request), retransmission control information (Hybrid Automatic Repeat reQuest-Acknowledge) (HARQ-ACK (Hybrid-ACK), and ACK / NACK (DL-data channel (PDSCH: Physical Downlink Shared Channel)) (Also referred to as negative ACK), etc., may include at least one of channel state information (CSI) and other information.
  • SR Scheduling Request
  • HARQ-ACK Hybrid-ACK
  • ACK / NACK DL-data channel (PDSCH: Physical Downlink Shared Channel)
  • CSI channel state information
  • the SCS of each symbol of the short PUCCH may be the same as or higher than the SCS of a symbol for a data channel (hereinafter, also referred to as a data symbol).
  • the data channel may be, for example, a Physical Downlink Shared Channel (PDSCH), a Physical Uplink Shared Channel (PUSCH), or the like.
  • the short PUCCH may be referred to as a higher (large, wide) SCS (eg, 60 kHz) PUCCH.
  • a time unit in which one short PUCCH is transmitted may be called a short TTI.
  • a multicarrier waveform for example, a waveform based on cyclic prefix OFDM (CP-OFDM: Cyclic Prefix Orthogonal Frequency Division Multiplexing) may be used, or a single carrier waveform (for example, DFT-spread OFDM (DFT- S-OFDM: Discrete Fourier Transform (Orthogonal Frequency Division Multiplexing) -based waveform) may be used.
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing
  • DFT- S-OFDM Discrete Fourier Transform (Orthogonal Frequency Division Multiplexing) -based waveform
  • the waveform may be called a transmission method, a multiplexing method, a modulation method, an access method, a waveform method, or the like.
  • the waveform may be characterized by applying or not applying DFT precoding (spreading) to the OFDM waveform.
  • DFT precoding spreading
  • CP-OFDM may be referred to as a waveform (signal) to which DFT precoding is not applied
  • DFT-S-OFDM may be referred to as a waveform (signal) to which DFT precoding is applied.
  • waveform may be read as "waveform signal”, “signal according to waveform", “waveform of signal”, “signal” or the like.
  • long PUCCHs are arranged across symbols in a slot to improve coverage and / or transmit more UCI than short PUCCHs.
  • a long PUCCH may be configured using 7 symbols or 14 symbols.
  • UCI and RS may be TDM or FDM.
  • frequency hopping may be applied for each predetermined period (for example, mini (sub) slot) in the slot.
  • intra-slot frequency hopping is applied, one or two symbols of DMRS are preferably mapped to one hop.
  • a long PUCCH may be referred to as a lower (smaller, narrower) SCS (eg, 15 kHz) PUCCH.
  • a time unit in which one long PUCCH is transmitted may be called a long TTI.
  • the long PUCCH may be configured with the same number of frequency resources as the short PUCCH, or to obtain a power amplification effect, the number of frequency resources (for example, one or two physical resource blocks (PRB: Physical) may be smaller than that of the short PUCCH. (Resource Block)). Also, the long PUCCH may be arranged in the same slot as the short PUCCH.
  • PRB physical resource blocks
  • a single carrier waveform eg, DFT-S-OFDM waveform
  • a multi-carrier waveform eg, CP-OFDM waveform
  • mapping of a modulation symbol for every subcarrier is examined.
  • the UCI bits may be encoded, scrambled, modulated, DFT precoded and mapped to symbols for UCI.
  • the order of processing is not limited to this.
  • PUCCH resource is 1 PRB.
  • 12 (symbols) ⁇ 12 (subcarriers) 144 symbols (DFT-S-OFDM symbols, CP-OFDM symbols, etc.) can be used for UCI.
  • a QPSK (Quadrature Phase Shift Keying) modulation signal may be mapped to each symbol. Note that the signal to be mapped is not limited to the QPSK modulation signal.
  • PUCCHs of multiple UEs share the same PRB.
  • it is considered to multiplex PUCCHs of multiple UEs in one PRB. It is considered to use FDM and / or Code Division Multiplexing (CDM) for this multiplexing.
  • CDM Code Division Multiplexing
  • FIG. 1A and 1B are diagrams showing an example of PUCCH resource mapping of multiple UEs.
  • FIG. 1A shows an example in which 2 UEs (UE1 to UE2) are FDM in 1 PRB
  • FIG. 1B shows an example in which 4 UEs (UE1 to UE4) are FDM in 1 PRB.
  • the resources of each UE be mapped to subcarriers in a comb shape.
  • the resource of UE1 is mapped every two subcarriers in FIG. 1A and every four subcarriers in FIG. 1B.
  • the UE may be notified of information on PUCCH (UCI) frequency resources from the base station.
  • the information may include, for example, information on a PRB index, a starting subcarrier index in a PRB, a subcarrier period, and the like.
  • the information on the frequency resource may be notified from the base station to the UE by higher layer signaling, physical layer signaling (for example, downlink control information (DCI)), or a combination thereof.
  • DCI downlink control information
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE Control Element
  • PUCCH interference between UEs may occur when mapping resources of multiple UEs into a subcarrier shape of a comb.
  • FIG. 2 is a diagram illustrating an example of a received signal in which PUCCH interference occurs.
  • This example shows an example in which 2 UEs (UE1 to UE2) are FDM in 1 PRB, as in FIG. 1A.
  • the UCI of UE1 is mapped to the subcarrier corresponding to the even subcarrier index and transmitted, but the subcarrier position to which the UCI of UE2 is mapped is deviated by about one subcarrier from the original subcarrier position. It overlaps with (subcarriers corresponding to odd subcarrier indexes).
  • a signal received at the reception side may be deviated from the original subcarrier position under the influence of the Doppler effect (Doppler shift) due to the movement of the UE, the phase noise of the oscillator, and the like.
  • Doppler effect Doppler shift
  • UCI resources of multiple UEs are subcarrier mapped in a comb shape, all UCI resources in a PRB are affected by this deviation.
  • reception quality may be degraded and communication throughput may be reduced.
  • the present inventors have conceived of a UCI mapping method capable of suppressing the influence of interference even when UCI modulation signals are observed on the receiving side in a shifted manner.
  • each embodiment may be applied also when the UE performs PUCCH transmission using a plurality of PRBs.
  • the UCI resources of a given UE in one PRB are mapped to consecutive subcarriers rather than comb teeth (discontinuous subcarriers).
  • a resource that a predetermined UE in one PRB does not use for UCI mapping may be used for UCI mapping of another UE. That is, UCI resources of each UE are mapped together.
  • the subcarrier to which a predetermined UE maps UCI in one PRB is controlled such that at least one of the adjacent subcarriers is not a subcarrier to which another UE maps UCI.
  • FIG. 3A is a diagram illustrating an example of PUCCH resource mapping in an embodiment
  • FIG. 3B is a diagram illustrating an example of a received signal when subcarrier positions of the transmission signal in FIG. 3A are shifted.
  • FIG. 3A shows an example in which 2 UEs (UE1-UE2) are FDM in one PRB as in FIG. 1A.
  • the resources of UE1 are mapped to subcarriers # 0 to # 5, and the resources of UE2 are mapped to subcarriers # 6 to # 11.
  • FIG. 4 is a diagram illustrating another example of PUCCH resource mapping in one embodiment.
  • FIG. 4 shows an example in which 4 UEs (UE 1 to UE 4) are FDM in 1 PRB as in FIG. 1B.
  • the resources of the UEs 1-4 are mapped to subcarriers # 0 to # 2, # 3 to # 5, # 6 to # 8 and # 9 to # 11, respectively.
  • FIG. 4 as in the example shown in FIGS. 3A and 3B, even if there is a Doppler shift, interference between UEs can be suppressed.
  • the UE may be notified of information on PUCCH (UCI) frequency resources from the base station.
  • the information may include, for example, information on PRB index, starting subcarrier index in PRB, number of subcarriers in PRB, number of multiplexed UEs, and the like.
  • the UE may determine UCI resources in one PRB based on the notified information.
  • the information on the frequency resource may be notified from the base station to the UE by higher layer signaling (eg, RRC signaling, broadcast information), physical layer signaling (eg, DCI), or a combination thereof.
  • higher layer signaling eg, RRC signaling, broadcast information
  • physical layer signaling eg, DCI
  • the UCI modulation signal may be transmitted using three subcarriers on the basis of.
  • FIG. 5 is a diagram showing an example of PUCCH resource mapping in the modification.
  • FIG. 5 shows an example in which 2 UEs (UE1-UE2) are FDM in one PRB as in FIG. 1A.
  • one UE maps UCI using multiple sets of one group of consecutive subcarriers.
  • UE1 maps UCI to a set of subcarriers # 0 to # 2 and a set of subcarriers # 6 to # 8.
  • PUCCH resource allocation can be flexibly controlled.
  • Guard subcarriers may be provided on one or both of the consecutive subcarriers to which the UCI is assigned.
  • a guard subcarrier is a subcarrier which does not map a signal, and may be called a non-transmission subcarrier or the like.
  • FIG. 6 is a diagram showing another example of PUCCH resource mapping in the modification.
  • FIG. 6 shows a case where guard subcarriers (subcarriers # 0 and # 5 for UE1 and subcarriers # 6 and # 11 for UE2) are provided at both ends of continuous subcarriers of each UE in the example of FIG. 3A. Equivalent to.
  • the information on the frequency resource of PUCCH (UCI) described above may include information on the presence or absence of guard subcarriers, the number of guard subcarriers, the position of guard subcarriers, and the like.
  • the PUCCH resource configuration of each UE is set to be the same (the same setting of guard subcarriers, etc.), but the PUCCH resource configuration of each UE may be different.
  • the influence of the subcarrier position shift can be suppressed more suitably.
  • the embodiments described above may be applied to long PUCCH or may be applied to short PUCCH.
  • the UCI payload to be transmitted is not limited to a large capacity payload.
  • the transmitted UCI payload may be up to 2 bits of payload.
  • DMRS may be mapped to at least one of a group of consecutive UCI subcarriers.
  • the above-mentioned embodiment is DMRS based transmission (it may be called DMRS-based transmission, DMRS-based PUCCH, etc.) which notifies UCI by transmitting DM and ULI which carried out DMDM and UCI by TDM and / or FDM. Although it assumed and demonstrated, it is not restricted to this.
  • sequence-based transmission for notifying UCI by transmitting a UL signal using a resource associated with the value of UCI without using DMRS. May be applied).
  • the UE and / or the base station do not apply CDM in consecutive subcarriers to which UCI is allocated in the above-described embodiment (for example, in the case of DFT-S-OFDM subcarriers, orthogonal spreading before application of DFT processing of a transmission signal) Not be performed).
  • CDM in consecutive subcarriers to which UCI is allocated in the above-described embodiment (for example, in the case of DFT-S-OFDM subcarriers, orthogonal spreading before application of DFT processing of a transmission signal) Not be performed).
  • the UE and / or the base station may assume that FDM is applied in one PRB, an increase in processing load can be suppressed.
  • wireless communication system Wireless communication system
  • communication is performed using any one or a combination of the wireless communication methods according to the above embodiments of the present disclosure.
  • FIG. 7 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the radio communication system 1 applies carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are integrated. can do.
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. It may be called (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology) or the like, or may be called a system for realizing these.
  • the radio communication system 1 includes a radio base station 11 forming a macrocell C1 with a relatively wide coverage, and radio base stations 12 (12a to 12c) disposed in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. And. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 simultaneously uses the macro cell C1 and the small cell C2 using CA or DC. Also, the user terminal 20 may apply CA or DC using a plurality of cells (CCs) (for example, 5 or less CCs, 6 or more CCs).
  • CCs cells
  • Communication can be performed between the user terminal 20 and the radio base station 11 using a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth carrier (also called an existing carrier, legacy carrier, etc.).
  • a carrier having a wide bandwidth in a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the configuration of the frequency band used by each wireless base station is not limited to this.
  • the user terminal 20 can perform communication in each cell using time division duplex (TDD) and / or frequency division duplex (FDD). Also, in each cell (carrier), a single numerology may be applied, or a plurality of different numerologies may be applied.
  • TDD time division duplex
  • FDD frequency division duplex
  • Numerology may be communication parameters applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier spacing, bandwidth, symbol length, cyclic prefix length, subframe length , TTI length, number of symbols per TTI, radio frame configuration, filtering process, windowing process, etc. may be indicated.
  • the wireless base station 11 and the wireless base station 12 are connected by wire (for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly It may be done.
  • wire for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface, etc.
  • CPRI Common Public Radio Interface
  • X2 interface etc.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each wireless base station 12 may be connected to the higher station apparatus 30 via the wireless base station 11.
  • RNC radio network controller
  • MME mobility management entity
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and is a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), transmission and reception It may be called a point or the like.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as the radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication schemes such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink as a radio access scheme, and single carrier frequency division multiple access (SC-FDMA: single carrier) to the uplink.
  • SC-FDMA single carrier frequency division multiple access
  • Frequency Division Multiple Access and / or OFDMA is applied.
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers) and data is mapped to each subcarrier to perform communication.
  • SC-FDMA is a single carrier transmission that reduces interference between terminals by dividing the system bandwidth into a band configured by one or continuous resource blocks for each terminal, and a plurality of terminals use different bands. It is a system.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, etc. are used as downlink channels. Used. User data, upper layer control information, SIB (System Information Block), etc. are transmitted by the PDSCH. Also, a MIB (Master Information Block) is transmitted by the PBCH.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • the downlink L1 / L2 control channel includes PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like.
  • Downlink control information (DCI) including scheduling information of PDSCH and / or PUSCH is transmitted by PDCCH.
  • scheduling information may be notified by DCI.
  • DCI scheduling DL data reception may be referred to as DL assignment
  • DCI scheduling UL data transmission may be referred to as UL grant.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • Delivery confirmation information (for example, also referred to as retransmission control information, HARQ-ACK, and ACK / NACK) of HARQ (Hybrid Automatic Repeat reQuest) for the PUSCH is transmitted by the PHICH.
  • the EPDCCH is frequency division multiplexed with a PDSCH (downlink shared data channel), and is used for transmission such as DCI, similarly to the PDCCH.
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used.
  • User data, upper layer control information, etc. are transmitted by PUSCH.
  • downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information, scheduling request (SR: Scheduling Request) and the like are transmitted by the PUCCH.
  • the PRACH transmits a random access preamble for establishing a connection with a cell.
  • a cell-specific reference signal (CRS: Cell-specific Reference Signal), a channel state information reference signal (CSI-RS: Channel State Information-Reference Signal), a demodulation reference signal (DMRS: DeModulation Reference Signal, positioning reference signal (PRS), etc.
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • DMRS DeModulation Reference Signal
  • PRS positioning reference signal
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signal
  • PRS positioning reference signal
  • DMRS Demodulation reference signal
  • PRS positioning reference signal
  • FIG. 8 is a diagram showing an example of the entire configuration of a wireless base station according to an embodiment.
  • the radio base station 10 includes a plurality of transmitting and receiving antennas 101, an amplifier unit 102, a transmitting and receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that each of the transmitting and receiving antenna 101, the amplifier unit 102, and the transmitting and receiving unit 103 may be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 by downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • the baseband signal processing unit 104 performs packet data convergence protocol (PDCP) layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) for user data.
  • Control Transmission processing such as retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc. It is transferred to 103. Further, transmission processing such as channel coding and inverse fast Fourier transform is also performed on the downlink control signal and transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 for each antenna into a radio frequency band and transmits the baseband signal.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 103 is amplified by the amplifier unit 102 and transmitted from the transmitting and receiving antenna 101.
  • the transmission / reception unit 103 can be configured of a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on the common recognition in the technical field according to the present disclosure.
  • the transmitting and receiving unit 103 may be configured as an integrated transmitting and receiving unit, or may be configured from a transmitting unit and a receiving unit.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmitting and receiving unit 103 receives the upstream signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on user data included in the input upstream signal. Decoding, reception processing of MAC retransmission control, and reception processing of RLC layer and PDCP layer are performed, and are transferred to the higher station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing (setting, release, etc.) of the communication channel, state management of the radio base station 10, management of radio resources, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. Also, the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from the other wireless base station 10 via an inter-base station interface (for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface). May be
  • an inter-base station interface for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface.
  • the transmitting / receiving unit 103 receives, from the user terminal 20, UCI subjected to FDM with another user terminal 20 in one PRB.
  • the transmitting and receiving unit 103 may transmit, to the user terminal 20, information related to PUCCH (UCI) frequency resources.
  • UCI PUCCH
  • FIG. 9 is a diagram illustrating an example of a functional configuration of a wireless base station according to an embodiment of the present disclosure.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the wireless base station 10 also has another functional block required for wireless communication.
  • the baseband signal processing unit 104 at least includes a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations may be included in the wireless base station 10, and some or all of the configurations may not be included in the baseband signal processing unit 104.
  • a control unit (scheduler) 301 performs control of the entire radio base station 10.
  • the control unit 301 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 301 controls, for example, generation of a signal in the transmission signal generation unit 302, assignment of a signal in the mapping unit 303, and the like. Further, the control unit 301 controls reception processing of a signal in the reception signal processing unit 304, measurement of a signal in the measurement unit 305, and the like.
  • the control unit 301 schedules (for example, resources) system information, downlink data signals (for example, signals transmitted on PDSCH), downlink control signals (for example, signals transmitted on PDCCH and / or EPDCCH, delivery confirmation information, etc.) Control allocation). Further, the control unit 301 controls generation of the downlink control signal, the downlink data signal, and the like based on the result of determining whether the retransmission control for the uplink data signal is necessary or not.
  • the control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
  • synchronization signals for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)
  • SSS Secondary Synchronization Signal
  • CRS Channel Reference Signal
  • CSI-RS CSI-RS
  • DMRS Downlink reference signals
  • the control unit 301 may use an uplink data signal (for example, a signal transmitted on PUSCH), an uplink control signal (for example, a signal transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.), a random access preamble (for example, PRACH). Control the scheduling of transmitted signals, uplink reference signals, etc.
  • an uplink data signal for example, a signal transmitted on PUSCH
  • an uplink control signal for example, a signal transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.
  • a random access preamble for example, PRACH
  • the control unit 301 may control the user terminal 20 to transmit information for mapping uplink control information (UCI) to a part of continuous subcarriers in one resource block (one PRB).
  • UCI uplink control information
  • the control unit 301 may control the user terminal 20 to transmit information for mapping uplink control information (UCI) to a part of continuous subcarriers in one resource block (one PRB).
  • UCI uplink control information
  • at least one of the subcarriers adjacent to the continuous subcarriers may be controlled such that the other user terminal 20 is not a subcarrier to which UCI is mapped.
  • the control unit 301 may control reception processing (decoding, demodulation, and the like) of UCI transmitted from the user terminal 20.
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal or the like) based on an instruction from the control unit 301, and outputs the downlink signal to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on the common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 302 generates, for example, DL assignment for notifying downlink data allocation information and / or UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301.
  • DL assignment and UL grant are both DCI and follow DCI format.
  • coding processing and modulation processing are performed on the downlink data signal according to a coding rate, a modulation method, and the like determined based on channel state information (CSI: Channel State Information) and the like from each user terminal 20.
  • CSI Channel State Information
  • Mapping section 303 maps the downlink signal generated by transmission signal generation section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs the mapped downlink signal to transmission / reception section 103.
  • the mapping unit 303 can be configured from a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 103.
  • the reception signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the received signal processing unit 304 can be configured from a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 outputs the information decoded by the reception process to the control unit 301. For example, when the PUCCH including the HARQ-ACK is received, the HARQ-ACK is output to the control unit 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measuring unit 305 can be configured from a measuring device, a measuring circuit, or a measuring device described based on the common recognition in the technical field according to the present disclosure.
  • the measurement unit 305 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, and the like based on the received signal.
  • the measurement unit 305 may use received power (for example, reference signal received power (RSRP)), received quality (for example, reference signal received quality (RSRQ), signal to interference plus noise ratio (SINR), signal to noise ratio (SNR)). , Signal strength (e.g., received signal strength indicator (RSSI)), channel information (e.g., CSI), and the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • CSI channel information
  • the measurement result may be output to the control unit 301.
  • FIG. 10 is a diagram showing an example of the entire configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a plurality of transmitting and receiving antennas 201, an amplifier unit 202, a transmitting and receiving unit 203, a baseband signal processing unit 204, and an application unit 205.
  • each of the transmitting and receiving antenna 201, the amplifier unit 202, and the transmitting and receiving unit 203 may be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmitting and receiving unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured of a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs reception processing of FFT processing, error correction decoding, retransmission control, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing on a layer higher than the physical layer and the MAC layer. Moreover, broadcast information may also be transferred to the application unit 205 among downlink data.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission processing of retransmission control (for example, transmission processing of HARQ), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, etc. It is transferred to 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 203 is amplified by the amplifier unit 202 and transmitted from the transmitting and receiving antenna 201.
  • the transmitting and receiving unit 203 transmits the UCI mapped by the mapping unit 403 described later to the radio base station 10.
  • the transmission / reception unit 203 may receive, from the radio base station 10, information on frequency resources of PUCCH (UCI).
  • UCI PUCCH
  • FIG. 11 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the user terminal 20 also has another functional block required for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 at least includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 401 controls, for example, generation of a signal in the transmission signal generation unit 402, assignment of a signal in the mapping unit 403, and the like. Further, the control unit 401 controls reception processing of signals in the reception signal processing unit 404, measurement of signals in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of the retransmission control for the downlink control signal and / or the downlink data signal.
  • the control unit 401 may perform control to map uplink control information (UCI) on some continuous subcarriers in one resource block (1 PRB).
  • UCI uplink control information
  • At least one of the subcarriers adjacent to the continuous subcarrier may not be a subcarrier to which another user terminal 20 maps UCI.
  • the control unit 401 may determine the continuous subcarriers such that at least one end in the frequency direction is not adjacent to a subcarrier to which another user terminal 20 maps UCI.
  • the control unit 401 may make the determination based on the information notified from the radio base station 20.
  • subcarriers included in the continuous subcarriers are determined so as not to overlap in frequency with subcarriers to which another user terminal 20 maps UCI.
  • the number of consecutive subcarriers may be determined based on the number of user terminals 20 that are frequency division multiplexed (FDM) in the 1 PRB.
  • the number of the user terminals 20 may also include the own terminal.
  • the control unit 401 may perform control to map UCI using a plurality of sets of partial continuous subcarriers in the 1 PRB.
  • control unit 401 When the control unit 401 acquires various types of information notified from the radio base station 10 from the received signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal or the like) based on an instruction from the control unit 401, and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit or a signal generation device described based on the common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 402 generates, for example, an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401. Further, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, when the downlink control signal notified from the radio base station 10 includes a UL grant, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal.
  • CSI channel state information
  • Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the uplink signal to transmission / reception section 203.
  • the mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on the common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 203.
  • the reception signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, or the like) transmitted from the radio base station 10.
  • the received signal processing unit 404 can be configured from a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present disclosure. Further, the received signal processing unit 404 can configure a receiving unit according to the present disclosure.
  • the reception signal processing unit 404 outputs the information decoded by the reception process to the control unit 401.
  • the received signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measuring unit 405 can be configured from a measuring device, a measuring circuit, or a measuring device described based on the common recognition in the technical field according to the present disclosure.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 401.
  • each functional block (components) are realized by any combination of hardware and / or software.
  • the implementation method of each functional block is not particularly limited. That is, each functional block may be realized using one physically and / or logically coupled device, or directly and / or two or more physically and / or logically separated devices. Or it may connect indirectly (for example, using a wire communication and / or radio), and it may be realized using a plurality of these devices.
  • a wireless base station, a user terminal, and the like in an embodiment of the present disclosure may function as a computer that performs the processing of the wireless communication method of the present disclosure.
  • FIG. 12 is a diagram illustrating an example of a hardware configuration of a wireless base station and a user terminal according to an embodiment.
  • the above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
  • the term “device” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the communication device 1004 is performed. This is realized by controlling communication, and controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these.
  • a program a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, or may be realized similarly for other functional blocks.
  • the memory 1002 is a computer readable recording medium, and for example, at least at least a read only memory (ROM), an erasable programmable ROM (EPROM), an electrically EPROM (EEPROM), a random access memory (RAM), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device) or the like.
  • the memory 1002 may store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment.
  • the storage 1003 is a computer readable recording medium, and for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be configured by The storage 1003 may be called an auxiliary storage device.
  • a computer readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be configured by
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like to realize, for example, frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, and the like) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • Hardware may be included, and part or all of each functional block may be realized using the hardware.
  • processor 1001 may be implemented using at least one of these hardware.
  • the channels and / or symbols may be signaling.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot (Pilot), a pilot signal or the like according to an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured by one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that constitute a radio frame may be referred to as a subframe.
  • a subframe may be configured by one or more slots in the time domain.
  • the subframes may be of a fixed time length (e.g., 1 ms) independent of the neurology.
  • the slot may be configured by one or more symbols in the time domain (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier frequency division multiple access (SC-FDMA) symbols, etc.).
  • the slot may be a time unit based on the neurology.
  • the slot may include a plurality of minislots. Each minislot may be configured by one or more symbols in the time domain. Minislots may also be referred to as subslots.
  • a radio frame, a subframe, a slot, a minislot and a symbol all represent time units when transmitting a signal.
  • subframes, slots, minislots and symbols other names corresponding to each may be used.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be referred to as a TTI
  • one slot or one minislot may be referred to as a TTI.
  • TTI transmission time interval
  • the subframe and / or TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the radio base station performs scheduling to assign radio resources (frequency bandwidth usable in each user terminal, transmission power, etc.) to each user terminal in TTI units.
  • radio resources frequency bandwidth usable in each user terminal, transmission power, etc.
  • the TTI may be a transmission time unit of a channel encoded data packet (transport block), a code block, and / or a codeword, or may be a processing unit such as scheduling and link adaptation. Note that, when a TTI is given, the time interval (eg, the number of symbols) in which the transport block, the code block, and / or the codeword is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit of scheduling.
  • the number of slots (the number of minislots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, or the like.
  • a long TTI for example, a normal TTI, a subframe, etc.
  • a short TTI eg, a shortened TTI, etc.
  • a resource block is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. Also, an RB may include one or more symbols in the time domain, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI and one subframe may be respectively configured by one or more resource blocks. Note that one or more RBs may be a physical resource block (PRB: Physical RB), a subcarrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, etc. It may be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • a resource block may be configured by one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • one RE may be one subcarrier and one symbol radio resource region.
  • the above-described structures such as the radio frame, subframe, slot, minislot and symbol are merely examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB
  • the number of subcarriers, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be variously changed.
  • the information, parameters, etc. described in the present specification may be expressed using absolute values, may be expressed using relative values from predetermined values, or other corresponding information. May be represented.
  • radio resources may be indicated by a predetermined index.
  • the names used for parameters and the like in the present specification are not limited names in any respect.
  • various channels PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.
  • information elements can be identified by any suitable names, various assignments are made to these various channels and information elements.
  • the name is not limited in any way.
  • data, instructions, commands, information, signals, bits, symbols, chips etc may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • the input / output information, signals and the like may be stored in a specific place (for example, a memory) or may be managed using a management table. Information, signals, etc. input and output can be overwritten, updated or added. The output information, signals and the like may be deleted. The input information, signals and the like may be transmitted to other devices.
  • notification of information is not limited to the aspects / embodiments described herein, and may be performed using other methods.
  • notification of information may be physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling, other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not notifying the predetermined information or other information Notification may be performed).
  • the determination may be performed by a value (0 or 1) represented by one bit, or may be performed by a boolean value represented by true or false. , Numerical comparison (for example, comparison with a predetermined value) may be performed.
  • Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • software may use a wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or a wireless technology (infrared, microwave, etc.), a website, a server
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • system and "network” as used herein are used interchangeably.
  • base station Base Station
  • radio base station eNB
  • gNB gigad Generation
  • cell cell
  • cell group cell group
  • carrier carrier
  • carrier may be used interchangeably.
  • a base station may also be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, femtocell, small cell, and so on.
  • a base station may accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station for indoor use (RRH: Communication services may also be provided by the Remote Radio Head, where the term "cell” or “sector” refers to part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage. Point to.
  • RRH Small base station for indoor use
  • MS mobile station
  • UE user equipment
  • the mobile station may be a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, by those skilled in the art. It may also be called a terminal, a remote terminal, a handset, a user agent, a mobile client, a client or some other suitable term.
  • the radio base station in the present specification may be replaced with a user terminal.
  • each aspect / embodiment of the present disclosure may be applied to a configuration in which communication between a wireless base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the above-described radio base station 10 has.
  • the wordings such as "up” and “down” may be read as "side".
  • the upstream channel may be read as a side channel.
  • a user terminal herein may be read at a radio base station.
  • the radio base station 10 may have a function that the above-described user terminal 20 has.
  • the operation supposed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be a base station, one or more network nodes other than the base station (eg, It is apparent that this can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc. but not limited thereto or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect / embodiment described in the present specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) Communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-Wide Band), Bluetooth (registered trademark) And / or systems based on other suitable wireless communication methods and / or extended next generation systems based on these.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • any reference to an element using the designation "first”, “second” and the like as used herein does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be taken or that the first element must somehow precede the second element.
  • determining may encompass a wide variety of operations. For example, “determination” may be calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data) A search on structure), ascertaining, etc. may be considered as “determining”. Also, “determination” may be receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (access) It may be considered as “determining” (eg, accessing data in memory) and the like. Also, “determination” is considered to be “determination” to resolve, select, choose, choose, establish, compare, etc. It is also good. That is, “determination” may be considered as “determining” some action.
  • connection refers to any direct or indirect connection between two or more elements or It means a bond and can include the presence of one or more intermediate elements between two elements “connected” or “connected” to each other.
  • the coupling or connection between elements may be physical, logical or a combination thereof. For example, “connection” may be read as "access”.
  • the radio frequency domain It can be considered as “connected” or “coupled” with one another using electromagnetic energy or the like having wavelengths in the microwave region and / or the light (both visible and invisible) regions.
  • a and B are different may mean “A and B are different from each other”.
  • the terms “leave”, “combined” and the like may be interpreted similarly.

Abstract

A user equipment according to an aspect of the present disclosure is characterized by comprising: a control unit that performs a control of mapping upstream control information onto some consecutive subcarriers in one resource block; and a transmission unit that transmits the mapped upstream control information. According to the aspect of the present disclosure, even if the PUCCHs of a plurality of UEs share the same resource block, degradation of reception quality can be suppressed.

Description

ユーザ端末及び無線通信方法User terminal and wireless communication method
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。 The present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。 In Universal Mobile Telecommunications System (UMTS) networks, Long Term Evolution (LTE) has been specified for the purpose of further high data rates, low delays, etc. (Non-Patent Document 1). In addition, LTE-A (LTE Advanced, LTE Rel. 10, 11, 12, 13) has been specified for the purpose of further increasing the capacity and upgrading the LTE (LTE Rel. 8, 9).
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。 LTE successor system (for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Also referred to as Rel. 14 or 15).
 既存のLTEシステム(例えば、LTE Rel.8-13)において、1msのサブフレーム(伝送時間間隔(TTI:Transmission Time Interval)などともいう)を用いて、下りリンク(DL:Downlink)及び/又は上りリンク(UL:Uplink)の通信が行われる。当該サブフレームは、チャネル符号化された1データパケットの送信時間単位であり、スケジューリング、リンクアダプテーション、再送制御(HARQ:Hybrid Automatic Repeat reQuest)などの処理単位となる。 In an existing LTE system (for example, LTE Rel. 8-13), downlink (DL: Downlink) and / or uplink using a subframe of 1 ms (also referred to as transmission time interval (TTI) etc.) Communication of the link (UL: Uplink) is performed. The subframe is a transmission time unit of one channel-coded data packet, and is a processing unit such as scheduling, link adaptation, and retransmission control (HARQ: Hybrid Automatic Repeat reQuest).
 また、既存のLTEシステムでは、ユーザ端末(UE:User Equipment)は、上り制御チャネル(例えば、PUCCH(Physical Uplink Control Channel))及び/又は上りデータチャネル(例えば、PUSCH(Physical Uplink Shared Channel))を用いて、上り制御情報(UCI:Uplink Control Information)を送信する。当該上り制御チャネルの構成(フォーマット)は、PUCCHフォーマットなどとも呼ばれる。 Further, in the existing LTE system, the user terminal (UE: User Equipment) is configured to use an uplink control channel (for example, PUCCH (Physical Uplink Control Channel)) and / or an uplink data channel (for example, PUSCH (Physical Uplink Shared Channel)). Uplink control information (UCI) is transmitted using this. The configuration (format) of the uplink control channel is also called PUCCH format or the like.
 NRにおいては、既存のLTEシステム(例えば、LTE Rel.8-13)で規定されるPUCCHと異なるPUCCH(異なるフォーマットのPUCCH)が検討されている。 In NR, PUCCH (PUCCH of a different format) different from PUCCH specified in the existing LTE system (for example, LTE Rel. 8-13) is considered.
 例えば、大容量のペイロードに対応するために、サブキャリアごとに変調シンボルをマッピングするPUCCH構成が検討されている。また、複数のUEのPUCCHが同一のリソースブロックを共有することが検討されている。 For example, a PUCCH configuration for mapping modulation symbols on a subcarrier-by-subcarrier basis has been considered to correspond to a large capacity payload. Also, it is considered that PUCCHs of multiple UEs share the same resource block.
 一方で、受信側(基地局)において受信されるUL信号は、UEの移動によるドップラー効果(ドップラーシフト)、発振器の位相雑音などの影響を受けて、本来のサブキャリア位置からずれる場合がある。 On the other hand, the UL signal received at the receiving side (base station) may be deviated from the original subcarrier position due to the influence of the Doppler effect (Doppler shift) due to the movement of the UE, the phase noise of the oscillator, and the like.
 PUCCHリソースのマッピング方法によっては、このずれの影響を受け、UE間干渉が発生する。この場合、PUCCHの受信品質が劣化し、通信スループットが低下するおそれがある。 Depending on the PUCCH resource mapping method, inter-UE interference occurs due to the influence of this deviation. In this case, the PUCCH reception quality may be degraded and the communication throughput may be reduced.
 そこで、本開示は、複数のUEのPUCCHが同一のリソースブロックを共有する場合であっても、受信品質の劣化を抑制できるユーザ端末及び無線通信方法を提供することを目的の1つとする。 Thus, the present disclosure has an object to provide a user terminal and a wireless communication method capable of suppressing degradation in reception quality even when PUCCHs of a plurality of UEs share the same resource block.
 本開示の一態様に係るユーザ端末は、1リソースブロック内の一部の連続するサブキャリアに上り制御情報をマッピングする制御を行う制御部と、マッピングした前記上り制御情報を送信する送信部と、を有することを特徴とする。 A user terminal according to an aspect of the present disclosure includes: a control unit that performs control to map uplink control information to a part of continuous subcarriers in one resource block; and a transmission unit that transmits the mapped uplink control information. It is characterized by having.
 本開示の一態様によれば、複数のUEのPUCCHが同一のリソースブロックを共有する場合であっても、受信品質の劣化を抑制できる。 According to an aspect of the present disclosure, degradation of reception quality can be suppressed even when PUCCHs of multiple UEs share the same resource block.
図1A及び1Bは、複数UEのPUCCHリソースマッピングの一例を示す図である。1A and 1B are diagrams showing an example of PUCCH resource mapping of multiple UEs. 図2は、PUCCH干渉が生じる受信信号の一例を示す図である。FIG. 2 is a diagram illustrating an example of a received signal in which PUCCH interference occurs. 図3Aは、一実施形態におけるPUCCHリソースマッピングの一例を示す図であり、図3Bは、図3Aの送信信号についてサブキャリア位置がずれた場合の受信信号の一例を示す図である。FIG. 3A is a diagram illustrating an example of PUCCH resource mapping in an embodiment, and FIG. 3B is a diagram illustrating an example of a received signal when subcarrier positions of the transmission signal in FIG. 3A are shifted. 図4は、一実施形態におけるPUCCHリソースマッピングの別の一例を示す図である。FIG. 4 is a diagram illustrating another example of PUCCH resource mapping in one embodiment. 図5は、変形例におけるPUCCHリソースマッピングの一例を示す図である。FIG. 5 is a diagram showing an example of PUCCH resource mapping in the modification. 図6は、変形例におけるPUCCHリソースマッピングの別の一例を示す図である。FIG. 6 is a diagram showing another example of PUCCH resource mapping in the modification. 図7は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 7 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. 図8は、一実施形態に係る無線基地局の全体構成の一例を示す図である。FIG. 8 is a diagram showing an example of the entire configuration of a wireless base station according to an embodiment. 図9は、一実施形態に係る無線基地局の機能構成の一例を示す図である。FIG. 9 is a diagram showing an example of a functional configuration of a wireless base station according to an embodiment. 図10は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。FIG. 10 is a diagram showing an example of the entire configuration of a user terminal according to an embodiment. 図11は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment. 図12は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of a hardware configuration of a wireless base station and a user terminal according to an embodiment.
 NRにおいては、既存のLTEシステム(例えば、LTE Rel.8-13)で規定されるPUCCHと異なるPUCCH(異なるフォーマットのPUCCH)が検討されている。 In NR, PUCCH (PUCCH of a different format) different from PUCCH specified in the existing LTE system (for example, LTE Rel. 8-13) is considered.
 既存のLTEシステム(例えば、LTE Rel.8-13)のPUCCH(Physical Uplink Control Channel)フォーマットよりも短い期間(short duration)のUL制御チャネル(以下、ショートPUCCHともいう)、及び/又は、当該短い期間よりも長い期間(long duration)のUL制御チャネル(以下、ロングPUCCHともいう)をサポートすることが検討されている。 UL control channel (hereinafter also referred to as short PUCCH) having a short duration shorter than the PUCCH (Physical Uplink Control Channel) format of the existing LTE system (for example, LTE Rel. 8-13) and / or the short It is considered to support a UL control channel (hereinafter, also referred to as a long PUCCH) longer than a period.
 ショートPUCCH(short PUCCH、shortened PUCCH)は、あるサブキャリア間隔(SCS:Sub-Carrier Spacing)における所定数のシンボル(例えば、1、2又は3シンボル)を有する。 A short PUCCH (short PUCCH) has a predetermined number of symbols (eg, 1, 2 or 3 symbols) in a certain subcarrier spacing (SCS: Sub-Carrier Spacing).
 ショートPUCCHでは、上り制御情報(UCI:Uplink Control Information)と参照信号(RS:Reference Signal)とが時分割多重(TDM:Time Division Multiplexing)されてもよいし、周波数分割多重(FDM:Frequency Division Multiplexing)されてもよい。RSは、例えば、UCIの復調に用いられる復調用参照信号(DMRS:DeModulation Reference Signal)であってもよい。 In short PUCCH, uplink control information (UCI) and reference signal (RS) may be time division multiplexed (TDM) or frequency division multiplexed (FDM) ) May be. RS may be, for example, a demodulation reference signal (DMRS: DeModulation Reference Signal) used for demodulation of UCI.
 なお、UCIは、スケジューリング要求(SR:Scheduling Request)、DLデータ(DLデータチャネル(PDSCH:Physical Downlink Shared Channel))に対する再送制御情報(HARQ-ACK(Hybrid Automatic Repeat reQuest-Acknowledge)、ACK/NACK(Negative ACK)などとも呼ばれる)、チャネル状態情報(CSI:Channel State Information)の少なくとも1つを含んでもよいし、これら以外の情報を含んでもよい。 In addition, UCI includes scheduling request (SR: Scheduling Request), retransmission control information (Hybrid Automatic Repeat reQuest-Acknowledge) (HARQ-ACK (Hybrid-ACK), and ACK / NACK (DL-data channel (PDSCH: Physical Downlink Shared Channel)) (Also referred to as negative ACK), etc., may include at least one of channel state information (CSI) and other information.
 ショートPUCCHの各シンボルのSCSは、データチャネル用のシンボル(以下、データシンボルともいう)のSCSと同一であってもよいし、より高くてもよい。データチャネルは、例えば、下りデータチャネル(PDSCH:Physical Downlink Shared Channel)、上りデータチャネル(PUSCH:Physical Uplink Shared Channel)などであってもよい。 The SCS of each symbol of the short PUCCH may be the same as or higher than the SCS of a symbol for a data channel (hereinafter, also referred to as a data symbol). The data channel may be, for example, a Physical Downlink Shared Channel (PDSCH), a Physical Uplink Shared Channel (PUSCH), or the like.
 ショートPUCCHは、より高い(大きい、広い)SCS(例えば、60kHz)のPUCCHと呼ばれてもよい。なお、1つのショートPUCCHが送信される時間単位は、ショートTTIと呼ばれてもよい。 The short PUCCH may be referred to as a higher (large, wide) SCS (eg, 60 kHz) PUCCH. A time unit in which one short PUCCH is transmitted may be called a short TTI.
 ショートPUCCHでは、マルチキャリア波形(例えば、サイクリックプレフィックスOFDM(CP-OFDM:Cyclic Prefix Orthogonal Frequency Division Multiplexing)ベースの波形)が用いられてもよいし、シングルキャリア波形(例えば、DFT拡散OFDM(DFT-S-OFDM:Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing)ベースの波形)が用いられてもよい。 In short PUCCH, a multicarrier waveform (for example, a waveform based on cyclic prefix OFDM (CP-OFDM: Cyclic Prefix Orthogonal Frequency Division Multiplexing) may be used, or a single carrier waveform (for example, DFT-spread OFDM (DFT- S-OFDM: Discrete Fourier Transform (Orthogonal Frequency Division Multiplexing) -based waveform) may be used.
 なお、波形は、伝送方式、多重方式、変調方式、アクセス方式、波形方式などと呼ばれてもよい。また、波形は、OFDM波形に対するDFTプリコーディング(スプレッディング)の適用有無で特徴付けられてもよい。例えば、CP-OFDMはDFTプリコーディングを適用しない波形(信号)と呼ばれてもよいし、DFT-S-OFDMはDFTプリコーディングを適用する波形(信号)と呼ばれてもよい。また、「波形」は「波形の信号」、「波形に従う信号」、「信号の波形」、「信号」などで読み替えられてもよい。 The waveform may be called a transmission method, a multiplexing method, a modulation method, an access method, a waveform method, or the like. Also, the waveform may be characterized by applying or not applying DFT precoding (spreading) to the OFDM waveform. For example, CP-OFDM may be referred to as a waveform (signal) to which DFT precoding is not applied, and DFT-S-OFDM may be referred to as a waveform (signal) to which DFT precoding is applied. Also, "waveform" may be read as "waveform signal", "signal according to waveform", "waveform of signal", "signal" or the like.
 一方、ロングPUCCHは、ショートPUCCHよりもカバレッジを向上させる及び/又はより多くのUCIを伝送するために、スロット内の複数のシンボルに渡って配置される。例えば、ロングPUCCHは、7シンボル又は14シンボルを用いて構成されてもよい。 On the other hand, long PUCCHs are arranged across symbols in a slot to improve coverage and / or transmit more UCI than short PUCCHs. For example, a long PUCCH may be configured using 7 symbols or 14 symbols.
 ロングPUCCHでは、UCIとRS(例えば、DMRS)とがTDMされてもよいし、FDMされてもよい。ロングPUCCHには、スロット内の所定期間(例えば、ミニ(サブ)スロット)ごとに周波数ホッピングが適用されてもよい。スロット内周波数ホッピングが適用される場合には、1ホップごとに1又は2シンボルのDMRSがマッピングされることが好ましい。 In the long PUCCH, UCI and RS (for example, DMRS) may be TDM or FDM. In the long PUCCH, frequency hopping may be applied for each predetermined period (for example, mini (sub) slot) in the slot. When intra-slot frequency hopping is applied, one or two symbols of DMRS are preferably mapped to one hop.
 ロングPUCCHは、より低い(小さい、狭い)SCS(例えば、15kHz)のPUCCHと呼ばれてもよい。なお、1つのロングPUCCHが送信される時間単位は、ロングTTIと呼ばれてもよい。 A long PUCCH may be referred to as a lower (smaller, narrower) SCS (eg, 15 kHz) PUCCH. A time unit in which one long PUCCH is transmitted may be called a long TTI.
 ロングPUCCHは、ショートPUCCHと等しい数の周波数リソースで構成されてもよいし、電力増幅効果を得るため、ショートPUCCHよりも少ない数の周波数リソース(例えば、1又は2つの物理リソースブロック(PRB:Physical Resource Block))で構成されてもよい。また、ロングPUCCHは、ショートPUCCHと同一のスロット内に配置されてもよい。 The long PUCCH may be configured with the same number of frequency resources as the short PUCCH, or to obtain a power amplification effect, the number of frequency resources (for example, one or two physical resource blocks (PRB: Physical) may be smaller than that of the short PUCCH. (Resource Block)). Also, the long PUCCH may be arranged in the same slot as the short PUCCH.
 ロングPUCCHでは、シングルキャリア波形(例えば、DFT-S-OFDM波形)が用いられてもよいし、マルチキャリア波形(例えば、CP-OFDM波形)が用いられてもよい。 In long PUCCH, a single carrier waveform (eg, DFT-S-OFDM waveform) may be used, or a multi-carrier waveform (eg, CP-OFDM waveform) may be used.
 ところで、ロングPUCCHに関して、大容量のペイロードに対応するために、サブキャリアごとに変調シンボルをマッピングすることが検討されている。UCIビットは、エンコードされ、スクランブルされ、変調され、DFTプリコードされ、UCI用のシンボルにマッピングされてもよい。なお、処理の順番はこれに限られない。 By the way, regarding long PUCCH, in order to correspond to a large-capacity payload, mapping of a modulation symbol for every subcarrier is examined. The UCI bits may be encoded, scrambled, modulated, DFT precoded and mapped to symbols for UCI. The order of processing is not limited to this.
 例えば、14シンボルのロングPUCCHにおいて、2シンボルがDMRSに用いられ、残り12シンボルがUCI送信に用いられると想定する。また、PUCCHリソースは1PRBとする。 For example, in a 14-symbol long PUCCH, it is assumed that 2 symbols are used for DMRS and the remaining 12 symbols are used for UCI transmission. Also, PUCCH resource is 1 PRB.
 この場合、12(シンボル)×12(サブキャリア)=144個のシンボル(DFT-S-OFDMシンボル、CP-OFDMシンボルなど)がUCIに利用可能である。各シンボルには、QPSK(Quadrature Phase Shift Keying)変調信号がマッピングされてもよい。なお、マッピングされる信号は、QPSK変調信号に限られない。 In this case, 12 (symbols) × 12 (subcarriers) = 144 symbols (DFT-S-OFDM symbols, CP-OFDM symbols, etc.) can be used for UCI. A QPSK (Quadrature Phase Shift Keying) modulation signal may be mapped to each symbol. Note that the signal to be mapped is not limited to the QPSK modulation signal.
 また、複数のUEのPUCCHが同一のPRBを共有することが検討されている。例えば、1PRB内において、複数のUEのPUCCHを多重することが検討されている。この多重には、FDM及び/又は符号分割多重(CDM:Code Division Multiplexing)を用いることが検討されている。 Also, it is considered that PUCCHs of multiple UEs share the same PRB. For example, it is considered to multiplex PUCCHs of multiple UEs in one PRB. It is considered to use FDM and / or Code Division Multiplexing (CDM) for this multiplexing.
 図1A及び1Bは、複数UEのPUCCHリソースマッピングの一例を示す図である。図1Aは、1PRB内に2UE(UE1-UE2)がFDMされる例を示し、図1Bは、1PRB内に4UE(UE1-UE4)がFDMされる例を示す。 1A and 1B are diagrams showing an example of PUCCH resource mapping of multiple UEs. FIG. 1A shows an example in which 2 UEs (UE1 to UE2) are FDM in 1 PRB, and FIG. 1B shows an example in which 4 UEs (UE1 to UE4) are FDM in 1 PRB.
 1PRB内において複数UEがFDMされる場合、図1A及び1Bに示したように、各UEのリソースは、櫛(comb)の歯状にサブキャリアにマッピングされることが提案されている。例えばUE1のリソースは、図1Aにおいては2サブキャリアごとに、図1Bにおいては4サブキャリアごとにマッピングされている。 When multiple UEs are FDM in one PRB, as shown in FIGS. 1A and 1B, it is proposed that the resources of each UE be mapped to subcarriers in a comb shape. For example, the resource of UE1 is mapped every two subcarriers in FIG. 1A and every four subcarriers in FIG. 1B.
 UEは、PUCCH(UCI)の周波数リソースに関する情報を基地局から通知されてもよい。当該情報は、例えば、PRBインデックス、PRB内の開始サブキャリアインデックス、サブキャリア周期などに関する情報を含んでもよい。 The UE may be notified of information on PUCCH (UCI) frequency resources from the base station. The information may include, for example, information on a PRB index, a starting subcarrier index in a PRB, a subcarrier period, and the like.
 上記周波数リソースに関する情報は、上位レイヤシグナリング、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information))又はこれらの組み合わせによって、基地局からUEに対して通知されてもよい。 The information on the frequency resource may be notified from the base station to the UE by higher layer signaling, physical layer signaling (for example, downlink control information (DCI)), or a combination thereof.
 上位レイヤシグナリングには、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング(例えば、MAC制御要素(MAC CE(Control Element))などが用いられてもよい。 For upper layer signaling, for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling (for example, MAC control element (MAC CE (Control Element)), etc. may be used.
 しかしながら、複数UEのリソースを櫛の歯状にサブキャリアマッピングする場合、UE間のPUCCH干渉が発生するおそれがある。 However, PUCCH interference between UEs may occur when mapping resources of multiple UEs into a subcarrier shape of a comb.
 図2は、PUCCH干渉が生じる受信信号の一例を示す図である。本例は、図1Aと同様に、1PRB内に2UE(UE1-UE2)がFDMされる例を示す。本例において、UE1のUCIは、偶数のサブキャリアインデックスに対応するサブキャリアにマッピングして送信されたが、本来のサブキャリア位置から1サブキャリア分程度ずれ、UE2のUCIがマッピングされるサブキャリア(奇数のサブキャリアインデックスに対応するサブキャリア)に重複している。 FIG. 2 is a diagram illustrating an example of a received signal in which PUCCH interference occurs. This example shows an example in which 2 UEs (UE1 to UE2) are FDM in 1 PRB, as in FIG. 1A. In this example, the UCI of UE1 is mapped to the subcarrier corresponding to the even subcarrier index and transmitted, but the subcarrier position to which the UCI of UE2 is mapped is deviated by about one subcarrier from the original subcarrier position. It overlaps with (subcarriers corresponding to odd subcarrier indexes).
 このように、受信側(基地局)において受信される信号は、UEの移動によるドップラー効果(ドップラーシフト)、発振器の位相雑音などの影響を受けて、本来のサブキャリア位置からずれる場合がある。複数UEのUCIリソースを櫛の歯状にサブキャリアマッピングする場合、PRB内の全てのUCIリソースがこのずれの影響を受ける。UE間干渉が発生すると、受信品質が劣化し、通信スループットが低下するおそれがある。 As described above, a signal received at the reception side (base station) may be deviated from the original subcarrier position under the influence of the Doppler effect (Doppler shift) due to the movement of the UE, the phase noise of the oscillator, and the like. When UCI resources of multiple UEs are subcarrier mapped in a comb shape, all UCI resources in a PRB are affected by this deviation. When inter-UE interference occurs, reception quality may be degraded and communication throughput may be reduced.
 そこで、本発明者らは、受信側においてUCI変調信号がずれて観測される場合であっても干渉の影響を抑制できるUCIマッピング方法を着想した。 Therefore, the present inventors have conceived of a UCI mapping method capable of suppressing the influence of interference even when UCI modulation signals are observed on the receiving side in a shifted manner.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication methods according to the embodiments may be applied alone or in combination.
 以下、1PRBが12サブキャリアによって構成される例を示すが、PRBを構成するサブキャリア数はこれに限られない。また、UEが複数のPRBを用いてPUCCH送信を行う場合にも、各実施形態の構成を適用してもよい。 Although an example in which one PRB is configured by 12 subcarriers will be shown below, the number of subcarriers constituting the PRB is not limited to this. Further, the configuration of each embodiment may be applied also when the UE performs PUCCH transmission using a plurality of PRBs.
(無線通信方法)
 一実施形態において、1PRB内における所定のUEのUCIリソースは、櫛の歯状(非連続なサブキャリア)ではなく、連続したサブキャリアにマッピングされる。1PRB内における所定のUEがUCIマッピングに用いないリソースは、他のUEのUCIマッピングに用いられてもよい。つまり、各UEのUCIリソースは、それぞれまとまってマッピングされる。
(Wireless communication method)
In one embodiment, the UCI resources of a given UE in one PRB are mapped to consecutive subcarriers rather than comb teeth (discontinuous subcarriers). A resource that a predetermined UE in one PRB does not use for UCI mapping may be used for UCI mapping of another UE. That is, UCI resources of each UE are mapped together.
 言い換えると、1PRB内において所定のUEがUCIをマッピングするサブキャリアは、隣接するサブキャリアの少なくとも一方が、他のUEがUCIをマッピングするサブキャリアではないように制御される。 In other words, the subcarrier to which a predetermined UE maps UCI in one PRB is controlled such that at least one of the adjacent subcarriers is not a subcarrier to which another UE maps UCI.
 図3Aは、一実施形態におけるPUCCHリソースマッピングの一例を示す図であり、図3Bは、図3Aの送信信号についてサブキャリア位置がずれた場合の受信信号の一例を示す図である。 FIG. 3A is a diagram illustrating an example of PUCCH resource mapping in an embodiment, and FIG. 3B is a diagram illustrating an example of a received signal when subcarrier positions of the transmission signal in FIG. 3A are shifted.
 図3Aは、図1Aと同様に1PRB内に2UE(UE1-UE2)がFDMされる例を示す。図3Aにおいて、UE1のリソースはサブキャリア#0-#5にマッピングされ、UE2のリソースはサブキャリア#6-#11にマッピングされている。 FIG. 3A shows an example in which 2 UEs (UE1-UE2) are FDM in one PRB as in FIG. 1A. In FIG. 3A, the resources of UE1 are mapped to subcarriers # 0 to # 5, and the resources of UE2 are mapped to subcarriers # 6 to # 11.
 UE1のUCIが本来のサブキャリア位置から1サブキャリア分程度ずれる場合であっても、図3Bに示すように、干渉の発生は、サブキャリア#6のみとなる。全てのUCIリソースにおいて干渉が発生するケース(図2)に比べて、干渉の影響を大きく抑制できる。 Even when the UCI of UE 1 deviates from the original subcarrier position by about one subcarrier, as shown in FIG. 3B, the occurrence of interference is only subcarrier # 6. Compared to the case where interference occurs in all UCI resources (FIG. 2), the influence of the interference can be largely suppressed.
 図4は、一実施形態におけるPUCCHリソースマッピングの別の一例を示す図である。図4は、図1Bと同様に1PRB内に4UE(UE1-UE4)がFDMされる例を示す。本例において、UE1-4のリソースは、それぞれ、サブキャリア#0-#2、#3-#5、#6-#8及び#9-#11にマッピングされている。図4の場合も、図3A及び3Bで示した例と同様に、ドップラーシフトがあってもUE間の干渉を抑制できる。 FIG. 4 is a diagram illustrating another example of PUCCH resource mapping in one embodiment. FIG. 4 shows an example in which 4 UEs (UE 1 to UE 4) are FDM in 1 PRB as in FIG. 1B. In this example, the resources of the UEs 1-4 are mapped to subcarriers # 0 to # 2, # 3 to # 5, # 6 to # 8 and # 9 to # 11, respectively. Also in the case of FIG. 4, as in the example shown in FIGS. 3A and 3B, even if there is a Doppler shift, interference between UEs can be suppressed.
 UEは、PUCCH(UCI)の周波数リソースに関する情報を基地局から通知されてもよい。当該情報は、例えば、PRBインデックス、PRB内の開始サブキャリアインデックス、PRB内のサブキャリア数、多重UE数などに関する情報を含んでもよい。UEは、通知された情報に基づいて、1PRB内のUCIリソースを判断してもよい。 The UE may be notified of information on PUCCH (UCI) frequency resources from the base station. The information may include, for example, information on PRB index, starting subcarrier index in PRB, number of subcarriers in PRB, number of multiplexed UEs, and the like. The UE may determine UCI resources in one PRB based on the notified information.
 上記周波数リソースに関する情報は、上位レイヤシグナリング(例えば、RRCシグナリング、ブロードキャスト情報)、物理レイヤシグナリング(例えば、DCI)又はこれらの組み合わせによって、基地局からUEに対して通知されてもよい。 The information on the frequency resource may be notified from the base station to the UE by higher layer signaling (eg, RRC signaling, broadcast information), physical layer signaling (eg, DCI), or a combination thereof.
 UEは、例えば通知された多重UE数が4の場合、1PRB内に含まれるUCIサブキャリア数が3(=12/4)であると判断し、通知された開始サブキャリアインデックス(例えば、0)を基準として3サブキャリアを用いてUCI変調信号を送信してもよい。 For example, when the notified number of multiplexed UEs is 4, the UE judges that the number of UCI subcarriers contained in one PRB is 3 (= 12/4), and the notified starting subcarrier index (eg, 0) The UCI modulation signal may be transmitted using three subcarriers on the basis of.
 以上説明した実施形態によれば、例えば伝搬路の変動によって、受信機においてUCI信号の観測されるサブキャリアがずれる場合であっても、UE間干渉を抑えることができる。 According to the embodiment described above, it is possible to suppress inter-UE interference even when, for example, the observed subcarrier of the UCI signal deviates in the receiver due to fluctuation of the propagation path.
<変形例>
 上述の実施形態において、1PRB内において、1つのUEはUCIを1かたまりの連続するサブキャリアにマッピングする例を示したが、サブキャリアマッピングはこれに限られない。
<Modification>
In the above-mentioned embodiment, although one UE demonstrated the example which maps UCI on a group of continuous subcarriers in 1 PRB, subcarrier mapping is not restricted to this.
 図5は、変形例におけるPUCCHリソースマッピングの一例を示す図である。図5は、図1Aと同様に1PRB内に2UE(UE1-UE2)がFDMされる例を示す。 FIG. 5 is a diagram showing an example of PUCCH resource mapping in the modification. FIG. 5 shows an example in which 2 UEs (UE1-UE2) are FDM in one PRB as in FIG. 1A.
 本例では、1PRB内において、1つのUEは、1かたまりの連続するサブキャリアを複数セット用いてUCIをマッピングする。例えば、UE1は、サブキャリア#0-#2のセット及びサブキャリア#6-#8のセットにUCIをマッピングする。この構成によれば、全てのUCIリソースにおいて干渉が発生するケース(図2)に比べて、干渉の影響を抑制できる。また、PUCCHのリソース割り当てを柔軟に制御できる。 In this example, in one PRB, one UE maps UCI using multiple sets of one group of consecutive subcarriers. For example, UE1 maps UCI to a set of subcarriers # 0 to # 2 and a set of subcarriers # 6 to # 8. According to this configuration, compared to the case where interference occurs in all UCI resources (FIG. 2), the influence of the interference can be suppressed. In addition, PUCCH resource allocation can be flexibly controlled.
 UCIを割り当てる連続サブキャリアの一方又は両方に、ガードサブキャリアが設けられてもよい。ガードサブキャリアは、信号をマッピングしないサブキャリアであって、無送信サブキャリアなどと呼ばれてもよい。 Guard subcarriers may be provided on one or both of the consecutive subcarriers to which the UCI is assigned. A guard subcarrier is a subcarrier which does not map a signal, and may be called a non-transmission subcarrier or the like.
 図6は、変形例におけるPUCCHリソースマッピングの別の一例を示す図である。図6は、図3Aの例において、各UEの連続サブキャリアの両端にガードサブキャリア(UE1用にサブキャリア#0及び#5。UE2用にサブキャリア#6及び#11)を設けた場合に相当する。 FIG. 6 is a diagram showing another example of PUCCH resource mapping in the modification. FIG. 6 shows a case where guard subcarriers (subcarriers # 0 and # 5 for UE1 and subcarriers # 6 and # 11 for UE2) are provided at both ends of continuous subcarriers of each UE in the example of FIG. 3A. Equivalent to.
 上述したPUCCH(UCI)の周波数リソースに関する情報は、ガードサブキャリアの有無、ガードサブキャリアの数、ガードサブキャリアの位置などに関する情報を含んでもよい。図6において、各UEのPUCCHリソース構成は同じ(ガードサブキャリアの設定などが同じ)ように設定されているが、各UEのPUCCHリソース構成は異なってもよい。 The information on the frequency resource of PUCCH (UCI) described above may include information on the presence or absence of guard subcarriers, the number of guard subcarriers, the position of guard subcarriers, and the like. In FIG. 6, the PUCCH resource configuration of each UE is set to be the same (the same setting of guard subcarriers, etc.), but the PUCCH resource configuration of each UE may be different.
 ガードサブキャリアを利用することによって、サブキャリア位置のずれの影響をより好適に抑制できる。 By using a guard subcarrier, the influence of the subcarrier position shift can be suppressed more suitably.
 上述の実施形態は、ロングPUCCHに適用されてもよいし、ショートPUCCHに適用されてもよい。また、送信されるUCIペイロードは、大容量ペイロードに限られない。例えば、送信されるUCIペイロードは、2ビットまでのペイロードであってもよい。 The embodiments described above may be applied to long PUCCH or may be applied to short PUCCH. Also, the UCI payload to be transmitted is not limited to a large capacity payload. For example, the transmitted UCI payload may be up to 2 bits of payload.
 上述の実施形態において、1かたまりの連続するUCI用サブキャリアの少なくとも1つにDMRSがマッピングされてもよい。また、上述の実施形態は、DMRSとUCIをTDM及び/又はFDMしたUL信号を送信することによってUCIを通知するDMRSベース送信(DMRS-based transmission、DMRS-based PUCCHなどと呼ばれてもよい)を想定して説明したが、これに限られない。 In the above-described embodiment, DMRS may be mapped to at least one of a group of consecutive UCI subcarriers. Moreover, the above-mentioned embodiment is DMRS based transmission (it may be called DMRS-based transmission, DMRS-based PUCCH, etc.) which notifies UCI by transmitting DM and ULI which carried out DMDM and UCI by TDM and / or FDM. Although it assumed and demonstrated, it is not restricted to this.
 例えば、上述の実施形態は、DMRSを用いずにUCIの値に関連付けられたリソースを用いたUL信号を送信することによってUCIを通知する系列ベース送信(sequence-based transmission、sequence-based PUCCHなどと呼ばれてもよい)に適用されてもよい。 For example, in the above-described embodiment, sequence-based transmission (sequence-based transmission, sequence-based PUCCH, etc.) for notifying UCI by transmitting a UL signal using a resource associated with the value of UCI without using DMRS. May be applied).
 UE及び/又は基地局は、上述の実施形態で説明したUCIを割り当てる連続サブキャリアにおいて、CDMが適用されない(例えばDFT-S-OFDMサブキャリアの場合、送信信号のDFT処理の適用前に直交拡散が行われない)と想定してもよい。この構成によれば、UE及び/又は基地局は、1PRB内においてFDMが適用されると想定すればよいため、処理負荷の増大を抑制できる。 The UE and / or the base station do not apply CDM in consecutive subcarriers to which UCI is allocated in the above-described embodiment (for example, in the case of DFT-S-OFDM subcarriers, orthogonal spreading before application of DFT processing of a transmission signal) Not be performed). According to this configuration, since the UE and / or the base station may assume that FDM is applied in one PRB, an increase in processing load can be suppressed.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of a wireless communication system according to an embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one or a combination of the wireless communication methods according to the above embodiments of the present disclosure.
 図7は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。 FIG. 7 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The radio communication system 1 applies carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are integrated. can do.
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。 The wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. It may be called (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology) or the like, or may be called a system for realizing these.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。 The radio communication system 1 includes a radio base station 11 forming a macrocell C1 with a relatively wide coverage, and radio base stations 12 (12a to 12c) disposed in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. And. Moreover, the user terminal 20 is arrange | positioned at macro cell C1 and each small cell C2. The arrangement, the number, and the like of each cell and the user terminal 20 are not limited to the aspect illustrated in the drawing.
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。 The user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 simultaneously uses the macro cell C1 and the small cell C2 using CA or DC. Also, the user terminal 20 may apply CA or DC using a plurality of cells (CCs) (for example, 5 or less CCs, 6 or more CCs).
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。 Communication can be performed between the user terminal 20 and the radio base station 11 using a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth carrier (also called an existing carrier, legacy carrier, etc.). On the other hand, between the user terminal 20 and the radio base station 12, a carrier having a wide bandwidth in a relatively high frequency band (for example, 3.5 GHz, 5 GHz, etc.) may be used. And the same carrier may be used. The configuration of the frequency band used by each wireless base station is not limited to this.
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。 Also, the user terminal 20 can perform communication in each cell using time division duplex (TDD) and / or frequency division duplex (FDD). Also, in each cell (carrier), a single numerology may be applied, or a plurality of different numerologies may be applied.
 ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、フィルタリング処理、ウィンドウイング処理などの少なくとも1つを示してもよい。 Numerology may be communication parameters applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier spacing, bandwidth, symbol length, cyclic prefix length, subframe length , TTI length, number of symbols per TTI, radio frame configuration, filtering process, windowing process, etc. may be indicated.
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。 The wireless base station 11 and the wireless base station 12 (or between the two wireless base stations 12) are connected by wire (for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly It may be done.
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。 The radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30. The upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each wireless base station 12 may be connected to the higher station apparatus 30 via the wireless base station 11.
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。 The radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like. Also, the radio base station 12 is a radio base station having local coverage, and is a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), transmission and reception It may be called a point or the like. Hereinafter, when the radio base stations 11 and 12 are not distinguished, they are collectively referred to as the radio base station 10.
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。 Each user terminal 20 is a terminal compatible with various communication schemes such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。 In the radio communication system 1, orthogonal frequency division multiple access (OFDMA) is applied to the downlink as a radio access scheme, and single carrier frequency division multiple access (SC-FDMA: single carrier) to the uplink. Frequency Division Multiple Access and / or OFDMA is applied.
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。 OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers) and data is mapped to each subcarrier to perform communication. SC-FDMA is a single carrier transmission that reduces interference between terminals by dividing the system bandwidth into a band configured by one or continuous resource blocks for each terminal, and a plurality of terminals use different bands. It is a system. The uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。 In the radio communication system 1, a downlink shared channel (PDSCH: Physical Downlink Shared Channel) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, etc. are used as downlink channels. Used. User data, upper layer control information, SIB (System Information Block), etc. are transmitted by the PDSCH. Also, a MIB (Master Information Block) is transmitted by the PBCH.
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。 The downlink L1 / L2 control channel includes PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like. Downlink control information (DCI) including scheduling information of PDSCH and / or PUSCH is transmitted by PDCCH.
 なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。 In addition, scheduling information may be notified by DCI. For example, DCI scheduling DL data reception may be referred to as DL assignment, and DCI scheduling UL data transmission may be referred to as UL grant.
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。 The number of OFDM symbols used for PDCCH is transmitted by PCFICH. Delivery confirmation information (for example, also referred to as retransmission control information, HARQ-ACK, and ACK / NACK) of HARQ (Hybrid Automatic Repeat reQuest) for the PUSCH is transmitted by the PHICH. The EPDCCH is frequency division multiplexed with a PDSCH (downlink shared data channel), and is used for transmission such as DCI, similarly to the PDCCH.
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。 In the radio communication system 1, as uplink channels, an uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used. User data, upper layer control information, etc. are transmitted by PUSCH. Also, downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information, scheduling request (SR: Scheduling Request) and the like are transmitted by the PUCCH. The PRACH transmits a random access preamble for establishing a connection with a cell.
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。 In the radio communication system 1, as a downlink reference signal, a cell-specific reference signal (CRS: Cell-specific Reference Signal), a channel state information reference signal (CSI-RS: Channel State Information-Reference Signal), a demodulation reference signal (DMRS: DeModulation Reference Signal, positioning reference signal (PRS), etc. are transmitted. Further, in the wireless communication system 1, a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS), and the like are transmitted as uplink reference signals. In addition, DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal). Also, reference signals to be transmitted are not limited to these.
(無線基地局)
 図8は、一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
(Wireless base station)
FIG. 8 is a diagram showing an example of the entire configuration of a wireless base station according to an embodiment. The radio base station 10 includes a plurality of transmitting and receiving antennas 101, an amplifier unit 102, a transmitting and receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that each of the transmitting and receiving antenna 101, the amplifier unit 102, and the transmitting and receiving unit 103 may be configured to include one or more.
 下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。 User data transmitted from the radio base station 10 to the user terminal 20 by downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。 The baseband signal processing unit 104 performs packet data convergence protocol (PDCP) layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) for user data. Control) Transmission processing such as retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc. It is transferred to 103. Further, transmission processing such as channel coding and inverse fast Fourier transform is also performed on the downlink control signal and transferred to the transmission / reception unit 103.
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 for each antenna into a radio frequency band and transmits the baseband signal. The radio frequency signal frequency-converted by the transmitting and receiving unit 103 is amplified by the amplifier unit 102 and transmitted from the transmitting and receiving antenna 101. The transmission / reception unit 103 can be configured of a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on the common recognition in the technical field according to the present disclosure. The transmitting and receiving unit 103 may be configured as an integrated transmitting and receiving unit, or may be configured from a transmitting unit and a receiving unit.
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。 On the other hand, for the uplink signal, the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102. The transmitting and receiving unit 103 receives the upstream signal amplified by the amplifier unit 102. The transmission / reception unit 103 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 104.
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。 The baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on user data included in the input upstream signal. Decoding, reception processing of MAC retransmission control, and reception processing of RLC layer and PDCP layer are performed, and are transferred to the higher station apparatus 30 via the transmission path interface 106. The call processing unit 105 performs call processing (setting, release, etc.) of the communication channel, state management of the radio base station 10, management of radio resources, and the like.
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。 The transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. Also, the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from the other wireless base station 10 via an inter-base station interface (for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface). May be
 送受信部103は、ユーザ端末20から、1PRB内において他のユーザ端末20とFDMされたUCIを受信する。送受信部103は、ユーザ端末20に対して、PUCCH(UCI)の周波数リソースに関する情報などを送信してもよい。 The transmitting / receiving unit 103 receives, from the user terminal 20, UCI subjected to FDM with another user terminal 20 in one PRB. The transmitting and receiving unit 103 may transmit, to the user terminal 20, information related to PUCCH (UCI) frequency resources.
 図9は、本開示の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 9 is a diagram illustrating an example of a functional configuration of a wireless base station according to an embodiment of the present disclosure. In addition, in this example, the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the wireless base station 10 also has another functional block required for wireless communication.
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。 The baseband signal processing unit 104 at least includes a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations may be included in the wireless base station 10, and some or all of the configurations may not be included in the baseband signal processing unit 104.
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 A control unit (scheduler) 301 performs control of the entire radio base station 10. The control unit 301 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present disclosure.
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。 The control unit 301 controls, for example, generation of a signal in the transmission signal generation unit 302, assignment of a signal in the mapping unit 303, and the like. Further, the control unit 301 controls reception processing of a signal in the reception signal processing unit 304, measurement of a signal in the measurement unit 305, and the like.
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。 The control unit 301 schedules (for example, resources) system information, downlink data signals (for example, signals transmitted on PDSCH), downlink control signals (for example, signals transmitted on PDCCH and / or EPDCCH, delivery confirmation information, etc.) Control allocation). Further, the control unit 301 controls generation of the downlink control signal, the downlink data signal, and the like based on the result of determining whether the retransmission control for the uplink data signal is necessary or not.
 制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。 The control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
 制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。 The control unit 301 may use an uplink data signal (for example, a signal transmitted on PUSCH), an uplink control signal (for example, a signal transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.), a random access preamble (for example, PRACH). Control the scheduling of transmitted signals, uplink reference signals, etc.
 制御部301は、ユーザ端末20に対して、1リソースブロック(1PRB)内の一部の連続するサブキャリアに上り制御情報(UCI)をマッピングさせるための情報を送信する制御を行ってもよい。ここで、上記連続するサブキャリアに隣接するサブキャリアの少なくとも一方は、他のユーザ端末20がUCIをマッピングするサブキャリアではないように制御されてもよい。 The control unit 301 may control the user terminal 20 to transmit information for mapping uplink control information (UCI) to a part of continuous subcarriers in one resource block (one PRB). Here, at least one of the subcarriers adjacent to the continuous subcarriers may be controlled such that the other user terminal 20 is not a subcarrier to which UCI is mapped.
 制御部301は、ユーザ端末20から送信されるUCIの受信処理(復号、復調など)を制御してもよい。 The control unit 301 may control reception processing (decoding, demodulation, and the like) of UCI transmitted from the user terminal 20.
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 The transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal or the like) based on an instruction from the control unit 301, and outputs the downlink signal to the mapping unit 303. The transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on the common recognition in the technical field according to the present disclosure.
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。 The transmission signal generation unit 302 generates, for example, DL assignment for notifying downlink data allocation information and / or UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301. DL assignment and UL grant are both DCI and follow DCI format. Also, coding processing and modulation processing are performed on the downlink data signal according to a coding rate, a modulation method, and the like determined based on channel state information (CSI: Channel State Information) and the like from each user terminal 20.
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 Mapping section 303 maps the downlink signal generated by transmission signal generation section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs the mapped downlink signal to transmission / reception section 103. The mapping unit 303 can be configured from a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present disclosure.
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。 The reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 103. Here, the reception signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20. The received signal processing unit 304 can be configured from a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present disclosure.
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。 The reception signal processing unit 304 outputs the information decoded by the reception process to the control unit 301. For example, when the PUCCH including the HARQ-ACK is received, the HARQ-ACK is output to the control unit 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 305 performs measurement on the received signal. The measuring unit 305 can be configured from a measuring device, a measuring circuit, or a measuring device described based on the common recognition in the technical field according to the present disclosure.
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。 For example, the measurement unit 305 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, and the like based on the received signal. The measurement unit 305 may use received power (for example, reference signal received power (RSRP)), received quality (for example, reference signal received quality (RSRQ), signal to interference plus noise ratio (SINR), signal to noise ratio (SNR)). , Signal strength (e.g., received signal strength indicator (RSSI)), channel information (e.g., CSI), and the like. The measurement result may be output to the control unit 301.
(ユーザ端末)
 図10は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
(User terminal)
FIG. 10 is a diagram showing an example of the entire configuration of a user terminal according to an embodiment. The user terminal 20 includes a plurality of transmitting and receiving antennas 201, an amplifier unit 202, a transmitting and receiving unit 203, a baseband signal processing unit 204, and an application unit 205. Note that each of the transmitting and receiving antenna 201, the amplifier unit 202, and the transmitting and receiving unit 203 may be configured to include one or more.
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202. The transmitting and receiving unit 203 receives the downlink signal amplified by the amplifier unit 202. The transmission / reception unit 203 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 204. The transmission / reception unit 203 can be configured of a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on the common recognition in the technical field according to the present disclosure. The transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。 The baseband signal processing unit 204 performs reception processing of FFT processing, error correction decoding, retransmission control, and the like on the input baseband signal. The downlink user data is transferred to the application unit 205. The application unit 205 performs processing on a layer higher than the physical layer and the MAC layer. Moreover, broadcast information may also be transferred to the application unit 205 among downlink data.
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。 On the other hand, uplink user data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processing unit 204 performs transmission processing of retransmission control (for example, transmission processing of HARQ), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, etc. It is transferred to 203. The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it. The radio frequency signal frequency-converted by the transmitting and receiving unit 203 is amplified by the amplifier unit 202 and transmitted from the transmitting and receiving antenna 201.
 送受信部203は、後述のマッピング部403によってマッピングされたUCIを無線基地局10に対して送信する。送受信部203は、PUCCH(UCI)の周波数リソースに関する情報などを、無線基地局10から受信してもよい。 The transmitting and receiving unit 203 transmits the UCI mapped by the mapping unit 403 described later to the radio base station 10. The transmission / reception unit 203 may receive, from the radio base station 10, information on frequency resources of PUCCH (UCI).
 図11は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 11 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment. In addition, in this example, the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the user terminal 20 also has another functional block required for wireless communication.
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。 The baseband signal processing unit 204 included in the user terminal 20 at least includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 401 controls the entire user terminal 20. The control unit 401 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present disclosure.
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。 The control unit 401 controls, for example, generation of a signal in the transmission signal generation unit 402, assignment of a signal in the mapping unit 403, and the like. Further, the control unit 401 controls reception processing of signals in the reception signal processing unit 404, measurement of signals in the measurement unit 405, and the like.
 制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。 The control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404. The control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of the retransmission control for the downlink control signal and / or the downlink data signal.
 制御部401は、1リソースブロック(1PRB)内の一部の連続するサブキャリアに上り制御情報(UCI)をマッピングする制御を行ってもよい。 The control unit 401 may perform control to map uplink control information (UCI) on some continuous subcarriers in one resource block (1 PRB).
 ここで、上記連続するサブキャリアに隣接するサブキャリアの少なくとも一方は、他のユーザ端末20がUCIをマッピングするサブキャリアではなくてもよい。制御部401は、他のユーザ端末20がUCIをマッピングするサブキャリアに少なくとも周波数方向の一端が隣接しないサブキャリアを含むように、上記連続するサブキャリアを決定してもよい。制御部401は、当該決定を、無線基地局20から通知される情報に基づいて行ってもよい。 Here, at least one of the subcarriers adjacent to the continuous subcarrier may not be a subcarrier to which another user terminal 20 maps UCI. The control unit 401 may determine the continuous subcarriers such that at least one end in the frequency direction is not adjacent to a subcarrier to which another user terminal 20 maps UCI. The control unit 401 may make the determination based on the information notified from the radio base station 20.
 上記連続するサブキャリアに含まれるサブキャリアは、他のユーザ端末20がUCIをマッピングするサブキャリアに周波数的に重複しないように決定されることが好ましい。 Preferably, subcarriers included in the continuous subcarriers are determined so as not to overlap in frequency with subcarriers to which another user terminal 20 maps UCI.
 上記連続するサブキャリアの数は、上記1PRB内に周波数分割多重(FDM)されるユーザ端末20の数に基づいて決定されてもよい。当該ユーザ端末20の数は、自端末も含んでもよい。 The number of consecutive subcarriers may be determined based on the number of user terminals 20 that are frequency division multiplexed (FDM) in the 1 PRB. The number of the user terminals 20 may also include the own terminal.
 制御部401は、上記1PRB内の一部の連続するサブキャリアの複数セットを用いてUCIをマッピングする制御を行ってもよい。 The control unit 401 may perform control to map UCI using a plurality of sets of partial continuous subcarriers in the 1 PRB.
 また、制御部401は、無線基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。 When the control unit 401 acquires various types of information notified from the radio base station 10 from the received signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 The transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal or the like) based on an instruction from the control unit 401, and outputs the uplink signal to the mapping unit 403. The transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit or a signal generation device described based on the common recognition in the technical field according to the present disclosure.
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。 The transmission signal generation unit 402 generates, for example, an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401. Further, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, when the downlink control signal notified from the radio base station 10 includes a UL grant, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal.
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the uplink signal to transmission / reception section 203. The mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on the common recognition in the technical field according to the present disclosure.
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。 The reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 203. Here, the reception signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, or the like) transmitted from the radio base station 10. The received signal processing unit 404 can be configured from a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present disclosure. Further, the received signal processing unit 404 can configure a receiving unit according to the present disclosure.
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。 The reception signal processing unit 404 outputs the information decoded by the reception process to the control unit 401. The received signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 405 performs measurement on the received signal. The measuring unit 405 can be configured from a measuring device, a measuring circuit, or a measuring device described based on the common recognition in the technical field according to the present disclosure.
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。 For example, the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal. The measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like. The measurement result may be output to the control unit 401.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
(Hardware configuration)
The block diagram used for the explanation of the above-mentioned embodiment has shown the block of a functional unit. These functional blocks (components) are realized by any combination of hardware and / or software. Moreover, the implementation method of each functional block is not particularly limited. That is, each functional block may be realized using one physically and / or logically coupled device, or directly and / or two or more physically and / or logically separated devices. Or it may connect indirectly (for example, using a wire communication and / or radio), and it may be realized using a plurality of these devices.
 例えば、本開示の一実施形態における無線基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a wireless base station, a user terminal, and the like in an embodiment of the present disclosure may function as a computer that performs the processing of the wireless communication method of the present disclosure. FIG. 12 is a diagram illustrating an example of a hardware configuration of a wireless base station and a user terminal according to an embodiment. The above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term "device" can be read as a circuit, a device, a unit, or the like. The hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be a plurality of processors. Also, the processing may be performed by one processor, or the processing may be performed by one or more processors simultaneously, sequentially or using other techniques. The processor 1001 may be implemented by one or more chips.
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることによって実現される。 Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the communication device 1004 is performed. This is realized by controlling communication, and controlling reading and / or writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like. For example, the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Also, the processor 1001 reads a program (program code), a software module, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these. As a program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, or may be realized similarly for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer readable recording medium, and for example, at least at least a read only memory (ROM), an erasable programmable ROM (EPROM), an electrically EPROM (EEPROM), a random access memory (RAM), or any other suitable storage medium. It may be configured by one. The memory 1002 may be called a register, a cache, a main memory (main storage device) or the like. The memory 1002 may store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer readable recording medium, and for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be configured by The storage 1003 may be called an auxiliary storage device.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like to realize, for example, frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, and the like) that performs output to the outside. The input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Also, the radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc. Hardware may be included, and part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
The terms described in the present specification and / or the terms necessary for the understanding of the present specification may be replaced with terms having the same or similar meanings. For example, the channels and / or symbols may be signaling. Also, the signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot (Pilot), a pilot signal or the like according to an applied standard. Also, a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency or the like.
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。 Also, the radio frame may be configured by one or more periods (frames) in the time domain. Each of the one or more periods (frames) that constitute a radio frame may be referred to as a subframe. Furthermore, a subframe may be configured by one or more slots in the time domain. The subframes may be of a fixed time length (e.g., 1 ms) independent of the neurology.
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。 Furthermore, the slot may be configured by one or more symbols in the time domain (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier frequency division multiple access (SC-FDMA) symbols, etc.). Also, the slot may be a time unit based on the neurology. Also, the slot may include a plurality of minislots. Each minislot may be configured by one or more symbols in the time domain. Minislots may also be referred to as subslots.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 A radio frame, a subframe, a slot, a minislot and a symbol all represent time units when transmitting a signal. For radio frames, subframes, slots, minislots and symbols, other names corresponding to each may be used. For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as a TTI, and one slot or one minislot may be referred to as a TTI. May be That is, the subframe and / or TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be. The unit representing TTI may be called a slot, a minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the radio base station performs scheduling to assign radio resources (frequency bandwidth usable in each user terminal, transmission power, etc.) to each user terminal in TTI units. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel encoded data packet (transport block), a code block, and / or a codeword, or may be a processing unit such as scheduling and link adaptation. Note that, when a TTI is given, the time interval (eg, the number of symbols) in which the transport block, the code block, and / or the codeword is actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 If one slot or one minislot is referred to as TTI, one or more TTIs (ie, one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (the number of minislots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, or the like. A TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, or the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (for example, a normal TTI, a subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms, and a short TTI (eg, a shortened TTI, etc.) is less than the TTI length of long TTI and 1 ms. It may replace with TTI which has the above TTI length.
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 A resource block (RB: Resource Block) is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. Also, an RB may include one or more symbols in the time domain, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI and one subframe may be respectively configured by one or more resource blocks. Note that one or more RBs may be a physical resource block (PRB: Physical RB), a subcarrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, etc. It may be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be configured by one or more resource elements (RE: Resource Element). For example, one RE may be one subcarrier and one symbol radio resource region.
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The above-described structures such as the radio frame, subframe, slot, minislot and symbol are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The number of subcarriers, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be variously changed.
 また、本明細書において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 Also, the information, parameters, etc. described in the present specification may be expressed using absolute values, may be expressed using relative values from predetermined values, or other corresponding information. May be represented. For example, radio resources may be indicated by a predetermined index.
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in the present specification are not limited names in any respect. For example, since various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable names, various assignments are made to these various channels and information elements. The name is not limited in any way.
 本明細書において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described herein may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips etc that may be mentioned throughout the above description may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Also, information, signals, etc. may be output from the upper layer to the lower layer and / or from the lower layer to the upper layer. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 The input / output information, signals and the like may be stored in a specific place (for example, a memory) or may be managed using a management table. Information, signals, etc. input and output can be overwritten, updated or added. The output information, signals and the like may be deleted. The input information, signals and the like may be transmitted to other devices.
 情報の通知は、本明細書において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the aspects / embodiments described herein, and may be performed using other methods. For example, notification of information may be physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling, other signals, or a combination thereof.
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。 The physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. Also, RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Also, MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, notification of predetermined information (for example, notification of "being X") is not limited to explicit notification, but implicitly (for example, by not notifying the predetermined information or other information Notification may be performed).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be performed by a value (0 or 1) represented by one bit, or may be performed by a boolean value represented by true or false. , Numerical comparison (for example, comparison with a predetermined value) may be performed.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。 Also, software, instructions, information, etc. may be sent and received via a transmission medium. For example, software may use a wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or a wireless technology (infrared, microwave, etc.), a website, a server These or other wired and / or wireless technologies are included within the definition of the transmission medium, as transmitted from a remote source, or other remote source.
 本明細書において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" as used herein are used interchangeably.
 本明細書においては、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。 As used herein, “base station (BS: Base Station)”, “radio base station”, “eNB”, “gNB”, “cell”, “sector”, “cell group”, “carrier” and “component” The term "carrier" may be used interchangeably. A base station may also be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, femtocell, small cell, and so on.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。 A base station may accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station for indoor use (RRH: Communication services may also be provided by the Remote Radio Head, where the term "cell" or "sector" refers to part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage. Point to.
 本明細書においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。 As used herein, the terms "mobile station (MS)," user terminal "," user equipment (UE) "and" terminal "may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 The mobile station may be a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, by those skilled in the art. It may also be called a terminal, a remote terminal, a handset, a user agent, a mobile client, a client or some other suitable term.
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。 Also, the radio base station in the present specification may be replaced with a user terminal. For example, each aspect / embodiment of the present disclosure may be applied to a configuration in which communication between a wireless base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device). In this case, the user terminal 20 may have a function that the above-described radio base station 10 has. Moreover, the wordings such as "up" and "down" may be read as "side". For example, the upstream channel may be read as a side channel.
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。 Similarly, a user terminal herein may be read at a radio base station. In this case, the radio base station 10 may have a function that the above-described user terminal 20 has.
 本明細書において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present specification, the operation supposed to be performed by the base station may be performed by its upper node in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal may be a base station, one or more network nodes other than the base station (eg, It is apparent that this can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc. but not limited thereto or a combination thereof.
 本明細書において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in this specification may be used alone, may be used in combination, and may be switched and used along with execution. Moreover, as long as there is no contradiction, you may replace the order of the processing procedure of each aspect / embodiment, sequence, flowchart, etc. which were demonstrated in this specification. For example, for the methods described herein, elements of the various steps are presented in an exemplary order and are not limited to the particular order presented.
 本明細書において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect / embodiment described in the present specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) Communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-Wide Band), Bluetooth (registered trademark) And / or systems based on other suitable wireless communication methods and / or extended next generation systems based on these.
 本明細書において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on", as used herein, does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本明細書において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to an element using the designation "first", "second" and the like as used herein does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be taken or that the first element must somehow precede the second element.
 本明細書において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 The term "determining" as used herein may encompass a wide variety of operations. For example, “determination” may be calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data) A search on structure), ascertaining, etc. may be considered as "determining". Also, "determination" may be receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (access) It may be considered as "determining" (eg, accessing data in memory) and the like. Also, “determination” is considered to be “determination” to resolve, select, choose, choose, establish, compare, etc. It is also good. That is, "determination" may be considered as "determining" some action.
 本明細書において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。 As used herein, the terms "connected", "coupled", or any variation thereof, refers to any direct or indirect connection between two or more elements or It means a bond and can include the presence of one or more intermediate elements between two elements "connected" or "connected" to each other. The coupling or connection between elements may be physical, logical or a combination thereof. For example, "connection" may be read as "access".
 本明細書において、2つの要素が接続される場合、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 As used herein, when two elements are connected, using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-exclusive examples, the radio frequency domain It can be considered as "connected" or "coupled" with one another using electromagnetic energy or the like having wavelengths in the microwave region and / or the light (both visible and invisible) regions.
 本明細書において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。 As used herein, the term "A and B are different" may mean "A and B are different from each other". The terms "leave", "combined" and the like may be interpreted similarly.
 本明細書又は請求の範囲において、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 As used herein and in the appended claims, when "including", "comprising", and variations thereof are used, these terms as well as the term "comprising" are inclusive. Intended to be Further, it is intended that the term "or" as used herein or in the claims is not an exclusive OR.
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されないということは明らかである。本発明は、請求の範囲の記載に基づいて定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本発明に対して何ら制限的な意味をもたらさない。
 
Although the present invention has been described above in detail, it is obvious for those skilled in the art that the present invention is not limited to the embodiments described herein. The present invention can be implemented as modifications and changes without departing from the spirit and scope of the present invention defined based on the description of the claims. Therefore, the description in the present specification is for the purpose of illustration and does not provide any limiting meaning to the present invention.

Claims (5)

  1.  1リソースブロック内の一部の連続するサブキャリアに上り制御情報をマッピングする制御を行う制御部と、
     マッピングした前記上り制御情報を送信する送信部と、を有することを特徴とするユーザ端末。
    A control unit that performs control to map uplink control information to a part of continuous subcarriers in one resource block;
    And a transmitter configured to transmit the mapped uplink control information.
  2.  前記制御部は、他のユーザ端末が上り制御情報をマッピングするサブキャリアに少なくとも一端が隣接しないサブキャリアを含むように、前記連続するサブキャリアを決定する請求項1に記載のユーザ端末。 The user terminal according to claim 1, wherein the control unit determines the consecutive subcarriers such that the other user terminal includes a subcarrier whose at least one end is not adjacent to a subcarrier to which uplink control information is mapped.
  3.  前記連続するサブキャリアの数は、前記1リソースブロック内に周波数分割多重されるユーザ端末の数に基づいて決定されることを特徴とする請求項1又は請求項2に記載のユーザ端末。 The user terminal according to claim 1 or 2, wherein the number of consecutive subcarriers is determined based on the number of user terminals to be frequency division multiplexed in the one resource block.
  4.  前記制御部は、前記1リソースブロック内の一部の連続するサブキャリアの複数セットを用いて前記上り制御情報をマッピングする制御を行う請求項1から請求項3のいずれかに記載のユーザ端末。 The user terminal according to any one of claims 1 to 3, wherein the control unit performs control of mapping the uplink control information by using a plurality of sets of partial continuous subcarriers in the one resource block.
  5.  ユーザ端末の無線通信方法であって、
     1リソースブロック内の一部の
    連続するサブキャリアに上り制御情報をマッピングする制御を行うステップと、
     マッピングした前記上り制御情報を送信するステップと、を有することを特徴とする無線通信方法。
     
    A wireless communication method of a user terminal, comprising
    Performing control to map uplink control information to a part of continuous subcarriers in one resource block;
    Transmitting the mapped uplink control information.
PCT/JP2017/029949 2017-08-22 2017-08-22 User equipment and wireless communication method WO2019038832A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/029949 WO2019038832A1 (en) 2017-08-22 2017-08-22 User equipment and wireless communication method
CN201780095910.4A CN111213420A (en) 2017-08-22 2017-08-22 User terminal and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/029949 WO2019038832A1 (en) 2017-08-22 2017-08-22 User equipment and wireless communication method

Publications (1)

Publication Number Publication Date
WO2019038832A1 true WO2019038832A1 (en) 2019-02-28

Family

ID=65438498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029949 WO2019038832A1 (en) 2017-08-22 2017-08-22 User equipment and wireless communication method

Country Status (2)

Country Link
CN (1) CN111213420A (en)
WO (1) WO2019038832A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021023037A1 (en) * 2019-08-07 2021-02-11 上海朗桦通信技术有限公司 Method and apparatus used in node for wireless communication
CN112564870A (en) * 2019-09-26 2021-03-26 华为技术有限公司 Transmission method and device
CN113826415A (en) * 2019-03-15 2021-12-21 株式会社Ntt都科摩 User terminal and wireless communication method
CN113875281A (en) * 2019-03-29 2021-12-31 株式会社Ntt都科摩 User terminal and wireless communication method
CN113892300A (en) * 2019-03-28 2022-01-04 株式会社Ntt都科摩 User terminal and wireless communication method
CN113940107A (en) * 2019-04-09 2022-01-14 株式会社Ntt都科摩 User terminal and wireless communication method
CN114041301A (en) * 2019-05-02 2022-02-11 株式会社Ntt都科摩 User terminal and wireless communication method
CN114128340A (en) * 2019-05-17 2022-03-01 株式会社Ntt都科摩 User terminal and wireless communication method
CN114208248A (en) * 2019-08-14 2022-03-18 株式会社Ntt都科摩 Terminal and communication method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273167A (en) * 2005-03-31 2009-11-19 Ntt Docomo Inc Transmitter, receiver, mobile telecommunication system and transmission control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5059800B2 (en) * 2009-03-16 2012-10-31 株式会社エヌ・ティ・ティ・ドコモ Radio base station apparatus, mobile station apparatus, and radio communication method
CN105119851B (en) * 2015-07-03 2018-11-09 魅族科技(中国)有限公司 Wireless LAN communication method and equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273167A (en) * 2005-03-31 2009-11-19 Ntt Docomo Inc Transmitter, receiver, mobile telecommunication system and transmission control method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On the Design of Long PUCCH for more than 2 bits UCI", 3GPP TSG-RAN WG1 MEETING #90 RL-1714423, 12 August 2017 (2017-08-12), pages 1 - 8, XP051317202, Retrieved from the Internet <URL:http://www.3gpp.org/ ftp/tsg-ran/WG1-RL1/TSGR1-09/Docs/R1-1714423. zip> *
ZTE: "Long PUCCH - more than 2 bits UCI", 3GPP TSG RAN WG1 MEETING #89 RL-1707171, 19 May 2017 (2017-05-19), pages 1 - 4, XP051272386, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg _ ran/WG1 _ RL1/ TSGR1-89/Docs/Rl-1707171.zip> *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113826415B (en) * 2019-03-15 2023-08-08 株式会社Ntt都科摩 User terminal and wireless communication method
CN113826415A (en) * 2019-03-15 2021-12-21 株式会社Ntt都科摩 User terminal and wireless communication method
CN113892300A (en) * 2019-03-28 2022-01-04 株式会社Ntt都科摩 User terminal and wireless communication method
CN113875281B (en) * 2019-03-29 2024-01-02 株式会社Ntt都科摩 User terminal and wireless communication method
CN113875281A (en) * 2019-03-29 2021-12-31 株式会社Ntt都科摩 User terminal and wireless communication method
CN113940107B (en) * 2019-04-09 2023-12-19 株式会社Ntt都科摩 Terminal, wireless communication method and system
CN113940107A (en) * 2019-04-09 2022-01-14 株式会社Ntt都科摩 User terminal and wireless communication method
CN114041301B (en) * 2019-05-02 2023-11-14 株式会社Ntt都科摩 Terminal, wireless communication method and system
CN114041301A (en) * 2019-05-02 2022-02-11 株式会社Ntt都科摩 User terminal and wireless communication method
CN114128340A (en) * 2019-05-17 2022-03-01 株式会社Ntt都科摩 User terminal and wireless communication method
CN114128340B (en) * 2019-05-17 2023-12-26 株式会社Ntt都科摩 User terminal and wireless communication method
WO2021023037A1 (en) * 2019-08-07 2021-02-11 上海朗桦通信技术有限公司 Method and apparatus used in node for wireless communication
CN114208248A (en) * 2019-08-14 2022-03-18 株式会社Ntt都科摩 Terminal and communication method
CN112564870B (en) * 2019-09-26 2022-08-26 华为技术有限公司 Transmission method and device
WO2021057460A1 (en) * 2019-09-26 2021-04-01 华为技术有限公司 Transmission method and apparatus
CN112564870A (en) * 2019-09-26 2021-03-26 华为技术有限公司 Transmission method and device

Also Published As

Publication number Publication date
CN111213420A (en) 2020-05-29

Similar Documents

Publication Publication Date Title
WO2019049282A1 (en) User terminal and radio communication method
WO2019138527A1 (en) User terminal and wireless communication method
WO2019038832A1 (en) User equipment and wireless communication method
WO2019026157A1 (en) User terminal and wireless communications method
WO2019069471A1 (en) User terminal and wireless communication method
WO2019012669A1 (en) Transmission device, receiving device, and radio communication method
WO2019026214A1 (en) User terminal and wireless communications method
WO2018135607A1 (en) User terminal and wireless communication method
JP7264834B2 (en) Terminal, wireless communication method, base station and system
WO2019026215A1 (en) User terminal, wireless base station, and wireless communications method
WO2019021486A1 (en) User terminal, wireless base station and wireless communication method
WO2019102599A1 (en) User equipment and wireless communication method
WO2019012670A1 (en) User terminal and radio communication method
WO2019021473A1 (en) Transmission device, reception device, and wireless communication method
WO2019107547A1 (en) User terminal and wireless communication method
WO2019138555A1 (en) User terminal and wireless communication method
WO2019064569A1 (en) User terminal and radio communication method
WO2019021487A1 (en) User terminal and radio communication method
WO2019026216A1 (en) User terminal and wireless communications method
WO2019069464A1 (en) User terminal and wireless communication method
WO2019187149A1 (en) User terminal and wireless base station
WO2019142330A1 (en) User terminal and wireless communication method
WO2019138510A1 (en) User terminal and wireless communication method
CN111434166B (en) Terminal, wireless communication method, base station and system
JP7467121B2 (en) Terminal, base station, wireless communication method and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP