WO2019153691A1 - 通信装置及通信系统 - Google Patents

通信装置及通信系统 Download PDF

Info

Publication number
WO2019153691A1
WO2019153691A1 PCT/CN2018/100291 CN2018100291W WO2019153691A1 WO 2019153691 A1 WO2019153691 A1 WO 2019153691A1 CN 2018100291 W CN2018100291 W CN 2018100291W WO 2019153691 A1 WO2019153691 A1 WO 2019153691A1
Authority
WO
WIPO (PCT)
Prior art keywords
bluetooth unit
unit
unmanned aerial
bluetooth
aerial vehicle
Prior art date
Application number
PCT/CN2018/100291
Other languages
English (en)
French (fr)
Inventor
王冰春
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2019153691A1 publication Critical patent/WO2019153691A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0267Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by controlling user interface components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of unmanned aerial vehicles, and more particularly to a communication device and a communication system.
  • unmanned aerial vehicles With the continuous development of unmanned aerial vehicles, unmanned aerial vehicles have been widely used in aerial photography, search and rescue, and even logistics, providing great convenience for people's lives.
  • unmanned aerial vehicles may lose contact with the ground station due to environmental factors. At this time, the ground station cannot know the state of the unmanned aerial vehicle and the landing point. For example, when an unmanned aerial vehicle is working in the field, it may collide with power lines or trees, causing the UAV to accidentally crash. Due to the complexity of the terrain conditions in the field, it is time-consuming and labor-intensive to find the falling UAV. jobs. What's more remarkable is that if the mission data and log data are stored on the unmanned aerial vehicle that performs the mission, it is especially important to pursue the falling UAV.
  • Embodiments of the present invention provide a communication device to improve the search efficiency of an unmanned aerial vehicle.
  • the embodiment of the present invention provides a communication device, which is used for installation on an unmanned aerial vehicle, and the communication device may include:
  • a Bluetooth unit configured to: when detecting an abnormal condition of the UAV, broadcast a connection request, so that the external device responds to the connection request within a broadcast range of the Bluetooth unit;
  • a power supply unit connected to the Bluetooth unit, for supplying power to the Bluetooth unit.
  • the communication device may further include: a communication interface
  • the communication interface is configured to receive a first heartbeat signal sent by the UAV, and send the first heartbeat signal to the Bluetooth unit;
  • the Bluetooth unit After receiving the first heartbeat signal, the Bluetooth unit enters a sleep mode.
  • the Bluetooth unit is configured to wake up the sleep mode at a preset time, and detect whether the first heartbeat signal is received;
  • the Bluetooth unit does not receive the first heartbeat signal at the preset time, it is determined that the unmanned aerial vehicle has an abnormal condition.
  • the Bluetooth unit is further configured to establish a connection with the external device after receiving a connection response sent by the external device for the connection request, and send a second heartbeat to the external device. signal.
  • the Bluetooth unit is further configured to detect a signal strength of the connection response, and determine a transmission frequency of the second heartbeat signal according to the signal strength.
  • the UAV includes a start button; the Bluetooth unit is connected to the start button;
  • the Bluetooth unit is configured to receive a trigger signal of the start button, and switch a switch state according to the trigger signal.
  • the communication device may further include:
  • a prompting unit connected to the Bluetooth unit
  • the Bluetooth unit is configured to send a prompt signal to the prompting unit
  • the prompting unit is configured to output the prompt signal.
  • the communication interface includes any one of a UART serial port, an SPI interface, an I2C interface, and a 1-Wire interface.
  • the Bluetooth unit is a low power Bluetooth chip.
  • the power supply unit is further configured to supply power to at least one of the unmanned aerial vehicles.
  • the embodiment of the present invention further provides a communication system, including: an unmanned aerial vehicle and an external device, the external device includes a Bluetooth module, and further includes the communication device shown in any of the above embodiments, where the communication device is installed.
  • the UAV is communicatively coupled to the UAV, and the Bluetooth module of the external device is configured to connect with the Bluetooth unit.
  • the communication device may include: a Bluetooth unit, configured to broadcast a connection request when the abnormality of the UAV is detected, so that the external device responds to the connection request within the broadcast range of the Bluetooth unit; A power supply unit, connected to the Bluetooth unit, for powering the Bluetooth unit.
  • the Bluetooth unit broadcasts a connection request when the abnormality of the unmanned aerial vehicle is detected, so that the external device responds to the connection request within the broadcast range of the Bluetooth unit, so that the external device only passes
  • the Bluetooth module of the communication device can establish a connection with the Bluetooth unit in the communication device to determine the search range of the UAV, thereby simplifying the configuration of the external device, narrowing the search range of the UAV, and thereby improving the flight unmanned device. Looking for efficiency.
  • FIG. 1 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another communication device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • the embodiment of the present invention provides a communication device, which may include:
  • a Bluetooth unit configured to broadcast a connection request when an abnormal condition of the UAV is detected, so that the external device responds to the connection request within a broadcast range of the Bluetooth unit;
  • a power supply unit connected to the Bluetooth unit, for powering the Bluetooth unit.
  • the Bluetooth unit broadcasts a connection request when the abnormality of the unmanned aerial vehicle is detected, so that the external device responds to the connection request within the broadcast range of the Bluetooth unit, so that the external device only passes
  • the Bluetooth module of the communication device can establish a connection with the Bluetooth unit in the communication device to determine the search range of the UAV, thereby simplifying the configuration of the external device, narrowing the search range of the UAV, and thereby improving the flight unmanned device. Looking for efficiency.
  • the Bluetooth unit can be operated independently of the UAV, and the Bluetooth unit can continue to broadcast signals when the UAV stops working or cannot work.
  • FIG. 1 is a schematic structural diagram of a communication device 10 according to an embodiment of the present invention.
  • the communication device 10 can be installed on an unmanned aerial vehicle.
  • the communication device 10 can be mounted in the central enclosure of the UAV, or mounted outside the central enclosure of the UAV, or installed in the power supply system of the UAV, or other location on the UAV, ie
  • the communication device 10 can be installed at any position on the unmanned aerial vehicle that does not shield or weaken the broadcast signal of the communication device.
  • the embodiment of the present application is not limited thereto.
  • the communication device 10 can include:
  • the Bluetooth unit 101 is configured to broadcast a connection request when an abnormal condition of the UAV is detected, so that the external device responds to the connection request within the broadcast range of the Bluetooth unit 101.
  • the power supply unit 102 is connected to the Bluetooth unit 101 for supplying power to the Bluetooth unit 101.
  • the unmanned aerial vehicle is provided with a start button for triggering the unmanned aerial vehicle to be turned on or off
  • the Bluetooth unit 101 can be connected with the start button of the unmanned aerial vehicle to control the switching state of the bluetooth unit 101 through the start button of the unmanned aerial vehicle.
  • the switch state can be switched according to the trigger signal.
  • the default Bluetooth unit 101 is in the off state.
  • the Bluetooth unit 101 receives the first trigger signal of the start button, the Bluetooth unit 101 can be turned on according to the trigger signal.
  • the Bluetooth unit 101 receives the start button.
  • the Bluetooth unit 101 receives the start button.
  • the Bluetooth unit 101 can be turned off according to the trigger signal.
  • the Bluetooth unit 101 is synchronized with the working state of the UAV, that is, the first trigger signal can trigger the Bluetooth unit 101 to work synchronously with the UAV, and thus the Bluetooth unit 101 can perform only after the UAV is triggered to work. Work, thereby reducing the power consumption of the communication device 10.
  • the Bluetooth unit 101 can enter the sleep state after being triggered by the first trigger signal, and periodically wake up the sleep state to detect whether the unmanned aircraft is abnormal; or the Bluetooth unit 101 remains in the sleep state. Until the UAV sends an abnormal trigger signal indicating that the UAV is in an abnormal state, at this time, the Bluetooth unit 101 wakes up the sleep state to perform work.
  • the Bluetooth unit 101 can be a low power Bluetooth chip.
  • the UAV can start the low-power Bluetooth chip by using a trigger signal sent by the start button before performing the flight work.
  • the low-power Bluetooth chip can be Bluetooth paired with an external device. After successful pairing, the unmanned aerial vehicle with the low-power Bluetooth chip is added to the Bluetooth paired device list of the external device. In the case where the unmanned aerial vehicle is disconnected from the ground station, the external device can be utilized to find the unmanned aerial vehicle.
  • the external device and the UAV can be automatically connected.
  • the external device can be quickly connected to the low-power Bluetooth chip during the search process, thereby improving the search efficiency.
  • the UAV can be paired with the low-power Bluetooth chip during the search process, which is not limited herein.
  • the embodiment of the present invention is only an example in which the Bluetooth unit 101 is a low-power Bluetooth chip, but the embodiment of the present invention is not limited thereto.
  • the external device may include a user terminal, or a display terminal, a control terminal, or the like on the ground station.
  • the implementation of the external device in the embodiment of the present application is not limited.
  • the Bluetooth unit 101 can determine whether the first heartbeat signal is received when detecting whether the unmanned aerial vehicle is abnormal.
  • it may determine whether the first heartbeat signal is received in real time. Of course, in order to reduce power consumption, it may also be determined whether the first heartbeat is received at a certain interval duration.
  • a heartbeat signal When determining whether the first heartbeat signal is received, the Bluetooth unit 101 may wake up the sleep mode for a preset time period, and detect whether the first heartbeat signal is received, if the first heartbeat signal is received within a preset time.
  • a heartbeat signal determines that the UAV is in a normal flight state; conversely, if the first heartbeat signal is not received within a preset time, the UAV exhibits an abnormal condition.
  • the preset time may be set according to actual needs. For example, the preset time may be any value within 1 second to 20 seconds.
  • the Bluetooth unit 101 can detect whether an unmanned aerial vehicle has an abnormal condition by other means.
  • the Bluetooth unit 101 can detect whether the unmanned aerial vehicle sends an abnormal trigger signal; for example, the flight control system of the unmanned aerial vehicle sends an abnormal trigger signal, or the power system of the unmanned aerial vehicle sends an abnormal trigger signal, or The anomaly trigger signal sent by the UAV after determining the loss of contact with the ground station.
  • the Bluetooth unit 101 can acquire status information of the UAV, and determine whether the UAV is abnormal by the status information.
  • the purpose of the Bluetooth unit 101 is to broadcast a connection request when the abnormality of the unmanned aerial vehicle is detected, so that the external device is within the broadcast range of the Bluetooth unit 101.
  • Responding to the connection request thereby determining the location of the UAV, such that the external device can establish a connection with the Bluetooth unit 101 in the communication device 10 only through its own Bluetooth module to determine the search range of the UAV, thereby simplifying the external device.
  • the configuration reduces the search range of the unmanned aerial vehicle, thereby improving the search efficiency of the flying unmanned aerial vehicle.
  • the power supply unit 102 is configured to supply power to the Bluetooth unit 101, thereby ensuring the normal operation of the Bluetooth unit 101, and avoiding the Bluetooth unit 101 being unable to detect due to insufficient power.
  • the human aircraft has an abnormal condition or the connection request cannot be broadcast normally.
  • the power supply unit 102 can also supply power to other systems in the unmanned aerial vehicle.
  • other systems in the unmanned aerial vehicle may include a flight control system, a vision system, a photographing system, and the like, which are not limited herein.
  • the Bluetooth unit 101 controls the power supply unit 102 to the unmanned aerial vehicle when detecting that the abnormality of the unmanned aerial vehicle is exhausted in the power supply system of the unmanned aerial vehicle, or the power is insufficient to support the unmanned aerial vehicle to complete the flight mission.
  • the system supplies power or, alternatively, charges the power supply system.
  • the above manner may also be implemented by other units in the communication device, for example, a control unit or a control charging unit, etc., which is not limited herein.
  • the power supply unit 102 can be integrated with the power supply system of the UAV.
  • the power supply unit 102 can be mutually charged with the power supply system of the UAV, and the power supply unit 102 and the power supply system can be connected by the power supply control unit.
  • the power supply control unit can be used to manage and distribute the remaining power in the power supply unit 102 and the power supply system.
  • the communication device 10 provided by the embodiment of the present invention may include: a Bluetooth unit 101, configured to broadcast a connection request when the abnormality of the UAV is detected, so that the external device is within the broadcast range of the Bluetooth unit 101. Responding to the connection request; the power supply unit 102 is connected to the Bluetooth unit 101 for supplying power to the Bluetooth unit 101.
  • the Bluetooth unit 101 when detecting that the UAV is abnormal, broadcasts a connection request, so that the external device responds to the connection request within the broadcast range of the Bluetooth unit 101, so that the external device
  • the device can establish a connection with the Bluetooth unit 101 in the communication device 10 only through its own Bluetooth module to determine the search range of the UAV, thereby simplifying the configuration of the external device, narrowing the search range of the UAV, and thus improving the range.
  • the efficiency of the flight unmanned device when detecting that the UAV is abnormal, the Bluetooth unit 101 broadcasts a connection request, so that the external device responds to the connection request within the broadcast range of the Bluetooth unit 101, so that the external device
  • the device can establish a connection with the Bluetooth unit 101 in the communication device 10 only through its own Bluetooth module to determine the search range of the UAV, thereby simplifying the configuration of the external device, narrowing the search range of the UAV, and thus improving the range.
  • the efficiency of the flight unmanned device when detecting that the UAV is abnormal, the Bluetooth unit 101 broadcasts
  • the Bluetooth unit 101 when determining whether the UAV is abnormal by the first heartbeat signal, optionally, the communication device 10 may further include a communication interface 103.
  • FIG. 2 is a schematic structural diagram of another communication device 10 according to an embodiment of the present invention.
  • the communication interface 103 is configured to receive the first heartbeat signal sent by the flight control system in the unmanned aerial vehicle, and send the first heartbeat signal to the Bluetooth unit 101.
  • the Bluetooth unit 101 After receiving the first heartbeat signal, the Bluetooth unit 101 enters a sleep mode.
  • the communication interface 103 can include any one of a UART serial port, an SPI interface, an I2C interface, and a 1-Wire interface.
  • the Bluetooth unit 101 When receiving the first heartbeat signal, the Bluetooth unit 101 is that the communication interface 103 in the communication device 10 first receives the first heartbeat information sent by the flight control system in the unmanned aerial vehicle, and transmits the first heartbeat signal received by the Bluetooth unit to the Bluetooth unit. 101. If the Bluetooth unit 101 receives the first heartbeat signal, it is determined that the UAV is in a normal flight state, and the Bluetooth unit 101 can enter a sleep mode, thereby reducing the power consumption of the Bluetooth unit 101. Conversely, if the Bluetooth unit 101 does not receive the first heartbeat signal of the UAV, it indicates that the UAV is abnormal.
  • the Bluetooth unit 101 Upon detecting an abnormality of the unmanned aerial vehicle, the Bluetooth unit 101 broadcasts a connection request, and if the external device is within the broadcast range of the Bluetooth unit 101, transmits a connection response of the connection request to the Bluetooth unit 101, so that the Bluetooth unit 101 receives the external After the connection sent by the device responds, establishing a connection with the external device, so as to send a second heartbeat signal to the external device, so that the external device can determine the location of the unmanned aerial vehicle according to the second heartbeat signal, thereby finding the Human aircraft.
  • the Bluetooth unit 101 may detect the signal strength of the connection response sent by the external device, and determine the transmission frequency of the second heartbeat signal according to the signal strength, and then use the transmission frequency.
  • the second heartbeat signal is sent to the external device. Therefore, the external device can determine the distance from the UAV or the communication device by the frequency of the received second heartbeat signal, thereby improving the search efficiency.
  • the Bluetooth unit 101 detects that the signal strength of the connection response sent by the external device is strong, it indicates that the distance of the external device from the unmanned aerial vehicle with the Bluetooth unit 101 is relatively close, in order to reduce the power consumption of the Bluetooth unit 101.
  • the second heartbeat signal can be sent to the external device at a lower transmission frequency; if the Bluetooth unit 101 detects that the signal strength of the connection response sent by the external device is weak, it indicates that the external device is located at a distance from the Bluetooth unit 101.
  • the unmanned aerial vehicle has a long distance.
  • the second heartbeat signal may be sent to the external device at a higher transmission frequency, so that the external device can be based on the second heartbeat signal. Determine the location of the UAV to find the UAV.
  • the Bluetooth unit 101 can also send the second heartbeat signal to the external device at a higher transmission frequency when the signal strength of the connection response is detected to be stronger; if the signal strength of the connection response is weak, correspondingly The second heartbeat signal is sent to the external device at a lower transmission frequency. That is, the distance of the external device from the unmanned aerial vehicle is prompted by the transmission frequency of the second heartbeat signal.
  • the transmission frequency of the second heartbeat signal may be positively correlated or negatively correlated with the signal strength of the connection response.
  • the embodiments of the present application are not limited.
  • the communication device 10 may further include: a prompting unit 104, and the prompting unit 104 is connected to the Bluetooth unit 101.
  • FIG. 3 is provided according to an embodiment of the present invention. A schematic diagram of the structure of another communication device 10.
  • the Bluetooth unit 101 is configured to send a prompt signal to the prompting unit 104.
  • the prompting unit 104 is configured to output a prompt signal.
  • the prompt signal can be outputted by means of a prompt light, or can be outputted by means of a buzzer. Of course, it can also be output according to other methods, and can be set according to actual needs.
  • the embodiment of the present invention only uses the prompt light.
  • the buzzer is described as an example, but it does not mean that the invention is limited thereto.
  • the purpose is that the prompting signal sent by the Bluetooth unit 101 can be received by the prompting unit 104, and the prompting signal is output to the searching person, so that the searching person can The cue signal quickly finds the UAV.
  • the frequency of the output may be determined according to the signal strength of the connection response of the connected external device. For example, if the signal strength of the connection response sent by the external device is strong, it indicates that the distance of the external device from the unmanned aerial vehicle with the Bluetooth unit 101 is relatively close. In order to reduce the power consumption of the prompting unit 104, the time may be lower.
  • the output frequency outputs a prompt signal to the searcher; if the signal strength of the connection response sent by the external device is weak, it indicates that the external device is far away from the unmanned aerial vehicle provided with the Bluetooth unit 101, in order to prevent the searcher from finding the
  • the prompt signal can output a prompt signal to the searcher at a higher output frequency, so that the searcher can determine the position of the unmanned aerial vehicle according to the prompt signal, thereby improving the search efficiency of the unmanned aerial vehicle.
  • the prompting unit 104 may output the prompt signal at a higher output frequency when the signal strength of the connection response is detected to be stronger; and output the prompt signal at a lower output frequency when the signal strength of the connection response is detected to be weak.
  • the output frequency of the cue signal can be positively correlated or negatively correlated with the signal strength of the connection response. This application is not limited.
  • the prompting unit 104 may further determine the prompt strength of the prompt signal according to the signal strength of the connection response.
  • the output brightness of the prompt light can be determined according to the signal strength of the connection response.
  • the output brightness can be positively correlated with the signal strength of the connection response, ie, the stronger the signal strength, the brighter the output brightness.
  • the strong signal strength indicates that the distance between the external device and the UAV is relatively close.
  • increasing the brightness of the cue light can increase the probability that the searcher observes the cue light, thereby improving the search efficiency of the UAV.
  • the loudness of the buzzer can be determined according to the signal strength of the connection response.
  • the loudness can be positively correlated with the signal strength of the connection response, ie the stronger the signal strength, the louder the buzzer output sounds. That is to improve the probability that the searcher will hear the buzzer sound, thereby improving the efficiency of the unmanned aerial vehicle.
  • the power supply unit 102 includes a rechargeable battery by providing the power supply unit 102.
  • the communication device 10 may further include a power supply control unit 105 to determine whether to charge the rechargeable battery by the power supply control unit 105.
  • FIG. 4 is a schematic structural diagram of still another communication device 10 according to an embodiment of the present invention.
  • the power supply control unit 105 is configured to be respectively connected to the power supply unit 102 and the power supply system of the unmanned aerial vehicle, and is configured to control the power supply system of the unmanned aerial vehicle to charge the rechargeable battery.
  • the purpose of the power supply control unit 105 is to control the power supply system of the unmanned aerial vehicle to charge the rechargeable battery, thereby providing the rechargeable battery. Enough power.
  • the power supply control unit 105 when determining whether to control the power supply system of the UAV to charge the rechargeable battery, the power supply control unit 105 has the following at least two possible determination manners:
  • the power supply control unit 105 determines whether the remaining power of the rechargeable battery is sufficient. If it is determined that the remaining power of the rechargeable battery is insufficient, the power supply system that controls the unmanned aerial vehicle charges the rechargeable battery.
  • the power supply control unit 105 controls the power supply system of the UAV to the rechargeable battery, it is necessary to determine whether the remaining battery capacity of the rechargeable battery is sufficient, and if it is determined that the remaining battery capacity of the rechargeable battery meets the preset.
  • the power requirement does not control the power supply system of the UAV to charge the rechargeable battery; if it is determined that the remaining capacity of the rechargeable battery does not meet the preset requirement, indicating that the remaining battery capacity of the rechargeable battery is insufficient, the power supply of the unmanned aerial vehicle is controlled.
  • the system charges the rechargeable battery so that the rechargeable battery has sufficient power to supply power to the Bluetooth unit 101 through the rechargeable battery, thereby ensuring the normal operation of the Bluetooth unit 101.
  • the power supply control unit 105 controls the power supply system of the unmanned aerial vehicle to the rechargeable battery, it is necessary to determine whether the remaining battery capacity of the rechargeable battery is sufficient, if the current rechargeable battery is available.
  • the remaining battery capacity is greater than 30%, indicating that the remaining battery capacity of the rechargeable battery is sufficient, then the power supply system of the UAV is not controlled to charge the rechargeable battery; if it is determined that the remaining capacity of the rechargeable battery is less than 30%, this means that If the remaining capacity of the rechargeable battery is insufficient, the power supply system of the unmanned aerial vehicle is controlled to charge the rechargeable battery, so that the rechargeable battery has sufficient power to supply power to the Bluetooth unit 101 through the rechargeable battery, thereby ensuring the Bluetooth unit 101.
  • the normal work is performed.
  • the power supply control unit 105 controls whether the power supply system of the unmanned aerial vehicle charges the rechargeable battery according to the remaining power of the rechargeable battery and the available power of the power supply system of the unmanned aerial vehicle.
  • the power supply control unit 105 controls the power supply system of the unmanned aerial vehicle to the rechargeable battery, it is necessary to determine the remaining power of the rechargeable battery and the available power of the power supply system of the unmanned aerial vehicle, thereby The remaining capacity of the rechargeable battery and the available power of the unmanned aerial vehicle power system control whether the unmanned aerial vehicle power supply system charges the rechargeable battery.
  • the preset power amount is set to 30%, and the preset power supply system has a power supply capacity of 30% as an example. If the current rechargeable battery has less than 30% remaining power, and the power supply system has less than 30% power available. If the remaining battery capacity of the rechargeable battery is insufficient and the power supply system is insufficient, the power supply system of the unmanned aerial vehicle is not controlled to charge the rechargeable battery, thereby avoiding the influence of the unmanned aerial vehicle power supply system. If the remaining capacity of the current rechargeable battery is less than 30%, and the available power of the power supply system is greater than 30%, indicating that the remaining battery capacity of the rechargeable battery is insufficient, and the power supply system has sufficient power, the unmanned aerial vehicle is controlled. The power supply system charges the rechargeable battery so that the rechargeable battery has sufficient power to supply power to the Bluetooth unit 101 through the rechargeable battery, thereby ensuring the normal operation of the Bluetooth unit 101.
  • the power supply control unit 105 described in the embodiment of the present application may be configured by a controller, a processor, an Application Specific Integrated Circuit (ASIC), or a Field-Programmable Gate Array (FPGA).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the power supply control unit 105 can be integrated in the unmanned aerial vehicle, and the communication device can be connected to the power supply control unit 105 through a communication interface or the like.
  • FIG. 5 is a schematic structural diagram of a communication system 50 according to an embodiment of the present invention.
  • the communication system 50 may include: an unmanned aerial vehicle and an external device 501, wherein the external device 50 includes a Bluetooth module.
  • the communication device 10 shown in any of the above embodiments is included.
  • the communication device 10 can be mounted on an unmanned aerial vehicle and communicatively coupled to the unmanned aerial vehicle.
  • the illustrated unmanned aerial vehicle, communication device 10, and external device 501 are only used to describe their relative connection relationships, and Its specific implementation is limited.
  • the communication device 10 and the external device 501 can be wirelessly connected through Bluetooth technology or Bluetooth low energy technology. Thereby, it is possible to realize that the searcher uses the external device 501 to find the unmanned aerial vehicle.
  • the communication device 10 can include:
  • the Bluetooth unit is configured to broadcast a connection request when an abnormal condition of the UAV is detected, so that the Bluetooth module of the external device responds to the connection request within the broadcast range of the Bluetooth unit.
  • a power supply unit connected to the Bluetooth unit, for powering the Bluetooth unit.
  • the communication device 10 may further include a communication interface, wherein the communication interface is configured to receive the first heartbeat signal sent by the flight control system in the unmanned aerial vehicle, and send the first heartbeat signal to the Bluetooth unit.
  • the Bluetooth unit After receiving the first heartbeat signal, the Bluetooth unit enters the sleep mode.
  • the Bluetooth unit is configured to wake up the sleep mode at a preset time to detect whether the first heartbeat signal is received.
  • the unmanned aircraft heartbeat signal is not received at the preset time, it is determined that the UAV is abnormal.
  • the Bluetooth unit is further configured to establish a connection with the external device after receiving the connection response sent by the external device for the connection request, and send the second heartbeat signal to the external device.
  • the Bluetooth unit is further configured to detect a signal strength of the connection response, and determine a transmission frequency of the second heartbeat signal according to the signal strength.
  • the Bluetooth unit is connected to the start button of the UAV; the Bluetooth unit is configured to receive a trigger signal of the start button, and switch the switch state according to the trigger signal.
  • the communication device 10 may further include: a prompting unit, connected to the Bluetooth unit.
  • the Bluetooth unit is configured to send a prompt signal to the prompting unit; the prompting unit is configured to output the prompt signal.
  • the communication interface includes any one of a UART serial port, an SPI interface, an I2C interface, and a 1-Wire interface.
  • the Bluetooth unit is a low power Bluetooth chip.
  • the power supply unit is further configured to supply power to at least one of the unmanned aerial vehicles.
  • the communication system 50 shown in the embodiment of the present invention can perform the technical solution of the communication device 10 shown in any of the above embodiments.
  • the implementation principle and the beneficial effects are similar, and details are not described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Telephone Function (AREA)
  • Selective Calling Equipment (AREA)

Abstract

本文提供一种通信装置,通信装置安装在无人飞行器内,通信装置包括:蓝牙单元,用于在检测到无人飞行器出现异常情况时,广播连接请求,以使外部设备在蓝牙单元的广播范围内响应连接请求;供电单元,与蓝牙单元连接,用于为蓝牙单元供电。本文提供的通信装置,提高了无人飞行器的寻找效率。

Description

通信装置及通信系统
申请要求于2018年2月11日申请的、申请号为201810139695.X、申请名称为“通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无人飞行器技术领域,尤其涉及一种通信装置及通信系统。
背景技术
随着无人飞行器的不断发展,无人飞行器已广泛应用于航拍、搜救甚至物流等技术领域,为人们的生活提供了极大的便利。
当前,无人飞行器由于环境因素,可能与地面站失去联系,此时,地面站无法获知无人飞行器的状态以及着落点。例如,当无人飞行器在野外工作时,可能与电力线路或者树木产生碰撞,导致无人飞行器意外坠机,由于野外地形条件的复杂性,寻找坠落的无人飞行器成为了一个耗时耗力的工作。更值得注意的是,若执行任务的无人飞行器上面保存有任务数据和日志数据,则追寻坠落的无人飞行器就显得尤为重要。
因此,如何利用终端寻找失联的无人飞行器,是本领域技术人员亟待解决的技术问题。
发明内容
本发明实施例提供一种通信装置,以提高无人飞行器的寻找效率。
本发明实施例提供一种通信装置,所述通信装置用于安装在无人飞行器上,所述通信装置可以包括:
蓝牙单元,用于在检测到所述无人飞行器出现异常情况时,广播连接请求,以使外部设备在所述蓝牙单元的广播范围内响应所述连接请求;
供电单元,与所述蓝牙单元连接,用于为所述蓝牙单元供电。
在本发明一实施例中,该通信装置还可以包括:通信接口;
其中,所述通信接口用于接收所述无人飞行器发送的第一心跳信号,并 将所述第一心跳信号发送至所述蓝牙单元;
所述蓝牙单元接收到所述第一心跳信号后,进入休眠模式。
在本发明一实施例中,所述蓝牙单元用于在预设时间唤醒所述休眠模式,并检测是否接收到所述第一心跳信号;
若所述蓝牙单元在所述预设时间没有接收到所述第一心跳信号,则确定所述无人飞行器出现异常情况。
在本发明一实施例中,所述蓝牙单元还用于在接收到外部设备发送的针对所述连接请求的连接响应后,与所述外部设备建立连接,并向所述外部设备发送第二心跳信号。
在本发明一实施例中,所述蓝牙单元还用于检测所述连接响应的信号强度,根据所述信号强度,确定所述第二心跳信号的发送频率。
在本发明一实施例中,所述无人飞行器包括启动键;所述蓝牙单元与所述启动键连接;
所述蓝牙单元用于接收所述启动键的触发信号,并根据所述触发信号切换开关状态。
在本发明一实施例中,该通信装置还可以包括:
提示单元,与所述蓝牙单元连接;
其中,所述蓝牙单元用于向所述提示单元发送提示信号;
所述提示单元用于输出所述提示信号。
在本发明一实施例中,所述通信接口包括UART串口、SPI接口、I2C接口、1-Wire接口中的任意一种。
在本发明一实施例中,所述蓝牙单元为低功耗蓝牙芯片。
在本发明一实施例中,所述供电单元还用于为所述无人飞行器中的至少一个系统进行供电。
本发明实施例还提供了一种通信系统,该通信系统包括:无人飞行器和外部设备,所述外部设备包括蓝牙模块,还包括上述任一实施例所示的通信装置,所述通信装置安装于所述无人飞行器并与所述无人飞行器通信连接,所述外部设备的蓝牙模块用于与所述蓝牙单元进行连接。
本发明实施例提供的通信装置,该通信装置可以包括:蓝牙单元,用于在检测到无人飞行器出现异常情况时,广播连接请求,以使外部设备在蓝牙 单元的广播范围内响应连接请求;供电单元,与蓝牙单元连接,用于为蓝牙单元供电。由此可见,本发明实施例提供的通信装置,蓝牙单元在检测到无人飞行器出现异常情况时,广播连接请求,以使外部设备在蓝牙单元的广播范围内响应连接请求,这样外部设备仅通过自身的蓝牙模块,即可与通信装置中的蓝牙单元建立连接,以确定无人飞行器的找寻范围,从而简化外部设备的配置,缩小了无人飞行器的寻找范围,进而提高了飞行无人器的寻找效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为本发明实施例提供的一种通信装置的结构示意图;
图2为本发明实施例提供的另一种通信装置的结构示意图;
图3为本发明实施例提供的再一种通信装置的结构示意图;
图4为本发明实施例提供的又一种通信装置的结构示意图;
图5为本发明实施例提供的一种通信系统的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排 他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
一种应用场景下,当无人飞行器在野外工作时,可能与电力线路或者树木产生碰撞,导致无人飞行器意外坠机,由于野外地形条件的复杂性,从而使得无人飞行器的寻找效率较低。为了提高无人飞行器的寻找效率,本发明实施例提供了一种通信装置,该通讯装置可以包括:
蓝牙单元,用于在检测到无人飞行器出现异常情况时,广播连接请求,以使外部设备在蓝牙单元的广播范围内响应连接请求;
供电单元,与蓝牙单元连接,用于为蓝牙单元供电。
由此可见,本发明实施例提供的通信装置,蓝牙单元在检测到无人飞行器出现异常情况时,广播连接请求,以使外部设备在蓝牙单元的广播范围内响应连接请求,这样外部设备仅通过自身的蓝牙模块,即可与通信装置中的蓝牙单元建立连接,以确定无人飞行器的找寻范围,从而简化外部设备的配置,缩小了无人飞行器的寻找范围,进而提高了飞行无人器的寻找效率。并且利用通信装置中的供电单元,可以使蓝牙单元独立于无人飞行器进行工作,进而可以在无人飞行器停止工作或无法进行工作时,蓝牙单元可以继续广播信号。
下面以具体的实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程在某些实施例中不再赘述。下面将结合附图,对本发明的实施例进行描述。
图1为本发明实施例提供的一种通信装置10的结构示意图,该通信装置10可以安装在无人飞行器上。例如,通信装置10可以安装在无人飞行器的中心机壳内,或者安装在无人飞行器的中心机壳外,或者安装在无人飞行器的供电系统中,或者无人飞行器上的其他位置,即通信装置10可以安装在无人飞行器上不会屏蔽或减弱通信装置广播信号的任意一个位置上,在此,本申请实施例不予限定。
请参见图1所示,该通信装置10可以包括:
蓝牙单元101,用于在检测到无人飞行器出现异常情况时,广播连接请求,以使外部设备在蓝牙单元101的广播范围内响应连接请求。
供电单元102,与蓝牙单元101连接,用于为蓝牙单元101供电。其中,无人飞行器上设有触发无人飞行器开机或关机的启动键,蓝牙单元101可以与无人飞行器的启动键连接,以通过无人飞行器的启动键控制蓝牙单元101的开关状态。具体的,当蓝牙单元101在接收到启动键的触发信号时,可以根据该触发信号切换开关状态。通常情况下,默认蓝牙单元101处于关闭状态,示例的,当蓝牙单元101接收到启动键的第一次触发信号时,可以根据该触发信号开启蓝牙单元101,当蓝牙单元101接收到启动键的第二次触发信号时,可以根据该触发信号关闭蓝牙单元101。
在此种情况下,蓝牙单元101与无人飞行器的工作状态同步,即第一触发信号可以触发蓝牙单元101与无人飞行器同步工作,进而蓝牙单元101可以仅在触发无人飞行器工作后,进行工作,从而降低了通信装置10的耗电量。
需要说明的是,蓝牙单元101在由第一触发信号触发工作后,可以进入休眠状态,并周期性地唤醒该休眠状态,以检测无人飞行器是否出现异常情况;或者,蓝牙单元101保持休眠状态,直至无人飞行器发送异常触发信号,该异常触发信号表明无人飞行器出现异常状态,此时,蓝牙单元101唤醒休眠状态以进行工作。
通过此种方式,可以进一步降低通信装置10的耗电量。
进一步地,蓝牙单元101可以为低功耗蓝牙芯片。无人飞行器在执行飞行工作之前,可以先通过启动键发送的触发信号开启该低功耗蓝牙芯片。该低功耗蓝牙芯片可以与外部设备进行蓝牙配对,配对成功后,设置有该低功耗蓝牙芯片的无人飞行器会加入到外部设备的蓝牙已配对的设备列表中。在无人飞行器与地面站失联的情况下,可以利用该外部设备寻找无人飞行器。
具体地,若外部设备与无人飞行器之间的距离满足蓝牙技术的可允许距离,则该外部设备与无人飞行器可实现自动连接。进而可以实现在寻找过程中,该外部设备与低功耗蓝牙芯片快速连接,提升寻找效率。或者,无人飞行器可以在寻找过程中与低功耗蓝牙芯片实现配对连接,在此不予限定。当然,本发明实施例只是以蓝牙单元101为低功耗蓝牙芯片为例进行说明,但并不代表本发明实施例仅局限于此。
在此,外部设备可以包括用户终端,或者地面站上的显示终端、控制终端等。本申请实施例对外部设备的实现不予限定。
在本发明实施例中,蓝牙单元101在检测无人飞行器是否出现异常时,可以通过是否接收到第一心跳信号进行判断。可选的,在判断蓝牙单元101是否接收第一心跳信号时,可以实时判断是否接收到该第一心跳信号,当然,为了降低耗电量,也可以以某个间隔时长判断是否接收到该第一心跳信号。以某个间隔时长判断是否接收到该第一心跳信号时,蓝牙单元101可以在预设时间段唤醒休眠模式,并检测是否接收到第一心跳信号,若在预设时间内接收到所述第一心跳信号,则确定该无人飞行器处于正常飞行状态;相反的,若在预设时间内没有接收到所述第一心跳信号,则说明无人飞行器出现异常情况。其中,所述预设时间可以根据实际需要进行设置,示例的,所述预设时间可以为1秒至20秒内任一值。
或者,蓝牙单元101可以通过其他方式检测无人飞行器是否出现异常情况。一种实现方式为,蓝牙单元101可以通过检测无人飞行器是否发出异常触发信号;例如,无人飞行器的飞行控制系统发出异常触发信号,或者,无人飞行器的动力系统发出异常触发信号,或者,无人飞行器在确定与地面站失去联系后发送的异常触发信号等。另一种实现方式为,蓝牙单元101可以获取无人飞行器的状态信息,通过该状态信息确定无人飞行器是否出现异常情况。
示例的,在本发明实施例中,通过设置蓝牙单元101,其目的在于:蓝牙单元101在检测到无人飞行器出现异常情况时,广播连接请求,以使外部设备在蓝牙单元101的广播范围内响应连接请求,从而确定无人飞行器的位置,这样外部设备仅通过自身的蓝牙模块,即可与通信装置10中的蓝牙单元101建立连接,以确定无人飞行器的找寻范围,从而简化外部设备的配置,缩小了无人飞行器的寻找范围,进而提高了飞行无人器的寻找效率。
此外,为了保证蓝牙单元101的正常工作,通过设置供电单元102,该供电单元102用于为蓝牙单元101供电,从而保证蓝牙单元101的正常工作,避免因为电量不足而使得蓝牙单元101无法检测无人飞行器出现异常情况,或无法正常广播连接请求。当然,供电单元102还可以为无人飞行器中的其他系统进行供电,在此,无人飞行器中的其他系统可以包括飞行控制系统、视觉系统、拍摄系统等,在此不予限定。例如,蓝牙单元101在检测到无人飞行器出现异常情况为无人飞行器的供电系统中的电量耗尽,或电量不足以 支持无人飞行器完成飞行任务时,控制供电单元102向无人飞行器中的系统供电,或者,为供电系统进行充电。当然,上述方式还可以通过通信装置中的其他单元实现,例如,控制单元或控制充电单元等,在此不予限定。
可选地,供电单元102可以与无人飞行器的供电系统进行集成。或者,供电单元102可以与无人飞行器的供电系统进行相互充电,供电单元102与供电系统可以通过供电控制单元连接。供电控制单元可以用于管理及分配供电单元102和供电系统中的剩余电量。
本发明实施例提供的通信装置10,该通信装置10可以包括:蓝牙单元101,用于在检测到无人飞行器出现异常情况时,广播连接请求,以使外部设备在蓝牙单元101的广播范围内响应连接请求;供电单元102,与蓝牙单元101连接,用于为蓝牙单元101供电。由此可见,本发明实施例提供的通信装置10,蓝牙单元101在检测到无人飞行器出现异常情况时,广播连接请求,以使外部设备在蓝牙单元101的广播范围内响应连接请求,这样外部设备仅通过自身的蓝牙模块,即可与通信装置10中的蓝牙单元101建立连接,以确定无人飞行器的找寻范围,从而简化外部设备的配置,缩小了无人飞行器的寻找范围,进而提高了飞行无人器的寻找效率。
在图1所示的实施例中,蓝牙单元101在通过第一心跳信号确定无人飞行器是否出现异常情况时,可选的,该通信装置10还可以包括通信接口103。请参见图2所示,图2为本发明实施例提供的另一种通信装置10的结构示意图。
其中,通信接口103用于接收无人飞行器中飞行控制系统发送的第一心跳信号,并将第一心跳信号发送至蓝牙单元101。
蓝牙单元101接收到第一心跳信号后,进入休眠模式。
可选的,通信接口103可以包括UART串口、SPI接口、I2C接口、1-Wire接口中的任意一种。
蓝牙单元101在接收第一心跳信号时,是通信装置10中的通信接口103先接收无人飞行器中飞行控制系统发送的第一心跳信息,并将其接收到的第一心跳信号发送给蓝牙单元101。如果蓝牙单元101接收到该第一心跳信号,则确定该无人飞行器处于正常飞行状态,此时该蓝牙单元101可以进入休眠模式,从而降低了蓝牙单元101的功耗。相反的,若蓝牙单元101没有接收 到无人飞行器的第一心跳信号,则说明无人飞行器出现异常情况。
在检测到无人飞行器出现异常情况时,蓝牙单元101广播连接请求,若外部设备在蓝牙单元101的广播范围内,则向蓝牙单元101发送连接请求的连接响应,使得蓝牙单元101在接收到外部设备发送的连接响应后,与所述外部设备建立连接,从而向所述外部设备发送第二心跳信号,以使外部设备可以根据该第二心跳信号确定无人飞行器的位置,从而寻找到该无人飞行器。
可选的,蓝牙单元101在发送第二心跳信号时,可以通过检测外部设备发送的连接响应的信号强度,并根据该信号强度,确定第二心跳信号的发送频率,之后,再以该发送频率向外部设备发送该第二心跳信号。从而,外部设备可以通过接收到的第二心跳信号的频率,来确定与无人飞行器或通信装置的距离,进而可以提升寻找效率。
示例的,若蓝牙单元101检测到外部设备发送的连接响应的信号强度较强,则说明该外部设备距离设置有该蓝牙单元101的无人飞行器的距离较近,为了降低蓝牙单元101的功耗,此时可以较低的发送频率向外部设备发送该第二心跳信号;若蓝牙单元101检测到外部设备发送的连接响应的信号强度较弱,则说明该外部设备距离设置有该蓝牙单元101的无人飞行器的距离较远,为了避免外部设备接收不到该第二心跳信号,此时可以较高的发送频率向外部设备发送该第二心跳信号,以使外部设备可以根据该第二心跳信号确定无人飞行器的位置,从而寻找到该无人飞行器。
当然,蓝牙单元101还可以在检测到连接响应的信号强度较强时,相应地以较高的发送频率向外部设备发送该第二心跳信号;若检测到连接响应的信号强度较弱时,相应地以较低的发送频率向外部设备发送第二心跳信号。即通过第二心跳信号的发送频率来提示外部设备距离无人飞行器的远近。
在此,第二心跳信号的发送频率可以与连接响应的信号强度正相关,或负相关。本申请实施例不予限定。
进一步地,为了提高寻找无人飞行器的效率,该通信装置10还可以包括:提示单元104,且该提示单元104与蓝牙单元101连接,请参见图3所示,图3为本发明实施例提供的再一种通信装置10的结构示意图。
其中,蓝牙单元101用于向提示单元104发送提示信号。
提示单元104用于输出提示信号。
其中,提示信号可以通过提示灯的方式输出,也可以通过蜂鸣器的方式输出,当然,也可以根据其他方式输出,具体可以根据实际需要进行设置,在此,本发明实施例只是以提示灯和蜂鸣器为例进行说明,但并不代表本发明仅局限于此。
示例的,在本发明实施例中,通过设置提示单元104,其目的在于:可以通过该提示单元104接收蓝牙单元101发送的提示信号,并向寻找人员输出该提示信号,使得寻找人员可以根据该提示信号快速寻找到该无人飞行器。
需要说明的是,提示单元104在输出提示信号时,其输出的频率可以根据连接外部设备的连接响应的信号强度确定。示例的,若外部设备发送的连接响应的信号强度较强,则说明该外部设备距离设置有蓝牙单元101的无人飞行器的距离较近,为了降低提示单元104的功耗,此时可以较低的输出频率向寻找人员输出提示信号;若外部设备发送的连接响应的信号强度较弱,则说明该外部设备距离设置有蓝牙单元101的无人飞行器的距离较远,为了避免寻找人员发现不了该提示信号,此时可以较高的输出频率向寻找人员输出提示信号,以使寻找人员可以根据该提示信号确定无人飞行器的位置,从而提高无人飞行器的寻找效率。
当然,提示单元104可以在检测到连接响应的信号强度较强时,以较高输出频率输出提示信号;在检测到连接响应的信号强度较弱时,以较低的输出频率输出提示信号。
在此,提示信号的输出频率可以与连接响应的信号强度正相关,或负相关。本申请不予限定。
进一步地,提示单元104还可以根据连接响应的信号强度,确定提示信号的提示强度。
举例说明,若提示单元104包括提示灯,可以根据连接响应的信号强度,确定提示灯的输出亮度。该输出亮度可以与连接响应的信号强度正相关,即信号强度越强,输出亮度越亮。信号强度强则表明外部设备与无人飞行器的距离较近,此时增加提示灯的亮度,可以提升寻找人员观察到该提示灯的概率,进而提高了无人飞行器的寻找效率。
再举例说明,若提示单元104包括蜂鸣器,可以根据连接响应的信号强度,确定蜂鸣器的响度。该响度可以与连接响应的信号强度正相关,即信号 强度越强,蜂鸣器输出声音越响。即可以提升寻找人员听到该蜂鸣器声音的概率,进而提高了无人飞行器的寻找效率。
此外,为了保证蓝牙单元101的正常工作,通过设置供电单元102,该供电单元102包括可充电电池。
可选的,当该供电单元102包括可充电电池时,相应的,该通信装置10还可以包括供电控制单元105,以通过该供电控制单元105确定是否为该可充电电池充电。请参见图4所示,图4为本发明实施例提供的又一种通信装置10的结构示意图。
供电控制单元105,用于分别与供电单元102以及无人飞行器的供电系统连接,用于控制无人飞行器的供电系统为可充电电池充电。
示例的,在本发明实施例中,通过设置供电控制单元105,其目的在于:可以通过该供电控制单元105控制无人飞行器的供电系统为该可充电电池进行充电,从而为该可充电电池提供足够的电量。
需要说明的是,在本发明实施例中,该供电控制单元105在确定是否控制无人飞行器的供电系统向该可充电电池充电时,存在以下至少两种可能的判断方式:
在一种可能的实现方式中,供电控制单元105判断可充电电池的剩余电量是否充足,若判断出可充电电池的剩余电量不足,控制无人飞行器的供电系统为可充电电池充电。
在此种可能的实现方式中,供电控制单元105在控制无人飞行器的供电系统向可充电电池之前,需要先判断可充电电池的剩余电量是否充足,若确定可充电电池的剩余电量满足预设电量要求,则不控制无人飞行器的供电系统向可充电电池充电;若确定可充电电池的剩余电量不满足预设要求,说明此时可充电电池的剩余电量不足,则控制无人飞行器的供电系统向可充电电池进行充电,以使可充电电池具有足够的电量,从而通过该可充电电池向蓝牙单元101提供电量,进而保证蓝牙单元101的正常工作。
示例的,以设定的预设电量为30%为例,供电控制单元105在控制无人飞行器的供电系统向可充电电池之前,需要先判断可充电电池的剩余电量是否充足,若当前可充电电池的剩余电量大于30%,说明此时可充电电池的剩余电量充足,则不控制无人飞行器的供电系统向可充电电池充电;若确定可 充电电池的剩余电量小于30%,说明此时可充电电池的剩余电量不足,则控制无人飞行器的供电系统向可充电电池进行充电,以使可充电电池具有足够的电量,从而通过该可充电电池向蓝牙单元101提供电量,进而保证蓝牙单元101的正常工作。
在另一种可能的实现方式中,供电控制单元105根据可充电电池的剩余电量与无人飞行器的供电系统的可供电量,控制无人飞行器的供电系统是否为可充电电池充电。
在此种可能的实现方式中,供电控制单元105在控制无人飞行器的供电系统向可充电电池之前,需要先确定可充电电池的剩余电量与无人飞行器的供电系统的可供电量,从而根据该可充电电池的剩余电量与无人飞行器的供电系统的可供电量,控制无人飞行器的供电系统是否为可充电电池充电。
示例的,以设定的预设电量为30%,预设供电系统的可供电量为30%为例,若当前可充电电池的剩余电量小于30%,且供电系统的可供电量小于30%,说明此时可充电电池的剩余电量不足,且供电系统的电量也不足,则不控制无人飞行器的供电系统向可充电电池充电,从而避免因为无人飞行器的供电系统电量不足而影响无人飞行器的运行;若当前可充电电池的剩余电量小于30%,且供电系统的可供电量大于30%,说明此时可充电电池的剩余电量不足,且供电系统的电量充足,则控制无人飞行器的供电系统向可充电电池充电,以使可充电电池具有足够的电量,从而通过该可充电电池向蓝牙单元101提供电量,进而保证蓝牙单元101的正常工作。
示例的,本申请实施例中所描述的供电控制单元105可以由控制器、处理器、应用专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)等实现,在此不予限定。
另一种实现方式中,供电控制单元105可以集成在无人飞行器中,通信装置可以通过通信接口等实现与供电控制单元105连接。
图5为本发明实施例提供的一种通信系统50的结构示意图,请参见图5所示,该通信系统50可以包括:无人飞行器和外部设备501,其中外部设备50上包括蓝牙模块,还包括上述任一实施例所示的通信装置10。该通信系统50中,通信装置10可以安装在无人飞行器上并与所述无人飞行器通信连接, 图示无人飞行器、通信装置10、外部设备501仅用于描述其相对连接关系,并不对其具体实现进行限定。
如上述描述可知,通信装置10与外部设备501可以通过蓝牙技术或低功耗蓝牙技术进行无线连接。从而可以实现寻找人员利用外部设备501来寻找无人飞行器。
其中,通信装置10可以包括:
蓝牙单元,用于在检测到无人飞行器出现异常情况时,广播连接请求,以使外部设备的蓝牙模块在蓝牙单元的广播范围内响应连接请求。
供电单元,与蓝牙单元连接,用于为蓝牙单元供电。
可选的,该通信装置10还可以包括通信接口,其中,通信接口用于接收无人飞行器中飞行控制系统发送的第一心跳信号,并将第一心跳信号发送至蓝牙单元。
蓝牙单元接收到第一心跳信号后,进入休眠模式。
可选的,蓝牙单元用于在预设时间唤醒休眠模式,以检测是否接收到第一心跳信号。
若在预设时间没有接收到无人飞行器心跳信号,则确定无人飞行器出现异常情况。
可选的,蓝牙单元还用于在接收到外部设备发送的针对连接请求的连接响应后,与外部设备建立连接,并向外部设备发送第二心跳信号。
可选的,蓝牙单元还用于检测连接响应的信号强度,根据信号强度,确定第二心跳信号的发送频率。
可选的,蓝牙单元与无人飞行器的启动键连接;蓝牙单元用于接收启动键的触发信号,并根据触发信号切换开关状态。
可选的,该通信装置10还可以包括:提示单元,与蓝牙单元连接。
其中,蓝牙单元用于向提示单元发送提示信号;提示单元用于输出提示信号。
可选的,通信接口包括UART串口、SPI接口、I2C接口、1-Wire接口中的任意一种。
可选的,蓝牙单元为低功耗蓝牙芯片。
可选的,供电单元还用于为无人飞行器中的至少一个系统进行供电。
本发明实施例所示的通信系统50,可以执行上述任一实施例所示的通信装置10的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本发明旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求书指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求书来限制。

Claims (11)

  1. 一种通信装置,其特征在于,所述通信装置用于安装在无人飞行器上,所述通信装置包括:
    蓝牙单元,用于在检测到所述无人飞行器出现异常情况时,广播连接请求,以使外部设备在所述蓝牙单元的广播范围内响应所述连接请求;
    供电单元,与所述蓝牙单元连接,用于为所述蓝牙单元供电。
  2. 根据权利要求1所述的装置,其特征在于,还包括:通信接口;
    其中,所述通信接口用于接收所述无人飞行器发送的第一心跳信号,并将所述第一心跳信号发送至所述蓝牙单元;
    所述蓝牙单元接收到所述第一心跳信号后,进入休眠模式。
  3. 根据权利要求2所述的装置,其特征在于,
    所述蓝牙单元用于在预设时间唤醒所述休眠模式,并检测是否接收到所述第一心跳信号;
    若所述蓝牙单元在所述预设时间没有接收到所述第一心跳信号,则确定所述无人飞行器出现异常情况。
  4. 根据权利要求1-3任一项所述的装置,其特征在于,
    所述蓝牙单元还用于在接收到外部设备发送的针对所述连接请求的连接响应后,与所述外部设备建立连接,并向所述外部设备发送第二心跳信号。
  5. 根据权利要求4所述的装置,其特征在于,
    所述蓝牙单元还用于检测所述连接响应的信号强度,根据所述信号强度,确定所述第二心跳信号的发送频率。
  6. 根据权利要求1-3任一项所述的装置,其特征在于,所述无人飞行器包括启动键;
    所述蓝牙单元与所述启动键连接;
    所述蓝牙单元用于接收所述启动键的触发信号,并根据所述触发信号切换开关状态。
  7. 根据权利要求1-3任一项所述的装置,其特征在于,还包括:
    提示单元,与所述蓝牙单元连接;
    其中,所述蓝牙单元用于向所述提示单元发送提示信号;
    所述提示单元用于输出所述提示信号。
  8. 根据权利要求2所述的装置,其特征在于,所述通信接口包括UART串口、SPI接口、I2C接口、1-Wire接口中的任意一种。
  9. 根据权利要求1-3任一项所述的装置,其特征在于,
    所述蓝牙单元为低功耗蓝牙芯片。
  10. 根据权利要求1-3任一项所述的装置,其特征在于,所述供电单元还用于为所述无人飞行器中的至少一个系统进行供电。
  11. 一种通信系统,包括无人飞行器和外部设备,所述外部设备包括蓝牙模块,其特征在于,还包括上述权利要求1~10任一项所述的通信装置,所述通信装置安装于所述无人飞行器并与所述无人飞行器通信连接,所述外部设备的蓝牙模块用于与所述蓝牙单元进行连接。
PCT/CN2018/100291 2018-02-11 2018-08-13 通信装置及通信系统 WO2019153691A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810139695.XA CN108112004A (zh) 2018-02-11 2018-02-11 通信装置
CN201810139695.X 2018-02-11

Publications (1)

Publication Number Publication Date
WO2019153691A1 true WO2019153691A1 (zh) 2019-08-15

Family

ID=62205639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100291 WO2019153691A1 (zh) 2018-02-11 2018-08-13 通信装置及通信系统

Country Status (2)

Country Link
CN (1) CN108112004A (zh)
WO (1) WO2019153691A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108112004A (zh) * 2018-02-11 2018-06-01 深圳市道通智能航空技术有限公司 通信装置
CN109276251A (zh) * 2018-09-05 2019-01-29 合肥市第二人民医院 一种老年人防走失系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992576A (zh) * 2015-07-23 2015-10-21 览意科技(上海)有限公司 飞行器寻找装置及其寻找方法
CN204965773U (zh) * 2015-07-23 2016-01-13 览意科技(上海)有限公司 飞行器寻找装置
CN105911573A (zh) * 2016-04-01 2016-08-31 北京小米移动软件有限公司 飞行设备找回方法及装置
US20170088261A1 (en) * 2015-09-29 2017-03-30 Tyco Fire & Security Gmbh Search and Rescue UAV System and Method
CN206497536U (zh) * 2016-10-31 2017-09-15 深圳市大疆创新科技有限公司 无人机及其报警系统
CN108112004A (zh) * 2018-02-11 2018-06-01 深圳市道通智能航空技术有限公司 通信装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014143997A1 (en) * 2013-03-15 2014-09-18 Bodhi Technology Ventures Llc Facilitating access to location-specific information using wireless devices
CN203930072U (zh) * 2014-06-30 2014-11-05 浙江省测绘科学技术研究院 一种用于坠落无人机的寻找装置
CN104320751B (zh) * 2014-10-14 2017-08-15 浙江大学 一种基于蓝牙信号强度的物件寻找方法
CN105427559A (zh) * 2015-12-14 2016-03-23 腾讯科技(深圳)有限公司 智能鞋及基于智能鞋的定位系统
CN106385666A (zh) * 2016-09-26 2017-02-08 中颖电子股份有限公司 一种蓝牙防丢实现方法
CN207926927U (zh) * 2018-02-11 2018-09-28 深圳市道通智能航空技术有限公司 通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992576A (zh) * 2015-07-23 2015-10-21 览意科技(上海)有限公司 飞行器寻找装置及其寻找方法
CN204965773U (zh) * 2015-07-23 2016-01-13 览意科技(上海)有限公司 飞行器寻找装置
US20170088261A1 (en) * 2015-09-29 2017-03-30 Tyco Fire & Security Gmbh Search and Rescue UAV System and Method
CN105911573A (zh) * 2016-04-01 2016-08-31 北京小米移动软件有限公司 飞行设备找回方法及装置
CN206497536U (zh) * 2016-10-31 2017-09-15 深圳市大疆创新科技有限公司 无人机及其报警系统
CN108112004A (zh) * 2018-02-11 2018-06-01 深圳市道通智能航空技术有限公司 通信装置

Also Published As

Publication number Publication date
CN108112004A (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
KR102542279B1 (ko) 무선 충전 수신기 회로를 가지는 안경, 안경용 안경 케이스, 및 시스템
US10038344B2 (en) Wireless power transmitting unit, wireless power receiving unit, and control methods thereof
US20210251039A1 (en) Sidelink release method, terminal and network side device
US9979224B2 (en) Integrated circuit for wireless charging and operating method thereof
EP3151525B1 (en) Mobile terminal antenna controlling method and mobile terminal
CN110341549B (zh) 汽车蓄电池的监控方法、装置及存储介质
KR20190009635A (ko) 무선 배터리 관리 시스템 및 이를 포함하는 배터리팩
KR101897634B1 (ko) 무선 전력 송신기, 무선 전력 수신기 및 각각의 제어 방법
US9357367B2 (en) Emergency beacons
US10516280B2 (en) Information processing system, information processing device, operation device, and power supply method
CN109564735A (zh) 无人机及其报警系统
WO2019153691A1 (zh) 通信装置及通信系统
CN103887832A (zh) 一种移动电源及与其进行通信的系统
CN103004094A (zh) 耳机连接感测和零上电按钮
US20110161687A1 (en) Power supply apparatus, power reception apparatus and information notification method
US20140312835A1 (en) Electronic apparatus and charger
US11777332B2 (en) Low-cost task specific device scheduling system
US9960816B2 (en) Power receiving device, and information processing method
CN207926927U (zh) 通信装置
WO2019144645A1 (zh) 计时装置
KR102607777B1 (ko) 이동체 상황인지 기반 저전력 위치 정보 수집 장치
US10805771B1 (en) Location tracking device and method
KR20180108174A (ko) 전자 장치 및 전자 장치의 무선 충전 방법
CN110901466B (zh) 一种电动汽车的充电控制方法、控制系统及汽车
TW201536594A (zh) 被動觸發式胎壓偵測系統及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905850

Country of ref document: EP

Kind code of ref document: A1