WO2019155157A1 - Sealed, thermally insulated tank comprising insulating inserts between panels - Google Patents

Sealed, thermally insulated tank comprising insulating inserts between panels Download PDF

Info

Publication number
WO2019155157A1
WO2019155157A1 PCT/FR2019/050258 FR2019050258W WO2019155157A1 WO 2019155157 A1 WO2019155157 A1 WO 2019155157A1 FR 2019050258 W FR2019050258 W FR 2019050258W WO 2019155157 A1 WO2019155157 A1 WO 2019155157A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating
glass wool
inter
vessel
panels
Prior art date
Application number
PCT/FR2019/050258
Other languages
French (fr)
Inventor
Bruno Deletre
Jean-Yves LE STANG
Charles GIMBERT
Jean-Damien CAPDEVILLE
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to RU2020125269A priority Critical patent/RU2771636C2/en
Priority to CN201980012539.XA priority patent/CN111788427B/en
Publication of WO2019155157A1 publication Critical patent/WO2019155157A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/04Vessels not under pressure with provision for thermal insulation by insulating layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/30Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures
    • B63B27/34Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures using pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/16Shells
    • B63B3/20Shells of double type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/022Land-based bulk storage containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • F17C2203/0333Polyurethane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0345Fibres
    • F17C2203/035Glass wool
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0607Coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0355Insulation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/238Filling of insulants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/033Dealing with losses due to heat transfer by enhancing insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground

Definitions

  • the invention relates to the field of sealed and thermally insulating tanks with membranes.
  • the invention relates to the field of sealed and thermally insulating tanks for the storage and / or transport of liquid at low temperature, such as tanks for the transport of liquefied petroleum gas (also called LPG) having, for example a temperature between -50 ° C and 0 ° C, or for the transport of Liquefied Natural Gas (LNG) at about -162 ° C at atmospheric pressure.
  • LPG liquefied petroleum gas
  • LNG Liquefied Natural Gas
  • document FR2724623 or document FR 2599468 describes a wall structure for producing the flat wall of a sealed and thermally insulating tank.
  • a tank wall comprises a multilayer structure comprising, from the outside of the tank towards the interior of the tank, a secondary heat-insulating barrier, a secondary waterproof membrane, a primary thermally insulating barrier and a primary waterproofing membrane to be in contact with the liquid contained in the tank.
  • Such tanks comprise insulating panels juxtaposed so as to form thermally insulating barriers.
  • insulating joints are inserted between two insulating panels.
  • the document JP04194498 discloses a sealed and thermally insulating tank for the storage and transport of cryogenic liquid comprising a thermally insulating barrier consisting of insulating panels juxtaposed in a regular pattern.
  • a flat insulating seal is arranged between two adjacent insulating panels to prevent gaseous convection phenomena between the two panels adjacent insulators.
  • Such a flat insulating seal consists of an insulating core surrounded by a waterproof plastic film bag.
  • Such a flat insulating gasket is inserted into the inter-panel space in a vacuum compressed state and the sealed bag is pierced after insertion to allow the flat insulating gasket to expand and occupy all the space between the two panels forming the gasket. inter-panel space.
  • insulating joints such as in documents FR2724623 or FR2599468 are difficult to accommodate in said inter-panel space.
  • these insulating joints do not ensure that such insulating joints optimally fill the entire inter-panel space.
  • such insulating joints do not reliably guarantee the continuity of the insulation in the thermally insulating barriers so that spaces conducive to convective phenomena may be present in the thermally insulating barriers.
  • a flat insulating joint as in JP04194498 allows a good insertion of the flat insulating seal in the inter-panel space and a good occupation of said inter-panel space.
  • a flat insulating joint can generate in use the presence of conduit favoring natural convection. Indeed, when the tank is put cold, the thermal contraction behavior of the flat insulating seal is determined by the plastic film bag.
  • a plastic film bag has a coefficient of thermal contraction greater than the thermal contraction coefficient of the insulating panels.
  • An idea underlying the invention is to provide a tank wall for the manufacture of a sealed and thermally insulating tank does not have these disadvantages.
  • An idea underlying the invention is to provide a sealed and thermally insulating tank wall in which an insulating cap fills the inter-panel space between two adjacent panels of a thermally-barrier reliably insulating and without generating a vacuum in said inter-panel space during use of the vessel.
  • the invention provides a sealed and thermally insulating tank wall having a thermally insulating barrier defining a planar support surface and a sealing membrane resting on said planar support surface of the thermally insulating barrier,
  • the thermally insulating barrier comprising a plurality of insulating panels juxtaposed in a regular pattern, side faces vis-à-vis two adjacent insulating panels jointly defining an inter-panel space separating said two adjacent insulating panels,
  • the tank wall further comprising an insulating plug arranged in the inter-panel space so as to fill said inter-panel space, said insulating cap having an insulating core at least partially covered by a kraft paper envelope,
  • said insulating core comprising laminated glass wool, said laminated glass wool having layers of fibers superimposed in a lamination direction, the insulating cap being arranged in the inter-panel space so that the laminating direction of the laminated glass wool is parallel to a direction of width of the inter-panel space, that is to say the direction of spacing between the two side faces vis-à-vis.
  • Such a tank wall has good insulation characteristics of the thermally insulating barrier.
  • such a tank wall has a thermally insulating barrier ensuring continuous insulation regardless of the filling state of the tank.
  • the envelope of kraft paper surrounding the insulating core of the insulating cap has a low coefficient of friction allowing the insertion of said insulating cap into the entire inter-panel space in a simple and reliable manner but is not as tear resistant only PVC.
  • This insertion is facilitated by the orientation of the laminated glass wool which allows a good compression of the insulating core for its insertion.
  • such an arrangement of the glass wool allows a good compression of the insulating core in a simple way. its insertion in the inter-panel space.
  • This arrangement of the laminated glass wool also allows the insulating core to expand quickly and easily after insertion of the insulating plug in the inter-panel space to better fill the inter-panel space.
  • this kraft envelope exhibits a contraction behavior close to the behavior of the insulating core so that the insulating cap does not deform irregularly, for example by waving, and matches the dimensions of the inter-panel space whatever the filling level of the tank.
  • such a wall may comprise one or more of the following characteristics.
  • the stratification direction of the laminated glass wool is perpendicular to at least one of the lateral faces vis-à-vis the two adjacent insulating panels delimiting the inter-panel space.
  • the lateral faces facing the two adjacent insulating panels delimiting the inter-panel space are parallel.
  • the fiber plies of the laminated glass wool are parallel to the faces of the adjacent insulating panels delimiting the inter-panel space.
  • the insulating core comprises at least one separator developing in a plane perpendicular to a thickness direction of the vessel wall, said separator separating the layered glass wool into a plurality of laminated glass wool sections. aligned in said thickness direction of the vessel.
  • the insulating core comprises a plurality of separators separating the layered glass wool into a plurality of laminated glass wool sections aligned in the thickness direction of the vessel wall.
  • said separators are spaced from 5 to 20 cm in the direction of thickness of the vessel wall.
  • one or more separators are made of kraft paper. According to one embodiment, the separator or separators are glued to the sections of glass wool that said separator (s) separate.
  • the separator or separators develop in the width direction of the inter-panel space over a distance less than the thickness of the insulating plug taken along said width direction of the inter-panel space.
  • the insulating cap has a rigidity in the direction of the thickness allowing its compression uniformly for insertion into the inter-panel space.
  • separators allow a pressure drop in the thickness direction of the vessel wall limiting the convection through the laminated glass wool in the vessel wall.
  • the insulating core comprises a laminated glass wool having a density of between 20 and 45 kg / m3.
  • the insulating core comprises a first laminated glass wool insulating layer and a second laminated glass wool insulating layer, the first insulating layer and the second insulating layer being superposed in the width direction of the space. inter-panels, the laminated glass wool of the first and second insulating layers having a laminating direction parallel to the width direction of the inter-panel space, the first insulating layer and the second insulating layer being separated by a separating web. glass fabric developing parallel to the faces of the two insulating panels.
  • the laminated glass wool of the first insulating layer has a laminating direction parallel to the width direction of the inter-panel space.
  • the laminated glass wool of the second insulating layer has a laminating direction parallel to the width direction of the inter-panel space. According to one embodiment, the laminated glass wool of the first insulating layer has a density greater than the density of the laminated glass wool of the second insulating layer.
  • the first insulating layer comprises a laminated glass wool with a density of between 33 and 45 kg / m 3.
  • the second insulating layer comprises a laminated glass wool having a density of between 20 and 28 kg / m3.
  • the first insulating layer comprises at least one separator, preferably of kraft paper, separating the layered glass wool from said first layer into a plurality of laminated glass wool sections aligned in the thickness direction of the tank wall.
  • an insulating layer, the first insulating layer can be dedicated to ensuring good rigidity to the insulating cap and an insulating layer, the second insulating layer, can be dedicated to allow controlled deformation of the insulating cap in its direction of thickness to facilitate insertion into the inter-panel space.
  • the envelope completely surrounds the insulating core.
  • the envelope comprises a plurality of envelope portions glued together and / or glued to the insulating core.
  • the kraft paper of the envelope has a grammage of between 60 and 150 g / m 2 and preferably between 70 and 100 g / m 2.
  • the casing has a seal having a leakage rate configured to allow vacuum compression of the insulating cap under the effect of a suction system, for example of the vacuum pump or vacuum generator type. Venturi system.
  • the envelope comprises front portions, each lateral portion covering a respective face of the insulating core. According to one embodiment, the envelope comprises portions of edges, each edge portion covering a respective edge of the insulating core.
  • the envelope comprises corner portions, each corner portion covering a corner of the insulating core.
  • the different adjacent envelope portions have one or more overlapping zones covering or being covered by a covering zone of an adjacent envelope portion.
  • the different adjacent envelope portions are glued together at their overlapping areas.
  • the difference in the coefficient of thermal contraction between the thermal contraction coefficient of the insulating core and the thermal contraction coefficient of the envelope is less than or equal to 15 ⁇ 10 6 / K.
  • the module of the envelope is greater than the module of the insulating core so that the envelope is capable of compressing the insulating core.
  • the thermal contraction coefficient of the insulating core is between 5.10 6 / K and 10.10 6 / K.
  • the thermal contraction coefficient of the envelope is between 5.10 6 / K and 20.10 6 / K.
  • the compression of the envelope when it contracts under the effect of cold does not compress the insulating core significantly.
  • this compression is not likely to deform the insulating core to the point that said insulating core takes a corrugated shape, such a corrugated shape that can generate convective vacuums.
  • the insulating panels of the thermally insulating barrier comprise blocks of polyurethane foam.
  • the invention also provides a method for manufacturing a sealed and thermally insulating tank wall, said method comprising the steps of:
  • thermally insulating wall barrier thermally insulating and thermally insulating, said thermally insulating barrier comprising a plurality of insulating panels juxtaposed in a regular pattern, the side faces vis-à-vis two adjacent insulating panels delimiting an inter-panel space separating said two adjacent insulating panels,
  • insulating plug having an insulating core, said insulating plug having a kraft paper envelope completely covering the insulating core,
  • the insulating cap is simple and quick to insert into the inter-panel space.
  • an insulating plug having a kraft paper envelope completely surrounding the insulating core has a sufficient seal to allow compression by depression while providing an outer surface for easy insertion into the inter-panel space.
  • the maintenance of the depression in the insulating cap during its insertion in the inter-panel space makes it possible to keep the insulating plug in a compressed form, the insulating plug thus retaining a reduced thickness because of its compression which facilitates its insertion into the inter-panel space.
  • the simple withdrawal of the suction nozzle of the suction system allows the communication of the internal space of the kraft paper envelope with the external environment, thus allowing the expansion of the insulating core without require additional maneuvering when the insulation plug is positioned in the inter-panel space.
  • such a vessel wall manufacturing method may include one or more of the following features.
  • the thickness reduction of the insulating plug is such that the insulating plug has a thickness less than the width of the inter-panel space.
  • the suction tip of the suction system is configured to perforate the kraft paper envelope of the insulating cap, the step of inserting the suction tip into the insulating cap comprising a step perforating the kraft paper envelope with said suction nozzle of the suction system.
  • the step of inserting the suction tip into the insulating cap is simple since it simply requires piercing the kraft paper envelope with said suction tip.
  • the suction nozzle comprises a flange, the step of inserting the suction nozzle of the suction system into the insulating cap comprising the step of bringing the flange in support against the Kraft paper envelope.
  • the insulating core of the insulation plug comprises a laminated glass wool, said laminated glass wool comprising a plurality of layers of fibers superimposed in a lamination direction, and wherein the suction tip is inserted into the insulating cap at a side face of the insulating cap, said side face being parallel to the layering direction of the laminated glass.
  • the laminated glass wool is arranged in the parallelepiped insulating plug so that the fiber sheets are parallel to the long sides of said parallelepiped insulating plug.
  • the insertion of the insulating plug into the inter-panel space is made so that the lamination direction is parallel to a support surface formed by the insulating panels of the thermally insulating barrier.
  • the insertion of the insulating plug in the inter-panel space is made so that the stratification direction of the laminated glass wool is perpendicular to the lateral faces of the insulating panels delimiting the inter-panel space.
  • the insulation plug is inserted into the inter-panel space so that the fiber webs of the laminated glass wool are parallel to said side faces of the insulating panels.
  • the fiber layers of the glass wool laminated with the aforementioned stratification direction do not generate a significant loss of pressure during the suction vacuum stage via the suction system, thus allowing rapid compression. and uniform insulation plug.
  • this insertion of the end of the tip of the suction system at a side face of the casing allows compression of the insulating plug without requiring a too high pumping rate of the suction system, limiting thus the risks of degradation of the envelope related to excessive suction and detrimental to the compression of the insulation plug.
  • the insulating core comprises separators arranged parallel to the lamination direction, the insulating cap being inserted into the inter-panel space so as to arrange said separators parallel to the support surface formed by the thermally insulating barrier.
  • the insulating plug is inserted into the inter-panel space with a face traversed by the suction nozzle of the suction system turned towards the inside of the tank.
  • the insertion step of the insulating plug in the inter-panel space is not disturbed by the presence of the tip passing through one face of the insulating plug.
  • the kraft paper envelope has a leakage rate lower than the pumping rate of the suction system.
  • the depression allows quickly and simply to obtain a compression of the insulating plug for insertion into the inter-panel space.
  • the suction system has a pumping rate between 8m3 / h and 30 m3 / h, preferably 15m3 / h.
  • the insulating plug is guided in the inter-panel space by means of a rigid guide in the form of plates.
  • Such a rigid guide allows easy insertion of the insulating plug in the inter-panel space.
  • the method further comprises the step of cutting at least one of the lateral faces of the kraft paper envelope after insertion of the insulating plug into the inter-panel space.
  • a cut is for example made in the form of a stab and allows a better flow of gas between adjacent insulating plugs in the thermally insulating barrier.
  • the suction system is a vacuum pump. According to one embodiment, the suction system is a Venturi vacuum generator.
  • Such a tank wall can be part of an onshore storage facility, for example to store LNG or be installed in a floating structure, coastal or deepwater, including a LNG carrier or any vessel using a fuel liquefied gas as fuel , a floating storage unit and regasification (FSRU), a floating production and remote storage unit (FPSO) and others.
  • FSRU floating storage unit and regasification
  • FPSO floating production and remote storage unit
  • the invention provides a vessel for the transport of a cold liquid product comprises a double shell and a tank having the aforementioned waterproof wall disposed in the double shell.
  • the invention also provides a method of loading or unloading such a vessel, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage facility to or from the vessel vessel.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the abovementioned vessel, insulated pipes arranged to connect the vessel installed in the hull of the vessel to a floating storage facility. or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
  • FIG. 1 is an exploded schematic perspective view of an insulating plug intended to be inserted between two insulating panels of a thermally insulating barrier of sealed and thermally insulating tank;
  • FIG. 2 is a schematic perspective view of the insulating plug of Figure 1 in the assembled state
  • FIG. 3 is a schematic sectional view of the insulating plug of FIG. 1;
  • FIG. 4 is a schematic perspective view of a laminated glass wool manufacturing facility
  • FIG. 5 is a schematic perspective view of a vacuum pump nozzle when inserted into an insulating plug of FIG. 1;
  • FIG. 6 is a schematic perspective view of the insulating plug of FIG. 2 associated with a vacuum pump in which the end of the nozzle of the vacuum pump is inserted into said insulating plug;
  • FIG. 7 is a schematic perspective view of the insulating plug of FIG. 5 when it is inserted into the inter-panel space separating two adjacent panels of a thermally insulating, thermally insulating tank barrier;
  • FIG. 8 is an exploded schematic perspective view of an insulating plug according to a first embodiment
  • FIG. 9 is a sectional view of an insulating plug according to a second embodiment
  • FIG. 10 is a schematic cutaway representation of a vessel of LNG tanker and a loading / unloading terminal of this vessel.
  • FIG. 11 is a schematic representation of an insulating plug being inserted into an inter-panel space by means of a rigid guide
  • Figure 12 is a partial detail view of Figure 1 1.
  • a sealed and thermally insulating tank for the storage and transport of a cryogenic fluid for example Liquefied Natural Gas (LNG) comprises a plurality of tank walls each having a multilayer structure.
  • LNG Liquefied Natural Gas
  • Such walls of sealed and thermally insulating tank have, from the outside to the inside of the tank, a thermally insulating barrier secondary resting against a supporting structure, a secondary sealing membrane resting against the secondary thermally insulating barrier, a primary thermally insulating barrier resting against the secondary sealing membrane and a primary sealing membrane intended to be in contact with the liquefied gas contained in the tank.
  • the supporting structure may in particular be a self-supporting metal sheet or, more generally, any type of rigid partition having suitable mechanical properties.
  • the supporting structure may in particular be formed by the hull or the double hull of a ship.
  • the carrier structure has a plurality of walls defining the general shape of the vessel, usually a polyhedral shape.
  • thermally insulating barriers can be made in many ways, in many materials.
  • Such thermally insulating barriers each comprise a plurality of parallelepiped-shaped insulating panels juxtaposed in a regular pattern.
  • the insulating panels of these thermally insulating barriers together form planar support surfaces for the waterproofing membranes.
  • Such insulating panels are for example made of polyurethane foam blocks.
  • Such insulating panels of polyurethane foam blocks may further comprise a cover plate and / or a bottom plate, for example plywood.
  • the juxtaposition of the insulating panels to form a thermally insulating barrier generates the presence of inter-panel spaces between two adjacent insulating panels 3.
  • an inter-panel space 2 separates the lateral faces vis-à-vis two adjacent insulating panels 3 (see Figure 7).
  • an insulating plug 1 is inserted into the inter-panel space 2 separating the two lateral faces vis-à-vis the two adjacent insulating panels 3.
  • Figures 1 to 3 illustrate such an insulating plug 1.
  • the insulating plug 1 comprises an insulating core 4 covered by an envelope 5.
  • This insulating plug 1 has a parallelepipedal shape corresponding to the parallelepipedal shape of the inter-panel space 2 and defining the shape of the insulating plug 1.
  • this insulating plug 1 has two large faces 6 parallel. These two large faces 6 define a direction of length 7 of the insulating plug 1 and a direction of width 8 of the insulating plug 1. Lateral faces 9 developing in a direction of thickness 10 of the insulating plug 1 connect the sides of the large faces 6.
  • the insulating core 4 is made of glass wool 1 1.
  • the glass wool 1 1 used is a layered glass wool, that is to say that the production process results in a mat of glass wool 1 1 constituted multiple intertwined parallel plies, visible to the naked eye, which are superimposed in a lamination direction 12. In other words, the fibers are predominantly oriented in planes perpendicular to the lamination direction 12.
  • Such laminated glass wool 11 may be obtained for example by a horizontal conveyor belt manufacturing method 13, illustrated schematically in FIG. 4.
  • a horizontal conveyor belt manufacturing method 13 illustrated schematically in FIG. 4.
  • sand and crushed glass are melted in a furnace 14. whose temperature is for example from 1300 to 1500 ° C.
  • the melted crushed sand and glass is then converted to fibers by rapid spinning.
  • a binder is added to these fibers and the assembly thus obtained is received on the horizontal conveyor belt 13 for passage through a polymerization oven 15 intended for the polymerization of the binder.
  • the fibers are essentially parallel to the conveyor belt 13.
  • the lamination direction corresponds to the vertical direction in the production tool because the stratification results from the effect of gravity.
  • Other production methods are conceivable for producing a laminated glass wool.
  • the glass wool January 1 core 4 has a density of 22 or 35 or 40 kg / m3.
  • the core 4 comprises sections 16 of glass wool 1 1 separated by separators 17.
  • Such separators 17 develop perpendicular to the width direction 8 of the insulating plug 1. These separators 17 develop on the entire length 7 and in the entire thickness 10 of the insulating plug 1.
  • the separators 17 are advantageously bonded to the sections 16 of glass wool 1 1 separated by said separators 17.
  • FIG. 1 thus illustrates a core 4 comprising four sections 16 of glass wool 11 separated in the direction of width 8 of the insulating plug 1 by three separators 17.
  • FIG. 1 constitutes a preferred solution with respect to the number of separators, i.e., the minimum number of separator for not having convection when the temperature gradient is greater than 100 ° C.
  • FIG. 3 illustrates an alternative embodiment in which the core 4 comprises three sections 16 separated in the direction of width 8 of the insulating plug 1 by two separators 17.
  • the glass wool 1 1 is arranged in the core 4 so as to have a lamination direction 12 perpendicular to the width 8 of the insulating plug 1.
  • the fiber layers constituting the glass wool 1 1 are arranged substantially from parallel to the width direction 8 of the insulating plug 1.
  • the glass wool 11 is arranged in the core 4 with a lamination direction 12 parallel to the thickness direction 10 of the insulating cap 1, that is to say that the layers of fibers of the wool of 1 1 are substantially parallel to the large faces 6 of the insulating plug 1.
  • the fiber layers constituting the glass wool 1 1 are arranged substantially parallel to the direction of width 8 and the direction of length 7 of the insulating cap 1.
  • the envelope 5 comprises a plurality of envelope portions. More particularly, the envelope 5 comprises planar envelope portions 18, lateral envelope portions 19 and corner envelope portions 20. These envelope portions 18, 19, 20 are fixed, for example by gluing. , on the kernel 4.
  • the flat envelope portions 18 cover the core 4 and form the large faces 6 of the insulating plug 1. These flat envelope portions 18 are of rectangular shape and of substantially identical dimensions to the dimensions of the core 4 on its large faces.
  • the lateral envelope portions 19 comprise a central portion of rectangular shape covering a corresponding lateral face of the core 4. This central portion forms a corresponding lateral face 9 of the insulating plug 1.
  • the lateral envelope portions 19 also comprise, on the other hand, other of the central portion, a return 21. These returns 21 develop from longitudinal sides of the central portion. These returns 21 develop parallel to a respective flat envelope portion 18 so as to cover a border of said flat envelope portion 18. These returns 21 are glued to said edges of flat envelope portions 18.
  • the lateral envelope portions 19 form a lateral face 9 of the insulating plug 1 and also cover the core 4 at edges 22 connecting said lateral face 9 and the large faces 6.
  • the corner jacket portions 20 cover the lateral envelope portions 19 forming two lateral faces 9 of the adjacent insulating plug 1. In other words, these corner envelope portions 20 cover the edges of the core 4 at the junction between two lateral faces 9 of the insulating plug 1.
  • the portions of FIG. Corner wrap 20 has corner returns 23 extending parallel to and overlying the ends of the returns 21 of the corresponding side wrap portions 19. The corner wrap portions 20 are glued to the side wrap portions 19 that they cover.
  • the various envelope portions 18, 19, 20 are bonded together and to the glass wool 11 to form a continuous envelope 5 integrally surrounding the core 4.
  • the portions 18 and 19 placed on the bottom and the top can be made in one piece of kraft.
  • the envelope 5 is made of kraft paper.
  • a kraft paper offers a low coefficient of friction thus allowing the sliding of the insulating cap 1 in the inter-panel space 2 during its insertion in said inter-panel space 2.
  • a kraft paper has a contraction coefficient thermal of the order of 5 to 20 * 10 6 / K.
  • a thermal contraction coefficient close to that of the insulating core 4 placed in the inter-panel space.
  • the insulating plug 1 has a uniform cold behavior. Indeed, the insulating core 4 is not likely to deform under the effect of a compression in particular related to the thermal contraction of the envelope 5.
  • the insulating core 4 is not likely to deform by taking an undulating shape under the effect of this compression, such a corrugated shape generating in the inter-panel space 2 voids favoring convection and therefore detrimental to the insulating properties of the thermally insulating barrier.
  • the kraft paper of the envelope 5 has a grammage greater than 60 g / m 2 in order to avoid the risk of tearing of the envelope 5 during insertion of the insulating plug 1 into the inter-panel space.
  • this kraft paper has a grammage of less than 150 g / m 2 so that the envelope 5 maintains a sufficient flexibility to allow the deformation of the insulating plug 1 by compression and preferably between 70 and 100 g / m 2 .
  • an insulating plug 1 having the structure as described above with reference to FIGS. 1 to 3 is provided.
  • This insulating plug 1 has a shape complementary to the inter-panel space 2, typically a parallelepipedal shape as described above.
  • This insertion method uses a suction system.
  • a suction system is in the following description, for example, a vacuum pump 24 as illustrated in Figures 6 and 7.
  • a suction system is a vacuum generator with Venturi system.
  • Such a vacuum pump 24 is connected to a suction nozzle 25 via a pump pipe 26.
  • This suction nozzle 25 has a flange 27 of circular flat shape.
  • the suction tip 25 has a frustoconical shape so as to have an opposite end to the pumping pipe 26 adapted to perforate the envelope 5 of kraft paper.
  • the suction nozzle 25, and more particularly its perforation end is inserted into the insulating plug 1 by perforating the envelope 5 of kraft paper.
  • This perforation of the envelope 5 generates a suction orifice 28 in the insulating plug 1.
  • the suction tip 25 is inserted into the insulating plug 1 through the casing 5 at a side face 9 intended to be turned towards the inside of the sealed and thermally insulating tank.
  • the suction tip 25 is inserted into the insulating plug 1 on a side face 9 perpendicular to the lamination direction 12 of the glass wool January 1.
  • suction nozzle 25 is inserted into the insulating plug 1 until the flange 27 is brought into contact with the envelope 5 of kraft paper.
  • the vacuum pump 24 is actuated in order to generate a depression in the insulating plug 1.
  • the envelope 5 of kraft paper has a sufficient seal, despite the porosity of the kraft paper and the junction between the different envelope portions 18, 19, 20 by gluing, so that the pumping rate of the vacuum pump 24 is enough to create a depression in the envelope 5 kraft paper.
  • the support of the collar 27 against the casing 5 makes it possible to limit the leakage rate of the casing 5 at the orifice 28 traversed by the suction end-piece 25.
  • the casing 5 of kraft paper has a leakage rate lower than the pumping rate of the vacuum pump 24 so that the suction produced by the vacuum pump 24 generates a vacuum in the insulating plug 1.
  • the suction generated by the vacuum pump 24 has a suction flow rate of between 8 and 30 m 3 / h.
  • the pumping rate is 15m3 / h. such a pumping rate of the vacuum pump 24 makes it possible to generate a depression in the insulating plug 1 without the risk of degrading the envelope 5 made of kraft paper by an excessive suction flow rate.
  • the vacuum pump 24 comprises a filter for filtering any fibers and dusts of glass wool 11 that can be sucked by the vacuum pump 24.
  • the suction produced by the vacuum pump is advantageously facilitated by the insertion of the suction nozzle 25 on a side face 9 of the insulating plug parallel to the lamination direction 12 of the glass wool 11. indeed, the insertion of the suction nozzle 25 on such a side face 9 of the insulating plug allows suction without loss of load due to the lamination of the different fiber layers constituting the glass wool 1 1.
  • an arrangement of the glass wool 11 with a lamination direction 12 parallel to the thickness direction 10 of the insulating plug 1 allows vacuum compression of the insulating plug 1 in said direction of facilitated thickness.
  • separators 17 in the core 4 makes it possible to stiffen the insulating plug 1 in order to standardize the compression of said insulating plug 1.
  • the depression in the insulating cap 1 produces a compression of the glass wool 1 and therefore of the insulating cap 1.
  • This compression of the glass wool 1 allows a reduction in the thickness of the insulating cap 1.
  • the insulating plug 1 is sized to have a free thickness, that is to say uncompressed, a thickness greater than or equal to the width of the inter-panel space 2 and the compressed state a thickness less than said width of the inter-panel space 2.
  • the insulating plug 1 is sized to have an initial thickness, that is to say say in the free state, 35mm and, in a state of compression, a thickness of 25mm.
  • the insulating plug 1 is then inserted into the inter-panel space 2 between two adjacent insulating panels 3 of the thermally insulating barrier. As illustrated in FIG. 7 by the arrows 29, the insulating plug 1 is inserted into the inter-panel space 2 with its large faces 6 parallel to the lateral faces of the adjacent insulating panels 3 delimiting the inter-panel space 2. During this insertion, the suction nozzle 25 is held in the insulating plug 1 and the vacuum pump 24 continuously generates a vacuum in said insulating plug 1 to keep the insulating plug 1 in its compressed state. Maintaining the insulating plug 1 in its compressed state makes it easier to insert it into the space inter-panels 2 since the insulating plug 1 then has a thickness less than the width of the inter-panel space 2.
  • the insulating plug 1 is inserted into the inter-panel space 2 so that the lateral face 9 traversed by the suction nozzle 25 is turned towards the inside of the tank, thus facilitating the manipulation of the assembly. formed by the insulating plug 1 and the suction nozzle 25.
  • the insulating plug 1 is advantageously inserted into the inter-panel space by having a lamination direction 12 parallel to the width of the inter-panel space 2.
  • the separators 17 are advantageously arranged in the insulating plug 1 so as to be parallel to the support surface 30 formed by the insulating panels 3. In FIG. 7, such insulating panels 3 comprise a foam block of polyurethane 31 covered by a plywood plate 32 forming the support surface 30. Such an arrangement of the separators 17 limits the convection through the glass wool 1 1 in the vessel wall.
  • the suction nozzle 25 is removed from the insulating plug 1. Therefore, the interior of the casing 5 is in communication with the external environment through the orifice 28. This communication allows the glass wool 1 1, because the depression is no longer maintained in the insulating cap 1, to expand in the absence of compression stress. The expansion of the glass wool 1 1 allows an increase in the thickness of the insulating plug 1 so that the insulating plug 1 completely fills the inter-panel space 2, thus ensuring a good continuity of the insulation of the heat barrier insulating.
  • a rigid guiding system may be used as a guiding tool during the insertion of the insulating plug 1 into the inter-panel space 2.
  • Such a guide system comprises a first rigid plate 33 and a second rigid plate 37.
  • These two rigid plates 33, 37 each comprise an "L" section formed by a large rectangular face 38 and a return 39 developing perpendicular to the large face 38.
  • the large face 38 has dimensions similar to the dimensions of the large faces 6 of the insulating plug 1.
  • An inner face of the return 39 of the first plate 33 comprises a handle 40. This handle is substantially centered in the longitudinal direction of said return 39.
  • the return 39 of the second plate 37 has a notch for accommodating the handle 40 when the two plates 33, 37 are assembled as in Figure 1 1.
  • An inner face of the return 39 of the second plate 37 has two handles 41. These handles 41 are arranged on either side of the notch for accommodating the handle 40 of the first plate 33.
  • the insulating plug 1 In order to insert the insulating plug 1 in the inter-panel space 2 by means of the rigid plates 33, 37, the insulating plug 1 is inserted between the two rigid plates 33, 37. More particularly, the large faces 6 of the insulating plug 1 are interposed and compressed between the large faces 38 of rigid plates 33, 37.
  • the returns 39 of the rigid plates are superimposed in the thickness direction of the tank wall as shown in Figure 12. This superposition is rendered possible by the housing of the handle 40 in the notch provided for this purpose of the return 39 of the second rigid plate 37.
  • the rigid plates 33, 37, between which the insulating plug 1 is maintained in its compressed state, can thus be inserted in the interpanneaux space 2 with the insulating plug 1.
  • the rigid plates can be removed by means of the handles 40, 41 thus releasing the insulating plug 1 from its compressed state and allowing its expansion to occupy the inter-panel space 2.
  • FIG. 8 shows a first alternative embodiment of the insulating plug 1.
  • the elements that are identical or that fulfill the same function as those described above with reference to FIGS. 1 to 3 bear the same reference.
  • This first variant is distinguished from the insulating plug 1 illustrated in FIGS. 1 to 3 in that the insulating core 4 comprises two insulating layers superposed in the thickness direction of the insulating plug 1.
  • a first insulating layer 34 has a structure similar to the core structure described above with reference to Figures 1 to 3, that is to say a structure having sections 16 laminated glass wool 1 1 separated by separators 17 in craft paper. Said sections 16 of glass wool 1 1 laminated have a direction of lamination of glass wool 1 1 parallel to the support surface 30 formed by the insulating panels 3, preferably parallel to the width of the inter-panel space 2 that is, parallel to the thickness direction of the insulating plug 1.
  • a second insulating layer 35 comprises a single layer of glass wool 1 1 laminated.
  • the stratification direction of the laminated glass wool forming this second layer 35 is parallel to the support surface 30 formed by the insulating panels 3 and, preferably, parallel to the thickness direction of the insulating plug 1.
  • the first insulating layer 34 and the second insulating layer 35 are separated by a separation layer 36.
  • This separation layer 36 is for example made of glass fabric.
  • the first insulating layer 34 has a laminated glass wool 1 1 of density greater than the density of the glass wool 1 1 laminated the second insulating layer 35.
  • the glass wool 1 1 laminated the first insulating layer 34 has a density of 35 to 40 kg / m3 and the laminated glass wool 1 1 of the second insulating layer 35 has a density of 22kg / m3.
  • FIG. 9 represents a second alternative embodiment of the insulating plug 1.
  • the elements that are identical or fulfill the same function as those described above with respect to FIGS. 1 to 3 bear the same reference.
  • This second variant differs from the first variant illustrated in FIG. 8 in that the envelope 5 made of kraft paper does not entirely cover the insulating core 4. Indeed, in this FIG. 9, the second insulating layer 35 is not covered at a lateral face 9 of the insulating plug 1. In other words, one of the lateral envelope portions 19 covers only the first layer insulating 34 and has only one return 21, said return 21 being stuck on the flat envelope portion 18 covering the first insulating layer 34.
  • An insulating plug 1 according to the variants illustrated in FIGS. 8 and 9 has a good capacity of compression and expansion thanks to the second insulating layer 35 but retains a rigidity allowing its uniform deformation and limiting the convection through the glass wool 11 laminated with its first insulating layer 34.
  • Such an insulating plug 1 can easily be deformed by compression to facilitate insertion into the inter-panel space 2 while fully filling said inter-panel space 2 when compression n ' is no longer maintained and avoiding convection in the thermally insulating barrier.
  • This compression can be done with the use of a suction system such as a vacuum pump 24 in the case of an insulating plug 1 such as according to Figure 8 in which the casing 5 completely covers the insulating core 4, thus providing a seal sufficient to compress under the effect of a depression.
  • This compression can instead be done without suction system in the case of an insulating plug as in Figure 9 wherein the casing 5 does not completely cover the insulating core 4.
  • the technique described above for producing a sealed and thermally insulating tank can be used in different types of tanks, for example to constitute the primary waterproofing membrane of an LNG tank in a land installation or in a floating structure such as a LNG carrier or other.
  • a cutaway view of a LNG tank 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary sealed barrier intended to be in contact with the LNG contained in the tank, a secondary sealed barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double hull 72.
  • loading / unloading lines 73 arranged on the upper deck of the ship can be connected, by means of connectors, at a marine or port terminal for transferring a cargo of LNG to or from the tank 71.
  • FIG. 10 represents an example of a marine terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
  • the loading and unloading station 75 is a fixed off-shore installation comprising an arm mobile 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 that can connect to the loading / unloading pipes 73.
  • the movable arm 74 can be adapted to all gauges of LNG carriers .
  • a connection pipe (not shown) extends inside the tower 78.
  • the loading and unloading station 75 enables the loading and unloading of the LNG tank 70 from or to the shore facility 77.
  • the underwater line 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a large distance, for example 5 km, which makes it possible to keep the tanker vessel 70 at great distance from the coast during the loading and unloading operations.
  • pumps on board the ship 70 and / or pumps equipping the shore installation 77 and / or pumps equipping the loading and unloading station 75 are used.

Abstract

The invention relates to a sealed, thermally insulating tank wall comprising a thermally insulating barrier defining a support surface for a sealing membrane, the thermally insulating barrier having two adjacent insulating panels which jointly define a space between the panels. The tank wall further comprises an insulating insert (1) which is arranged in the space between the panels in such a way as to fill said space, the insulating insert (1) comprising an insulating core (4) which is at least partially covered by a kraft paper cover (5) and which comprises layered glass wool (11) that has sheets of fibers stacked on top of each other in a stacking direction (12), the insulating insert (1) being arranged in the space between the panels in such a way that the stacking direction (12) of the layered glass wool is parallel to a width direction of the space between the panels.

Description

Cuve étanche et thermiquement isolante comportant des bouchons isolants inter-panneaux  Waterproof and thermally insulating tank with inter-panel insulating plugs
Domaine technique Technical area
L’invention se rapporte au domaine des cuves étanches et thermiquement isolantes, à membranes. En particulier, l’invention se rapporte au domaine des cuves étanches et thermiquement isolantes pour le stockage et/ou le transport de liquide à basse température, telles que des cuves pour le transport de Gaz de Pétrole Liquéfié (aussi appelé GPL) présentant par exemple une température comprise entre -50°C et 0°C, ou pour le transport de Gaz Naturel Liquéfié (GNL) à environ -162°C à pression atmosphérique. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant. Dans le cas d’un ouvrage flottant, la cuve peut être destinée au transport de gaz liquéfié ou à recevoir du gaz liquéfié servant de carburant pour la propulsion de l’ouvrage flottant.  The invention relates to the field of sealed and thermally insulating tanks with membranes. In particular, the invention relates to the field of sealed and thermally insulating tanks for the storage and / or transport of liquid at low temperature, such as tanks for the transport of liquefied petroleum gas (also called LPG) having, for example a temperature between -50 ° C and 0 ° C, or for the transport of Liquefied Natural Gas (LNG) at about -162 ° C at atmospheric pressure. These tanks can be installed on the ground or on a floating structure. In the case of a floating structure, the tank may be intended for the transport of liquefied gas or to receive liquefied gas used as fuel for the propulsion of the floating structure.
Arrière-plan technologique  Technological background
On a décrit, par exemple dans le document FR2724623 ou le document FR 2599468, une structure de paroi pour réaliser la paroi plane d’une cuve étanche et thermiquement isolante. Une telle paroi de cuve comporte une structure multicouche comportant, de l’extérieure de la cuve vers l’intérieur de la cuve, une barrière thermiquement isolante secondaire, une membrane étanche secondaire, une barrière thermiquement isolante primaire et une membrane d’étanchéité primaire destinée à être au contact du liquide contenu dans la cuve. De telles cuves comportent des panneaux isolants juxtaposés de manière à former les barrières thermiquement isolantes. En outre, afin d’assurer une continuité des caractéristiques isolantes desdites barrières thermiquement isolantes, des joints isolants sont insérés entre deux panneaux isolants.  For example, document FR2724623 or document FR 2599468 describes a wall structure for producing the flat wall of a sealed and thermally insulating tank. Such a tank wall comprises a multilayer structure comprising, from the outside of the tank towards the interior of the tank, a secondary heat-insulating barrier, a secondary waterproof membrane, a primary thermally insulating barrier and a primary waterproofing membrane to be in contact with the liquid contained in the tank. Such tanks comprise insulating panels juxtaposed so as to form thermally insulating barriers. In addition, to ensure continuity of the insulating characteristics of said thermally insulating barriers, insulating joints are inserted between two insulating panels.
Le document JP04194498 décrit une cuve étanche et thermiquement isolante pour le stockage et le transport de liquide cryogénique comportant une barrière thermiquement isolante constituée de panneaux isolants juxtaposés selon un motif régulier. Un joint isolant plat est agencé entre deux panneaux isolants adjacents afin d’empêcher les phénomènes de convection gazeuse entre les deux panneaux isolants adjacents. Un tel joint isolant plat est constitué d’un noyau isolant entouré d’un sac étanche en film plastique. Un tel joint isolant plat est inséré dans l’espace inter-panneaux dans un état comprimé sous vide et le sac étanche est percé après insertion afin de laisser le joint isolant plat s’expanser et occuper tout l’espace entre les deux panneaux formant l’espace inter-panneaux. The document JP04194498 discloses a sealed and thermally insulating tank for the storage and transport of cryogenic liquid comprising a thermally insulating barrier consisting of insulating panels juxtaposed in a regular pattern. A flat insulating seal is arranged between two adjacent insulating panels to prevent gaseous convection phenomena between the two panels adjacent insulators. Such a flat insulating seal consists of an insulating core surrounded by a waterproof plastic film bag. Such a flat insulating gasket is inserted into the inter-panel space in a vacuum compressed state and the sealed bag is pierced after insertion to allow the flat insulating gasket to expand and occupy all the space between the two panels forming the gasket. inter-panel space.
Résumé  summary
La demanderesse a constaté que des joints isolants tels que selon les documents FR2724623 ou FR2599468 sont difficiles à loger dans ledit espace inter- panneaux. En outre, ces joints isolants ne permettent pas de garantir que de tels joints isolants comblent de façon optimale l’ensemble de l’espace inter-panneaux. Ainsi, de tels joints isolants ne permettent pas de garantir de façon fiable la continuité de l’isolation dans les barrières thermiquement isolantes de sorte que des espaces propices aux phénomènes de convection peuvent être présents dans les barrières thermiquement isolantes.  The Applicant has found that insulating joints such as in documents FR2724623 or FR2599468 are difficult to accommodate in said inter-panel space. In addition, these insulating joints do not ensure that such insulating joints optimally fill the entire inter-panel space. Thus, such insulating joints do not reliably guarantee the continuity of the insulation in the thermally insulating barriers so that spaces conducive to convective phenomena may be present in the thermally insulating barriers.
La demanderesse a également constaté qu’un joint isolant plat tel que selon le document JP04194498 permet une bonne insertion du joint isolant plat dans l’espace inter-panneaux et une bonne occupation dudit espace inter-panneaux. Cependant, un tel joint isolant plat peut générer à l’usage la présence de conduit favorisant la convection naturelle. En effet, lorsque la cuve est mise à froid, le comportement en contraction thermique du joint isolant plat est déterminé par le sac en film plastique. Or un tel sac en film plastique présente un coefficient de contraction thermique supérieur au coefficient de contraction thermique des panneaux isolants. Ainsi, la demanderesse a constaté que ces joints isolants plats se contractent plus que l’espace inter-panneaux dans lequel ils sont logés et qu’il résulte de cette contraction un vide séparant le joint isolant plat et les faces des panneaux délimitant l’espace inter-panneaux. Un tel vide favorise les phénomènes de convection et est préjudiciable aux caractéristiques d’isolation de la barrière thermiquement isolante.  The Applicant has also found that a flat insulating joint as in JP04194498 allows a good insertion of the flat insulating seal in the inter-panel space and a good occupation of said inter-panel space. However, such a flat insulating joint can generate in use the presence of conduit favoring natural convection. Indeed, when the tank is put cold, the thermal contraction behavior of the flat insulating seal is determined by the plastic film bag. However, such a plastic film bag has a coefficient of thermal contraction greater than the thermal contraction coefficient of the insulating panels. Thus, the Applicant has found that these flat insulating joints contract more than the inter-panel space in which they are housed and that this contraction results in a gap separating the flat insulating joint and the faces of the panels delimiting the space inter-panels. Such a vacuum promotes convection phenomena and is detrimental to the insulation characteristics of the thermally insulating barrier.
Une idée à la base de l’invention est de fournir une paroi de cuve pour la fabrication d’une cuve étanche et thermiquement isolante ne présentant pas ces inconvénients. Une idée à la base de l’invention est de fournir une paroi de cuve étanche et thermiquement isolante dans laquelle un bouchon isolant comble l’espace inter-panneaux entre deux panneaux adjacents d’une barrière thermiquement isolante de façon fiable et sans générer de vide dans ledit espace inter-panneaux au cours de l’utilisation de la cuve. An idea underlying the invention is to provide a tank wall for the manufacture of a sealed and thermally insulating tank does not have these disadvantages. An idea underlying the invention is to provide a sealed and thermally insulating tank wall in which an insulating cap fills the inter-panel space between two adjacent panels of a thermally-barrier reliably insulating and without generating a vacuum in said inter-panel space during use of the vessel.
Pour cela, l’invention fournit une paroi de cuve étanche et thermiquement isolante comportant une barrière thermiquement isolante définissant une surface de support plane et une membrane d’étanchéité reposant sur ladite surface de support plane de la barrière thermiquement isolante,  For this, the invention provides a sealed and thermally insulating tank wall having a thermally insulating barrier defining a planar support surface and a sealing membrane resting on said planar support surface of the thermally insulating barrier,
la barrière thermiquement isolante comportant une pluralité de panneaux isolants juxtaposés selon un motif régulier, des faces latérales en vis-à-vis de deux panneaux isolants adjacents délimitant conjointement un espace inter-panneaux séparant lesdits deux panneaux isolants adjacents, the thermally insulating barrier comprising a plurality of insulating panels juxtaposed in a regular pattern, side faces vis-à-vis two adjacent insulating panels jointly defining an inter-panel space separating said two adjacent insulating panels,
la paroi de cuve comportant en outre un bouchon isolant agencé dans l’espace inter- panneaux de manière à combler ledit espace inter-panneaux, ledit bouchon isolant comportant un noyau isolant recouvert au moins partiellement par une enveloppe en papier kraft, the tank wall further comprising an insulating plug arranged in the inter-panel space so as to fill said inter-panel space, said insulating cap having an insulating core at least partially covered by a kraft paper envelope,
ledit noyau isolant comportant de la laine de verre stratifiée, ladite laine de verre stratifiée comportant des nappes de fibres superposées selon une direction de stratification, le bouchon isolant étant agencé dans l’espace inter-panneaux de manière à ce que la direction de stratification de la laine de verre stratifiée soit parallèle à une direction de largeur de l’espace inter-panneaux, c’est-à-dire la direction d’espacement entre les deux faces latérales en vis-à-vis..  said insulating core comprising laminated glass wool, said laminated glass wool having layers of fibers superimposed in a lamination direction, the insulating cap being arranged in the inter-panel space so that the laminating direction of the laminated glass wool is parallel to a direction of width of the inter-panel space, that is to say the direction of spacing between the two side faces vis-à-vis.
Une telle paroi de cuve présente de bonnes caractéristiques d’isolation de la barrière thermiquement isolante. En particulier, une telle paroi de cuve présente une barrière thermiquement isolante assurant une isolation continue quel que soit l’état de remplissage de la cuve.  Such a tank wall has good insulation characteristics of the thermally insulating barrier. In particular, such a tank wall has a thermally insulating barrier ensuring continuous insulation regardless of the filling state of the tank.
Plus particulièrement l’enveloppe en papier kraft entourant le noyau isolant du bouchon isolant présente un faible coefficient de frottement permettant l’insertion dudit bouchon isolant dans l’ensemble de l’espace inter-panneaux de façon simple et fiable mais n’est pas aussi résistant à la déchirure que du PVC. Cette insertion est facilitée par l’orientation de la laine de verre stratifiée qui permet une bonne compression du noyau isolant pour son insertion. En effet, un tel agencement de la laine de verre permet une bonne compression de façon simple du noyau isolant pour son insertion dans l’espace inter-panneaux. Cet agencement de la laine de verre stratifiée permet également au noyau isolant de s’expanser rapidement et facilement après insertion du bouchon isolant dans l’espace inter-panneaux permettant ainsi de combler au mieux l’espace inter-panneaux. More particularly, the envelope of kraft paper surrounding the insulating core of the insulating cap has a low coefficient of friction allowing the insertion of said insulating cap into the entire inter-panel space in a simple and reliable manner but is not as tear resistant only PVC. This insertion is facilitated by the orientation of the laminated glass wool which allows a good compression of the insulating core for its insertion. Indeed, such an arrangement of the glass wool allows a good compression of the insulating core in a simple way. its insertion in the inter-panel space. This arrangement of the laminated glass wool also allows the insulating core to expand quickly and easily after insertion of the insulating plug in the inter-panel space to better fill the inter-panel space.
En outre, cette enveloppe en kraft présente un comportement en contraction proche du comportement du noyau isolant de sorte que le bouchon isolant ne se déforme pas de façon irrégulière, par exemple en ondulant, et épouse les dimensions de l’espace inter-panneaux quel que soit le niveau de remplissage de la cuve.  In addition, this kraft envelope exhibits a contraction behavior close to the behavior of the insulating core so that the insulating cap does not deform irregularly, for example by waving, and matches the dimensions of the inter-panel space whatever the filling level of the tank.
Selon des modes de réalisation, une telle paroi peut comporter une ou plusieurs des caractéristiques suivantes.  According to embodiments, such a wall may comprise one or more of the following characteristics.
Selon un mode de réalisation, la direction de stratification de la laine de verre stratifiée est perpendiculaire à au moins l’une des faces latérales en vis-à-vis des deux panneaux isolants adjacents délimitant l’espace inter-panneaux.  According to one embodiment, the stratification direction of the laminated glass wool is perpendicular to at least one of the lateral faces vis-à-vis the two adjacent insulating panels delimiting the inter-panel space.
Selon un mode de réalisation, les faces latérales en vis à vis des deux panneaux isolants adjacents délimitant l’espace inter-panneaux sont parallèles.  According to one embodiment, the lateral faces facing the two adjacent insulating panels delimiting the inter-panel space are parallel.
Selon un mode de réalisation, les nappes de fibres de la laine de verre stratifiée sont parallèles aux faces des panneaux isolants adjacents délimitant l’espace inter-panneaux.  According to one embodiment, the fiber plies of the laminated glass wool are parallel to the faces of the adjacent insulating panels delimiting the inter-panel space.
Selon un mode de réalisation, le noyau isolant comporte au moins un séparateur se développant dans un plan perpendiculaire à une direction d’épaisseur de la paroi de cuve, ledit séparateur séparant la laine de verre stratifiée en une pluralité de sections de laine de verre stratifiée alignées selon ladite direction d’épaisseur de la cuve.  According to one embodiment, the insulating core comprises at least one separator developing in a plane perpendicular to a thickness direction of the vessel wall, said separator separating the layered glass wool into a plurality of laminated glass wool sections. aligned in said thickness direction of the vessel.
Selon un mode de réalisation, le noyau isolant comporte une pluralité de séparateurs séparant la laine de verre stratifiée en une pluralité de sections de laine de verre stratifiée alignées selon la direction d’épaisseur de la paroi de cuve  According to one embodiment, the insulating core comprises a plurality of separators separating the layered glass wool into a plurality of laminated glass wool sections aligned in the thickness direction of the vessel wall.
Selon un mode de réalisation, lesdits séparateurs sont espacés de 5 à 20 cm selon la direction d’épaisseur de la paroi de cuve.  According to one embodiment, said separators are spaced from 5 to 20 cm in the direction of thickness of the vessel wall.
Selon un mode de réalisation, un ou de tels séparateurs sont en papier kraft. Selon un mode de réalisation, le ou les séparateurs sont collés aux sections de laine de verre que ledit ou lesdits séparateurs séparent. According to one embodiment, one or more separators are made of kraft paper. According to one embodiment, the separator or separators are glued to the sections of glass wool that said separator (s) separate.
Selon un mode de réalisation, le ou les séparateurs se développent selon la direction de largeur de l’espace inter-panneaux sur une distance inférieure à l’épaisseur du bouchon isolant prise selon ladite direction de largeur de l’espace inter- panneaux.  According to one embodiment, the separator or separators develop in the width direction of the inter-panel space over a distance less than the thickness of the insulating plug taken along said width direction of the inter-panel space.
Grâce à ces caractéristiques, le bouchon isolant présente une rigidité dans le sens de l’épaisseur permettant sa compression de façon uniforme pour son insertion dans l’espace inter-panneaux. En outre, de tels séparateurs permettent une perte de charge dans la direction d’épaisseur de la paroi de cuve limitant la convection au travers de la laine de verre stratifiée dans la paroi de cuve. Thanks to these characteristics, the insulating cap has a rigidity in the direction of the thickness allowing its compression uniformly for insertion into the inter-panel space. In addition, such separators allow a pressure drop in the thickness direction of the vessel wall limiting the convection through the laminated glass wool in the vessel wall.
Selon un mode de réalisation, le noyau isolant comporte une laine de verre stratifiée présentant une densité comprise entre 20 et 45kg/m3.  According to one embodiment, the insulating core comprises a laminated glass wool having a density of between 20 and 45 kg / m3.
Selon un mode de réalisation, le noyau isolant comporte une première couche isolante en laine de verre stratifiée et une deuxième couche isolante en laine de verre stratifiée, la première couche isolante et la deuxième couche isolante étant superposées selon la direction de largeur de l’espace inter-panneaux, la laine de verre stratifiée des première et deuxième couches isolantes présentant une direction de stratification parallèle à la direction de largeur de l’espace inter-panneaux, la première couche isolante et la deuxième couche isolante étant séparées par une nappe séparatrice en tissu de verre se développant parallèlement aux faces des deux panneaux isolants.  According to one embodiment, the insulating core comprises a first laminated glass wool insulating layer and a second laminated glass wool insulating layer, the first insulating layer and the second insulating layer being superposed in the width direction of the space. inter-panels, the laminated glass wool of the first and second insulating layers having a laminating direction parallel to the width direction of the inter-panel space, the first insulating layer and the second insulating layer being separated by a separating web. glass fabric developing parallel to the faces of the two insulating panels.
Selon un mode de réalisation la laine de verre stratifiée de la première couche isolante présente une direction de stratification parallèle à la direction de largeur de l’espace inter-panneaux.  According to one embodiment, the laminated glass wool of the first insulating layer has a laminating direction parallel to the width direction of the inter-panel space.
Selon un mode de réalisation la laine de verre stratifiée de la deuxième couche isolante présente une direction de stratification parallèle à la direction de largeur de l’espace inter-panneaux. Selon un mode de réalisation, la laine de verre stratifiée de la première couche isolante présente une densité supérieure à la densité de la laine de verre stratifiée de la deuxième couche isolante. According to one embodiment, the laminated glass wool of the second insulating layer has a laminating direction parallel to the width direction of the inter-panel space. According to one embodiment, the laminated glass wool of the first insulating layer has a density greater than the density of the laminated glass wool of the second insulating layer.
Selon un mode de réalisation, la première couche isolante comporte une laine de verre stratifiée de densité comprise entre 33 et 45 kg/m3.  According to one embodiment, the first insulating layer comprises a laminated glass wool with a density of between 33 and 45 kg / m 3.
Selon un mode de réalisation, la deuxième couche isolante comporte une laine de verre stratifiée présentant une densité comprise entre 20 et 28kg/m3.  According to one embodiment, the second insulating layer comprises a laminated glass wool having a density of between 20 and 28 kg / m3.
Selon un mode de réalisation, la première couche isolante comporte au moins un séparateur, de préférence en papier kraft, séparant la laine de verre stratifiée de ladite première couche en une pluralité de sections de laine de verre stratifiée alignées selon la direction d’épaisseur de la paroi de cuve.  According to one embodiment, the first insulating layer comprises at least one separator, preferably of kraft paper, separating the layered glass wool from said first layer into a plurality of laminated glass wool sections aligned in the thickness direction of the tank wall.
Grâce à ces caractéristiques, une couche isolante, la première couche isolante, peut être dédiée à assurer une bonne rigidité au bouchon isolant et une couche isolante, la deuxième couche isolante, peut être dédiée à permettre une déformation maîtrisée du bouchon isolant selon sa direction d’épaisseur afin de faciliter son insertion dans l’espace inter-panneaux.  Thanks to these characteristics, an insulating layer, the first insulating layer, can be dedicated to ensuring good rigidity to the insulating cap and an insulating layer, the second insulating layer, can be dedicated to allow controlled deformation of the insulating cap in its direction of thickness to facilitate insertion into the inter-panel space.
Selon un mode de réalisation, l’enveloppe entoure entièrement le noyau isolant.  According to one embodiment, the envelope completely surrounds the insulating core.
Selon un mode de réalisation, l’enveloppe comporte une pluralité de portions d’enveloppe collées entre elles et/ou collées au noyau isolant.  According to one embodiment, the envelope comprises a plurality of envelope portions glued together and / or glued to the insulating core.
Selon un mode de réalisation, le papier kraft de l’enveloppe présente un grammage compris entre 60 et 150g/m2 et de préférence entre 70 et 100g/m2.  According to one embodiment, the kraft paper of the envelope has a grammage of between 60 and 150 g / m 2 and preferably between 70 and 100 g / m 2.
Selon un mode de réalisation, l’enveloppe présente une étanchéité présentant un débit de fuite configuré pour permettre la compression par dépression du bouchon isolant sous l’effet d’un système d’aspiration, par exemple de type pompe à vide ou générateur de vide à système Venturi.  According to one embodiment, the casing has a seal having a leakage rate configured to allow vacuum compression of the insulating cap under the effect of a suction system, for example of the vacuum pump or vacuum generator type. Venturi system.
Selon un mode de réalisation, l’enveloppe comporte des portions de face, chaque portion latérale recouvrant une face respective du noyau isolant. Selon un mode de réalisation, l’enveloppe comporte des portions d’arêtes, chaque portion d’arête recouvrant une arête respective du noyau isolant. According to one embodiment, the envelope comprises front portions, each lateral portion covering a respective face of the insulating core. According to one embodiment, the envelope comprises portions of edges, each edge portion covering a respective edge of the insulating core.
Selon un mode de réalisation, l’enveloppe comporte des portions de coin, chaque portion de coin recouvrant un coin du noyau isolant.  According to one embodiment, the envelope comprises corner portions, each corner portion covering a corner of the insulating core.
Selon un mode de réalisation, les différentes portions d’enveloppe adjacentes présentent une ou plusieurs zones de recouvrement recouvrant ou étant recouvertes par une zone de recouvrement d’une portion d’enveloppe adjacente.  According to one embodiment, the different adjacent envelope portions have one or more overlapping zones covering or being covered by a covering zone of an adjacent envelope portion.
Selon un mode de réalisation, les différentes portions d’enveloppe adjacentes sont assemblées par collage au niveau de leurs zones de recouvrement.  According to one embodiment, the different adjacent envelope portions are glued together at their overlapping areas.
Selon un mode de réalisation, la différence de coefficient de contraction thermique entre le coefficient de contraction thermique du noyau isolant et le coefficient de contraction thermique de l’enveloppe est inférieure ou égale à 15.10 6/K. According to one embodiment, the difference in the coefficient of thermal contraction between the thermal contraction coefficient of the insulating core and the thermal contraction coefficient of the envelope is less than or equal to 15 × 10 6 / K.
Selon un mode de réalisation, le module de l’enveloppe est supérieur au module du noyau isolant afin que l’enveloppe soit capable de comprimer le noyau isolant.  According to one embodiment, the module of the envelope is greater than the module of the insulating core so that the envelope is capable of compressing the insulating core.
Selon un mode de réalisation, le coefficient de contraction thermique du noyau isolant est compris entre 5.106/K et 10.106/K. According to one embodiment, the thermal contraction coefficient of the insulating core is between 5.10 6 / K and 10.10 6 / K.
Selon un mode de réalisation, le coefficient de contraction thermique de l’enveloppe est compris entre 5.106/K et 20.106/K. According to one embodiment, the thermal contraction coefficient of the envelope is between 5.10 6 / K and 20.10 6 / K.
Grâce à ces caractéristiques, la compression de l’enveloppe lorsqu’elle se contracte sous l’effet du froid ne comprime pas le noyau isolant de façon importante. En particulier cette compression ne risque pas de déformer le noyau isolant au point que ledit noyau isolant prenne une forme ondulée, une telle forme ondulée pouvant générer des vides favorisant la convection.  Thanks to these characteristics, the compression of the envelope when it contracts under the effect of cold does not compress the insulating core significantly. In particular this compression is not likely to deform the insulating core to the point that said insulating core takes a corrugated shape, such a corrugated shape that can generate convective vacuums.
Selon un mode de réalisation, les panneaux isolants de la barrière thermiquement isolante comportent des blocs de mousse de polyuréthane. Selon un mode de réalisation, l’invention fournit également un procédé de fabrication d’une paroi de cuve étanche et thermiquement isolante, ledit procédé comportant les étapes de : According to one embodiment, the insulating panels of the thermally insulating barrier comprise blocks of polyurethane foam. According to one embodiment, the invention also provides a method for manufacturing a sealed and thermally insulating tank wall, said method comprising the steps of:
Fournir une barrière thermiquement isolante de paroi de cuve étanche et thermiquement isolante, ladite barrière thermiquement isolante comportant une pluralité de panneaux isolants juxtaposés selon un motif régulier, les faces latérales en vis-à-vis de deux panneaux isolants adjacents délimitant un espace inter-panneaux séparant lesdits deux panneaux isolants adjacents, Providing a thermally insulating wall barrier thermally insulating and thermally insulating, said thermally insulating barrier comprising a plurality of insulating panels juxtaposed in a regular pattern, the side faces vis-à-vis two adjacent insulating panels delimiting an inter-panel space separating said two adjacent insulating panels,
Fournir un bouchon isolant parallélépipédique comportant un noyau isolant, ledit bouchon isolant comportant une enveloppe en papier kraft recouvrant entièrement le noyau isolant, Providing a parallelepipedic insulating plug having an insulating core, said insulating plug having a kraft paper envelope completely covering the insulating core,
Insérer un embout d’aspiration d’un système d’aspiration dans le bouchon isolant au travers d’un orifice de l’enveloppe en papier kraft, Insert a suction nozzle of a suction system into the insulation plug through an orifice of the kraft paper envelope,
- exercer une dépression dans le bouchon isolant de manière à réduire l’épaisseur dudit bouchon isolant par dépression, - exert a depression in the insulating plug so as to reduce the thickness of said insulating plug by depression,
- Insérer le bouchon isolant dans l’espace inter-panneaux tout en maintenant l’aspiration du système d’aspiration pour maintenir la dépression durant l’étape d’insertion dudit bouchon isolant dans l’espace inter-panneaux,  - Insert the insulation plug into the inter-panel space while maintaining the aspiration of the suction system to maintain the vacuum during the insertion step of said insulation plug in the inter-panel space,
Lorsque le bouchon isolant est inséré dans l’espace inter-panneaux, retirer l’embout d’aspiration du bouchon isolant de sorte que l’espace intérieur de l’enveloppe en papier kraft soit en communication avec la pression ambiante à travers l’orifice de l’enveloppe en papier kraft. When the insulation plug is inserted into the inter-panel space, remove the suction tip from the insulation plug so that the interior space of the kraft paper envelope is in communication with the ambient pressure through the orifice the kraft paper envelope.
Grâce à ces caractéristiques, le bouchon isolant est simple et rapide à insérer dans l’espace inter-panneaux. En effet, un bouchon isolant présentant une enveloppe en papier kraft entourant entièrement le noyau isolant présente une étanchéité suffisante pour permettre sa compression par dépression tout en offrant une surface externe permettant aisément son insertion dans l’espace inter-panneaux. En outre, le maintien de la dépression dans le bouchon isolant lors de son insertion dans l’espace inter-panneaux permet de conserver le bouchon isolant sous une forme compressée, le bouchon isolant conservant alors une épaisseur réduite du fait de sa compression qui facilite son insertion dans l’espace inter-panneaux. Thanks to these characteristics, the insulating cap is simple and quick to insert into the inter-panel space. Indeed, an insulating plug having a kraft paper envelope completely surrounding the insulating core has a sufficient seal to allow compression by depression while providing an outer surface for easy insertion into the inter-panel space. In addition, the maintenance of the depression in the insulating cap during its insertion in the inter-panel space makes it possible to keep the insulating plug in a compressed form, the insulating plug thus retaining a reduced thickness because of its compression which facilitates its insertion into the inter-panel space.
En outre, le simple retrait de l’embout d’aspiration du système d’aspiration permet la mise en communication de l’espace interne de l’enveloppe en papier kraft avec l’environnement extérieur, permettant ainsi l’expansion du noyau isolant sans nécessiter de manœuvre supplémentaire dès lors que le bouchon isolant est positionné dans l’espace inter-panneaux.  In addition, the simple withdrawal of the suction nozzle of the suction system allows the communication of the internal space of the kraft paper envelope with the external environment, thus allowing the expansion of the insulating core without require additional maneuvering when the insulation plug is positioned in the inter-panel space.
Selon des modes de réalisation, un tel procédé de fabrication de paroi de cuve peut comporter une ou plusieurs des caractéristiques suivantes.  According to embodiments, such a vessel wall manufacturing method may include one or more of the following features.
Selon un mode de réalisation, la réduction d’épaisseur du bouchon isolant est telle que le bouchon isolant présente une épaisseur inférieure à la largeur de l’espace inter-panneaux.  According to one embodiment, the thickness reduction of the insulating plug is such that the insulating plug has a thickness less than the width of the inter-panel space.
Selon un mode de réalisation, l’embout d’aspiration du système d’aspiration est configuré pour perforer l’enveloppe en papier kraft du bouchon isolant, l’étape d’insérer l’embout d’aspiration dans le bouchon isolant comportant une étape de perforation de l’enveloppe en papier kraft par ledit embout d’aspiration du système d’aspiration.  According to one embodiment, the suction tip of the suction system is configured to perforate the kraft paper envelope of the insulating cap, the step of inserting the suction tip into the insulating cap comprising a step perforating the kraft paper envelope with said suction nozzle of the suction system.
Ainsi, l’étape d’insertion de l’embout d’aspiration dans le bouchon isolant est simple puisqu’il nécessite simplement de percer l’enveloppe en papier kraft avec ledit embout d’aspiration.  Thus, the step of inserting the suction tip into the insulating cap is simple since it simply requires piercing the kraft paper envelope with said suction tip.
Selon un mode de réalisation, l’embout d’aspiration comporte une collerette, l’étape d’insérer l’embout d’aspiration du système d’aspiration dans le bouchon isolant comportant l’étape d’amener la collerette en appui contre l’enveloppe en papier kraft.  According to one embodiment, the suction nozzle comprises a flange, the step of inserting the suction nozzle of the suction system into the insulating cap comprising the step of bringing the flange in support against the Kraft paper envelope.
Ainsi, la coopération entre l’embout d’aspiration et l’enveloppe en papier kraft a lieu sans fuite importante, permettant au système d’aspiration d’assurer une dépression dans l’enveloppe en papier kraft de façon simple et rapide.  Thus, the cooperation between the suction nozzle and the kraft paper envelope takes place without major leakage, allowing the suction system to provide a vacuum in the kraft paper envelope quickly and easily.
Selon un mode de réalisation, le noyau isolant du bouchon isolant comporte une laine de verre stratifiée, ladite laine de verre stratifiée comportant une pluralité de nappes de fibres superposées selon une direction de stratification, et dans lequel l’embout d’aspiration est inséré dans le bouchon isolant au niveau d’une face latérale du bouchon isolant, ladite face latérale étant parallèle à la direction de stratification de la laine de verre stratifiée. According to one embodiment, the insulating core of the insulation plug comprises a laminated glass wool, said laminated glass wool comprising a plurality of layers of fibers superimposed in a lamination direction, and wherein the suction tip is inserted into the insulating cap at a side face of the insulating cap, said side face being parallel to the layering direction of the laminated glass.
Selon un mode de réalisation, la laine de verre stratifiée est agencée dans le bouchon isolant parallélépipédique de sorte que les nappes de fibres soient parallèles aux grands cotés dudit bouchon isolant parallélépipédique.  According to one embodiment, the laminated glass wool is arranged in the parallelepiped insulating plug so that the fiber sheets are parallel to the long sides of said parallelepiped insulating plug.
Selon un mode de réalisation, l’insertion du bouchon isolant dans l’espace inter-panneaux est faite de sorte que la direction de stratification soit parallèle à une surface de support formée par les panneaux isolants de la barrière thermiquement isolante.  According to one embodiment, the insertion of the insulating plug into the inter-panel space is made so that the lamination direction is parallel to a support surface formed by the insulating panels of the thermally insulating barrier.
Selon un mode de réalisation, l’insertion du bouchon isolant dans l’espace inter-panneaux est faite de sorte que la direction de stratification de la laine de verre stratifiée soit perpendiculaire aux faces latérales des panneaux isolant délimitant l’espace inter-panneaux. Autrement dit, le bouchon isolant est inséré dans l’espace inter-panneaux de sorte que les nappes de fibres de la laine de verre stratifiée soient parallèles auxdites faces latérales des panneaux isolants.  According to one embodiment, the insertion of the insulating plug in the inter-panel space is made so that the stratification direction of the laminated glass wool is perpendicular to the lateral faces of the insulating panels delimiting the inter-panel space. In other words, the insulation plug is inserted into the inter-panel space so that the fiber webs of the laminated glass wool are parallel to said side faces of the insulating panels.
Grâce à ces caractéristiques, les nappes de fibres de la laine de verre stratifiée avec la direction de stratification précitée ne génèrent pas de perte de charge importante lors de l’étape de dépression par aspiration via le système d’aspiration, permettant ainsi une compression rapide et uniforme du bouchon isolant. En outre, cette insertion de l’extrémité de l’embout du système d’aspiration au niveau d’une face latérale de l’enveloppe permet une compression du bouchon isolant sans nécessiter un débit de pompage trop important du système d’aspiration, limitant ainsi les risques de dégradation de l’enveloppe liés à une aspiration trop important et préjudiciable à la compression du bouchon isolant.  Thanks to these characteristics, the fiber layers of the glass wool laminated with the aforementioned stratification direction do not generate a significant loss of pressure during the suction vacuum stage via the suction system, thus allowing rapid compression. and uniform insulation plug. In addition, this insertion of the end of the tip of the suction system at a side face of the casing allows compression of the insulating plug without requiring a too high pumping rate of the suction system, limiting thus the risks of degradation of the envelope related to excessive suction and detrimental to the compression of the insulation plug.
Selon un mode de réalisation, le noyau isolant comporte des séparateurs agencé parallèlement à la direction de stratification, le bouchon isolant étant inséré dans l’espace inter-panneaux de manière à agencer lesdits séparateurs parallèlement à la surface de support formée par la barrière thermiquement isolante. Selon un mode de réalisation, le bouchon isolant est inséré dans l’espace inter-panneaux avec une face traversée par l’embout d’aspiration du système d’aspiration tournée vers l’intérieur de la cuve. According to one embodiment, the insulating core comprises separators arranged parallel to the lamination direction, the insulating cap being inserted into the inter-panel space so as to arrange said separators parallel to the support surface formed by the thermally insulating barrier. . According to one embodiment, the insulating plug is inserted into the inter-panel space with a face traversed by the suction nozzle of the suction system turned towards the inside of the tank.
Ainsi, l’étape d’insertion du bouchon isolant dans l’espace inter-panneaux n’est pas perturbée par la présence de l’embout traversant une face du bouchon isolant.  Thus, the insertion step of the insulating plug in the inter-panel space is not disturbed by the presence of the tip passing through one face of the insulating plug.
Selon un mode de réalisation, l’enveloppe en papier kraft présente un débit de fuite inférieur au débit de pompage du système d’aspiration.  According to one embodiment, the kraft paper envelope has a leakage rate lower than the pumping rate of the suction system.
Ainsi, la dépression permet rapidement et simplement d’obtenir une compression du bouchon isolant pour son insertion dans l’espace inter-panneaux.  Thus, the depression allows quickly and simply to obtain a compression of the insulating plug for insertion into the inter-panel space.
Selon un mode de réalisation, le système d’aspiration présente un débit de pompage entre 8m3/h et 30 m3/h, de préférence 15m3/h.  According to one embodiment, the suction system has a pumping rate between 8m3 / h and 30 m3 / h, preferably 15m3 / h.
Selon un mode de réalisation, dans lequel dans l’étape d’insertion, le bouchon isolant est guidé dans l’espace inter-panneaux au moyen d’un guide rigide sous forme de plaques.  According to one embodiment, wherein in the insertion step, the insulating plug is guided in the inter-panel space by means of a rigid guide in the form of plates.
Un tel guide rigide permet une insertion facilité du bouchon isolant dans l’espace inter-panneaux.  Such a rigid guide allows easy insertion of the insulating plug in the inter-panel space.
Selon un mode de réalisation, le procédé comporte en outre l’étape de découper au moins l’une des faces latérales de l’enveloppe en papier kraft après insertion du bouchon isolant dans l’espace inter-panneaux. Une telle découpe est par exemple réalisée sous la forme d’un coup de couteau et permet une meilleure circulation de gaz entre des bouchons isolants adjacents dans la barrière thermiquement isolante.  According to one embodiment, the method further comprises the step of cutting at least one of the lateral faces of the kraft paper envelope after insertion of the insulating plug into the inter-panel space. Such a cut is for example made in the form of a stab and allows a better flow of gas between adjacent insulating plugs in the thermally insulating barrier.
Selon un mode de réalisation, le système d’aspiration est une pompe à vide. Selon un mode de réalisation, le système d’aspiration est un générateur de vide à système Venturi.  According to one embodiment, the suction system is a vacuum pump. According to one embodiment, the suction system is a Venturi vacuum generator.
Une telle paroi de cuve peut faire partie d’une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier ou tout navire utilisant un gaz liquéfié combustible comme carburant, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres. Such a tank wall can be part of an onshore storage facility, for example to store LNG or be installed in a floating structure, coastal or deepwater, including a LNG carrier or any vessel using a fuel liquefied gas as fuel , a floating storage unit and regasification (FSRU), a floating production and remote storage unit (FPSO) and others.
Selon un mode de réalisation, l’invention fournit un navire pour le transport d’un produit liquide froid comporte une double coque et une cuve comportant la paroi étanche précitée disposée dans la double coque.  According to one embodiment, the invention provides a vessel for the transport of a cold liquid product comprises a double shell and a tank having the aforementioned waterproof wall disposed in the double shell.
Selon un mode de réalisation, l’invention fournit aussi un procédé de chargement ou déchargement d’un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.  According to one embodiment, the invention also provides a method of loading or unloading such a vessel, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage facility to or from the vessel vessel.
Selon un mode de réalisation, l’invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.  According to one embodiment, the invention also provides a transfer system for a cold liquid product, the system comprising the abovementioned vessel, insulated pipes arranged to connect the vessel installed in the hull of the vessel to a floating storage facility. or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
Brève description des figures Brief description of the figures
L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.  The invention will be better understood, and other objects, details, characteristics and advantages thereof will appear more clearly in the course of the following description of several particular embodiments of the invention, given solely for illustrative and non-limiting purposes. with reference to the accompanying drawings.
- La figure 1 est une vue éclatée en perspective schématique d’un bouchon isolant destiné à être inséré entre deux panneaux isolants d’une barrière thermiquement isolante de cuve étanche et thermiquement isolante ;  FIG. 1 is an exploded schematic perspective view of an insulating plug intended to be inserted between two insulating panels of a thermally insulating barrier of sealed and thermally insulating tank;
- La figure 2 est une vue en perspective schématique du bouchon isolant de la figure 1 à l’état monté ;  - Figure 2 is a schematic perspective view of the insulating plug of Figure 1 in the assembled state;
- La figure 3 est une vue en coupe schématique du bouchon isolant de la figure 1 ;  FIG. 3 is a schematic sectional view of the insulating plug of FIG. 1;
- La figure 4 est une vue en perspective schématique d’une installation de fabrication de laine de verre stratifiée ; - La figure 5 est une vue en perspective schématique d’un embout de pompe à vide lors de son insertion dans un bouchon isolant de la figure 1 ; FIG. 4 is a schematic perspective view of a laminated glass wool manufacturing facility; FIG. 5 is a schematic perspective view of a vacuum pump nozzle when inserted into an insulating plug of FIG. 1;
- La figure 6 est une vue en perspective schématique du bouchon isolant de la figure 2 associé à une pompe à vide dans laquelle l’extrémité de l’embout de la pompe à vide est insérée dans ledit bouchon isolant ;  FIG. 6 is a schematic perspective view of the insulating plug of FIG. 2 associated with a vacuum pump in which the end of the nozzle of the vacuum pump is inserted into said insulating plug;
- La figure 7 est une vue en perspective schématique du bouchon isolant de la figure 5 lors de son insertion dans l’espace inter-panneaux séparant deux panneaux adjacents d’une barrière thermiquement isolante de cuve étanche et thermiquement isolante ;  FIG. 7 is a schematic perspective view of the insulating plug of FIG. 5 when it is inserted into the inter-panel space separating two adjacent panels of a thermally insulating, thermally insulating tank barrier;
- La figure 8 est une vue éclatée en perspective schématique d’un bouchon isolant selon une première variante de réalisation ;  FIG. 8 is an exploded schematic perspective view of an insulating plug according to a first embodiment;
- La figure 9 est une vue en coupe d’un bouchon isolant selon une deuxième variante de réalisation ;  - Figure 9 is a sectional view of an insulating plug according to a second embodiment;
- La figure 10 est une représentation schématique écorchée d’une cuve de navire méthanier et d’un terminal de chargement/déchargement de cette cuve.  - Figure 10 is a schematic cutaway representation of a vessel of LNG tanker and a loading / unloading terminal of this vessel.
- La figure 11 est une représentation schématique d’un bouchon isolant en cours d’insertion dans un espace inter-panneaux au moyen d’un guide rigide ;  FIG. 11 is a schematic representation of an insulating plug being inserted into an inter-panel space by means of a rigid guide;
- La figure 12 Est une vue partielle de détail de la figure 1 1. - Figure 12 is a partial detail view of Figure 1 1.
Description détaillée de modes de réalisation Detailed description of embodiments
Par convention, les termes «externe » et « interne » sont utilisés pour définir la position relative d'un élément par rapport à un autre, par référence à l'intérieur et à l’extérieur de la cuve. Ainsi, un élément proche de ou tourné vers l’intérieur de la cuve est qualifié d’interne par opposition à un élément proche de ou tourné vers l’extérieur de la cuve qui est lui qualifié d’externe.  By convention, the terms "external" and "internal" are used to define the relative position of one element relative to another, with reference to the interior and exterior of the vessel. Thus, an element close to or facing the inside of the tank is termed internal as opposed to an element close to or facing outwardly of the tank which is described as external.
Une cuve étanche et thermiquement isolante pour le stockage et le transport d’un fluide cryogénique, par exemple du Gaz Naturel Liquéfié (GNL) comporte une pluralité de parois de cuves présentant chacune une structure multicouche.  A sealed and thermally insulating tank for the storage and transport of a cryogenic fluid, for example Liquefied Natural Gas (LNG) comprises a plurality of tank walls each having a multilayer structure.
De telles parois de cuve étanche et thermiquement isolante présentent, depuis l’extérieur vers l’intérieur de la cuve, une barrière thermiquement isolante secondaire reposant contre une structure porteuse, une membrane d’étanchéité secondaire reposant contre la barrière thermiquement isolante secondaire, une barrière thermiquement isolante primaire reposant contre la membrane d’étanchéité secondaire et une membrane d’étanchéité primaire destinée à être en contact avec le gaz liquéfié contenu dans la cuve. Such walls of sealed and thermally insulating tank have, from the outside to the inside of the tank, a thermally insulating barrier secondary resting against a supporting structure, a secondary sealing membrane resting against the secondary thermally insulating barrier, a primary thermally insulating barrier resting against the secondary sealing membrane and a primary sealing membrane intended to be in contact with the liquefied gas contained in the tank.
La structure porteuse peut notamment être une tôle métallique autoporteuse ou, plus généralement, tout type de cloison rigide présentant des propriétés mécaniques appropriées. La structure porteuse peut notamment être formée par la coque ou la double coque d’un navire. La structure porteuse comporte une pluralité de parois définissant la forme générale de la cuve, habituellement une forme polyédrique.  The supporting structure may in particular be a self-supporting metal sheet or, more generally, any type of rigid partition having suitable mechanical properties. The supporting structure may in particular be formed by the hull or the double hull of a ship. The carrier structure has a plurality of walls defining the general shape of the vessel, usually a polyhedral shape.
Par ailleurs, les barrières thermiquement isolantes peuvent être réalisées de nombreuses manières, en de nombreux matériaux. De telles barrières thermiquement isolantes comportent chacune une pluralité de panneaux isolants de forme parallélépipédique juxtaposés selon un motif régulier. Les panneaux isolants de ces barrières thermiquement isolantes forment conjointement des surfaces de support planes pour les membranes d’étanchéité. De tels panneaux isolants sont par exemple réalisés en blocs de mousse de polyuréthane. De tels panneaux isolants en blocs de mousse de polyuréthane peuvent comporter en outre une plaque de couvercle et/ou une plaque de fond par exemple en contreplaqué.  Moreover, thermally insulating barriers can be made in many ways, in many materials. Such thermally insulating barriers each comprise a plurality of parallelepiped-shaped insulating panels juxtaposed in a regular pattern. The insulating panels of these thermally insulating barriers together form planar support surfaces for the waterproofing membranes. Such insulating panels are for example made of polyurethane foam blocks. Such insulating panels of polyurethane foam blocks may further comprise a cover plate and / or a bottom plate, for example plywood.
A titre d’exemple, de telles cuves sont décrites dans les demandes de brevet W014057221 ou FR2691520.  By way of example, such vessels are described in patent applications WO01 / 057221 or FR2691520.
La juxtaposition des panneaux isolants pour former une barrière thermiquement isolante génère la présence d’espaces inter-panneaux entre deux panneaux isolants 3 adjacents. Autrement dit, un espace inter-panneaux 2 sépare les faces latérales en vis-à-vis de deux panneaux isolants 3 adjacents (voir figure 7). Afin d’assurer la continuité de l’isolation dans la barrière thermiquement isolante, un bouchon isolant 1 est inséré dans l’espace inter-panneaux 2 séparant les deux faces latérales en vis-à-vis des deux panneaux isolants 3 adjacents. Les figures 1 à 3 illustrent un tel bouchon isolant 1. Le bouchon isolant 1 comporte un noyau isolant 4 recouvert par une enveloppe 5. Ce bouchon isolant 1 présente une forme parallélépipédique correspondant à la forme parallélépipédique de l’espace inter-panneaux 2 et définissant la forme du bouchon isolant 1. Ainsi, ce bouchon isolant 1 comporte deux grandes faces 6 parallèles. Ces deux grandes faces 6 définissent une direction de longueur 7 du bouchon isolant 1 et une direction de largeur 8 du bouchon isolant 1 . Des faces latérales 9 se développant selon une direction d’épaisseur 10 du bouchon isolant 1 relient les côtés des grandes faces 6. The juxtaposition of the insulating panels to form a thermally insulating barrier generates the presence of inter-panel spaces between two adjacent insulating panels 3. In other words, an inter-panel space 2 separates the lateral faces vis-à-vis two adjacent insulating panels 3 (see Figure 7). In order to ensure the continuity of the insulation in the thermally insulating barrier, an insulating plug 1 is inserted into the inter-panel space 2 separating the two lateral faces vis-à-vis the two adjacent insulating panels 3. Figures 1 to 3 illustrate such an insulating plug 1. The insulating plug 1 comprises an insulating core 4 covered by an envelope 5. This insulating plug 1 has a parallelepipedal shape corresponding to the parallelepipedal shape of the inter-panel space 2 and defining the shape of the insulating plug 1. Thus, this insulating plug 1 has two large faces 6 parallel. These two large faces 6 define a direction of length 7 of the insulating plug 1 and a direction of width 8 of the insulating plug 1. Lateral faces 9 developing in a direction of thickness 10 of the insulating plug 1 connect the sides of the large faces 6.
Le noyau isolant 4 est réalisé en laine de verre 1 1. La laine de verre 1 1 employée est une laine de verre stratifiée, c'est-à-dire que le procédé de production aboutit à un mat de laine de verre 1 1 constitué de multiples nappes parallèles entrelacées, visibles à l’œil nu, qui sont superposées dans une direction de stratification 12. En d'autres termes, les fibres sont très majoritairement orientées dans des plans perpendiculaires à la direction de stratification 12.  The insulating core 4 is made of glass wool 1 1. The glass wool 1 1 used is a layered glass wool, that is to say that the production process results in a mat of glass wool 1 1 constituted multiple intertwined parallel plies, visible to the naked eye, which are superimposed in a lamination direction 12. In other words, the fibers are predominantly oriented in planes perpendicular to the lamination direction 12.
Une telle laine de verre 1 1 stratifiée peut être obtenue par exemple par un procédé de fabrication sur bande convoyeuse horizontale 13, illustré schématiquement à la figure 4. Dans un tel procédé de fabrication, du sable et du verre concassé sont fondus dans un four 14 dont la température est par exemple de 1300 à 1500°C. Le sable et le verre concassés fondus sont ensuite transformés en fibres par filage par rotation rapide. On ajoute un liant à ces fibres et l’ensemble ainsi obtenu est réceptionné sur la bande convoyeuse horizontale 13 pour passage dans une étuve de polymérisation 15 destiné à la polymérisation du liant. Dans ce cas, les fibres sont essentiellement parallèles à la bande convoyeuse 13. La direction de stratification correspond à la direction verticale dans l'outil de production car la stratification résulte de l'effet de la pesanteur. D'autres procédés de production sont envisageables pour produire une laine de verre stratifiée.  Such laminated glass wool 11 may be obtained for example by a horizontal conveyor belt manufacturing method 13, illustrated schematically in FIG. 4. In such a manufacturing process, sand and crushed glass are melted in a furnace 14. whose temperature is for example from 1300 to 1500 ° C. The melted crushed sand and glass is then converted to fibers by rapid spinning. A binder is added to these fibers and the assembly thus obtained is received on the horizontal conveyor belt 13 for passage through a polymerization oven 15 intended for the polymerization of the binder. In this case, the fibers are essentially parallel to the conveyor belt 13. The lamination direction corresponds to the vertical direction in the production tool because the stratification results from the effect of gravity. Other production methods are conceivable for producing a laminated glass wool.
Dans le mode de réalisation illustré sur les figures 1 à 3, la laine de verre 1 1 du noyau 4 présente une densité de 22 ou 35 ou 40 kg/m3.  In the embodiment illustrated in Figures 1 to 3, the glass wool January 1 core 4 has a density of 22 or 35 or 40 kg / m3.
Le noyau 4 comporte des sections 16 de laine de verre 1 1 séparées par des séparateurs 17. De tels séparateurs 17 se développent perpendiculairement à la direction de largeur 8 du bouchon isolant 1. Ces séparateurs 17 se développent sur toute la longueur 7 et dans toute l’épaisseur 10 du bouchon isolant 1. Les séparateurs 17 sont avantageusement collés aux sections 16 de laine de verre 1 1 séparées par lesdits séparateurs 17. The core 4 comprises sections 16 of glass wool 1 1 separated by separators 17. Such separators 17 develop perpendicular to the width direction 8 of the insulating plug 1. These separators 17 develop on the entire length 7 and in the entire thickness 10 of the insulating plug 1. The separators 17 are advantageously bonded to the sections 16 of glass wool 1 1 separated by said separators 17.
La figure 1 illustre ainsi un noyau 4 comportant quatre sections 16 de laine de verre 1 1 séparées selon la direction de largeur 8 du bouchon isolant 1 par trois séparateurs 17. La figure 1 constitue une solution préférée par rapport au nombre des séparateurs, c’est-à-dire, le nombre minimum de séparateur pour ne pas avoir de convection lorsque le gradient de température est supérieur à 100°C. La figure 3 illustre une variante de réalisation dans laquelle le noyau 4 comporte trois sections 16 séparées selon la direction de largeur 8 du bouchon isolant 1 par deux séparateurs 17.  FIG. 1 thus illustrates a core 4 comprising four sections 16 of glass wool 11 separated in the direction of width 8 of the insulating plug 1 by three separators 17. FIG. 1 constitutes a preferred solution with respect to the number of separators, i.e., the minimum number of separator for not having convection when the temperature gradient is greater than 100 ° C. FIG. 3 illustrates an alternative embodiment in which the core 4 comprises three sections 16 separated in the direction of width 8 of the insulating plug 1 by two separators 17.
La laine de verre 1 1 est agencée dans le noyau 4 de manière à présenter une direction de stratification 12 perpendiculaire à la largeur 8 du bouchon isolant 1. Autrement dit, les nappes de fibres constitutives de la laine de verre 1 1 sont agencées sensiblement de façon parallèle à la direction de largeur 8 du bouchon isolant 1.  The glass wool 1 1 is arranged in the core 4 so as to have a lamination direction 12 perpendicular to the width 8 of the insulating plug 1. In other words, the fiber layers constituting the glass wool 1 1 are arranged substantially from parallel to the width direction 8 of the insulating plug 1.
De préférence, la laine de verre 1 1 est agencée dans le noyau 4 avec une direction de stratification 12 parallèle à la direction d’épaisseur 10 du bouchon isolant 1 , c’est-à-dire que les nappes de fibres de la laine de verre 1 1 sont sensiblement parallèles aux grandes faces 6 du bouchon isolant 1. Autrement dit, les nappes de fibres constitutives de la laine de verre 1 1 sont agencées sensiblement de façon parallèle à la direction de largeur 8 et à la direction de longueur 7 du bouchon isolant 1.  Preferably, the glass wool 11 is arranged in the core 4 with a lamination direction 12 parallel to the thickness direction 10 of the insulating cap 1, that is to say that the layers of fibers of the wool of 1 1 are substantially parallel to the large faces 6 of the insulating plug 1. In other words, the fiber layers constituting the glass wool 1 1 are arranged substantially parallel to the direction of width 8 and the direction of length 7 of the insulating cap 1.
Comme illustré sur la figure 1 , l’enveloppe 5 comporte une pluralité de portions d’enveloppe. Plus particulièrement, l’enveloppe 5 comporte des portions d’enveloppe planes 18, des portions d’enveloppe latérales 19 et des portions d’enveloppe de coin 20. Ces portions d’enveloppe 18, 19, 20 sont fixées, par exemple par collage, sur le noyau 4.  As illustrated in FIG. 1, the envelope 5 comprises a plurality of envelope portions. More particularly, the envelope 5 comprises planar envelope portions 18, lateral envelope portions 19 and corner envelope portions 20. These envelope portions 18, 19, 20 are fixed, for example by gluing. , on the kernel 4.
Les portions d’enveloppe planes 18 recouvrent le noyau 4 et forment les grandes faces 6 du bouchon isolant 1. Ces portions d’enveloppe plane 18 sont de forme rectangulaire et de dimensions sensiblement identiques aux dimensions du noyau 4 sur ses grandes faces. Les portions d’enveloppe latérales 19 comportent une portion centrale de forme rectangulaire recouvrant une face latérale correspondante du noyau 4. Cette portion centrale forme une face latérale 9 correspondante du bouchon isolant 1. Les portions d’enveloppe latérales 19 comportent également, de part et d’autre de la portion centrale, un retour 21. Ces retours 21 se développent depuis des cotés longitudinaux de la portion centrale. Ces retours 21 se développent parallèlement à une portion d’enveloppe plane 18 respective de manière à recouvrir une bordure de ladite portion d’enveloppe plane 18. Ces retours 21 sont collés sur lesdites bordures de portions d’enveloppe planes 18. Autrement dit, les portions d’enveloppe latérales 19 forment une face latérale 9 du bouchon isolant 1 et recouvrent également le noyau 4 au niveau d’arêtes 22 reliant ladite face latérale 9 et les grandes faces 6. The flat envelope portions 18 cover the core 4 and form the large faces 6 of the insulating plug 1. These flat envelope portions 18 are of rectangular shape and of substantially identical dimensions to the dimensions of the core 4 on its large faces. The lateral envelope portions 19 comprise a central portion of rectangular shape covering a corresponding lateral face of the core 4. This central portion forms a corresponding lateral face 9 of the insulating plug 1. The lateral envelope portions 19 also comprise, on the other hand, other of the central portion, a return 21. These returns 21 develop from longitudinal sides of the central portion. These returns 21 develop parallel to a respective flat envelope portion 18 so as to cover a border of said flat envelope portion 18. These returns 21 are glued to said edges of flat envelope portions 18. In other words, the lateral envelope portions 19 form a lateral face 9 of the insulating plug 1 and also cover the core 4 at edges 22 connecting said lateral face 9 and the large faces 6.
Les portions d’enveloppe de coin 20 recouvrent les portions d’enveloppe latérales 19 formant deux faces latérales 9 du bouchon isolant 1 adjacentes. Autrement dit, ces portions d’enveloppe de coin 20 recouvrent les arêtes du noyau 4 au niveau de la jonction entre deux faces latérales 9 du bouchon isolant 1. De façon analogue aux retours 21 des portions d’enveloppe latérales 19, les portions d’enveloppe de coin 20 présentent des retours de coin 23 se développant parallèlement à et recouvrant les extrémités des retours 21 des portions d’enveloppe latérales 19 correspondantes. Les portions d’enveloppe de coin 20 sont collées aux portions d’enveloppe latérales 19 qu’elles recouvrent.  The corner jacket portions 20 cover the lateral envelope portions 19 forming two lateral faces 9 of the adjacent insulating plug 1. In other words, these corner envelope portions 20 cover the edges of the core 4 at the junction between two lateral faces 9 of the insulating plug 1. In a similar manner to the returns 21 of the lateral envelope portions 19, the portions of FIG. Corner wrap 20 has corner returns 23 extending parallel to and overlying the ends of the returns 21 of the corresponding side wrap portions 19. The corner wrap portions 20 are glued to the side wrap portions 19 that they cover.
Ainsi, les différentes portions d’enveloppe 18, 19, 20 sont collées entre elles et à la laine de verre 11 pour former une enveloppe 5 continue entourant intégralement le noyau 4. Dans un mode de réalisation non illustré, les portions 18 et 19 placé sur le fond et le dessus peuvent être réalisées en une seule pièce de kraft.  Thus, the various envelope portions 18, 19, 20 are bonded together and to the glass wool 11 to form a continuous envelope 5 integrally surrounding the core 4. In a non-illustrated embodiment, the portions 18 and 19 placed on the bottom and the top can be made in one piece of kraft.
L’enveloppe 5 est réalisée en papier kraft. Un tel papier kraft offre un coefficient de frottement faible permettant ainsi le glissement du bouchon isolant 1 dans l’espace inter-panneaux 2 lors de son insertion dans ledit espace inter- panneaux 2. En outre, un tel papier kraft présente un coefficient de contraction thermique de l’ordre de 5 à 20*106 /K. Ainsi, un tel papier kraft présente un coefficient de contraction thermique proche de celui noyau isolant 4 placé dans l’espace inter- panneaux. Ainsi, le bouchon isolant 1 présente un comportement au froid uniforme. En effet, le noyau isolant 4 ne risque pas de se déformer sous l’effet d’une compression liée à la contraction thermique de l’enveloppe 5. En particulier, le noyau isolant 4 ne risque pas de se déformer en prenant une forme ondulée sous l’effet de cette compression, une telle forme ondulée générant dans l’espace inter-panneaux 2 des vides favorisant la convection et donc préjudiciables aux propriétés isolantes de la barrière thermiquement isolante. The envelope 5 is made of kraft paper. Such a kraft paper offers a low coefficient of friction thus allowing the sliding of the insulating cap 1 in the inter-panel space 2 during its insertion in said inter-panel space 2. In addition, such a kraft paper has a contraction coefficient thermal of the order of 5 to 20 * 10 6 / K. Thus, such a kraft paper has a thermal contraction coefficient close to that of the insulating core 4 placed in the inter-panel space. Thus, the insulating plug 1 has a uniform cold behavior. Indeed, the insulating core 4 is not likely to deform under the effect of a compression in particular related to the thermal contraction of the envelope 5. In particular, the insulating core 4 is not likely to deform by taking an undulating shape under the effect of this compression, such a corrugated shape generating in the inter-panel space 2 voids favoring convection and therefore detrimental to the insulating properties of the thermally insulating barrier.
Le papier kraft de l’enveloppe 5 présente un grammage supérieur à 60g/m2 afin d’éviter les risque de déchirement de l’enveloppe 5 lors de l’insertion du bouchon isolant 1 dans l’espace inter-panneaux. En outre, ce papier kraft présente un grammage inférieur à 150 g/m2 afin que l’enveloppe 5 conserve une souplesse suffisante pour permettre la déformation du bouchon isolant 1 par compression et de préférence compris entre 70 et 100 g/m2. The kraft paper of the envelope 5 has a grammage greater than 60 g / m 2 in order to avoid the risk of tearing of the envelope 5 during insertion of the insulating plug 1 into the inter-panel space. In addition, this kraft paper has a grammage of less than 150 g / m 2 so that the envelope 5 maintains a sufficient flexibility to allow the deformation of the insulating plug 1 by compression and preferably between 70 and 100 g / m 2 .
Le procédé d’insertion du bouchon isolant 1 dans l’espace inter-panneaux est décrit ci-après en regard des figures 5 à 7.  The method of insertion of the insulating plug 1 into the inter-panel space is described below with reference to FIGS. 5 to 7.
Dans un premier temps, un bouchon isolant 1 présentant la structure telle que décrite ci-dessus en regard des figures 1 à 3 est fourni. Ce bouchon isolant 1 présente une forme complémentaire de l’espace inter-panneaux 2, typiquement une forme parallélépipédique telle que décrite ci-dessus.  In a first step, an insulating plug 1 having the structure as described above with reference to FIGS. 1 to 3 is provided. This insulating plug 1 has a shape complementary to the inter-panel space 2, typically a parallelepipedal shape as described above.
Ce procédé d’insertion utilise un système d’aspiration. Un tel système d’aspiration est dans la suite de la description, à titre d’exemple, une pompe à vide 24 telle qu’illustrée sur les figures 6 et 7. Dans un mode de réalisation non illustré, un tel système d’aspiration est un générateur de vide à système Venturi. Une telle pompe à vide 24 est reliée à un embout d’aspiration 25 via un tuyau de pompage 26. Cet embout d’aspiration 25 présente une collerette 27 de forme circulaire plane. L’embout d’aspiration 25 présente une forme tronconique de manière à présenter une extrémité opposée au tuyau de pompage 26 apte à perforer l’enveloppe 5 de papier kraft. Ainsi, l’embout d’aspiration 25, et plus particulièrement son extrémité de perforation, est inséré dans le bouchon isolant 1 en perforant l’enveloppe 5 en papier kraft. Cette perforation de l’enveloppe 5 génère un orifice 28 d’aspiration dans le bouchon isolant 1. L’embout d’aspiration 25 est inséré dans le bouchon isolant 1 en traversant l’enveloppe 5 au niveau d’une face latérale 9 destinée à être tournée vers l’intérieur de la cuve étanche et thermiquement isolante. This insertion method uses a suction system. Such a suction system is in the following description, for example, a vacuum pump 24 as illustrated in Figures 6 and 7. In an embodiment not shown, such a suction system. is a vacuum generator with Venturi system. Such a vacuum pump 24 is connected to a suction nozzle 25 via a pump pipe 26. This suction nozzle 25 has a flange 27 of circular flat shape. The suction tip 25 has a frustoconical shape so as to have an opposite end to the pumping pipe 26 adapted to perforate the envelope 5 of kraft paper. Thus, the suction nozzle 25, and more particularly its perforation end, is inserted into the insulating plug 1 by perforating the envelope 5 of kraft paper. This perforation of the envelope 5 generates a suction orifice 28 in the insulating plug 1. The suction tip 25 is inserted into the insulating plug 1 through the casing 5 at a side face 9 intended to be turned towards the inside of the sealed and thermally insulating tank.
De préférence, l’embout d’aspiration 25 est inséré dans le bouchon isolant 1 sur une face latérale 9 perpendiculaire à la direction de stratification 12 de la laine de verre 1 1 .  Preferably, the suction tip 25 is inserted into the insulating plug 1 on a side face 9 perpendicular to the lamination direction 12 of the glass wool January 1.
Par ailleurs, l’embout d’aspiration 25 est inséré dans le bouchon isolant 1 jusqu’à ce que la collerette 27 soit amenée en contact avec l’enveloppe 5 en papier kraft.  Furthermore, the suction nozzle 25 is inserted into the insulating plug 1 until the flange 27 is brought into contact with the envelope 5 of kraft paper.
Dès lors que l’embout d’aspiration 25 est inséré dans le bouchon isolant 1 et correctement positionné, c’est-à-dire que la collerette 27 est en contact avec l’enveloppe 5, la pompe à vide 24 est actionnée afin de générer une dépression dans le bouchon isolant 1.  As soon as the suction nozzle 25 is inserted into the insulating cap 1 and correctly positioned, that is to say that the collar 27 is in contact with the casing 5, the vacuum pump 24 is actuated in order to generate a depression in the insulating plug 1.
Avantageusement, l’enveloppe 5 en papier kraft présente une étanchéité suffisante, malgré la porosité du papier kraft et la jonction entre les différentes portions d’enveloppe 18, 19, 20 par collage, pour que ce débit de pompage de la pompe à vide 24 soit suffisant pour créer une dépression dans l’enveloppe 5 en papier kraft. En outre, l’appui de la collerette 27 contre l’enveloppe 5 permet de limiter le débit de fuite de l’enveloppe 5 au niveau de l’orifice 28 traversé par l’embout d’aspiration 25. Autrement dit, l’enveloppe 5 en papier kraft présente un débit de fuite inférieur au débit de pompage de la pompe à vide 24 de sorte que l’aspiration produite par la pompe à vide 24 génère une dépression dans le bouchon isolant 1.  Advantageously, the envelope 5 of kraft paper has a sufficient seal, despite the porosity of the kraft paper and the junction between the different envelope portions 18, 19, 20 by gluing, so that the pumping rate of the vacuum pump 24 is enough to create a depression in the envelope 5 kraft paper. In addition, the support of the collar 27 against the casing 5 makes it possible to limit the leakage rate of the casing 5 at the orifice 28 traversed by the suction end-piece 25. In other words, the casing 5 of kraft paper has a leakage rate lower than the pumping rate of the vacuum pump 24 so that the suction produced by the vacuum pump 24 generates a vacuum in the insulating plug 1.
L’aspiration générée par la pompe à vide 24 présente un débit d’aspiration compris entre 8 et 30 m3/h. De préférence, le débit de pompage est de 15m3/h. un tel débit de pompage de la pompe à vide 24 permet de générer une dépression dans le bouchon isolant 1 sans risquer de dégrader l’enveloppe 5 en papier kraft par un débit d’aspiration trop important.  The suction generated by the vacuum pump 24 has a suction flow rate of between 8 and 30 m 3 / h. Preferably, the pumping rate is 15m3 / h. such a pumping rate of the vacuum pump 24 makes it possible to generate a depression in the insulating plug 1 without the risk of degrading the envelope 5 made of kraft paper by an excessive suction flow rate.
De préférence, la pompe à vide 24 comporte un filtre pour filtrer les éventuelles fibres et poussières de la laine de verre 1 1 pouvant être aspirées par la pompe à vide 24. Par ailleurs, l’aspiration produite par la pompe à vide est avantageusement facilitée par l’insertion de l’embout d’aspiration 25 sur une face latérale 9 du bouchon isolant parallèle à la direction de stratification 12 de la laine de verre 11. En effet, l’insertion de l’embout d’aspiration 25 sur une telle face latérale 9 du bouchon isolant permet une aspiration sans perte de charge liée à la stratification des différentes nappes de fibres constituant la laine de verre 1 1. Preferably, the vacuum pump 24 comprises a filter for filtering any fibers and dusts of glass wool 11 that can be sucked by the vacuum pump 24. Furthermore, the suction produced by the vacuum pump is advantageously facilitated by the insertion of the suction nozzle 25 on a side face 9 of the insulating plug parallel to the lamination direction 12 of the glass wool 11. indeed, the insertion of the suction nozzle 25 on such a side face 9 of the insulating plug allows suction without loss of load due to the lamination of the different fiber layers constituting the glass wool 1 1.
En outre, un agencement de la laine de verre 1 1 avec une direction de stratification 12 parallèle à la direction d’épaisseur 10 du bouchon isolant 1 permet une compression par dépression du bouchon isolant 1 selon ladite direction d’épaisseur 10 facilitée.  In addition, an arrangement of the glass wool 11 with a lamination direction 12 parallel to the thickness direction 10 of the insulating plug 1 allows vacuum compression of the insulating plug 1 in said direction of facilitated thickness.
La présence de séparateurs 17 dans le noyau 4 permet de rigidifier le bouchon isolant 1 afin d’uniformiser la compression dudit bouchon isolant 1.  The presence of separators 17 in the core 4 makes it possible to stiffen the insulating plug 1 in order to standardize the compression of said insulating plug 1.
La dépression dans le bouchon isolant 1 produit une compression de la laine de verre 1 et donc du bouchon isolant 1. Cette compression de la laine de verre 1 permet une réduction de l’épaisseur du bouchon isolant 1 . Typiquement, le bouchon isolant 1 est dimensionné pour présenter à l’état libre, c’est-à-dire non compressé, une épaisseur supérieure ou égale à la largeur de l’espace inter-panneaux 2 et à l’état compressé une épaisseur inférieure à ladite largeur de l’espace inter-panneaux 2. Par exemple, dans le cadre d’un espace inter-panneaux 2 compris entre 33mm et 27mm, le bouchon isolant 1 est dimensionné pour présenter une épaisseur initiale, c’est-à-dire à l’état libre, de 35mm et, dans un état de compression, une épaisseur de 25mm.  The depression in the insulating cap 1 produces a compression of the glass wool 1 and therefore of the insulating cap 1. This compression of the glass wool 1 allows a reduction in the thickness of the insulating cap 1. Typically, the insulating plug 1 is sized to have a free thickness, that is to say uncompressed, a thickness greater than or equal to the width of the inter-panel space 2 and the compressed state a thickness less than said width of the inter-panel space 2. For example, in the context of an inter-panel space 2 between 33 mm and 27 mm, the insulating plug 1 is sized to have an initial thickness, that is to say say in the free state, 35mm and, in a state of compression, a thickness of 25mm.
Le bouchon isolant 1 est ensuite inséré dans l’espace inter-panneaux 2 entre deux panneaux isolants 3 adjacents de la barrière thermiquement isolante. Comme illustré sur la figure 7 par les flèches 29, le bouchon isolant 1 est inséré dans l’espace inter-panneaux 2 avec ses grandes faces 6 parallèlement aux faces latérales des panneaux isolants 3 adjacents délimitant l’espace inter-panneaux 2. Durant cette insertion, l’embout d’aspiration 25 est maintenu dans le bouchon isolant 1 et la pompe à vide 24 génère en continu une dépression dans ledit bouchon isolant 1 afin de conserver le bouchon isolant 1 dans son état compressé. Le maintien du bouchon isolant 1 dans son état compressé permet de faciliter son insertion dans l’espace inter-panneaux 2 puisque le bouchon isolant 1 présente alors une épaisseur inférieure à la largeur de l’espace inter-panneaux 2. The insulating plug 1 is then inserted into the inter-panel space 2 between two adjacent insulating panels 3 of the thermally insulating barrier. As illustrated in FIG. 7 by the arrows 29, the insulating plug 1 is inserted into the inter-panel space 2 with its large faces 6 parallel to the lateral faces of the adjacent insulating panels 3 delimiting the inter-panel space 2. During this insertion, the suction nozzle 25 is held in the insulating plug 1 and the vacuum pump 24 continuously generates a vacuum in said insulating plug 1 to keep the insulating plug 1 in its compressed state. Maintaining the insulating plug 1 in its compressed state makes it easier to insert it into the space inter-panels 2 since the insulating plug 1 then has a thickness less than the width of the inter-panel space 2.
Le bouchon isolant 1 est inséré dans l’espace inter-panneaux 2 de manière à ce que la face latérale 9 traversée par l’embout d’aspiration 25 soit tournée vers l’intérieur de la cuve, facilitant ainsi la manipulation de l’ensemble formé par le bouchon isolant 1 et l’embout d’aspiration 25. En outre, le bouchon isolant 1 est avantageusement inséré dans l’espace inter-panneaux en présentant une direction de stratification 12 parallèle à la largeur de l’espace inter-panneaux 2. Par ailleurs, les séparateurs 17 sont avantageusement agencés dans le bouchon isolant 1 de façon à être parallèles à la surface de support 30 formée par les panneaux isolants 3. Sur la figure 7, de tels panneaux isolants 3 comportent un bloc de mousse de polyuréthane 31 recouvert par une plaque de contreplaqué 32 formant la surface de support 30. Un tel agencement des séparateurs 17 permet de limiter la convection au travers de la laine de verre 1 1 dans la paroi de cuve.  The insulating plug 1 is inserted into the inter-panel space 2 so that the lateral face 9 traversed by the suction nozzle 25 is turned towards the inside of the tank, thus facilitating the manipulation of the assembly. formed by the insulating plug 1 and the suction nozzle 25. In addition, the insulating plug 1 is advantageously inserted into the inter-panel space by having a lamination direction 12 parallel to the width of the inter-panel space 2. Moreover, the separators 17 are advantageously arranged in the insulating plug 1 so as to be parallel to the support surface 30 formed by the insulating panels 3. In FIG. 7, such insulating panels 3 comprise a foam block of polyurethane 31 covered by a plywood plate 32 forming the support surface 30. Such an arrangement of the separators 17 limits the convection through the glass wool 1 1 in the vessel wall.
Dès lors que le bouchon isolant est correctement positionné dans l’espace inter-panneaux 2, l’embout d’aspiration 25 est retiré du bouchon isolant 1 . Dès lors, l’intérieur de l’enveloppe 5 est en communication avec l’environnement extérieur par l’orifice 28. Cette communication permet à la laine de verre 1 1 , du fait que la dépression n’est plus maintenue dans le bouchon isolant 1 , de s’expanser en l’absence de contrainte de compression. L’expansion la laine de verre 1 1 permet une augmentation de l’épaisseur du bouchon isolant 1 de sorte que le bouchon isolant 1 comble totalement l’espace inter-panneaux 2, assurant ainsi une bonne continuité de l’isolation de la barrière thermiquement isolante.  As soon as the insulating plug is correctly positioned in the inter-panel space 2, the suction nozzle 25 is removed from the insulating plug 1. Therefore, the interior of the casing 5 is in communication with the external environment through the orifice 28. This communication allows the glass wool 1 1, because the depression is no longer maintained in the insulating cap 1, to expand in the absence of compression stress. The expansion of the glass wool 1 1 allows an increase in the thickness of the insulating plug 1 so that the insulating plug 1 completely fills the inter-panel space 2, thus ensuring a good continuity of the insulation of the heat barrier insulating.
Dans un mode de réalisation illustré sur les figures 1 1 et 12, un système de guidage rigide peut être utilisée comme outil de guidage lors de l’insertion du bouchon isolant 1 dans l’espace inter-panneaux 2.  In one embodiment illustrated in FIGS. 11 and 12, a rigid guiding system may be used as a guiding tool during the insertion of the insulating plug 1 into the inter-panel space 2.
Un tel système de guidage comporte une première plaque rigide 33 et une deuxième plaque rigide 37. Ces deux plaques rigides 33, 37 comportent chacune une section en « L » formée par une grande face 38 rectangulaire et un retour 39 se développant perpendiculaire à la grande face 38. La grande face 38 présente des dimensions analogues aux dimensions des grandes faces 6 du bouchon isolant 1. Such a guide system comprises a first rigid plate 33 and a second rigid plate 37. These two rigid plates 33, 37 each comprise an "L" section formed by a large rectangular face 38 and a return 39 developing perpendicular to the large face 38. The large face 38 has dimensions similar to the dimensions of the large faces 6 of the insulating plug 1.
Une face interne du retour 39 de la première plaque 33 comporte une poignée 40. Cette poignée est sensiblement centrée selon la direction longitudinale dudit retour 39.  An inner face of the return 39 of the first plate 33 comprises a handle 40. This handle is substantially centered in the longitudinal direction of said return 39.
Le retour 39 de la deuxième plaque 37 présente une encoche permettant de loger la poignée 40 lorsque les deux plaques 33, 37 sont assemblées telle que sur la figure 1 1. Une face interne du retour 39 de la deuxième plaque 37 présente deux poignées 41 . Ces poignées 41 sont agencées de part et d’autre de l’encoche permettant de loger la poignée 40 de la première plaque 33.  The return 39 of the second plate 37 has a notch for accommodating the handle 40 when the two plates 33, 37 are assembled as in Figure 1 1. An inner face of the return 39 of the second plate 37 has two handles 41. These handles 41 are arranged on either side of the notch for accommodating the handle 40 of the first plate 33.
Afin de d’insérer le bouchon isolant 1 dans l’espace inter-panneaux 2 à l’aide des plaques rigides 33, 37, le bouchon isolant 1 est inséré entre les deux plaques rigides 33, 37. Plus particulièrement, les grandes faces 6 du bouchon isolant 1 sont intercalées et compressées entre les grandes faces 38 de plaques rigides 33, 37. Les retours 39 des plaques rigides sont superposés selon la direction d’épaisseur de la paroi de cuve comme illustré sur la figure 12. Cette superposition est rendue possible par le logement de la poignée 40 dans l’encoche prévue à cet effet du retour 39 de la deuxième plaque rigide 37.  In order to insert the insulating plug 1 in the inter-panel space 2 by means of the rigid plates 33, 37, the insulating plug 1 is inserted between the two rigid plates 33, 37. More particularly, the large faces 6 of the insulating plug 1 are interposed and compressed between the large faces 38 of rigid plates 33, 37. The returns 39 of the rigid plates are superimposed in the thickness direction of the tank wall as shown in Figure 12. This superposition is rendered possible by the housing of the handle 40 in the notch provided for this purpose of the return 39 of the second rigid plate 37.
Les plaques rigides 33, 37, entre lesquelles le bouchon isolant 1 est maintenu dans son état compressé, peuvent ainsi être insérées dans l’espace interpanneaux 2 avec le bouchon isolant 1. Une fois le bouchon isolant 1 inséré dans l’espace inter-panneaux 2, les plaques rigides peuvent être retirées grâce aux poignées 40, 41 libérant ainsi le bouchon isolant 1 de son état compressé et permettant son expansion pour occuper l’espace inter-panneaux 2.  The rigid plates 33, 37, between which the insulating plug 1 is maintained in its compressed state, can thus be inserted in the interpanneaux space 2 with the insulating plug 1. Once the insulating plug 1 has been inserted into the inter-panel space 2, the rigid plates can be removed by means of the handles 40, 41 thus releasing the insulating plug 1 from its compressed state and allowing its expansion to occupy the inter-panel space 2.
La figure 8 présente une première variante de réalisation du bouchon isolant 1. Dans cette première variante, les éléments identiques ou remplissant la même fonction que ceux décrits ci-dessus en regard des figures 1 à 3 portent la même référence.  FIG. 8 shows a first alternative embodiment of the insulating plug 1. In this first variant, the elements that are identical or that fulfill the same function as those described above with reference to FIGS. 1 to 3 bear the same reference.
Cette première variante se distingue du bouchon isolant 1 illustré sur les figures 1 à 3 en ce que le noyau 4 isolant comporte deux couches isolantes superposées selon la direction d’épaisseur du bouchon isolant 1. Une première couche isolante 34 présente une structure analogue à la structure du noyau décrit ci-dessus en regard des figures 1 à 3, c’est à une dire une structure comportant des sections 16 en laine de verre 1 1 stratifiée séparées par des séparateurs 17 en papier kraft. Lesdites sections 16 de laine de verre 1 1 stratifiée présentent une direction de stratification de la laine de verre 1 1 parallèle à la surface de support 30 formée par les panneaux isolants 3, de préférence parallèle à la largeur de l’espace inter-panneaux 2 c’est-à-dire parallèle à la direction d’épaisseur 10 du bouchon isolant 1. This first variant is distinguished from the insulating plug 1 illustrated in FIGS. 1 to 3 in that the insulating core 4 comprises two insulating layers superposed in the thickness direction of the insulating plug 1. A first insulating layer 34 has a structure similar to the core structure described above with reference to Figures 1 to 3, that is to say a structure having sections 16 laminated glass wool 1 1 separated by separators 17 in craft paper. Said sections 16 of glass wool 1 1 laminated have a direction of lamination of glass wool 1 1 parallel to the support surface 30 formed by the insulating panels 3, preferably parallel to the width of the inter-panel space 2 that is, parallel to the thickness direction of the insulating plug 1.
Une deuxième couche isolante 35 comporte une unique couche de laine de verre 1 1 stratifiée. La direction de stratification de la laine de verre stratifiée formant cette deuxième couche 35 est parallèle à la surface de support 30 formée par les panneaux isolants 3 et, de préférence, parallèle à la direction d’épaisseur 10 du bouchon isolant 1.  A second insulating layer 35 comprises a single layer of glass wool 1 1 laminated. The stratification direction of the laminated glass wool forming this second layer 35 is parallel to the support surface 30 formed by the insulating panels 3 and, preferably, parallel to the thickness direction of the insulating plug 1.
La première couche isolante 34 et la deuxième couche isolante 35 sont séparées par une couche de séparation 36. Cette couche de séparation 36 est par exemple réalisée en tissu de verre.  The first insulating layer 34 and the second insulating layer 35 are separated by a separation layer 36. This separation layer 36 is for example made of glass fabric.
La première couche isolante 34 présente une laine de verre 1 1 stratifiée de densité supérieure à la densité de la laine de verre 1 1 stratifiée de la deuxième couche isolante 35. Par exemple, la laine de verre 1 1 stratifiée de la première couche isolante 34 présente une densité de 35 à 40 kg/m3 et la laine de verre 1 1 stratifiée de la deuxième couche isolante 35 présente une densité de 22kg/m3.  The first insulating layer 34 has a laminated glass wool 1 1 of density greater than the density of the glass wool 1 1 laminated the second insulating layer 35. For example, the glass wool 1 1 laminated the first insulating layer 34 has a density of 35 to 40 kg / m3 and the laminated glass wool 1 1 of the second insulating layer 35 has a density of 22kg / m3.
La figure 9 représente une deuxième variante de réalisation du bouchon isolant 1. Dans cette deuxième variante, les éléments identiques ou remplissant la même fonction que ceux décrits ci-dessus en regard des figures 1 à 3 portent la même référence.  FIG. 9 represents a second alternative embodiment of the insulating plug 1. In this second variant, the elements that are identical or fulfill the same function as those described above with respect to FIGS. 1 to 3 bear the same reference.
Cette deuxième variante se distingue de la première variante illustrée sur la figure 8 en ce que l’enveloppe 5 en papier kraft ne recouvre pas entièrement le noyau 4 isolant. En effet, sur cette figure 9, la deuxième couche isolante 35 n’est pas recouverte au niveau d’une face latérale 9 du bouchon isolant 1. Autrement dit, l’une des portions d’enveloppe latérale 19 ne recouvre que la première couche isolante 34 et ne comporte qu’un seul retour 21 , ledit retour 21 étant collé sur la portion d’enveloppe plane 18 recouvrant la première couche isolante 34. This second variant differs from the first variant illustrated in FIG. 8 in that the envelope 5 made of kraft paper does not entirely cover the insulating core 4. Indeed, in this FIG. 9, the second insulating layer 35 is not covered at a lateral face 9 of the insulating plug 1. In other words, one of the lateral envelope portions 19 covers only the first layer insulating 34 and has only one return 21, said return 21 being stuck on the flat envelope portion 18 covering the first insulating layer 34.
Un bouchon isolant 1 selon les variantes illustrées sur les figures 8 et 9 présente une bonne capacité de compression et d’expansion grâce à la deuxième couche isolante 35 mais conserve une rigidité permettant sa déformation uniforme et limitant la convection au travers de la laine de verre 11 stratifiée grâce à sa première couche isolante 34. Ainsi, un tel bouchon isolant 1 peut facilement être déformé par compression pour faciliter son insertion dans l’espace inter-panneaux 2 tout en comblant intégralement ledit espace inter-panneaux 2 lorsque la compression n’est plus maintenue et en évitant la convection dans la barrière thermiquement isolante. Cette compression peut être faite avec l’utilisation d’un système d’aspiration telle qu’une pompe à vide 24 dans le cas d’un bouchon isolant 1 tel que selon la figure 8 dans lequel l’enveloppe 5 recouvre entièrement le noyau isolant 4, offrant ainsi une étanchéité suffisante pour se compresser sous l’effet d’une dépression. Cette compression peut au contraire se faire sans système d’aspiration dans le cas d’une bouchon isolant tel que selon la figure 9 dans lequel l’enveloppe 5 ne recouvre pas entièrement le noyau isolant 4.  An insulating plug 1 according to the variants illustrated in FIGS. 8 and 9 has a good capacity of compression and expansion thanks to the second insulating layer 35 but retains a rigidity allowing its uniform deformation and limiting the convection through the glass wool 11 laminated with its first insulating layer 34. Thus, such an insulating plug 1 can easily be deformed by compression to facilitate insertion into the inter-panel space 2 while fully filling said inter-panel space 2 when compression n ' is no longer maintained and avoiding convection in the thermally insulating barrier. This compression can be done with the use of a suction system such as a vacuum pump 24 in the case of an insulating plug 1 such as according to Figure 8 in which the casing 5 completely covers the insulating core 4, thus providing a seal sufficient to compress under the effect of a depression. This compression can instead be done without suction system in the case of an insulating plug as in Figure 9 wherein the casing 5 does not completely cover the insulating core 4.
La technique décrite ci-dessus pour réaliser une cuve étanche et thermiquement isolante peut être utilisée dans différents types de réservoirs, par exemple pour constituer la membrane d’étanchéité primaire d’un réservoir de GNL dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre.  The technique described above for producing a sealed and thermally insulating tank can be used in different types of tanks, for example to constitute the primary waterproofing membrane of an LNG tank in a land installation or in a floating structure such as a LNG carrier or other.
En référence à la figure 10, une vue écorchée d’un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.  Referring to Figure 10, a cutaway view of a LNG tank 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship. The wall of the tank 71 comprises a primary sealed barrier intended to be in contact with the LNG contained in the tank, a secondary sealed barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double hull 72.
De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71. In a manner known per se, loading / unloading lines 73 arranged on the upper deck of the ship can be connected, by means of connectors, at a marine or port terminal for transferring a cargo of LNG to or from the tank 71.
La figure 10 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.  FIG. 10 represents an example of a marine terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77. The loading and unloading station 75 is a fixed off-shore installation comprising an arm mobile 74 and a tower 78 which supports the movable arm 74. The movable arm 74 carries a bundle of insulated flexible pipes 79 that can connect to the loading / unloading pipes 73. The movable arm 74 can be adapted to all gauges of LNG carriers . A connection pipe (not shown) extends inside the tower 78. The loading and unloading station 75 enables the loading and unloading of the LNG tank 70 from or to the shore facility 77. liquefied gas storage tanks 80 and connecting lines 81 connected by the underwater line 76 to the loading or unloading station 75. The underwater line 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a large distance, for example 5 km, which makes it possible to keep the tanker vessel 70 at great distance from the coast during the loading and unloading operations.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.  In order to generate the pressure necessary for the transfer of the liquefied gas, pumps on board the ship 70 and / or pumps equipping the shore installation 77 and / or pumps equipping the loading and unloading station 75 are used.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention tel que défini par les revendications.  Although the invention has been described in connection with several particular embodiments, it is obvious that it is not limited thereto and that it comprises all the technical equivalents of the means described and their combinations if they are within the scope of the invention as defined by the claims.
L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication. Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication. The use of the verb "to include", "to understand" or "to include" and its conjugated forms does not exclude the presence of other elements or steps other than those set out in a claim. In the claims, any reference sign in parentheses can not be interpreted as a limitation of the claim.

Claims

REVENDICATIONS
1. Paroi de cuve étanche et thermiquement isolante comportant une barrière thermiquement isolante définissant une surface de support (30) plane et une membrane d’étanchéité reposant sur ladite surface de support (30) plane de la barrière thermiquement isolante, A sealed and thermally insulating vessel wall having a thermally insulating barrier defining a planar support surface (30) and a sealing membrane resting on said planar support surface (30) of the thermally insulating barrier,
la barrière thermiquement isolante comportant une pluralité de panneaux isolants (3) juxtaposés selon un motif régulier, des faces latérales en vis-à-vis de deux panneaux isolants (3) adjacents délimitant conjointement un espace inter-panneaux (2) séparant lesdits deux panneaux isolants (3) adjacents, the thermally insulating barrier comprising a plurality of insulating panels (3) juxtaposed in a regular pattern, side faces vis-à-vis two adjacent insulating panels (3) jointly defining an inter-panel space (2) separating said two panels adjacent insulators (3),
la paroi de cuve comportant en outre un bouchon isolant (1 ) agencé dans l’espace inter-panneaux (2) de manière à combler ledit espace inter-panneaux (2), ledit bouchon isolant (1 ) comportant un noyau isolant (4) recouvert au moins partiellement par une enveloppe (5) en papier kraft, the tank wall further comprising an insulating plug (1) arranged in the inter-panel space (2) so as to fill said inter-panel space (2), said insulating plug (1) having an insulating core (4) at least partially covered by an envelope (5) of kraft paper,
ledit noyau isolant (4) comportant de la laine de verre (1 1 ) stratifiée, ladite laine de verre (1 1 ) stratifiée comportant des nappes de fibres superposées selon une direction de stratification (12), le bouchon isolant (1 ) étant agencé dans l’espace interpanneaux (2) de manière à ce que la direction de stratification (12) de la laine de verre (1 1 ) stratifiée soit parallèle à une direction de largeur de l’espace inter-panneaux (2). said insulating core (4) comprising laminated glass wool (1 1), said laminated glass wool (1 1) comprising superposed layers of fibers in a lamination direction (12), the insulating cap (1) being arranged in the interplanar space (2) so that the lamination direction (12) of the laminated glass wool (1 1) is parallel to a width direction of the inter-panel space (2).
2. Paroi de cuve étanche et thermiquement isolante selon la revendication 1 , dans laquelle le noyau isolant (4) comporte au moins un séparateur (17) se développant dans un plan perpendiculaire à une direction d’épaisseur de la paroi de cuve, ledit séparateur (17) séparant la laine de verre (1 1 ) stratifiée en une pluralité de sections (16) de laine de verre (1 1 ) stratifiée alignées selon ladite direction d’épaisseur de la cuve.  2. Watertight and thermally insulating tank wall according to claim 1, wherein the insulating core (4) comprises at least one separator (17) developing in a plane perpendicular to a thickness direction of the vessel wall, said separator (17) separating the glass wool (1 1) laminated into a plurality of sections (16) of glass wool (1 1) laminated aligned in said thickness direction of the vessel.
3. Paroi de cuve étanche et thermiquement isolante selon la revendication 2, dans laquelle le noyau isolant (4) comporte une pluralité de séparateurs (17) séparant la laine de verre (1 1 ) stratifiée en une pluralité de sections (16) de laine de verre (1 1 ) stratifiée alignées selon la direction d’épaisseur de la paroi de cuve, lesdits séparateurs (17) étant espacés de 5 à 20 cm selon la direction d’épaisseur de la paroi de cuve. A sealed and thermally insulating tank wall according to claim 2, wherein the insulating core (4) comprises a plurality of separators (17) separating the glass wool (1 1) laminated into a plurality of wool sections (16). laminated glass (1 1) aligned in the thickness direction of the vessel wall, said separators (17) being spaced 5 to 20 cm in the thickness direction of the vessel wall.
4. Paroi de cuve étanche et thermiquement isolante selon l’une des revendications 1 à 3, dans laquelle le noyau isolant comporte une laine de verre (1 1 ) stratifiée présentant une densité comprise entre 20 et 45kg/m3. 4. wall sealed and thermally insulating tank according to one of claims 1 to 3, wherein the insulating core comprises a glass wool (1 1) laminate having a density of between 20 and 45kg / m3.
5. Paroi de cuve étanche et thermiquement isolante selon l’une des revendications 1 à 4, dans laquelle le noyau isolant (4) comporte une première couche isolante (34) en laine de verre (1 1 ) stratifiée et une deuxième couche isolante (35) en laine de verre (1 1 ) stratifiée, la première couche isolante (34) et la deuxième couche isolante (35) étant superposées selon la direction de largeur de l’espace inter- panneaux (2), la laine de verre (11 ) stratifiée des première et deuxième couches isolantes présentant une direction de stratification parallèle à la direction de largeur de l’espace inter-panneaux (2), la première couche isolante et la deuxième couche isolante étant séparées par une nappe séparatrice (36) en tissu de verre se développant parallèlement aux faces des deux panneaux isolants.  5. Watertight and thermally insulating tank wall according to one of claims 1 to 4, wherein the insulating core (4) comprises a first insulating layer (34) glass wool (1 1) laminated and a second insulating layer ( 35), the first insulating layer (34) and the second insulating layer (35) being superimposed in the width direction of the inter-panel space (2), the glass wool (1), 11) laminating the first and second insulating layers having a laminating direction parallel to the width direction of the inter-panel space (2), the first insulating layer and the second insulating layer being separated by a separating web (36). glass fabric developing parallel to the faces of the two insulating panels.
6. Paroi de cuve étanche et thermiquement isolante selon la revendication 5, dans laquelle la laine de verre (1 1 ) stratifiée de la première couche isolante (34) présente une densité supérieure à la densité de la laine de verre (1 1 ) stratifiée de la deuxième couche isolante (35).  A sealed and thermally insulating tank wall according to claim 5, wherein the glass wool (1 1) laminated with the first insulating layer (34) has a density greater than the density of the glass wool (1 1) laminated the second insulating layer (35).
7. Paroi de cuve étanche et thermiquement isolante selon l’une des revendications 1 à 6, dans laquelle l’enveloppe (5) entoure entièrement le noyau isolant.  7. waterproof and thermally insulating tank wall according to one of claims 1 to 6, wherein the casing (5) completely surrounds the insulating core.
8. Paroi de cuve étanche et thermiquement isolante selon l’une des revendications 1 à 7, dans laquelle l’enveloppe (5) comporte une pluralité de portions d’enveloppe (18, 19, 20) collées entre elles et/ou collées au noyau isolant (4).  8. Watertight and thermally insulating tank wall according to one of claims 1 to 7, wherein the envelope (5) comprises a plurality of envelope portions (18, 19, 20) glued together and / or glued to the insulating core (4).
9. Paroi de cuve étanche et thermiquement isolante selon l’une des revendications 1 à 8, dans laquelle le papier kraft de l’enveloppe (5) présente un grammage compris entre 60 et 150g/m2 et de préférence entre 70 et 100g/m2.  9. Watertight and thermally insulating tank wall according to one of claims 1 to 8, wherein the kraft paper of the envelope (5) has a basis weight of between 60 and 150 g / m 2 and preferably between 70 and 100 g / m 2 .
10. Paroi de cuve étanche et thermiquement isolante selon l’une des revendications 1 à 9, dans laquelle la différence de coefficient de contraction thermique entre le coefficient de contraction thermique du noyau isolant (4) et le coefficient de contraction thermique de l’enveloppe (5) est inférieure ou égale à 15.10 6/K 10. Watertight and thermally insulating tank wall according to one of claims 1 to 9, wherein the difference in thermal contraction coefficient between the thermal contraction coefficient of the insulating core (4) and the thermal contraction coefficient of the envelope (5) is less than or equal to 15.10 6 / K
11. Paroi de cuve étanche et thermiquement isolante selon l’une des revendications 1 à 10, dans laquelle les panneaux isolants de la barrière thermiquement isolante comportent des blocs de mousse de polyuréthane. 11. Watertight and thermally insulating tank wall according to one of claims 1 to 10, wherein the insulating panels of the thermally insulating barrier comprise blocks of polyurethane foam.
12. Navire (70) pour le transport d’un produit liquide froid, le navire comportant une double coque (72) et une cuve disposée dans la double coque, la cuve comportant une paroi de cuve étanche selon l’une des revendications 1 à 11.  12. Vessel (70) for the transport of a cold liquid product, the vessel comprising a double hull (72) and a vessel disposed in the double hull, the vessel having a sealed tank wall according to one of claims 1 to . 11
13. Système de transfert pour un produit liquide froid, le système comportant un navire (70) selon la revendication 12, des canalisations isolées (73, 79, 76, 81 ) agencées de manière à relier la cuve (71 ) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.  13. Transfer system for a cold liquid product, the system comprising a ship (70) according to claim 12, insulated pipes (73, 79, 76, 81) arranged to connect the tank (71) installed in the hull. the vessel to a floating or land storage facility (77) and a pump for driving a flow of cold liquid product through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
14. Procédé de chargement ou déchargement d’un navire (70) selon la revendication 12, dans lequel on achemine un produit liquide froid à travers des canalisations isolées (73, 79, 76, 81 ) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71 ).  A method of loading or unloading a vessel (70) according to claim 12, wherein a cold liquid product is conveyed through insulated pipes (73, 79, 76, 81) to or from a floating storage facility or earth (77) to or from the vessel (71).
PCT/FR2019/050258 2018-02-09 2019-02-05 Sealed, thermally insulated tank comprising insulating inserts between panels WO2019155157A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2020125269A RU2771636C2 (en) 2018-02-09 2019-02-05 Sealed heat insulation tank including inter-panel insulation plugs
CN201980012539.XA CN111788427B (en) 2018-02-09 2019-02-05 Sealed heat-insulating tank containing inter-plate insulating plug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1851137 2018-02-09
FR1851137A FR3077865B1 (en) 2018-02-09 2018-02-09 WATERPROOF AND THERMALLY INSULATING TANK COMPRISING INTER-PANEL INSULATING CAPS

Publications (1)

Publication Number Publication Date
WO2019155157A1 true WO2019155157A1 (en) 2019-08-15

Family

ID=62222875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/050258 WO2019155157A1 (en) 2018-02-09 2019-02-05 Sealed, thermally insulated tank comprising insulating inserts between panels

Country Status (4)

Country Link
KR (1) KR102120580B1 (en)
CN (1) CN111788427B (en)
FR (1) FR3077865B1 (en)
WO (1) WO2019155157A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021028624A1 (en) * 2019-08-09 2021-02-18 Gaztransport Et Technigaz Method for manufacturing a wall of a sealed and thermally insulating tank having inter-panel insulating inserts
WO2021028625A1 (en) * 2019-08-09 2021-02-18 Gaztransport Et Technigaz Sealed and thermally insulating tank having inter-panel insulating inserts
WO2021037483A1 (en) * 2019-08-28 2021-03-04 Gaztransport Et Technigaz Sealed and thermally insulating tank with insulating anti-convective seals
WO2021244948A1 (en) * 2020-06-02 2021-12-09 Cryovac As Vacuum panel
WO2023198637A1 (en) 2022-04-15 2023-10-19 Gaztransport Et Technigaz Wall for a leaktight and thermally insulating vessel
WO2023198766A1 (en) 2022-04-15 2023-10-19 Gaztransport Et Technigaz Wall for a leaktight and thermally insulating vessel
RU2817467C2 (en) * 2019-08-28 2024-04-16 Газтранспорт Эт Технигаз Tight and heat-insulating tank with insulating anticonvective seals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102440289B1 (en) * 2020-07-08 2022-09-06 유신단열(주) Composite Insulation Panel with Shrinkage Restoration

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2599468A1 (en) 1986-06-03 1987-12-04 Technigaz THERMALLY INSULATING WALL STRUCTURE OF WATERPROOF TANK
JPH04194498A (en) 1990-11-28 1992-07-14 Mitsubishi Heavy Ind Ltd Clearance filling expansion heat insulating material and mounting method thereof
FR2691520A1 (en) 1992-05-20 1993-11-26 Technigaz Ste Nle Prefabricated structure for forming watertight and thermally insulating walls for containment of a fluid at very low temperature.
FR2724623A1 (en) 1994-09-20 1996-03-22 Gaztransport Et Technigaz IMPROVED WATERPROOF AND THERMALLY INSULATING TANK INTEGRATED INTO A CARRIER STRUCTURE
WO2014057221A2 (en) 2012-10-09 2014-04-17 Gaztransport Et Technigaz Fluidtight and thermally insulated tank comprising a metal membrane that is corrugated in orthogonal folds
WO2014128414A1 (en) * 2013-02-22 2014-08-28 Gaztransport Et Technigaz Method for producing a sealed and thermally insulating barrier for a storage tank

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050608A (en) * 1975-11-03 1977-09-27 Owens-Corning Fiberglas Corporation Cross-shaped joint cover member for generally rectangular composite insulating panels forming wall portion of insulated cryogenic liquid container
SE530993C2 (en) * 2007-03-21 2008-11-11 Fidens Holding Ab Insulating layer for use in thermal insulation, an insulation and a method of making one
WO2014132665A1 (en) * 2013-03-01 2014-09-04 パナソニック株式会社 Insulating container and insulating structure
FR3022971B1 (en) * 2014-06-25 2017-03-31 Gaztransport Et Technigaz SEALED AND INSULATING TANK AND METHOD OF MAKING SAME

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2599468A1 (en) 1986-06-03 1987-12-04 Technigaz THERMALLY INSULATING WALL STRUCTURE OF WATERPROOF TANK
JPH04194498A (en) 1990-11-28 1992-07-14 Mitsubishi Heavy Ind Ltd Clearance filling expansion heat insulating material and mounting method thereof
FR2691520A1 (en) 1992-05-20 1993-11-26 Technigaz Ste Nle Prefabricated structure for forming watertight and thermally insulating walls for containment of a fluid at very low temperature.
FR2724623A1 (en) 1994-09-20 1996-03-22 Gaztransport Et Technigaz IMPROVED WATERPROOF AND THERMALLY INSULATING TANK INTEGRATED INTO A CARRIER STRUCTURE
WO2014057221A2 (en) 2012-10-09 2014-04-17 Gaztransport Et Technigaz Fluidtight and thermally insulated tank comprising a metal membrane that is corrugated in orthogonal folds
WO2014128414A1 (en) * 2013-02-22 2014-08-28 Gaztransport Et Technigaz Method for producing a sealed and thermally insulating barrier for a storage tank

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021028624A1 (en) * 2019-08-09 2021-02-18 Gaztransport Et Technigaz Method for manufacturing a wall of a sealed and thermally insulating tank having inter-panel insulating inserts
WO2021028625A1 (en) * 2019-08-09 2021-02-18 Gaztransport Et Technigaz Sealed and thermally insulating tank having inter-panel insulating inserts
WO2021037483A1 (en) * 2019-08-28 2021-03-04 Gaztransport Et Technigaz Sealed and thermally insulating tank with insulating anti-convective seals
FR3100306A1 (en) * 2019-08-28 2021-03-05 Gaztransport Et Technigaz Sealed and thermally insulating tank with anti-convective insulating gaskets
CN114531897A (en) * 2019-08-28 2022-05-24 气体运输技术公司 Sealed and insulated tank with isolated anti-convection seal
CN114531897B (en) * 2019-08-28 2023-11-10 气体运输技术公司 Sealed and insulated storage tank with insulating and anti-convection seal
RU2817467C2 (en) * 2019-08-28 2024-04-16 Газтранспорт Эт Технигаз Tight and heat-insulating tank with insulating anticonvective seals
WO2021244948A1 (en) * 2020-06-02 2021-12-09 Cryovac As Vacuum panel
WO2023198637A1 (en) 2022-04-15 2023-10-19 Gaztransport Et Technigaz Wall for a leaktight and thermally insulating vessel
WO2023198766A1 (en) 2022-04-15 2023-10-19 Gaztransport Et Technigaz Wall for a leaktight and thermally insulating vessel
FR3134571A1 (en) 2022-04-15 2023-10-20 Gaztransport Et Technigaz Wall for a waterproof and thermally insulating tank
FR3134570A1 (en) 2022-04-15 2023-10-20 Gaztransport Et Technigaz Wall for a waterproof and thermally insulating tank

Also Published As

Publication number Publication date
KR20190096840A (en) 2019-08-20
RU2020125269A (en) 2022-03-25
CN111788427A (en) 2020-10-16
RU2020125269A3 (en) 2022-04-14
KR102120580B1 (en) 2020-06-09
FR3077865A1 (en) 2019-08-16
CN111788427B (en) 2022-02-22
FR3077865B1 (en) 2020-02-28

Similar Documents

Publication Publication Date Title
WO2019155157A1 (en) Sealed, thermally insulated tank comprising insulating inserts between panels
WO2019155158A1 (en) Process for manufacturing a sealed, thermally insulating tank wall comprising insulating inserts between panels
EP3320256B1 (en) Sealed and thermally insulated tank having a secondary sealing membrane equipped with a corner arrangement with corrugated metal sheets
EP3250849B1 (en) Apparatus for storing and transporting a cryogenic fluid on-board a ship
EP3114387B1 (en) Sealed and insulating vessel comprising a deflection element allowing the flow of gas at a corner
FR3070745B1 (en) SEALED AND THERMALLY INSULATING TANK WITH ANTI-CONVICTIVE FILLING ELEMENT
WO2019043349A1 (en) Sealed and thermally insulating tank comprising an anti-convective covering strip
WO2020030871A1 (en) Corner structure for a sealed, thermally insulated tank
WO2019155154A1 (en) Facility for storing and transporting a liquefied gas
WO2012123656A1 (en) Insulating block for producing a tight wall of a tank
WO2019239048A1 (en) Thermally insulating sealed tank
WO2019043348A1 (en) Sealed and thermally insulating vessel having an anti-convective filler plate
WO2021028624A1 (en) Method for manufacturing a wall of a sealed and thermally insulating tank having inter-panel insulating inserts
EP3017234B1 (en) Lagging element suited to the creation of an insulating barrier in a sealed and insulating tank
EP4010621A1 (en) Sealed and thermally insulating tank having inter-panel insulating inserts
WO2021186049A1 (en) Sealed and thermally insulating tank
WO2021094493A1 (en) Sealed and thermally insulating tank having anti-convection insulating seals
WO2020084247A1 (en) Sealed and thermally insulating tank
FR3103024A1 (en) Sealed and thermally insulating tank
WO2021239432A1 (en) Free-standing casing suitable for supporting and thermally insulating a sealed membrane
WO2023001678A1 (en) Storage installation for liquefied gas
FR3118118A1 (en) Sealed and thermally insulating tank comprising a bridging element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19710030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19710030

Country of ref document: EP

Kind code of ref document: A1