WO2019153844A1 - Poudre fluorescente proche infrarouge et dispositif luminescent contenant une poudre fluorescente - Google Patents

Poudre fluorescente proche infrarouge et dispositif luminescent contenant une poudre fluorescente Download PDF

Info

Publication number
WO2019153844A1
WO2019153844A1 PCT/CN2018/117613 CN2018117613W WO2019153844A1 WO 2019153844 A1 WO2019153844 A1 WO 2019153844A1 CN 2018117613 W CN2018117613 W CN 2018117613W WO 2019153844 A1 WO2019153844 A1 WO 2019153844A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
infrared
luminescent material
infrared phosphor
emitting device
Prior art date
Application number
PCT/CN2018/117613
Other languages
English (en)
Chinese (zh)
Inventor
刘元红
刘荣辉
陈明月
陈晓霞
邵冷冷
Original Assignee
有研稀土新材料股份有限公司
国科稀土新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有研稀土新材料股份有限公司, 国科稀土新材料有限公司 filed Critical 有研稀土新材料股份有限公司
Publication of WO2019153844A1 publication Critical patent/WO2019153844A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/661Chalcogenides
    • C09K11/662Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • C09K11/625Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/666Aluminates; Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7707Germanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the invention belongs to the technical field of luminescent materials, in particular to a near-infrared phosphor, and to a illuminating device containing the phosphor.
  • infrared LEDs have received widespread attention due to the surge in penetration of infrared LEDs in smartphones, automobiles, surveillance systems and other applications.
  • infrared LEDs are mainly used in the fields of communication, security monitoring and sensors, and mainly focus on infrared LEDs with wavelengths of 850 nm and 940 nm.
  • long wavelength infrared luminescent materials are required.
  • the long-wavelength infrared luminescent material located at 1000-1400 nm
  • a biologically transparent window which can be applied to deep biomedical imaging, night vision monitoring, etc. Therefore, it is necessary to develop blue light, Long-wavelength infrared luminescent material excited by ultraviolet light or red light.
  • CN 103320126 B discloses a broad-band white long afterglow material with a matrix of ZnZGaYGeXO (Z+1.5Y+2X) doped with 0-20 mol% alkali metal or alkaline earth metal elements. This material can be excited in the range of 200-350 nm, with an emission range of 300-800 nm and an emission peak at 520 nm.
  • the existing short-wavelength short-wave light acquisition methods mainly include an infrared chip, or a halogen lamp, or a photoluminescence transition metal or a rare earth metal oxide, or an electroluminescence organic complex
  • the infrared chip used has low excitation efficiency and high cost.
  • the use of halogen lamps requires filtered light, and most of the light is split to cause low efficiency, while halogen lamps generate large amounts of heat and cannot be used in small devices.
  • existing electroluminescent material devices and technologies are not yet mature, and there are problems in that the infrared spectrum partially has low luminous efficiency and poor stability. Therefore, it is necessary to develop a novel infrared illuminating device with high luminous efficiency, low cost, and good stability.
  • the present invention provides a long-wavelength near-infrared luminescent material according to the needs of a novel application of an infrared luminescent material, in particular to provide a long wavelength that can be excited by blue light, ultraviolet light or red light. (1250-1300nm) infrared phosphor. By doping with Ni 2+ , a broadband emission is exhibited in the range of 250-750 nm, and the luminescence peak is at 1280 nm.
  • a near-infrared phosphor comprising an inorganic compound of the general formula A x R p Q q O r :D y , wherein A is one or two of Zn, Ca, Mg, Sr and Ba elements, R Is one or two of Ga, Al and B elements, Q is one or two of Ge and Si elements, D is Ni or a combination of Ni and Yb, 2 ⁇ x ⁇ 4, 1.5 ⁇ p ⁇ 2.5, 0.8 ⁇ q ⁇ 1.2, 6 ⁇ r ⁇ 10, 0.0001 ⁇ y ⁇ 0.2.
  • the inorganic compound has the same crystal structure as the spinel ZnGa 2 O 4 .
  • A is Zn.
  • R is Ga
  • Q is Ge.
  • the phosphor has an excitation peak-to-peak wavelength of 250-750 nm and an emission peak-to-peak wavelength of 1250-1300 nm, which is suitable for blue, ultraviolet or red LED chips.
  • a method for preparing a near-infrared phosphor according to the above method comprises the following steps:
  • a compound corresponding to the mixtures A, R, Q and D the compound comprising an oxide, a carbonate and/or a nitrate
  • the resulting mixture is placed in a crucible and sintered at 1200-1500 ° C in the presence of air or a shielding gas for 2-10 h to obtain a calcined product;
  • the calcined product is crushed, ground, classified, and sieved to obtain a near-infrared phosphor.
  • a light-emitting device comprising a light source and a luminescent material, the luminescent material being the above-mentioned near-infrared phosphor.
  • a light-emitting device comprising a light-emitting element, a light-converting portion I and a light-converting portion II, wherein the light-converting portion I absorbs primary light emitted from the light-emitting element, converts the primary light into a higher-wavelength secondary light, and the light-converting portion II absorbs The primary light emitted by the light-emitting element and the secondary light emitted by the light converting portion I are converted into three times of higher-wavelength light, the light converting portion I contains at least the light-emitting material I, and the light converting portion II contains at least the above-mentioned near-infrared light. Phosphor.
  • the luminescent material I emits emitted light having a peak wavelength of 580-650 nm under excitation of the luminescent element.
  • the luminescent material I contained therein is one or two kinds of luminescent materials selected from the group consisting of the general formula M m Al a Si b N c :Eu d or M e Si f N g :Eu n , wherein
  • the M element contains at least one or more elements of Ca and Sr, 0.8 ⁇ m ⁇ 1.2, 0.8 ⁇ a ⁇ 1.2, 0.8 ⁇ b ⁇ 1.2, 2 ⁇ c ⁇ 4, 0.0001 ⁇ d ⁇ 0.1; 1.8 ⁇ e ⁇ 2.2, 4 ⁇ f ⁇ 6, 7 ⁇ g ⁇ 9, 0.0001 ⁇ n ⁇ 0.1.
  • the luminescent material I has a crystal structure of CaAlSiN 3 or Sr 2 Si 5 N 8 .
  • M is a Ca and Sr element, wherein the molar percentage of the Sr element to the M element is z, 80% ⁇ z ⁇ 100%.
  • the light-emitting element is a semiconductor chip having an emission peak wavelength ranging from 350 to 500 nm.
  • the light-emitting element is a semiconductor chip having an emission peak wavelength ranging from 440 to 460 nm.
  • the invention is based on previous studies and found that Zn 3 Ga 2 GeO 8 is used as a matrix, and different emission wavelengths of phosphors prepared by doping different rare earth ions are rare, especially long-wavelength near-infrared phosphors.
  • the invention provides a light-emitting device capable of realizing high-efficiency near-infrared light (1250-1300 nm) emission under excitation of blue light, ultraviolet light or red light, and solves the problems of poor stability and low luminous efficiency of the existing near-infrared luminescent material and the light-emitting device. .
  • the invention has the beneficial effects that the excitation wavelength of the near-infrared phosphor of the invention is between 250 and 750 nm, and the emission main peak of the near-infrared light region is a broadband emission of 1150-1500 nm, and the excitation wavelength of the near-infrared phosphor is relatively broad, at 250- The 750nm range can be effectively excited, and it can absorb ultraviolet light, blue light and red light well, and has stronger near-infrared light emission than other system inorganic light-emitting materials.
  • the luminescent material (phosphor) provided by the invention has good heat resistance, water resistance and light stability, and has simple preparation process and low cost, and is an ideal near Infrared device application materials.
  • the technical solution of the present invention by constituting the light-emitting device as described above, near-infrared light can be obtained under excitation of different blue light, near-ultraviolet light and red light, which can be applied not only to the fields of night vision monitoring, medical treatment, but also other
  • the drawbacks of the infrared light acquisition method are that the light-emitting device of the present invention has high luminous efficiency and low cost, and can be applied to various types of devices.
  • FIG. 1 is a schematic view of a light-emitting device provided in Embodiment 1,
  • Figure 2 is a graph showing the excitation and emission spectra of the sample of Example 1.
  • 1-light conversion portion I 2-light-emitting element, 3-pin, 4-heat sink, 5-base, 6-light conversion portion II, 7-plastic lens.
  • ZnO, Ga 2 O 3 , GeO 2 and NiO were weighed and mixed by stoichiometry, then calcined in air at 1300 ° C for 2 h in a crucible, and the fired sample was taken out, crushed, ground, and removed. The final sample is obtained by washing, sieving, and drying, and then the optical properties of the sample are tested.
  • the excitation and emission spectra of the sample are shown in Fig. 2. As can be seen from Fig.
  • the luminescent material is effectively excited in the range of 250-320, 370-450, 500-750 nm, and the emission spectrum is broadband emission, and the emission wavelength covers 1150-1500 nm.
  • the emission peak is at 1280 nm and the relative intensity is 120.
  • ZnO, MgO, Ga 2 O 3 , GeO 2 , NiO and Yb 2 O 3 were weighed and stoichiometrically and calcined at 1300 ° C for 2 h.
  • the fired sample is taken out, pulverized, ground, decontaminated, washed, sieved, and dried to obtain a final sample, and then the optical properties of the sample are tested.
  • the luminescent material has a broad spectrum emission at 460 nm excitation, and the emission main peak is at 1271 nm, and the relative intensity is 113.
  • ZnO, Ga 2 O 3 , GeO 2 , NiO and Yb 2 O 3 were weighed and mixed at a stoichiometric ratio and calcined at 1300 ° C for 2 h.
  • the fired sample is taken out, pulverized, ground, decontaminated, washed, sieved, and dried to obtain a final sample, and then the optical properties of the sample are tested.
  • the luminescent material has a broad emission spectrum at 460 nm excitation, and the emission main peak is at 1277 nm, and the relative intensity is 111.
  • a near-infrared phosphor having a composition of Ca 3 Al 1.94 Ni 0.03 GeO 8 :Yb 0.03 . ZnO, Al 2 O 3 , GeO 2 , NiO and Yb 2 O 3 were weighed and stoichiometrically and calcined at 1200 ° C for 2 h. The fired sample is taken out, pulverized, ground, decontaminated, washed, sieved, and dried to obtain a final sample, and then the optical properties of the sample are tested.
  • the luminescent material has a broad spectrum emission at 460 nm excitation, and the emission main peak is at 1265 nm, and the relative intensity is 108.
  • the infrared phosphors of Examples 5-14 each have a rare earth ion Ni 3+ as a luminescent center. According to the stoichiometric ratios in the formulas of Examples 5-14 shown in Table 1, ZnO, MgO, CaCO 3 , SrCO 3 , BaCO 3 , Al 2 O 3 , B 2 O 3 , GeO 2 , SiO 2 , NiO and Yb 2 O 3 are accurately weighed and uniformly mixed, then calcined at 1100-1300 ° C for 2 h in an air atmosphere, and the calcined sample is taken out, pulverized, ground, decontaminated, washed, sieved, and dried to obtain A sample of the chemical formula of Examples 5-14.
  • the near-infrared phosphors of Examples 5-14 were respectively tested for optical properties. Under the excitation of 460 nm, the emission wavelength of a series of phosphors was around 1280 nm, and the spectral modulation could be achieved with the substitution and substitution of different cations. , has an impact on the intensity of the light.
  • the relative luminescence intensity of Examples 5-14 near-infrared phosphors is shown in Table 1.
  • a near-infrared luminescent material according to the stoichiometric ratio of chemical formula Y 2.92 Al 5 O 12 :Ce 0.04 Nd 0.04 , accurately weigh Y 2 O 3 , Al 2 O 3 , CeO 2 and Nb 2 O 3 uniformly;
  • the mixture is calcined at 1400 ° C for 5 h under a reducing atmosphere, and the calcined product is obtained after cooling; the obtained calcined product is subjected to crushing, grinding, grading, sieving, etc., to obtain a near-infrared phosphor sample, and the emission peak is located at 1063 nm, and the setting is set. Its relative intensity is 100.
  • Luminescent chemical formula Relative Strength/% Comparative example 1 Y 2.92 Al 5 O 12 :Ce 0.04 Nd 0.04 100
  • Example 1 Zn 3 Ga 1.97 GeO 8 :Ni 0.03 120
  • Example 2 Zn 2 MgGa 1.94 Ni 0.03 GeO 8 : Yb 0.03 113
  • Example 3 Zn 2 Ga 1.94 Ni 0.03 GeO 7 :Yb 0.03 111
  • Example 4 Ca 3 Al 1.94 Ni 0.03 GeO 8 : Yb 0.03 108
  • Example 5 Mg 2 CaGa 1.47 GeO 7.25 : Ni 0.03 114
  • Example 6 ZnSrGa 2.17 GeO 7.3 : Ni 0.03 110
  • Example 7 Ba 3 Ga 2.47 GeO 8.75 : Ni 0.03 108
  • Example 8 Ca 2 Sr 2 Ga 1.97 Ge 0.8 O 8.6 : Ni 0.03 103
  • Example 9 Ca 2 ZnGa 2.47 Ge 1.2 O 9.15 : Ni 0.03 105
  • Example 10 Mg 2.15 Ga 1.47 Ge 0.8 O 6 :Ni 0.0001 112
  • Example 11 Zn 3.85 Al 2.47 Ge 1.2 O 10 Ni 0.03 117
  • Example 13 Mg 3.8 B 1.97 Ge 1.1 O 9 : Ni 0.03 107
  • Example 14 Sr 3 Ga 1.97 SiO 8 : Ni 0.05 105
  • the following embodiments 15-17 are light-emitting devices made of the near-infrared phosphor material of the present invention, that is, the structure of the light-emitting device known in the prior art is taken as an example, and the structure is as shown in FIG.
  • the susceptor 5 is provided with a heat sink 4 and a lead 3.
  • the light source of the illuminating device is a semiconductor chip 2, and the optical material portion thereof includes a light converting portion I2 and a light converting portion II6, and an outer layer thereof is provided with a plastic lens 7.
  • the light conversion unit I2 absorbs the primary light emitted from the semiconductor chip 2 and converts it into a secondary light of a higher wavelength
  • the light conversion unit II5 absorbs the primary light of the semiconductor chip 2 and the secondary light emitted from the light conversion unit I2, and converts it. Three times higher wavelengths.
  • the light-emitting device described in the following Examples 15-17 selectively sets only the light conversion portion II6, or both the light conversion portion I2 and the light conversion portion II6.
  • the light converting portion I2 includes at least a luminescent material having a peak wavelength of 580-650 nm emitted light
  • the light converting portion II6 includes at least the near-infrared luminescent material of the present invention.
  • the luminous efficiency of the light-emitting device of the following Examples 15-17 was as a control device with the light-emitting device containing the infrared fluorescent powder of Comparative Example 1 described above.
  • the emission peak was 1063 nm, and the luminous efficacy was set to 100.
  • Table 2 Structural information and relative luminous efficacy of the light-emitting device of the present invention
  • the light-emitting device prepared by using the near-infrared phosphor material of the present invention has high luminous efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

La présente invention concerne le domaine technique des matériaux luminescents, en particulier une poudre fluorescente proche infrarouge et un dispositif luminescent contenant la poudre fluorescente. La poudre fluorescente proche infrarouge contient un composé inorganique dont la formule chimique est AxRpQqOr: Dy, dans laquelle A représente un ou deux parmi Zn, Ca, Mg, Sr et Ba, R représente un ou deux parmi Ga, Al et B, Q est un ou deux parmi Ge et Si, et D est un ou deux parmi Ni et Yb ; il est nécessaire que du Ni soit inclus ; et 2 ≤ x ≤ 4, 1,5 ≤ p ≤ 2,5, 0,8 ≤ q ≤ 1,2, 6 ≤ r ≤ 10, et 0,0001 ≤ y ≤ 0,2. L Le composé a la même structure cristalline que le spinelle ZnGa2O4.Le matériau luminescent de la présente invention peut avoir une émission efficace (1250 à 1300 nm) dans la région proche infrarouge, et est un matériau luminescent proche infrarouge idéal, et le dispositif luminescent contenant la poudre fluorescente peut être largement appliqué aux domaines de la surveillance de la vision nocturne, des systèmes de détection d'analyse biologique, des systèmes d'imagerie biologique, etc.
PCT/CN2018/117613 2018-02-12 2018-11-27 Poudre fluorescente proche infrarouge et dispositif luminescent contenant une poudre fluorescente WO2019153844A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810147244 2018-02-12
CN201810147244.0 2018-02-12

Publications (1)

Publication Number Publication Date
WO2019153844A1 true WO2019153844A1 (fr) 2019-08-15

Family

ID=64591451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117613 WO2019153844A1 (fr) 2018-02-12 2018-11-27 Poudre fluorescente proche infrarouge et dispositif luminescent contenant une poudre fluorescente

Country Status (2)

Country Link
CN (2) CN108998020A (fr)
WO (1) WO2019153844A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507517A (zh) * 2022-03-04 2022-05-17 浙江大学 基于尖晶石结构的宽带近红外荧光粉及其制备方法和应用
CN114717001A (zh) * 2022-04-24 2022-07-08 江西离子型稀土工程技术研究有限公司 一种氧化物近红外发光材料及其制备方法和应用
CN114773049A (zh) * 2022-04-18 2022-07-22 武汉理工大学 一种可见-红外透明陶瓷及其制备方法
CN115125002A (zh) * 2021-03-25 2022-09-30 中国科学院宁波材料技术与工程研究所 一种硅基石榴石近红外荧光材料及其制备方法和应用
CN115197702A (zh) * 2021-04-08 2022-10-18 中国科学院宁波材料技术与工程研究所 一种氟化物盐近红外荧光粉及其制备方法和应用
CN116925759A (zh) * 2023-07-25 2023-10-24 昆明理工大学 一种铬激活宽带近红外氧化物荧光粉及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110628241A (zh) * 2019-09-30 2019-12-31 奈米科技(深圳)有限公司 近红外吸收颜料及其制备方法
CN113314652B (zh) * 2020-02-26 2022-07-01 抱朴科技股份有限公司 Led元件及利用该led元件的照明装置
CN116179200B (zh) * 2023-02-02 2024-07-05 浙江大学 一种稀土离子掺杂的多色可调铝锗酸盐荧光粉及其制备方法
CN116554870A (zh) * 2023-04-27 2023-08-08 桂林电子科技大学 一种新型绿色机械发光荧光粉、制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045256A (zh) * 2011-10-17 2013-04-17 北京有色金属研究总院 一种led红色荧光物质及含有该荧光物质的发光器件
CN105567236A (zh) * 2014-10-15 2016-05-11 有研稀土新材料股份有限公司 石榴石型荧光粉和制备方法及包含该荧光粉的装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106244140B (zh) * 2016-07-26 2019-08-20 华南理工大学 一种二价镍离子激活的近红外长余辉纳米材料及其制备方法和应用
CN107286932B (zh) * 2017-07-21 2020-10-23 山东大学 一种近红外上转换长余辉发光材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045256A (zh) * 2011-10-17 2013-04-17 北京有色金属研究总院 一种led红色荧光物质及含有该荧光物质的发光器件
CN105567236A (zh) * 2014-10-15 2016-05-11 有研稀土新材料股份有限公司 石榴石型荧光粉和制备方法及包含该荧光粉的装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115125002A (zh) * 2021-03-25 2022-09-30 中国科学院宁波材料技术与工程研究所 一种硅基石榴石近红外荧光材料及其制备方法和应用
CN115197702A (zh) * 2021-04-08 2022-10-18 中国科学院宁波材料技术与工程研究所 一种氟化物盐近红外荧光粉及其制备方法和应用
CN115197702B (zh) * 2021-04-08 2024-03-22 中国科学院宁波材料技术与工程研究所 一种氟化物盐近红外荧光粉及其制备方法和应用
CN114507517A (zh) * 2022-03-04 2022-05-17 浙江大学 基于尖晶石结构的宽带近红外荧光粉及其制备方法和应用
CN114773049A (zh) * 2022-04-18 2022-07-22 武汉理工大学 一种可见-红外透明陶瓷及其制备方法
CN114717001A (zh) * 2022-04-24 2022-07-08 江西离子型稀土工程技术研究有限公司 一种氧化物近红外发光材料及其制备方法和应用
CN116925759A (zh) * 2023-07-25 2023-10-24 昆明理工大学 一种铬激活宽带近红外氧化物荧光粉及其制备方法和应用

Also Published As

Publication number Publication date
CN108998020A (zh) 2018-12-14
CN110157424A (zh) 2019-08-23
CN110157424B (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2019153844A1 (fr) Poudre fluorescente proche infrarouge et dispositif luminescent contenant une poudre fluorescente
CN108467733B (zh) 一种近红外荧光粉、其制备方法及含该荧光粉的发光装置
WO2019153742A1 (fr) Matériau à luminescence infrarouge proche et dispositif électroluminescent préparé à l'aide du matériau à luminescence infrarouge proche
KR102236624B1 (ko) 질화물발광재료 및 그것을 포함하는 발광장치
CN113403073B (zh) 一种宽带短波红外发光材料及制备方法和应用
CN110157417B (zh) 一种近红外光发光材料及包含其的发光装置
WO2020037874A1 (fr) Matériau électroluminescent dans le proche infrarouge et dispositif électroluminescent contenant ledit matériau électroluminescent
CN110003901B (zh) 一种Eu3+和Ti4+离子共掺杂的铌钽酸盐红色荧光粉、制备方法及其应用
CN115058247B (zh) 一种短波红外发光材料及其制备方法和应用
CN104371731B (zh) 一种红色荧光粉及其制备方法
CN113481009B (zh) 一种Cr3+和Yb3+共掺红外发光材料及制备方法和应用
CN105802618A (zh) 一种余辉可调发光材料及其制备方和使用它的led照明装置
CN113061432B (zh) 一种高稳定性多功能白磷钙石型荧光粉的制备方法及应用
KR101072572B1 (ko) 고체 조명용 적색 형광체 및 그 제조방법
CN116200197B (zh) 一种近红外光致发光化合物及其制备方法和应用
WO2019062557A1 (fr) Substance fluorescente au nitrure et dispositif électroluminescent comprenant ladite substance fluorescente
CN116554872B (zh) 无掺杂近紫外响应的近红外二区发光材料及其制备方法
CN114292646B (zh) 一种近红外发光材料和制备方法以及使用其的近红外光源
CN116463119A (zh) 一种蓝光激发高效宽带短波红外发光材料及制备方法和应用
Maske et al. Combustion synthesis of Sr2Al2B2O8: RE (RE= Dy3+, Eu3+, Sm3+) phosphor for solid-state lightning application
CN118064147A (zh) 一种近红外荧光粉及其制备方法和应用
CN111944526A (zh) 一种白光led用锰离子掺杂的镓酸盐红色荧光材料及其制备方法
CN117402621A (zh) 一种高效近红外发光材料及其制备方法和应用
CN115710507A (zh) 一种碲酸盐近红外荧光材料及其制备方法和应用
CN115746842A (zh) 一种荧光粉及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905251

Country of ref document: EP

Kind code of ref document: A1