WO2019154092A1 - 一种用于线性压缩机的行程估算方法和装置 - Google Patents

一种用于线性压缩机的行程估算方法和装置 Download PDF

Info

Publication number
WO2019154092A1
WO2019154092A1 PCT/CN2019/072884 CN2019072884W WO2019154092A1 WO 2019154092 A1 WO2019154092 A1 WO 2019154092A1 CN 2019072884 W CN2019072884 W CN 2019072884W WO 2019154092 A1 WO2019154092 A1 WO 2019154092A1
Authority
WO
WIPO (PCT)
Prior art keywords
mover
maximum stroke
electromotive force
stroke position
back electromotive
Prior art date
Application number
PCT/CN2019/072884
Other languages
English (en)
French (fr)
Inventor
高山
许升
李衡国
宋斌
吴远刚
Original Assignee
青岛海尔智能技术研发有限公司
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔智能技术研发有限公司, 青岛海尔股份有限公司 filed Critical 青岛海尔智能技术研发有限公司
Publication of WO2019154092A1 publication Critical patent/WO2019154092A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/12Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by varying the length of stroke of the working members
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/006Controlling linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • F04B2201/0201Position of the piston

Definitions

  • the invention relates to the technical field of refrigeration equipment, and in particular to a method and a device for estimating a stroke of a linear compressor.
  • Linear compressor is a promising compressor in the field of refrigerators.
  • a power is set for the linear compressor, which makes the stroke of the linear compressor within a reasonable range, but
  • the system suction and discharge pressure will change (ie, generate fluctuations). It can be understood that if the suction and exhaust pressure changes, the stroke fluctuates. When the limit value is exceeded, the impact exhaust valve is likely to occur. Or there is a problem such as abnormal impact noise; otherwise, the stroke becomes smaller.
  • the stroke protection ie, controlling the output power of the linear motor
  • the stroke protection is required to prevent the stroke from exceeding the limit value, and it is necessary to make a quick action on the sudden system fluctuation or the drift of the working condition.
  • an embodiment of the present invention provides a stroke estimating method for a linear compressor, the linear compressor including a linear motor including a coil for driving a mover to perform linear motion
  • the method includes the following steps: in the process of moving the mover from the forward maximum travel position to the reverse maximum travel position, acquiring a back electromotive force of the coil, and generating a characteristic value of the back electromotive force; determining that the characteristic value is less than a preset In the case of a value, the power of the linear motor is increased, otherwise the power of the linear motor is reduced.
  • the generating the characteristic value of the back electromotive force comprises: Where E(t) is the back electromotive force, t is the time variable, and E(t) is proportional to A cos(t), and A is the maximum stroke of the mover from the forward maximum stroke position to the reverse maximum stroke position. The moment when the mover is at the forward maximum stroke position ⁇ T 1 ⁇ T 2 ⁇ the moment when the mover is at the reverse maximum stroke position.
  • A is the maximum stroke of the mover from the forward maximum stroke position to the reverse maximum stroke position. The moment when the mover is at the forward maximum stroke position ⁇ t ⁇ The moment when the child is in the reverse maximum travel position.
  • the generating the characteristic value of the back electromotive force comprises: Where E(t) is the back electromotive force and t is the time variable. Not equal to zero and E(t) is proportional to A cos(t), A is the maximum stroke of the mover from the forward maximum stroke position to the reverse maximum stroke position, and the moment when the mover is at the forward maximum stroke position ⁇ t ⁇ the moment when the mover is at the reverse maximum travel position.
  • the generating the characteristic value of the back electromotive force comprises: Where E(t) is the back electromotive force, t is the time variable, and E(t) is proportional to A cos(t), and A is the maximum stroke of the mover from the forward maximum stroke position to the reverse maximum stroke position. , B is the moment when the mover is in the positive maximum travel position.
  • the generating the characteristic value of the back electromotive force comprises: Where E(t) is the back electromotive force, t is the time variable, and E(t) is proportional to A cos(t), and A is the maximum stroke of the mover from the forward maximum stroke position to the reverse maximum stroke position. , C is the moment when the mover is in the reverse maximum travel position.
  • An embodiment of the present invention provides a stroke estimating device for a linear compressor, the linear compressor including a linear motor including a coil for driving a mover to perform linear motion, and the following module: eigenvalue generation a module for acquiring a counter electromotive force of the coil and generating a characteristic value of the counter electromotive force during movement of the mover from the forward maximum stroke position to the reverse maximum stroke position; and a processing module for determining the feature When the value is less than the preset value, the power of the linear motor is increased, otherwise, the power of the linear motor is decreased.
  • An embodiment of the present invention provides a linear compressor equipped with the above-described stroke estimating device.
  • An embodiment of the present invention provides a refrigerator in which the linear compressor described above is mounted.
  • the embodiment of the present invention provides a stroke estimating method for a linear compressor, the linear compressor includes a linear motor, and the linear motor includes a driver for driving a linearly moving coil comprising the steps of: obtaining a back electromotive force of the coil during the movement of the mover from the forward maximum stroke position to the reverse maximum stroke position, and generating a characteristic value of the counter electromotive force; determining the characteristic When the value is less than the preset value, the power of the linear motor is increased, otherwise, the power of the linear motor is decreased. Thereby, the stroke of the linear compressor can be precisely controlled.
  • FIG. 1 is a schematic flow chart of a method for estimating a trip in an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a circuit for obtaining a back electromotive force of a linear motor according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing the principle of a stroke estimating method in an embodiment of the present invention.
  • FIG. 4 is a first graph of a back electromotive force of a linear motor in an embodiment of the present invention.
  • Figure 5 is a second graph of the back electromotive force of the linear motor in the embodiment of the present invention.
  • Fig. 6 is a third graph showing the back electromotive force of the linear motor in the embodiment of the present invention.
  • Embodiments of the present invention provide a method for estimating a stroke of a linear compressor, the linear compressor including a linear motor including a coil for driving the mover 3 to perform linear motion, as shown in FIG. The following steps:
  • Step 101 In the process of moving the mover 3 from the forward maximum stroke position to the reverse maximum stroke position, acquiring the counter electromotive force of the coil, and generating a characteristic value of the counter electromotive force; here, during the operation of the linear motor, The mover 3 will reciprocate back and forth in a straight line, that is, reciprocating back and forth between the first side and the second side; in one reciprocating back and forth motion, the mover 3 will first move from the first side to the second side, and then Then move back to the first side, and then proceed to the next round of reciprocating motion, without stopping; therefore, the first side can be set to the positive maximum stroke position, and the second side can be set to the reverse maximum stroke.
  • Position or the second side can be set to the forward maximum stroke position, and the first side can be set to the reverse maximum stroke position. It can be understood that during the movement of the mover 3, a counter electromotive force is generated in the coil.
  • the circuit diagram shown in FIG. 2 can be used to obtain the counter electromotive force, that is, the first motor power line 1 and the second motor power. Line 2 is used to obtain the back EMF.
  • Step 102 Increase the power of the linear motor when it is determined that the characteristic value is less than a preset value, and otherwise reduce the power of the linear motor.
  • the power can be increased or decreased by changing the supply voltage or the like to the linear motor.
  • A1 is the forward maximum stroke position and A2 is the reverse maximum stroke position.
  • A2 is the reverse maximum stroke position.
  • the motion in the first reciprocating motion, if the mover 3 moves from the forward maximum stroke position to the reverse maximum stroke position (for the sake of description, the motion is set to the first half), if it is judged If the power of the linear motor is too small, the power of the linear motor can be increased when the mover moves from the reverse maximum stroke position back to the forward maximum stroke position (for the sake of description, the motion is set to the second half). Conversely, reduce the power of the linear motor.
  • the time interval between the first half and the second half is usually short, if the power in the first half is too large, the possibility of excessive power in the second half is relatively large, and then the Half-way power; if the power in the first half is too small, the power will be too small in the second half, and the power in the second half can be increased.
  • the second time in the first reciprocating back and forth motion, in the process of moving the mover 3 from the forward maximum stroke position to the reverse maximum stroke position, if it is determined that the power of the linear motor is too small, the second time may be In the reciprocating back and forth motion, the power of the linear motor is increased, and conversely, the power of the linear motor is reduced.
  • the time interval between the first reciprocating back and forth motion and the second reciprocating back and forth motion is generally short, the first power required for the first reciprocating back and forth motion and the second reciprocating motion required for the back and forth motion
  • the difference between the second powers is usually relatively small, so if the second power is equal to the first power, the possibility that the stroke is not within a reasonable range in the second reciprocating motion can be effectively prevented.
  • the stroke estimation method in the process of moving the mover 3 from the forward maximum stroke position to the reverse maximum stroke position, the coil electromotive force is acquired, thereby adjusting the power, and it is seen that the control granularity is fine (ie, in the mover) In each reciprocating motion of 3, it will be detected, whether the stroke of the mover is suitable or not, and fine control can be performed. Therefore, in the initial startup phase of the refrigeration system, the whole system is extremely unstable, and the working condition is continuously changing.
  • the trip estimation method can reflect the maximum travel position of each operation cycle in real time, and provide position feedback information in real time, so as to adjust the control amount in time to achieve the purpose of stroke protection.
  • the equation of the velocity of the mover V at time t can be obtained: (Ignore the value of ⁇ ), the waveform is shown by the dotted line in Fig. 5; as shown in Fig. 5, the phase difference between the stroke and the back electromotive force is 90°, that is, when the stroke is maximum, the back electromotive force is 0, and when the stroke is minimum, the back electromotive force is the largest.
  • E(t) B*sin ⁇ *L*A*cos(t).
  • B*sin ⁇ and L are both set. Know the amount.
  • the linear compressor is in the process of suction and exhaust, and the speed V(t) curve of the mover on the exhaust side during high power compression operation With slight distortion, the back-EM curve will be affected and shaken, so the value of E(t) on the inspiratory side is relatively stable according to actual needs.
  • the generating the characteristic value of the back electromotive force comprises:
  • t is the time variable, and E(t) is proportional to A cos(t).
  • A is the maximum stroke of the mover from the forward maximum stroke position to the reverse maximum stroke position.
  • the mover is positive.
  • the time to the maximum stroke position ⁇ T 1 ⁇ T 2 ⁇ the moment when the mover is at the reverse maximum stroke position.
  • the generating the characteristic value of the back electromotive force comprises: Where E(t) is the back electromotive force and t is the time variable. Not equal to zero and E(t) is proportional to A cos(t), A is the maximum stroke of the mover from the forward maximum stroke position to the reverse maximum stroke position, and the moment when the mover is at the forward maximum stroke position ⁇ t ⁇ the moment when the mover is at the reverse maximum travel position.
  • the generating the characteristic value of the back electromotive force comprises: Where E(t) is the back electromotive force, t is the time variable, and E(t) is proportional to A cos(t), and A is the maximum stroke of the mover from the forward maximum stroke position to the reverse maximum stroke position. , B is the moment when the mover is in the positive maximum travel position.
  • the generating the characteristic value of the back electromotive force comprises: Where E(t) is the back electromotive force, t is the time variable, and E(t) is proportional to A cos(t), and A is the maximum stroke of the mover from the forward maximum stroke position to the reverse maximum stroke position. , C is the moment when the mover is in the reverse maximum travel position.
  • Embodiments of the present invention also provide a stroke estimating device for a linear compressor, the linear compressor including a linear motor including a coil for driving a mover to perform linear motion, including the following modules:
  • An eigenvalue generating module configured to acquire a counter electromotive force of the coil during the movement of the mover from the forward maximum stroke position to the reverse maximum stroke position, and generate a characteristic value of the counter electromotive force
  • a processing module configured to increase power of the linear motor when determining that the characteristic value is less than a preset value, and otherwise reduce power of the linear motor.
  • Embodiments of the present invention provide a linear compressor equipped with the above-described stroke estimating device.
  • Embodiments of the present invention provide a refrigerator in which the linear compressor described above is mounted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Linear Motors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

一种用于线性压缩机的行程估算方法,线性压缩机包含有线性电机,线性电机包含有用于驱动动子(3)做直线运动的线圈,包括以下步骤:在动子(3)从正向最大行程位置运动到反向最大行程位置的过程中,获取线圈的反电动势,并生成反电动势的特征值;在确定特征值小于预设值时,增加线性电机的功率,否则,减小线性电机的功率,从而能够精确的控制线性压缩机的行程。一种用于线性压缩机的行程估算装置,一种安装有该行程估算装置的线性压缩机和安装有该压缩机的冰箱。

Description

一种用于线性压缩机的行程估算方法和装置
本申请基于申请号为201810135899.6、申请日为2018年02月09日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及制冷设备技术领域,尤其涉及一种用于线性压缩机的行程估算方法和装置。
背景技术
线性压缩机是一种在冰箱领域中很有前景的压缩机,在线性压缩机工作的过程中,会为线性压缩机设定一个功率,该功率使得线性压缩机的行程处于合理范围内,但在冰箱运行的过程中,系统吸排气压力会发生变化(即产生波动),可以理解的是,如果吸排气压力变化,则行程波动,当超过限定值时,很容易出现撞击排气阀或出现撞击异常噪声等问题;反之,则行程变小。可见在线性压缩机的运行过程中,需要进行行程保护(即对线性电机的输出功率进行控制),防止行程超过限定值,并要对突发系统波动或者工况飘移等情况做出快速动作,保护线性电机。
因此,如何控制线性压缩机的行程,就成为一个亟待解决的问题。
发明内容
本发明的目的在于提供一种用于线性压缩机的行程估算方法和装置。
为了实现上述发明目的之一,本发明一实施方式提供了一种用于线性压缩机的行程估算方法,所述线性压缩机包含有线性电机,线性电机包含有用于驱动动子做直线运动的线圈,包括以下步骤:在动子从正向最大行程位置运动到反向最大行程位置的过程中,获取线圈的反电动势,并生成所述反电动势的特征值;在确定所述特征值小于预设值时,增加所述线性电机的功率,否则,减小所述线性电机的功率。
作为本发明一实施方式的进一步改进,所述生成所述反电动势的特征值,包括:
Figure PCTCN2019072884-appb-000001
Figure PCTCN2019072884-appb-000002
其中E(t)为反电动势,t为时间变量,且E(t)正比于A cos(t),A为动子从正向最大行程位置运动到反向最大行程位置的过程中的最大行程,动子处于正向最大行程位置的时刻≤T 1≤T 2≤动子处于反向最大行程位置的时刻。
作为本发明一实施方式的进一步改进,所述生成所述反电动势的特征值,包括:特征值=|E(t)|,其中E(t)为反电动势,t为时间变量,E(t)不等于零且正比于A cos(t),A为动子从正向最大行程位置运动到反向最大行程位置的过程中的最大行程,动子处于正向最大行程位置的时刻≤t≤动子处于反向最大行程位置的时刻。
作为本发明一实施方式的进一步改进,所述生成所述反电动势的特征值,包括:
Figure PCTCN2019072884-appb-000003
Figure PCTCN2019072884-appb-000004
其中E(t)为反电动势,t为时间变量,
Figure PCTCN2019072884-appb-000005
不等于零且E(t)正比于A cos(t), A为动子从正向最大行程位置运动到反向最大行程位置的过程中的最大行程,动子处于正向最大行程位置的时刻≤t≤动子处于反向最大行程位置的时刻。
作为本发明一实施方式的进一步改进,所述生成所述反电动势的特征值,包括:特征值=|E(t)|的最大值,其中E(t)为反电动势,t为时间变量,且E(t)正比于A cos(t),A为动子从正向最大行程位置运动到反向最大行程位置的过程中的最大行程,动子处于正向最大行程位置的时刻≤t≤动子处于反向最大行程位置的时刻。
作为本发明一实施方式的进一步改进,所述生成所述反电动势的特征值,包括:
Figure PCTCN2019072884-appb-000006
Figure PCTCN2019072884-appb-000007
其中E(t)为反电动势,t为时间变量,且E(t)正比于A cos(t),A为动子从正向最大行程位置运动到反向最大行程位置的过程中的最大行程,B为动子处于正向最大行程位置的时刻。
作为本发明一实施方式的进一步改进,所述生成所述反电动势的特征值,包括:
Figure PCTCN2019072884-appb-000008
Figure PCTCN2019072884-appb-000009
其中E(t)为反电动势,t为时间变量,且E(t)正比于A cos(t),A为动子从正向最大行程位置运动到反向最大行程位置的过程中的最大行程,C为动子处于反向最大行程位置的时刻。
本发明一实施方式提供了一种用于线性压缩机的行程估算装置,所述线性压缩机包含有线性电机,线性电机包含有用于驱动动子做直线运动的线圈,包括以下模块:特征值生成模块,用于在动子从正向最大行程位置运动到反向最大行程位置的过程中,获取线圈的反电动势,并生成所述反电动势的特征值;处理模块,用于在确定所述特征值小于预设值时,增加所述线性电机的功率,否则,减小所述线性电机的功率。
本发明一实施方式提供了一种线性压缩机,安装有上述的行程估算装置。
本发明一实施方式提供了一种冰箱,安装有上述的线性压缩机。
相对于现有技术,本发明的技术效果在于:本发明实施例提供了一种用于线性压缩机的行程估算方法,所述线性压缩机包含有线性电机,线性电机包含有用于驱动动子做直线运动的线圈,包括以下步骤:在动子从正向最大行程位置运动到反向最大行程位置的过程中,获取线圈的反电动势,并生成所述反电动势的特征值;在确定所述特征值小于预设值时,增加所述线性电机的功率,否则,减小所述线性电机的功率。从而能够精确的控制线性压缩机的行程。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是本发明实施例中的行程估算方法的流程示意图;
图2是本发明实施例中的获取直线电机反电动势的电路的结构示意图;
图3是本发明实施例中的行程估算方法的原理简图;
图4是本发明实施例中的直线电机反电动势的第一曲线图;
图5是本发明实施例中的直线电机反电动势的第二曲线图;
图6是本发明实施例中的直线电机反电动势的第三曲线图。
具体实施方式
以下将结合附图所示的各实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
本发明实施例提供了一种用于线性压缩机的行程估算方法,所述线性压缩机包含有线性电机,线性电机包含有用于驱动动子3做直线运动的线圈,如图1所示,包括以下步骤:
步骤101:在动子3从正向最大行程位置运动到反向最大行程位置的过程中,获取线圈的反电动势,并生成所述反电动势的特征值;这里,在线性电机的运行过程中,动子3会在一条直线上往复来回运动,即在第一侧和第二侧之间往复来回运动;在一次往复来回运动中,动子3会先从第一侧运动到第二侧,然后再运动回第一侧,然后再进行下一轮往复来回运动,并不停的循环;因此,可以将第一侧设定为正向最大行程位置、将第二侧设定为反向最大行程位置,或者也可以将第二侧设定为正向最大行程位置、将第一侧设定为反向最大行程位置。可以理解的是的,在动子3的运动过程中,线圈中会产生反电动势,这里,可以使用图2所示的电路图来获取反电动势,即通过第一电机动力线1和第二电机动力线2来获取反电动势。
步骤102:在确定所述特征值小于预设值时,增加所述线性电机的功率,否则,减小所述线性电机的功率。这里,可以通过改变给线性电机的供电压等,来增加或减小功率。
如图3所示,假设A1为正向最大行程位置,A2为反向最大行程位置,当动子3从A1向A2运动过程中,如果线性电机的功率过大,则动子3的运动速度必然会过快,则必然会在越过A2(即行程超过限定值),并最终会停下(例如,图3中的A3位置处),则很有可能会出现撞击排气阀或出现撞击异常噪声等问题;并且由于直线电机的频率通常是固定,因此,由于动子3的运动的速度过快,在同一时刻,线圈的反电动势也必然变大(相对于速度正常的情形下来说);与此类似,如果动子3的运动的速度过慢,则动子3必然到达不了A2就会停下来,因此,在同一时刻,线圈的反电动势也必然变小(相对于速度正常的情形下来说);从而可以依据线圈的反电动势来判断直线电机的功率是否合适。
可选的,在第一次往复来回运动中,在动子3从正向最大行程位置运动到反向最大行程位置(为了便于描述,将这次运动设为前半程)的过程中,如果判断出线性电机的功率过小,则可以在动子从反向最大行程位置运动回正向最大行程位置(为了便于描述,将这次运动设为后半程)的时候,增大线性电机的功率,反之,减小线性电机的功率。这里,由于前半程与后半程之间的时间间隔通常都比较短,因此,如果前半程中的功率过大,则在后半程中功率过大的可能性会比较大,则可以减少后半程的功率;反之如果前半程中的功率过小,则在后半程中功率过小的可能会比较大,则可以增加后半程的功率。
可选的,在第一次往复来回运动中,在动子3从正向最大行程位置运动到反向最大行程位置的过程中,如果判断出线性电机的功率过小,则可以在第二次往复来回运动中,增大线性电机的功率,反之,减小线性电机的功率。这里,由于第一次往复来回运动与第二次往复来回运动之间的时间间隔通常都比较短,因此,第一次往复来回运动所需的第一功率与第二次往复来回运动所需的第二功率之间的差值通常都比较小,因此,如果将第二功率等于第一功率,则可以有效的防止第二次往复来回运动中行程不处于合理范围的可能性。
在该行程估算方法,在动子3从正向最大行程位置运动到反向最大行程位置的过程中,就会获取线圈电动势,从而对功率进行调整,可见其控制粒度很细(即在动子3的每个往复来回运动中,都会检测,动子的行程是否适合),可以进行精细化控制,因此,在制冷系统初始开机阶段,整机系统极不稳定,工况持续变化的情况下,该行程估算方法可以实时反映每个运行周期动最大行程位置,实时提供位置反馈信息,以便于即时调整控制量,达到行程保护的目的。
在线性电机中,动子通常为磁铁,其运动的数学模型可以理解为简谐运动,即行程X与时间t的关系为:X(t)=A*sin(ω*t),其中,X为动子3在t时刻的行程,A为动子3的最大行程;由于直线电机频率变化很小,即周期性较稳定,为方便讨论,ω值暂不进行讨论;其波形如图4所示。
依据动子运动行程方程X(t)可以得到动子速度V在t时刻方程:
Figure PCTCN2019072884-appb-000010
(忽略ω值),其波形如图5中虚线所示;如图5所知,行程与反电动势相位差为90°,即行程最大时,反电动势为0,行程最小时,反电动势最大。动子在正向最大行程位置与反向最大行程位置时速度V=0,然后反向运动。根据法拉第电磁感应定律,动子在磁场中运动时产生的反电动势为:E=B*L*V*sinθ,其中,B为磁场强度,L为磁场中运动的导线线圈长度,V为导线运动速度,θ为磁场与导线运动方向夹角,B*sinθ理解为磁场在垂直于线圈运动方向上的分量。综上所述,可以得到反电动势E在t时刻的方程为E(t)=B*sinθ*L*A*cos(t),对于固定电机而言,B*sinθ和L均为设定已知量。则由上式可知,动子运动过程中,反电动势的瞬时值正比于A*cos(t)。由上式可知,当该周期最大行程A不同时,所得到的反电动势不同,例如,在图6中,实线为A=5的情形,虚线为A=7时的情形,并且从图中可知,这两个曲线的某些特征值是不同的,因此,可以依据该特征值来确定A是否符合要求(即直线压缩机的行程是否符合要求)。
可选的,动子3从正向最大行程位置运动到反向最大行程位置的过程时,直线压缩机处于吸排气过程,动子在排气侧高功率压缩运行时速度V(t)曲线轻微扭曲变化,反电动势曲线会受影响而抖动,故根据实际需要,吸气侧的E(t)的值相对要稳定许多。
优选的,所述生成所述反电动势的特征值,包括:
Figure PCTCN2019072884-appb-000011
为反电动势,t为时间变量,且E(t)正比于A cos(t),A为动子从正向最大行程位置运动到反向最大行程位置的过程中的最大行程,动子处于正向最大行程位置的时刻≤T 1≤T 2≤动子处于反向最大行程位置的时刻。这里,如图6所示,假设A=5实线是符合要求的,A=7对应的虚线是形成过大的情况,则A=5对应的特征值(即
Figure PCTCN2019072884-appb-000012
)要小于A=7对应的特征值(即
Figure PCTCN2019072884-appb-000013
)。
优选的,所述生成所述反电动势的特征值,包括:特征值=|E(t)|,其中E(t)为反电动势,t为时间变量,E(t)不等于零且正比于A cos(t),A为动子从正向最大行程位置运动到反向最大行程位置的过程中的最大行程,动子处于正向最大行程位置的时刻≤t≤动子处于反向最大行程位置的时刻。
优选的,所述生成所述反电动势的特征值,包括:
Figure PCTCN2019072884-appb-000014
其中E(t)为反 电动势,t为时间变量,
Figure PCTCN2019072884-appb-000015
不等于零且E(t)正比于A cos(t),A为动子从正向最大行程位置运动到反向最大行程位置的过程中的最大行程,动子处于正向最大行程位置的时刻≤t≤动子处于反向最大行程位置的时刻。
优选的,所述生成所述反电动势的特征值,包括:特征值=|E(t)|的最大值,其中E(t)为反电动势,t为时间变量,且E(t)正比于A cos(t),A为动子从正向最大行程位置运动到反向最大行程位置的过程中的最大行程,动子处于正向最大行程位置的时刻≤t≤动子处于反向最大行程位置的时刻。
优选的,所述生成所述反电动势的特征值,包括:
Figure PCTCN2019072884-appb-000016
其中E(t)为反电动势,t为时间变量,且E(t)正比于A cos(t),A为动子从正向最大行程位置运动到反向最大行程位置的过程中的最大行程,B为动子处于正向最大行程位置的时刻。
优选的,所述生成所述反电动势的特征值,包括:
Figure PCTCN2019072884-appb-000017
其中E(t)为反电动势,t为时间变量,且E(t)正比于A cos(t),A为动子从正向最大行程位置运动到反向最大行程位置的过程中的最大行程,C为动子处于反向最大行程位置的时刻。
本发明实施例还提供了一种用于线性压缩机的行程估算装置,所述线性压缩机包含有线性电机,线性电机包含有用于驱动动子做直线运动的线圈,包括以下模块:
特征值生成模块,用于在动子从正向最大行程位置运动到反向最大行程位置的过程中,获取线圈的反电动势,并生成所述反电动势的特征值;
处理模块,用于在确定所述特征值小于预设值时,增加所述线性电机的功率,否则,减小所述线性电机的功率。
本发明实施例提供了一种线性压缩机,安装有上述的行程估算装置。
本发明实施例提供了一种冰箱,安装有上述的线性压缩机。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种用于线性压缩机的行程估算方法,所述线性压缩机包含有线性电机,线性电机包含有用于驱动动子做直线运动的线圈,其特征在于,包括以下步骤:
    在动子从正向最大行程位置运动到反向最大行程位置的过程中,获取线圈的反电动势,并生成所述反电动势的特征值;
    在确定所述特征值小于预设值时,增加所述线性电机的功率,否则,减小所述线性电机的功率。
  2. 根据权利要求1所述的行程估算方法,其特征在于,所述生成所述反电动势的特征值,包括:
    Figure PCTCN2019072884-appb-100001
    其中E(t)为反电动势,t为时间变量,且E(t)正比于A cos(t),A为动子从正向最大行程位置运动到反向最大行程位置的过程中的最大行程,动子处于正向最大行程位置的时刻≤T 1≤T 2≤动子处于反向最大行程位置的时刻。
  3. 根据权利要求1所述的行程估算方法,其特征在于,所述生成所述反电动势的特征值,包括:
    特征值=|E(t)|,其中E(t)为反电动势,t为时间变量,E(t)不等于零且正比于A cos(t),A为动子从正向最大行程位置运动到反向最大行程位置的过程中的最大行程,动子处于正向最大行程位置的时刻≤t≤动子处于反向最大行程位置的时刻。
  4. 根据权利要求1所述的行程估算方法,其特征在于,所述生成所述反电动势的特征值,包括:
    Figure PCTCN2019072884-appb-100002
    其中E(t)为反电动势,t为时间变量,
    Figure PCTCN2019072884-appb-100003
    不等于零且E(t)正比于A cos(t),A为动子从正向最大行程位置运动到反向最大行程位置的过程中的最大行程,动子处于正向最大行程位置的时刻≤t≤动子处于反向最大行程位置的时刻。
  5. 根据权利要求1所述的行程估算方法,其特征在于,所述生成所述反电动势的特征值,包括:
    特征值=|E(t)|的最大值,其中E(t)为反电动势,t为时间变量,且E(t)正比于A cos(t),A为动子从正向最大行程位置运动到反向最大行程位置的过程中的最大行程,动子处于正向最大行程位置的时刻≤t≤动子处于反向最大行程位置的时刻。
  6. 根据权利要求1所述的行程估算方法,其特征在于,所述生成所述反电动势的特征值,包括:
    Figure PCTCN2019072884-appb-100004
    其中E(t)为反电动势,t为时间变量,且E(t)正比于A cos(t),A为动子从正向最大行程位置运动到反向最大行程位置的过程中的最大行程,B为动子处于正向最大行程位置的时刻。
  7. 根据权利要求1所述的行程估算方法,其特征在于,所述生成所述反电动势的特征值,包括:
    Figure PCTCN2019072884-appb-100005
    其中E(t)为反电动势,t为时间变量,且E(t)正比于A cos(t),A为动子从正向最大行程位置运动到反向最大行程位置的过程中的最大行程,C为动子处于反向最大行程位置的时刻。
  8. 一种用于线性压缩机的行程估算装置,所述线性压缩机包含有线性电机,线性电机包含有用于驱动动子做直线运动的线圈,其特征在于,包括以下模块:
    特征值生成模块,用于在动子从正向最大行程位置运动到反向最大行程位置的过程中,获取线圈的反电动势,并生成所述反电动势的特征值;
    处理模块,用于在确定所述特征值小于预设值时,增加所述线性电机的功率,否则,减小所述线性电机的功率。
  9. 一种线性压缩机,其特征在于,安装有权利要求8所述的行程估算装置。
  10. 一种冰箱,其特征在于,安装有权利要求9所述的线性压缩机。
PCT/CN2019/072884 2018-02-09 2019-01-24 一种用于线性压缩机的行程估算方法和装置 WO2019154092A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810135899.6 2018-02-09
CN201810135899.6A CN108412731B (zh) 2018-02-09 2018-02-09 一种用于线性压缩机的行程估算方法和装置

Publications (1)

Publication Number Publication Date
WO2019154092A1 true WO2019154092A1 (zh) 2019-08-15

Family

ID=63127117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072884 WO2019154092A1 (zh) 2018-02-09 2019-01-24 一种用于线性压缩机的行程估算方法和装置

Country Status (2)

Country Link
CN (1) CN108412731B (zh)
WO (1) WO2019154092A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108412731B (zh) * 2018-02-09 2019-11-26 青岛海尔智能技术研发有限公司 一种用于线性压缩机的行程估算方法和装置
CN112746948B (zh) * 2019-10-31 2022-07-26 青岛海尔智能技术研发有限公司 用于控制直流线性压缩机的方法及装置、直流线性压缩机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555977B1 (en) * 2000-07-27 2003-04-29 Texas Instruments Incorporated Disk drive motor position detection using mutual inductance zero crossing
CN1490523A (zh) * 2002-10-15 2004-04-21 Lg电子株式会社 用于控制活塞压气机的操作的装置和方法
CN101065578A (zh) * 2004-10-01 2007-10-31 菲舍尔和佩克尔应用有限公司 线性压缩机控制器
CN107654359A (zh) * 2017-07-28 2018-02-02 青岛海尔智能技术研发有限公司 往复式压缩机行程防撞控制方法、往复式压缩机及冰箱
CN108412731A (zh) * 2018-02-09 2018-08-17 青岛海尔智能技术研发有限公司 一种用于线性压缩机的行程估算方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608690B1 (ko) * 2004-09-11 2006-08-09 엘지전자 주식회사 왕복동식 압축기의 운전제어장치 및 방법
DE102008052933A1 (de) * 2008-10-23 2010-04-29 Hella Kgaa Hueck & Co. Verfahren zum Betreiben eines Elektromotors
KR20170049277A (ko) * 2015-10-28 2017-05-10 엘지전자 주식회사 압축기 및 압축기의 제어 방법
CN106549362A (zh) * 2016-10-31 2017-03-29 青岛海尔科技有限公司 一种电机及电机保护方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555977B1 (en) * 2000-07-27 2003-04-29 Texas Instruments Incorporated Disk drive motor position detection using mutual inductance zero crossing
CN1490523A (zh) * 2002-10-15 2004-04-21 Lg电子株式会社 用于控制活塞压气机的操作的装置和方法
CN101065578A (zh) * 2004-10-01 2007-10-31 菲舍尔和佩克尔应用有限公司 线性压缩机控制器
CN107654359A (zh) * 2017-07-28 2018-02-02 青岛海尔智能技术研发有限公司 往复式压缩机行程防撞控制方法、往复式压缩机及冰箱
CN108412731A (zh) * 2018-02-09 2018-08-17 青岛海尔智能技术研发有限公司 一种用于线性压缩机的行程估算方法和装置

Also Published As

Publication number Publication date
CN108412731A (zh) 2018-08-17
CN108412731B (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
JP6537725B2 (ja) 交流電動機の速度推定装置、交流電動機の駆動装置、冷媒圧縮機および冷凍サイクル装置
JP2004353657A (ja) 往復動式圧縮機の運転制御装置及びその方法
WO2019154092A1 (zh) 一种用于线性压缩机的行程估算方法和装置
JP5972138B2 (ja) 電動機制御装置、及びそれを用いた冷蔵庫、並びに電気機器
EP2872794A1 (en) Balancing vibrations at harmonic frequencies by injecting harmonic balancing signals into the armature of a linear motor/alternator coupled to a stirling machine
CN109792224B (zh) 线性马达控制装置以及搭载有线性马达控制装置的压缩机
CN113841331B (zh) 电动机驱动装置、压缩机驱动装置以及制冷环路装置
CN106374793B (zh) 永磁同步电机无位置传感器的控制方法及装置
CN113630052A (zh) 一种直线振荡电机无位置传感器控制方法及装置
JP5517851B2 (ja) モータ制御装置、モータ制御装置を用いた圧縮機駆動装置を備えた冷凍機器
US11632067B2 (en) Speed estimating device for AC motor, driving device for AC motor, refrigerant compressor, and refrigeration cycle apparatus
KR102442866B1 (ko) 복수의 pmsm을 병렬 구동하는 인버터 시스템
KR20150002919A (ko) 특이섭동이론에 기초한 영구자석형 스텝 모터의 위치 제어 장치 및 방법
JP6899720B2 (ja) リニアモータシステム及びそれを有する圧縮機
Liao et al. Position sensor-less piston stroke estimation method for linear oscillatory machines based on sliding mode observer
KR101814480B1 (ko) 유도 전동기의 전동기 정수 연산 장치 및 방법
Choi et al. Accuracy improvement of maximum torque per ampere control for interior permanent magnet synchronous motor drives reflecting PM flux linkage variations
JP2014079034A (ja) モータ制御装置、およびそれを用いた冷凍機
JP7204013B2 (ja) 交流電動機の駆動装置、圧縮機駆動装置及び冷凍サイクル装置
JP6591668B2 (ja) リニアモータシステム及び圧縮機
Choi et al. Maximum Torque per Ampere Control Algorithm for an Interior Permanent Magnet Synchronous Motor Drive Reflecting the PM Flux Linkage Variations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750815

Country of ref document: EP

Kind code of ref document: A1