WO2019155320A1 - Driving method for display device - Google Patents

Driving method for display device Download PDF

Info

Publication number
WO2019155320A1
WO2019155320A1 PCT/IB2019/050693 IB2019050693W WO2019155320A1 WO 2019155320 A1 WO2019155320 A1 WO 2019155320A1 IB 2019050693 W IB2019050693 W IB 2019050693W WO 2019155320 A1 WO2019155320 A1 WO 2019155320A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
region
display device
layer
light
Prior art date
Application number
PCT/IB2019/050693
Other languages
French (fr)
Japanese (ja)
Inventor
山崎舜平
楠紘慈
宍戸英明
井上聖子
福留貴浩
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to CN201980011123.6A priority Critical patent/CN111684515B/en
Priority to KR1020207024006A priority patent/KR20200111215A/en
Priority to JP2019571123A priority patent/JP7267212B2/en
Publication of WO2019155320A1 publication Critical patent/WO2019155320A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • One embodiment of the present invention relates to a display device and a driving method of the display device.
  • one embodiment of the present invention is not limited to the above technical field.
  • a semiconductor device e.g., a display device, a light-emitting device, a power storage device, a memory device, an electronic device, a lighting device, an input device (eg, a touch sensor), an input / output device (eg, a touch panel) ), A driving method thereof, or a manufacturing method thereof can be given as an example.
  • Patent Document 1 discloses a field sequential display method that does not use a color filter.
  • Patent Document 2 discloses a technique in which a transistor using a metal oxide as a semiconductor material is used as a switching element of a pixel of a display device.
  • Another object of one embodiment of the present invention is to provide a liquid crystal display device that suppresses flicker. Another object of one embodiment of the present invention is to provide a liquid crystal display device with a high aperture ratio. Another object of one embodiment of the present invention is to provide a liquid crystal display device with low power consumption. Another object of one embodiment of the present invention is to provide a high-definition liquid crystal display device. Another object of one embodiment of the present invention is to provide a highly reliable liquid crystal display device. Another object is to provide a liquid crystal display device capable of stable operation in a wide temperature range.
  • One embodiment of the present invention is a method for driving a display device, which is a method for driving a display device having a first display region.
  • the first display area has a plurality of second areas and a plurality of third areas.
  • the second region and the third region are alternately present.
  • the second area is an area where display data is updated and is not displayed.
  • the third area is an area where an image is displayed.
  • the second region and the third region move in one direction, the plurality of second regions have a period selected at the same time for updating the display data, and the plurality of third regions are simultaneously
  • It is a method for driving a display device that is driven so as to be displayed.
  • the first display area has a plurality of light shielding areas.
  • the light shielding region is provided between the second region and the third region.
  • the light shielding area can suppress the second area from being erroneously displayed by the light of the third area.
  • the area of the non-display area that is the third area may be different from that of the display area that is the second area.
  • the first display area includes an area that shifts from a display state to a non-display state, an area that maintains the display state, and an area that shifts from the non-display state to the display state.
  • the plurality of third regions transmit light of different hues.
  • the first display area has a plurality of pixels.
  • the pixel includes a transistor.
  • the transistor includes a metal oxide in a semiconductor layer.
  • a liquid crystal display device that suppresses flickering can be provided.
  • a liquid crystal display device with a high aperture ratio can be provided.
  • a liquid crystal display device with low power consumption can be provided.
  • a high-definition liquid crystal display device can be provided.
  • a highly reliable liquid crystal display device can be provided.
  • a liquid crystal display device capable of stable operation over a wide temperature range can be provided.
  • FIGS. 5A and 5B are diagrams illustrating examples of display areas.
  • FIG. 5B illustrates an example of a display device.
  • FIG. 6 is a circuit diagram illustrating an example of a display device.
  • A A circuit diagram showing an example of a pixel.
  • B Timing chart.
  • C A circuit diagram showing an example of a pixel. Timing chart. Timing chart.
  • FIG. 11 is a block diagram illustrating an example of an electronic device.
  • FIG. 4A is a perspective view illustrating an example of a display device.
  • FIG. 4A Three views showing a display device.
  • FIG. 4A is a perspective view illustrating an example of a display device.
  • B Three views showing a display device.
  • FIGS. 5A to 5C each illustrate an example of an electronic device.
  • FIGS. 5A to 5C each illustrate an example of an electronic device.
  • FIGS. 5A and 5B each illustrate an example of an electronic device.
  • FIGS. 5A and 5B each illustrate an example of an electronic device.
  • film and “layer” can be interchanged with each other depending on circumstances or circumstances.
  • conductive layer can be changed to the term “conductive film”.
  • insulating film can be changed to the term “insulating layer”.
  • a high power supply voltage may be referred to as an H level (or V DD ), and a low power supply voltage may be referred to as an L level (or GND).
  • the displayable area includes a plurality of non-display areas, a plurality of display areas, and a plurality of light shielding areas 10c.
  • the display panel 10a has a plurality of pixels.
  • the displayable area includes a non-display area 20 (with hatching) and a display area 21 (without hatching).
  • the non-display area 20 and the display area 21 are alternately present.
  • the display data is updated in the non-display area 20, and the image is displayed in the display area 21.
  • the non-display area 20 and the display area 21 move in one direction, and the plurality of display areas 21 can be driven to be displayed simultaneously.
  • the non-display area 20 is updated with the image data B1a, and the display area 21 is displayed with the image data B1b. In the display area for displaying the image data, the non-display state is clearly indicated by hatching.
  • the non-display area 20 is updated with the image data R1a, a part of the display area 21 is displayed with the image data R1b, and the display area 21 is different. The area is displayed as image data R1c.
  • FIG. 1A shows an example in which the non-display area 20 has the same area as the display area 21, but the non-display area 20 may not necessarily have the same area as the display area 21. As shown in FIG. 1B, the non-display area 20 may have a different area from the display area 21.
  • FIG. 1B a region in which a part of the display area 21 moves to the non-display area 20, an area that continues to be displayed as the display area 21, an area in which the non-display area 20 moves to the display area 21,
  • the drive method which has is shown.
  • Each display area 21 can simultaneously display light of different hues. Therefore, in the one frame period in which the display area of the display panel 10a is updated with image data, a plurality of display areas 21 can be displayed while moving in a wave shape.
  • ⁇ Lights of different hues are displayed at the same time and move wavy with time.
  • the human eye recognizes light of different hues displayed at the same time and light integrated by moving in a wave shape with time. Note that the human eye recognizes light that moves with time as integrated luminance.
  • the display panel 10 a having a plurality of display areas 21 the lights displayed in the display areas 21 are combined and integrated according to the size of the area of the display area 21. Furthermore, light of different hues can be synthesized and integrated while the display area 21 moves in a wave shape.
  • the integrated luminance is generated using a large area, flickering or color breaks due to afterimages are likely to occur.
  • the integrated luminance generated in each display area 21 with a small area can suppress flickering and improve display quality.
  • the non-display area 20 and the display area 21 each have a plurality of pixels.
  • the plurality of non-display areas 20 have periods selected at the same time for updating the display data, and the image data is updated, and the respective pixels included in the display area 21 are simultaneously displayed.
  • the pixels included in the display area 21 and the pixels included in the non-display area 20 exist in the vicinity, the light in the display area 21 may be given to the pixels in the non-display area as stray light.
  • the display area of the display panel 10a preferably includes a plurality of light shielding areas 10c.
  • the light shielding region 10 c is provided between the non-display region 20 and the display region 21, and the light shielding region 10 c is disposed at a position in contact with the non-display region 20.
  • the light shielding area 10 c has an effect of suppressing stray light from being displayed on the display area 21 from affecting the non-display area 20.
  • the non-display area 20 is displayed due to stray light, display blur or the like occurs in the non-display area 20 in contact with the display area 21 and the display quality is deteriorated. Therefore, by providing the light shielding region 10c, stray light from the display region 21 can be suppressed and display quality can be improved.
  • the display panel 10a included in the display device will be described in detail.
  • FIG. 2A an example in which the display panel 10a includes the non-display areas 20R, 20G, and 20B and the display areas 21R, 21G, and 21B will be described in order to simplify the description.
  • the display panel 10a has image data R0b, G0a, G0b, B0a, B0b, R1a, R1b, and the image data R1a, R1b will be described as image data of the next frame. Therefore, the gradation of the image data R0b, R1a, R1b is preferably controlled by different image data.
  • FIG. 2B is a diagram illustrating an example of the display device 10.
  • the display device 10 includes a display panel 10a, a gate driver 11, a source driver 12, and a light unit 13.
  • the display panel 10a includes a plurality of scanning lines G, a plurality of signal lines S, and a plurality of pixels P.
  • the display panel 10a has m pixels (m is an integer of 1 or more) in the column direction, n pixels in the row direction (n is an even number of 1 or more), and a total of m ⁇ n pixels P.
  • the scanning line G has n rows, and the signal line S has m columns.
  • the gate driver 11 can simultaneously select pixels in adjacent rows connected to the scanning line G.
  • the pixels in adjacent rows are not limited to two pixels, and three or more pixels can be selected simultaneously.
  • the scanning line G (jr) can select a plurality of pixels electrically connected to the yr row extending in the column direction and a plurality of pixels electrically connected to the yr + 1 row. .
  • the scanning line G (jg) selects a plurality of pixels electrically connected to the yg row extending in the column direction and a plurality of pixels electrically connected to the yg + 1 row. be able to.
  • the scanning line G (jb) selects a plurality of pixels electrically connected to the yb row extending in the column direction and a plurality of pixels electrically connected to the yb + 1 row. be able to.
  • jr, jg, and jb are integers of 1 to n / 2
  • x is an integer of 1 to m
  • yr, yg, and yb are odd numbers of 1 to n.
  • the light unit 13 has at least three kinds of light of different hues.
  • FIG. 2B shows an example having hues (LR: red, LG: green, LB: blue), but as light of different hues (LW: white, LC: cyan, LM: magenta, LY: Yellow) and the like.
  • the hue of the light unit 13 can be combined according to the hue used for display. For example, the hue (LR: red, LG: green, LB: blue) may be combined with the hue (LW: white) as a complementary color, or only one of them may be used.
  • the light unit 13 is preferably capable of emitting a plurality of different lights from different openings. The light emitted from the different openings is given to the different display areas 20.
  • the source driver 12 may not be formed on the same substrate as the display panel 10 a and the gate driver 11.
  • the source driver 12 may be connected to a substrate on which the display panel 10a and the gate driver 11 are formed via a flexible printed circuit board.
  • FIG. 2B shows the relationship between the non-display areas 20G, 20B, and 20R, the display areas 21R, 21G, and 21B of the display panel 10a of FIG. Yes.
  • the scanning line G (jr) when the scanning line G (jr) is selected, the image data of a plurality of pixels connected to the yr row extending in the column direction and the yr + 1 row are simultaneously updated.
  • the scanning line G (jg) the image data of a plurality of pixels connected to the yg row extending in the column direction and the yg + 1 row are simultaneously updated.
  • the scanning line G (jr) the image data of a plurality of pixels connected to the yb row extending in the column direction and the yb + 1 row are updated simultaneously.
  • the pixels in the row selected by the scanning line correspond to the non-display area 20 (with hatching), and the pixels whose image data has not been updated are areas where the light unit 13 is lit as the display area 21 (without hatching). It is. However, for example, when the hue LR of the light unit 13 is turned on, the other hues are preferably turned off. In each display area 21, it is preferable to select a hue to be lit according to the image data updated in the non-display area 20. Note that two or more hues can be turned on simultaneously to combine lights of different hues.
  • the image data of a plurality of pixels connected to the yr-th row and the yr + 1-th row be updated during a period when the hue LR of the light unit 13 is not lit.
  • FIG. 2B shows an example in which the image data of a plurality of pixels connected to the yr row and the yr + 1 row are updated immediately after the hue LR of the light unit 13 is turned off.
  • the update timing of the pixel image data is not limited.
  • FIG. 3 shows a more detailed circuit diagram of the display panel 10a shown in FIG. Note that in FIG. 3, in order to simplify the explanation, as an example, the scanning line G1 (jg), the pixel P (x, yg) electrically connected to the scanning line G2 (jg), and the pixel P ( x, yg + 1) will be described.
  • the pixel P (x, yg) includes a transistor 101, a transistor 102, a capacitor 104, and a display element 24. A detailed description of the display element 24 will be given with reference to FIG.
  • the gate of the transistor 101 is electrically connected to the scanning line G1 (jg).
  • One of a source and a drain of the transistor 101 is electrically connected to the signal line S1 (i).
  • the other of the source and the drain of the transistor 101 is electrically connected to one of the electrodes of the capacitor 104 and the display element 24.
  • a gate of the transistor 102 is electrically connected to the scan line G2 (jg).
  • One of a source and a drain of the transistor 102 is electrically connected to the signal line S2 (i).
  • the other of the source and the drain of the transistor 102 is electrically connected to the other of the electrodes of the capacitor 104.
  • the pixel P (x, yg + 1) is electrically connected to the scanning line G1 (jg) and the scanning line G2 (jg).
  • the pixel P (x, yg + 1) is different from the pixel P (x, yg) in that it is electrically connected to the signal line S1 (i + 1) and the signal line S2 (i + 1). That is, the scanning line G can simultaneously select a plurality of rows, and different signal lines S for simultaneously updating image data are connected to the pixels connected to the scanning line.
  • the signal lines are connected from different directions is shown, but the signal lines may be connected from the same direction.
  • the pixel layout is arranged symmetrically. Therefore, there is an effect of widening the viewing angle of the display panel 10a.
  • FIG. 4 the pixel is described in detail.
  • the operation of the display element 24 and the pixel will be described, and the description of the pixel connection described in FIG. 3 will be omitted.
  • the pixel included in the display device of one embodiment of the present invention has a function of adding a correction signal to image data.
  • the correction signal is added to the image data by capacitive coupling and supplied to the liquid crystal element. Therefore, the corrected image can be displayed on the liquid crystal element.
  • the liquid crystal element can express more gradations than can be expressed using only image data.
  • the liquid crystal element can be driven at a voltage higher than the output voltage of the source driver 12 by the correction. Since the voltage supplied to the liquid crystal element can be changed to a desired value within the pixel, the existing source driver 12 can be diverted, and the cost for newly designing the source driver 12 can be reduced. Moreover, since it can suppress that the output voltage of the source driver 12 becomes high, the power consumption of the source driver 12 can be reduced.
  • the display device By driving the liquid crystal element by applying a high voltage, the display device can be used in a wide temperature range, and display can be performed with high reliability in both a low temperature environment and a high temperature environment.
  • the display device can be used as an on-vehicle display device or a camera display device.
  • a high voltage can be applied to drive the liquid crystal element. Therefore, a liquid crystal material having a high driving voltage such as a liquid crystal exhibiting a blue phase can be used.
  • the liquid crystal element can be driven by applying a high voltage, the response speed can be improved by overdrive driving.
  • the correction signal is generated by, for example, an external device and written to each pixel.
  • the correction signal may be generated in real time using an external device, or the correction signal stored in the recording medium may be read out and synchronized with the image data.
  • the image data to be supplied is not changed, and new image data can be generated from the pixel to which the correction signal is supplied.
  • the load on the external device can be reduced.
  • an operation for generating new image data with pixels can be performed with few steps, and a display device with a large number of pixels and a short horizontal period can be used.
  • the display element 24 includes a liquid crystal element 24 a and a capacitor element 105.
  • One of the electrodes of the liquid crystal element 24 a is electrically connected to one of the electrodes of the capacitor 105, one of the electrodes of the capacitor 104, and the other of the source or the drain of the transistor 101.
  • the common electrode COM is electrically connected to the other electrode of the liquid crystal element 24 a and the other electrode of the capacitor 105.
  • the node NA is a node connected to one of the electrodes of the liquid crystal element 24 a, one of the electrodes of the capacitor 105, one of the electrodes of the capacitor 104, and the other of the source and the drain of the transistor 101.
  • FIG. 4B is a timing chart when the pixels are updated with image data.
  • the transistor 101 and the transistor 22 are turned on by signals given to the scanning lines G1 and G2.
  • An initialization voltage Vr corresponding to a gradation value of 0 is applied to the signal line S2, and image data Vp is applied to the signal line S1.
  • the image data Vp is held in the node NA.
  • the transistor 101 is turned off by a signal given to the scanning line G1, and the transistor 102 is kept on by the signal given to the scanning line G2.
  • Image data Vs is applied to the signal line S2.
  • the node NA is changed to the potential Vs + Vp by adding the image data Vs to the image data Vp due to capacitive coupling via the capacitive element 104.
  • the transistor 102 is turned off by a signal applied to the scanning line G2. Therefore, the potential Vs + Vp is held at the node NA.
  • the transistor 101 and the transistor 102 are preferably transistors with low off-state current.
  • the transistor with low off-state current a transistor including a metal oxide in a semiconductor layer described in Embodiment 2 is preferably used.
  • FIG. 4C illustrates an example in which the transistor 101a and the transistor 102a each have a back gate.
  • FIG. 4C illustrates an example in which the gate of the transistor is electrically connected to the back gate of the transistor.
  • the connection destination of the back gate is not limited to the gate of the transistor.
  • the back gate may be connected to the source or the drain of the transistor, or may be connected to a wiring that can be controlled from the outside.
  • FIG. 5 illustrates the operation of the circuit described in FIG. 3 using a timing chart.
  • image data is given to the pixel P (x, yg)
  • the image data given via the signal line S1 is represented as image data D (x, yg)
  • the image data given via the signal line S2 is It is expressed as image data DW (x, yg).
  • a signal of “H” is given to the scanning line G1 (jg ⁇ 1) and the scanning line G2 (jg ⁇ 1).
  • the pixel P (x, yg-2) is supplied with the image data D (x, yg-2) via the signal line S1 (i), and the initialization voltage Vr via the signal line S2 (i). Is given.
  • the pixel P (x, yg ⁇ 1) is supplied with the image data D (x, yg ⁇ 1) via the signal line S1 (i + 1), and the initialization voltage Vr via the signal line S2 (i + 1). Is given.
  • an "L” signal is applied to the scanning line G1 (jg-1) and an "H” signal is applied to the scanning line G2 (jg-1).
  • Image data DW (x, yg-2) is given to the pixel P (x, yg-2) via the signal line S2 (i).
  • Image data DW (x, yg-1) is given to the pixel P (x, yg-1) via the signal line S2 (i + 1).
  • calculation of image data D (x, yg-2) + image data DW (x, yg-2) is performed on the display element. Is called.
  • calculation of image data D (x, yg ⁇ 1) + image data DW (x, yg ⁇ 1) is performed on the display element.
  • the gate driver 11 can update the image data by repeating the same operation at the time T11 and the time T12 according to the selected row.
  • the image data of the pixel P (x, yg) and pixel P (x, yg + 1) is updated, and at time T15 and time T16, the pixel P (x, yg + 2) and pixel P (x , Yg + 3) image data can be updated.
  • FIG. 6 illustrates a method for updating image data in different non-display areas 20. It can be determined that the image data is updated at the same time even if the image data of the pixel is updated at different timings as long as the light unit is turned off. Note that image data of pixels in different non-display areas 20 is updated via signal lines S1 (i) and S2 (i).
  • the pixel P (x, yr) to the pixel P (x, yr + 3), the pixel P (x, yg) to the pixel P (x, yg + 3), and the pixel P (x, yb) to pixel P (x, yb + 3) will be described.
  • the yr row, the yg row, or the yb row belong to different non-display areas 20.
  • an “H” signal is applied to the scanning lines G1 (jr) and G2 (jr).
  • the pixel P (x, yr) is supplied with the image data D (x, yr) through the signal line S1 (i) and the initialization voltage Vr through the signal line S2 (i).
  • the pixel P (x, yr + 1) is supplied with the image data D (x, yr + 1) via the signal line S1 (i + 1) and the initialization voltage Vr via the signal line S2 (i + 1).
  • a signal “H” is given to the scanning line G1 (jg) and the scanning line G2 (jg). Further, an “L” signal is supplied to the scanning line G1 (jr), and an “H” signal is supplied to the scanning line G2 (jr).
  • the pixel P (x, yg) is supplied with the image data D (x, yg) via the signal line S1 (i) and the initialization voltage Vr via the signal line S2 (i).
  • the pixel P (x, yg + 1) is supplied with the image data D (x, yg + 1) via the signal line S1 (i + 1) and the initialization voltage Vr via the signal line S2 (i + 1).
  • a signal of “H” is given to the scanning line G1 (jb) and the scanning line G2 (jb). Further, an “L” signal is supplied to the scanning line G1 (jr), and an “H” signal is supplied to the scanning line G2 (jr). In addition, an “L” signal is applied to the scanning line G1 (jg), and an “H” signal is applied to the scanning line G2 (jg).
  • the pixel P (x, yb) is supplied with the image data D (x, yb) via the signal line S1 (i) and the initialization voltage Vr via the signal line S2 (i).
  • the pixel P (x, yb + 1) is supplied with the image data D (x, yb + 1) via the signal line S1 (i + 1) and the initialization voltage Vr via the signal line S2 (i + 1).
  • an “L” signal is applied to the scanning line G1 (jr), and an “H” signal is applied to the scanning line G2 (jr). Further, an “L” signal is supplied to the scanning line G1 (jr), and an “H” signal is supplied to the scanning line G2 (jr). In addition, an “L” signal is supplied to the scanning line G1 (jb), and an “H” signal is supplied to the scanning line G2 (jb).
  • Image data DW (x, yr) is given to the pixel P (x, yr) via the signal line S2 (i).
  • Image data DW (x, yr + 1) is given to the pixel P (x, yr + 1) via the signal line S2 (i + 1).
  • an “L” signal is supplied to the scanning line G1 (jr) and the scanning line G2 (jr). Further, an “L” signal is applied to the scanning line G1 (jg), and an “H” signal is applied to the scanning line G2 (jg). In addition, an “L” signal is applied to the scanning line G1 (jb) and an “H” signal is applied to the scanning line G2 (jb).
  • Image data DW (x, yg) is given to the pixel P (x, yg) via the signal line S2 (i).
  • Image data DW (x, yg + 1) is given to the pixel P (x, yg + 1) via the signal line S2 (i + 1).
  • an "L” signal is given to the scanning line G1 (jr) and the scanning line G2 (jr).
  • An “L” signal is supplied to the scanning line G1 (jg) and the scanning line G2 (jg). Further, an “L” signal is applied to the scanning line G1 (jb), and an “H” signal is applied to the G2 (jb).
  • Image data DW (x, yb) is given to the pixel P (x, yb) via the signal line S2 (i).
  • Image data DW (x, yb + 1) is given to the pixel P (x, yb + 1) via the signal line S2 (i + 1).
  • the gate dry 11 can update the image data by repeating the same operation from the time T21 to the time T26 according to the row of the scanning line to be selected. For example, from time T27 to time T32, the pixel P (x, yr + 2), the pixel P (x, yr + 3), the pixel P (x, yg + 2), the pixel P (x, yg + 3), the pixel P (x, yb + 2), and The image data of the pixel P (x, yb + 3) can be updated.
  • FIG. 7 shows a block diagram of the electronic device 30.
  • the electronic device 30 includes a display device 10, a source driver 12, a light unit 13, a timing generation circuit 14, a display controller 15, a storage device 16, a processor 17, a communication module 18, a sensor 19, and an image sensor 20.
  • the display device 10 includes a display panel 10a, a gate driver 11, a source driver 12, and a light unit 13.
  • the gate driver 11 or the source driver 12 does not have to be formed on the same substrate as the display panel 10a, and may be separately formed to be an IC.
  • the connection method of the gate driver 11 or the source driver 12 made into an IC is not particularly limited, and a COG (Chip On Glass) method, a wire bonding method, a TAB (Tape Automated Bonding) method, or the like may be used. it can.
  • the timing generation circuit 14 has a function of generating a timing signal for displaying the display device 10 and a function of controlling display and non-display of the light unit 13 in synchronization with the image data of the source driver 12.
  • the display controller 15 has a function of converting data received from the communication module 18 via the storage device 16 or the processor 17 into image data.
  • the communication module 18 has a wireless communication function and a wired communication function. Therefore, the electronic device 30 transmits / receives data to / from the data server using either wireless communication or wired communication. For example, when performing wireless communication, data can be transmitted and received using a carrier wave.
  • sensors examples include a temperature sensor, a humidity sensor, a strain sensor, a heat flow sensor, an optical sensor, a gas sensor, a pressure sensor, a displacement sensor, an acceleration sensor, a flow velocity sensor, a rotation sensor, a density sensor, and a gyro sensor.
  • an ultrasonic sensor, an optical fiber sensor, a biosensor, an odor sensor, a taste sensor, an iris sensor, a fingerprint authentication sensor, a palm print authentication sensor, a vein authentication sensor, or the like can be used.
  • the sensor provided in the sensor 19 may be a micro electro mechanical system (MEMS).
  • MEMS micro electro mechanical system
  • the image sensor 20 has a function of acquiring an image, and the acquired image can be displayed on the display device via the storage device 16 or the processor 17.
  • FIG. 8A shows a perspective view of the display device 10.
  • the display device 10 includes a display panel 10a, an adhesive layer 10b, a light guide layer 10d, and a light unit 13a.
  • the gate driver 11 is formed on the same substrate as the display panel 10a.
  • the adhesive layer 10b is provided with a black matrix or the like for forming a light shielding region 10c disposed between the non-display region 20 and the display region 21.
  • the black matrix is arranged at a position overlapping the scanning lines G1 and G2.
  • the light unit 13a has a plurality of openings 13b, and can emit a plurality of different lights from the different openings 13b.
  • the light emitted from the opening 13b can be emitted by switching light of hue (LR: red, LG: green, LB: blue).
  • emitted from the opening part 13b may add the light of a different hue, and may combine several different light.
  • the shape of the opening 13b is indicated by a circle in FIG. A shape having a plurality of sides may be used, and a corner formed by two sides may be rounded.
  • the interval ⁇ d between the light shielding regions 10c is preferably the same as the interval between the pixels connected to the scanning lines that can be simultaneously selected by the gate driver 11 or the interval between the openings 13b of the light unit 13a.
  • the center of each opening 13b of the light unit 13a is preferably arranged at a position overlapping the center of the interval ⁇ d of the light shielding region 10c.
  • the light guide layer 10d can uniformly supply the light of the light unit 13a to the display panel 10a.
  • the light L1 and the light L2 emitted from the light unit 13a are emitted to the display panel 10a with the same luminance.
  • the light of the light unit 13a emitted to the light guide layer 10d can be prevented from diffusing by the light shielding region 10c disposed on the adhesive layer 10b.
  • Light in the display area 21 can be prevented from leaking to the non-display area 20 as stray light, and display defects such as display flickering can be suppressed.
  • the adhesive layer 10b has a function of adhering the light guide layer 10d to the display panel 10a. Furthermore, the adhesive layer 10b may have a function of diffusing light.
  • FIG. 8B is a three-side view of the display device 10.
  • a light-transmitting counter substrate 10e is disposed on the upper side of the display panel 10a.
  • a black matrix may be disposed as the light shielding region 10f at a position overlapping the scanning lines G1 and G2.
  • the display device 10 illustrated in FIG. 8B illustrates an example in which the display panel 10a, the adhesive layer 10b, and the light guide layer 10d are disposed at overlapping positions.
  • the light unit 13a is provided at a position where the light unit 13a is located on the side surface of the display panel and emits light to the light guide.
  • the light unit 13a may be provided at a position for emitting light to the side surface of the display panel 10a. In that case, the adhesive layer 10b and the light guide layer 10d may not be provided.
  • FIG. 9 shows a display device 10 different from FIG.
  • the display device 10 of FIG. 9 is different in that the light shielding region 10 g is provided in the light guide layer 10 d and the light unit 13 c is disposed at a position overlapping the gate driver 11. Furthermore, the light unit 13c is different from the opening 13b that emits light of a plurality of hues, and includes an LED (Light Emitting Diode) that emits light of each hue as it is to the light guide layer 10d.
  • LED Light Emitting Diode
  • LEDs having a plurality of hues are arranged in the light unit 13c in the interval ⁇ d of the light shielding region 10g.
  • Light emitted from the LED can be emitted by switching light of a hue (LR: red, LG: green, LB: blue).
  • emitted from LED may add the light of a different hue, and may combine several different light.
  • the LEDs are arranged in parallel with the display panel 10a, but the LEDs may be arranged in a vertical product.
  • FIG. 9 shows an example in which the display panel 10a displays six display areas simultaneously.
  • the number of display areas that the display panel 10a displays simultaneously is not limited. By applying the timing chart shown in FIG. 6, more display areas can be displayed simultaneously.
  • the light shielding regions 10c, 10f, and 10g can be used either alone or in combination. By combining a plurality of light shielding regions, light leakage such as stray light can be reduced. Thus, a display device having favorable display quality that can suppress display flicker and the like can be obtained. Note that although not described in FIG. 8 or FIG. 9, a black matrix having a function of a light shielding region may be provided in the display panel 10a.
  • FIG. 10 shows a display device 10 different from those shown in FIGS. FIG. 10 differs in having a light unit 13d on the lower side of the display panel 10a.
  • the light unit 13d has a plurality of openings 13b, and can emit light of a plurality of hues from the openings 13b.
  • the hue can be synthesized and the integrated luminance can be generated in a small area, so that it can be operated at high speed. Thus, even better display quality can be obtained.
  • each pixel can display light of a plurality of hues, a color filter is not necessary. Therefore, since a sub pixel for each hue is not required, the definition can be increased. Therefore, higher definition display quality can be obtained. Further, by increasing the aperture ratio, the light extraction efficiency is improved. Accordingly, the luminance of the light unit 13 can be lowered, and the power consumption can be reduced.
  • FIG. 11A is a cross-sectional view of a transmissive liquid crystal display device.
  • a liquid crystal display device illustrated in FIG. 11A includes a substrate 31, a transistor 101, a transistor 102, an insulating layer 215, a conductive layer 46, an insulating layer 44, a pixel electrode 41, an insulating layer 45, a common electrode 43, a liquid crystal layer 42, and A substrate 32 is provided.
  • the transistor 101 and the transistor 102 are located on the substrate 31.
  • the insulating layer 215 is located over the transistor 101 and the transistor 102.
  • the conductive layer 46 is located on the insulating layer 215.
  • the insulating layer 44 is located over the transistor 101, the transistor 102, the insulating layer 215, and the conductive layer 46.
  • the pixel electrode 41 is located on the insulating layer 44.
  • the insulating layer 45 is located on the pixel electrode 41.
  • the common electrode 43 is located on the insulating layer 45.
  • the liquid crystal layer 42 is located on the common electrode 43.
  • the common electrode 43 has a region overlapping the conductive layer 46 with the pixel electrode 41 interposed therebetween.
  • the pixel electrode 41 is electrically connected to the source or drain of the transistor 101.
  • the conductive layer 46 is electrically connected to the source or drain of the transistor 102.
  • the conductive layer 46, the pixel electrode 41, and the common electrode 43 each have a function of transmitting visible light.
  • the pixel electrode 41 and the common electrode 43 are stacked with an insulating layer 45 interposed therebetween, and operate in an FFS (Fringe Field Switching) mode.
  • the pixel electrode 41, the liquid crystal layer 42, and the common electrode 43 can function as the liquid crystal element 106.
  • the conductive layer 46, the insulating layer 44, and the pixel electrode 41 can function as one capacitor element 104. Further, the pixel electrode 41, the insulating layer 45, and the common electrode 43 can function as one capacitor 105. As described above, the liquid crystal display device of this embodiment includes two capacitors in a pixel.
  • the two capacitive elements are both made of a material that transmits visible light and have regions that overlap each other.
  • the pixel can have a high aperture ratio and further have a plurality of storage capacitors.
  • the aperture ratio of the transmissive liquid crystal display device also referred to as the aperture ratio of pixels
  • the light extraction efficiency can be increased by increasing the aperture ratio. Thereby, the power consumption of a liquid crystal display device can be reduced.
  • the capacity of the capacitor 104 is preferably larger than the capacity of the capacitor 105.
  • the area of the region where the pixel electrode 41 and the conductive layer 46 overlap is preferably larger than the area of the region where the pixel electrode 41 and the common electrode 43 overlap.
  • the thickness T1 of the insulating layer 44 located between the conductive layer 46 and the pixel electrode 41 is preferably thinner than the thickness T2 of the insulating layer 45 located between the pixel electrode 41 and the common electrode 43. .
  • FIG. 11B illustrates an example in which the touch sensor TC is mounted on the display device illustrated in FIG.
  • a detection element also referred to as a sensor element
  • various methods such as a capacitance method, a resistance film method, a surface acoustic wave method, an infrared method, an optical method, and a pressure-sensitive method can be used.
  • the capacitance method there are a surface capacitance method, a projection capacitance method, and the like.
  • examples of the projected capacitance method include a self-capacitance method and a mutual capacitance method.
  • the mutual capacitance method is preferable because simultaneous multipoint detection is possible.
  • the touch panel of one embodiment of the present invention includes a structure in which a separately manufactured display device and a detection element are bonded, a structure in which an electrode or the like that forms the detection element is provided on one or both of the substrate that supports the display element and the counter substrate, and the like Various configurations can be applied.
  • FIG. 12A is a top view of the stacked structure from the gate 221a and the gate 221b to the common electrode 43a as viewed from the common electrode 43a side.
  • 12B is a top view in which the common electrode 43a is removed from the stacked structure in FIG. 12A
  • FIG. 12C is the common electrode 43a and the pixel electrode 41 in the stacked structure in FIG. FIG.
  • the pixel has a connection part 73 and a connection part 74.
  • the pixel electrode 41 is electrically connected to the transistor 101.
  • the conductive layer 222a functioning as the source or drain of the transistor 101 is in contact with the conductive layer 46b, and the conductive layer 46b is in contact with the pixel electrode 41.
  • the conductive layer 46 a is electrically connected to the transistor 102.
  • the conductive layer 46 a is in contact with the conductive layer 222 c functioning as the source or drain of the transistor 102.
  • the common electrode 43a may have one or a plurality of slits, or may have a comb-like upper surface shape.
  • a common electrode 43a illustrated in FIG. 12A has an upper surface shape provided with a plurality of slits.
  • the pixel electrode 41 has both a region overlapping with the common electrode 43a and a region not overlapping with the common electrode 43a.
  • the pixel electrode 41 may have one or a plurality of slits, or may have a comb-like upper surface shape. Since the area overlapping with the common electrode 43a can be widened, the pixel electrode 41 is preferably formed with a wide area. Therefore, the pixel electrode 41 is preferably formed in an island shape without a slit.
  • FIG. 13 shows a cross-sectional view of the display module. Note that the cross-sectional structure of the pixel corresponds to a cross-sectional view taken along dashed-dotted line B1-B2 in FIG.
  • the display module shown in FIG. 13 includes a display device 10, an FPC 172, and the like.
  • the display device 10 is an active matrix liquid crystal display device to which the FFS mode is applied.
  • the display device 10 is a transmissive liquid crystal display device.
  • the display device 10 includes a substrate 31, a substrate 32, a transistor 102, a conductive layer 46a, a conductive layer 46b, an insulating layer 44, an insulating layer 45, a pixel electrode 41, a liquid crystal layer 42, a common electrode 43a, a conductive layer 43b, a conductive layer 222e, An alignment film 133a, an alignment film 133b, an adhesive layer 141, an overcoat 135, a light shielding layer 38, an adhesive layer 10b, a light guide layer 10d, and the like are included.
  • the transistor 101 and the transistor 102 are located on the substrate 31.
  • the transistor 101 includes a gate 221a, a gate insulating layer 211, a semiconductor layer 231a, a conductive layer 222a, a conductive layer 222b, an insulating layer 212, an insulating layer 213, a gate insulating layer 225a, and a gate 223a.
  • the transistor 102 includes a gate 221b, a gate insulating layer 211, a semiconductor layer 231b, a conductive layer 222c, a conductive layer 222d, an insulating layer 212, an insulating layer 213, a gate insulating layer 225b, and a gate 223b.
  • the transistor 101 and the transistor 102 illustrated in FIG. 13 have gates above and below the channel.
  • the two gates are preferably electrically connected.
  • a transistor in which two gates are electrically connected can have higher field-effect mobility than another transistor, and can increase on-state current.
  • the area occupied by the circuit portion can be reduced.
  • signal delay in each wiring can be reduced and display unevenness can be suppressed even if the number of wirings is increased by increasing the size or definition of the display device. Is possible.
  • the display device can be narrowed.
  • a highly reliable transistor can be realized.
  • the semiconductor layer 231 (231a, 231b) includes a pair of low resistance regions 231n and a channel formation region 231i sandwiched between the pair of low resistance regions 231n.
  • the channel formation region 231i overlaps with the gate 221 (221a, 221b) through the gate insulating layer 211 and overlaps with the gate 223 (223a, 223b) through the gate insulating layer 225 (225a, 225b).
  • the gate insulating layer 211 and the gate insulating layer 225 in contact with the channel formation region 231i are preferably oxide insulating layers. Note that in the case where the gate insulating layer 211 or the gate insulating layer 225 has a stacked structure, it is preferable that at least a layer in contact with the channel formation region 231i be an oxide insulating layer. Accordingly, generation of oxygen vacancies in the channel formation region 231i can be suppressed, and the reliability of the transistor can be improved.
  • One or both of the insulating layer 213 and the insulating layer 214 is preferably a nitride insulating layer. Thus, impurities can be prevented from entering the semiconductor layer 231 and the reliability of the transistor can be increased.
  • the insulating layer 215 preferably has a planarization function, and is preferably an organic insulating layer, for example. Note that one or both of the insulating layer 214 and the insulating layer 215 are not necessarily formed.
  • the low resistance region 231n has a lower resistivity than the channel formation region 231i.
  • the low resistance region 231n is a region in contact with the insulating layer 212 in the semiconductor layer 231.
  • the insulating layer 212 preferably contains nitrogen or hydrogen. Thereby, nitrogen or hydrogen in the insulating layer 212 enters the low resistance region 231n, and the carrier concentration of the low resistance region 231n can be increased.
  • the low resistance region 231n may be formed by adding an impurity using the gate 223 as a mask. Examples of the impurity include hydrogen, helium, neon, argon, fluorine, nitrogen, phosphorus, arsenic, antimony, boron, and aluminum.
  • the impurity is added by an ion implantation method or an ion doping method. Can do.
  • the low resistance region 231n may be formed by adding indium or the like which is one of the constituent elements of the semiconductor layer 231. By adding indium, the concentration of indium may be higher in the low resistance region 231n than in the channel formation region 231i.
  • a first layer is formed so as to be in contact with a part of the semiconductor layer 231, and heat treatment is performed, so that the resistance of the region is reduced.
  • a resistance region 231n can be formed.
  • a film containing at least one of metal elements such as aluminum, titanium, tantalum, tungsten, chromium, and ruthenium can be used.
  • metal elements such as aluminum, titanium, tantalum, and tungsten is preferably included.
  • a nitride containing at least one of these metal elements or an oxide containing at least one of these metal elements can be preferably used.
  • a metal film such as a tungsten film or a titanium film, a nitride film such as an aluminum titanium nitride film, a titanium nitride film, or an aluminum nitride film, or an oxide film such as an aluminum titanium oxide film can be preferably used.
  • the thickness of the first layer can be, for example, 0.5 nm to 20 nm, preferably 0.5 nm to 15 nm, more preferably 0.5 nm to 10 nm, and further preferably 1 nm to 6 nm. Typically, it can be about 5 nm or about 2 nm. Even when the first layer is thin like this, the resistance of the semiconductor layer 231 can be sufficiently reduced.
  • the low resistance region 231n has a higher carrier density than the channel formation region 231i.
  • the low-resistance region 231n can be a region containing more hydrogen than the channel formation region 231i or a region containing more oxygen vacancies than the channel formation region 231i.
  • the low resistance region 231n can be a very low resistance region.
  • the low resistance region 231n formed in this manner has a feature that it is difficult to increase the resistance by a subsequent process. For example, even when heat treatment in an atmosphere containing oxygen, film formation treatment in an atmosphere containing oxygen, or the like, there is no fear that the conductivity of the low resistance region 231n is impaired, and thus the electrical characteristics are good. In addition, a highly reliable transistor can be realized.
  • the first layer after the heat treatment has conductivity, it is preferable to remove the first layer after the heat treatment.
  • the first layer can function as a protective insulating film by remaining it.
  • the conductive layer 46 b is located on the insulating layer 215, the insulating layer 44 is located on the conductive layer 46 b, and the pixel electrode 41 is located on the insulating layer 44.
  • the pixel electrode 41 is electrically connected to the conductive layer 222a. Specifically, the conductive layer 222a is connected to the conductive layer 46b, and the conductive layer 46b is connected to the pixel electrode 41.
  • the conductive layer 46a is located on the insulating layer 215.
  • the conductive layer 46a is electrically connected to the conductive layer 222c. Specifically, the conductive layer 46 a is in contact with the conductive layer 222 c through an opening provided in the insulating layer 214 and the insulating layer 215.
  • the substrate 31 and the substrate 32 are bonded together by an adhesive layer 141.
  • the FPC 172 is electrically connected to the conductive layer 222e. Specifically, the FPC 172 is in contact with the connection body 242, the connection body 242 is in contact with the conductive layer 43b, and the conductive layer 43b is in contact with the conductive layer 222e.
  • the conductive layer 43b is formed on the insulating layer 45, and the conductive layer 222e is formed on the insulating layer 214.
  • the conductive layer 43b can be formed using the same process and the same material as the common electrode 43a.
  • the conductive layer 222e can be formed using the same process and the same material as the conductive layers 222a to 222d.
  • the conductive layer 46 a, the insulating layer 44, and the pixel electrode 41 can function as one capacitor element 104. Further, the pixel electrode 41, the insulating layer 45, and the common electrode 43 a can function as one capacitor element 105. As described above, the display device 10 has two capacitors in one pixel.
  • the two capacitive elements are both made of a material that transmits visible light and have regions that overlap each other. Thereby, the pixel can achieve both a high aperture ratio and a large storage capacity.
  • the capacity of the capacitor 104 is preferably larger than the capacity of the capacitor 105. Therefore, the area of the region where the pixel electrode 41 and the conductive layer 46a overlap is preferably larger than the area of the region where the pixel electrode 41 and the common electrode 43a overlap.
  • the thickness of the insulating layer 44 located between the conductive layer 46a and the pixel electrode 41 is preferably thinner than the thickness of the insulating layer 45 located between the pixel electrode 41 and the common electrode 43a.
  • FIG. 13 shows an example in which the adhesive layer 10b has a light shielding layer 38a.
  • FIG. 13 illustrates an example in which both the transistor 101 and the transistor 102 have a back gate (gate 223); however, one or both of the transistor 101 and the transistor 102 may not have a back gate.
  • FIG. 13 illustrates an example in which the gate insulating layer 225 is formed only over the channel formation region 231i and does not overlap the low resistance region 231n. However, the gate insulating layer 225 overlaps at least part of the low resistance region 231n. May be.
  • FIG. 14 shows an example in which the gate insulating layer 225 is formed in contact with the low resistance region 231n and the gate insulating layer 211.
  • the gate insulating layer 225 illustrated in FIGS. 14A and 14B has advantages such that the number of steps for processing the gate insulating layer 225 using the gate 223 as a mask can be reduced, and a step on the formation surface of the insulating layer 214 can be reduced.
  • FIG. 14 shows an example in which the light guide layer 10d has a light shielding layer 38b.
  • FIGS. 13 and 14 are different from FIGS. 13 and 14 in the structure of the transistor 101 and the transistor 102.
  • the transistor 15 includes a gate 221a, a gate insulating layer 211, a semiconductor layer 231a, a conductive layer 222a, a conductive layer 222b, an insulating layer 217, an insulating layer 218, an insulating layer 215, and a gate 223a.
  • the transistor 102 includes a gate 221b, a gate insulating layer 211, a semiconductor layer 231b, a conductive layer 222c, a conductive layer 222d, an insulating layer 217, an insulating layer 218, an insulating layer 215, and a gate 223b.
  • One of the conductive layer 222a and the conductive layer 222b functions as a source, and the other functions as a drain.
  • the insulating layer 217, the insulating layer 218, and the insulating layer 215 function as gate insulating layers.
  • the gate insulating layer 211 and the insulating layer 217 in contact with the semiconductor layer 231 are preferably oxide insulating layers. Note that in the case where the gate insulating layer 211 or the insulating layer 217 has a stacked structure, at least a layer in contact with the semiconductor layer 231 is preferably an oxide insulating layer. Accordingly, generation of oxygen vacancies in the semiconductor layer 231 can be suppressed, and the reliability of the transistor can be improved.
  • the insulating layer 218 is preferably a nitride insulating layer. Thus, impurities can be prevented from entering the semiconductor layer 231 and the reliability of the transistor can be increased.
  • the insulating layer 215 preferably has a planarization function, and is preferably an organic insulating layer, for example. Note that the insulating layer 215 is not necessarily formed, and the conductive layer 46 a may be formed in contact with the insulating layer 218.
  • the conductive layer 46 b is located on the insulating layer 215, the insulating layer 44 is located on the conductive layer 46 b, and the pixel electrode 41 is located on the insulating layer 44.
  • the pixel electrode 41 is electrically connected to the conductive layer 222a. Specifically, the conductive layer 222a is connected to the conductive layer 46b, and the conductive layer 46b is connected to the pixel electrode 41.
  • the conductive layer 46a is located on the insulating layer 215.
  • the insulating layer 44 and the insulating layer 45 are located on the conductive layer 46a.
  • a common electrode 43 a is located on the insulating layer 45.
  • the common electrode 43a is electrically connected to the conductive layer 46a. Specifically, the common electrode 43 a is in contact with the conductive layer 46 a through an opening provided in the insulating layer 44 and the insulating layer 45.
  • the material of the substrate included in the display device there is no major limitation on the material of the substrate included in the display device, and various substrates can be used.
  • a glass substrate, a quartz substrate, a sapphire substrate, a semiconductor substrate, a ceramic substrate, a metal substrate, a plastic substrate, or the like can be used.
  • the display device can be reduced in weight and thickness. Furthermore, a flexible display device can be realized by using a flexible substrate.
  • liquid crystal materials there are two types of liquid crystal materials: positive liquid crystal materials having a positive dielectric anisotropy ( ⁇ ) and negative liquid crystal materials having a negative dielectric constant.
  • positive liquid crystal materials having a positive dielectric anisotropy ( ⁇ ) positive dielectric anisotropy ( ⁇ )
  • negative liquid crystal materials having a negative dielectric constant.
  • either material can be used, and an optimum liquid crystal material can be used depending on a mode to be applied and a design.
  • liquid crystal elements to which various modes are applied can be used.
  • FFS mode for example, an IPS mode, a TN mode, an ASM (Axial Symmetrically aligned Micro-cell) mode, an OCB (Optically Compensated BirefringenceCriff mode), and an FLC (FerroelectricLiquidFrequencyLiquidCrCF)
  • ECB Electrode Controlled Birefringence
  • the liquid crystal element is an element that controls transmission or non-transmission of light by an optical modulation action of liquid crystal.
  • the optical modulation action of the liquid crystal is controlled by an electric field applied to the liquid crystal (including a horizontal electric field, a vertical electric field, or an oblique electric field).
  • a thermotropic liquid crystal a low molecular liquid crystal, a polymer liquid crystal, a polymer dispersed liquid crystal (PDLC), a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like can be used.
  • PDLC polymer dispersed liquid crystal
  • ferroelectric liquid crystal an antiferroelectric liquid crystal, or the like
  • These liquid crystal materials exhibit a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, and the like depending on conditions.
  • liquid crystal exhibiting a blue phase may be used.
  • the blue phase is one of the liquid crystal phases.
  • a liquid crystal composition mixed with 5% by weight or more of a chiral agent is used for the liquid crystal layer in order to improve the temperature range.
  • a liquid crystal composition containing a liquid crystal exhibiting a blue phase and a chiral agent has a short response speed and exhibits optical isotropy.
  • a liquid crystal composition including a liquid crystal exhibiting a blue phase and a chiral agent does not require alignment treatment and has a small viewing angle dependency.
  • rubbing treatment is unnecessary, electrostatic breakdown caused by the rubbing treatment can be prevented, and defects or breakage of the display panel during the manufacturing process can be reduced.
  • the display device of this embodiment is a transmissive liquid crystal display device
  • a conductive material that transmits visible light is used for both of the pair of electrodes (the pixel electrode 41 and the common electrode 43a).
  • the conductive layer 46b is also formed using a conductive material that transmits visible light, so that a reduction in the aperture ratio of the pixel can be suppressed even when the capacitor 104 is provided.
  • a silicon nitride film is suitable for the insulating layer 44 and the insulating layer 45 that function as a dielectric of the capacitor.
  • a material containing one or more selected from indium (In), zinc (Zn), and tin (Sn) may be used.
  • indium oxide, indium tin oxide (ITO), indium zinc oxide, indium oxide including tungsten oxide, indium zinc oxide including tungsten oxide, indium oxide including titanium oxide, and titanium oxide are included. Examples thereof include indium tin oxide, indium tin oxide containing silicon oxide (ITSO), zinc oxide, and zinc oxide containing gallium.
  • a film containing graphene can also be used. The film containing graphene can be formed by, for example, reducing a film containing graphene oxide.
  • the conductive film that transmits visible light can be formed using an oxide semiconductor (hereinafter also referred to as an oxide conductive layer).
  • the oxide conductive layer preferably includes, for example, indium, and further includes an In-M-Zn oxide (M is Al, Ti, Ga, Y, Zr, La, Ce, Nd, Sn, or Hf). preferable.
  • An oxide semiconductor is a semiconductor material whose resistance can be controlled by at least one of oxygen vacancies in the film and impurity concentrations such as hydrogen and water in the film. Therefore, the resistivity of the oxide conductive layer is controlled by selecting a treatment in which at least one of oxygen deficiency and impurity concentration is increased or a treatment in which at least one of oxygen deficiency and impurity concentration is reduced in the oxide semiconductor layer. be able to.
  • an oxide conductive layer formed using an oxide semiconductor in this manner is an oxide semiconductor layer with high carrier density and low resistance, an oxide semiconductor layer with conductivity, or an oxide semiconductor with high conductivity. It can also be called a layer.
  • the transistor included in the display device of this embodiment may have a top-gate structure or a bottom-gate structure.
  • gate electrodes may be provided above and below the channel.
  • a semiconductor material used for the transistor is not particularly limited, and examples thereof include an oxide semiconductor, silicon, and germanium.
  • crystallinity of a semiconductor material used for the transistor there is no particular limitation on the crystallinity of a semiconductor material used for the transistor, and either an amorphous semiconductor or a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor partially including a crystal region) May be used. It is preferable to use a crystalline semiconductor because deterioration of transistor characteristics can be suppressed.
  • a Group 14 element, a compound semiconductor, or an oxide semiconductor can be used for the semiconductor layer.
  • a semiconductor containing silicon, a semiconductor containing gallium arsenide, an oxide semiconductor containing indium, or the like can be used for the semiconductor layer.
  • an oxide semiconductor it is preferable to apply an oxide semiconductor to a semiconductor in which a transistor channel is formed.
  • an oxide semiconductor having a larger band gap than silicon is preferably used. It is preferable to use a semiconductor material with a wider band gap and lower carrier density than silicon because current in an off state of the transistor can be reduced.
  • the charge accumulated in the capacitor through the transistor can be held for a long time.
  • the driving circuit can be stopped while maintaining the gradation of the displayed image. As a result, a display device with extremely reduced power consumption can be realized.
  • the transistor preferably includes an oxide semiconductor layer that is highly purified and suppresses formation of oxygen vacancies.
  • the current value (off-current value) in the off state of the transistor can be reduced. Therefore, the holding time of an electric signal such as an image signal can be increased, and the writing interval can be set longer in the power-on state. Therefore, since the frequency of the refresh operation can be reduced, there is an effect of suppressing power consumption.
  • a transistor including an oxide semiconductor can be driven at high speed because a relatively high field-effect mobility can be obtained.
  • the transistor in the display portion and the transistor in the driver circuit portion can be formed over the same substrate. That is, it is not necessary to separately use a semiconductor device formed of a silicon wafer or the like as the drive circuit, so that the number of parts of the display device can be reduced.
  • a high-quality image can be provided by using a transistor that can be driven at high speed.
  • the transistor included in the gate driver 11 and the transistor included in the display panel 10a may have the same structure or different structures.
  • the transistors included in the gate driver may all have the same structure, or two or more kinds of structures may be used in combination.
  • all the transistors included in the display panel 10a may have the same structure, or two or more kinds of structures may be used in combination.
  • an organic insulating material or an inorganic insulating material can be used as an insulating material that can be used for each insulating layer, overcoat, and the like included in the display device.
  • the organic insulating material include acrylic resin, epoxy resin, polyimide resin, polyamide resin, polyimide amide resin, siloxane resin, benzocyclobutene resin, and phenol resin.
  • examples thereof include a film, a lanthanum oxide film, a cerium oxide film, and a neodymium oxide film.
  • conductive layers such as various wirings and electrodes of the display device include metals such as aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, tantalum, and tungsten.
  • metals such as aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, tantalum, and tungsten.
  • an alloy containing this as a main component can be used as a single layer structure or a stacked structure.
  • a two-layer structure in which a titanium film is laminated on an aluminum film a two-layer structure in which a titanium film is laminated on a tungsten film, a two-layer structure in which a copper film is laminated on a molybdenum film, or an alloy film containing molybdenum and tungsten
  • Two-layer structure in which a copper film is laminated a two-layer structure in which a copper film is laminated on a copper-magnesium-aluminum alloy film, a titanium film or a titanium nitride film, and an aluminum film or copper layered on the titanium film or titanium nitride film Laminating a film, and further forming a three-layer structure for forming a titanium film or a titanium nitride film thereon, a molybdenum film or a molybdenum nitride film, and an aluminum film or a copper film stacked on the molybdenum film or the molybdenum nit
  • the first and third layers include titanium, titanium nitride, molybdenum, tungsten, an alloy containing molybdenum and tungsten, an alloy containing molybdenum and zirconium, or a film made of molybdenum nitride.
  • the second layer it is preferable to form a film made of a low resistance material such as copper, aluminum, gold or silver, or an alloy of copper and manganese.
  • ITO indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, ITSO, etc. You may use the electroconductive material which has.
  • the oxide conductive layer may be formed by controlling the resistivity of the oxide semiconductor.
  • a curable resin such as a thermosetting resin, a photocurable resin, or a two-component mixed curable resin
  • a curable resin such as a thermosetting resin, a photocurable resin, or a two-component mixed curable resin
  • an acrylic resin, a urethane resin, an epoxy resin, a siloxane resin, or the like can be used.
  • an anisotropic conductive film (ACF: Anisotropic Conductive Film), an anisotropic conductive paste (ACP: Anisotropic Conductive Paste), or the like can be used.
  • ACF Anisotropic Conductive Film
  • ACP Anisotropic Conductive Paste
  • the light shielding layer 38 and the light shielding regions 10c and 10g are provided so as to overlap, for example, the scanning line G1, the scanning line G2, and the transistor.
  • a black matrix formed using a metal material or a resin material containing a pigment or dye can be used as the light shielding layer 38 and the light shielding regions 10c and 10g. Note that it is preferable to provide the light shielding layer 38 and the light shielding regions 10c and 10g in regions other than the display portion 162 such as the drive circuit portion 164 because light leakage due to guided light or the like can be suppressed.
  • the light unit 13 can be an edge light type light unit, a direct type light unit, or the like.
  • As the light source an LED (Light Emitting Diode), an organic EL (Electroluminescence) element, or the like can be used.
  • Thin films (insulating film, semiconductor film, conductive film, etc.) constituting the display device are respectively formed by sputtering, chemical vapor deposition (CVD), vacuum evaporation, and pulsed laser deposition (PLD: Pulsed Laser Deposition).
  • CVD chemical vapor deposition
  • PLD Pulsed Laser Deposition
  • Method atomic layer deposition
  • ALD Atomic Layer Deposition
  • the CVD method include a plasma enhanced chemical vapor deposition (PECVD) method, a thermal chemical vapor deposition (PECVD) method, a thermal CVD method, and the like.
  • An example of the thermal CVD method is a metal organic chemical vapor deposition (MOCVD) method.
  • Thin films (insulating films, semiconductor films, conductive films, etc.) that constitute display devices are spin coat, dip, spray coating, ink jet printing, dispensing, screen printing, offset printing, doctor knife, slit coat, roll coat, curtain, respectively. It can be formed by a method such as coating or knife coating.
  • the thin film constituting the display device can be processed using a photolithography method or the like.
  • an island-shaped thin film may be formed by a film formation method using a shielding mask.
  • the thin film may be processed by a nanoimprint method, a sand blast method, a lift-off method, or the like.
  • a photolithography method a resist mask is formed on a thin film to be processed, the thin film is processed by etching or the like, and the resist mask is removed. After forming a photosensitive thin film, exposure and development are performed. And a method for processing the thin film into a desired shape.
  • examples of light used for exposure include i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), and light obtained by mixing these.
  • ultraviolet light, KrF laser light, ArF laser light, or the like can be used.
  • exposure may be performed by an immersion exposure technique.
  • examples of light used for exposure include extreme ultraviolet light (EUV: Extreme-violet) and X-rays.
  • EUV Extreme-violet
  • an electron beam can be used instead of the light used for exposure. It is preferable to use extreme ultraviolet light, X-rays, or an electron beam because extremely fine processing is possible. Note that a photomask is not necessary when exposure is performed by scanning a beam such as an electron beam.
  • etching the thin film For etching the thin film, a dry etching method, a wet etching method, a sand blasting method, or the like can be used.
  • Metal oxide A metal oxide functioning as an oxide semiconductor is preferably used for the semiconductor layer of the transistor included in the display device of this embodiment. Below, the metal oxide applicable to a semiconductor layer is demonstrated.
  • the metal oxide preferably contains at least indium or zinc.
  • indium and zinc are preferably included.
  • aluminum, gallium, yttrium, tin, or the like is contained.
  • One or more kinds selected from boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, and the like may be included.
  • the metal oxide is an In-M-Zn oxide containing indium, an element M, and zinc is considered.
  • the element M is aluminum, gallium, yttrium, tin, or the like.
  • Other elements applicable to the element M include boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and magnesium.
  • the element M a plurality of the above-described elements may be combined.
  • metal oxides containing nitrogen may be collectively referred to as metal oxides.
  • a metal oxide containing nitrogen may be referred to as a metal oxynitride.
  • a metal oxide containing nitrogen such as zinc oxynitride (ZnON) may be used for the semiconductor layer.
  • An oxide semiconductor (metal oxide) is classified into a single crystal oxide semiconductor and a non-single crystal oxide semiconductor.
  • the non-single-crystal oxide semiconductor for example, a CAAC-OS (c-axis aligned crystal oxide semiconductor), a polycrystalline oxide semiconductor, an nc-OS (nanocrystalline oxide semiconductor), a pseudo-amorphous oxide semiconductor (a-like oxide semiconductor) OS: amorphous-like oxide semiconductor) and amorphous oxide semiconductor.
  • the CAAC-OS has a c-axis orientation and a crystal structure in which a plurality of nanocrystals are connected in the ab plane direction and has a strain.
  • the strain refers to a portion where the orientation of the lattice arrangement changes between a region where the lattice arrangement is aligned and a region where another lattice arrangement is aligned in a region where a plurality of nanocrystals are connected.
  • Nanocrystals are based on hexagons, but are not limited to regular hexagons and may be non-regular hexagons.
  • a lattice arrangement such as a pentagon and a heptagon in terms of distortion.
  • a clear crystal grain boundary also referred to as a grain boundary
  • the formation of crystal grain boundaries is suppressed by the distortion of the lattice arrangement. This is because the CAAC-OS can tolerate distortion due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to substitution of metal elements. Because.
  • the CAAC-OS is a layered crystal in which a layer containing indium and oxygen (hereinafter referred to as an In layer) and a layer including elements M, zinc, and oxygen (hereinafter referred to as (M, Zn) layers) are stacked.
  • In layer a layer containing indium and oxygen
  • M, Zn elements M, zinc, and oxygen
  • indium and the element M can be replaced with each other, and when the element M in the (M, Zn) layer is replaced with indium, it can also be expressed as an (In, M, Zn) layer. Further, when indium in the In layer is replaced with the element M, it can also be expressed as an (In, M) layer.
  • CAAC-OS is a metal oxide with high crystallinity.
  • CAAC-OS impurities and defects oxygen deficiency (V O:. Oxygen vacancy also referred) etc.) with less metal It can be said that it is an oxide. Therefore, the physical properties of the metal oxide including the CAAC-OS are stable. Therefore, a metal oxide including a CAAC-OS is resistant to heat and has high reliability.
  • Nc-OS has periodicity in atomic arrangement in a minute region (for example, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm).
  • the nc-OS has no regularity in crystal orientation between different nanocrystals. Therefore, orientation is not seen in the whole film. Therefore, the nc-OS may not be distinguished from an a-like OS or an amorphous oxide semiconductor depending on an analysis method.
  • indium-gallium-zinc oxide which is a kind of metal oxide including indium, gallium, and zinc
  • IGZO indium-gallium-zinc oxide
  • a crystal smaller than a large crystal here, a crystal of several millimeters or a crystal of several centimeters
  • it may be structurally stable.
  • A-like OS is a metal oxide having a structure between nc-OS and an amorphous oxide semiconductor.
  • the a-like OS has a void or a low density region. That is, the a-like OS has lower crystallinity than the nc-OS and the CAAC-OS.
  • Oxide semiconductors have various structures and have different characteristics.
  • the oxide semiconductor of one embodiment of the present invention may include two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, an nc-OS, and a CAAC-OS.
  • the metal oxide film functioning as a semiconductor layer can be formed using one or both of an inert gas and an oxygen gas.
  • an inert gas an oxygen gas
  • oxygen gas an oxygen gas
  • the flow rate ratio of oxygen (oxygen partial pressure) during the formation of the metal oxide film is preferably 0% or more and 30% or less, and 5% or more and 30% or less. Is more preferably 7% or more and 15% or less.
  • the energy gap of the metal oxide is preferably 2 eV or more, more preferably 2.5 eV or more, and further preferably 3 eV or more. In this manner, off-state current of a transistor can be reduced by using a metal oxide having a wide energy gap.
  • the metal oxide film can be formed by a sputtering method.
  • a PLD method a PECVD method, a thermal CVD method, an ALD method, a vacuum evaporation method, or the like may be used.
  • the display device of one embodiment of the present invention since the display device of one embodiment of the present invention has two capacitors that transmit visible light overlapped with a pixel, the pixel can achieve both a high aperture ratio and a large storage capacitor. .
  • the liquid crystal element can be driven with a voltage higher than the output voltage of the source driver.
  • the CAC-OS is one structure of a material in which elements constituting a metal oxide are unevenly distributed with a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm, or the vicinity thereof.
  • elements constituting a metal oxide are unevenly distributed with a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm, or the vicinity thereof.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm, or the vicinity thereof.
  • the state mixed with is also referred to as mosaic or patch.
  • the metal oxide preferably contains at least indium.
  • One kind selected from the above or a plurality of kinds may be included.
  • a CAC-OS in In-Ga-Zn oxide is an indium oxide (hereinafter referred to as InO).
  • X1 (X1 is greater real than 0) and.), or indium zinc oxide (hereinafter, in X2 Zn Y2 O Z2 ( X2, Y2, and Z2 is larger real than 0) and a.), gallium An oxide (hereinafter referred to as GaO X3 (X3 is a real number greater than 0)) or a gallium zinc oxide (hereinafter referred to as Ga X4 Zn Y4 O Z4 (where X4, Y4, and Z4 are greater than 0)) to.) and the like, the material becomes mosaic by separate into, mosaic InO X1, or in X2 Zn Y2 O Z2 is configured uniformly distributed in the film (hereinafter, cloud Also referred to.) A.
  • CAC-OS includes a region GaO X3 is the main component, In X2 Zn Y2 O Z2, or InO X1 there is a region which is a main component, a composite metal oxide having a structure that is mixed.
  • the first region indicates that the atomic ratio of In to the element M in the first region is larger than the atomic ratio of In to the element M in the second region. It is assumed that the concentration of In is higher than that in the second region.
  • IGZO is a common name and sometimes refers to one compound of In, Ga, Zn, and O.
  • ZnO ZnO
  • the crystalline compound has a single crystal structure, a polycrystalline structure, or a CAAC structure.
  • the CAAC structure is a crystal structure in which a plurality of IGZO nanocrystals have c-axis orientation and are connected without being oriented in the ab plane.
  • CAC-OS relates to a material structure of a metal oxide.
  • CAC-OS refers to a region that is observed in the form of nanoparticles mainly composed of Ga in a material structure including In, Ga, Zn, and O, and nanoparticles that are partially composed mainly of In.
  • the region observed in a shape is a configuration in which the regions are randomly dispersed in a mosaic shape. Therefore, in the CAC-OS, the crystal structure is a secondary element.
  • the CAC-OS does not include a stacked structure of two or more kinds of films having different compositions.
  • a structure composed of two layers of a film mainly containing In and a film mainly containing Ga is not included.
  • a region GaO X3 is the main component, In X2 Zn Y2 O Z2, or the region InO X1 is the main component, it may clear boundary can not be observed.
  • the CAC-OS includes a region observed in a part of a nanoparticle mainly including the metal element and a nano part mainly including In.
  • the region observed in the form of particles refers to a configuration in which each region is randomly dispersed in a mosaic shape.
  • the CAC-OS can be formed by sputtering, for example, under the condition that the substrate is not heated.
  • a CAC-OS is formed by a sputtering method
  • any one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as a deposition gas.
  • the flow rate ratio of the oxygen gas to the total flow rate of the deposition gas during film formation is preferably as low as possible.
  • the flow rate ratio of the oxygen gas is 0% to less than 30%, preferably 0% to 10%. .
  • the CAC-OS has a feature that a clear peak is not observed when measurement is performed using a ⁇ / 2 ⁇ scan by an out-of-plane method, which is one of X-ray diffraction (XRD) measurement methods.
  • XRD X-ray diffraction
  • an electron diffraction pattern obtained by irradiating an electron beam with a probe diameter of 1 nm (also referred to as a nanobeam electron beam) has a ring-like region having a high luminance and a plurality of bright regions in the ring region. A point is observed. Therefore, it can be seen from the electron beam diffraction pattern that the crystal structure of the CAC-OS has an nc (nano-crystal) structure having no orientation in the planar direction and the cross-sectional direction.
  • a region in which GaO X3 is a main component is obtained by EDX mapping obtained by using energy dispersive X-ray spectroscopy (EDX). It can be confirmed that a region in which In X2 Zn Y2 O Z2 or InO X1 is a main component is unevenly distributed and mixed.
  • EDX energy dispersive X-ray spectroscopy
  • the CAC-OS has a structure different from that of the IGZO compound in which the metal element is uniformly distributed, and has a property different from that of the IGZO compound. That is, in the CAC-OS, a region in which GaO X3 or the like is a main component and a region in which In X2 Zn Y2 O Z2 or InO X1 is a main component are phase-separated from each other, and a region in which each element is a main component. Has a mosaic structure.
  • the region containing In X2 Zn Y2 O Z2 or InO X1 as a main component is a region having higher conductivity than a region containing GaO X3 or the like as a main component. That, In X2 Zn Y2 O Z2, or InO X1 is a region which is a main component, by carriers flow, conductive metal oxide is expressed. Therefore, a high field effect mobility ( ⁇ ) can be realized by the region where In X2 Zn Y2 O Z2 or InO X1 is a main component distributed in a cloud shape in the metal oxide.
  • areas such as GaO X3 is the main component, In X2 Zn Y2 O Z2, or InO X1 is compared to region which is a main component, has a high area insulation. That is, since the region mainly composed of GaO X3 or the like is distributed in the metal oxide, a leakage current can be suppressed and a good switching operation can be realized.
  • CAC-OS when CAC-OS is used for a semiconductor element, the insulating property caused by GaO X3 and the like and the conductivity caused by In X2 Zn Y2 O Z2 or InO X1 act complementarily, thereby increasing the An on-current (I on ) and high field effect mobility ( ⁇ ) can be realized.
  • CAC-OS is optimal for various semiconductor devices including a display.
  • the electronic device of this embodiment includes the display device of one embodiment of the present invention in the display portion.
  • the display part of an electronic device can display a high quality image
  • display can be performed with high reliability in a wide temperature range.
  • full high-definition video 2K, 4K, 8K, 16K, or more can be displayed on the display unit of the electronic device of this embodiment.
  • the screen size of the display unit can be 20 inches or more diagonal, 30 inches or more diagonal, 50 inches diagonal, 60 inches diagonal, or 70 inches diagonal.
  • Examples of an electronic device that can use the display device of one embodiment of the present invention include a television device, a desktop or notebook personal computer, a monitor for a computer, a digital signage (digital signage), a pachinko machine, and the like.
  • a television device a desktop or notebook personal computer
  • a monitor for a computer a digital signage (digital signage), a pachinko machine, and the like.
  • electronic devices having a relatively large screen such as large game machines such as digital cameras, digital cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, portable information terminals, sound reproduction devices, and the like can be given.
  • the display device of one embodiment of the present invention can also be favorably used for a portable electronic device, a wearable electronic device (wearable device), a VR (Virtual Reality) device, an AR (Augmented Reality) device, and the like. .
  • the electronic device of one embodiment of the present invention may have a secondary battery, and it is preferable that the secondary battery can be charged using non-contact power transmission.
  • Secondary batteries include, for example, lithium ion secondary batteries such as lithium polymer batteries (lithium ion polymer batteries) using gel electrolyte, nickel metal hydride batteries, nickel-cadmium batteries, organic radical batteries, lead storage batteries, air secondary batteries, nickel A zinc battery, a silver zinc battery, etc. are mentioned.
  • lithium ion secondary batteries such as lithium polymer batteries (lithium ion polymer batteries) using gel electrolyte, nickel metal hydride batteries, nickel-cadmium batteries, organic radical batteries, lead storage batteries, air secondary batteries, nickel A zinc battery, a silver zinc battery, etc. are mentioned.
  • the electronic device of one embodiment of the present invention may have an antenna. By receiving a signal with an antenna, video, information, and the like can be displayed on the display unit.
  • the antenna may be used for non-contact power transmission.
  • the electronic device of one embodiment of the present invention includes a sensor (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, It may have a function of measuring voltage, power, radiation, flow rate, humidity, gradient, vibration, odor, or infrared).
  • the electronic device of one embodiment of the present invention can have various functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, a function for executing various software (programs), and wireless communication It can have a function, a function of reading a program or data recorded in a recording medium, and the like.
  • an electronic apparatus having a plurality of display units
  • a function of displaying a stereoscopic image can be provided.
  • an electronic device having an image receiving unit a function for photographing a still image or a moving image, a function for automatically or manually correcting the photographed image, and a function for saving the photographed image in a recording medium (externally or incorporated in the electronic device)
  • a function of displaying the photographed image on the display portion can be provided.
  • the functions of the electronic device of one embodiment of the present invention are not limited thereto, and the electronic device can have various functions.
  • FIG. 16A illustrates a television device 1810.
  • a television device 1810 includes a display portion 1811, a housing 1812, a speaker 1813, and the like. Furthermore, an LED lamp, operation keys (including a power switch or an operation switch), connection terminals, various sensors, a microphone, and the like can be provided.
  • the television device 1810 can be operated by a remote controller 1814.
  • Broadcasting radio waves that can be received by the television device 1810 include terrestrial waves or radio waves transmitted from satellites.
  • broadcast radio waves there are analog broadcasts, digital broadcasts, etc., and there are video and audio, or only audio broadcasts.
  • broadcast radio waves transmitted in a specific frequency band in the UHF band (about 300 MHz to 3 GHz) or the VHF band (30 MHz to 300 MHz) can be received.
  • the transfer rate can be increased and more information can be obtained. Accordingly, an image having a resolution exceeding full high-definition can be displayed on the display unit 1811. For example, an image having a resolution of 4K, 8K, 16K, or higher can be displayed.
  • FIG. 16B shows a digital signage 1820 attached to a cylindrical column 1822.
  • the digital signage 1820 has a display portion 1821.
  • the wider the display unit 1821 the more information can be provided at one time. Moreover, the wider the display portion 1821 is, the easier it is to be noticed by humans. For example, the advertising effect of advertisement can be enhanced.
  • a touch panel to the display unit 1821 so that not only a still image or a moving image is displayed on the display unit 1821 but also a user can operate intuitively.
  • usability can be improved by an intuitive operation.
  • FIG. 16C shows a notebook personal computer 1830.
  • the personal computer 1830 includes a display portion 1831, a housing 1832, a touch pad 1833, a connection port 1834, and the like.
  • the touch pad 1833 functions as an input means such as a pointing device or a pen tablet, and can be operated with a finger or a stylus.
  • a display element is incorporated in the touch pad 1833.
  • the touch pad 1833 can be used as a keyboard.
  • a vibration module may be incorporated in the touch pad 1833 in order to realize tactile sensation by vibration.
  • FIGS. 17A and 17B show a portable information terminal 800.
  • the portable information terminal 800 includes a housing 801, a housing 802, a display portion 803, a display portion 804, a hinge portion 805, and the like.
  • the housing 801 and the housing 802 are connected by a hinge portion 805.
  • the portable information terminal 800 can open the housing 801 and the housing 802 as illustrated in FIG. 17B from the folded state as illustrated in FIG.
  • document information can be displayed on the display portion 803 and the display portion 804, and can also be used as an electronic book terminal.
  • still images and moving images can be displayed on the display portion 803 and the display portion 804.
  • the portable information terminal 800 can be folded when being carried, it has excellent versatility.
  • housing 801 and the housing 802 may include a power button, an operation button, an external connection port, a speaker, a microphone, and the like.
  • FIG. 17C shows an example of a portable information terminal.
  • a portable information terminal 810 illustrated in FIG. 17C includes a housing 811, a display portion 812, operation buttons 813, an external connection port 814, a speaker 815, a microphone 816, a camera 817, and the like.
  • the portable information terminal 810 includes a touch sensor in the display unit 812. Any operation such as making a call or inputting characters can be performed by touching the display portion 812 with a finger or a stylus.
  • the operation button 813 by operating the operation button 813, the power ON / OFF operation and the type of image displayed on the display unit 812 can be switched.
  • the mail creation screen can be switched to the main menu screen.
  • the orientation (portrait or landscape) of the portable information terminal 810 is determined, and the screen display orientation of the display unit 812 is changed. It can be switched automatically.
  • the screen display orientation can also be switched by touching the display portion 812, operating the operation buttons 813, or inputting voice using the microphone 816.
  • the portable information terminal 810 has one or a plurality of functions selected from, for example, a telephone, a notebook, an information browsing device, or the like. Specifically, it can be used as a smartphone.
  • the portable information terminal 810 can execute various applications such as mobile phone, electronic mail, text browsing and creation, music playback, video playback, Internet communication, and games.
  • FIG. 17D shows an example of a camera.
  • the camera 820 includes a housing 821, a display portion 822, operation buttons 823, a shutter button 824, and the like.
  • a removable lens 826 is attached to the camera 820.
  • the camera 820 is configured such that the lens 826 can be removed from the housing 821 and replaced, but the lens 826 and the housing may be integrated.
  • the camera 820 can capture a still image or a moving image by pressing the shutter button 824.
  • the display portion 822 has a function as a touch panel and can capture an image by touching the display portion 822.
  • the camera 820 can be separately equipped with a strobe device, a viewfinder, and the like. Alternatively, these may be incorporated in the housing 821.
  • An electronic device 830 illustrated in FIG. 17E includes a housing 831, a display device 834, a lighting 833, and an optical module 832.
  • the housing 831 includes an opening 835 and an opening 835a (not shown in the drawing).
  • the electronic device 830 can be incorporated in an inner wall or an outer wall of a house or a building, a partition of a space (a door, a window, a wall, a room, a desk partition), or the like.
  • the display device 834 can provide a transparent display device 834 that can visually recognize the opposite side of the display device 834 by providing a region through which light passes in a pixel formed in the TFT layer.
  • FIG. 17E shows a scene where the user touches the display screen on which the cherry blossom petals pour.
  • the display device 834 can detect touched information from different display surfaces.
  • the electronic device 830 can cause a digital signage to execute a game. Thereby, an unspecified number of users can participate and enjoy the game at the same time.
  • FIG. 18A shows an example in which a vehicle 5000 includes a plurality of cameras 5005.
  • the vehicle 5000 includes a camera 5005a, a camera 5005b, a camera 5005c, a camera 5005d, cameras 5005d, 5005e, and 5005f.
  • the camera 5005a has a function of imaging the front situation
  • the camera 5005b has a function of imaging the rear situation
  • the camera 5005c has a function of imaging the right front situation
  • the camera 5005d has a function of imaging the situation on the left front
  • the camera 5005e has a function of imaging the situation on the right rear
  • the camera 5005f has a function of imaging the situation on the left rear.
  • the number of cameras 5005 that capture the periphery of the vehicle is not limited to the above configuration. For example, you may provide the camera 5005 etc. which image the back from the front of a vehicle.
  • FIG. 18B shows an example of the internal configuration of the vehicle 5000.
  • the vehicle 5000 includes a display portion 5001, display panels 5008a and 5008b, and a display panel 5009.
  • the display portion 5001, the display panels 5008a and 5008b, and the display panel 5009 the display portion of the display system of one embodiment of the present invention can be used.
  • FIG. 18B illustrates an example in which the display portion 5001 is mounted on a right-hand drive vehicle, but there is no particular limitation, and the display portion 5001 can also be mounted on a left-hand drive vehicle. In this case, the left and right arrangements of the configuration shown in FIG.
  • FIG. 18B shows a dashboard 5002, a handle 5003, a windshield 5004, and the like arranged around the driver's seat and the passenger seat.
  • the display unit 5001 is disposed at a predetermined position on the dashboard 5002, specifically around the driver, and has a substantially T-shape.
  • FIG. 18B illustrates an example in which one display portion 5001 formed using a plurality of display panels 5007 (display panels 5007a, 5007b, 5007c, and 5007d) is provided along the dashboard 5002.
  • the display unit 5001 may be divided into a plurality of locations.
  • the display panels 5008a and 5008b are display panels provided in the pillar portion.
  • an image 5008c from an imaging unit (for example, the camera 5005 shown in FIG. 18A) provided on the vehicle body is displayed on the display panels 5008a and 5008b, thereby complementing the view blocked by the pillar. it can.
  • the display panel 5009 may display an image from the rear imaging means. Alternatively, legal speed, traffic information, and the like can be displayed on the display panels 5008a and 5008b.
  • the plurality of display panels 5007 may have flexibility.
  • the display portion 5001 can be processed into a complicated shape, and the display portion 5001 is displayed along a curved surface such as the dashboard 5002 or displayed on a connection portion of a handle, a display portion of an instrument, an air outlet 5006, or the like.
  • a configuration in which the display area of the portion 5001 is not provided can be easily realized.
  • the display panels 5008a and 5008b preferably have flexibility. Since the biller portion has an aspect, it is preferable that image distortion when the driver's seat sees the pillar portion is corrected.
  • the video distortion is preferably corrected using a neural network.
  • FIG. 18A shows an example in which a plurality of cameras 5005 are installed instead of the side mirrors, both side mirrors and cameras may be installed.
  • a CCD camera, a CMOS camera, or the like can be used as the camera 5005.
  • an infrared camera may be used in combination. Since the infrared camera has a higher output level as the temperature of the subject increases, it can detect or extract a living body such as a person or an animal.
  • the image captured by the camera 5005 can be output to any one or a plurality of display panels 5007.
  • the display unit 5001 is mainly used to assist driving of the vehicle. By photographing the rear side situation with a wide angle of view by the camera 5005 and displaying the image on the display panel 5007, the driver's blind spot area can be visually recognized, and the occurrence of an accident can be prevented.
  • video discontinuity at the joints of the display panels 5007a, 5007b, 5007c, and 5007d can be corrected. Accordingly, it is possible to display an image in which the joints are not conspicuous, and the visibility of the display unit 5001 during driving can be improved.
  • a distance image sensor may be provided on the roof of a car, and an image obtained by the distance image sensor may be displayed on the display unit 5001.
  • an image sensor or a rider LIDAR: Light Detection and Ranging
  • LIDAR Light Detection and Ranging
  • the display unit 5001 may have a function of displaying map information, traffic information, TV video, DVD video, and the like.
  • the map information can be displayed in a large size using the display panels 5007a, 5007b, 5007c, and 5007d as one display screen. Note that the number of display panels 5007 can be increased in accordance with displayed images.
  • the images displayed on the display panels 5007a, 5007b, 5007c, and 5007d can be freely set according to the driver's preference. For example, a TV image and a DVD image are displayed on the left display panel 5007d, map information is displayed on the central display panel 5007b, instruments are displayed on the right display panel 5007c, and audio is displayed in the vicinity of the transmission gear. Display on the display panel 5007a (between the seat and the passenger seat). Further, by combining a plurality of display panels 5007, a fail-safe function can be added to the display portion 5001. For example, even if a certain display panel 5007 breaks down for some reason, the display area can be changed and display can be performed using another display panel 5007.
  • the windshield 5004 has a display panel 5004a.
  • the display panel 5004a has a function of transmitting visible light and can visually recognize a background.
  • the display panel 5004a has a function of performing display or the like for alerting the driver.
  • FIG. 18B illustrates the structure in which the display panel 5004a is provided on the windshield 5004; however, the present invention is not limited to this.
  • the windshield 5004 may be replaced with the display panel 5004a.
  • an electronic device can be obtained by using the display device of one embodiment of the present invention.
  • the application range of the display device is extremely wide and can be applied to electronic devices in all fields.
  • G1 scanning line
  • G2 scanning line
  • S1 signal line
  • S2 signal line
  • 10b adhesive layer
  • 10c light shielding region
  • 10d light guide layer
  • 10e counter substrate
  • 10f light shielding region
  • 10g light shielding region
  • 12 source driver
  • 13 light unit
  • 13b opening
  • 13d light unit
  • 14 timing generation circuit
  • 16 memory Device: 17: Processor
  • 18 Communication module
  • 19 Sensor
  • 20 Image sensor
  • 24 Display element
  • 24a Liquid crystal element
  • 30 Electronic device, 31: Substrate, 32: Substrate
  • 38a light shielding layer
  • 38b light shielding layer
  • 42 liquid crystal layer
  • 43 common electrode
  • 43a common electrode
  • 43b common electrode
  • 43b Electrical layer 44: Insulating layer 45: Insulating layer 46: Conductive layer 46a: Conductive

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

Provided is a liquid crystal display device that suppresses flickering. Specifically provided is a display device having a first display region, wherein the first display region has a plurality of second regions and a plurality of third regions. The second regions and the third regions are disposed in an alternating fashion. The second regions are non-display regions where display data is updated. The third regions are regions where an image is displayed. The second regions and the third regions move in one direction, the plurality of second regions each have a period that is selected simultaneously in order to update display data, and the plurality of third regions are driven so as to perform display simultaneously.

Description

表示装置の駆動方法Driving method of display device
 本発明の一態様は、表示装置、及び表示装置の駆動方法に関する。 One embodiment of the present invention relates to a display device and a driving method of the display device.
 なお、本発明の一態様は、上記の技術分野に限定されない。本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置(例えば、タッチセンサなど)、入出力装置(例えば、タッチパネルなど)、それらの駆動方法、又はそれらの製造方法を一例として挙げることができる。 Note that one embodiment of the present invention is not limited to the above technical field. As a technical field of one embodiment of the present invention, a semiconductor device, a display device, a light-emitting device, a power storage device, a memory device, an electronic device, a lighting device, an input device (eg, a touch sensor), an input / output device (eg, a touch panel) ), A driving method thereof, or a manufacturing method thereof can be given as an example.
 表示装置には、液晶表示装置に代表されるフラットパネルディスプレイが広く用いられている。これらの表示装置では、高解像度な表示を実現する方法が検討されている。特許文献1には、カラーフィルタを用いないフィールドシーケンシャル方式による表示方法が開示されている。 As the display device, a flat panel display represented by a liquid crystal display device is widely used. In these display devices, methods for realizing high-resolution display are being studied. Patent Document 1 discloses a field sequential display method that does not use a color filter.
 特許文献2には、半導体材料に金属酸化物を用いたトランジスタを、表示装置の画素のスイッチング素子などに用いる技術が開示されている。 Patent Document 2 discloses a technique in which a transistor using a metal oxide as a semiconductor material is used as a switching element of a pixel of a display device.
特開2012−129988号公報JP 2012-129988 A 特開2007−123861号公報JP 2007-123861 A
 本発明の一態様により、ちらつきを抑制する液晶表示装置を提供することを課題の一とする。又は、本発明の一態様は、開口率が高い液晶表示装置を提供することを課題の一とする。又は、本発明の一態様は、消費電力の低い液晶表示装置を提供することを課題の一とする。又は、本発明の一態様は、高精細な液晶表示装置を提供することを課題の一とする。又は、本発明の一態様は、信頼性の高い液晶表示装置を提供することを課題の一とする。又は、広い温度範囲で安定した動作が可能な液晶表示装置を提供することを課題の一とする。 Another object of one embodiment of the present invention is to provide a liquid crystal display device that suppresses flicker. Another object of one embodiment of the present invention is to provide a liquid crystal display device with a high aperture ratio. Another object of one embodiment of the present invention is to provide a liquid crystal display device with low power consumption. Another object of one embodiment of the present invention is to provide a high-definition liquid crystal display device. Another object of one embodiment of the present invention is to provide a highly reliable liquid crystal display device. Another object is to provide a liquid crystal display device capable of stable operation in a wide temperature range.
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はないものとする。明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。 Note that the description of these issues does not disturb the existence of other issues. One embodiment of the present invention does not necessarily have to solve all of these problems. Issues other than these can be extracted from the description, drawings, and claims.
 本発明の一態様は、表示装置の駆動方法であって、第1の表示領域を有する表示装置の駆動方法である。第1の表示領域は、複数の第2の領域と、複数の第3の領域を有する。第2の領域と、第3の領域は、交互に存在する。第2の領域は、表示データが更新され非表示の領域である。第3の領域は、画像が表示される領域である。第2の領域及び第3の領域は、一方向に移動し、複数の第2の領域は、表示データを更新するために同時に選択される期間を有し、複数の第3の領域は、同時に表示されるように駆動する、表示装置の駆動方法である。 One embodiment of the present invention is a method for driving a display device, which is a method for driving a display device having a first display region. The first display area has a plurality of second areas and a plurality of third areas. The second region and the third region are alternately present. The second area is an area where display data is updated and is not displayed. The third area is an area where an image is displayed. The second region and the third region move in one direction, the plurality of second regions have a period selected at the same time for updating the display data, and the plurality of third regions are simultaneously It is a method for driving a display device that is driven so as to be displayed.
 上記各構成において、第1の表示領域は、複数の遮光領域を有する。遮光領域は、第2の領域と、第3の領域の間に設けられる。遮光領域は、第2の領域が第3の領域の光によって誤表示されることを抑制することができる。 In each of the above configurations, the first display area has a plurality of light shielding areas. The light shielding region is provided between the second region and the third region. The light shielding area can suppress the second area from being erroneously displayed by the light of the third area.
 上記各構成において、第3の領域である非表示領域の面積が、第2の領域である表示領域と異なる面積であってもよい。 In each of the above configurations, the area of the non-display area that is the third area may be different from that of the display area that is the second area.
 上記各構成において、前記第1の表示領域は、表示状態から非表示状態に移行する領域と、表示状態を保持する領域と、非表示状態から表示状態に移行する領域と、を有する。 In each of the above configurations, the first display area includes an area that shifts from a display state to a non-display state, an area that maintains the display state, and an area that shifts from the non-display state to the display state.
 上記各構成において、複数の第3の領域が、異なる色相の光を透過することが好ましい。 In each of the above configurations, it is preferable that the plurality of third regions transmit light of different hues.
 上記各構成において、第1の表示領域は、複数の画素を有する。画素は、トランジスタを有する。なお、トランジスタは、半導体層に金属酸化物を有する。 In each of the above configurations, the first display area has a plurality of pixels. The pixel includes a transistor. Note that the transistor includes a metal oxide in a semiconductor layer.
 本発明の一態様により、ちらつきを抑制する液晶表示装置を提供できる。又は、本発明の一態様により、開口率が高い液晶表示装置を提供できる。又は、本発明の一態様により、消費電力の低い液晶表示装置を提供できる。又は、本発明の一態様により、高精細な液晶表示装置を提供できる。又は、本発明の一態様により、信頼性の高い液晶表示装置を提供できる。又は、本発明の一態様により、広い温度範囲で安定した動作が可能な液晶表示装置を提供できる。 According to one embodiment of the present invention, a liquid crystal display device that suppresses flickering can be provided. Alternatively, according to one embodiment of the present invention, a liquid crystal display device with a high aperture ratio can be provided. Alternatively, according to one embodiment of the present invention, a liquid crystal display device with low power consumption can be provided. Alternatively, according to one embodiment of the present invention, a high-definition liquid crystal display device can be provided. Alternatively, according to one embodiment of the present invention, a highly reliable liquid crystal display device can be provided. Alternatively, according to one embodiment of the present invention, a liquid crystal display device capable of stable operation over a wide temperature range can be provided.
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。 Note that the description of these effects does not disturb the existence of other effects. One embodiment of the present invention need not necessarily have all of these effects. Effects other than these can be extracted from the description, drawings, and claims.
(A)(B)表示領域の一例を示す図。FIGS. 5A and 5B are diagrams illustrating examples of display areas. FIGS. (A)表示領域の一例を示す図。(B)表示装置の一例を示す図。(A) A figure showing an example of a display field. FIG. 5B illustrates an example of a display device. 表示装置の一例を示す回路図。FIG. 6 is a circuit diagram illustrating an example of a display device. (A)画素の一例を示す回路図。(B)タイミングチャート。(C)画素の一例を示す回路図。(A) A circuit diagram showing an example of a pixel. (B) Timing chart. (C) A circuit diagram showing an example of a pixel. タイミングチャート。Timing chart. タイミングチャート。Timing chart. 電子機器の一例を示すブロック図。FIG. 11 is a block diagram illustrating an example of an electronic device. (A)表示装置の一例を示す斜視図。(B)表示装置を示す三面図。FIG. 4A is a perspective view illustrating an example of a display device. (B) Three views showing a display device. (A)表示装置の一例を示す斜視図。(B)表示装置を示す三面図。FIG. 4A is a perspective view illustrating an example of a display device. (B) Three views showing a display device. 表示装置の一例を示す斜視図。The perspective view which shows an example of a display apparatus. (A)(B)表示装置の一例を示す断面図。4A and 4B are cross-sectional views illustrating an example of a display device. (A)(B)(C)画素の一例を示す上面図。(A) (B) (C) Top view showing an example of a pixel. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. 表示装置の一例を示す断面図。Sectional drawing which shows an example of a display apparatus. (A)(B)(C)電子機器の一例を示す図。FIGS. 5A to 5C each illustrate an example of an electronic device. FIGS. (A)(B)(C)(D)(E)電子機器の一例を示す図。FIGS. 5A to 5C each illustrate an example of an electronic device. FIGS. (A)(B)電子機器の一例を示す図。FIGS. 5A and 5B each illustrate an example of an electronic device. FIGS.
 実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。 Embodiments will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it is easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.
 なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。 Note that in the structures of the invention described below, the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and description thereof is not repeated. In addition, in the case where the same function is indicated, the hatch pattern is the same, and there is a case where no reference numeral is given.
 また、図面において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面に開示された位置、大きさ、範囲などに限定されない。 Also, the position, size, range, etc. of each component shown in the drawings may not represent the actual position, size, range, etc. for easy understanding. Therefore, the disclosed invention is not necessarily limited to the position, size, range, or the like disclosed in the drawings.
 なお、「膜」という言葉と、「層」という言葉とは、場合によっては、又は、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能である。又は、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能である。 Note that the terms “film” and “layer” can be interchanged with each other depending on circumstances or circumstances. For example, the term “conductive layer” can be changed to the term “conductive film”. Alternatively, for example, the term “insulating film” can be changed to the term “insulating layer”.
 なお、本明細書中において、高電源電圧をHレベル(又はVDD)、低電源電圧をLレベル(又はGND)と呼ぶ場合がある。 Note that in this specification, a high power supply voltage may be referred to as an H level (or V DD ), and a low power supply voltage may be referred to as an L level (or GND).
 また、本明細書は、以下の実施の形態を適宜組み合わせることが可能である。また、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。 Further, in this specification, the following embodiments can be appropriately combined. In the case where a plurality of structure examples are given in one embodiment, any of the structure examples can be combined as appropriate.
(実施の形態1)
 本実施の形態では、本発明の一態様の表示装置について図1乃至図10を用いて説明する。
(Embodiment 1)
In this embodiment, a display device of one embodiment of the present invention will be described with reference to FIGS.
 図1(A)、(B)に示す表示パネル10aは、表示可能領域を有する。表示可能領域は、複数の非表示領域と、複数の表示領域と、複数の遮光領域10cと、を有する。なお、表示パネル10aは、複数の画素を有する。一例として表示可能領域は、非表示領域20(ハッチングあり)と、表示領域21(ハッチングなし)と、を有する。 1A and 1B has a displayable area. The displayable area includes a plurality of non-display areas, a plurality of display areas, and a plurality of light shielding areas 10c. The display panel 10a has a plurality of pixels. As an example, the displayable area includes a non-display area 20 (with hatching) and a display area 21 (without hatching).
 非表示領域20と、表示領域21は、交互に存在する。非表示領域20では、表示データが更新され、表示領域21では、画像が表示される領域である。非表示領域20及び表示領域21は、一方向に移動し、複数の表示領域21は、同時に表示されるように駆動することができる。 The non-display area 20 and the display area 21 are alternately present. The display data is updated in the non-display area 20, and the image is displayed in the display area 21. The non-display area 20 and the display area 21 move in one direction, and the plurality of display areas 21 can be driven to be displayed simultaneously.
 なお、図1(A)では、一例として、非表示領域20が画像データB1aで更新されることを示し、表示領域21が画像データB1bで表示することを示している。なお、画像データを表示する表示領域には、非表示の状態をハッチングにより明示化している。図1(B)では、一例として、非表示領域20が画像データR1aで更新されることを示し、表示領域21の一部の領域が画像データR1bで表示し、さらに、該表示領域21の異なる領域が画像データR1cで表示することを示している。 In FIG. 1A, as an example, the non-display area 20 is updated with the image data B1a, and the display area 21 is displayed with the image data B1b. In the display area for displaying the image data, the non-display state is clearly indicated by hatching. In FIG. 1B, as an example, the non-display area 20 is updated with the image data R1a, a part of the display area 21 is displayed with the image data R1b, and the display area 21 is different. The area is displayed as image data R1c.
 また、図1(A)では、非表示領域20が、表示領域21と同じ面積である例を示しているが、必ずしも非表示領域20が、表示領域21と同じ面積でなくてもよい。図1(B)に示すように非表示領域20が、表示領域21と異なる面積であってもよい。 1A shows an example in which the non-display area 20 has the same area as the display area 21, but the non-display area 20 may not necessarily have the same area as the display area 21. As shown in FIG. 1B, the non-display area 20 may have a different area from the display area 21.
 なお、図1(B)では、表示領域21の一部が非表示領域20に移行する領域と、表示領域21として表示を続ける領域と、非表示領域20が表示領域21に移行する領域と、を有する駆動方法を示している。それぞれの表示領域21は、異なる色相の光を同時に表示することができる。従って、表示パネル10aが有する表示領域を画像データによって更新する1フレーム期間において、複数の表示領域21が波状に移動しながら表示することができる。 In FIG. 1B, a region in which a part of the display area 21 moves to the non-display area 20, an area that continues to be displayed as the display area 21, an area in which the non-display area 20 moves to the display area 21, The drive method which has is shown. Each display area 21 can simultaneously display light of different hues. Therefore, in the one frame period in which the display area of the display panel 10a is updated with image data, a plurality of display areas 21 can be displayed while moving in a wave shape.
 異なる色相の光が、同時に表示され、且つ時刻と共に波状に移動する。人間の目には、同時に表示される異なる色相の光と、時刻と共に波状に移動することで積分される光が認識される。なお、人間の目には、時間と共に移動する光が積分輝度として認識される。複数の表示領域21を有する表示パネル10aでは、表示領域21の面積の大きさに応じてそれぞれの表示領域21が表示する光を合成し、且つ積分する。さらに、表示領域21が波状に移動しながら異なる色相の光を合成し、且つ積分することができる。大きな面積を用いて積分輝度を生成するときには、残像を原因とするちらつきやカラーブレイクなどが発生しやすい。但し、小さな面積で、且つそれぞれの表示領域21で生成される該積分輝度は、ちらつきを抑制し、表示品質を向上させることができる。 ¡Lights of different hues are displayed at the same time and move wavy with time. The human eye recognizes light of different hues displayed at the same time and light integrated by moving in a wave shape with time. Note that the human eye recognizes light that moves with time as integrated luminance. In the display panel 10 a having a plurality of display areas 21, the lights displayed in the display areas 21 are combined and integrated according to the size of the area of the display area 21. Furthermore, light of different hues can be synthesized and integrated while the display area 21 moves in a wave shape. When the integrated luminance is generated using a large area, flickering or color breaks due to afterimages are likely to occur. However, the integrated luminance generated in each display area 21 with a small area can suppress flickering and improve display quality.
 非表示領域20と、表示領域21は、それぞれ複数の画素を有している。複数の非表示領域20は、表示データを更新するために同時に選択される期間を有し、画像データを更新し、表示領域21が有するそれぞれの画素は、同時に表示される。但し、表示領域21が有する画素と、非表示領域20が有する画素とが近傍に存在すると、表示領域21の光が非表示領域の画素に迷光として与えられることがある。 The non-display area 20 and the display area 21 each have a plurality of pixels. The plurality of non-display areas 20 have periods selected at the same time for updating the display data, and the image data is updated, and the respective pixels included in the display area 21 are simultaneously displayed. However, if the pixels included in the display area 21 and the pixels included in the non-display area 20 exist in the vicinity, the light in the display area 21 may be given to the pixels in the non-display area as stray light.
 なお、表示パネル10aが有する表示領域は、複数の遮光領域10cを有することが好ましい。例えば、遮光領域10cは、非表示領域20と、表示領域21との間に設けられ、遮光領域10cは、非表示領域20と接する位置に配置される。また遮光領域10cは、表示領域21が表示するときの迷光が非表示領域20に影響を与えることを抑制する効果がある。迷光によって非表示領域20が表示されるとき、表示領域21に接する非表示領域20に表示ぼけなどが発生し表示の品質が低下する。従って、遮光領域10cを設けることで、表示領域21からの迷光を抑制し、表示の品質を向上させることができる。 Note that the display area of the display panel 10a preferably includes a plurality of light shielding areas 10c. For example, the light shielding region 10 c is provided between the non-display region 20 and the display region 21, and the light shielding region 10 c is disposed at a position in contact with the non-display region 20. Further, the light shielding area 10 c has an effect of suppressing stray light from being displayed on the display area 21 from affecting the non-display area 20. When the non-display area 20 is displayed due to stray light, display blur or the like occurs in the non-display area 20 in contact with the display area 21 and the display quality is deteriorated. Therefore, by providing the light shielding region 10c, stray light from the display region 21 can be suppressed and display quality can be improved.
 図2では、表示装置が有する表示パネル10aを詳細に説明する。但し、図2(A)では、説明を簡便化するために表示パネル10aが非表示領域20R、20G、20B、表示領域21R、21G、21Bを有する例について説明する。なお、表示パネル10aは、画像データR0b、G0a、G0b、B0a、B0b、R1a、R1bを有し、画像データR1a、R1bは、次フレームの画像データとして説明する。従って画像データR0b、R1a、R1bは、それぞれが異なる画像データによって階調が制御されることが好ましい。 2, the display panel 10a included in the display device will be described in detail. However, in FIG. 2A, an example in which the display panel 10a includes the non-display areas 20R, 20G, and 20B and the display areas 21R, 21G, and 21B will be described in order to simplify the description. The display panel 10a has image data R0b, G0a, G0b, B0a, B0b, R1a, R1b, and the image data R1a, R1b will be described as image data of the next frame. Therefore, the gradation of the image data R0b, R1a, R1b is preferably controlled by different image data.
 図2(B)は、表示装置10の一例を説明する図である。表示装置10は、表示パネル10a、ゲートドライバ11、ソースドライバ12、及びライトユニット13を有している。表示パネル10aは、複数の走査線G、複数の信号線S、及び複数の画素Pを有している。表示パネル10aは、列方向にm個(mは、1以上の整数)、行方向n個(nは1以上の偶数)、合計m×n個の画素Pを有する。走査線Gは、n行を有し、信号線Sは、m列を有している。 FIG. 2B is a diagram illustrating an example of the display device 10. The display device 10 includes a display panel 10a, a gate driver 11, a source driver 12, and a light unit 13. The display panel 10a includes a plurality of scanning lines G, a plurality of signal lines S, and a plurality of pixels P. The display panel 10a has m pixels (m is an integer of 1 or more) in the column direction, n pixels in the row direction (n is an even number of 1 or more), and a total of m × n pixels P. The scanning line G has n rows, and the signal line S has m columns.
 なお、図2(B)では、一例としてゲートドライバ11は、走査線Gに接続される隣り合う行の画素を同時に選択することができる。なお、隣り合う行の画素は2画素に限定されず、3画素以上を同時に選択することができる。 In FIG. 2B, as an example, the gate driver 11 can simultaneously select pixels in adjacent rows connected to the scanning line G. Note that the pixels in adjacent rows are not limited to two pixels, and three or more pixels can be selected simultaneously.
 一例として、走査線G(jr)に接続される画素について説明する場合、画素P(x、yr)、画素P(x+1、yr+1)を用いて説明する。走査線G(jr)は、列方向に延在するyr行目に電気的に接続される複数の画素と、yr+1行目に電気的に接続される複数の画素と、を選択することができる。同様に、走査線G(jg)は、列方向に延在するyg行目に電気的に接続される複数の画素と、yg+1行目に電気的に接続される複数の画素と、を選択することができる。同様に、走査線G(jb)は、列方向に延在するyb行目に電気的に接続される複数の画素と、yb+1行目に電気的に接続される複数の画素と、を選択することができる。なお、jr、jg、及びjbは、1以上n/2以下の整数であり、xは、1以上m以下の整数であり、yr、yg、ybは、1以上n以下の奇数である。 As an example, when a pixel connected to the scanning line G (jr) is described, the description will be made using the pixel P (x, yr) and the pixel P (x + 1, yr + 1). The scanning line G (jr) can select a plurality of pixels electrically connected to the yr row extending in the column direction and a plurality of pixels electrically connected to the yr + 1 row. . Similarly, the scanning line G (jg) selects a plurality of pixels electrically connected to the yg row extending in the column direction and a plurality of pixels electrically connected to the yg + 1 row. be able to. Similarly, the scanning line G (jb) selects a plurality of pixels electrically connected to the yb row extending in the column direction and a plurality of pixels electrically connected to the yb + 1 row. be able to. Note that jr, jg, and jb are integers of 1 to n / 2, x is an integer of 1 to m, and yr, yg, and yb are odd numbers of 1 to n.
 また、ライトユニット13は、少なくとも異なる色相の光を3種類以上有していることが好ましい。図2(B)では、色相(LR:赤、LG:緑、LB:青)を有する例を示しているが、異なる色相の光として(LW:白,LC:シアン、LM:マゼンタ、LY:黄)などを有してもよい。ライトユニット13が有する色相は、表示に用いる色相によって組み合わせることができる。例えば、色相(LR:赤、LG:緑、LB:青)に色相(LW:白)を補色として組み合わせてもよいし、いずれか一のみを用いてもよい。 Further, it is preferable that the light unit 13 has at least three kinds of light of different hues. FIG. 2B shows an example having hues (LR: red, LG: green, LB: blue), but as light of different hues (LW: white, LC: cyan, LM: magenta, LY: Yellow) and the like. The hue of the light unit 13 can be combined according to the hue used for display. For example, the hue (LR: red, LG: green, LB: blue) may be combined with the hue (LW: white) as a complementary color, or only one of them may be used.
 ライトユニット13は、複数の異なる光を、異なる開口部から射出することができることが好ましい。それぞれの異なる開口部から射出された光は、各々異なる表示領域20に与えられる。 The light unit 13 is preferably capable of emitting a plurality of different lights from different openings. The light emitted from the different openings is given to the different display areas 20.
 なお、ソースドライバ12の詳細な説明について図7で示すが、表示パネル10a、及びゲートドライバ11と同じ基板上に形成されていなくてもよい。ソースドライバ12は、表示パネル10a、及びゲートドライバ11が形成された基板に、フレキシブルプリント回路基板を介して接続してもよい。 Although a detailed description of the source driver 12 is shown in FIG. 7, the source driver 12 may not be formed on the same substrate as the display panel 10 a and the gate driver 11. The source driver 12 may be connected to a substrate on which the display panel 10a and the gate driver 11 are formed via a flexible printed circuit board.
 また、図2(B)では、図2(A)の表示パネル10aの非表示領域20G、20B、20Rと、表示領域21R、21G、21Bと、ライトユニット13の点灯、消灯の関係を示している。 FIG. 2B shows the relationship between the non-display areas 20G, 20B, and 20R, the display areas 21R, 21G, and 21B of the display panel 10a of FIG. Yes.
 例えば、走査線G(jr)が選択された場合、列方向に延在するyr行目と、yr+1行目とに接続される複数の画素の画像データが同時に更新される。走査線G(jg)が選択された場合、列方向に延在するyg行と、yg+1行とに接続される複数の画素の画像データが同時に更新される。走査線G(jr)が選択された場合、列方向に延在するyb行と、yb+1行とに接続される複数の画素の画像データが同時に更新される。 For example, when the scanning line G (jr) is selected, the image data of a plurality of pixels connected to the yr row extending in the column direction and the yr + 1 row are simultaneously updated. When the scanning line G (jg) is selected, the image data of a plurality of pixels connected to the yg row extending in the column direction and the yg + 1 row are simultaneously updated. When the scanning line G (jr) is selected, the image data of a plurality of pixels connected to the yb row extending in the column direction and the yb + 1 row are updated simultaneously.
 なお、走査線で選択される行の画素は、非表示領域20(ハッチングあり)に相当し、画像データが更新されなかった画素は、表示領域21(ハッチングなし)としてライトユニット13が点灯する領域である。但し、例えば、ライトユニット13の色相LRが点灯している場合は、他の色相は消灯していることが好ましい。それぞれの表示領域21は、非表示領域20で更新された画像データに応じて点灯する色相が選択されることが好ましい。なお、二つ以上の色相を同時に点灯させて異なる色相の光を合成させることもできる。また、ライトユニット13の色相LRが点灯していない期間に、yr行目と、yr+1行目とに接続される複数の画素の画像データが更新されることが好ましい。図2(B)では、一例としてライトユニット13の色相LRが消灯した直後にyr行目と、yr+1行目とに接続される複数の画素の画像データが更新される例を示している。但し、画素の画像データの更新タイミングは限定されない。 The pixels in the row selected by the scanning line correspond to the non-display area 20 (with hatching), and the pixels whose image data has not been updated are areas where the light unit 13 is lit as the display area 21 (without hatching). It is. However, for example, when the hue LR of the light unit 13 is turned on, the other hues are preferably turned off. In each display area 21, it is preferable to select a hue to be lit according to the image data updated in the non-display area 20. Note that two or more hues can be turned on simultaneously to combine lights of different hues. In addition, it is preferable that the image data of a plurality of pixels connected to the yr-th row and the yr + 1-th row be updated during a period when the hue LR of the light unit 13 is not lit. FIG. 2B shows an example in which the image data of a plurality of pixels connected to the yr row and the yr + 1 row are updated immediately after the hue LR of the light unit 13 is turned off. However, the update timing of the pixel image data is not limited.
 図3では、図2(B)で示した表示パネル10aのより詳細な回路図を示す。なお、図3では、説明を簡便化するために、一例として、走査線G1(jg)、及び走査線G2(jg)に電気的に接続された画素P(x、yg)、及び画素P(x、yg+1)について説明する。 FIG. 3 shows a more detailed circuit diagram of the display panel 10a shown in FIG. Note that in FIG. 3, in order to simplify the explanation, as an example, the scanning line G1 (jg), the pixel P (x, yg) electrically connected to the scanning line G2 (jg), and the pixel P ( x, yg + 1) will be described.
 画素P(x、yg)は、トランジスタ101、トランジスタ102、容量素子104、及び表示素子24を有している。なお、表示素子24についての詳細な説明は図4で行う。 The pixel P (x, yg) includes a transistor 101, a transistor 102, a capacitor 104, and a display element 24. A detailed description of the display element 24 will be given with reference to FIG.
 トランジスタ101のゲートは、走査線G1(jg)と電気的に接続されている。トランジスタ101のソース又はドレインの一方は、信号線S1(i)と電気的に接続されている。トランジスタ101のソース又はドレインの他方は、容量素子104の電極の一方、及び表示素子24と電気的に接続されている。トランジスタ102のゲートは、走査線G2(jg)と電気的に接続されている。トランジスタ102のソース又はドレインの一方は、信号線S2(i)と電気的に接続されている。トランジスタ102のソース又はドレインの他方は、容量素子104の電極の他方と電気的に接続されている。 The gate of the transistor 101 is electrically connected to the scanning line G1 (jg). One of a source and a drain of the transistor 101 is electrically connected to the signal line S1 (i). The other of the source and the drain of the transistor 101 is electrically connected to one of the electrodes of the capacitor 104 and the display element 24. A gate of the transistor 102 is electrically connected to the scan line G2 (jg). One of a source and a drain of the transistor 102 is electrically connected to the signal line S2 (i). The other of the source and the drain of the transistor 102 is electrically connected to the other of the electrodes of the capacitor 104.
 画素P(x、yg+1)は、走査線G1(jg)、及び走査線G2(jg)と電気的に接続されている。画素P(x、yg+1)は、信号線S1(i+1)、及び信号線S2(i+1)と電気的に接続されている点が画素P(x、yg)と異なっている。つまり、走査線Gは、複数の行を同時選択することができ、該走査線に接続される画素には、同時に画像データを更新するための異なる信号線Sが接続されている。図3で示す回路図では、信号線が異なる方向から接続される例を示したが、同じ方向から信号線が接続されてもよい。異なる方向から、信号を入れることで、画素のレイアウトが対称に配置される。従って、表示パネルの10aの視野角を広くする効果がある。 The pixel P (x, yg + 1) is electrically connected to the scanning line G1 (jg) and the scanning line G2 (jg). The pixel P (x, yg + 1) is different from the pixel P (x, yg) in that it is electrically connected to the signal line S1 (i + 1) and the signal line S2 (i + 1). That is, the scanning line G can simultaneously select a plurality of rows, and different signal lines S for simultaneously updating image data are connected to the pixels connected to the scanning line. In the circuit diagram shown in FIG. 3, an example in which the signal lines are connected from different directions is shown, but the signal lines may be connected from the same direction. By inputting signals from different directions, the pixel layout is arranged symmetrically. Therefore, there is an effect of widening the viewing angle of the display panel 10a.
 図4では、画素の詳細な説明をする。ここでは、表示素子24と、画素の動作について説明し、図3で説明した画素の接続についての説明は省略する。 In FIG. 4, the pixel is described in detail. Here, the operation of the display element 24 and the pixel will be described, and the description of the pixel connection described in FIG. 3 will be omitted.
 なお本発明の一態様の表示装置が有する画素は、該画素が画像データに補正信号を付加するための機能を有する。 Note that the pixel included in the display device of one embodiment of the present invention has a function of adding a correction signal to image data.
 該補正信号は、容量結合によって画像データに付加され、液晶素子に供給される。従って、液晶素子では補正された画像を表示することができる。該補正によって、例えば、液晶素子は、画像データのみを用いて表現できる階調よりも多くの階調を表現することができる。 The correction signal is added to the image data by capacitive coupling and supplied to the liquid crystal element. Therefore, the corrected image can be displayed on the liquid crystal element. By this correction, for example, the liquid crystal element can express more gradations than can be expressed using only image data.
 また、該補正によって、ソースドライバ12の出力電圧よりも高い電圧で、液晶素子を駆動させることができる。画素内で、液晶素子に供給する電圧を所望の値に変えることができるため、既存のソースドライバ12を転用でき、ソースドライバ12を新規に設計するコストなどを削減することができる。また、ソースドライバ12の出力電圧が高くなることを抑制できるため、ソースドライバ12の消費電力を低減することができる。 Further, the liquid crystal element can be driven at a voltage higher than the output voltage of the source driver 12 by the correction. Since the voltage supplied to the liquid crystal element can be changed to a desired value within the pixel, the existing source driver 12 can be diverted, and the cost for newly designing the source driver 12 can be reduced. Moreover, since it can suppress that the output voltage of the source driver 12 becomes high, the power consumption of the source driver 12 can be reduced.
 高い電圧をかけて液晶素子を駆動させることで、表示装置を広い温度範囲で使用することができ、低温環境及び高温環境のいずれにおいても信頼性高く表示を行うことができる。例えば、該表示装置を車載用又はカメラ用の表示装置として利用することができる。 By driving the liquid crystal element by applying a high voltage, the display device can be used in a wide temperature range, and display can be performed with high reliability in both a low temperature environment and a high temperature environment. For example, the display device can be used as an on-vehicle display device or a camera display device.
 また、高い電圧をかけて液晶素子を駆動させることができる。従って、ブルー相を示す液晶など、駆動電圧の高い液晶材料を用いることができる。 Also, a high voltage can be applied to drive the liquid crystal element. Therefore, a liquid crystal material having a high driving voltage such as a liquid crystal exhibiting a blue phase can be used.
 また、高い電圧をかけて液晶素子を駆動させることができるため、オーバードライブ駆動により応答速度を向上させることができる。 Also, since the liquid crystal element can be driven by applying a high voltage, the response speed can be improved by overdrive driving.
 補正信号は、例えば、外部機器にて生成され、各画素に書き込まれる。補正信号の生成は、外部機器を用いてリアルタイムで行ってもよいし、記録媒体に保存されている補正信号を読み出して画像データと同期させてもよい。 The correction signal is generated by, for example, an external device and written to each pixel. The correction signal may be generated in real time using an external device, or the correction signal stored in the recording medium may be read out and synchronized with the image data.
 本発明の一態様の表示装置では、供給する画像データは変化させず、補正信号を供給した画素で新たな画像データを生成することができる。外部機器を用いて新しい画像データそのものを生成する場合に比べて、外部機器にかかる負荷を低減することができる。また、新たな画像データを画素で生成するための動作は少ないステップで行うことができ、画素数が多く水平期間の短い表示装置でも対応することができる。 In the display device of one embodiment of the present invention, the image data to be supplied is not changed, and new image data can be generated from the pixel to which the correction signal is supplied. Compared to the case where new image data itself is generated using an external device, the load on the external device can be reduced. Further, an operation for generating new image data with pixels can be performed with few steps, and a display device with a large number of pixels and a short horizontal period can be used.
 図4(A)では、表示素子24について説明する。表示素子24は、液晶素子24a、及び容量素子105を有している。液晶素子24aの電極の一方は、容量素子105の電極の一方、容量素子104の電極の一方、及びトランジスタ101のソース又はドレインの他方と電気的に接続されている。共通電極COMには、液晶素子24aの電極の他方、及び容量素子105の電極の他方と電気的に接続されている。なお、ノードNAは、液晶素子24aの電極の一方、容量素子105の電極の一方、容量素子104の電極の一方、及びトランジスタ101のソース又はドレインの他方と接続するノードである。 4A, the display element 24 will be described. The display element 24 includes a liquid crystal element 24 a and a capacitor element 105. One of the electrodes of the liquid crystal element 24 a is electrically connected to one of the electrodes of the capacitor 105, one of the electrodes of the capacitor 104, and the other of the source or the drain of the transistor 101. The common electrode COM is electrically connected to the other electrode of the liquid crystal element 24 a and the other electrode of the capacitor 105. Note that the node NA is a node connected to one of the electrodes of the liquid crystal element 24 a, one of the electrodes of the capacitor 105, one of the electrodes of the capacitor 104, and the other of the source and the drain of the transistor 101.
 図4(B)は、画素が画像データによって更新されるときのタイミングチャートである。 FIG. 4B is a timing chart when the pixels are updated with image data.
 時刻T2では、走査線G1、G2に与えられる信号によってトランジスタ101、及びトランジスタ22がON状態になるステップである。信号線S2には、階調値0に相当する初期化電圧Vrが与えられ、且つ、信号線S1には、画像データVpが与えられる。画像データVpは、ノードNAに保持される。 At time T2, the transistor 101 and the transistor 22 are turned on by signals given to the scanning lines G1 and G2. An initialization voltage Vr corresponding to a gradation value of 0 is applied to the signal line S2, and image data Vp is applied to the signal line S1. The image data Vp is held in the node NA.
 時刻T3では、走査線G1に与えられる信号によってトランジスタ101がOFF状態になり、走査線G2に与えられる信号によってトランジスタ102は、ON状態を維持する。信号線S2には、画像データVsが与えられる。ノードNAは、容量素子104を介する容量結合により、画像データVpに画像データVsが付加され、Vs+Vp電位に変化する。 At time T3, the transistor 101 is turned off by a signal given to the scanning line G1, and the transistor 102 is kept on by the signal given to the scanning line G2. Image data Vs is applied to the signal line S2. The node NA is changed to the potential Vs + Vp by adding the image data Vs to the image data Vp due to capacitive coupling via the capacitive element 104.
 時刻T4では、走査線G2に与えられる信号によってトランジスタ102がOFF状態になる。よって、ノードNAには、Vs+Vp電位が保持される。なお、トランジスタ101、及びトランジスタ102は、オフ電流が小さなトランジスタであることが好ましい。オフ電流が小さなトランジスタとしては、実施の形態2で説明する半導体層に金属酸化物を有するトランジスタを用いることが好ましい。 At time T4, the transistor 102 is turned off by a signal applied to the scanning line G2. Therefore, the potential Vs + Vp is held at the node NA. Note that the transistor 101 and the transistor 102 are preferably transistors with low off-state current. As the transistor with low off-state current, a transistor including a metal oxide in a semiconductor layer described in Embodiment 2 is preferably used.
 なお、図4(C)には、トランジスタ101a、及びトランジスタ102aが、それぞれバックゲートを有した例を示す。図4(C)では、該トランジスタのゲートが該トランジスタのバックゲートと電気的に接続された例を示している。なお、該バックゲートの接続先は、該トランジスタのゲートに限定されない。該バックゲートは、該トランジスタのソース又はドレインと接続されてもよい、又は、外部から制御できる配線に接続されてもよい。 Note that FIG. 4C illustrates an example in which the transistor 101a and the transistor 102a each have a back gate. FIG. 4C illustrates an example in which the gate of the transistor is electrically connected to the back gate of the transistor. Note that the connection destination of the back gate is not limited to the gate of the transistor. The back gate may be connected to the source or the drain of the transistor, or may be connected to a wiring that can be controlled from the outside.
 図5では、タイミングチャートを用いて図3で説明した回路の動作を説明する。なお、画像データが画素P(x、yg)に与えられる場合、信号線S1を介して与えられる画像データを画像データD(x、yg)として表し、信号線S2を介して与えられる画像データを画像データDW(x、yg)として表す。 FIG. 5 illustrates the operation of the circuit described in FIG. 3 using a timing chart. When image data is given to the pixel P (x, yg), the image data given via the signal line S1 is represented as image data D (x, yg), and the image data given via the signal line S2 is It is expressed as image data DW (x, yg).
 時刻T11では、走査線G1(jg−1)、走査線G2(jg−1)に“H”の信号が与えられる。画素P(x、yg−2)には、信号線S1(i)を介して画像データD(x、yg−2)が与えられ、且つ、信号線S2(i)を介して初期化電圧Vrが与えられる。画素P(x、yg−1)には、信号線S1(i+1)を介して画像データD(x、yg−1)が与えられ、且つ、信号線S2(i+1)を介して初期化電圧Vrが与えられる。 At time T11, a signal of “H” is given to the scanning line G1 (jg−1) and the scanning line G2 (jg−1). The pixel P (x, yg-2) is supplied with the image data D (x, yg-2) via the signal line S1 (i), and the initialization voltage Vr via the signal line S2 (i). Is given. The pixel P (x, yg−1) is supplied with the image data D (x, yg−1) via the signal line S1 (i + 1), and the initialization voltage Vr via the signal line S2 (i + 1). Is given.
 時刻T12では、走査線G1(jg−1)に“L”の信号、走査線G2(jg−1)に“H”の信号が与えられる。画素P(x、yg−2)には、信号線S2(i)を介して画像データDW(x、yg−2)が与えられる。画素P(x、yg−1)には、信号線S2(i+1)を介して画像データDW(x、yg−1)が与えられる。図中では表記していないが、画素P(x、yg−2)では、表示素子に対して画像データD(x、yg−2)+画像データDW(x、yg−2)の演算が行われる。同様に、画素P(x、yg−1)では、表示素子に対して画像データD(x、yg−1)+画像データDW(x、yg−1)の演算が行われる。 At time T12, an "L" signal is applied to the scanning line G1 (jg-1) and an "H" signal is applied to the scanning line G2 (jg-1). Image data DW (x, yg-2) is given to the pixel P (x, yg-2) via the signal line S2 (i). Image data DW (x, yg-1) is given to the pixel P (x, yg-1) via the signal line S2 (i + 1). Although not shown in the figure, in the pixel P (x, yg-2), calculation of image data D (x, yg-2) + image data DW (x, yg-2) is performed on the display element. Is called. Similarly, in the pixel P (x, yg−1), calculation of image data D (x, yg−1) + image data DW (x, yg−1) is performed on the display element.
 ゲートドライバ11は、選択する行によって時刻T11及び時刻T12と同じ動作を繰り返して画像データを更新することができる。時刻T13及び時刻T14では、画素P(x、yg)、画素P(x、yg+1)の画像データを更新し、さらに、時刻T15及び時刻T16では、画素P(x、yg+2)、画素P(x、yg+3)の画像データを更新することができる。 The gate driver 11 can update the image data by repeating the same operation at the time T11 and the time T12 according to the selected row. At time T13 and time T14, the image data of the pixel P (x, yg) and pixel P (x, yg + 1) is updated, and at time T15 and time T16, the pixel P (x, yg + 2) and pixel P (x , Yg + 3) image data can be updated.
 図6では、図2で説明した異なる非表示領域20の走査線の画像データを同時に更新する方法についてタイミングチャートを用いて説明する。なお、図6で説明するのは、異なる非表示領域20内の画像データを更新する方法である。ライトユニットが消灯している期間内であれば異なるタイミングで画素の画像データが更新されたとしても、画像データは同時に更新されると判断することができる。なお、異なる非表示領域20の画素は、信号線S1(i)、S2(i)を介して画像データが更新される。 In FIG. 6, a method for simultaneously updating the image data of the scanning lines in the different non-display areas 20 described in FIG. 2 will be described using a timing chart. FIG. 6 illustrates a method for updating image data in different non-display areas 20. It can be determined that the image data is updated at the same time even if the image data of the pixel is updated at different timings as long as the light unit is turned off. Note that image data of pixels in different non-display areas 20 is updated via signal lines S1 (i) and S2 (i).
 図6では、説明を簡便化するために、画素P(x、yr)乃至画素P(x、yr+3)、画素P(x、yg)乃至画素P(x、yg+3)、及び画素P(x、yb)乃至画素P(x、yb+3)について説明する。なお、図2で示すように、yr行、yg行、又はyb行が、各々異なる非表示領域20に属している。 In FIG. 6, in order to simplify the description, the pixel P (x, yr) to the pixel P (x, yr + 3), the pixel P (x, yg) to the pixel P (x, yg + 3), and the pixel P (x, yb) to pixel P (x, yb + 3) will be described. As shown in FIG. 2, the yr row, the yg row, or the yb row belong to different non-display areas 20.
 時刻T21では、走査線G1(jr)、G2(jr)に“H”の信号が与えられる。画素P(x、yr)には、信号線S1(i)を介して画像データD(x、yr)が与えられ、且つ、信号線S2(i)を介して初期化電圧Vrが与えられる。画素P(x、yr+1)には、信号線S1(i+1)を介して画像データD(x、yr+1)が与えられ、且つ、信号線S2(i+1)を介して初期化電圧Vrが与えられる。 At time T21, an “H” signal is applied to the scanning lines G1 (jr) and G2 (jr). The pixel P (x, yr) is supplied with the image data D (x, yr) through the signal line S1 (i) and the initialization voltage Vr through the signal line S2 (i). The pixel P (x, yr + 1) is supplied with the image data D (x, yr + 1) via the signal line S1 (i + 1) and the initialization voltage Vr via the signal line S2 (i + 1).
 時刻T22では、走査線G1(jg)、走査線G2(jg)に“H”の信号が与えられる。且つ、走査線G1(jr)には、“L”の信号、走査線G2(jr)には、“H”の信号が与えられる。画素P(x、yg)には、信号線S1(i)を介して画像データD(x、yg)が与えられ、且つ、信号線S2(i)を介して初期化電圧Vrが与えられる。画素P(x、yg+1)には、信号線S1(i+1)を介して画像データD(x、yg+1)が与えられ、且つ、信号線S2(i+1)を介して初期化電圧Vrが与えられる。 At time T22, a signal “H” is given to the scanning line G1 (jg) and the scanning line G2 (jg). Further, an “L” signal is supplied to the scanning line G1 (jr), and an “H” signal is supplied to the scanning line G2 (jr). The pixel P (x, yg) is supplied with the image data D (x, yg) via the signal line S1 (i) and the initialization voltage Vr via the signal line S2 (i). The pixel P (x, yg + 1) is supplied with the image data D (x, yg + 1) via the signal line S1 (i + 1) and the initialization voltage Vr via the signal line S2 (i + 1).
 時刻T23では、走査線G1(jb)、走査線G2(jb)に“H”の信号が与えられる。且つ、走査線G1(jr)には、“L”の信号、走査線G2(jr)には、“H”の信号が与えられる。且つ、走査線G1(jg)には、“L”の信号、走査線G2(jg)には、“H”の信号が与えられる。画素P(x、yb)には、信号線S1(i)を介して画像データD(x、yb)が与えられ、且つ、信号線S2(i)を介して初期化電圧Vrが与えられる。画素P(x、yb+1)には、信号線S1(i+1)を介して画像データD(x、yb+1)が与えられ、且つ、信号線S2(i+1)を介して初期化電圧Vrが与えられる。 At time T23, a signal of “H” is given to the scanning line G1 (jb) and the scanning line G2 (jb). Further, an “L” signal is supplied to the scanning line G1 (jr), and an “H” signal is supplied to the scanning line G2 (jr). In addition, an “L” signal is applied to the scanning line G1 (jg), and an “H” signal is applied to the scanning line G2 (jg). The pixel P (x, yb) is supplied with the image data D (x, yb) via the signal line S1 (i) and the initialization voltage Vr via the signal line S2 (i). The pixel P (x, yb + 1) is supplied with the image data D (x, yb + 1) via the signal line S1 (i + 1) and the initialization voltage Vr via the signal line S2 (i + 1).
 時刻T24では、走査線G1(jr)に“L”の信号、走査線G2(jr)に“H”の信号が与えられる。且つ、走査線G1(jr)には、“L”の信号、走査線G2(jr)には、“H”の信号が与えられる。且つ、走査線G1(jb)には、“L”の信号、走査線G2(jb)には、“H”の信号が与えられる。画素P(x、yr)には、信号線S2(i)を介して画像データDW(x、yr)が与えられる。画素P(x、yr+1)には、信号線S2(i+1)を介して画像データDW(x、yr+1)が与えられる。 At time T24, an “L” signal is applied to the scanning line G1 (jr), and an “H” signal is applied to the scanning line G2 (jr). Further, an “L” signal is supplied to the scanning line G1 (jr), and an “H” signal is supplied to the scanning line G2 (jr). In addition, an "L" signal is supplied to the scanning line G1 (jb), and an "H" signal is supplied to the scanning line G2 (jb). Image data DW (x, yr) is given to the pixel P (x, yr) via the signal line S2 (i). Image data DW (x, yr + 1) is given to the pixel P (x, yr + 1) via the signal line S2 (i + 1).
 時刻T25では、走査線G1(jr)、走査線G2(jr)に“L”の信号が与えられる。且つ、走査線G1(jg)に“L”の信号、走査線G2(jg)に“H”の信号が与えられる。且つ、走査線G1(jb)に“L”の信号、走査線G2(jb)に“H”の信号が与えられる。画素P(x、yg)には、信号線S2(i)を介して画像データDW(x、yg)が与えられる。画素P(x、yg+1)には、信号線S2(i+1)を介して画像データDW(x、yg+1)が与えられる。 At time T25, an “L” signal is supplied to the scanning line G1 (jr) and the scanning line G2 (jr). Further, an “L” signal is applied to the scanning line G1 (jg), and an “H” signal is applied to the scanning line G2 (jg). In addition, an “L” signal is applied to the scanning line G1 (jb) and an “H” signal is applied to the scanning line G2 (jb). Image data DW (x, yg) is given to the pixel P (x, yg) via the signal line S2 (i). Image data DW (x, yg + 1) is given to the pixel P (x, yg + 1) via the signal line S2 (i + 1).
 時刻T26では、走査線G1(jr)、走査線G2(jr)に“L”の信号が与えられる。走査線G1(jg)、走査線G2(jg)には、“L”の信号が与えられる。且つ、走査線G1(jb)には、“L”の信号、G2(jb)には、“H”の信号が与えられる。画素P(x、yb)には、信号線S2(i)を介して画像データDW(x、yb)が与えられる。画素P(x、yb+1)には、信号線S2(i+1)を介して画像データDW(x、yb+1)が与えられる。 At time T26, an "L" signal is given to the scanning line G1 (jr) and the scanning line G2 (jr). An “L” signal is supplied to the scanning line G1 (jg) and the scanning line G2 (jg). Further, an “L” signal is applied to the scanning line G1 (jb), and an “H” signal is applied to the G2 (jb). Image data DW (x, yb) is given to the pixel P (x, yb) via the signal line S2 (i). Image data DW (x, yb + 1) is given to the pixel P (x, yb + 1) via the signal line S2 (i + 1).
 ゲートドライ11は、選択する走査線の該行によって時刻T21乃至時刻T26と同じ動作を繰り返して画像データを更新することができる。例えば、時刻T27乃至時刻T32では、画素P(x、yr+2)、画素P(x、yr+3)、画素P(x、yg+2)、画素P(x、yg+3)、画素P(x、yb+2)、及び画素P(x、yb+3)の画像データを更新することができる。 The gate dry 11 can update the image data by repeating the same operation from the time T21 to the time T26 according to the row of the scanning line to be selected. For example, from time T27 to time T32, the pixel P (x, yr + 2), the pixel P (x, yr + 3), the pixel P (x, yg + 2), the pixel P (x, yg + 3), the pixel P (x, yb + 2), and The image data of the pixel P (x, yb + 3) can be updated.
 図7に、電子機器30のブロック図を示す。電子機器30は、表示装置10、ソースドライバ12、ライトユニット13、タイミング生成回路14、ディスプレイコントローラ15、記憶装置16、プロセッサ17、通信モジュール18、センサ19、及びイメージセンサ20を有している。 FIG. 7 shows a block diagram of the electronic device 30. The electronic device 30 includes a display device 10, a source driver 12, a light unit 13, a timing generation circuit 14, a display controller 15, a storage device 16, a processor 17, a communication module 18, a sensor 19, and an image sensor 20.
 表示装置10は、表示パネル10a、ゲートドライバ11、ソースドライバ12、及びライトユニット13を有している。但し、ゲートドライバ11、又はソースドライバ12は、表示パネル10aと同じ基板上に形成されなくてもよく、別途形成してIC化されてもよい。IC化されたゲートドライバ11、又はソースドライバ12の接続方法は、特に限定されるものではなく、COG(Chip On Glass)方法、ワイヤボンディング方法、或いはTAB(Tape Automated Bonding)方法などを用いることができる。 The display device 10 includes a display panel 10a, a gate driver 11, a source driver 12, and a light unit 13. However, the gate driver 11 or the source driver 12 does not have to be formed on the same substrate as the display panel 10a, and may be separately formed to be an IC. The connection method of the gate driver 11 or the source driver 12 made into an IC is not particularly limited, and a COG (Chip On Glass) method, a wire bonding method, a TAB (Tape Automated Bonding) method, or the like may be used. it can.
 タイミング生成回路14は、表示装置10を表示するためのタイミング信号を生成する機能と、ソースドライバ12の画像データに同期してライトユニット13の表示、非表示を制御する機能を有している。 The timing generation circuit 14 has a function of generating a timing signal for displaying the display device 10 and a function of controlling display and non-display of the light unit 13 in synchronization with the image data of the source driver 12.
 ディスプレイコントローラ15は、記憶装置16や、プロセッサ17を介して通信モジュール18から受信するデータを画像データに変換する機能を有している。 The display controller 15 has a function of converting data received from the communication module 18 via the storage device 16 or the processor 17 into image data.
 通信モジュール18は、無線通信の機能と、有線通信の機能と、を有している。従って、電子機器30は、無線通信又は有線通信のいずれかの手段を用いてデータサーバとデータの送受信を行う。例えば、無線通信を行うとき、搬送波を用いて、データを送受信することができる。 The communication module 18 has a wireless communication function and a wired communication function. Therefore, the electronic device 30 transmits / receives data to / from the data server using either wireless communication or wired communication. For example, when performing wireless communication, data can be transmitted and received using a carrier wave.
 無線通信を行うときは、無線LAN(Local Area Network)、Wi−Fi(登録商標)、Bluetooth(登録商標)、ZigBee(登録商標)等のIEEEにより通信規格化された仕様を利用することができる。又は、有線通信を行うときは、有線LAN、又はCAN(Controller Area Network)等のISO(国際標準化機構)により標準化された仕様を利用することができる。 When performing wireless communication, it is possible to use specifications standardized by IEEE such as wireless LAN (Local Area Network), Wi-Fi (registered trademark), Bluetooth (registered trademark), ZigBee (registered trademark), etc. . Or when performing wired communication, the specification standardized by ISO (International Organization for Standardization) such as wired LAN or CAN (Controller Area Network) can be used.
 センサ19に設けることができるセンサの例としては、温度センサ、湿度センサ、ひずみセンサ、熱流センサ、光センサ、ガスセンサ、圧力センサ、変位センサ、加速度センサ、流速センサ、回転センサ、密度センサ、ジャイロセンサ、超音波センサ、光ファイバセンサ、バイオセンサ、においセンサ、味覚センサ、虹彩センサ、指紋認証センサ、掌紋認証センサ、静脈認証センサなどいずれか又は組み合わせて用いることができる。また、センサ19に設けられたセンサには、微小電気機械システム(MEMS:Microelectro Mechanical Systems)が用いられていてもよい。センサが取得する様々な情報を用いて、表示装置に表示する内容を変更することができる。 Examples of sensors that can be provided in the sensor 19 include a temperature sensor, a humidity sensor, a strain sensor, a heat flow sensor, an optical sensor, a gas sensor, a pressure sensor, a displacement sensor, an acceleration sensor, a flow velocity sensor, a rotation sensor, a density sensor, and a gyro sensor. In addition, an ultrasonic sensor, an optical fiber sensor, a biosensor, an odor sensor, a taste sensor, an iris sensor, a fingerprint authentication sensor, a palm print authentication sensor, a vein authentication sensor, or the like can be used. The sensor provided in the sensor 19 may be a micro electro mechanical system (MEMS). The content displayed on the display device can be changed using various information acquired by the sensor.
 イメージセンサ20は、画像を取得する機能を有し、取得された画像は、記憶装置16、又は、プロセッサ17を介して表示装置に表示することができる。 The image sensor 20 has a function of acquiring an image, and the acquired image can be displayed on the display device via the storage device 16 or the processor 17.
 図8(A)は、表示装置10の斜視図を示す。当該表示装置10は、表示パネル10a、接着層10b、導光層10d、及びライトユニット13aを有する。ゲートドライバ11は、表示パネル10aと同じ基板上に形成される例を示している。なお、接着層10bには、非表示領域20と、表示領域21との間に配置される遮光領域10cを形成するためのブラックマトリクス等を設けている。もしくは、ブラックマトリクスが走査線G1、G2と重なる位置に配置されることが好ましい。遮光領域10cが、走査線G1、G2と重なる位置に配置されることで、画素の開口率の低下を抑制することができる。 FIG. 8A shows a perspective view of the display device 10. The display device 10 includes a display panel 10a, an adhesive layer 10b, a light guide layer 10d, and a light unit 13a. In the example, the gate driver 11 is formed on the same substrate as the display panel 10a. The adhesive layer 10b is provided with a black matrix or the like for forming a light shielding region 10c disposed between the non-display region 20 and the display region 21. Alternatively, it is preferable that the black matrix is arranged at a position overlapping the scanning lines G1 and G2. By disposing the light shielding region 10c at a position overlapping the scanning lines G1 and G2, it is possible to suppress a decrease in the aperture ratio of the pixel.
 ライトユニット13aは、複数の開口部13bを有し、複数の異なる光を、異なる開口部13bから射出することができる。例えば、開口部13bから射出する光は、色相(LR:赤、LG:緑、LB:青)の光を切り替えて射出することができる。なお、開口部13bから射出する光は、異なる色相の光を加えても良いし、異なる複数の光を組み合わせてもよい。また、開口部13bは、図8(A)では、形状が円で示しているが限定されない。複数の辺を有する形状でもよいし、2つの辺によって形成されるコーナーが丸みを有してもよい。 The light unit 13a has a plurality of openings 13b, and can emit a plurality of different lights from the different openings 13b. For example, the light emitted from the opening 13b can be emitted by switching light of hue (LR: red, LG: green, LB: blue). In addition, the light inject | emitted from the opening part 13b may add the light of a different hue, and may combine several different light. In addition, the shape of the opening 13b is indicated by a circle in FIG. A shape having a plurality of sides may be used, and a corner formed by two sides may be rounded.
 遮光領域10cの間隔Δdは、ゲートドライバ11が同時に選択することができる走査線に接続する画素の間隔、もしくは、ライトユニット13aが有する開口部13bの間隔と同じであることが好ましい。ライトユニット13aが有するそれぞれの開口部13bの中心は、遮光領域10cの間隔Δdの中心と重なる位置に配置されることが好ましい。 The interval Δd between the light shielding regions 10c is preferably the same as the interval between the pixels connected to the scanning lines that can be simultaneously selected by the gate driver 11 or the interval between the openings 13b of the light unit 13a. The center of each opening 13b of the light unit 13a is preferably arranged at a position overlapping the center of the interval Δd of the light shielding region 10c.
 導光層10dは、ライトユニット13aの光を表示パネル10aに均一に供給することができる。図8(A)では、ライトユニット13aから射出された光L1及び光L2が同じ輝度で表示パネル10aに射出される。なお、導光層10dに射出されたライトユニット13aの光は、接着層10bに配置された、遮光領域10cによって光の拡散を抑制することができる。表示領域21の光が、非表示領域20に迷光として漏れることを抑え、表示のちらつきなどの表示不良を抑えることができる。なお、接着層10bは、導光層10dを表示パネル10aに接着する機能を備えている。さらに、接着層10bは、光を拡散する機能を備えていてもよい。 The light guide layer 10d can uniformly supply the light of the light unit 13a to the display panel 10a. In FIG. 8A, the light L1 and the light L2 emitted from the light unit 13a are emitted to the display panel 10a with the same luminance. The light of the light unit 13a emitted to the light guide layer 10d can be prevented from diffusing by the light shielding region 10c disposed on the adhesive layer 10b. Light in the display area 21 can be prevented from leaking to the non-display area 20 as stray light, and display defects such as display flickering can be suppressed. The adhesive layer 10b has a function of adhering the light guide layer 10d to the display panel 10a. Furthermore, the adhesive layer 10b may have a function of diffusing light.
 図8(B)は、表示装置10の三面図を示す。図8(B)では、表示パネル10aの上側に透光性を有する対向基板10eが配置されている。対向基板10eには、走査線G1、G2と重なる位置に遮光領域10fとしてブラックマトリクスが配置されてもよい。図8(B)で示す表示装置10は、表示パネル10aと、接着層10b、導光層10dが重なる位置に配置される例を示している。ライトユニット13aは、表示パネルの側面に位置し導光路に対して光を射出する位置に設けられている。なお、ライトユニット13aは、表示パネル10aの側面に光を射出する位置に設けられてもよい。その場合は、接着層10b、導光層10dを設けなくてもよい。 FIG. 8B is a three-side view of the display device 10. In FIG. 8B, a light-transmitting counter substrate 10e is disposed on the upper side of the display panel 10a. On the counter substrate 10e, a black matrix may be disposed as the light shielding region 10f at a position overlapping the scanning lines G1 and G2. The display device 10 illustrated in FIG. 8B illustrates an example in which the display panel 10a, the adhesive layer 10b, and the light guide layer 10d are disposed at overlapping positions. The light unit 13a is provided at a position where the light unit 13a is located on the side surface of the display panel and emits light to the light guide. The light unit 13a may be provided at a position for emitting light to the side surface of the display panel 10a. In that case, the adhesive layer 10b and the light guide layer 10d may not be provided.
 図9では、図8と異なる表示装置10を示す。図9の表示装置10は、遮光領域10gが、導光層10dに設けられている点と、ライトユニット13cが、ゲートドライバ11と重なる位置に配置されている点が異なっている。さらに、ライトユニット13cは複数の色相の光を射出する開口部13bとは異なり、それぞれの色相の光を、そのまま導光層10dに射出するLED(Light Emitting Diode)を備えている。 9 shows a display device 10 different from FIG. The display device 10 of FIG. 9 is different in that the light shielding region 10 g is provided in the light guide layer 10 d and the light unit 13 c is disposed at a position overlapping the gate driver 11. Furthermore, the light unit 13c is different from the opening 13b that emits light of a plurality of hues, and includes an LED (Light Emitting Diode) that emits light of each hue as it is to the light guide layer 10d.
 遮光領域10gの間隔Δdには、ライトユニット13cが複数の色相を有するLEDが配置されることが好ましい。LEDから射出する光は、色相(LR:赤、LG:緑、LB:青)の光を切り替えて射出することができる。なお、LEDから射出する光は、異なる色相の光を加えても良いし、異なる複数の光を組み合わせてもよい。また、図9(B)で示すライトユニットは、LEDが表示パネル10aと平行に配置されているが、LEDが縦積に配置されてもよい。 It is preferable that LEDs having a plurality of hues are arranged in the light unit 13c in the interval Δd of the light shielding region 10g. Light emitted from the LED can be emitted by switching light of a hue (LR: red, LG: green, LB: blue). In addition, the light inject | emitted from LED may add the light of a different hue, and may combine several different light. In the light unit shown in FIG. 9B, the LEDs are arranged in parallel with the display panel 10a, but the LEDs may be arranged in a vertical product.
 なお、図9では表示パネル10aが、6つの表示領域を同時に表示させる例を示している。但し、表示パネル10aが、同時に表示させる表示領域の数は限定されない。図6で示したタイミングチャートを応用することで、より多くの表示領域を同時に表示させることができる。 FIG. 9 shows an example in which the display panel 10a displays six display areas simultaneously. However, the number of display areas that the display panel 10a displays simultaneously is not limited. By applying the timing chart shown in FIG. 6, more display areas can be displayed simultaneously.
 遮光領域10c、10f、10gは、いずれか一、又は複数を組み合わせて使用することができる。複数の遮光領域を組み合わせることで、迷光などの光漏れを低減することができる。よって、表示のちらつき等を抑えることのできる良好な表示品質を有する表示装置を得ることができる。なお、図8、又は図9では説明しなかったが、遮光領域の機能を有するブラックマトリクスは、表示パネル10aに設けてもよい。 The light shielding regions 10c, 10f, and 10g can be used either alone or in combination. By combining a plurality of light shielding regions, light leakage such as stray light can be reduced. Thus, a display device having favorable display quality that can suppress display flicker and the like can be obtained. Note that although not described in FIG. 8 or FIG. 9, a black matrix having a function of a light shielding region may be provided in the display panel 10a.
 図10には、図8、図9とは異なる表示装置10を示す。図10は、表示パネル10aの下側に、ライトユニット13dを有する点が異なっている。ライトユニット13dは、複数の開口部13bを有し、開口部13bから複数の色相の光を射出することができる。 FIG. 10 shows a display device 10 different from those shown in FIGS. FIG. 10 differs in having a light unit 13d on the lower side of the display panel 10a. The light unit 13d has a plurality of openings 13b, and can emit light of a plurality of hues from the openings 13b.
 複数の表示領域21が、同時に異なる色相で表示し、且つ、波状に表示領域が移動するため、小さな領域での色相の合成と、積分輝度の生成を行うことができるため、高速に動作させることで、さらに良好な表示品質を得ることができる。 Since the plurality of display areas 21 display different hues at the same time and the display area moves in a wavy manner, the hue can be synthesized and the integrated luminance can be generated in a small area, so that it can be operated at high speed. Thus, even better display quality can be obtained.
 また、それぞれの画素は、複数の色相の光を表示することができるため、カラーフィルタを必要としない。よって色相ごとのサブ画素を必要としないため、精細度を高くすることができる。従って、さらに高精細な表示品質を得ることができる。また開口率を大きくすることにより、光の取り出し効率が向上する。従って、ライトユニット13の輝度を下げることが可能になるため、消費電力を小さくすることができる。 Also, since each pixel can display light of a plurality of hues, a color filter is not necessary. Therefore, since a sub pixel for each hue is not required, the definition can be increased. Therefore, higher definition display quality can be obtained. Further, by increasing the aperture ratio, the light extraction efficiency is improved. Accordingly, the luminance of the light unit 13 can be lowered, and the power consumption can be reduced.
 本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。 This embodiment can be combined with any of the other embodiments as appropriate. In this specification, in the case where a plurality of structure examples are given in one embodiment, any of the structure examples can be combined as appropriate.
(実施の形態2)
<表示装置の構成例>
 図11乃至図15を用いて、画素に、2つのトランジスタと、2つの容量素子と、を有する表示装置の構成例について説明する。
(Embodiment 2)
<Configuration example of display device>
A structure example of a display device including two transistors and two capacitors in a pixel will be described with reference to FIGS.
 図11(A)に、透過型の液晶表示装置の断面図を示す。図11(A)に示す液晶表示装置は、基板31、トランジスタ101、トランジスタ102、絶縁層215、導電層46、絶縁層44、画素電極41、絶縁層45、共通電極43、液晶層42、及び基板32を有する。 FIG. 11A is a cross-sectional view of a transmissive liquid crystal display device. A liquid crystal display device illustrated in FIG. 11A includes a substrate 31, a transistor 101, a transistor 102, an insulating layer 215, a conductive layer 46, an insulating layer 44, a pixel electrode 41, an insulating layer 45, a common electrode 43, a liquid crystal layer 42, and A substrate 32 is provided.
 トランジスタ101、及びトランジスタ102は、基板31上に位置する。絶縁層215は、トランジスタ101、及びトランジスタ102上に位置する。導電層46は、絶縁層215上に位置する。絶縁層44は、トランジスタ101、及びトランジスタ102、絶縁層215、及び導電層46上に位置する。画素電極41は、絶縁層44上に位置する。絶縁層45は、画素電極41上に位置する。共通電極43は、絶縁層45上に位置する。液晶層42は、共通電極43上に位置する。共通電極43は、画素電極41を介して、導電層46と重なる領域を有する。画素電極41はトランジスタ101のソース又はドレインと電気的に接続される。導電層46はトランジスタ102のソース又はドレインと電気的に接続される。導電層46、画素電極41、及び共通電極43は、それぞれ、可視光を透過する機能を有する。 The transistor 101 and the transistor 102 are located on the substrate 31. The insulating layer 215 is located over the transistor 101 and the transistor 102. The conductive layer 46 is located on the insulating layer 215. The insulating layer 44 is located over the transistor 101, the transistor 102, the insulating layer 215, and the conductive layer 46. The pixel electrode 41 is located on the insulating layer 44. The insulating layer 45 is located on the pixel electrode 41. The common electrode 43 is located on the insulating layer 45. The liquid crystal layer 42 is located on the common electrode 43. The common electrode 43 has a region overlapping the conductive layer 46 with the pixel electrode 41 interposed therebetween. The pixel electrode 41 is electrically connected to the source or drain of the transistor 101. The conductive layer 46 is electrically connected to the source or drain of the transistor 102. The conductive layer 46, the pixel electrode 41, and the common electrode 43 each have a function of transmitting visible light.
 本実施の形態の液晶表示装置は、画素電極41と共通電極43とが絶縁層45を介して積層され、FFS(Fringe Field Switching)モードで動作する。画素電極41、液晶層42、及び共通電極43は、液晶素子106として機能することができる。 In the liquid crystal display device of this embodiment, the pixel electrode 41 and the common electrode 43 are stacked with an insulating layer 45 interposed therebetween, and operate in an FFS (Fringe Field Switching) mode. The pixel electrode 41, the liquid crystal layer 42, and the common electrode 43 can function as the liquid crystal element 106.
 導電層46、絶縁層44、及び画素電極41は、1つの容量素子104として機能することができる。また、画素電極41、絶縁層45、及び共通電極43は、1つの容量素子105として機能することができる。このように、本実施の形態の液晶表示装置は、画素に2つの容量素子を有する。 The conductive layer 46, the insulating layer 44, and the pixel electrode 41 can function as one capacitor element 104. Further, the pixel electrode 41, the insulating layer 45, and the common electrode 43 can function as one capacitor 105. As described above, the liquid crystal display device of this embodiment includes two capacitors in a pixel.
 また、2つの容量素子はいずれも可視光を透過する材料で形成され、かつ、互いに重なる領域を有する。これにより、画素は、高い開口率を有し、さらに複数の保持容量を有することができる。 The two capacitive elements are both made of a material that transmits visible light and have regions that overlap each other. Thus, the pixel can have a high aperture ratio and further have a plurality of storage capacitors.
 透過型の液晶表示装置の開口率(画素の開口率ともいえる)を高めることで、液晶表示装置の高精細化が可能となる。また、開口率を高めることで、光取り出し効率を高めることができる。これにより、液晶表示装置の消費電力を低減させることができる。 By increasing the aperture ratio of the transmissive liquid crystal display device (also referred to as the aperture ratio of pixels), it becomes possible to increase the definition of the liquid crystal display device. Moreover, the light extraction efficiency can be increased by increasing the aperture ratio. Thereby, the power consumption of a liquid crystal display device can be reduced.
 容量素子104の容量は、容量素子105の容量よりも大きいことが好ましい。例えば、画素電極41と導電層46とが重なる領域の面積は、画素電極41と共通電極43とが重なる領域の面積より大きいことが好ましい。また、導電層46と画素電極41との間に位置する絶縁層44の厚さT1は、画素電極41と共通電極43との間に位置する絶縁層45の厚さT2よりも薄いことが好ましい。 The capacity of the capacitor 104 is preferably larger than the capacity of the capacitor 105. For example, the area of the region where the pixel electrode 41 and the conductive layer 46 overlap is preferably larger than the area of the region where the pixel electrode 41 and the common electrode 43 overlap. Further, the thickness T1 of the insulating layer 44 located between the conductive layer 46 and the pixel electrode 41 is preferably thinner than the thickness T2 of the insulating layer 45 located between the pixel electrode 41 and the common electrode 43. .
 本実施の形態の表示装置の構成は、タッチパネルに適用することもできる。図11(B)は、図11(A)に示す表示装置にタッチセンサTCを搭載した例である。タッチセンサTCを表示装置の表示面に近い位置に設けることで、タッチセンサTCの感度を高めることができる。 The configuration of the display device in this embodiment can also be applied to a touch panel. FIG. 11B illustrates an example in which the touch sensor TC is mounted on the display device illustrated in FIG. By providing the touch sensor TC at a position close to the display surface of the display device, the sensitivity of the touch sensor TC can be increased.
 本発明の一態様のタッチパネルが有する検知素子(センサ素子ともいう)に限定は無い。指やスタイラスなどの被検知体の近接又は接触を検知することのできる様々なセンサを、検知素子として適用することができる。 There is no limitation on a detection element (also referred to as a sensor element) included in the touch panel of one embodiment of the present invention. Various sensors that can detect the proximity or contact of an object to be detected, such as a finger or a stylus, can be used as the detection element.
 センサの方式としては、例えば、静電容量方式、抵抗膜方式、表面弾性波方式、赤外線方式、光学方式、感圧方式など様々な方式を用いることができる。 As the sensor method, various methods such as a capacitance method, a resistance film method, a surface acoustic wave method, an infrared method, an optical method, and a pressure-sensitive method can be used.
 静電容量方式としては、表面型静電容量方式、投影型静電容量方式等がある。また、投影型静電容量方式としては、自己容量方式、相互容量方式等がある。相互容量方式を用いると、同時多点検知が可能となるため好ましい。 As the capacitance method, there are a surface capacitance method, a projection capacitance method, and the like. In addition, examples of the projected capacitance method include a self-capacitance method and a mutual capacitance method. The mutual capacitance method is preferable because simultaneous multipoint detection is possible.
 本発明の一態様のタッチパネルは、別々に作製された表示装置と検知素子とを貼り合わせる構成、表示素子を支持する基板及び対向基板の一方又は双方に検知素子を構成する電極等を設ける構成等、様々な構成を適用することができる。 The touch panel of one embodiment of the present invention includes a structure in which a separately manufactured display device and a detection element are bonded, a structure in which an electrode or the like that forms the detection element is provided on one or both of the substrate that supports the display element and the counter substrate, and the like Various configurations can be applied.
≪画素の上面レイアウト≫
 図12(A)、(B)、(C)に、画素の上面図を示す。図12(A)は、ゲート221a及びゲート221bから共通電極43aまでの積層構造を共通電極43a側から見た上面図である。図12(B)は、図12(A)の積層構造から共通電極43aを除いた上面図であり、図12(C)は、図12(A)の積層構造から共通電極43a及び画素電極41を除いた上面図である。
≪Top layout of pixels≫
12A, 12B, and 12C are top views of pixels. FIG. 12A is a top view of the stacked structure from the gate 221a and the gate 221b to the common electrode 43a as viewed from the common electrode 43a side. 12B is a top view in which the common electrode 43a is removed from the stacked structure in FIG. 12A, and FIG. 12C is the common electrode 43a and the pixel electrode 41 in the stacked structure in FIG. FIG.
 画素は、接続部73と接続部74を有する。接続部73では、画素電極41がトランジスタ101と電気的に接続されている。具体的には、トランジスタ101のソース又はドレインとして機能する導電層222aが導電層46bと接し、かつ、導電層46bが画素電極41と接している。接続部74では、導電層46aがトランジスタ102と電気的に接続されている。具体的には、導電層46aがトランジスタ102のソース又はドレインとして機能する導電層222cと接している。 The pixel has a connection part 73 and a connection part 74. In the connection portion 73, the pixel electrode 41 is electrically connected to the transistor 101. Specifically, the conductive layer 222a functioning as the source or drain of the transistor 101 is in contact with the conductive layer 46b, and the conductive layer 46b is in contact with the pixel electrode 41. In the connection portion 74, the conductive layer 46 a is electrically connected to the transistor 102. Specifically, the conductive layer 46 a is in contact with the conductive layer 222 c functioning as the source or drain of the transistor 102.
 共通電極43aは1つ又は複数のスリットを有してもよく、また櫛歯状の上面形状を有していてもよい。図12(A)に示す共通電極43aは、複数のスリットが設けられた上面形状を有する。画素電極41は、共通電極43aと重なる領域と、共通電極43aと重ならない領域と、の双方を有する。 The common electrode 43a may have one or a plurality of slits, or may have a comb-like upper surface shape. A common electrode 43a illustrated in FIG. 12A has an upper surface shape provided with a plurality of slits. The pixel electrode 41 has both a region overlapping with the common electrode 43a and a region not overlapping with the common electrode 43a.
 また、画素電極41が1つ又は複数のスリットを有してもよく、また櫛歯状の上面形状を有していてもよい。共通電極43aと重なる面積を広くできるため、画素電極41を広い面積で形成することが好ましい。そのため、画素電極41はスリットを有さない島状に形成されることが好ましい。 Further, the pixel electrode 41 may have one or a plurality of slits, or may have a comb-like upper surface shape. Since the area overlapping with the common electrode 43a can be widened, the pixel electrode 41 is preferably formed with a wide area. Therefore, the pixel electrode 41 is preferably formed in an island shape without a slit.
≪表示モジュールの断面構造≫
 図13に、表示モジュールの断面図を示す。なお、画素の断面構造については、図12(A)に示す一点鎖線B1−B2間の断面図に相当する。
<< Cross-sectional structure of display module >>
FIG. 13 shows a cross-sectional view of the display module. Note that the cross-sectional structure of the pixel corresponds to a cross-sectional view taken along dashed-dotted line B1-B2 in FIG.
 図13に示す表示モジュールは、表示装置10、FPC172等を有する。 The display module shown in FIG. 13 includes a display device 10, an FPC 172, and the like.
 表示装置10は、FFSモードが適用されたアクティブマトリクス型の液晶表示装置である。表示装置10は、透過型の液晶表示装置である。 The display device 10 is an active matrix liquid crystal display device to which the FFS mode is applied. The display device 10 is a transmissive liquid crystal display device.
 表示装置10は、基板31、基板32、トランジスタ102、導電層46a、導電層46b、絶縁層44、絶縁層45、画素電極41、液晶層42、共通電極43a、導電層43b、導電層222e、配向膜133a、配向膜133b、接着層141、オーバーコート135、遮光層38、接着層10b、導光層10d等を有する。 The display device 10 includes a substrate 31, a substrate 32, a transistor 102, a conductive layer 46a, a conductive layer 46b, an insulating layer 44, an insulating layer 45, a pixel electrode 41, a liquid crystal layer 42, a common electrode 43a, a conductive layer 43b, a conductive layer 222e, An alignment film 133a, an alignment film 133b, an adhesive layer 141, an overcoat 135, a light shielding layer 38, an adhesive layer 10b, a light guide layer 10d, and the like are included.
 基板31上にトランジスタ101及びトランジスタ102が位置する。一例としてトランジスタ101は、ゲート221a、ゲート絶縁層211、半導体層231a、導電層222a、導電層222b、絶縁層212、絶縁層213、ゲート絶縁層225a、及びゲート223aを有する。トランジスタ102は、ゲート221b、ゲート絶縁層211、半導体層231b、導電層222c、導電層222d、絶縁層212、絶縁層213、ゲート絶縁層225b、及びゲート223bを有する。 The transistor 101 and the transistor 102 are located on the substrate 31. As an example, the transistor 101 includes a gate 221a, a gate insulating layer 211, a semiconductor layer 231a, a conductive layer 222a, a conductive layer 222b, an insulating layer 212, an insulating layer 213, a gate insulating layer 225a, and a gate 223a. The transistor 102 includes a gate 221b, a gate insulating layer 211, a semiconductor layer 231b, a conductive layer 222c, a conductive layer 222d, an insulating layer 212, an insulating layer 213, a gate insulating layer 225b, and a gate 223b.
 図13に示すトランジスタ101、及びトランジスタ102は、チャネルの上下にゲートを有する。2つのゲートは、電気的に接続されていることが好ましい。2つのゲートが電気的に接続されている構成のトランジスタは、他のトランジスタと比較して電界効果移動度を高めることが可能であり、オン電流を増大させることができる。その結果、高速動作が可能な回路を作製することができる。さらには回路部の占有面積を縮小することが可能となる。オン電流の大きなトランジスタを適用することで、表示装置を大型化、又は高精細化して配線数が増大したとしても、各配線における信号遅延を低減することが可能であり、表示ムラを抑制することが可能である。また、回路部の占有面積を縮小できるため、表示装置の狭額縁化が可能である。また、このような構成を適用することで、信頼性の高いトランジスタを実現することができる。 The transistor 101 and the transistor 102 illustrated in FIG. 13 have gates above and below the channel. The two gates are preferably electrically connected. A transistor in which two gates are electrically connected can have higher field-effect mobility than another transistor, and can increase on-state current. As a result, a circuit capable of high speed operation can be manufactured. Furthermore, the area occupied by the circuit portion can be reduced. By applying a transistor with a large on-state current, signal delay in each wiring can be reduced and display unevenness can be suppressed even if the number of wirings is increased by increasing the size or definition of the display device. Is possible. In addition, since the area occupied by the circuit portion can be reduced, the display device can be narrowed. In addition, by applying such a structure, a highly reliable transistor can be realized.
 半導体層231(231a、231b)は、一対の低抵抗領域231nと、一対の低抵抗領域231nの間に挟持されたチャネル形成領域231iと、を有する。 The semiconductor layer 231 (231a, 231b) includes a pair of low resistance regions 231n and a channel formation region 231i sandwiched between the pair of low resistance regions 231n.
 チャネル形成領域231iは、ゲート絶縁層211を介してゲート221(221a、221b)と重なり、ゲート絶縁層225(225a、225b)を介してゲート223(223a、223b)と重なる。 The channel formation region 231i overlaps with the gate 221 (221a, 221b) through the gate insulating layer 211 and overlaps with the gate 223 (223a, 223b) through the gate insulating layer 225 (225a, 225b).
 ここでは、半導体層231に金属酸化物を用いる場合を例に挙げて説明する。 Here, the case where a metal oxide is used for the semiconductor layer 231 is described as an example.
 チャネル形成領域231iと接するゲート絶縁層211及びゲート絶縁層225は酸化物絶縁層であることが好ましい。なお、ゲート絶縁層211又はゲート絶縁層225が積層構造である場合、少なくともチャネル形成領域231iと接する層が酸化物絶縁層であることが好ましい。これにより、チャネル形成領域231iに酸素欠損が生じることを抑制でき、トランジスタの信頼性を高めることができる。 The gate insulating layer 211 and the gate insulating layer 225 in contact with the channel formation region 231i are preferably oxide insulating layers. Note that in the case where the gate insulating layer 211 or the gate insulating layer 225 has a stacked structure, it is preferable that at least a layer in contact with the channel formation region 231i be an oxide insulating layer. Accordingly, generation of oxygen vacancies in the channel formation region 231i can be suppressed, and the reliability of the transistor can be improved.
 絶縁層213及び絶縁層214のうち一方又は双方は窒化物絶縁層であることが好ましい。これにより、半導体層231に不純物が入り込むことを抑制でき、トランジスタの信頼性を高めることができる。 One or both of the insulating layer 213 and the insulating layer 214 is preferably a nitride insulating layer. Thus, impurities can be prevented from entering the semiconductor layer 231 and the reliability of the transistor can be increased.
 絶縁層215は、平坦化機能を有することが好ましく、例えば、有機絶縁層であることが好ましい。なお、絶縁層214及び絶縁層215のうち一方又は双方は形成しなくてもよい。 The insulating layer 215 preferably has a planarization function, and is preferably an organic insulating layer, for example. Note that one or both of the insulating layer 214 and the insulating layer 215 are not necessarily formed.
 低抵抗領域231nは、チャネル形成領域231iよりも抵抗率が低い。低抵抗領域231nは半導体層231のうち絶縁層212と接する領域である。ここで、絶縁層212が窒素又は水素を有することが好ましい。これにより、絶縁層212中の窒素又は水素が低抵抗領域231nに入り込み、低抵抗領域231nのキャリア濃度を高めることができる。又は、ゲート223をマスクとして、不純物を添加することで、低抵抗領域231nを形成してもよい。当該不純物としては、例えば、水素、ヘリウム、ネオン、アルゴン、フッ素、窒素、リン、ヒ素、アンチモン、ホウ素、アルミニウムなどが挙げられ、当該不純物は、イオン注入法又はイオンドーピング法を用いて添加することができる。また、上記不純物以外にも、半導体層231の構成元素の一つである、インジウムなどを添加することで低抵抗領域231nを形成してもよい。インジウムを添加することで、チャネル形成領域231iよりも低抵抗領域231nの方が、インジウムの濃度が高くなる場合がある。 The low resistance region 231n has a lower resistivity than the channel formation region 231i. The low resistance region 231n is a region in contact with the insulating layer 212 in the semiconductor layer 231. Here, the insulating layer 212 preferably contains nitrogen or hydrogen. Thereby, nitrogen or hydrogen in the insulating layer 212 enters the low resistance region 231n, and the carrier concentration of the low resistance region 231n can be increased. Alternatively, the low resistance region 231n may be formed by adding an impurity using the gate 223 as a mask. Examples of the impurity include hydrogen, helium, neon, argon, fluorine, nitrogen, phosphorus, arsenic, antimony, boron, and aluminum. The impurity is added by an ion implantation method or an ion doping method. Can do. In addition to the impurities, the low resistance region 231n may be formed by adding indium or the like which is one of the constituent elements of the semiconductor layer 231. By adding indium, the concentration of indium may be higher in the low resistance region 231n than in the channel formation region 231i.
 また、ゲート絶縁層225及びゲート233を形成した後に、半導体層231の一部の領域に接するように第1の層を形成し、加熱処理を施すことにより、当該領域を低抵抗化させ、低抵抗領域231nを形成することができる。 In addition, after the gate insulating layer 225 and the gate 233 are formed, a first layer is formed so as to be in contact with a part of the semiconductor layer 231, and heat treatment is performed, so that the resistance of the region is reduced. A resistance region 231n can be formed.
 第1の層としては、アルミニウム、チタン、タンタル、タングステン、クロム、及びルテニウムなどの金属元素の少なくとも一を含む膜を用いることができる。特に、アルミニウム、チタン、タンタル、及びタングステンの少なくとも一を含むことが好ましい。又は、これら金属元素の少なくとも一を含む窒化物、又はこれら金属元素の少なくとも一を含む酸化物を好適に用いることができる。特に、タングステン膜、チタン膜などの金属膜、窒化アルミニウムチタン膜、窒化チタン膜、窒化アルミニウム膜などの窒化物膜、酸化アルミニウムチタン膜などの酸化物膜などを好適に用いることができる。 As the first layer, a film containing at least one of metal elements such as aluminum, titanium, tantalum, tungsten, chromium, and ruthenium can be used. In particular, at least one of aluminum, titanium, tantalum, and tungsten is preferably included. Alternatively, a nitride containing at least one of these metal elements or an oxide containing at least one of these metal elements can be preferably used. In particular, a metal film such as a tungsten film or a titanium film, a nitride film such as an aluminum titanium nitride film, a titanium nitride film, or an aluminum nitride film, or an oxide film such as an aluminum titanium oxide film can be preferably used.
 第1の層の厚さは、例えば0.5nm以上20nm以下、好ましくは0.5nm以上15nm以下、より好ましくは0.5nm以上10nm以下、さらに好ましくは1nm以上6nm以下とすることができる。代表的には、5nm程度、又は約2nm程度とすることができる。第1の層がこのように薄い場合であっても、十分に半導体層231を低抵抗化できる。 The thickness of the first layer can be, for example, 0.5 nm to 20 nm, preferably 0.5 nm to 15 nm, more preferably 0.5 nm to 10 nm, and further preferably 1 nm to 6 nm. Typically, it can be about 5 nm or about 2 nm. Even when the first layer is thin like this, the resistance of the semiconductor layer 231 can be sufficiently reduced.
 低抵抗領域231nは、チャネル形成領域231iよりもキャリア密度の高い領域とすることが重要である。例えば低抵抗領域231nは、チャネル形成領域231iよりも水素を多く含む領域、又は、チャネル形成領域231iよりも酸素欠損を多く含む領域とすることができる。酸化物半導体中の酸素欠損と水素原子とが結合すると、キャリアの発生源となる。 It is important that the low resistance region 231n has a higher carrier density than the channel formation region 231i. For example, the low-resistance region 231n can be a region containing more hydrogen than the channel formation region 231i or a region containing more oxygen vacancies than the channel formation region 231i. When an oxygen vacancy and a hydrogen atom in an oxide semiconductor are combined, a carrier generation source is obtained.
 半導体層231の一部の領域に第1の層を接して設けた状態で、加熱処理を行うことで、当該領域中の酸素が第1の層に吸引され、当該領域中に酸素欠損を多く形成することができる。これにより、低抵抗領域231nを極めて低抵抗な領域とすることができる。 By performing heat treatment in a state where the first layer is provided in contact with a part of the semiconductor layer 231, oxygen in the region is attracted to the first layer, and oxygen vacancies are increased in the region. Can be formed. Thereby, the low resistance region 231n can be a very low resistance region.
 このように形成された低抵抗領域231nは、後の処理で高抵抗化しにくいといった特徴を有する。例えば、酸素を含む雰囲気下での加熱処理や、酸素を含む雰囲気下での成膜処理などを行っても、低抵抗領域231nの導電性が損なわれる恐れがないため、電気特性が良好で、且つ信頼性の高いトランジスタを実現できる。 The low resistance region 231n formed in this manner has a feature that it is difficult to increase the resistance by a subsequent process. For example, even when heat treatment in an atmosphere containing oxygen, film formation treatment in an atmosphere containing oxygen, or the like, there is no fear that the conductivity of the low resistance region 231n is impaired, and thus the electrical characteristics are good. In addition, a highly reliable transistor can be realized.
 加熱処理を経た後の第1の層が導電性を有する場合には、加熱処理後に第1の層を除去することが好ましい。一方、第1の層が絶縁性を有する場合には、これを残存させることで第1の層を保護絶縁膜として機能させることができる。 When the first layer after the heat treatment has conductivity, it is preferable to remove the first layer after the heat treatment. On the other hand, in the case where the first layer has an insulating property, the first layer can function as a protective insulating film by remaining it.
 絶縁層215上に導電層46bが位置し、導電層46b上に絶縁層44が位置し、絶縁層44上に画素電極41が位置する。画素電極41は、導電層222aと電気的に接続されている。具体的には、導電層222aは導電層46bと接続し、導電層46bは画素電極41と接続する。 The conductive layer 46 b is located on the insulating layer 215, the insulating layer 44 is located on the conductive layer 46 b, and the pixel electrode 41 is located on the insulating layer 44. The pixel electrode 41 is electrically connected to the conductive layer 222a. Specifically, the conductive layer 222a is connected to the conductive layer 46b, and the conductive layer 46b is connected to the pixel electrode 41.
 絶縁層215上に導電層46aが位置する。導電層46aは、導電層222cと電気的に接続されている。具体的には、導電層46aは、絶縁層214及び絶縁層215に設けられた開口を介して、導電層222cと接している。 The conductive layer 46a is located on the insulating layer 215. The conductive layer 46a is electrically connected to the conductive layer 222c. Specifically, the conductive layer 46 a is in contact with the conductive layer 222 c through an opening provided in the insulating layer 214 and the insulating layer 215.
 基板31と基板32は接着層141によって貼り合わされている。 The substrate 31 and the substrate 32 are bonded together by an adhesive layer 141.
 FPC172は、導電層222eと電気的に接続されている。具体的には、FPC172は接続体242と接し、接続体242は導電層43bと接し、導電層43bは導電層222eと接する。導電層43bは絶縁層45上に形成され、導電層222eは、絶縁層214上に形成されている。導電層43bは、共通電極43aと同一の工程、同一の材料で形成することができる。導電層222eは、導電層222a~導電層222dと同一の工程、同一の材料で形成することができる。 The FPC 172 is electrically connected to the conductive layer 222e. Specifically, the FPC 172 is in contact with the connection body 242, the connection body 242 is in contact with the conductive layer 43b, and the conductive layer 43b is in contact with the conductive layer 222e. The conductive layer 43b is formed on the insulating layer 45, and the conductive layer 222e is formed on the insulating layer 214. The conductive layer 43b can be formed using the same process and the same material as the common electrode 43a. The conductive layer 222e can be formed using the same process and the same material as the conductive layers 222a to 222d.
 導電層46a、絶縁層44、及び画素電極41は、1つの容量素子104として機能することができる。また、画素電極41、絶縁層45、及び共通電極43aは、1つの容量素子105として機能することができる。このように、表示装置10は、1つの画素に2つの容量素子を有する。 The conductive layer 46 a, the insulating layer 44, and the pixel electrode 41 can function as one capacitor element 104. Further, the pixel electrode 41, the insulating layer 45, and the common electrode 43 a can function as one capacitor element 105. As described above, the display device 10 has two capacitors in one pixel.
 また、2つの容量素子はいずれも可視光を透過する材料で形成され、かつ、互いに重なる領域を有する。これにより、画素は、高い開口率と、大きな保持容量と、を両立することができる。 The two capacitive elements are both made of a material that transmits visible light and have regions that overlap each other. Thereby, the pixel can achieve both a high aperture ratio and a large storage capacity.
 容量素子104の容量は、容量素子105の容量よりも大きいことが好ましい。そのため、画素電極41と導電層46aとが重なる領域の面積は、画素電極41と共通電極43aとが重なる領域の面積より大きいことが好ましい。また、導電層46aと画素電極41との間に位置する絶縁層44の厚さは、画素電極41と共通電極43aとの間に位置する絶縁層45の厚さよりも薄いことが好ましい。 The capacity of the capacitor 104 is preferably larger than the capacity of the capacitor 105. Therefore, the area of the region where the pixel electrode 41 and the conductive layer 46a overlap is preferably larger than the area of the region where the pixel electrode 41 and the common electrode 43a overlap. The thickness of the insulating layer 44 located between the conductive layer 46a and the pixel electrode 41 is preferably thinner than the thickness of the insulating layer 45 located between the pixel electrode 41 and the common electrode 43a.
 図13では接着層10bが、遮光層38aを有した例を示している。 FIG. 13 shows an example in which the adhesive layer 10b has a light shielding layer 38a.
 図13では、トランジスタ101及びトランジスタ102の双方がバックゲート(ゲート223)を有する例を示したが、トランジスタ101及びトランジスタ102の一方又は双方がバックゲートを有していなくてもよい。 FIG. 13 illustrates an example in which both the transistor 101 and the transistor 102 have a back gate (gate 223); however, one or both of the transistor 101 and the transistor 102 may not have a back gate.
 また、図13では、ゲート絶縁層225がチャネル形成領域231i上にのみ形成され、低抵抗領域231nと重ならない例を示したが、ゲート絶縁層225は低抵抗領域231nの少なくとも一部と重なっていてもよい。図14では、ゲート絶縁層225が低抵抗領域231n、ゲート絶縁層211と接して形成される例を示す。図14に示すゲート絶縁層225は、ゲート223をマスクに用いてゲート絶縁層225を加工する工程を削減できる、絶縁層214の被形成面の段差を低くできる等のメリットを有する。 FIG. 13 illustrates an example in which the gate insulating layer 225 is formed only over the channel formation region 231i and does not overlap the low resistance region 231n. However, the gate insulating layer 225 overlaps at least part of the low resistance region 231n. May be. FIG. 14 shows an example in which the gate insulating layer 225 is formed in contact with the low resistance region 231n and the gate insulating layer 211. The gate insulating layer 225 illustrated in FIGS. 14A and 14B has advantages such that the number of steps for processing the gate insulating layer 225 using the gate 223 as a mask can be reduced, and a step on the formation surface of the insulating layer 214 can be reduced.
 図14では導光層10dが、遮光層38bを有した例を示している。 FIG. 14 shows an example in which the light guide layer 10d has a light shielding layer 38b.
 図15に示す表示装置10は、トランジスタ101及びトランジスタ102の構造が図13及び図14とは異なる。 15 is different from FIGS. 13 and 14 in the structure of the transistor 101 and the transistor 102.
 図15に示すトランジスタ101は、ゲート221a、ゲート絶縁層211、半導体層231a、導電層222a、導電層222b、絶縁層217、絶縁層218、絶縁層215、及びゲート223aを有する。トランジスタ102は、ゲート221b、ゲート絶縁層211、半導体層231b、導電層222c、導電層222d、絶縁層217、絶縁層218、絶縁層215、及びゲート223bを有する。導電層222a及び導電層222bのうち一方はソースとして機能し、他方はドレインとして機能する。絶縁層217、絶縁層218、及び絶縁層215はゲート絶縁層として機能する。 15 includes a gate 221a, a gate insulating layer 211, a semiconductor layer 231a, a conductive layer 222a, a conductive layer 222b, an insulating layer 217, an insulating layer 218, an insulating layer 215, and a gate 223a. The transistor 102 includes a gate 221b, a gate insulating layer 211, a semiconductor layer 231b, a conductive layer 222c, a conductive layer 222d, an insulating layer 217, an insulating layer 218, an insulating layer 215, and a gate 223b. One of the conductive layer 222a and the conductive layer 222b functions as a source, and the other functions as a drain. The insulating layer 217, the insulating layer 218, and the insulating layer 215 function as gate insulating layers.
 ここでは、半導体層231に金属酸化物を用いる場合を例に挙げて説明する。 Here, the case where a metal oxide is used for the semiconductor layer 231 is described as an example.
 半導体層231と接するゲート絶縁層211及び絶縁層217は酸化物絶縁層であることが好ましい。なお、ゲート絶縁層211又は絶縁層217が積層構造である場合、少なくとも半導体層231と接する層が酸化物絶縁層であることが好ましい。これにより、半導体層231に酸素欠損が生じることを抑制でき、トランジスタの信頼性を高めることができる。 The gate insulating layer 211 and the insulating layer 217 in contact with the semiconductor layer 231 are preferably oxide insulating layers. Note that in the case where the gate insulating layer 211 or the insulating layer 217 has a stacked structure, at least a layer in contact with the semiconductor layer 231 is preferably an oxide insulating layer. Accordingly, generation of oxygen vacancies in the semiconductor layer 231 can be suppressed, and the reliability of the transistor can be improved.
 絶縁層218は窒化物絶縁層であることが好ましい。これにより、半導体層231に不純物が入り込むことを抑制でき、トランジスタの信頼性を高めることができる。 The insulating layer 218 is preferably a nitride insulating layer. Thus, impurities can be prevented from entering the semiconductor layer 231 and the reliability of the transistor can be increased.
 絶縁層215は、平坦化機能を有することが好ましく、例えば、有機絶縁層であることが好ましい。なお、絶縁層215は形成しなくてもよく、絶縁層218上に接して導電層46aを形成してもよい。 The insulating layer 215 preferably has a planarization function, and is preferably an organic insulating layer, for example. Note that the insulating layer 215 is not necessarily formed, and the conductive layer 46 a may be formed in contact with the insulating layer 218.
 絶縁層215上に導電層46bが位置し、導電層46b上に絶縁層44が位置し、絶縁層44上に画素電極41が位置する。画素電極41は、導電層222aと電気的に接続されている。具体的には、導電層222aは導電層46bと接続し、導電層46bは画素電極41と接続する。 The conductive layer 46 b is located on the insulating layer 215, the insulating layer 44 is located on the conductive layer 46 b, and the pixel electrode 41 is located on the insulating layer 44. The pixel electrode 41 is electrically connected to the conductive layer 222a. Specifically, the conductive layer 222a is connected to the conductive layer 46b, and the conductive layer 46b is connected to the pixel electrode 41.
 絶縁層215上に導電層46aが位置する。導電層46a上に絶縁層44及び絶縁層45が位置する。絶縁層45上に共通電極43aが位置する。共通電極43aは、導電層46aと電気的に接続されている。具体的には、共通電極43aは、絶縁層44及び絶縁層45に設けられた開口を介して、導電層46aと接している。 The conductive layer 46a is located on the insulating layer 215. The insulating layer 44 and the insulating layer 45 are located on the conductive layer 46a. A common electrode 43 a is located on the insulating layer 45. The common electrode 43a is electrically connected to the conductive layer 46a. Specifically, the common electrode 43 a is in contact with the conductive layer 46 a through an opening provided in the insulating layer 44 and the insulating layer 45.
≪構成要素の材料≫
 次に、本実施の形態の表示装置及び表示モジュールの各構成要素に用いることができる材料等の詳細について、説明を行う。
≪Component material≫
Next, details of materials and the like that can be used for each component of the display device and the display module of this embodiment will be described.
 表示装置が有する基板の材質などに大きな制限はなく、様々な基板を用いることができる。例えば、ガラス基板、石英基板、サファイア基板、半導体基板、セラミック基板、金属基板、又はプラスチック基板等を用いることができる。 There is no major limitation on the material of the substrate included in the display device, and various substrates can be used. For example, a glass substrate, a quartz substrate, a sapphire substrate, a semiconductor substrate, a ceramic substrate, a metal substrate, a plastic substrate, or the like can be used.
 厚さの薄い基板を用いることで、表示装置の軽量化及び薄型化を図ることができる。さらに、可撓性を有する程度の厚さの基板を用いることで、可撓性を有する表示装置を実現できる。 By using a thin substrate, the display device can be reduced in weight and thickness. Furthermore, a flexible display device can be realized by using a flexible substrate.
 液晶材料には、誘電率の異方性(Δε)が正であるポジ型の液晶材料と、負であるネガ型の液晶材料がある。本発明の一態様では、どちらの材料を用いることもでき、適用するモード及び設計に応じて最適な液晶材料を用いることができる。 There are two types of liquid crystal materials: positive liquid crystal materials having a positive dielectric anisotropy (Δε) and negative liquid crystal materials having a negative dielectric constant. In one embodiment of the present invention, either material can be used, and an optimum liquid crystal material can be used depending on a mode to be applied and a design.
 本実施の形態の表示装置では、様々なモードが適用された液晶素子を用いることができる。上述したFFSモードのほかに、例えば、IPSモード、TNモード、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optically Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モード、ECB(Electrically Controlled Birefringence)モード、VA−IPSモード、ゲストホストモード等が適用された液晶素子を用いることができる。 In the display device of this embodiment mode, liquid crystal elements to which various modes are applied can be used. In addition to the FFS mode described above, for example, an IPS mode, a TN mode, an ASM (Axial Symmetrically aligned Micro-cell) mode, an OCB (Optically Compensated BirefringenceCriff mode), and an FLC (FerroelectricLiquidFrequencyLiquidCrCF) Further, a liquid crystal element to which an ECB (Electrically Controlled Birefringence) mode, a VA-IPS mode, a guest host mode, or the like is applied can be used.
 なお、液晶素子は、液晶の光学変調作用によって光の透過又は非透過を制御する素子である。液晶の光学的変調作用は、液晶にかかる電界(横方向の電界、縦方向の電界又は斜め方向の電界を含む)によって制御される。液晶素子に用いる液晶としては、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal)、強誘電性液晶、反強誘電性液晶等を用いることができる。これらの液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイラルネマチック相、等方相等を示す。 The liquid crystal element is an element that controls transmission or non-transmission of light by an optical modulation action of liquid crystal. The optical modulation action of the liquid crystal is controlled by an electric field applied to the liquid crystal (including a horizontal electric field, a vertical electric field, or an oblique electric field). As the liquid crystal used in the liquid crystal element, a thermotropic liquid crystal, a low molecular liquid crystal, a polymer liquid crystal, a polymer dispersed liquid crystal (PDLC), a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like can be used. . These liquid crystal materials exhibit a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, and the like depending on conditions.
 上述の通り、本実施の形態の表示装置は、高い電圧をかけて液晶素子を駆動させることができるため、ブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善するために5重量%以上のカイラル剤を混合させた液晶組成物を液晶層に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が短く、光学的等方性を示す。また、ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、配向処理が不要であり、視野角依存性が小さい。また配向膜を設けなくてもよいのでラビング処理も不要であり、ラビング処理によって引き起こされる静電破壊を防止することができ、作製工程中の表示パネルの不良又は破損を軽減することができる。 As described above, since the display device of this embodiment can drive a liquid crystal element by applying a high voltage, liquid crystal exhibiting a blue phase may be used. The blue phase is one of the liquid crystal phases. When the temperature of the cholesteric liquid crystal is increased, the blue phase appears immediately before the transition from the cholesteric phase to the isotropic phase. Since the blue phase appears only in a narrow temperature range, a liquid crystal composition mixed with 5% by weight or more of a chiral agent is used for the liquid crystal layer in order to improve the temperature range. A liquid crystal composition containing a liquid crystal exhibiting a blue phase and a chiral agent has a short response speed and exhibits optical isotropy. In addition, a liquid crystal composition including a liquid crystal exhibiting a blue phase and a chiral agent does not require alignment treatment and has a small viewing angle dependency. In addition, since it is not necessary to provide an alignment film, rubbing treatment is unnecessary, electrostatic breakdown caused by the rubbing treatment can be prevented, and defects or breakage of the display panel during the manufacturing process can be reduced.
 本実施の形態の表示装置は、透過型の液晶表示装置であるため、一対の電極(画素電極41及び共通電極43a)の双方に、可視光を透過する導電性材料を用いる。また、導電層46bも可視光を透過する導電性材料を用いて形成することで、容量素子104を設けても画素の開口率が低下することを抑制できる。なお、容量素子の誘電体として機能する絶縁層44及び絶縁層45には、窒化シリコン膜が好適である。 Since the display device of this embodiment is a transmissive liquid crystal display device, a conductive material that transmits visible light is used for both of the pair of electrodes (the pixel electrode 41 and the common electrode 43a). In addition, the conductive layer 46b is also formed using a conductive material that transmits visible light, so that a reduction in the aperture ratio of the pixel can be suppressed even when the capacitor 104 is provided. Note that a silicon nitride film is suitable for the insulating layer 44 and the insulating layer 45 that function as a dielectric of the capacitor.
 可視光を透過する導電性材料としては、例えば、インジウム(In)、亜鉛(Zn)、錫(Sn)の中から選ばれた一種以上を含む材料を用いるとよい。具体的には、酸化インジウム、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、酸化シリコンを含むインジウム錫酸化物(ITSO)、酸化亜鉛、ガリウムを含む酸化亜鉛などが挙げられる。なお、グラフェンを含む膜を用いることもできる。グラフェンを含む膜は、例えば酸化グラフェンを含む膜を還元して形成することができる。 As the conductive material that transmits visible light, for example, a material containing one or more selected from indium (In), zinc (Zn), and tin (Sn) may be used. Specifically, indium oxide, indium tin oxide (ITO), indium zinc oxide, indium oxide including tungsten oxide, indium zinc oxide including tungsten oxide, indium oxide including titanium oxide, and titanium oxide are included. Examples thereof include indium tin oxide, indium tin oxide containing silicon oxide (ITSO), zinc oxide, and zinc oxide containing gallium. Note that a film containing graphene can also be used. The film containing graphene can be formed by, for example, reducing a film containing graphene oxide.
 また、可視光を透過する導電膜は、酸化物半導体を用いて形成することができる(以下、酸化物導電層ともいう)。酸化物導電層は、例えば、インジウムを含むことが好ましく、In−M−Zn酸化物(MはAl、Ti、Ga、Y、Zr、La、Ce、Nd、Sn又はHf)を含むことがさらに好ましい。 The conductive film that transmits visible light can be formed using an oxide semiconductor (hereinafter also referred to as an oxide conductive layer). The oxide conductive layer preferably includes, for example, indium, and further includes an In-M-Zn oxide (M is Al, Ti, Ga, Y, Zr, La, Ce, Nd, Sn, or Hf). preferable.
 酸化物半導体は、膜中の酸素欠損、及び膜中の水素、水等の不純物濃度のうち少なくとも一方によって、抵抗を制御することができる半導体材料である。そのため、酸化物半導体層へ酸素欠損及び不純物濃度の少なくとも一方が増加する処理、又は酸素欠損及び不純物濃度の少なくとも一方が低減する処理を選択することによって、酸化物導電層の有する抵抗率を制御することができる。 An oxide semiconductor is a semiconductor material whose resistance can be controlled by at least one of oxygen vacancies in the film and impurity concentrations such as hydrogen and water in the film. Therefore, the resistivity of the oxide conductive layer is controlled by selecting a treatment in which at least one of oxygen deficiency and impurity concentration is increased or a treatment in which at least one of oxygen deficiency and impurity concentration is reduced in the oxide semiconductor layer. be able to.
 なお、このように、酸化物半導体を用いて形成された酸化物導電層は、キャリア密度が高く低抵抗な酸化物半導体層、導電性を有する酸化物半導体層、又は導電性の高い酸化物半導体層ということもできる。 Note that an oxide conductive layer formed using an oxide semiconductor in this manner is an oxide semiconductor layer with high carrier density and low resistance, an oxide semiconductor layer with conductivity, or an oxide semiconductor with high conductivity. It can also be called a layer.
 本実施の形態の表示装置が有するトランジスタは、トップゲート型又はボトムゲート型のいずれの構造としてもよい。又は、チャネルの上下にゲート電極が設けられていてもよい。トランジスタに用いる半導体材料は特に限定されず、例えば、酸化物半導体、シリコン、ゲルマニウム等が挙げられる。 The transistor included in the display device of this embodiment may have a top-gate structure or a bottom-gate structure. Alternatively, gate electrodes may be provided above and below the channel. A semiconductor material used for the transistor is not particularly limited, and examples thereof include an oxide semiconductor, silicon, and germanium.
 トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、又は一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。 There is no particular limitation on the crystallinity of a semiconductor material used for the transistor, and either an amorphous semiconductor or a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor partially including a crystal region) May be used. It is preferable to use a crystalline semiconductor because deterioration of transistor characteristics can be suppressed.
 例えば、第14族の元素、化合物半導体又は酸化物半導体を半導体層に用いることができる。代表的には、シリコンを含む半導体、ガリウムヒ素を含む半導体又はインジウムを含む酸化物半導体などを半導体層に適用できる。 For example, a Group 14 element, a compound semiconductor, or an oxide semiconductor can be used for the semiconductor layer. Typically, a semiconductor containing silicon, a semiconductor containing gallium arsenide, an oxide semiconductor containing indium, or the like can be used for the semiconductor layer.
 トランジスタのチャネルが形成される半導体に、酸化物半導体を適用することが好ましい。特にシリコンよりもバンドギャップの大きな酸化物半導体を適用することが好ましい。シリコンよりもバンドギャップが広く、且つキャリア密度の小さい半導体材料を用いると、トランジスタのオフ状態における電流を低減できるため好ましい。 It is preferable to apply an oxide semiconductor to a semiconductor in which a transistor channel is formed. In particular, an oxide semiconductor having a larger band gap than silicon is preferably used. It is preferable to use a semiconductor material with a wider band gap and lower carrier density than silicon because current in an off state of the transistor can be reduced.
 酸化物半導体を用いることで、電気特性の変動が抑制され、信頼性の高いトランジスタを実現できる。 By using an oxide semiconductor, a change in electrical characteristics is suppressed and a highly reliable transistor can be realized.
 また、その低いオフ電流により、トランジスタを介して容量に蓄積した電荷を長期間に亘って保持することが可能である。このようなトランジスタを画素に適用することで、表示した画像の階調を維持しつつ、駆動回路を停止することも可能となる。その結果、極めて消費電力の低減された表示装置を実現できる。 Further, due to the low off-state current, the charge accumulated in the capacitor through the transistor can be held for a long time. By applying such a transistor to a pixel, the driving circuit can be stopped while maintaining the gradation of the displayed image. As a result, a display device with extremely reduced power consumption can be realized.
 トランジスタは、高純度化し、酸素欠損の形成を抑制した酸化物半導体層を有することが好ましい。これにより、トランジスタのオフ状態における電流値(オフ電流値)を低くすることができる。よって、画像信号等の電気信号の保持時間を長くすることができ、電源オン状態では書き込み間隔も長く設定できる。よって、リフレッシュ動作の頻度を少なくすることができるため、消費電力を抑制する効果を奏する。 The transistor preferably includes an oxide semiconductor layer that is highly purified and suppresses formation of oxygen vacancies. Thus, the current value (off-current value) in the off state of the transistor can be reduced. Therefore, the holding time of an electric signal such as an image signal can be increased, and the writing interval can be set longer in the power-on state. Therefore, since the frequency of the refresh operation can be reduced, there is an effect of suppressing power consumption.
 また、酸化物半導体を用いたトランジスタは、比較的高い電界効果移動度が得られるため、高速駆動が可能である。このような高速駆動が可能なトランジスタを表示装置に用いることで、表示部のトランジスタと、駆動回路部のトランジスタを同一基板上に形成することができる。すなわち、駆動回路として、別途、シリコンウェハ等により形成された半導体装置を用いる必要がないため、表示装置の部品点数を削減することができる。また、表示部においても、高速駆動が可能なトランジスタを用いることで、高画質な画像を提供することができる。 In addition, a transistor including an oxide semiconductor can be driven at high speed because a relatively high field-effect mobility can be obtained. By using such a transistor capable of high-speed driving for a display device, the transistor in the display portion and the transistor in the driver circuit portion can be formed over the same substrate. That is, it is not necessary to separately use a semiconductor device formed of a silicon wafer or the like as the drive circuit, so that the number of parts of the display device can be reduced. In the display portion, a high-quality image can be provided by using a transistor that can be driven at high speed.
 ゲートドライバ11が有するトランジスタと表示パネル10aが有するトランジスタは、同じ構造であってもよく、異なる構造であってもよい。ゲートドライバが有するトランジスタは、全て同じ構造であってもよく、2種類以上の構造が組み合わせて用いられていてもよい。同様に、表示パネル10aが有するトランジスタは、全て同じ構造であってもよく、2種類以上の構造が組み合わせて用いられていてもよい。 The transistor included in the gate driver 11 and the transistor included in the display panel 10a may have the same structure or different structures. The transistors included in the gate driver may all have the same structure, or two or more kinds of structures may be used in combination. Similarly, all the transistors included in the display panel 10a may have the same structure, or two or more kinds of structures may be used in combination.
 表示装置が有する各絶縁層、オーバーコート等に用いることのできる絶縁材料としては、有機絶縁材料又は無機絶縁材料を用いることができる。有機絶縁材料としては、例えば、アクリル樹脂、エポキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、及びフェノール樹脂等が挙げられる。無機絶縁層としては、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、及び酸化ネオジム膜等が挙げられる。 As an insulating material that can be used for each insulating layer, overcoat, and the like included in the display device, an organic insulating material or an inorganic insulating material can be used. Examples of the organic insulating material include acrylic resin, epoxy resin, polyimide resin, polyamide resin, polyimide amide resin, siloxane resin, benzocyclobutene resin, and phenol resin. As the inorganic insulating layer, silicon oxide film, silicon oxynitride film, silicon nitride oxide film, silicon nitride film, aluminum oxide film, hafnium oxide film, yttrium oxide film, zirconium oxide film, gallium oxide film, tantalum oxide film, magnesium oxide Examples thereof include a film, a lanthanum oxide film, a cerium oxide film, and a neodymium oxide film.
 トランジスタのゲート、ソース、ドレインのほか、表示装置が有する各種配線及び電極等の導電層には、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、又はタングステンなどの金属、又はこれを主成分とする合金を単層構造又は積層構造として用いることができる。例えば、アルミニウム膜上にチタン膜を積層する二層構造、タングステン膜上にチタン膜を積層する二層構造、モリブデン膜上に銅膜を積層した二層構造、モリブデンとタングステンを含む合金膜上に銅膜を積層した二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜又は窒化チタン膜と、そのチタン膜又は窒化チタン膜上に重ねてアルミニウム膜又は銅膜を積層し、さらにその上にチタン膜又は窒化チタン膜を形成する三層構造、モリブデン膜又は窒化モリブデン膜と、そのモリブデン膜又は窒化モリブデン膜上に重ねてアルミニウム膜又は銅膜を積層し、さらにその上にモリブデン膜又は窒化モリブデン膜を形成する三層構造等がある。例えば、導電層を三層構造とする場合、一層目及び三層目には、チタン、窒化チタン、モリブデン、タングステン、モリブデンとタングステンを含む合金、モリブデンとジルコニウムを含む合金、又は窒化モリブデンでなる膜を形成し、二層目には、銅、アルミニウム、金又は銀、或いは銅とマンガンの合金等の低抵抗材料でなる膜を形成することが好ましい。なお、ITO、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、ITSO等の透光性を有する導電性材料を用いてもよい。なお、酸化物半導体の抵抗率を制御することで、酸化物導電層を形成してもよい。 In addition to the gate, source, and drain of the transistor, conductive layers such as various wirings and electrodes of the display device include metals such as aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, tantalum, and tungsten. Alternatively, an alloy containing this as a main component can be used as a single layer structure or a stacked structure. For example, a two-layer structure in which a titanium film is laminated on an aluminum film, a two-layer structure in which a titanium film is laminated on a tungsten film, a two-layer structure in which a copper film is laminated on a molybdenum film, or an alloy film containing molybdenum and tungsten Two-layer structure in which a copper film is laminated, a two-layer structure in which a copper film is laminated on a copper-magnesium-aluminum alloy film, a titanium film or a titanium nitride film, and an aluminum film or copper layered on the titanium film or titanium nitride film Laminating a film, and further forming a three-layer structure for forming a titanium film or a titanium nitride film thereon, a molybdenum film or a molybdenum nitride film, and an aluminum film or a copper film stacked on the molybdenum film or the molybdenum nitride film, Further, there is a three-layer structure on which a molybdenum film or a molybdenum nitride film is formed. For example, when the conductive layer has a three-layer structure, the first and third layers include titanium, titanium nitride, molybdenum, tungsten, an alloy containing molybdenum and tungsten, an alloy containing molybdenum and zirconium, or a film made of molybdenum nitride. In the second layer, it is preferable to form a film made of a low resistance material such as copper, aluminum, gold or silver, or an alloy of copper and manganese. In addition, ITO, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, ITSO, etc. You may use the electroconductive material which has. Note that the oxide conductive layer may be formed by controlling the resistivity of the oxide semiconductor.
 接着層141としては、熱硬化樹脂、光硬化樹脂、又は2液混合型の硬化性樹脂などの硬化性樹脂を用いることができる。例えば、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、又はシロキサン樹脂などを用いることができる。 As the adhesive layer 141, a curable resin such as a thermosetting resin, a photocurable resin, or a two-component mixed curable resin can be used. For example, an acrylic resin, a urethane resin, an epoxy resin, a siloxane resin, or the like can be used.
 接続体242としては、例えば、異方性導電フィルム(ACF:Anisotropic Conductive Film)、又は異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。 As the connecting body 242, for example, an anisotropic conductive film (ACF: Anisotropic Conductive Film), an anisotropic conductive paste (ACP: Anisotropic Conductive Paste), or the like can be used.
 遮光層38及び遮光領域10c、10gは、例えば、走査線G1、走査線G2、及びトランジスタ、に重なるように設けられる。例えば、金属材料、又は、顔料もしくは染料を含む樹脂材料を用いて形成されたブラックマトリクスを遮光層38及び遮光領域10c、10gとして用いることができる。なお、遮光層38及び遮光領域10c、10gは、駆動回路部164など、表示部162以外の領域にも設けると、導波光などによる光漏れを抑制できるため好ましい。 The light shielding layer 38 and the light shielding regions 10c and 10g are provided so as to overlap, for example, the scanning line G1, the scanning line G2, and the transistor. For example, a black matrix formed using a metal material or a resin material containing a pigment or dye can be used as the light shielding layer 38 and the light shielding regions 10c and 10g. Note that it is preferable to provide the light shielding layer 38 and the light shielding regions 10c and 10g in regions other than the display portion 162 such as the drive circuit portion 164 because light leakage due to guided light or the like can be suppressed.
 ライトユニット13には、エッジライト型のライトユニット、直下型のライトユニット等を用いることができる。光源には、LED(Light Emitting Diode)、有機EL(Electroluminescence)素子等を用いることができる。 The light unit 13 can be an edge light type light unit, a direct type light unit, or the like. As the light source, an LED (Light Emitting Diode), an organic EL (Electroluminescence) element, or the like can be used.
 表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、それぞれ、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、真空蒸着法、パルスレーザー堆積(PLD:Pulsed Laser Deposition)法、原子層成膜(ALD:Atomic Layer Deposition)法等を用いて形成することができる。CVD法の例として、プラズマ化学気相堆積(PECVD:Plasma Enhanced Chemical Vapor Deposition)法及び熱CVD法等が挙げられる。熱CVD法の例として、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法が挙げられる。 Thin films (insulating film, semiconductor film, conductive film, etc.) constituting the display device are respectively formed by sputtering, chemical vapor deposition (CVD), vacuum evaporation, and pulsed laser deposition (PLD: Pulsed Laser Deposition). ) Method, atomic layer deposition (ALD: Atomic Layer Deposition) method, or the like. Examples of the CVD method include a plasma enhanced chemical vapor deposition (PECVD) method, a thermal chemical vapor deposition (PECVD) method, a thermal CVD method, and the like. An example of the thermal CVD method is a metal organic chemical vapor deposition (MOCVD) method.
 表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、それぞれ、スピンコート、ディップ、スプレー塗布、インクジェット印刷、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ、スリットコート、ロールコート、カーテンコート、ナイフコート等の方法により形成することができる。 Thin films (insulating films, semiconductor films, conductive films, etc.) that constitute display devices are spin coat, dip, spray coating, ink jet printing, dispensing, screen printing, offset printing, doctor knife, slit coat, roll coat, curtain, respectively. It can be formed by a method such as coating or knife coating.
 表示装置を構成する薄膜は、フォトリソグラフィ法等を用いて加工することができる。又は、遮蔽マスクを用いた成膜方法により、島状の薄膜を形成してもよい。又は、ナノインプリント法、サンドブラスト法、もしくはリフトオフ法などにより薄膜を加工してもよい。フォトリソグラフィ法としては、加工したい薄膜上にレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法と、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法と、がある。 The thin film constituting the display device can be processed using a photolithography method or the like. Alternatively, an island-shaped thin film may be formed by a film formation method using a shielding mask. Alternatively, the thin film may be processed by a nanoimprint method, a sand blast method, a lift-off method, or the like. As a photolithography method, a resist mask is formed on a thin film to be processed, the thin film is processed by etching or the like, and the resist mask is removed. After forming a photosensitive thin film, exposure and development are performed. And a method for processing the thin film into a desired shape.
 フォトリソグラフィ法において、露光に用いる光としては、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、及びこれらを混合させた光が挙げられる。そのほか、紫外線、KrFレーザ光、又はArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。露光に用いる光としては、極端紫外光(EUV:Extreme Ultra−violet)及びX線等が挙げられる。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線又は電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。 In the photolithography method, examples of light used for exposure include i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), and light obtained by mixing these. In addition, ultraviolet light, KrF laser light, ArF laser light, or the like can be used. Further, exposure may be performed by an immersion exposure technique. Examples of light used for exposure include extreme ultraviolet light (EUV: Extreme-violet) and X-rays. Further, an electron beam can be used instead of the light used for exposure. It is preferable to use extreme ultraviolet light, X-rays, or an electron beam because extremely fine processing is possible. Note that a photomask is not necessary when exposure is performed by scanning a beam such as an electron beam.
 薄膜のエッチングには、ドライエッチング法、ウエットエッチング法、サンドブラスト法などを用いることができる。 For etching the thin film, a dry etching method, a wet etching method, a sand blasting method, or the like can be used.
[金属酸化物]
 本実施の形態の表示装置が有するトランジスタの半導体層には、酸化物半導体として機能する金属酸化物を用いることが好ましい。以下では、半導体層に適用可能な金属酸化物について説明する。
[Metal oxide]
A metal oxide functioning as an oxide semiconductor is preferably used for the semiconductor layer of the transistor included in the display device of this embodiment. Below, the metal oxide applicable to a semiconductor layer is demonstrated.
 金属酸化物は、少なくともインジウム又は亜鉛を含むことが好ましい。特に、インジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム又は錫などが含まれていることが好ましい。また、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、又はマグネシウムなどから選ばれた一種、又は複数種が含まれていてもよい。 The metal oxide preferably contains at least indium or zinc. In particular, indium and zinc are preferably included. In addition to these, it is preferable that aluminum, gallium, yttrium, tin, or the like is contained. One or more kinds selected from boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, and the like may be included.
 ここでは、金属酸化物が、インジウム、元素M、及び亜鉛を有するIn−M−Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウム、又は錫などとする。そのほかの元素Mに適用可能な元素としては、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。但し、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。 Here, a case where the metal oxide is an In-M-Zn oxide containing indium, an element M, and zinc is considered. Note that the element M is aluminum, gallium, yttrium, tin, or the like. Other elements applicable to the element M include boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and magnesium. However, as the element M, a plurality of the above-described elements may be combined.
 なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。例えば、亜鉛酸窒化物(ZnON)などの窒素を有する金属酸化物を、半導体層に用いてもよい。 Note that in this specification and the like, metal oxides containing nitrogen may be collectively referred to as metal oxides. In addition, a metal oxide containing nitrogen may be referred to as a metal oxynitride. For example, a metal oxide containing nitrogen such as zinc oxynitride (ZnON) may be used for the semiconductor layer.
 酸化物半導体(金属酸化物)は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS(c−axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、及び非晶質酸化物半導体などがある。 An oxide semiconductor (metal oxide) is classified into a single crystal oxide semiconductor and a non-single crystal oxide semiconductor. As the non-single-crystal oxide semiconductor, for example, a CAAC-OS (c-axis aligned crystal oxide semiconductor), a polycrystalline oxide semiconductor, an nc-OS (nanocrystalline oxide semiconductor), a pseudo-amorphous oxide semiconductor (a-like oxide semiconductor) OS: amorphous-like oxide semiconductor) and amorphous oxide semiconductor.
 CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。 The CAAC-OS has a c-axis orientation and a crystal structure in which a plurality of nanocrystals are connected in the ab plane direction and has a strain. Note that the strain refers to a portion where the orientation of the lattice arrangement changes between a region where the lattice arrangement is aligned and a region where another lattice arrangement is aligned in a region where a plurality of nanocrystals are connected.
 ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形及び七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう。)を確認することは難しい。すなわち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためである。 Nanocrystals are based on hexagons, but are not limited to regular hexagons and may be non-regular hexagons. In addition, there may be a lattice arrangement such as a pentagon and a heptagon in terms of distortion. Note that in the CAAC-OS, it is difficult to check a clear crystal grain boundary (also referred to as a grain boundary) even in the vicinity of strain. That is, it can be seen that the formation of crystal grain boundaries is suppressed by the distortion of the lattice arrangement. This is because the CAAC-OS can tolerate distortion due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to substitution of metal elements. Because.
 また、CAAC−OSは、インジウム、及び酸素を有する層(以下、In層)と、元素M、亜鉛、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。 The CAAC-OS is a layered crystal in which a layer containing indium and oxygen (hereinafter referred to as an In layer) and a layer including elements M, zinc, and oxygen (hereinafter referred to as (M, Zn) layers) are stacked. There is a tendency to have a structure (also called a layered structure). Note that indium and the element M can be replaced with each other, and when the element M in the (M, Zn) layer is replaced with indium, it can also be expressed as an (In, M, Zn) layer. Further, when indium in the In layer is replaced with the element M, it can also be expressed as an (In, M) layer.
 CAAC−OSは結晶性の高い金属酸化物である。一方、CAAC−OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、金属酸化物の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損(V:oxygen vacancyともいう。)など)の少ない金属酸化物ともいえる。従って、CAAC−OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC−OSを有する金属酸化物は熱に強く、信頼性が高い。 CAAC-OS is a metal oxide with high crystallinity. On the other hand, since it is difficult to confirm a clear crystal grain boundary in the CAAC-OS, it can be said that a decrease in electron mobility due to the crystal grain boundary hardly occurs. Moreover, since the crystallinity of the metal oxide that may be reduced by such generation of contamination and defects impurities, CAAC-OS impurities and defects (oxygen deficiency (V O:. Oxygen vacancy also referred) etc.) with less metal It can be said that it is an oxide. Therefore, the physical properties of the metal oxide including the CAAC-OS are stable. Therefore, a metal oxide including a CAAC-OS is resistant to heat and has high reliability.
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。従って、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。 Nc-OS has periodicity in atomic arrangement in a minute region (for example, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm). In addition, the nc-OS has no regularity in crystal orientation between different nanocrystals. Therefore, orientation is not seen in the whole film. Therefore, the nc-OS may not be distinguished from an a-like OS or an amorphous oxide semiconductor depending on an analysis method.
 なお、インジウムと、ガリウムと、亜鉛と、を有する金属酸化物の一種である、インジウム−ガリウム−亜鉛酸化物(以下、IGZO)は、上述のナノ結晶とすることで安定な構造をとる場合がある。特に、IGZOは、大気中では結晶成長がし難い傾向があるため、大きな結晶(ここでは、数mmの結晶、又は数cmの結晶)よりも小さな結晶(例えば、上述のナノ結晶)とする方が、構造的に安定となる場合がある。 Note that indium-gallium-zinc oxide (hereinafter referred to as IGZO), which is a kind of metal oxide including indium, gallium, and zinc, may have a stable structure by using the above-described nanocrystal. is there. In particular, since IGZO tends to be difficult to grow in the atmosphere, a crystal smaller than a large crystal (here, a crystal of several millimeters or a crystal of several centimeters) (for example, the above-mentioned nanocrystal) is used. However, it may be structurally stable.
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する金属酸化物である。a−like OSは、鬆又は低密度領域を有する。すなわち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。 A-like OS is a metal oxide having a structure between nc-OS and an amorphous oxide semiconductor. The a-like OS has a void or a low density region. That is, the a-like OS has lower crystallinity than the nc-OS and the CAAC-OS.
 酸化物半導体(金属酸化物)は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。 Oxide semiconductors (metal oxides) have various structures and have different characteristics. The oxide semiconductor of one embodiment of the present invention may include two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, an nc-OS, and a CAAC-OS.
 半導体層として機能する金属酸化物膜は、不活性ガス及び酸素ガスのいずれか一方又は双方を用いて成膜することができる。なお、金属酸化物膜の成膜時における酸素の流量比(酸素分圧)に、特に限定はない。但し、電界効果移動度が高いトランジスタを得る場合においては、金属酸化物膜の成膜時における酸素の流量比(酸素分圧)は、0%以上30%以下が好ましく、5%以上30%以下がより好ましく、7%以上15%以下がさらに好ましい。 The metal oxide film functioning as a semiconductor layer can be formed using one or both of an inert gas and an oxygen gas. Note that there is no particular limitation on the flow rate ratio of oxygen (oxygen partial pressure) during the formation of the metal oxide film. However, in the case of obtaining a transistor with high field effect mobility, the flow rate ratio of oxygen (oxygen partial pressure) during the formation of the metal oxide film is preferably 0% or more and 30% or less, and 5% or more and 30% or less. Is more preferably 7% or more and 15% or less.
 金属酸化物は、エネルギーギャップが2eV以上であることが好ましく、2.5eV以上であることがより好ましく、3eV以上であることがさらに好ましい。このように、エネルギーギャップの広い金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。 The energy gap of the metal oxide is preferably 2 eV or more, more preferably 2.5 eV or more, and further preferably 3 eV or more. In this manner, off-state current of a transistor can be reduced by using a metal oxide having a wide energy gap.
 金属酸化物膜は、スパッタリング法により形成することができる。そのほか、PLD法、PECVD法、熱CVD法、ALD法、真空蒸着法などを用いてもよい。 The metal oxide film can be formed by a sputtering method. In addition, a PLD method, a PECVD method, a thermal CVD method, an ALD method, a vacuum evaporation method, or the like may be used.
 以上のように、本発明の一態様の表示装置は、画素に、可視光を透過する2つの容量素子を重ねて有するため、画素が、高い開口率と大きな保持容量とを両立することができる。 As described above, since the display device of one embodiment of the present invention has two capacitors that transmit visible light overlapped with a pixel, the pixel can achieve both a high aperture ratio and a large storage capacitor. .
 また、本発明の一態様の表示装置は、画像信号に補正信号を付加するための機能を有するため、ソースドライバの出力電圧よりも高い電圧で、液晶素子を駆動させることができる。 In addition, since the display device of one embodiment of the present invention has a function of adding a correction signal to an image signal, the liquid crystal element can be driven with a voltage higher than the output voltage of the source driver.
 本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。 This embodiment can be combined with any of the other embodiments as appropriate. In this specification, in the case where a plurality of structure examples are given in one embodiment, any of the structure examples can be combined as appropriate.
(実施の形態3)
 本実施の形態では、上記実施の形態で述べたOSトランジスタに用いることができるCAC(Cloud−Aligned Composite)−OSの構成について説明する。
(Embodiment 3)
In this embodiment, a structure of a CAC (Cloud-Aligned Composite) -OS that can be used for the OS transistor described in the above embodiment is described.
 CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、又はその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つあるいはそれ以上の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、又はその近傍のサイズで混合した状態をモザイク状、又はパッチ状ともいう。 The CAC-OS is one structure of a material in which elements constituting a metal oxide are unevenly distributed with a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm, or the vicinity thereof. In the following, in the metal oxide, one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm, or the vicinity thereof. The state mixed with is also referred to as mosaic or patch.
 なお、金属酸化物は、少なくともインジウムを含むことが好ましい。特にインジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、又はマグネシウムなどから選ばれた一種、又は複数種が含まれていてもよい。 Note that the metal oxide preferably contains at least indium. In particular, it is preferable to contain indium and zinc. In addition, aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, etc. One kind selected from the above or a plurality of kinds may be included.
 例えば、In−Ga−Zn酸化物におけるCAC−OS(CAC−OSの中でもIn−Ga−Zn酸化物を、特にCAC−IGZOと呼称してもよい。)とは、インジウム酸化物(以下、InOX1(X1は0よりも大きい実数)とする。)、又はインジウム亜鉛酸化物(以下、InX2ZnY2Z2(X2、Y2、及びZ2は0よりも大きい実数)とする。)と、ガリウム酸化物(以下、GaOX3(X3は0よりも大きい実数)とする。)、又はガリウム亜鉛酸化物(以下、GaX4ZnY4Z4(X4、Y4、及びZ4は0よりも大きい実数)とする。)などと、に材料が分離することでモザイク状となり、モザイク状のInOX1、又はInX2ZnY2Z2が、膜中に均一に分布した構成(以下、クラウド状ともいう。)である。 For example, a CAC-OS in In-Ga-Zn oxide (In-Ga-Zn oxide among CAC-OSs may be referred to as CAC-IGZO in particular) is an indium oxide (hereinafter referred to as InO). X1 (X1 is greater real than 0) and.), or indium zinc oxide (hereinafter, in X2 Zn Y2 O Z2 ( X2, Y2, and Z2 is larger real than 0) and a.), gallium An oxide (hereinafter referred to as GaO X3 (X3 is a real number greater than 0)) or a gallium zinc oxide (hereinafter referred to as Ga X4 Zn Y4 O Z4 (where X4, Y4, and Z4 are greater than 0)) to.) and the like, the material becomes mosaic by separate into, mosaic InO X1, or in X2 Zn Y2 O Z2 is configured uniformly distributed in the film (hereinafter, cloud Also referred to.) A.
 つまり、CAC−OSは、GaOX3が主成分である領域と、InX2ZnY2Z2、又はInOX1が主成分である領域とが、混合している構成を有する複合金属酸化物である。なお、本明細書において、例えば、第1の領域の元素Mに対するInの原子数比が、第2の領域の元素Mに対するInの原子数比よりも大きいことを、第1の領域は、第2の領域と比較して、Inの濃度が高いとする。 That, CAC-OS includes a region GaO X3 is the main component, In X2 Zn Y2 O Z2, or InO X1 there is a region which is a main component, a composite metal oxide having a structure that is mixed. Note that in this specification, for example, the first region indicates that the atomic ratio of In to the element M in the first region is larger than the atomic ratio of In to the element M in the second region. It is assumed that the concentration of In is higher than that in the second region.
 なお、IGZOは通称であり、In、Ga、Zn、及びOによる1つの化合物をいう場合がある。代表例として、InGaO(ZnO)m1(m1は自然数)、又はIn(1+x0)Ga(1−x0)(ZnO)m0(−1≦x0≦1、m0は任意数)で表される結晶性の化合物が挙げられる。 Note that IGZO is a common name and sometimes refers to one compound of In, Ga, Zn, and O. As a typical example, InGaO 3 (ZnO) m1 (m1 is a natural number) or In (1 + x0) Ga (1-x0) O 3 (ZnO) m0 (−1 ≦ x0 ≦ 1, m0 is an arbitrary number) A crystalline compound may be mentioned.
 上記結晶性の化合物は、単結晶構造、多結晶構造、又はCAAC構造を有する。なお、CAAC構造とは、複数のIGZOのナノ結晶がc軸配向を有し、かつa−b面においては配向せずに連結した結晶構造である。 The crystalline compound has a single crystal structure, a polycrystalline structure, or a CAAC structure. The CAAC structure is a crystal structure in which a plurality of IGZO nanocrystals have c-axis orientation and are connected without being oriented in the ab plane.
 一方、CAC−OSは、金属酸化物の材料構成に関する。CAC−OSとは、In、Ga、Zn、及びOを含む材料構成において、一部にGaを主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。従って、CAC−OSにおいて、結晶構造は副次的な要素である。 On the other hand, CAC-OS relates to a material structure of a metal oxide. CAC-OS refers to a region that is observed in the form of nanoparticles mainly composed of Ga in a material structure including In, Ga, Zn, and O, and nanoparticles that are partially composed mainly of In. The region observed in a shape is a configuration in which the regions are randomly dispersed in a mosaic shape. Therefore, in the CAC-OS, the crystal structure is a secondary element.
 なお、CAC−OSは、組成の異なる二種類以上の膜の積層構造は含まないものとする。例えば、Inを主成分とする膜と、Gaを主成分とする膜との2層からなる構造は、含まない。 Note that the CAC-OS does not include a stacked structure of two or more kinds of films having different compositions. For example, a structure composed of two layers of a film mainly containing In and a film mainly containing Ga is not included.
 なお、GaOX3が主成分である領域と、InX2ZnY2Z2、又はInOX1が主成分である領域とは、明確な境界が観察できない場合がある。 Incidentally, a region GaO X3 is the main component, In X2 Zn Y2 O Z2, or the region InO X1 is the main component, it may clear boundary can not be observed.
 なお、ガリウムの代わりに、アルミニウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、又はマグネシウムなどから選ばれた一種、又は複数種が含まれている場合、CAC−OSは、一部に該金属元素を主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。 Instead of gallium, selected from aluminum, yttrium, copper, vanadium, beryllium, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, etc. In the case where one or more types are included, the CAC-OS includes a region observed in a part of a nanoparticle mainly including the metal element and a nano part mainly including In. The region observed in the form of particles refers to a configuration in which each region is randomly dispersed in a mosaic shape.
 CAC−OSは、例えば基板を加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたいずれか一つ又は複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。 The CAC-OS can be formed by sputtering, for example, under the condition that the substrate is not heated. In the case where a CAC-OS is formed by a sputtering method, any one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as a deposition gas. Good. Further, the flow rate ratio of the oxygen gas to the total flow rate of the deposition gas during film formation is preferably as low as possible. For example, the flow rate ratio of the oxygen gas is 0% to less than 30%, preferably 0% to 10%. .
 CAC−OSは、X線回折(XRD:X−ray diffraction)測定法のひとつであるOut−of−plane法によるθ/2θスキャンを用いて測定したときに、明確なピークが観察されないという特徴を有する。すなわち、X線回折測定から、測定領域のa−b面方向、及びc軸方向の配向は見られないことが分かる。 The CAC-OS has a feature that a clear peak is not observed when measurement is performed using a θ / 2θ scan by an out-of-plane method, which is one of X-ray diffraction (XRD) measurement methods. Have. That is, from the X-ray diffraction measurement, it can be seen that no orientation in the ab plane direction and c axis direction of the measurement region is observed.
 またCAC−OSは、プローブ径が1nmの電子線(ナノビーム電子線ともいう。)を照射することで得られる電子線回折パターンにおいて、リング状に輝度の高い領域と、該リング領域に複数の輝点が観測される。従って、電子線回折パターンから、CAC−OSの結晶構造が、平面方向、及び断面方向において、配向性を有さないnc(nano−crystal)構造を有することがわかる。 In addition, in the CAC-OS, an electron diffraction pattern obtained by irradiating an electron beam with a probe diameter of 1 nm (also referred to as a nanobeam electron beam) has a ring-like region having a high luminance and a plurality of bright regions in the ring region. A point is observed. Therefore, it can be seen from the electron beam diffraction pattern that the crystal structure of the CAC-OS has an nc (nano-crystal) structure having no orientation in the planar direction and the cross-sectional direction.
 また例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、GaOX3が主成分である領域と、InX2ZnY2Z2、又はInOX1が主成分である領域とが、偏在し、混合している構造を有することが確認できる。 Further, for example, in a CAC-OS in an In—Ga—Zn oxide, a region in which GaO X3 is a main component is obtained by EDX mapping obtained by using energy dispersive X-ray spectroscopy (EDX). It can be confirmed that a region in which In X2 Zn Y2 O Z2 or InO X1 is a main component is unevenly distributed and mixed.
 CAC−OSは、金属元素が均一に分布したIGZO化合物とは異なる構造であり、IGZO化合物と異なる性質を有する。つまり、CAC−OSは、GaOX3などが主成分である領域と、InX2ZnY2Z2、又はInOX1が主成分である領域と、に互いに相分離し、各元素を主成分とする領域がモザイク状である構造を有する。 The CAC-OS has a structure different from that of the IGZO compound in which the metal element is uniformly distributed, and has a property different from that of the IGZO compound. That is, in the CAC-OS, a region in which GaO X3 or the like is a main component and a region in which In X2 Zn Y2 O Z2 or InO X1 is a main component are phase-separated from each other, and a region in which each element is a main component. Has a mosaic structure.
 ここで、InX2ZnY2Z2、又はInOX1が主成分である領域は、GaOX3などが主成分である領域と比較して、導電性が高い領域である。つまり、InX2ZnY2Z2、又はInOX1が主成分である領域を、キャリアが流れることにより、金属酸化物としての導電性が発現する。従って、InX2ZnY2Z2、又はInOX1が主成分である領域が、金属酸化物中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。 Here, the region containing In X2 Zn Y2 O Z2 or InO X1 as a main component is a region having higher conductivity than a region containing GaO X3 or the like as a main component. That, In X2 Zn Y2 O Z2, or InO X1 is a region which is a main component, by carriers flow, conductive metal oxide is expressed. Therefore, a high field effect mobility (μ) can be realized by the region where In X2 Zn Y2 O Z2 or InO X1 is a main component distributed in a cloud shape in the metal oxide.
 一方、GaOX3などが主成分である領域は、InX2ZnY2Z2、又はInOX1が主成分である領域と比較して、絶縁性が高い領域である。つまり、GaOX3などが主成分である領域が、金属酸化物中に分布することで、リーク電流を抑制し、良好なスイッチング動作を実現できる。 On the other hand, areas such as GaO X3 is the main component, In X2 Zn Y2 O Z2, or InO X1 is compared to region which is a main component, has a high area insulation. That is, since the region mainly composed of GaO X3 or the like is distributed in the metal oxide, a leakage current can be suppressed and a good switching operation can be realized.
 従って、CAC−OSを半導体素子に用いた場合、GaOX3などに起因する絶縁性と、InX2ZnY2Z2、又はInOX1に起因する導電性とが、相補的に作用することにより、高いオン電流(Ion)、及び高い電界効果移動度(μ)を実現することができる。 Therefore, when CAC-OS is used for a semiconductor element, the insulating property caused by GaO X3 and the like and the conductivity caused by In X2 Zn Y2 O Z2 or InO X1 act complementarily, thereby increasing the An on-current (I on ) and high field effect mobility (μ) can be realized.
 また、CAC−OSを用いた半導体素子は、信頼性が高い。従って、CAC−OSは、ディスプレイをはじめとするさまざまな半導体装置に最適である。 In addition, a semiconductor element using a CAC-OS has high reliability. Therefore, the CAC-OS is optimal for various semiconductor devices including a display.
 本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。 This embodiment can be combined with any of the other embodiments as appropriate. In this specification, in the case where a plurality of structure examples are given in one embodiment, any of the structure examples can be combined as appropriate.
(実施の形態4)
 本実施の形態では、本発明の一態様の電子機器について、図16及び図18を用いて説明する。
(Embodiment 4)
In this embodiment, electronic devices of one embodiment of the present invention will be described with reference to FIGS.
 本実施の形態の電子機器は、表示部に、本発明の一態様の表示装置を有する。これにより、電子機器の表示部は、高品質な映像を表示することができる。また、広い温度範囲で信頼性高く表示を行うことができる。 The electronic device of this embodiment includes the display device of one embodiment of the present invention in the display portion. Thereby, the display part of an electronic device can display a high quality image | video. In addition, display can be performed with high reliability in a wide temperature range.
 本実施の形態の電子機器の表示部には、例えばフルハイビジョン、2K、4K、8K、16K、又はそれ以上の解像度を有する映像を表示させることができる。また、表示部の画面サイズは、対角20インチ以上、対角30インチ以上、対角50インチ以上、対角60インチ以上、又は対角70インチ以上とすることができる。 For example, full high-definition video, 2K, 4K, 8K, 16K, or more can be displayed on the display unit of the electronic device of this embodiment. The screen size of the display unit can be 20 inches or more diagonal, 30 inches or more diagonal, 50 inches diagonal, 60 inches diagonal, or 70 inches diagonal.
 本発明の一態様の表示装置を用いることができる電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ(Digital Signage:電子看板)、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。また、本発明の一態様の表示装置は、携帯型の電子機器、装着型の電子機器(ウェアラブル機器)、VR(Virtual Reality)機器、AR(Augmented Reality)機器などにも好適に用いることができる。 Examples of an electronic device that can use the display device of one embodiment of the present invention include a television device, a desktop or notebook personal computer, a monitor for a computer, a digital signage (digital signage), a pachinko machine, and the like. In addition to electronic devices having a relatively large screen such as large game machines such as digital cameras, digital cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, portable information terminals, sound reproduction devices, and the like can be given. . The display device of one embodiment of the present invention can also be favorably used for a portable electronic device, a wearable electronic device (wearable device), a VR (Virtual Reality) device, an AR (Augmented Reality) device, and the like. .
 本発明の一態様の電子機器は、二次電池を有していてもよく、非接触電力伝送を用いて、二次電池を充電することができると好ましい。 The electronic device of one embodiment of the present invention may have a secondary battery, and it is preferable that the secondary battery can be charged using non-contact power transmission.
 二次電池としては、例えば、ゲル状電解質を用いるリチウムポリマー電池(リチウムイオンポリマー電池)等のリチウムイオン二次電池、ニッケル水素電池、ニカド電池、有機ラジカル電池、鉛蓄電池、空気二次電池、ニッケル亜鉛電池、銀亜鉛電池などが挙げられる。 Secondary batteries include, for example, lithium ion secondary batteries such as lithium polymer batteries (lithium ion polymer batteries) using gel electrolyte, nickel metal hydride batteries, nickel-cadmium batteries, organic radical batteries, lead storage batteries, air secondary batteries, nickel A zinc battery, a silver zinc battery, etc. are mentioned.
 本発明の一態様の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像や情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。 The electronic device of one embodiment of the present invention may have an antenna. By receiving a signal with an antenna, video, information, and the like can be displayed on the display unit. In the case where the electronic device has an antenna and a secondary battery, the antenna may be used for non-contact power transmission.
 本発明の一態様の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)を有していてもよい。 The electronic device of one embodiment of the present invention includes a sensor (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, It may have a function of measuring voltage, power, radiation, flow rate, humidity, gradient, vibration, odor, or infrared).
 本発明の一態様の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付又は時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラム又はデータを読み出す機能等を有することができる。 The electronic device of one embodiment of the present invention can have various functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, a function for executing various software (programs), and wireless communication It can have a function, a function of reading a program or data recorded in a recording medium, and the like.
 さらに、複数の表示部を有する電子機器においては、一つの表示部を主として画像情報を表示し、別の一つの表示部を主として文字情報を表示する機能、又は複数の表示部に視差を考慮した画像を表示することで立体的な画像を表示する機能等を有することができる。さらに、受像部を有する電子機器においては、静止画又は動画を撮影する機能、撮影した画像を自動又は手動で補正する機能、撮影した画像を記録媒体(外部または電子機器に内蔵)に保存する機能、撮影した画像を表示部に表示する機能等を有することができる。なお、本発明の一態様の電子機器が有する機能はこれらに限定されず、様々な機能を有することができる。 Further, in an electronic apparatus having a plurality of display units, a function of displaying image information mainly on one display unit and mainly displaying character information on another display unit, or considering parallax in the plurality of display units By displaying an image, a function of displaying a stereoscopic image can be provided. Furthermore, in an electronic device having an image receiving unit, a function for photographing a still image or a moving image, a function for automatically or manually correcting the photographed image, and a function for saving the photographed image in a recording medium (externally or incorporated in the electronic device) A function of displaying the photographed image on the display portion can be provided. Note that the functions of the electronic device of one embodiment of the present invention are not limited thereto, and the electronic device can have various functions.
 図16(A)に、テレビジョン装置1810を示す。テレビジョン装置1810は、表示部1811、筐体1812、スピーカ1813等を有する。さらに、LEDランプ、操作キー(電源スイッチ、又は操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。 FIG. 16A illustrates a television device 1810. A television device 1810 includes a display portion 1811, a housing 1812, a speaker 1813, and the like. Furthermore, an LED lamp, operation keys (including a power switch or an operation switch), connection terminals, various sensors, a microphone, and the like can be provided.
 テレビジョン装置1810は、リモコン操作機1814により、操作することができる。 The television device 1810 can be operated by a remote controller 1814.
 テレビジョン装置1810が受信できる放送電波としては、地上波、又は衛星から送信される電波などが挙げられる。また放送電波として、アナログ放送、デジタル放送などがあり、また映像及び音声、又は音声のみの放送などがある。例えばUHF帯(約300MHz~3GHz)又はVHF帯(30MHz~300MHz)のうちの特定の周波数帯域で送信される放送電波を受信することができる。また例えば、複数の周波数帯域で受信した複数のデータを用いることで、転送レートを高くすることができ、より多くの情報を得ることができる。これによりフルハイビジョンを超える解像度を有する映像を、表示部1811に表示させることができる。例えば、4K、8K、16K、又はそれ以上の解像度を有する映像を表示させることができる。 Broadcasting radio waves that can be received by the television device 1810 include terrestrial waves or radio waves transmitted from satellites. As broadcast radio waves, there are analog broadcasts, digital broadcasts, etc., and there are video and audio, or only audio broadcasts. For example, broadcast radio waves transmitted in a specific frequency band in the UHF band (about 300 MHz to 3 GHz) or the VHF band (30 MHz to 300 MHz) can be received. In addition, for example, by using a plurality of data received in a plurality of frequency bands, the transfer rate can be increased and more information can be obtained. Accordingly, an image having a resolution exceeding full high-definition can be displayed on the display unit 1811. For example, an image having a resolution of 4K, 8K, 16K, or higher can be displayed.
 また、インターネットやLAN(Local Area Network)、Wi−Fi(登録商標)などのコンピュータネットワークを介したデータ伝送技術により送信された放送のデータを用いて、表示部1811に表示する画像を生成する構成としてもよい。このとき、テレビジョン装置1810にチューナーを有さなくてもよい。 A configuration for generating an image to be displayed on the display unit 1811 using broadcast data transmitted by a data transmission technique via a computer network such as the Internet, a LAN (Local Area Network), or Wi-Fi (registered trademark). It is good. At this time, the television device 1810 may not have a tuner.
 図16(B)は円柱状の柱1822に取り付けられたデジタルサイネージ1820を示している。デジタルサイネージ1820は、表示部1821を有する。 FIG. 16B shows a digital signage 1820 attached to a cylindrical column 1822. The digital signage 1820 has a display portion 1821.
 表示部1821が広いほど、一度に提供できる情報量を増やすことができる。また、表示部1821が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。 The wider the display unit 1821, the more information can be provided at one time. Moreover, the wider the display portion 1821 is, the easier it is to be noticed by humans. For example, the advertising effect of advertisement can be enhanced.
 表示部1821にタッチパネルを適用することで、表示部1821に静止画又は動画を表示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。 It is preferable to apply a touch panel to the display unit 1821 so that not only a still image or a moving image is displayed on the display unit 1821 but also a user can operate intuitively. In addition, when it is used for providing information such as route information or traffic information, usability can be improved by an intuitive operation.
 図16(C)はノート型のパーソナルコンピュータ1830を示している。パーソナルコンピュータ1830は、表示部1831、筐体1832、タッチパッド1833、接続ポート1834等を有する。 FIG. 16C shows a notebook personal computer 1830. The personal computer 1830 includes a display portion 1831, a housing 1832, a touch pad 1833, a connection port 1834, and the like.
 タッチパッド1833は、ポインティングデバイスや、ペンタブレット等の入力手段として機能し、指やスタイラス等で操作することができる。 The touch pad 1833 functions as an input means such as a pointing device or a pen tablet, and can be operated with a finger or a stylus.
 また、タッチパッド1833には表示素子が組み込まれている。例えば、タッチパッド1833の表面に入力キー1835を表示することで、タッチパッド1833をキーボードとして使用することができる。このとき、入力キー1835に触れた際に、振動により触感を実現するため、振動モジュールがタッチパッド1833に組み込まれていてもよい。 Further, a display element is incorporated in the touch pad 1833. For example, by displaying the input key 1835 on the surface of the touch pad 1833, the touch pad 1833 can be used as a keyboard. At this time, when the input key 1835 is touched, a vibration module may be incorporated in the touch pad 1833 in order to realize tactile sensation by vibration.
 図17(A)、(B)に、携帯情報端末800を示す。携帯情報端末800は、筐体801、筐体802、表示部803、表示部804、及びヒンジ部805等を有する。 FIGS. 17A and 17B show a portable information terminal 800. FIG. The portable information terminal 800 includes a housing 801, a housing 802, a display portion 803, a display portion 804, a hinge portion 805, and the like.
 筐体801と筐体802は、ヒンジ部805で連結されている。携帯情報端末800は、図17(A)に示すように折り畳んだ状態から、図17(B)に示すように筐体801と筐体802を開くことができる。 The housing 801 and the housing 802 are connected by a hinge portion 805. The portable information terminal 800 can open the housing 801 and the housing 802 as illustrated in FIG. 17B from the folded state as illustrated in FIG.
 例えば表示部803及び表示部804に、文書情報を表示することができ、電子書籍端末としても用いることができる。また、表示部803及び表示部804に静止画像や動画像を表示することもできる。 For example, document information can be displayed on the display portion 803 and the display portion 804, and can also be used as an electronic book terminal. In addition, still images and moving images can be displayed on the display portion 803 and the display portion 804.
 このように、携帯情報端末800は、持ち運ぶ際には折り畳んだ状態にできるため、汎用性に優れる。 Thus, since the portable information terminal 800 can be folded when being carried, it has excellent versatility.
 なお、筐体801及び筐体802には、電源ボタン、操作ボタン、外部接続ポート、スピーカ、マイク等を有していてもよい。 Note that the housing 801 and the housing 802 may include a power button, an operation button, an external connection port, a speaker, a microphone, and the like.
 図17(C)に携帯情報端末の一例を示す。図17(C)に示す携帯情報端末810は、筐体811、表示部812、操作ボタン813、外部接続ポート814、スピーカ815、マイク816、カメラ817等を有する。 FIG. 17C shows an example of a portable information terminal. A portable information terminal 810 illustrated in FIG. 17C includes a housing 811, a display portion 812, operation buttons 813, an external connection port 814, a speaker 815, a microphone 816, a camera 817, and the like.
 携帯情報端末810は、表示部812にタッチセンサを備える。電話を掛ける、或いは文字を入力するなどのあらゆる操作は、指やスタイラスなどで表示部812に触れることで行うことができる。 The portable information terminal 810 includes a touch sensor in the display unit 812. Any operation such as making a call or inputting characters can be performed by touching the display portion 812 with a finger or a stylus.
 また、操作ボタン813の操作により、電源のON、OFF動作や、表示部812に表示される画像の種類を切り替えることができる。例えば、メール作成画面から、メインメニュー画面に切り替えることができる。 Further, by operating the operation button 813, the power ON / OFF operation and the type of image displayed on the display unit 812 can be switched. For example, the mail creation screen can be switched to the main menu screen.
 また、携帯情報端末810の内部に、ジャイロセンサ又は加速度センサ等の検出装置を設けることで、携帯情報端末810の向き(縦か横か)を判断して、表示部812の画面表示の向きを自動的に切り替えるようにすることができる。また、画面表示の向きの切り替えは、表示部812を触れること、操作ボタン813の操作、又はマイク816を用いた音声入力等により行うこともできる。 Further, by providing a detection device such as a gyro sensor or an acceleration sensor inside the portable information terminal 810, the orientation (portrait or landscape) of the portable information terminal 810 is determined, and the screen display orientation of the display unit 812 is changed. It can be switched automatically. The screen display orientation can also be switched by touching the display portion 812, operating the operation buttons 813, or inputting voice using the microphone 816.
 携帯情報端末810は、例えば、電話機、手帳又は情報閲覧装置等から選ばれた一つ又は複数の機能を有する。具体的には、スマートフォンとして用いることができる。携帯情報端末810は、例えば、移動電話、電子メール、文章閲覧及び作成、音楽再生、動画再生、インターネット通信、ゲームなどの種々のアプリケーションを実行することができる。 The portable information terminal 810 has one or a plurality of functions selected from, for example, a telephone, a notebook, an information browsing device, or the like. Specifically, it can be used as a smartphone. The portable information terminal 810 can execute various applications such as mobile phone, electronic mail, text browsing and creation, music playback, video playback, Internet communication, and games.
 図17(D)に、カメラの一例を示す。カメラ820は、筐体821、表示部822、操作ボタン823、シャッターボタン824等を有する。またカメラ820には、着脱可能なレンズ826が取り付けられている。 FIG. 17D shows an example of a camera. The camera 820 includes a housing 821, a display portion 822, operation buttons 823, a shutter button 824, and the like. A removable lens 826 is attached to the camera 820.
 ここではカメラ820として、レンズ826を筐体821から取り外して交換することが可能な構成としたが、レンズ826と筐体が一体となっていてもよい。 Here, the camera 820 is configured such that the lens 826 can be removed from the housing 821 and replaced, but the lens 826 and the housing may be integrated.
 カメラ820は、シャッターボタン824を押すことにより、静止画、又は動画を撮像することができる。また、表示部822はタッチパネルとしての機能を有し、表示部822をタッチすることにより撮像することも可能である。 The camera 820 can capture a still image or a moving image by pressing the shutter button 824. In addition, the display portion 822 has a function as a touch panel and can capture an image by touching the display portion 822.
 なお、カメラ820は、ストロボ装置や、ビューファインダーなどを別途装着することができる。又は、これらが筐体821に組み込まれていてもよい。 Note that the camera 820 can be separately equipped with a strobe device, a viewfinder, and the like. Alternatively, these may be incorporated in the housing 821.
 図17(E)に示す電子機器830は、筐体831、表示装置834、照明833、及び光モジュール832を有している。筐体831は、開口部835と、開口部835a(図中では表記せず)とを有している。電子機器830は、家屋もしくはビルの内壁もしくは外壁、空間の仕切り(扉、窓、壁、部屋、机のパーテーション)などに組み込むことができる。さらに、表示装置834は、TFT層に形成される画素内に光が透過する領域を設けることで、表示装置834の反対側を視認できる透明な表示装置834を提供することができる。 An electronic device 830 illustrated in FIG. 17E includes a housing 831, a display device 834, a lighting 833, and an optical module 832. The housing 831 includes an opening 835 and an opening 835a (not shown in the drawing). The electronic device 830 can be incorporated in an inner wall or an outer wall of a house or a building, a partition of a space (a door, a window, a wall, a room, a desk partition), or the like. Further, the display device 834 can provide a transparent display device 834 that can visually recognize the opposite side of the display device 834 by providing a region through which light passes in a pixel formed in the TFT layer.
 図17(E)では、利用者が桜の花びらが降り注ぐ表示画面を両方からタッチする場面である。表示装置834は、異なる表示面からタッチされた情報を検出することができる。なお、電子機器830は、デジタルサイネージにゲームを実行させることもできる。これにより、不特定多数のユーザが同時にゲームに参加し、楽しむことができる。 FIG. 17E shows a scene where the user touches the display screen on which the cherry blossom petals pour. The display device 834 can detect touched information from different display surfaces. Note that the electronic device 830 can cause a digital signage to execute a game. Thereby, an unspecified number of users can participate and enjoy the game at the same time.
 図18(A)(B)を用いて、本発明の一態様の表示装置を有する電子機器の車両への搭載例について説明する。 18A and 18B, an example in which an electronic device including the display device of one embodiment of the present invention is mounted on a vehicle will be described.
 図18(A)に、車両5000が複数のカメラ5005を備えた例を示す。車両5000は、カメラ5005a、カメラ5005b、カメラ5005c、カメラ5005d、カメラ5005d、5005e、及び5005fを有する。例えば、カメラ5005aは、前方の状況を撮像する機能を有し、カメラ5005bは、後方の状況を撮像する機能を有し、カメラ5005cは、右前方の状況を撮像する機能を有し、カメラ5005dは、左前方の状況を撮像する機能を有し、カメラ5005eは、右後方の状況を撮像する機能を有し、カメラ5005fは、左後方の状況を撮像する機能を有する。ただし、車両の周囲を撮像するカメラ5005の数は、上記構成に限定されない。例えば、車両の前方から後方を撮像するカメラ5005などを設けてもよい。 FIG. 18A shows an example in which a vehicle 5000 includes a plurality of cameras 5005. The vehicle 5000 includes a camera 5005a, a camera 5005b, a camera 5005c, a camera 5005d, cameras 5005d, 5005e, and 5005f. For example, the camera 5005a has a function of imaging the front situation, the camera 5005b has a function of imaging the rear situation, the camera 5005c has a function of imaging the right front situation, and the camera 5005d. Has a function of imaging the situation on the left front, the camera 5005e has a function of imaging the situation on the right rear, and the camera 5005f has a function of imaging the situation on the left rear. However, the number of cameras 5005 that capture the periphery of the vehicle is not limited to the above configuration. For example, you may provide the camera 5005 etc. which image the back from the front of a vehicle.
 次に、図18(B)に、車両5000の内部の構成例を示す。車両5000は、表示部5001、表示パネル5008a、5008b、及び表示パネル5009を有する。表示部5001、表示パネル5008a、5008b、及び表示パネル5009は、本発明の一態様の表示システムの表示部を用いることができる。なお、図18(B)には表示部5001が右ハンドルの車両に搭載された例を示すが、特に限定されず、左ハンドルの車両に搭載することもできる。この場合、図18(B)に示す構成の左右の配置が替わる。 Next, FIG. 18B shows an example of the internal configuration of the vehicle 5000. The vehicle 5000 includes a display portion 5001, display panels 5008a and 5008b, and a display panel 5009. As the display portion 5001, the display panels 5008a and 5008b, and the display panel 5009, the display portion of the display system of one embodiment of the present invention can be used. Note that FIG. 18B illustrates an example in which the display portion 5001 is mounted on a right-hand drive vehicle, but there is no particular limitation, and the display portion 5001 can also be mounted on a left-hand drive vehicle. In this case, the left and right arrangements of the configuration shown in FIG.
 図18(B)には、運転席と助手席の周辺に配置されるダッシュボード5002、ハンドル5003、フロントガラス5004などを示している。表示部5001は、ダッシュボード5002の所定の位置、具体的には運転者の回りに配置され、概略T字形状を有する。図18(B)には、複数の表示パネル5007(表示パネル5007a、5007b、5007c、5007d)を用いて形成される1つの表示部5001を、ダッシュボード5002に沿って設けた例を示しているが、表示部5001は複数箇所に分けて配置してもよい。 FIG. 18B shows a dashboard 5002, a handle 5003, a windshield 5004, and the like arranged around the driver's seat and the passenger seat. The display unit 5001 is disposed at a predetermined position on the dashboard 5002, specifically around the driver, and has a substantially T-shape. FIG. 18B illustrates an example in which one display portion 5001 formed using a plurality of display panels 5007 ( display panels 5007a, 5007b, 5007c, and 5007d) is provided along the dashboard 5002. However, the display unit 5001 may be divided into a plurality of locations.
 さらに、表示パネル5008a、5008bはピラー部分に設けられた表示パネルである。例えば、車体に設けられた撮像手段(例えば、図18(A)に示すカメラ5005など)からの映像5008cを、表示パネル5008a、5008bに映し出すことによって、ピラーで遮られた視界を補完することができる。また、表示パネル5009は、後方の撮像手段からの映像を映し出してもよい。もしくは、表示パネル5008a、5008bに法定速度や、交通情報などを表示することができる。 Furthermore, the display panels 5008a and 5008b are display panels provided in the pillar portion. For example, an image 5008c from an imaging unit (for example, the camera 5005 shown in FIG. 18A) provided on the vehicle body is displayed on the display panels 5008a and 5008b, thereby complementing the view blocked by the pillar. it can. Further, the display panel 5009 may display an image from the rear imaging means. Alternatively, legal speed, traffic information, and the like can be displayed on the display panels 5008a and 5008b.
 なお、複数の表示パネル5007は可撓性を有していてもよい。この場合、表示部5001を複雑な形状に加工することができ、表示部5001をダッシュボード5002などの曲面に沿って設ける構成や、ハンドルの接続部分、計器の表示部、送風口5006などに表示部5001の表示領域を設けない構成などを容易に実現することができる。 Note that the plurality of display panels 5007 may have flexibility. In this case, the display portion 5001 can be processed into a complicated shape, and the display portion 5001 is displayed along a curved surface such as the dashboard 5002 or displayed on a connection portion of a handle, a display portion of an instrument, an air outlet 5006, or the like. A configuration in which the display area of the portion 5001 is not provided can be easily realized.
 また、表示パネル5008a及び5008bは、可撓性を有していることが好ましい。ビラー部分は、局面を有しているため、運転席がピラー部分を見るときの映像ゆがみが補正されることが好ましい。映像ゆがみは、ニューラルネットワークを用いて補正されることが好ましい。 Further, the display panels 5008a and 5008b preferably have flexibility. Since the biller portion has an aspect, it is preferable that image distortion when the driver's seat sees the pillar portion is corrected. The video distortion is preferably corrected using a neural network.
 また、後側方の状況を撮影するカメラ5005bを車外に複数設けてもよい。図18(A)においてはサイドミラーの代わりにカメラ5005を複数設置する例を示しているが、サイドミラーとカメラの両方を設置してもよい。 Further, a plurality of cameras 5005b for photographing the rear side situation may be provided outside the vehicle. Although FIG. 18A shows an example in which a plurality of cameras 5005 are installed instead of the side mirrors, both side mirrors and cameras may be installed.
 カメラ5005としては、CCDカメラやCMOSカメラなどを用いることができる。また、これらのカメラに加えて、赤外線カメラを組み合わせて用いてもよい。赤外線カメラは、被写体の温度が高いほど出力レベルが高くなるため、人や動物等の生体を検知または抽出することができる。 As the camera 5005, a CCD camera, a CMOS camera, or the like can be used. In addition to these cameras, an infrared camera may be used in combination. Since the infrared camera has a higher output level as the temperature of the subject increases, it can detect or extract a living body such as a person or an animal.
 カメラ5005で撮像された画像は、表示パネル5007のいずれか一または複数に出力することができる。この表示部5001を用いて主に車両の運転を支援する。カメラ5005によって後側方の状況を幅広い画角で撮影し、その画像を表示パネル5007に表示することで、運転者の死角領域の視認が可能となり、事故の発生を防止することができる。 The image captured by the camera 5005 can be output to any one or a plurality of display panels 5007. The display unit 5001 is mainly used to assist driving of the vehicle. By photographing the rear side situation with a wide angle of view by the camera 5005 and displaying the image on the display panel 5007, the driver's blind spot area can be visually recognized, and the occurrence of an accident can be prevented.
 また、本発明の一態様の表示システムを用いることにより、表示パネル5007a、5007b、5007c、及び5007dのつなぎ目における映像の不連続性を補正することができる。これにより、つなぎ目が目立たない映像の表示が可能となり、運転時における表示部5001の視認性を向上させることができる。 Further, by using the display system of one embodiment of the present invention, video discontinuity at the joints of the display panels 5007a, 5007b, 5007c, and 5007d can be corrected. Accordingly, it is possible to display an image in which the joints are not conspicuous, and the visibility of the display unit 5001 during driving can be improved.
 また、車のルーフ上などに距離画像センサを設け、距離画像センサによって得られた画像を表示部5001に表示してもよい。距離画像センサとしては、イメージセンサやライダー(LIDAR:Light Detection and Ranging)などを用いることができる。イメージセンサによって得られた画像と、距離画像センサによって得られた画像とを表示部5001に表示することにより、より多くの情報を運転手に提供し、運転を支援することができる。 Further, a distance image sensor may be provided on the roof of a car, and an image obtained by the distance image sensor may be displayed on the display unit 5001. As the distance image sensor, an image sensor or a rider (LIDAR: Light Detection and Ranging) can be used. By displaying the image obtained by the image sensor and the image obtained by the distance image sensor on the display unit 5001, more information can be provided to the driver and driving can be supported.
 また、表示部5001は、地図情報、交通情報、テレビ映像、DVD映像などを表示する機能を有していてもよい。例えば、表示パネル5007a、5007b、5007c、及び5007dを1つの表示画面として、地図情報を大きく表示することができる。なお、表示パネル5007の数は、表示される映像に応じて増やすことができる。 In addition, the display unit 5001 may have a function of displaying map information, traffic information, TV video, DVD video, and the like. For example, the map information can be displayed in a large size using the display panels 5007a, 5007b, 5007c, and 5007d as one display screen. Note that the number of display panels 5007 can be increased in accordance with displayed images.
 また、表示パネル5007a、5007b、5007c、及び5007dに表示される映像は、運転手の好みによって自由に設定することができる。例えば、テレビ映像、DVD映像を左側の表示パネル5007dに表示し、地図情報を中央部の表示パネル5007bに表示し、計器類を右側の表示パネル5007cに表示し、オーディオ類を変速ギア近傍(運転席と助手席の間)の表示パネル5007aに表示することができる。また、複数の表示パネル5007を組み合わせることにより、表示部5001にフェールセーフの機能を付加することができる。例えば、ある表示パネル5007が何らかの原因で故障したとしても、表示領域を変更し、他の表示パネル5007を用いて表示を行うことができる。 Also, the images displayed on the display panels 5007a, 5007b, 5007c, and 5007d can be freely set according to the driver's preference. For example, a TV image and a DVD image are displayed on the left display panel 5007d, map information is displayed on the central display panel 5007b, instruments are displayed on the right display panel 5007c, and audio is displayed in the vicinity of the transmission gear. Display on the display panel 5007a (between the seat and the passenger seat). Further, by combining a plurality of display panels 5007, a fail-safe function can be added to the display portion 5001. For example, even if a certain display panel 5007 breaks down for some reason, the display area can be changed and display can be performed using another display panel 5007.
 また、フロントガラス5004は、表示パネル5004aを有する。表示パネル5004aは、可視光を透過する機能を有し、背景を視認することができる。なお、表示パネル5004aは、運転手に対して注意喚起を促す表示などを行う機能を有する。また、図18(B)では、フロントガラス5004に表示パネル5004aを設ける構成について例示したが、これに限定されない。例えば、フロントガラス5004を表示パネル5004aに置き換えてもよい。 Further, the windshield 5004 has a display panel 5004a. The display panel 5004a has a function of transmitting visible light and can visually recognize a background. Note that the display panel 5004a has a function of performing display or the like for alerting the driver. FIG. 18B illustrates the structure in which the display panel 5004a is provided on the windshield 5004; however, the present invention is not limited to this. For example, the windshield 5004 may be replaced with the display panel 5004a.
 以上示した通り、本発明の一態様の表示装置を適用して電子機器を得ることができる。表示装置の適用範囲は極めて広く、あらゆる分野の電子機器に適用できる。 As described above, an electronic device can be obtained by using the display device of one embodiment of the present invention. The application range of the display device is extremely wide and can be applied to electronic devices in all fields.
 本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。 This embodiment can be combined with any of the other embodiments as appropriate. In this specification, in the case where a plurality of structure examples are given in one embodiment, any of the structure examples can be combined as appropriate.
 G1:走査線、G2:走査線、S1:信号線、S2:信号線、10:表示装置、10a:表示パネル、10b:接着層、10c:遮光領域、10d:導光層、10e:対向基板、10f:遮光領域、10g:遮光領域、11:ゲートドライバ、12:ソースドライバ、13:ライトユニット、13b:開口部、13d:ライトユニット、14:タイミング生成回路、15:ディスプレイコントローラ、16:記憶装置、17:プロセッサ、18:通信モジュール、19:センサ、20:イメージセンサ、22:トランジスタ、24:表示素子、24a:液晶素子、30:電子機器、31:基板、32:基板、38:遮光層、38a:遮光層、38b:遮光層、41:画素電極、42:液晶層、43:共通電極、43a:共通電極、43b:導電層、44:絶縁層、45:絶縁層、46:導電層、46a:導電層、46b:導電層、73:接続部、74:接続部、101:トランジスタ、101a:トランジスタ、102:トランジスタ、102a:トランジスタ、104:容量素子、105:容量素子、106:液晶素子、133a:配向膜、133b:配向膜、135:オーバーコート、141:接着層、162:表示部、164:駆動回路部、172:FPC、211:ゲート絶縁層、212:絶縁層、213:絶縁層、214:絶縁層、215:絶縁層、217:絶縁層、218:絶縁層、221:ゲート、221a:ゲート、221b:ゲート、222a:導電層、222b:導電層、222c:導電層、222d:導電層、222e:導電層、223:ゲート、223a:ゲート、223b:ゲート、225:ゲート絶縁層、225a:ゲート絶縁層、225b:ゲート絶縁層、231:半導体層、231a:半導体層、231b:半導体層、233:ゲート、242:接続体 G1: scanning line, G2: scanning line, S1: signal line, S2: signal line, 10: display device, 10a: display panel, 10b: adhesive layer, 10c: light shielding region, 10d: light guide layer, 10e: counter substrate 10f: light shielding region, 10g: light shielding region, 11: gate driver, 12: source driver, 13: light unit, 13b: opening, 13d: light unit, 14: timing generation circuit, 15: display controller, 16: memory Device: 17: Processor, 18: Communication module, 19: Sensor, 20: Image sensor, 22: Transistor, 24: Display element, 24a: Liquid crystal element, 30: Electronic device, 31: Substrate, 32: Substrate, 38: Light shielding Layer, 38a: light shielding layer, 38b: light shielding layer, 41: pixel electrode, 42: liquid crystal layer, 43: common electrode, 43a: common electrode, 43b: Electrical layer 44: Insulating layer 45: Insulating layer 46: Conductive layer 46a: Conductive layer 46b: Conductive layer 73: Connection part 74: Connection part 101: Transistor 101a: Transistor 102: Transistor 102a: transistor, 104: capacitive element, 105: capacitive element, 106: liquid crystal element, 133a: alignment film, 133b: alignment film, 135: overcoat, 141: adhesive layer, 162: display unit, 164: drive circuit unit, 172: FPC, 211: gate insulating layer, 212: insulating layer, 213: insulating layer, 214: insulating layer, 215: insulating layer, 217: insulating layer, 218: insulating layer, 221: gate, 221a: gate, 221b: Gate, 222a: conductive layer, 222b: conductive layer, 222c: conductive layer, 222d: conductive layer, 222e: conductive layer, 223: gate, 223 : Gate, 223b: gate, 225: gate insulating layer, 225a: gate insulating layer, 225b: gate insulating layer, 231: semiconductor layer, 231a: semiconductor layer, 231b: semiconductor layer, 233: gate 242: connecting member

Claims (5)

  1.  第1の表示領域を有する表示装置の駆動方法であって、
     前記第1の表示領域は、複数の第2の領域と、複数の第3の領域を有し、
     前記第2の領域と、前記第3の領域は、交互に存在し、
     前記第2の領域は、表示データが更新され非表示の領域であり、
     前記第3の領域は、画像が表示される領域であり、
     前記第2の領域及び前記第3の領域は、一方向に移動し、
     複数の前記第2の領域は、前記表示データを更新するために同時に選択される期間を有し、
     複数の前記第3の領域は、同時に表示されるように駆動する、表示装置の駆動方法。
    A driving method of a display device having a first display area,
    The first display area has a plurality of second areas and a plurality of third areas,
    The second region and the third region are alternately present,
    The second area is a non-display area in which display data is updated,
    The third area is an area where an image is displayed;
    The second region and the third region move in one direction;
    The plurality of second regions have a period that is simultaneously selected to update the display data,
    A method for driving a display device, wherein the plurality of third regions are driven to be displayed simultaneously.
  2.  請求項1において、
     前記第1の表示領域は、複数の遮光領域を有し、
     前記遮光領域は、前記第2の領域と、前記第3の領域の間に設けられ、
     前記遮光領域は、前記第2の領域が前記第3の領域の光によって誤表示されることを抑制する表示装置の駆動方法。
    In claim 1,
    The first display area has a plurality of light shielding areas,
    The light shielding region is provided between the second region and the third region,
    The light-shielding region is a display device driving method that suppresses erroneous display of the second region by the light of the third region.
  3.  請求項1又は請求項2において、
     前記第3の領域の面積が、前記第2の領域と異なる面積である表示装置の駆動方法。
    In claim 1 or claim 2,
    A method for driving a display device, wherein an area of the third region is different from that of the second region.
  4.  請求項1乃至請求項3において、
     複数の前記第3の領域が、異なる色相の光を透過する表示装置の駆動方法。
    In claims 1 to 3,
    A driving method of a display device in which a plurality of the third regions transmit light of different hues.
  5.  請求項1において
     前記第1の表示領域は、複数の画素を有し、
     前記画素は、トランジスタを有し、
     前記トランジスタは、半導体層に金属酸化物を有する表示装置の駆動方法。
    In Claim 1, The said 1st display area has a plurality of pixels,
    The pixel has a transistor,
    The transistor is a method for driving a display device in which a semiconductor layer includes a metal oxide.
PCT/IB2019/050693 2018-02-09 2019-01-29 Driving method for display device WO2019155320A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980011123.6A CN111684515B (en) 2018-02-09 2019-01-29 Driving method of display device
KR1020207024006A KR20200111215A (en) 2018-02-09 2019-01-29 How to drive the display device
JP2019571123A JP7267212B2 (en) 2018-02-09 2019-01-29 liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018022154 2018-02-09
JP2018-022154 2018-02-09

Publications (1)

Publication Number Publication Date
WO2019155320A1 true WO2019155320A1 (en) 2019-08-15

Family

ID=67548991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/050693 WO2019155320A1 (en) 2018-02-09 2019-01-29 Driving method for display device

Country Status (4)

Country Link
JP (1) JP7267212B2 (en)
KR (1) KR20200111215A (en)
CN (1) CN111684515B (en)
WO (1) WO2019155320A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186311A (en) * 1996-12-24 1998-07-14 Sony Corp Sequential color display device
JPH11337904A (en) * 1998-05-11 1999-12-10 Internatl Business Mach Corp <Ibm> Liquid crystal display device
JP2003216109A (en) * 2002-01-28 2003-07-30 Sanyo Electric Co Ltd Display device and method for controlling display of the same device
JP2006220685A (en) * 2005-02-08 2006-08-24 21 Aomori Sangyo Sogo Shien Center Method and device for driving divisional drive field sequential color liquid crystal display using scan backlight
JP2010191177A (en) * 2009-02-18 2010-09-02 Hitachi Displays Ltd Three-dimensional display device
JP2012032792A (en) * 2010-07-02 2012-02-16 Semiconductor Energy Lab Co Ltd Driving method of liquid crystal display device
JP2012185328A (en) * 2011-03-04 2012-09-27 Sony Corp Pixel circuit, display panel, display device, and electronic appliance

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903248A (en) 1997-04-11 1999-05-11 Spatialight, Inc. Active matrix display having pixel driving circuits with integrated charge pumps
JPH11259020A (en) * 1998-03-13 1999-09-24 Omron Corp Image display device
JP2000275605A (en) 1999-03-25 2000-10-06 Toshiba Corp Liquid crystal display device
JP5064747B2 (en) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 Semiconductor device, electrophoretic display device, display module, electronic device, and method for manufacturing semiconductor device
EP1770676B1 (en) * 2005-09-30 2017-05-03 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
CN101667381B (en) * 2008-09-03 2014-01-29 群创光电股份有限公司 Pixel group, flat display panel and driving method for flat display device
JP5446217B2 (en) * 2008-11-07 2014-03-19 ソニー株式会社 Display devices and electronic devices
US9336739B2 (en) * 2010-07-02 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP5825895B2 (en) * 2010-08-06 2015-12-02 株式会社半導体エネルギー研究所 Liquid crystal display
US8643580B2 (en) 2010-08-31 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Method for driving liquid crystal display device
US9792844B2 (en) 2010-11-23 2017-10-17 Seminconductor Energy Laboratory Co., Ltd. Driving method of image display device in which the increase in luminance and the decrease in luminance compensate for each other
KR101974413B1 (en) 2010-11-30 2019-05-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Driving method of display device
KR20120110387A (en) 2011-03-29 2012-10-10 삼성전자주식회사 Pixel circuit and driving method of the same
KR20150139695A (en) * 2014-06-03 2015-12-14 삼성디스플레이 주식회사 Liquid crystal lens device and display device having the same
CN107347254B (en) * 2014-11-28 2020-10-23 株式会社半导体能源研究所 Image processing device, display system, and electronic apparatus
CN113470589B (en) * 2016-04-04 2022-12-30 株式会社半导体能源研究所 Display device, display module, and electronic apparatus
CN105954907B (en) * 2016-06-02 2019-05-28 武汉华星光电技术有限公司 The preparation method of liquid crystal display panel, liquid crystal display and liquid crystal display panel
US10403204B2 (en) * 2016-07-12 2019-09-03 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, electronic device, and method for driving display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186311A (en) * 1996-12-24 1998-07-14 Sony Corp Sequential color display device
JPH11337904A (en) * 1998-05-11 1999-12-10 Internatl Business Mach Corp <Ibm> Liquid crystal display device
JP2003216109A (en) * 2002-01-28 2003-07-30 Sanyo Electric Co Ltd Display device and method for controlling display of the same device
JP2006220685A (en) * 2005-02-08 2006-08-24 21 Aomori Sangyo Sogo Shien Center Method and device for driving divisional drive field sequential color liquid crystal display using scan backlight
JP2010191177A (en) * 2009-02-18 2010-09-02 Hitachi Displays Ltd Three-dimensional display device
JP2012032792A (en) * 2010-07-02 2012-02-16 Semiconductor Energy Lab Co Ltd Driving method of liquid crystal display device
JP2012185328A (en) * 2011-03-04 2012-09-27 Sony Corp Pixel circuit, display panel, display device, and electronic appliance

Also Published As

Publication number Publication date
JP7267212B2 (en) 2023-05-01
CN111684515B (en) 2023-01-24
JPWO2019155320A1 (en) 2021-03-04
KR20200111215A (en) 2020-09-28
CN111684515A (en) 2020-09-18

Similar Documents

Publication Publication Date Title
US11940703B2 (en) Display device, display module, and electronic device
WO2019162801A1 (en) Display device operation method
JP7389926B2 (en) display device
JP2023060345A (en) Semiconductor device
WO2019162808A1 (en) Display apparatus and operation method for same
JP2023111947A (en) Operation method for display device
WO2019155320A1 (en) Driving method for display device
JP7434167B2 (en) display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751829

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019571123

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207024006

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19751829

Country of ref document: EP

Kind code of ref document: A1